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We present a class of shake-and-bake algorithms for generating (asymptotically) uniform points on the boundary of full-
dimensional bounded polyhedra. We also report results of simulations for some elementary test problems.

In this paper, we study the so-called shake-and-bake
algorithms which, as far as we know, provide the
only practical way of generating (asymptotically) uni-
form points on the boundary 45 of a fully-dimensional
polytope §. The fact that the points are uniformly
distributed means that, in the long run, all subsets of
3S of equal size will be visited equally often, and
subsets with positive measure will be visited with
probability one. Part of the material that we present
in this paper may be found in more detail in the
technical reports of Boender et al. (1988a, b). For the
so-called hit-and-run algorithms, which generate
asymptotically uniform points on the interior of S, we
refer to Smith (1984) and Berbee et al. (1987).

The relevance of generating points on 45, and the
name shake-and-bake for this class of algorithms were
mentioned in Smith and Telgen (1981) in the context
of detecting necessary constraints, Note that the shake-
and-bake algorithms can also be used for the problem
of optimizing functions which attain their optimal

value on 4S5, such as, for example, the minimizatior
of a concave function over S (see, e.g., Patel and Smitk
1983).

Smith (1982) suggested the first shake-and-bake
algorithm, referred to here as original SB, that gener-
ates a sequence of points which are asymptoticaily
uniformly distributed on 4S. Given an iteration poin
x% € a8, a random search vector v is generated from
the uniform distribution on the surface of the uni
hypersphere with center x°. The intersection point 1
of the line passing through x° with direction vector ¢
with 85 is accepted as a move point (i.e., x' = y°) witk
probability cos ¢,o/(cos ¢.0 + cOs ¢,0), where ¢.0 anc
¢,0 are the acute angles of the search vector v with the
normals to 85 at x” and »°, respectively; else x' = x¢
The intersection point y° is referred to as hit point
Hence, if the hit point y° is accepted as a move
point, then the next iteration point x' is equal to y°
else the next iteration point x' is equal to the curren:
one x°
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In the next SB algorithm, limping SB, the move
robability is equal to cos .o, while the search vector
is drawn from the same distribution as for original
B. The limiting distribution of the sequence of iter-
lion points, as well as the sequence of move points,
:nerated by limping SB is proven to be uniform on
S. The third algorithm, running SB, chooses the
:arch vector from a distribution such that the hit
oint is a/lways accepted as a move point, while main-
ining the important property that the distribution of
1e iteration points is asymptotically uniform on 45.
see Figures 1 and 2.)

In this paper, we give a proof for the uniform
miting distribution of the iteration points which
oplies to a large class of shake-and-bake algorithms,
icluding the three algorithms just mentioned. The

atline of this paper is as follows: In Section 1, we will-

escribe the general class of shake-and-bake algo-
thms and discuss the above special cases in more
stail. Section 2 contains a proof that the limiting
istribution of the sequence of iteration points gener-
:ed by the algorithms is uniform on the boundary of
. In Section 3 we present some experimental results.
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gure 1. Shake-and-bake algorithms -original/limp-
ing SB. Iteration 0, hit point y° accepted —
iteration point x' := °, x''is a move point;
iteration 1, hit point y' rejected — iteration
point x* := x!; iteration 2, hit point
¥* rejected — iteration point x? := x% itera-
tion 3, hit point y* accepted —» iteration
point x* := ° x*is a move point; iteration
4, hit point y* rejected — iteration point
x* 1= x* iteration 5, hit point y° accepted
— iteration point x® := y°, x is a move
point; and iteration 6, hit point y° accepted
— iteration point x’ := %, x7 is a move
point. '

Figure 2. Shake-and-bake algorithm running SB.

‘1. THE SHAKE-AND-BAKE ALGORITHMS

1.1. Introduction

Consider a feasible region S C R (d = 2) defined by

the system of linear inequalities:
wsbh (i=1,...,m) )

where we have normalized the coefficients of the
inequalities by choosing J a;{| = 1. Assume that S is
bounded, nonempty and of full dimension. Then S is
a polytope that contains interior points, i.e., points for
which the inequalities (1) are all satisfied as strict
inequalities. We assume, without loss of generality,
that all of the constraints are nonredundant, i.e., none
of them can be dropped from the system (1) without
changmg S.

