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Abstract

Daily traffic congestion forms a major problem for businesses such
as logistic service providers and distribution firms. It causes late ar-
rivals at customers and additional costs for hiring the truck drivers.
Such costs caused by traffic congestion can be reduced by taking
into account and avoiding predictable traffic congestion within ve-
hicle route plans. In the literature, various strategies are proposed to
avoid traffic congestion, such as selecting alternative routes, changing
the customer visit sequences, and changing the vehicle-customer as-
signments. We investigate the impact of these and other strategies in
off-line vehicle routing on the performance of vehicle route plans in
reality. For this purpose, we develop a set of vehicle routing problem
instances on real road networks, and a speed model that reflects the
key elements of peak hour traffic congestion. The instances are solved
for different levels of congestion avoidance using a modified Dijkstra
algorithm and a restricted dynamic programming heuristic. Compu-
tational experiments show that 99% of late arrivals at customers can
be eliminated if traffic congestion is accounted for off-line. On top of
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that, about 87% of the extra duty time caused by traffic congestion
can be eliminated by clever congestion avoidance strategies.

Keywords: Congestion avoidance; Time-dependent VRP; Time-dependent
SPP; Speed model;

1 Introduction

Due to a growing amount of traffic and a limited capacity of the road network,
traffic congestion has become a daily phenomenon. In the USA, the annual
travel delay has grown from 2.5 billion delay hours in 1995 to 4.2 billion
delay hours in 2005 (Schrank and Lomax [1]). Since traffic congestion causes
heavy delays, it is very costly for intensive road users such as logistic service
providers and distribution firms. The Dutch Organization for Transport and
Logistics (TLN) estimated that over 10% of the truck drivers working hours
are lost due to delays as a result of traffic congestion. This causes large costs
for hiring the truck drivers and the use of extra vehicles, and if they are not
accounted for in the vehicle route plans they may cause late arrivals at cus-
tomers or even violations of driving hours regulations. Therefore, accounting
for and avoiding traffic congestion has a large potential for cost savings.

Traffic congestion may have several causes. Some are predictable, such as
the large amount of commuter traffic during the daily peak hours, and others
are less predictable, such as the weather or road accidents. Since delays
caused by peak hour traffic congestion are predictable and they constitute a
large part (70 to 87%) of all traffic congestion delays (Skabardonis et al. [2]),
we focus on avoiding peak hour traffic congestion.

Given a certain realization of the factors causing traffic congestion, peak
hour traffic congestion depends on location and time of the day. Therefore,
congestion avoidance is all about not being at the wrong place at the wrong
time. There are several strategies to achieve this. For example, we can
change the visit sequence of a vehicle or even move a customer from one
vehicle to another. These strategies can be optimized by solving a vehicle
routing problem (VRP) with time-dependent travel times (TDVRP). Branch
and cut and price methods have been very successful in solving vehicle routing
problems with timing restrictions such as time windows (see, amongst others,
Kohl et al. [3] and Chabrier [4]). Although the literature on the VRP with
time-independent travel times is exhaustive (for an extensive overview, see
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Toth and Vigo [5]), the literature on the TDVRP is rather scarce.
To account for traffic congestion effects within vehicle routing, Malan-

draki and Daskin [6] introduce the TDVRP and propose an ILP formulation
for it. They model time-dependent travel times as a travel time step function
for customer links. A drawback of this model is that it has the unrealistic
property that a later departure time may result in an earlier arrival time,
i.e., it does not satisfy the so-called non-passing property. Malandraki and
Dial [7] propose a restricted dynamic programming heuristic for the Time-
Dependent Traveling Salesman Problem (TDTSP), which is the special case
of the TDVRP with only one vehicle. Bentner et al. [8] and Schneider [9]
also consider the TDTSP. Both works consider one peak period and pro-
pose local search methods such as simulated annealing to solve the TDTSP.
Ichoua et al. [10] resolve the non-passing property by considering a speed
step function for customer links instead of a travel time step function. Since
with a speed step function vehicles drive the same speed when traversing the
same link at the same time, they can never overtake each other. Ichoua et
al. [10] also show that a time-dependent model may lead to substantial im-
provements over a time-independent one, by computational tests on a set of
modified VRP benchmarks. Fleischmann et al. [11] propose a modified sav-
ings heuristic for the TDVRP. They test their heuristic using travel time data
obtained from a traffic information system in the city of Berlin. Haghani and
Jung [12] propose a genetic algorithm for the TDVRP, which they validate
with an exact algorithm for problem instances up to 30 customers. Donati et
al. [13] propose an ant colony optimization algorithm for the TDVRP, which
they test on some theoretical benchmarks, and a test case in the district of
Padua in Italy. Van Woensel et al. [14] use a queueing model to derive time-
dependent travel speeds. In addition, they show potential improvements by
optimizing departure times from the depot. Hashimoto et al. [15] also con-
sider both determining vehicle tours under time-dependent travel times and
departure time optimization. Moreover, they consider time windows in their
model.

In addition to solving a TDVRP, business traffic may also avoid traffic
congestion by selecting alternative routes between customers at problematic
hours. These routes are optimized by solving a shortest path problem with
time-dependent travel times (TDSPP). Orda and Rom [16] show that solving
a time-dependent shortest path problem for a given departure time can be
done using a modified Dijkstra [17] search. Note that for solving a TDSPP
a full representation of the road network is needed, whereas for solving a
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TDVRP inter-customer time-dependent travel times suffice.
We compare four strategies to avoid traffic congestion. The strategies

are applied within the development of off-line vehicle route plans. We test
the impact of these plans in a realistic setting. We restrict ourselves to
computing travel routes for some centrally controlled fraction of the traffic
demand. With vehicle routing, we refer to routing of the vehicles of a certain
company, such as a logistic service provider or a distribution firm. Within the
development of the route plans, we combine time-dependent shortest path
problems and time-dependent vehicle routing problems in one model. This
is a difference with existing literature, in which these problems are generally
considered separately.

