
Single-machine scheduling with release dates,
due dates and family setup times

J.M.J. Schutten
S.L. van de Velde

W.H.M. Zijm
Department of Mechanical Engineering

University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

September 10, 1993 – Revised August 2, 1995

Abstract

We address the NP-hard problem of scheduling n independent jobs with release dates,
due dates, and family setup times on a single machine to minimize the maximum
lateness. This problem arises from the constant tug-of-war going on in manufac-
turing between efficient production and delivery performance, between maximizing
machine utilization by batching similar jobs and maximizing customers’ satisfaction
by completing jobs before their due dates. We develop a branch-and-bound algo-
rithm, and our computational results show that it solves almost all instances with
up to about 40 jobs to optimality. The main algorithmic contribution is our lower
bounding strategy to deal with family setup times. The key idea is to see a setup time
as a setup job with a specific processing time, release date, due date, and precedence
relations. We develop several sufficient conditions to derive setup jobs. We specify
their parameters and precedence relations such that the optimal solution value of
the modified problem obtained by ignoring the setup times, not the setup jobs, is
no larger than the optimal solution value of the original problem. One lower bound
for the modified problem proceeds by allowing preemption. Due to the agreeable
precedence structure, the preemptive problem is solvable in O(n log n) time.

1980 Mathematics Subject Classification (Revision 1991): 90B35.
Keywords and Phrases: scheduling, maximum lateness, family setup times, branch-
and-bound, setup jobs, preemption.

1

1 Introduction

In the last two decades, we have seen dramatic changes of the conditions under which
manufacturing organizations have to operate and the objectives they have to meet. Next
to efficiency, quality and delivery reliability have become key performance criteria (cf.
Deming [5] and Blackburn [2]). In particular, the ability to cut manufacturing lead times
and to meet tight due dates determines a company’s competitive position.

In machining environments, such as a part manufacturing shop, the combined goal of
efficient and effective production may lead to complex control problems. Efficient produc-
tion in such an environment is achieved by minimizing the loss of capacity due to setups
and thus by combining jobs with similar setup characteristics. Effective production in an
order-driven environment is achieved by completing jobs before their due dates, or at least
by minimizing lateness. Clearly, these two objectives may be conflicting: Clustering jobs
with similar setup characteristics may lead to the lateness of others. Any solution to these
problems should therefore be based on a combination of batching and sequencing considera-
tions. These problems are often dealt with hierarchically. On a higher level, batch sizes (or
run lengths) of jobs of the same or similar nature are determined; sequencing these batches
is then a lower level, short term decision. Maintaining this hierarchical approach under the
current market conditions with increasing product diversity and decreasing product life
cycles, however, may lead to unacceptable results, including a poor delivery performance
and obsolete stocks. This creates the need to cluster the jobs dynamically, depending on
the workload.

This paper addresses the combined setup/due date problem in a relatively simple but,
in our experience, highly relevant setting. We consider the following problem, in which a
set J of n independent jobs J1, . . . , Jn need to be processed on a single-machine. Each
Jj (j = 1, . . . , n) needs uninterrupted processing during a given positive time pj, becomes
available for processing at its release date rj, and should be completed by its due date dj.
The machine is available from time 0 onwards and can process no more than one job at
a time. The jobs are partitioned into families F1, . . . ,Fm, and f(j) is the index of the
family to which job Jj belongs. If we schedule two jobs that belong to different families
contiguously, then we need a given non-negative setup time si in between that is completely
specified by the family Fi to which the second job belongs. We also assume that we need a
setup for the first job of each family. No setup is needed when jobs of the same family are
scheduled contiguously. During a setup time no processing of jobs is possible. The machine
may be set up for a particular job prior to its release date. The set of jobs between two
subsequent setups are said to be scheduled in the same batch.

Without loss of generality, we assume that all data are integral. A feasible schedule
σ satisfies all these conditions and specifies for each Jj a completion time Cj(σ). For a
given schedule σ, we compute the lateness of Jj as Lj(σ) = Cj(σ) − dj. If Lj(σ) ≤ 0,
then Jj is early; otherwise it is tardy. The maximum lateness of σ is defined as Lmax(σ) =
max1≤j≤n Lj(σ). The problem is to find a schedule with the smallest maximum lateness
L∗

max among all feasible schedules. This problem is NP-hard, even in the case of no family
setup times (Lenstra, Rinnooy Kan, and Brucker [10]) and in the case of equal release dates

2

(Bruno and Downey [3]). In the remainder, we follow the three-field notation proposed by
Graham, Lawler, Lenstra, and Rinnooy Kan [7] to classify machine scheduling problems;
our problem is accordingly denoted as 1|rj, si|Lmax.

The presence of release dates is consistent with MRP-controlled environments. Also,
the problem 1|rj, si|Lmax appears as a subproblem in decomposition-based approaches for
job-shop scheduling with setup times, such as the shifting bottleneck approach of Adams
et al. [1]. The extension of this approach to hybrid job shops, including parallel machines
at several stages, family setup times and additional resource constraints, like operators,
cutting tools, and fixtures, is the focus of a research project at the University of Twente
in cooperation with the part manufacturing shops of several industrial companies; see for
instance Meester and Zijm [11]. The choice of minimizing maximum lateness is again
motivated by industrial experiences.