Let 6‘S° be the set of points in .S for which exactly
one constramt zs bmdmg, that 18,

65’0= U {w:a;w-_-

i=1

biajw<b,j* il

The shake-and-bake algorithms are based on a search
from some point x € 45° in a feasible direction v, i.e.,
if constraint k is binding at x, then a(v < 0. The
intersection point y with the constraint hit first in the
direction v is referred to as a kit point and becomes a
move point with probability (v | x).

The hit point y is computed as follows. Let 9V be
the bounding hyperplane of the half-space

Vi=iwiaiws b} (=1,..., m)

To determine y we compute all intersection points of
the straight line passing through x with direction
vector v, denoted by

x+x AER




with the hyperplanes dV;, (i = 1, ..., m). It is easy to
show that the intersection points correspond to the
following values of A:

_bi—aix

a7 (i=1,...,m).

A
Clearly, the intersection point corresponding to the
smallest positive value of A is the hit point, which, for
the algorithms described below, is an element of 35°
with probability one.

1.2. The Ciass of Shake-and-Bake Algorithms

The class of shake-and-bake algorithms for polyhedral
sets can be described as follows (see Figure 1):

Step 0. Find some point x° € 35°. Define k as the
index corresponding to the constraint that is binding
at x% Set n:= 0.

Step 1. Generate a direction vector v from an abso-
lutely continuous probability distribution over the
intersection of the half-space {w:a,w < 0} with
the surface of the d-dimensional unit hypersphere
centered at the origin.

Step 2. Determine the hit point y” as:

b, — alx"

a0 (i=1,...,m)

At

r:=arg min {\;|x; > 0}

I=ism
Y= x4 .

Step 3. With probability 8(y" | x"), set x"*! = p”
and k :=r, i.e., y” becomes a move point. Otherwise,
set x"*' := x", i.e., the next iteration point is equal to
the current one.

Step 4. Set n:=n+ 1 and return to Step 1.

Note that from the description of the algorithms we
may conclude that the sequence of iteration points
defines a Markov chain with a stationary transition
density function and continuous state-space S°, which
will be useful in the subsequent analysis of the
algorithms.

Because of our assumptions on set S, there is a
one-to-one correspondence between a feasible direc-
tion from a particular point in 4S° and a hit point.
We will define our class of algorithms by imposing
conditions on the distribution of the search directions
and on the move probability function 3(y | x).

Without loss of generality, we write the density of
the absolutely continuous component of the distribu-
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tion of hit points in the form:

b, — alx
p(y1x)=S(x, ¥) TEE
where 9V, = {w:aw = b,} is the hyperplane
that is binding at y € 4S°. Note that b, — ax is
equal to the distance from x to dV,. Also note that
(by = a/x)/lx = y|l = cos ¢,, where cos ¢, is as
described in the Introduction. The move probability
function will be written in the form:

bx - a:y
Bylx) =g(x, y) Tx= i
where dV, is the hyperplane that is binding at x € 45°.
Denote the density of the absolutely continuous com-
ponent of the distribution of the v-step transition
probability of moving from x € 45° to a neighborhood
of y € 38° by p*(y| x). The one-step transition den-
sity function p(y| x) = p""(y| x) is then given by:

p(ylx) =B(y|x)p(y|x)

(b = aiy)Xb, — a;x)
fx =yt

= h(x, y)

where

h(x, y) = f(x, y)g(x, p).

The class of shake-and-bake algorithms we discuss
in this paper is defined by imposing the following
conditions on the function A:

L A(x, y) is symmetric in x and y, ie., A(x, y) =
h{y, x) for all x, y € 35°.

ii. A(x, y) is uniformly bounded away from by zero,
Le., there exists a constant &, > O such that
h(x, y) = 6, forall x, y € 4S5°, x # y.

We assume that 8(y | xx) is a measurable function, and,
of course, that 0 < B(y|x) < 1 for all x, y € 4S°.
It is easy to show that the first condition implies
PYyIx) = p¥x|y) for all x, y € 4S°, where v =
1,2,.... The class of shake-and-bake algorithms that
satisfy conditions i and ii will be referred to as SB
algorithms.