We test the impact of the strategies on large cases, which is another
difference with existing literature, since the majority of the papers dealing
with the TDVRP consider theoretical benchmarks (except for a few small
cases). For this purpose, we develop a number of VRP instances on real road
networks and a speed model representing peak hour traffic congestion. We
evaluate the quality of the vehicle route plans by executing them with the
actual speeds in the road network obtained from the speed model.

The contributions of this paper are the following. First, to the best of our
knowledge, this is the first paper that considers shortest path problems and
vehicle routing problems including traffic congestion in one model. Second,
we evaluate the impact of four congestion avoidance strategies with respect to
different cost measures such as number of vehicles used, total travel distance,
total duty time (sum of total traveling, serving, and waiting time), and total
number of late arrivals. Since these measures all play a role in practice,
we obtain a better indication of the performance of the strategies in practice
than when resorting to only one or two objectives. Third, this paper proposes
a speed model on large road networks that reflects the key elements of peak
hour traffic congestion. This speed model differs from existing ones in that it
considers the entire road network, it considers inter-urban traffic congestion
effects, it considers two peak periods, and it considers different road types.

This paper is organized as follows. In Section 2 we propose the speed
model, and in Section 3 we present the four congestion avoidance strategies.
In Section 4 we discuss our solution approach to solve the problem instances
with these strategies. In Section 5 we compare the impact of the strategies,
and in Section 6 we give some concluding remarks.
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2 Speed model

To investigate the impact of the different congestion avoidance strategies
in a realistic setting, we propose a speed model for real road networks that
represents peak hour traffic congestion. The speed model defines for each arc
in the road network a speed step function. This function defines speeds for
different time intervals, such that in each time interval the speed is constant.
We use five different time intervals: the morning and evening peak periods,
and the periods before, in between, and after the peak periods. By defining
speeds for each single road, the model is more refined than the majority of
the papers dealing with the TDVRP, in which speeds are usually defined for
customer links. Note that the speed model still contains the unrealistic effect
that the speed suddenly changes when entering a new time interval. This
effect can be reduced by considering more time intervals, but to keep the
analysis simple, we choose to use five time intervals.

The speed model reflects the key elements of peak hour traffic conges-
tion, as observed by the Dutch motorists’ organization ANWB [18] and the
English Highways Agency of the Department for Transport [19]. These key
elements are: large delays in urban areas, large delays on road lanes towards
urban areas during the morning peak and in the opposite direction during the
evening peak, and large delays on roads with a high speed limit (highways).
The common observation by ANWB and the Highways Agency indicate that
the key elements hold in general.

We develop the speed model for the road network data used in this pa-
per. However, the methodology can be applied to other road network data.
Note that we base the speed model on the key elements of peak hour traffic
congestion; we do not base it on real (historical) travel time data. Therefore,
for practical use, the speed model should be tailored to the road networks
under consideration. This tailoring is beyond the scope of this paper: the
objective of this paper is to get a good estimation of the performance of
different congestion avoidance strategies in a broad and realistic setting.

Our road network data is a selection of the TIGER/Line files [20], which
consist of road network data of each of the 50 US states. These data sets are
suitable for our analysis, because all properties needed to develop the speed
model are present: the data sets contain urban and rural areas, and they
contain different road categories. Moreover, the sizes are appropriate for our
analysis, which is restricted to one-day planning.

We select the states Rhode Island, Connecticut, Maryland, Massachusetts,
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and New Jersey, because they have a high degree of urbanization overall, re-
sulting in many traffic congestion problems during the peak hours. On top
of that, the sizes of these states are comparable to some smaller countries in
Europe such as the Netherlands and Belgium, which have to face large con-
gestion problems since they are densely populated. Furthermore, we select
Kentucky for comparison reasons: this state has next to a relatively small
urban area also large rural areas.

The TIGER/Line data contain geoinformation on nodes in the road net-
work (a node may represent an intersection of different roads or a change in
average speed on the same road), and distance and road category information
on directed arcs connecting these nodes. There are four road categories with
their corresponding (normalized) average speeds: 1, 0.8, 0.6, and 0.4. These
speeds are time-independent.

We assume the morning peak to last from 6:30AM until 9:30AM and the
evening peak from 3:30PM until 7PM, as indicated by the Dutch motorists’
organization ANWB. The speed outside the peak hours is set to the speed
provided by the TIGER/Line files. During the peak hours, the speed drops
by a fraction of the speed outside the peak hours. We base this speed drop
on the key elements of peak hour traffic congestion.

Peak hour congestion is mainly caused by a large amount of commuter
traffic. Since commuter traffic needs to be at the same time (at the start of
the working day) at the same place (large cities), the most common roads
get congested during the peak hours. With respect to peak hour traffic
congestion, the following elements are relevant:

1. Degree of urbanization. Within urban areas, there is much more traffic
congestion than in rural areas. Therefore, there is a positive correla-
tion between the degree of urbanization and the amount of speed drop
during the peak hours.

2. Direction of commuter traffic. During the morning peak, commuter
traffic is traveling toward working areas. Therefore, during the morning
peak much more traffic congestion appears on road lanes directed to
urban areas than on road lanes in the opposite direction (and during
the evening peak vice versa).

3. Speed limit. In general, roads with a high speed limit (highways) are
more heavily used than roads with a lower speed limit (rural roads).