Although the interest in combined batching and scheduling approaches in manufactur-
ing is growing (see e.g. Potts and Van Wassenhove [12]), we are not aware of any research
addressing this particular problem. We feel therefore that this paper fills an important
gap in that it addresses a fundamental practical problem. Also, it makes a contribution
in terms of algorithmic design for solving this type of NP-hard problem by branch-and-
bound, in general, and in terms of lower bound computing for problems with setup times,
in particular. The lower bounds that work well for the problem without family setup times,
1|rj|Lmax, including Carlier’s bound (Carlier [4]) and the preemptive lower bound obtained
by allowing the interruption of the processing of a job and resumption later on, can be
applied to our problem only if we ignore the setup times completely, which of course may
result in weak lower bounds. For instance, the preemptive lower bound obtained by solving
the 1|rj, pmtn|Lmax problem is found by Horn’s algorithm in O(n logn) time (Horn [8]); in
contrast, the preemptive problem 1|rj, si, pmtn|Lmax is NP-hard, since 1|si|Lmax is (Bruno
and Downey [3]).

Our key observation is that we may regard any setup as the processing of an imaginary
setup job of length equal to the setup time of the family associated with it. We will develop
sufficient conditions for establishing that certain jobs belonging to the same family are not
processed in the same batch. The implication is that these jobs are separated by a setup job
for which we can specify precedence relations, a release time, and a due date. In Section 2,
we describe how the derivation and specification of the setup jobs takes place. Let S be the
set of setup jobs that are derived in this way. For any instance I of 1|rj, si|Lmax, we can
then construct an instance I ′ of 1|rj, prec |Lmax with job set J ∪ S, where prec indicates
the presence of precedence relations between the jobs. In fact, the precedence constraints
have a specific structure in our application and induce instances of what we term the
1|rj, setup-prec|Lmax problem. The crux is that for any instance I and I ′ constructed in
this way, we have that

L∗
max(I) ≥ L∗

max(I
′),

with L∗
max(I) and L∗

max(I
′) the optimal solution values for these instances. Hence, a

lower bound on L∗
max(I) can be computed by computing a lower bound on L∗

max(I
′). In

Section 3, we compute a lower bound on L∗
max(I

′) by solving the preemptive problem

3

1|rj, setup-prec, pmtn|Lmax. We show that this problem is solvable in O(n logn) time due
to the agreeable precedence structure. Section 4 reports on our implementation of the
branch-and-bound algorithm and on our computational experiments; our results show that
we can solve instances up to 40 jobs to optimality. In Section 5, we draw some conclusions
and point out future research directions.

2 Derivation of the setup jobs

We derive two types of setup jobs: Separating setup jobs that have precedence relations,
and unrelated setup jobs that have no precedence relations. We call the jobs in J the real
jobs to distinguish them from the setup jobs. In the remainder, we let S be the set of setup
jobs. Also, we let 	 and ≺ mean ‘has to follow’ and ‘has to precede’, respectively.

In Section 2.1, we discuss the prerequisites of our approach to derive setup jobs, in-
cluding a proof that a setup can indeed be seen as a setup job with a specific processing
time, release date, due date, and precedence relations. We point out that the setup jobs
should be consistent with each other and introduce a measure for the strength of a setup
job. Finally, we also derive the so-called initial setup jobs. In Section 2.2, we discuss
the logic behind the derivation of separating setup jobs and our two strategies to actually
derive them. In Section 2.3, we derive a different type of setup jobs which do not involve
precedence relations.

2.1 Preliminaries

Consider any instance I of 1|rj, si|Lmax and let I ′ be the instance of 1|rj, setup-prec|Lmax

obtained from I by ignoring the family setup times. Hence, we have that L∗
max(I

′) ≤
L∗

max(I). Suppose now that we have established, one way or the other, that in every
optimal schedule for I all jobs in A ⊂ Fi precede all jobs in B ⊂ Fi (B �= ∅) and no
job from A and no job from B are scheduled in the same batch. This then means that
there must be at least one separating setup associated with family Fi between the last job
belonging to A and the first job belonging to B. Theorem 1 validates our key idea that
this setup can be viewed as a separating setup job with a specific processing time, release
date, due date, and precedence relations.

Theorem 1 We still have that L∗
max(I

′) ≤ L∗
max(I), if we add a setup job Js to I ′ with

ps = si,

Js 	 Jj , for all Jj ∈ A,
Js ≺ Jj , for all Jj ∈ B,
rs = min

Jj∈Fi\A
rj − si,

ds = min
Jj∈B

(dj − pj).