1.3. Some Special Cases

In this section, we will describe three specific SB
algorithms.

1.3.1. Original SB

Consider the hypersphere directions (HD) hit-and-run
algorithm, which generates a sequence of points in the
interior of a fully-dimensional bounded set (see, €.g.,
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Berbee et al. 1987). Starting at some point x in this
set, generate a direction vector v from the uniform
distribution over the unit sphere. Then choose the
next point y in the sequence uniformly from the
intersection of the region with the line through .x in

the dlrectmn v. The move probability function for
original SB can be motivated heuristically by comnsid-
ering the HD algorithm applied to a strip having smali
width e around the boundary 45 of a polytope. The
intersection of the set with the line through x in the
direction v is now the union of two line segments. The
acceptance probability for the SB algorithm then cor-
. responds in the limit as ¢ — 0 to the relative length of
the line segment in the polytope not containing the
point x. In particular, for ongmal SB the dlrectlon
vector v should have the uniform distribution over
the unit sphere, or equlvalently the half-sphere of
feasible dlrectxons A direction vector from the
uniform d:stnbuuon over the unit sphere can be
generated efficiently by generating a vector from
the d-variate standard normal distribution, and nor-
malizing this vector to have a norm equal to one (see
e.g., Knuth, 1969). The dlstnbu’uon of hit points is
given by

2(b, — a,x)

po(yix)zm,

where

22
1'(d/2)
is the surface area of a d-dimensional hypersphere

with unit radius.
The move probability function is given by

(b, — aly)

Cd =

P = G ey 6, -
So for this algorithm we have
2 x ~-
o ) = G ax e
with
by = >0
o=

and the one-step transition density function is equal
to

Po(y|x)

_ 2(by = a;y)b, — a,x) ,
Callx = y10bs — aly) + (by — a)x)]”

1.3.2. Limping SB

In this algorithm, the direction vector has the same
distribution as for original SB, i.e., or(ylx) =
po(y | x). The move probability funcuon for this algo-
rithm is chosen for its computational simplicity, and
with the objective of getting a symmetric transition
density function. It is given by

bimay
Bulylx) Tx =y~ 4

Note that 8,( y1x) does not depend explicitly on y.
Thus, the hit point need not be computed unless it is
accepted as a move point. For this algorithm we have

2
hL(x:{ y) - b‘;
so that
2
= >
b4, c 0
and

z(b\ - a,:'y)(by - a),’x)
Callx = YHIMV

(see Boender et al. 1988b for the derivation of the
transition density function for this algorithm).

ply|x) =

1.3.3. Running SB

For all SB algorithms we know that the correlation
between X" and X"** goes to zero if M goes to infinity.
Consequently, randomly permuting the indices in a
large number of generated points will induce the same
uncorrelated effect for any pair of distinct points in
the shuffled sequence of points. In other words, two
elements of the shuffled sequence XV, ... X will
be asymptotically independent. However, for original
and limping SB successive iteration points are highly
correlated. This is due to the fact that not every hit
point is a'move point. Thus, the rate of convergence
of the iteration points to being independently and
uniformly distributed will be slow. The running SB
algorithm solves this problem by taking

Br(y|x) =

The distribution of the direction vector is then
chosen with the goal of obtaining a uniform limit-
ing distribution. In particular, the random direction
vector v is obtained as follows: Draw a point u
from a uniform distribution on the (relative) interior
of the intersection of the d-dimensional unit
hypersphere centered at the origin and the hyperplane



{w:alw = 0}. The search vector v is defined as the
vector with Euclidean norm [ whose projection on
the hyperplane {w:aiw = 0} is equal to #, under the
condition that a{v < 0. We will describe this in more
detail below. This choice of distribution of the direc-
tion vector leads to the transition density function:

(bx - a:y)(by - Q;X)
Byoy | x =y @+

pr(ylx) =

where

2
,n_(/;"h

Ba= T(d2 + 1)

is the volume of a d-dimensional hypersphere with
unit radius (see again Boender et al. 1988b for the
derivation of the transition density function). Note
that for this algorithm