6



Therefore, there is a positive correlation between a road’s speed limit
and the amount of traffic congestion during the peak hours.

We propose the following approach to quantify the speed drops during the
peak hours on each arc in the road network, based on the three observations
described above. First we determine the degree of urbanization of the source-
and destination-node of the arc under consideration. We determine this, by
counting the number of network nodes in the proximity area of each node.
We refer to such nodes as proximity nodes. In Section 2.1, we explain in
detail how this proximity area is defined and how we use it to determine the
degree of urbanization of each node. We set the degree of urbanization of
each arc to the maximum of the degrees of its source- and destination-node.
Next, we determine the direction of the arc, i.e., toward or from an urban
area. If the destination-node has a higher number of proximity nodes than
the source-node, then the arc is directed toward an urban area. Finally,
the speed limit on the arc is given by the road category of the arc under
consideration.

Table 1 presents the maximum (relative) speed drops during the morning
peak for each road category (for the evening peak the two rows are swapped).
We express the speed drops as a fraction of the free-flow speed. These maxi-
mum speed drops depend both on the arc direction and on the road category.
In Section 5.1, we conduct a sensitivity analysis of these speed drops. This
analysis will illustrate the robustness of the results in Section 5, showing that
these results do not depend on our choices for the actual numbers in Table 1.

road cat. 1 road cat. 2 road cat. 3 road cat. 4
Arcs toward 0.9 0.65 0.4 0.15
urban areas
Arcs from 0.3 0.25 0.2 0.15
urban areas

Table 1: Maximum speed drop during the morning peak as a fraction of the
free-flow speed

To account for the degree of urbanization, we multiply the maximum
speed drops with a fraction. Table 2 presents these fractions, in which de-
gree 1 represents the highest degree of urbanization.
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Degree of urbanization Fraction of speed drop
1 1
2 2/3
3 1/3
4 0

Table 2: Degree of urbanization and corresponding speed drop fraction

2.1 Determining the degree of urbanization of a node

We propose the following methodology for determining the degree of urban-
ization of each node in the road network. We define the proximity area of a
node to a circle centered at this node with a radius of 10 km, such that urban
areas are identified if a node is in a 10 km range of this urban area. To get
an indication of the number of proximity nodes for a node that lies in the
center of a large city and, therefore, has the highest degree of urbanization,
we determine for each state the maximum number of proximity nodes over
all nodes that lie in the largest city of that state.

State Max # proximity
nodes (×1,000)

Connecticut 15
Kentucky 19
Rhode Island 24
Maryland 28
New Jersey 32
Massachusetts 38

Table 3: Maximum # proximity nodes in the largest city

Table 3 shows that nodes which have the largest degree of urbanization
contain 15 thousand or more proximity nodes. Therefore, we set the degree
of urbanization of a node to 1 if it contains at least 15 thousand proximity
nodes. The numbers of proximity nodes corresponding to the other degrees of
urbanization are evenly spread between 0 and 15 thousand. Table 4 presents
the resulting correspondence between the number of proximity nodes and the
degree of urbanization.
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# proximity nodes degree of urbanization
(×1,000)

15+ 1
10 - 15 2
5 - 10 3
0 - 5 4

Table 4: Number of proximity nodes and degree of urbanization

3 Strategies

Vehicle route plans are generally constructed in two phases. First, optimal
travel times and distances between customer locations are calculated by solv-
ing a (time-dependent) shortest path problem for each pair of locations. Sec-
ond, a vehicle routing problem (VRP) is solved based on the calculated travel
times in phase one. The classical VRP can be formulated as follows. Given
a homogeneous vehicle fleet located at a central depot and a set of customer
locations, find an optimal set of vehicle tours, each starting and ending at
the depot, such that all customers are served by exactly one vehicle. Several
variations on the classical VRP have been proposed to account for various
practical restrictions, such as multiple depots, heterogeneous vehicle fleets,
capacity restrictions, and customer service time windows. In this paper, we
consider the VRP with capacity restrictions and customer service time win-
dows, which implies that the total demand along each vehicle tour may not
exceed the vehicle’s capacity, and that each service must start within the
given time window at the customer. Moreover, we consider time-dependent
travel times to account for traffic congestion effects.

We consider four different strategies in which congestion avoidance is
applied to an increasing extent. In the first two strategies, we model travel
times as time-independent. Strategy 1 completely ignores traffic congestion,
Strategy 2 accounts for traffic congestion by including some slack travel time.
In the other two strategies we consider time-dependent travel times. We first
describe the four strategies. Next, we validate our choices in Section 3.1.

Strategy 1 ignores traffic congestion. In this strategy, arc speeds are set
to their maximum value. Time-independent travel times between customers
are obtained using a shortest path algorithm. This corresponds to the classic
VRP solution.

Strategy 2 accounts for traffic congestion by solving a VRP based on av-
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erage travel times. The shortest paths are obtained in the same way as in
Strategy 1. Next, average travel times are calculated for each path, which
serve as input for the VRP. The average travel times are obtained by calcu-
lating the exact travel times for a large number of different departure times
(the inter-departure times are set to 15 minutes) and taking the average.

Strategy 3 avoids traffic congestion by solving a TDVRP. The time-
dependent travel times are obtained in a similar way as with Strategy 2,
with the difference that the travel times (with inter-departure times of 15
minutes) are not averaged. Interpolation is used each time the TDVRP
solver requires the travel time between two customers for a given departure
time.