4

Proof It only remains to be shown that the specification of rs and ds is correct. Consider
any optimal schedule σ for I and any setup for family Fi that succeeds all jobs from A and
precedes all jobs from B in this schedule. We associate the setup job Js with this setup.
We may assume that this setup occurs immediately before the execution of the job it is
needed for. Since this may be any job in Fi \ A, the release date of Js follows. Let σ′ be
the feasible schedule for I ′ obtained from σ in the following way: Let the sequence of the
real jobs in σ′ concur with the sequence in σ, and replace the setups with their associated
setup jobs, if they have one. Note that Cj(σ

′) ≤ Cj(σ) for all Jj ∈ J , and therefore
Lj(σ

′) ≤ Lj(σ) ≤ L∗
max(I). If we assign ds as proposed, we have that ds = dj − pj and

Js ≺ Jj for some Jj ∈ B, and hence that

Ls(σ
′) = Cs(σ

′)− ds ≤ Cj(σ
′)− pj − (dj − pj) ≤ Cj(σ)− dj = Lj(σ) ≤ L∗

max(I).

Thus, we proved that Lj(σ
′) ≤ L∗

max(I) for every job in I ′, and therefore L∗
max(I

′) ≤
Lmax(σ

′) ≤ L∗
max(I). ✷

The crux is that the addition of this separating setup job may improve the value
L∗

max(I
′), and thus the lower bound on L∗

max(I). In the remainder, if we add a setup job
to I separating some sets A and B, then we implicitly assume that it has the release date,
due date and precedence relations as specified in Theorem 1.

We may not just derive setup jobs as we please. We have to make sure that the setup
jobs are consistent with each other. For instance, if we have already derived a setup job
between job sets A and B, then we may not add another setup job between the subsets
A′ �= ∅ and B′ if A′ ⊆ A and B′ ⊆ B. To ensure the derivation of consistent setup jobs,
we introduce the notion of induction. We say that the jobs in A left-induce Js, the jobs in
B right-induce Js, and the setup job Js is induced by family Fi. We construct a so-called
induction graph G = (J ∪ S,H), in which there is an arc (Js, Jj) in H with Js ∈ S and
Jj ∈ J if and only if Jj right-induces Js. Similarly, there is an arc (Jj , Js) in H if and only
if Jj left-induces Js. The induction graph then corresponds to a set of consistent setup
jobs if in its transitive reduction, obtained from G by removing all arcs that are implied
by transitivity, each Jj ∈ J has at most one ingoing and at most one outgoing arc in H.
Accordingly, we may add a setup job to I ′ if this condition remains satisfied. Throughout
this section, we assume that this is so.

The rank of a setup job is defined as the number of jobs it separates. If A ∪ B = Fi,
then the separation, and thereby the setup job Js, is the strongest possible: We then say
that Js has full rank. If |A∪B| < |Fi|, then in fact Js separates at least the job sets A and
B: We do not know yet on which side of Js the other jobs in Fi will be scheduled. The
rank of Js is then equal to |A∪B|. Intuitively, we prefer setup jobs of high rank. The aim
of this section is to derive such setup jobs in the root node of the branch-and-bound tree.

One particular type of setup job of full rank is a sitting duck: For every family Fi, we
need a setup job just before the processing of its first job. Accordingly, we may introduce
an initial setup job Js for family Fi with

ps = si,

5

ds = min
Jj∈Fi

(dj − pj),

Js ≺ Jj , for all Jj ∈ Fi,

rs = min
Jj∈Fi

rj − si.

2.2 Deriving separating setup jobs

The separating setup jobs are derived through sufficient conditions for having an optimal
schedule in which particular jobs of the same family are not scheduled in the same batch.
We stipulate these conditions in terms of a lower bound lb and an incumbent upper bound
ub on L∗

max(I), each proceeding from the assumption that L∗
max(I) < ub. It is irrelevant

how these lb and ub are obtained. However, the tighter lb and ub are, the more effective
these conditions will be. In fact, there is a strong interaction between deriving setup jobs
and computing lower bounds; after all, the more setup jobs are derived, the stronger the
lower bound is likely to be.

The logic behind the derivation of separating setup jobs is the following. Suppose
we want to put two jobs in the same batch. If the release and due dates of these jobs
prohibit that these jobs are scheduled contiguously, then the machine is idle in between
their processing, if no other job belonging to the same family is available for processing.
If this idle time period T is too long, then saving a single setup does not make up for
what is essentially a loss of machine capacity. We have two strategies to conclude that
T is effectively too long: (i) If T is so long that we can perform a setup for family Fi

in the meantime, and (ii) If a lower bound for the case that we leave the machine idle
during period T is equal to or larger than the incumbent upper bound. We formalize these
strategies below.

In any optimal schedule, each Jj is scheduled somewhere in the interval [rj, dj+L
∗
max(I)]

(j = 1, . . . , n). Accordingly, if L∗
max(I) < ub, then the largest possible completion time of

Jj is d̄j = dj + ub− 1. We call job Jj safely scheduled if rj + pj ≤ Cj ≤ dj + lb; note that if
each job is safely scheduled, then we have an optimal solution, since L∗

max(I) ≤ lb. For any
job set A, let r(A) = minJj∈A rj , and d̄(A) = maxJj∈A d̄j; note that a necessary condition
for having L∗

max(I) < ub is that all jobs in A are completed by time d̄(A).
We are now ready to make the following observation, which plays a key role in the

derivation of the setup jobs.