1
Bti—!

he(x, p) =

so that

I
B1p = = > 0.
e B{f—l O

In this algorithm, we need to generate a point u
from the uniform distribution on the (relative) interior
of a (d — 1)-dimensional unit hypersphere contained
in some hyperplane, say, {w:¢’w = O} (with ¢} = 1).
This point can be obtained in the following way: First,
draw a point & from the uniform distribution on the
surface of a d-dimensional unit hypersphere centered
at the origin. The point (J - e/ W (I — ccHil,
which is the projection of i on the hyperplane
fwic’w = 0}, rescaled to have norm equal to 1, is
uniformly distributed on the surface of the (d - 1)-
dimensional unit hypersphere centered at the origin
contained in that hyperplane. This point is rescaled to
have norm r, where  is chosen such that the resulting
point u has the required distribution, which means
that r“~' has to be drawn from the uniform distribu-
tion on (0, 1]. So we have

rI = ccit _

- r(d = ccit
I = ceryi|

u = e
V1 = (c'1)?

and the corresponding direction vector is given by:

v=u—+vl —-ri¢

_ r - r{c’it) ]
V- (c’i1)? * (x/l - (')’ oV r/)c.
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1.4. Limping and Running SB Re-Examined

Given that the present iteration point is x, the condi-
tional probability that the next hit point is also a move
point is given by

P(X)=L0 By x)p(y|x) dy=£50p(ylx) dy.

Since for all x, p(y]x) > 0 for all y in a subset of 3S°
of measure greater than 0, it follows that for all SB
algorithms P(x) > 0 for all x. Since the expected value
of a random variable having a geometric distribution
with parameter ¢ is equal to (1 — q)/q, the expected
number of iterations required to generate a move
point from x is equal to 1/P(x), so that this expected
value is always finite,

For any shake-and-bake algorithm, say A, with tran-
sition density function p(y|x) we can define another
algorithm A generating only the move points corre-
sponding to 4. (Obviously, when P(x) =1 for all x,
e.g., when 4 = running SB, the two algorithms are
the same.) The transition density function p(y|x)
of algorithm A4 can be expressed In terms of
p(y]x)and P(x):

pylx) =p(y|x) + (1 = P(x))p(y]x)
+ (1= P)p(yix) + ...

o

= 2 (1 = P(x))p(y]x)

F=0

1
= ;,;Ep(y!x)-

It follows that A(x, y) = h(x, p)/P(x). Of course,
if the function / satisfies conditions i and i in
Section 1.2, then algorithm A is an SB algorithm.
If 4 is an SB algorithm, then so is A if and only if
P(x) is independent of x.

For limping SB the move probability P;(x) is
equal to:

2Bd-«1

d

Pr(x) =

This move probability is independent of x, so the
algorithm generating the move points of limping SB
is also an SB algorithm. Comparing the transition
density functions Olejmping and running SB we
observe that limping SB = running SB (see Figures 1
and 2).

1.5. Computational Efficiency

To determine a next iteration point all shake-and-
bake algorithms have to generate a search vector. If
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the acceptance probability function of an algorithm
depends explicitly on y, then the hit point corre-
spo,nding to the search vector has to be computed. If
this is not the case, then the hit point only needs to
be computed if it is accepted as a move point.
For the three algorithms described above, the gen-
eration of a search vector requires O(d) time. Due to
the 24 multiplications for each inequality of S, the
computation of the intersection points requires
O(md) time. This implies that for original and run-
‘ning SB the computation of an iteration point requires
‘O(md) time. For limping SB the acceptance probabil-
ity does not depend explicitly on y, so the expected
computation time per iteration point depends on the
probability that a hit point is also a move point. Since
1/P(x) = v(d + 1)/2 for large d, we have that this
probability is O(1/vd), so the expected computation
time per iteration point is O(m+/d). , o
- The foregoing analysis suggests that limping SB is
 better than original or running SB in some sense.
However, there will be a difference among SB algo-
rithms in “the rate of convergence to the uniform
distribution. As noted, the convergence rate of algo-
rithms for which not every iteration point is a move
point (e.g., original and limping SB) may well be much
lower ‘than for algorithms generating only move
points, such as running SB. This issue will be
addressed in some more detail in the next section.