Strategy 4 avoids traffic congestion by solving a TDSPP and a TDVRP.
Time-dependent travel times are obtained by using a time-dependent shortest
path algorithm. The travel times are calculated for the same inter-departure
times as with Strategies 2 and 3. Again, interpolation is used to calculate
the travel time for a given departure time when the TDVRP is being solved.
Strategy 4 requires an extra phase to determine the complete vehicle route
plan. Since the planned departure times in the TDVRP solution generally
do not coincide with a departure time for which the time-dependent shortest
path has already been determined in phase 1, we determine the shortest
paths for these planned departure times in the last phase. Table 5 gives an
overview of the four strategies.

Strategy Shortest Travel times Accounting for Avoiding
paths input for VRP congestion congestion

1 time-indep. time-indep. no no
2 time-indep. average yes no
3 time-indep. time-dep. yes yes
4 time-dep. time-dep. yes yes

Table 5: Strategy overview

3.1 Validation

After the VRP instances are solved with each strategy, we evaluate the per-
formances of the resulting vehicle route plans according to the speeds result-
ing from the speed model. Note that with Strategies 2, 3, and 4 travel time
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estimations are used to solve a (TD)VRP. The reason for using travel time es-
timations with Strategy 3 is that calculating the exact travel times would be
too time-consuming. With this strategy, travel time calculations depend on
the number of arcs along the route under consideration and, therefore, gen-
erally take much longer than using interpolation. In practice, however, the
TDVRP needs to be solved within limited computation times (e.g., customer
demands are often known only one day ahead), such that exact travel time
calculations allows the TDVRP solver to compute fewer solutions. Calculat-
ing exact travel times with Strategy 4 would require a different shortest path
algorithm with a higher complexity than with the other strategies (Orda and
Rom [16] show that calculating time-dependent shortest paths for a given
departure time can be done with a standard Dijkstra [17] search, whereas
calculating time-dependent shortest paths for all departure times requires a
shortest path algorithm of type Ford and Fulkerson [21]). Finally, we choose
to use a similar mechanism to derive travel time estimations with Strategy 2
as with Strategies 3 and 4 for clarity reasons.

The required computation times in phase 1 differ with each strategy.
Strategy 4 requires the longest computation times since with this strat-
egy more shortest paths have to be determined (i.e., for multiple departure
times). Since companies generally have a (partially) fixed set of customers,
phase 1 is only fully deployed once for the development of multiple vehicle
route plans. Only when customers are added to the company’s customer set,
or when road network changes, phase 1 has to be (partially) deployed again.
Moreover, shortest paths can often be determined in a pre-processing phase
(e.g., customer demands do not have to be exactly known yet, only there
location), such that computation times in phase 1 play only a minor role.

4 Solution methods

With each strategy, we need to solve a (TD)SPP and a (TD)VRP. To make
a fair comparison of the different strategies, we solve the problems with a
shortest path algorithm that can solve both SPPs and TDSPPs, and a VRP
algorithm that can solve both VRPs and TDVRPs, without tailoring the
solution methods. We also require that the computation times of the VRP
solution methods are (approximately) the same with each strategy, such that
this does not affect the applicability of the different strategies in practice.

We solve the (TD)SPPs with a modified Dijkstra [17] algorithm. The only
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adaptation we make is that we initiate the searches with a given departure
time from the source node, and we keep track of the departure times at
each reached node. This is necessary to determine the time-dependent travel
times when the labels of the nodes need to be updated. This approach
allows us to solve the shortest path problems with Strategies 1, 2, and 3
in (approximately) the same computation times. Only with Strategy 4 the
computation time increases, since we have to rerun the algorithm for each
possible departure time. However, this is all done in phase 1, a pre-processing
phase in which computation times play a minor role in practice. Note that
the non-passing property is necessary to guarantee optimality of Dijkstra’s
algorithm, since violations of this property may allow an optimal path to
contain non optimal sub-paths. The speed model satisfies the non-passing
property, since vehicles traversing the same arc at the same time drive the
same speed.

We provide (TD)VRP solutions using a restricted dynamic programming
(DP) heuristic, introduced by Gromicho et al. [22]. We select this method
for two reasons. First, Kok et al. [23] show that this DP heuristic is success-
ful in solving vehicle routing problems with complex timing restrictions. In
addition, the DP heuristic can evaluate the same number of VRP solutions
as TDVRP solutions within similar computation times, without tailoring the
algorithm. This is not only very valuable for practical use, but it also pro-
vides a fair comparison of the quality of the different strategies in practice.
Second, ORTEC - a key-player in the vehicle routing systems market - has
implemented this DP heuristic in their software, because of its high perfor-
mance on practical vehicle routing problems. Since we aim at gaining insight
in which strategies are best in practice, it is highly valuable to use methods
that have proved their value in practice. We provide a short explanation of
the restricted DP heuristic of Gromicho et al. [22].

The restricted DP heuristic for the VRP is based on the exact DP al-
gorithm for the TSP of Held and Karp [24] and Bellman [25]. This DP
algorithm defines states (S, j) , j ∈ S, S ⊆ V \0, which represent a minimum-
length tour with cost C (S, j), and in which V represents the entire set of
nodes to be visited. This tour starts at node 0 and visits all nodes in S,
which is a proper subset of V , and it ends in node j ∈ S. The costs of the
states in the first stage are calculated by C ({j} , j) = c0j , ∀j ∈ V \0, in which
cij is the cost of traveling directly from node i to node j. Next, the costs of
the states in all subsequent stages are calculated by the recurrence relation
C (S, j) = mini∈S\j {C (S\j, i) + cij}.
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The DP algorithm for the TSP is applied to the VRP through the giant-
tour representation of vehicle routing solutions introduced by Funke et al. [26].
In this representation, the vehicles are ordered and for each vehicle k a unique
origin node ok and destination node dk are introduced. Next, the destination
node of each vehicle is connected to the origin node of its successive vehicle,
as well as the destination node of the last vehicle with the origin node of
the first vehicle, creating a giant-tour. The DP algorithm is applied to the
extended node set with the vehicle origin and destination nodes, in which
each node addition now requires a feasibility check.