Observation 1 Consider disjoint subsets A ⊂ Fi and B ⊂ Fi with d̄(A) < r(B). If there
exists a schedule σ with Lmax(σ) < ub that puts jobs from both A and B in the same batch,
then it has the following properties:

• The machine is idle during the period T = [d̄(A), r(B)], if there is no job Jj ∈
Fi \ (A ∪ B) available for processing during period T . This means that the machine
is definitely idle during period T if A ∪ B = Fi.

• The batch spans at least the interval [maxJj∈A(d̄j − pj),minJj∈B(rj + pj)].

6

As pointed out before, a long idle time period T makes it unlikely that there indeed exists
an optimal schedule in which some job from A and some job from B are scheduled in the
same batch. Or equivalently, a long period T makes it likely that there exists an optimal
schedule in which no job from A and no job from B are scheduled in the same batch.

It is not sensible, even if it were possible, to consider all possible A and B. The following
subsets enable systematic procedures for deriving setup jobs. Let J i

[j] ∈ Fi denote the job

with the jth smallest release date in family Fi, and let ri
[j], d̄

i
[j], and p

i
[j] be its release date,

largest deadline possible, and processing time, respectively. For any family Fi and any
a = 1, . . . , |Fi| and b = a, . . . , |Fi| define

P i
a,b = {J i

[a], . . . , J
i
[b]}.

Note that by definition we have that ri
[k+1] = r(P i

k+1,|Fi|). The advantage of considering

these subsets is that there is a fair chance of having d̄(P i
1,k) < ri

[k+l], for some l ≥ 1, a
prerequisite for deriving a separating setup job.

The following theorem gives an effective means for deriving setup jobs. It says that if
T is large enough to accommodate a setup for family Fi, then we may already introduce a
setup job of full rank.

Theorem 2 Suppose L∗
max(I) < ub. If there is a family Fi (i = 1, . . . , m) and an index k

(k = 1, . . . , |Fi| − 1), for which

d̄(P i
1,k) + si ≤ r(P i

k+1,|Fi|), (1)

then we may introduce a setup job Js of full rank that separates P i
1,k from P i

k+1,|Fi|.

Proof Let σ be any optimal schedule. There are two cases to consider:

(i) There is no batch in σ that contains a job from P i
1,k as well as a job from P i

k+1,|Fi|.
In this case, there is a setup between P i

1,k and P i
k+1,|Fi|.

(ii) There is a batch in σ that contains a job from P i
1,k as well as a job from P i

k+1,|Fi|.
In this case, the machine is idle between d̄(P i

1,k) and r
i
[k+1]; see Observation 1. We

can then transform σ into an equivalent schedule in which a setup, performed during
period T = [d̄(P i

1,k), r
i
[k+1]], splits this batch into two consecutive batches of the same

family.

Therefore, we may assume that in every optimal solution a setup separates P i
1,k and

P i
k+1,|Fi|. ✷

The next theorem is a generalization of Theorem 2 to derive setup jobs of smaller rank.
If we cannot separate the sets P i

1,k and P i
k+1,|Fi|,, then we may try to separate the sets P i

1,k

and P i
k+l,|Fi|, for some l ≥ 2. After all, the larger l is, the longer the idle time period T

gets if we want to put some jobs belonging to these sets in the same batch. The condition
for testing if T gets too long is similar to condition (1), albeit period T should also have
room to accommodate the ‘in-between jobs’ J i

[k+1], . . . , J
i
[k+l−1].

7

Theorem 3 Suppose L∗
max(I) < ub. If there is a family Fi (i = 1, . . . , m), an index k

(k = 1, . . . , |Fi| − 1), and an index l (l = 1, . . . , |Fi| − k) such that the interval

[d̄(P i
1,k), r(P i

k+l,|Fi|)] (2)

is large enough to safely schedule each of the jobs J i
[k+1], . . . , J

i
[k+l−1] and a setup for family

Fi in it, then we may introduce a setup job Js of rank |Fi| − l + 1 that separates the job
sets P i

1,k and P i
k+l,|Fi|. ✷

We now come to our second strategy to derive setup jobs. Suppose lb(A,B) is a lower
bound for the case that some unspecified job from A and some unspecified job from B
are scheduled in the same batch. If lb(A, B) ≥ ub, then the sets A and B are obviously
separated in any optimal schedule if L∗

max(I) < ub. In Section 3, we show how we compute
such a bound.