2. THE UNIFORM LIMITING DISTRIBUTION

In this section, we prove that for all SB algorithms the
randqm Sequence {X"} 7., of iteration points converges
to the uniform distribution on 35", independently of
the starting point in the set 3S°. In other words, we
will prove that

lim PriX" € 4| X0 = x% = Ma-1(A)

e My-1(3S)
for every 4 C 9§ and every starting point x° € a5s,
where m,-,(-) denotes the (d — 1)-dimensional

Lebesgue measure of a set.
We use the following theorem from Doob (1953,
p. 197).

Theorem 1. Ifihere existsas>0andav= 1 (possibly
depending on S such thar pAyix) = 6 for all x,
y € 88°, then there exists q stationary absolute proba-
bility distribution P(.) such that

[PriX" € 4] X° = x% — p(4)]
< (1= dmy_ a8y~
Jor all A €3S and for all x° € 35"

We can use this theorem to get the following result.

Theorem 2. If

a. there exists a scalar § > 0 and a v = 1 such that
PAyix) = é forall x, y € 3S°, and
b. p(y|x)=p(x|y)forall x, y € 4S",

then the sequence {X"}y.o of points has a uniform
limiting distribution on S°.

Proof. It follows from Theorem 1 that a implies the
existence of an asymptotic stationary distribution.
Analogous to the proof given in Smith (1984, p. 1300),
it follows that b implies that the uniform distribution
is the unique stationary distribution.

As noted in Section 1.2, condition b is satisfied.
What remainsis to-find a 6 > 0 and a » = 1 such that
condition a is satisfied. Theorem 3 proves that a is
satisfied with » = 4.

Theorem 3. There exists a scalar & > 0 such that
PAy|x)= 6 forall x, y € 3S°.

The proof will be given after the following two
lemmas.

Lemma 1. There exists an & > 0 such that for
every x € 3S° there exists an index j such that
bj‘ - a ,»'x > fA().

Proof. Suppose that such an ¢, does not exist. This
means that for all ¢ > 0 there exists an x. € 3S° such
that b, — a/x, < e for all j. So for all n = 1, 2, cee
there exists an x, € 4S° such that b, — a/x, < 1/n
for all j. Since 4§ is compact, we know that the
sequence {x,}r-, has a limiting point x, € 4S for
which b, — a/x, = 0 for all j. Now suppose y is an
interior point of S, i.e., b, — a/y > 0 for all j. Then
Xo + oy — Xo) is an interior point for every o > 0
since b; — af(xo + ey ~ x0)) = alb; — a/y) > 0 for
all j. This implies that S is unbounded, which is
a contradition.

Lemma 2. For every i there exists an é; > 0, such that
the set Vi = {z € dV;: b, — a]z > ¢, for all j # i} has
positive (d — 1)-dimensional Lebesgue measure.
(See Figure 3).

Proof. Choose an arbitrary constraint i. We know
that constraint / is nonredundant, so there exists an
X, for which

b—alxs=p <0

bi—ajxo=0 (j#i).
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Figure 3. V.

Suppose that x; is an interior point of S, so
bi—alxi=u >0
bj—a;x1>0 (]?‘"l)‘

Choose
* = HiXo = ugX,
My = Mo

which is a convex combination of x; and Xi. Thus we
have

T
My = Mo

bi—alx*=b -~

+ (- b)=0
My ™ o

bj—a/x*>0 (j#i).

So b; — a/x* = 0 and b, — a/x* = 2¢ for all j # |,
where

& = min (b, — a;x*)/2 > 0.
FEE

For all z € 8V, for which || z — x* || < ¢, we have

bi—=alz=0

b~—alz=1b~a/x*+a/(x* - z)
>2—é6=¢ (j#1)

which implies that z € 3V, Hence, the set dV% has
positive (d ~ 1)-dimensional Lebesgue measure.

Corollary 1. Ifwe define ¢ := min,.., &> 0, then
Jorall 0 < e < ¢ and for all i the set dV* has positive
(d — 1)-dimensional Lebesgue measure.
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Proof of Theorem 3. It is obvious that we cannot find
a positive lower bound on the one-step transition
density function p(y| x) because this function is equal
to zero for all points in the facet containing the point
x. It can be shown that when S is a two-dimensional
triangle, the two-step transition density function is
everywhere positive, but has no positive lower bound.
Again when S is the two-dimensional triangle, it can
be shown that for running SB the three-step transition
density function is not bounded from below by a
positive constant, due to the fact that the acceptance
probability function is always equal to 1. We will show
that there exists a positive lower bound on the four-
step transition density function, for all SB algorithms
and for all full-dimensionat polytopes. (See Figure 4.)
For all x, y € 35°

P(y|x)

S
350 Jast Jyg0

Pz | 0p(z2 | 20p(z3 | 22)p(y | 23) dzs dzs dz,.