The feasibility checks ensure that an origin node of a vehicle ok can be
added to a partial route represented by a state if and only if the last visited
node is dk−1. Furthermore, these checks only allow dk to be added if ok is
already in the visited node set S. To account for other restrictions, such
as capacity restrictions or time windows, state dimensions are added. For
example, in case of capacity restrictions a state dimension c is added that
keeps track of the accumulated demand of the active vehicle k.

Since the (unrestricted) DP algorithm does not run in practically ac-
ceptable computation times for problem instances of realistic sizes, the state
space is restricted by a parameter H . The value of H specifies the maximum
number of states to be taken to the next stage, such that the smallest cost
states are maintained, as proposed by Malandraki and Dial [7]. Since states
in the same stage represent partial tours of the same length, states with
smaller costs are more likely to lead to good overall solutions. Gromicho et
al. [22] show that this restriction on the number of state expansions results in
a running time complexity of O(nHlog(H)) (where n equals the number of
customer nodes and vehicle origin and destination nodes). We store in each
state the departure time from the last visited node, such that we can apply
the restricted DP heuristic to the TDVRP without affecting the running time
complexity.

5 Computational experiments

We test the impact of the four congestion avoidance strategies on a large
number of VRP instances. These VRP instances are developed on the road
networks of the six selected states and the speeds resulting from the speed
model. The parameter settings are motivated from practice through discus-
sions with ORTEC.
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In practice, customer locations are often clustered in urban areas, i.e., the
density of customer locations is higher in urban areas than in rural areas.
Since the density of nodes in the road network show a similar effect, we
randomly select nodes as customer locations to obtain a realistic spread of
the customer locations. To obtain a diverse set of problem instances, we
randomly select a node in the road network as the depot location.

We develop 15, 50, and 100 customer problem instances. The 15 customer
problem instances are small enough to be solved to optimality in practical
computation times. In our setting, computation times are practical if they
are limited to a few minutes, since we consider a planning horizon of one
day. In practice, customer demands are in this setting often known one day
in advance at the end of that day, and planners are often only willing to wait
a few minutes for a response from a VRP solver.

We add time windows to 50 percent of the customers indicating the period
in which service must start. In practice, some customers require strict service
time intervals, whereas other customer sites are open all day. Selecting 50
percent of the customers to have a strict time window gives a fair mix. We set
the time window of the depot to [0, 14], indicating a working day of 14 hours
from 6AM until 8PM. The morning and evening peak last from 6:30AM until
9:30AM and from 3:30PM until 7PM, respectively.

The durations of the time windows at the selected customers are randomly
drawn from {2, 3, 4, 5, 6} quarters of an hour. ORTEC indicated that these
bounds on the time window durations (2 and 6 quarters of an hour) are
common in practice. We randomize the durations to obtain a diverse set
of problem instances. In practice, time window violations are sometimes
allowed. However, it is very hard to quantify the costs of such violations, since
these costs are often subject to subjective measures (e.g., relationship with
the customer). Therefore, ORTEC’s vehicle route optimization software only
considers strict service time windows (on which planners may set tolerances,
but then again these tolerances are considered strict), and we follow this
approach.

The customer service times are randomly drawn from {1, 2} quarters of
an hour. Again, ORTEC indicated that with day planning these service time
durations are common. The demands are randomly drawn from {1, 2, ..., 10}.
If the vehicle capacities are set too low, then the length of vehicle routes are
only restricted by these capacities. If they are set too high, then the length
of the routes are only restricted by the time windows. To obtain a diverse
set of problem instances in which both restrictions play a role, we set the
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capacity such that sometimes the time windows are restrictive and sometimes
the capacities. Initial experiments indicated that a capacity of 55 suits and
is therefore used in our experiments. We generate 20 problem instances for
each combination of state and number of customers resulting in 360 VRP
instances in total.

In practice, often multiple objectives are considered when optimizing ve-
hicle routes. ORTEC indicated that a minimal number of vehicles and a
minimal total duty time of the truck drivers are generally considered the
most important ones. To handle multiple objectives, they use a lexicograph-
ical objective function. We follow a similar approach by setting the primary
objective to minimize the total number of vehicles used, and the secondary
objective to minimize the total duty time of the truck drivers. Duty times
are the sum of travel, service, and waiting times (note that in general drivers
are also paid during waiting times, so they cannot be ignored). To use this
lexicographic objective function, we set the cost factor of the states in the
DP heuristic to a tuple (number of vehicles used, total duty time), where
two states are first compared with respect to the first element (number of
vehicles used) and in only case of equality they are compared with respect
to the second element (total duty time).

We choose to dispatch the trucks at time zero. Although postponing the
departure times at the depot may substantially reduce duty times (see Kok et
al. [27]), it is beyond the scope of this paper to also optimize the departure
times of the vehicles. Therefore, extending this study with the impact of
departure optimization on the performance of vehicle route plans is one of
our recommendations for future research.

We implemented the data-structures and solution algorithms in Delphi 7
on a PC with a Core 2 Quad, 2.83 GHz CPU and 4 GB of RAM. Table 6
presents the average results for the four strategies over all problem instances,
except for the problem instances generated on Kentucky, since we will use
these instances for comparison (recall that Kentucky is much less urbanized
than the other states). Between brackets, we present the relative changes of
the performance measures of the last three strategies with respect to Strat-
egy 1. All performance measures are derived by evaluating the developed
route plans with each strategy against the speeds resulting from the speed
model. Next to the two objectives ‘minimizing number of vehicle routes’
and ‘minimizing duty times’, we also report on the following performance
measures: total travel distance, total number of late arrivals at customers,
total number of late return times at the depot, maximum late time over all
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customers, and total late time over all customers. For practice, all measures
are relevant, since they cause different transport costs. The last four per-
formance measures indicate the reliability of the route plans. Note that all
performance measures present averages over all problem instances, except for
‘Maximum late time’ which presents the maximum over all problem instances
and all vehicle routes.