Theorem 4 Suppose L∗
max(I) < ub. If d̄(P i

1,k) < r(P i
k+l,|Fi|)− si and

lb(P i
1,k,P i

k+l,|Fi|) ≥ ub, (3)

for some i, k and l with 1 ≤ i ≤ m, 1 ≤ k < |Fi| and 1 ≤ l ≤ |Fi| − k, then we may
introduce a setup job of rank |Fi| − l + 1 that separates P i

1,k from P i
k+l,|Fi|. ✷

2.3 Deriving unrelated setup jobs

The derivation of unrelated setup jobs, which have no precedence relations, proceeds
by the premise that batches of different families cannot overlap in time. Suppose that
d̄(P i

1,k) < r(P i
k+l,|Fi|) and d̄(Ph

1,a) < r(Ph
a+b,|Fh|) and the intervals [d̄(P i

1,k), r(P i
k+l,|Fi|)]

and [d̄(Ph
1,a), r(Ph

a+b,|Fh|)] overlap in time; that is, there is a point in time t such that

d̄(P i
1,k) ≤ t ≤ r(P i

k+l,|Fi|) and d̄(Ph
1,a) ≤ t ≤ r(Ph

a+b,|Fh|), with at least one of these ≤ signs
holding as a strict inequality. The conclusion must then be that we may at least separate
either P i

1,k and P i
k+l,|Fi|, or Ph

1,a and Ph
a+b,|Fh|, since the machine can process no more than

one batch at a time. We may therefore introduce a setup job, but it has no precedence
relations, since we cannot associate the setup job with either family. For the same reason,
these unrelated setup jobs are quite weak. They have rank 0, and their release and due
dates are not very tight either.

Theorem 5 If there are two families Fi and Fh and indices k, l, a and b for which the time
intervals [d̄(P i

1,k), r(P i
k+l,|Fi|)] and [d̄(Ph

1,a), r(Ph
a+b,|Fh|)] overlap, then we may introduce a

setup job Js of rank 0 with

ps = min{si, sh},
rs = min{r(P i

k+1,|Fi|)− si, r(Ph
a+1,|Fh|)− sh},

ds = max{ min
Jj∈Pi

k+l,|Fi|
(dj − pj), min

Jj∈Ph
a+b,|Fh|

(dj − pj)}.

✷

Obviously, any number of families may be involved in this type of derivation, but the
resulting setup jobs will then be even weaker.

8

3 Lower Bounds

In this section, we present first the preemptive lower bound for the 1|rj, setup-prec|Lmax

problem. Then, we show how we compute the bound lb(P i
1,k,P i

k+l,|Fi|) needed in condi-
tion (3) to derive setup jobs.

First of all, however, we characterize the acyclic directed precedence graph G induced
by any set S of consistent setup jobs. We assume that S contains for each family at least
the initial setup job. Let Si be the set of separating setup jobs induced by the jobs in Fi.
We have as vertex set V = J ∪ S and there is an arc (Jj, Jk) if and only if Jj ≺ Jk. If
there is an arc (Jj, Jk), then Jj is an immediate predecessor of Jk and Jk is an immediate
successor of Jj. If there is a path in G from Jj to Jk, then Jj is a predecessor of Jk; Jk is
then a successor of Jj. There are no arcs between the unrelated setup jobs and the real
jobs.

Let G′ = (V,A) be the transitive reduction of this graph, where A denotes the remaining
arc set. The release date of an initial setup job or a setup job derived by use of condition (3)
may not be consistent with the precedence constraints; i.e., we may have that rs < rj for
some Jj ≺ Js. We therefore modify the release dates in the following way:

rj ← max{rj, max
Jk≺Jj

(rk + pk)} for all Jj ∈ J ∪ S.
This modification does not affect the optimal solution.

The graph G′ then has the following properties:

• It decomposes into m arc-disjoint connected subgraphs, one for every family, on the
one hand, and isolated vertices representing the unrelated setup jobs, on the other
hand.

• For any arc (Jj , Jk) ∈ A, we have that rj + pj ≤ rk.
• For any arc (Jj , Jk) ∈ A, we have that if Jj ∈ J , then Jk ∈ S, and, conversely, if
Jj ∈ S, then Jk ∈ J .
• Each job in J has at most one immediate successor and at most one immediate
predecessor.

• There are O(n) arcs; this means that the release date modification can be carried
out in O(n) time.

The following lemma stipulates a most agreeable property of G′.

Lemma 1 If Jj ≺ Jk, then we have that dj ≤ dk − pk.

Proof. Suppose Jj is a setup job; Jk is then a real job. Then, due to the way the separating
setup jobs are specified, we have that dj ≤ dk − pk; see Theorem 1. Now, suppose Jj is
a real job; Jk is then a separating setup job. Let Jl ∈ J be a successor of Jk in G′ with
dk = dl−pl. Such a successor always exists; see Theorem 1. Due to the way the separating
setup jobs are derived, we have that d̄j < rl − sf(l). Since rl + pl ≤ dl + ub and pk = sf(l),
we have that dj + ub− 1 < dl − pl − pk + ub, and hence that dj ≤ dk − pk. ✷

9

3.1 The preemptive bound

The 1|rj, prec, pmtn|Lmax problem is solvable by Horn’s rule (Horn [8]) after release and
due date modification in O(n2) time. For the 1|rj, setup-prec, pmtn|Lmax problem, the
modification of the release dates takes O(n) time only; modification of the due dates is not
necessary, since we have that dj ≤ dk − pk if Jj ≺ Jk. Hence, we have the following result,
the proof of which is included for sake of completeness.