Suppose that x € 9V, and y € aV;. Choose some 0 <
¢ < & It follows from Lemma 1 that there exists a
k # i and an / # j, such that b, — alx > ¢ and
by — aly > e Choose some index 1 # k, [ (see
Figure 4). Define rs as the maximal distance between
two points in 4.5;

rs= max [[n — n].

IR P1=tA)
Then:
- (b = a;ZJ)(bk - azix)
Lop(zi|x) = hix, z)) =z 7
2
€
> 5h rz;-(»l

as

x Y @Vi': 6VE

Figure 4. From x to y in four steps.
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= a/y)b — a/z) So we have
— d+1
2= 71 Py %)

€ 8
—_— 4 €
> §, I‘d+l Bf f f 6y vyt dZ3 de dZ)
s e e " d+4
avy are Jary rs

for all z; € 9V, satisfying b, — a] z, > «.

2. p(ylzs) = hizs, y) &

8
€ ” € €
= 53;@2&7 s Mg BV - ma V)« M (8V5)

(b = arz)b, — a/z))
lzi =z " d+t

3. p(z2| zy) = Bz, ) . ‘ N3
, = FS;;; . mim my(0V5)) =: 6.
2
6 .
> 8y praal Using € > 0, rs < o, §, > 0, and Corollary 1 we know

§ that 6 > 0.

for all z; € 3V} satisfying b, — a/ z, > ¢ and for all

Ny , The value of 4 can be used to compare the conver-
z, € 9V, satisfying b, — arz, > «.

gence rate of the SB algorithms using Theorem 1.

Clearly, a larger value for é corresponds with a faster

(b — alz)b — aiz) rate of convergence to the uniform distribution. We
I z2 =z ! now rewrite the expression for 5 given above as

4. p(z3] z2) = h(z, z3)

2 4

€ =67 - 53

> by pa+i "
s where

8

3
for all z, € gV, satisfying b, — a/ z, > ¢ and for all 5 = __fa__ . (min Mar (8 Ve))
dd+4 - - i

s .
z3 € V) satisfying b, — a/z: > e. I
o TUTMe v s esen s, - ™ ° * ® s . . . e o . e o e . e s s ° & o ces o s eny
' Y
- - .
' . *
H i . .
' .
. H
. .
i : : :
: :
.
M -
i '
e wemoeme o wesse oo % we . . . e o s ™ . . ° cw o - . - ere o6z s e« &
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-
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’D
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Figure 5. One hundred iteration points.
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Figure 6. Five hundred iteration points,

only depends on the region S, and #of on the particular
algorithm used. This means that we can compare the
convergence rates of the SB algorithms by comparing
the values of §,. Recall from Section | that
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It is easy to see that for 4 = 2, the following holds:

o,

51,0 < 5/,,_ < 5’*;:'

Moreover, as the function hr(x, y) is a constant, and
the move probability equals one for this algorithm,
we have

o s Ohip

for all SB algorithms, since Josp(1x) dy < | for all
SB algorithms. Thus, taking into account that we are
discussing lower bounds, we may conjecture that the
sequence of iteration points generated by running SB
converges faster to the uniform distribution than the
sequence of points generated by limping SB, which,
in turn, converges faster to the uniform distribution
than the sequence generated by original SB. Further-
more, running SB has the fastest rate of convergence
of all SB algorithms. It should, however, be noted that
for a specific region S it might be possible to obtain a
better lower bound than the one given in Theorem 3,

specifically for algorithms having a nonconstant func-
tion /4 associated with them (like, for instance, original
SB). Therefore, we should be careful in drawing strong
conclusions from only the comparison of values for
6x, when 4 is not equal to a constant.

3. EXPERIMENTAL RESULTS

We conclude the paper with some experimental results
of the algorithm running SB. We let Figures 5 and 6
speak for themselves,
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