Problem Performance Strat. 1a Strat. 2b Strat. 3b Strat. 4b

size measure

# vehicle routes 3.06 16.34% 0.00% 0.00%
Total duty time (hrs) 28.9 5.45% -6.97% -8.55%
Total travel distance 12.36 0.12% -0.17% -2.59%

15 cust. # late arrivals 2.32 -85.34% -100.00% -100.00%
# late return times 0.050 -60.00% -100.00% -100.00%
Max. late time (hrs) 2.012 -86.26% -100.00% -100.00%
Total late time (hrs) 2.37 -93.12% -100.00% -100.00%

# vehicle routes 7.05 10.35% 1.70% 0.99%
Total duty time (hrs) 69.6 2.67% -6.44% -7.41%
Total travel distance 25.41 -0.41% -0.89% 0.22%

50 cust. # late arrivals 9.51 -77.18% -99.79% -99.47%
# late return times 0.190 -84.21% -100.00% -100.00%
Max. late time (hrs) 2.210 -64.63% -99.94% -99.94%
Total late time (hrs) 8.25 -89.08% -100.00% -82.96%

# vehicle routes 13.13 5.94% 0.15% 0.23%
Total duty time (hrs) 128.1 0.90% -6.17% -6.71%
Total travel distance 42.45 -2.20% -1.06% -0.38%

100 cust. # late arrivals 14.91 -69.35% -99.80% -99.73%
# late return times 0.270 -48.15% -100.00% -100.00%
Max. late time (hrs) 3.051 -67.56% -99.97% -99.97%
Total late time (hrs) 13.56 -82.68% -100.00% -100.00%

aabsolute figures
brelative change compared to Strategy 1

Table 6: Main results, aggregated over all problem instances, except for
Kentucky

The number of vehicle routes is larger with Strategies 2, 3, and 4 than
with Strategy 1. This can be explained by the travel time estimations with
Strategy 1, which are based on free-flow travel conditions and result in lower
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bounds to the travel time estimations with the other strategies. However,
the results indicate that avoiding traffic congestion to an increasing extent
reduces the number of vehicles again and approaches the number of vehicles
required with Strategy 1.

Note that the increase in number of vehicle routes with Strategy 2 reduces
with the size of the problem instances (and as a result, also the increase in
total duty time reduces with the problem size). The only difference between
Strategies 1 and 2 is that in Strategy 2 a VRP is solved based on average
travel times instead of free-flow travel times. As a result, it often happens
that a feasible solution with Strategy 1 is not feasible with Strategy 2, such
that extra vehicle routes are required with Strategy 2. Since the number of
solutions exponentially increases with the problem size, the relative increase
in extra vehicles required reduces with the problem size.

The duty times show a similar pattern, which can be partially explained
by the number of vehicle routes. Furthermore, the additional congestion
information with Strategies 2, 3, and 4 with respect to Strategy 1 reduces
the total duty time. This even results in an overall decrease of total duty time
for Strategies 3 and 4 with respect to Strategy 1, despite the larger number
of vehicle routes. Note that the estimated duty time with Strategy 1 is the
best (optimal for the 15-customer instances) for flee-flow travel conditions.
Therefore, if we subtract the estimated duty times found with Strategy 1 from
the real duty times with each strategy, then we obtain estimations of the extra
duty times caused by traffic congestion. Table 7 presents the average amount
of extra duty time for each strategy with respect to the estimated duty time
found with Strategy 1. The results show that with Strategy 1 about 8% of
the total duty time is due to traffic congestion delays. Strategy 2 results
in larger extra duty times than Strategy 1, due to the extra extra vehicles
required with Strategy 2. Strategies 3 and 4, however, reduce the extra duty
time of Strategy 1 substantially by 75% and 87% on average, respectively.

The travel distances are similar with each strategy. The smallest travel
distances are obtained with Strategy 4. This can be explained by choosing
alternative paths between customer locations at bad hours with this strategy.
Such alternative paths typically contain arcs with smaller speed drops than
arcs on the free-flow shortest paths due to, e.g., arcs with lower maximum
speeds. However, such lower speeds have to be compensated by smaller travel
distances. Note that if all roads are of the same type, or if they would all
behave similarly during peak hours, this tendency would not be present.

The reliability of the route plans strongly increases if the level of con-
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Problem size Strat. 1a Strat. 2b Strat. 3b Strat. 4b

15 customers 2.70 58.28% -74.78% -91.30%
50 customers 6.22 29.86% -72.04% -82.96%
100 customers 10.05 11.47% -78.71% -85.58%

aabsolute figures
brelative change compared to Strategy 1

Table 7: Average extra duty time (hrs) caused by traffic congestion

gestion avoidance increases. All reliability measures show a strong reduction
with respect to Strategy 1. This is not surprising, since the strategies account
for traffic congestion to an increasing extent. However, the huge improvement
of Strategy 2 with respect to Strategy 1 in comparison with the additional
improvements of the other two strategies is less obvious. The explanation for
this is that an underestimation of a travel time at the start of a vehicle route
with Strategy 1 propagates along all arrival times at successive customers of
that vehicle route. With Strategy 2, such an underestimation is generally
compensated by an overestimation of later travel times.