Theorem 6 The 1|rj, setup-prec, pmtn |Lmax is solvable in O(n logn) time by the follow-
ing rule: At any time schedule an available job with the smallest due date.

Proof. First of all, note that Horn’s rule generates a feasible schedule for the problem
1|rj, setup-prec, pmtn|Lmax. This is true, since if Jj ≺ Jk, then we have that rj + pj ≤ rk
and dj ≤ dk − pk; see the proof of Lemma 1.

Let now π be the schedule produced by Horn’s rule, and let σ be any optimal schedule.
We shall prove that we can transform σ into π by rescheduling jobs while preserving
feasibility and optimality. Compare σ with π from time 0 onwards, and let t be the first
time at which the schedules start to differ: Suppose Jj is scheduled between time t and
t1 in σ and Jk is scheduled between time t and t2 in π. Let τ = min{t1, t2}. Find time
s > τ that designates the smallest interval [t, s] in σ in which Jk is processed for exactly
τ − t ≤ pk units of time. Let A be the set of successors of Jj in G that are scheduled
between t and s in σ. We then have that

dj ≤ dl for all Jl ∈ A.
Also, since Jk is scheduled at time t in π, not Jj , we have that

dk ≤ dj,

Hence, the following transformation of σ retains both feasibility and optimality:

• Remove all portions of Jj , Jk and the jobs in A between time t and s, but leave the
other jobs intact.

• Schedule Jk in the time slot [t, τ].

• Schedule Jj and the jobs in A in the remaining available time slots between τ and s
in the same order as before.

Now let t ← τ , and repeat the argument till we reach the end of the schedule; both
schedules are then identical. ✷

This rule can evidently be implemented in O(n logn) time, since there are n real and
no more than n setup jobs, there are O(n) preemptions, and the release and due dates of
the available jobs need only to be maintained in a partial order.

10

3.2 Computing the bound lb(P i
1,k,P i

k+l,|Fi|)

The bound lb(P i
1,k,P i

k+l,|Fi|), needed for condition (3), is a lower bound for scheduling

some unspecified job in P i
1,k in the same batch, say, B, as some unspecified job in P i

k+l,|Fi|
(i = 1, . . . , m, 1 ≤ k < |Fi|, 0 ≤ l ≤ |Fi| − 1). We assume that some separating and
unrelated setup jobs already have been derived and that the setup job that may be induced
by this bound is consistent with them.

If we decide to schedule some job from P i
1,k and some job from P i

k+l,|Fi| in the same
batch, say, B, then B spans at least the interval T = [t1, t2], where

t1 = max
Jj∈Pi

1,k

(d̄j − pj),

and

t2 = min
Jj∈Pi

k+l,|Fi|
(rj + pj);

see Observation 1. We assume that t2 > t1. If not, then we let lb(P i
1,k,P i

k+l,|Fi|) = −∞.
Let I ′ be any instance of the 1|rj, setup-prec|Lmax problem with the condition that

we schedule those unspecified jobs in the same batch. To compute a lower bound, we
construct an instance I ′′ with the additional constraint that the machine is not available
for processing during the interval T = [t1, t2]. We initialize I ′′ = I ′ and then remove all
jobs Jj ∈ Fi∪Si from I ′′ for which the time intervals [t1, t2] and [rj , d̄j] overlap; we do this
to ensure that L∗

max(I
′′) is a valid lower bound on L∗

max(I
′).

Moreover, we try to derive more separating setup jobs for each family other than Fi.
If the machine is not available during the period T = [t1, t2], then any two jobs Jj and Jk

cannot be in the same batch if rj > t1 − pj and d̄k < t2 − pk; after all, Jj must then be
processed after period T and Jk before period T . So, if Ch = {Jj ∈ Fh | d̄j < t2 + pj} and
Dh = {Jj ∈ Fh | rj > t1 − pj} and Ch �= ∅ and Dh �= ∅, then we may add a setup job Js to
I ′′ that separates the sets Ch and Dh for any family Fh �= Fi, if this setup job is consistent
with the other setup jobs.

We now compute the preemptive lower bound for I ′′ subject to the condition that
the machine is not available during period T . We can easily cope with this condition
by adding an independent dummy job J0 to I ′′ with r0 = t1, p0 = t2 − t1, and d0 =
minJj∈J dj−1. Horn’s rule schedules J0 then in period T , and we compute lb(P i

1,k,P i
k+l,|Fi|)

as maxJj∈I′′\{J0} Lj.

4 Implementation and computational experiments

4.1 Implementation

We have developed a branch-and-bound algorithm that uses a forward sequencing branch-
ing rule, in which a node at level k (k = 1, . . . , n) corresponds to an active partial schedule

11

consisting of k jobs. A node at level k has n− k descendant nodes, one for each unsched-
uled job. We branch from the nodes in order of non-decreasing release dates of the jobs
associated with the nodes.

In the root node of the tree, we run a two-phase randomized local-search algorithm
to find a good initial upper bound ub; it uses simulated annealing first and then tries
to improve the solution by tabu search. The neighborhood of a feasible sequence is in
either phase defined as the set of sequences obtained by either relocating any single job, or
swapping any two jobs in the sequence. In fact, both the simulated annealing and the tabu
search subroutines are straightforward implementations of the basic principles, as outlined
in for instance Van Laarhoven and Aarts [9] and Glover [6]. Also, we use several simple but
effective dominance criteria to restrict the growth of the branch-and-bound tree. Given
this upper bound, we iteratively derive as many and as strong as possible consistent setup
jobs. Deriving setup jobs is computationally expensive; for this reason, it is carried out
only in the root node of the branch-and-bound tree. In the nodes of the tree, it is too
time-consuming to compute the preemptive bound, although it takes only O(n logn). We
have extended Carlier’s lower bound [4] for the 1|rj|Lmax to deal with precedence relations
and compute this bound instead; this bound requires only O(n) time in each node. For
a detailed description of our implementation, we refer to Schutten, Van de Velde, and
Zijm [13].

4.2 Computational experiments

The performance of the branch-and-bound algorithm was evaluated for instances with up
to 50 jobs. All parameters were randomly generated from discrete uniform distributions,
except for the release times that come from a Poisson distribution. The processing times
were drawn from the discrete uniform distribution [1, 100], the number of families m from
the uniform distribution [2, �n/5�], and the family indices of the jobs from the uniform
distribution [1, m]. Let p̄ denote the average job processing time. In addition to n, there
are four input parameters:

• s, defining the interval [1, s · p̄] from which the setup times are uniformly drawn,

• a and k, defining the mean inter arrival time (p̄+ a · s̄)/k of the Poisson distribution
from which the release times are drawn, where s̄ is the average setup time, and

• d, defining the interval [rj + pj, rj + pj + d · p̄] from which dj is uniformly drawn.

We generated instances for n = 30, 40, 50, s = 0.25, 0.50, 0.75, a = 0.25, 0.33, 0.5,
k = 0.8, 0.9 and d = 2, 4, 6. For each combination of n, s, a, k, and d, we generated 15
instances. Table 1 gives a summary of our computational results for varying values of n,
the number of jobs, and k, determining the arrival intensity. Crudely speaking, we can say
that k determines the workload in the shop: The larger k, the higher the workload. We
found that the performance of the branch-and-bound algorithm does not significantly vary
with the other parameters. The column ‘#opt’ gives the number of instances out of 405

12

for which the branch-and-bound algorithm found an optimal solution within one minute
on a HP 9000/710 workstation. It shows that we virtually solve all instances with n = 30.
The next two columns give averages only for the instances solved to optimality within one
minute. The column ‘#nodes’ gives the average number of nodes searched, and the column
‘seconds’ gives the average computing time in seconds that the algorithm takes. The time
for the preprocessing phase, i.e., for running the approximation algorithms and deriving
the setup jobs, is not included here. The preprocessing phases typically takes about 2 to
4 seconds on the HP. Table 1 shows that the instances get more difficult with increasing
number of jobs, as expected, and with increasing value of k. If the workload is high, i.e.,
if there are many jobs available at the same time for processing, then it is more difficult
to derive setup jobs of high rank, and consequently, our lower bounds get less effective
with increasing value of k. Table 1 also shows that the instances that we can solve within
the time limit take little time on average. This suggests a considerable watershed between
computationally easy and hard instances.

n k #opt #nodes seconds
30 0.8 401 35,614 0.7
30 0.9 395 48,688 0.9
40 0.8 385 40,357 0.9
40 0.9 355 107,832 2.4
50 0.8 358 83,544 2.1
50 0.9 295 131,112 3.1

Table 1: Performance of the branch-and-bound algorithm.

Table 2 gives for varying n and k the results of the preprocessing step for those instances
that were solved to optimality within one minute. The column ‘lb1’ gives the average
preemptive lower bound in the root node of the search tree without the addition of derived
setup jobs. The column ‘lb2‘ gives this lower bound, but now with the addition of the setup
jobs. The average value of the initial solution found by our approximation algorithm is
found in the column ‘ub’. The average optimal solution value is given in the column ‘opt’.
We see that the gap between the initial lower bound lb1 and the optimal solution value opt
is approximately halved by the addition of the setup jobs. The average number of derived
setup jobs is given in the column ‘derived’, whereas the average number of setups in the
optimal solution we found is given in the column ‘setups’. Note that in general there exist
more than one optimal solution and each may have a different number of setups.

As far as possible, Table 3 gives the same information for those instances for which the
algorithm failed to find an optimal solution within one minute. In comparison to Table 2,
we have added the column ub∗, which gives the average value of the incumbent upper
bound after one minute of computation time.