Table 8 presents the results for the sixth state: Kentucky. We scale
the results of the 15-, and 50-customer problem instances to 100-customer
problem instances by multiplying the performance measures (except for the
maximum late time) with 100/15 and 100/50, respectively. We report aver-
ages over all problem instance, except for the maximum late time which is
the (unscaled) maximum late time over all problem instances. As mentioned
before, Kentucky contains a large rural area compared to the other 5 states.
Therefore, the main part of the routes of the problem instances generated on
this state do not contain heavy delays caused by traffic congestion. Table 8
shows that this has a strong impact on the results. The increase in number
of vehicle routes with Strategy 2 with respect to Strategy 1 is much smaller
than for the other states. Moreover, with Strategy 4 almost the same number
of vehicle routes is attained as with Strategy 1.

The differences in duty times are also much smaller. With Strategy 1,
only about 1 hour of duty time is caused by congestion delays, as opposed to
the 13.5 hours for the other states. Congestion avoidance strategies lead to
reductions of this extra duty time up to 84% with Strategy 4. The reliability
measures show similar results as for the other states. In conclusion, Kentucky
leads to less congestion problems than highly urbanized states, but congestion
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avoidance may still substantially reduce costs in terms of total duty time, and
may still substantially increase the reliability of the vehicle route plans.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.48 1.69% 0.93% 0.11%
Total duty time (hrs) 135.4 0.67% -0.08% -0.61%
Total travel distance 52.50 0.93% 2.27% -0.98%
# late arrivals 2.011 -68.51% -100.00% -92.82%
# late return times 0.000c -c -c -c

Maximum late time (hrs) 0.349 -80.24% -100.00% -99.93%
Total late time (hrs) 0.558 -88.29% -100.00% -99.94%
extra duty time (hrs) 0.992 91.65% -10.75% -83.94%

aabsolute figures
brelative change compared to Strategy 1
cthere were no late return times with each strategy

Table 8: Change of Strategies 2, 3 and 4, relative to Strategy 1 for Kentucky

5.1 Sensitivity analysis of the speed model

The actual speed drops on specific road networks depends on several factors,
such as landscape (hilly or flat), urban organization (companies centered at
one city or dispersed across many cities), difference in speed limit between
trucks and cars, and even culture. To verify the robustness of the results
obtained the speed model, we conduct a sensitivity analysis by repeating
the computational experiments for a number of extreme alternatives: a)
only speed drops on highways, b) all roads have the same maximum rela-
tive speed drops, c) the same speed drops during the morning and evening
peak, d) small speed drops. The first three alternatives verify the robustness
with respect to the three key elements of peak hour traffic congestion, the
last alternative verifies the robustness with respect to the amount of traffic
congestion. Table 9 presents the maximum relative speed drops for the four
alternatives.

We run all computational experiments again for all alternatives. We
compare the results for the four alternatives with the results for the original
speed drops. We do not report the results with respect to the reliability of
the route plans, since they are similar to the results with the original speed
drops.
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(a)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.0 0.0 0.0
urban areas
Arcs from 0.3 0.0 0.0 0.0
urban areas

(b)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.9 0.9 0.9
urban areas
Arcs from 0.3 0.3 0.3 0.3
urban areas

(c)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.9 0.65 0.4 0.15
urban areas
Arcs from 0.9 0.65 0.4 0.15
urban areas

(d)
road cat. 1 road cat. 2 road cat. 3 road cat. 4

Arcs towards 0.45 0.325 0.2 0.075
urban areas
Arcs from 0.15 0.125 0.1 0.075
urban areas

Table 9: Maximum speed drop during the morning peak as a percentage of
the free-flow speed for the four alternatives: a) only speed drops on highways,
b) all roads have the same maximum relative speed drops, c) the same speed
drops during the morning and evening peak, d) small speed drops.
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Table 10 presents the results for Alternative (a) in which speed drops
during the peak hours only appear on highways. Strategy 2 results in a
larger number of vehicle routes than Strategy 1, but this increase is smaller
than with the original speed drops. This can be explained by the smaller
speed drops, on average, in this alternative. The same holds for the increase
in duty time with Strategy 2 with respect to Strategy 1. The reduction in
the number of vehicles needed with Strategy 4 with respect to Strategy 3 is
almost twice as big as this reduction with the original speed drops. This can
be explained by the free-flow travel times on secondary roads, which are only
exploited with Strategy 4. The higher reliability of the route plans when
higher levels of congestion avoidance are adopted is similar to the results
with the original speed drops. The reduction in additional duty time caused
by traffic congestion is even more impressive than with the original speed
drops: 95% instead of 87% with Strategy 4. This larger reduction is due
to the bigger opportunities for selecting alternative paths during the peak
hours.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 9.43% 0.59% 0.10%
Total duty time (hrs) 154.8 1.75% -7.64% -9.31%
Total travel distance 58.56 -0.24% -0.26% -1.44%
# late arrivals 17.15 -62.83% -100.00% -97.82%
# late return times 0.490 -67.35% -100.00% -100.00%
Maximum late time (hrs) 3.244 -57.08% -100.00% -99.22%
Total late time (hrs) 18.05 -79.74% -100.00% -99.92%
Additional duty time (hrs) 15.10 17.94% -78.29% -95.46%

aabsolute figures
brelative change with Strategy 1

Table 10: Results Alternative (a): only speed drops on highways.

Table 11 presents the results for Alternative (b) in which all roads have
the same maximum relative speed drop. For this alternative, the reliability
measures with Strategy 1 are worse than with the original speed drops be-
cause of the bigger speed drops, on average. As a consequence, the increase
in number of vehicle routes with Strategy 2, 3, and 4 with respect to Strat-
egy 1 is larger than for the original speed drops, especially with Strategy
2 (18% vs. 12%). Also the changes in duty times are more extreme than
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with the original speed drops: a larger increase with Strategy 2, and a larger
decrease with Strategy 3 and 4. Although the maximum relative speed drops
are the same for each road category, Strategy 4 still results in better vehicle
route plans than Strategy 3. This can be explained by simply having more
alternatives to choose from, but also by the fact that the same relative speed
drop results in smaller absolute speed drops on roads with lower maximum
speeds, which typically appear more often on alternative paths.

Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 18.23% 1.18% 0.65%
Total duty time 158.8 5.73% -8.57% -9.90%
Total travel distance 58.56 0.08% 0.60% 0.05%
# late arrivals 20.42 -83.64% -99.54% -99.85%
# late return times 0.823 -84.35% -97.30% -100.00%
Maximum late time 4.878 -82.36% -98.60% -99.96%
Total late time 23.48 -94.48% -99.87% -100.00%
Additional duty time 19.08 47.72% -71.32% -82.36%

aabsolute figures
brelative change with Strategy 1

Table 11: Results Alternative (b): all roads have the same maximum relative
speed drop.

Table 12 presents the results for Alternative (c) in which speed drops
during the morning and evening peak are similar. Due to the larger speed
drops, on average, the reliability measures for Strategy 1 are worse than with
the original speed drops. As a consequence, the increase in number of vehicle
routes with Strategy 2, 3, and 4 with respect to Strategy 1 is larger than for
the original speed drops. The larger speed drops in Alternative (c) offer, on
the other hand, more possibilities for avoiding them, which results in larger
duty time reductions with Strategy 3 and 4 with respect to Strategy 1 than
with the original speed drops. The other results are similar to the results
with the original speed drops.

Table 13 presents the results for Alternative (d) in which speed drops
are half the original speed drops. Due to the smaller speed drops, there are
fewer late arrivals than with the original speed drops, and the additional duty
time caused by traffic congestion is also smaller. As a consequence, Strategy
3 and 4 find solutions with approximately the same number of vehicle routes
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Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 15.31% 0.78% 0.57%
Total duty time 159.4 4.20% -9.20% -10.82%
Total travel distance 58.56 -0.29% -0.94% -1.70%
# late arrivals 20.97 -75.79% -99.92% -99.70%
# late return times 0.752 -63.96% -97.05% -100.00%
Maximum late time 3.589 -68.74% -100.00% -99.97%
Total late time 23.71 -89.06% -100.00% -100.00%
Additional duty time 19.67 33.99% -74.52% -87.66%

aabsolute figures
brelative change with Strategy 1

Table 12: Results Alternative (c): speed drops during the morning and
evening peak are similar.

as Strategy 1. Note that the smaller number of vehicle routes with Strategy
3 than with Strategy 1 and 4 is due to the heuristic solution method: for the
15 customer problem instances (which are solved to optimality) the number
of vehicle routes is the same for all strategies.

Even with the small speed drops in Alternative 4, the reductions of the
additional duty time caused by traffic congestion with Strategy 3 and 4 with
respect to Strategy 1 are still substantial (more than 60%). We noticed
this also in the results on Kentucky, for which also the average congestion
delays are much smaller than for the other states and alternatives. This
strongly indicates that high levels of congestion avoidance leads to substantial
cost savings for a broad range of different road networks. The reliability
improvements with respect to Strategy 1 are similar to the improvements
with the original speed drops.

6 Conclusions

We compared four strategies for avoiding traffic congestion by developing
better vehicle route plans. We proposed a speed model on real road networks
that reflects the key elements of peak hour traffic congestion. We used this
speed model to generate a set of realistic VRP instances for testing the impact
of the different strategies.

The test results indicated that the reliability of route plans strongly in-
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Performance measure Strat. 1a Strat. 2b Strat. 3b Strat. 4b

# vehicle routes 15.88 2.97% -0.06% 0.02%
Total duty time (hrs) 141.2 1.72% -0.67% -0.68%
Total travel distance 58.56 -0.25% 0.40% -1.26%
# late arrivals 3.394 -87.33% -99.41% -97.94%
# late return times 0.000c -c -c -c

Maximum late time (hrs) 0.328 -87.34% -99.79% -99.22%
Total late time (hrs) 0.494 -95.26% -99.98% -99.93%
Additional duty time (hrs) 1.528 158.94% -62.11% -63.07%

aabsolute figures
brelative change with Strategy 1
cthere were no late return times with each strategy

Table 13: Results Alternative (d): the speed drops are half the original speed
drops.

crease if traffic congestion is accounted for. However, if VRPs are modeled
with time-independent travel times, then this reliability increase is achieved
against more vehicle routes and larger duty times. By adopting higher lev-
els of congestion avoidance - such as solving VRPs with time-dependent
travel times and solving time-dependent shortest path problems - these cost
measures can be reduced substantially. Solving a combination of these two
problems is particularly effective, resulting in huge reliability improvements,
substantial duty time reductions (about 87% of the additional duty times
caused by traffic congestion can be eliminated), and substantially reducing
the number of vehicles needed (almost all extra vehicles needed to account
for congestion delays can be eliminated).

We conducted a sensitivity analysis of the speed model, which indicated
that under various scenarios the improvements with the higher levels of con-
gestion avoidance remain. Even in case of small speed drops during the
peak hours, congestion avoidance results in substantially more reliable route
plans and substantial reductions of duty times and number of vehicle routes.
In certain extreme cases, such as only speed drops on highways, congestion
avoidance is even more powerful resulting in reductions of the additional duty
time caused by traffic congestion of almost 95%.
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