Our computational results did not reveal any relation between the difficulty of an
instance and the choices of the parameters a, s, and d; the difficulty of an instance primarily

13

n k lb1 lb2 ub opt derived setups
30 0.8 96.4 125.1 154.0 152.8 14.4 18.4
30 0.9 120.8 152.7 188.1 186.5 12.8 17.4
40 0.8 118.3 153.9 185.0 183.9 19.6 25.7
40 0.9 150.5 188.5 226.7 224.7 17.2 24.2
50 0.8 126.5 171.3 204.3 202.6 25.5 33.5
50 0.9 158.5 200.1 240.4 237.7 22.4 31.2

Table 2: Results of preprocessing: solvable instances.

n k lb1 lb2 ub ub∗ derived
30 0.8 342.2 409.2 468.0 468.0 8.8
30 0.9 375.1 433.1 522.3 520.5 7.6
40 0.8 292.4 374.2 471.7 470.1 13.2
40 0.9 334.5 425.0 517.3 515.8 12.8
50 0.8 284.4 377.5 471.6 468.9 19.1
50 0.9 332.8 430.4 533.5 532.1 17.8

Table 3: Results of preprocessing: hard instances.

depends on how close the release dates are to each other. Close release dates are most
likely to occur in case of a high workload parameter k. The performance of the algorithm
deteriorates in case of close release dates for two reasons. First, such release dates in
combination with the almost agreeable due dates lead to a considerable lateness. This
makes that d̄j , the latest possible completion time of job Jj, is relatively large; we then
may expect to have few sets for which d̄(P i

1,k) < r(P i
k+l,|Fi|), and as a result, fewer setup jobs

and thereby weaker lower bounds. Second, if the release dates are close to each other, then
certain dominance criteria in our branch-and-bound algorithm are less effective. Indeed,
Table 3 confirms our expectations: it shows that difficult instances have larger L∗

max and
permit fewer setup jobs than the solvable instances.

5 Conclusions

We have addressed a practical scheduling problem in manufacturing arising from the fun-
damental controversy between efficient production and due date performance. We have
presented a branch-and-bound algorithm that solves instances of reasonable size to opti-
mality. Our major contribution is a lower bounding strategy that proceeds by ignoring
the setup times and replacing them by setup jobs. This strategy induces a relaxed prob-
lem with specific precedence constraints such that its preemptive version is solvable in

14

O(n logn) time. We are currently investigating to what extent this strategy is useful for
other scheduling problems with family setup times, including the parallel machine schedul-
ing problem.

The algorithm described in this paper is now included in jobplanner, a commercial
shop floor control system, which resulted from the cooperation between the Production
and Operations Management Group of the University of Twente and a consultancy firm.
It is presently operational at two companies that deal with major setup times, including
a manufacturer of printed circuit boards (PCBs), where the production is organized as a
reentrant flowshop. Each PCB has essentially the same routing with about 25 operations.
The base material of a PBC is teflon or epoxy. Jobplanner has proved to be specifically
useful for scheduling machines where large setup times occur when production is switched
from using one base material to the other. In the past, the operators at the shop floor had
little insight when to switch from one base material to the other – currently, the schedule
is made at a higher level by the production manager. The company is enthousiastic about
jobplanner, because of the quality of the resulting schedules and the reduction in the
effort to schedule the shop. Scheduling used to be a full-time job; now, it only takes one
or two hours a day.

Acknowledgement The authors thank Johann Hurink and the referees for their construc-
tive comments.

References

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job shop
scheduling. Management Science, 34:391–401, 1988.

[2] J.D. Blackburn. Time-Based Competition, The Next Battle Ground in American Man-
ufacturing. Richard D. Irwin, Homewood, Ill., 1991.

[3] J. Bruno and P. Downey. Complexity of task sequencing with deadlines, set-up times
and changeover costs. SIAM Journal on Computing, 7:393–404, 1978.

[4] J. Carlier. The one-machine sequencing problem. European Journal of Operational
Research, 11:42–47, 1982.

[5] W.E. Deming. Quality, Productivity, and Competitive Position. MIT Center for
Advanced Engineering Study, Cambridge, Mass., 1982.

[6] F. Glover. Tabu search - Part I. ORSA Journal on Computing, 1:190–206, 1989.

[7] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals of
Discrete Mathematics, 5:287–326, 1979.

15

[8] W.A. Horn. Some simple scheduling algorithms. Naval Research Logistics Quaterly,
21:177–185, 1974.

[9] P.J.M. Van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-
tions. Reidel, Dordrecht, The Netherlands, 1987.

[10] J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977.

[11] G.J. Meester and W.H.M. Zijm. Multi-resource scheduling for an FMC in discrete
parts manufacturing. In M.M. Ahmad andW.G. Sullivan, editors, Flexible Automation
and Integrated Manufacturing, pages 360–370. CRC Press Inc., Atlanta, 1993.

[12] C.N. Potts and L.N. van Wassenhove. Integrating scheduling with batching and lot-
sizing: a review of algorithms and complexity. Journal of the Operational Research
Society, 43:395–406, 1992.

[13] J.M.J. Schutten, S.L. van de Velde, and W.H.M. Zijm. Single-machine scheduling
with release dates, due dates and family setup times. Technical Report LPOM-93-4,
University of Twente, Department of Mechanical Engineering, 1993.

16

