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Abstract

We present an algorithm that determines Sequential Tail Value at Risk (STVaR) for

path-independent payoffs in a binomial tree. STVaR is a dynamic version of Tail-

Value-at-Risk (TVaR) characterized by the property that risk levels at any moment

must be in the range of risk levels later on. The algorithm consists of a finite sequence

of backward recursions that is guaranteed to arrive at the solution of the corresponding

dynamic optimization problem. The algorithm makes concrete how STVaR differs from

TVaR over the remaining horizon, and from recursive TVaR, which amounts to Dy-

namic Programming. Time consistency and comonotonicity properties are illustrated

by elementary examples, using the algorithm.

Keywords: Value at Risk, Tail Value at Risk, Dynamic Risk Measures, Time Consis-

tency, Dynamic Programming

1 Introduction

A wide range of problems in applied science involve the optimization of a performance

criterion under risk limits that guarantee a desired or required level of safety. In finance,

the dominant approach to express risk limits is in terms of Value-at-Risk (VaR) (Morgan

J. P. Inc 1996; Jorion 1997; Duffie and Pan 1997), being the maximum loss over a give time

horizon at a certain confidence level. The key to its success is that it expresses risk as a

monetary value with a transparent interpretation, which is very helpful in comparing and

aggregating risks originating from different sources. The dominance of VaR in the financial

industry is apparent from its central role in the world-wide regulation of banks for all risk
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categories, including operational risk (BIS 2006). Although VaR inherently has a financial

flavor, already in the name itself, it is applicable in a non-financial context as well, if all

types of risk under consideration can be quantified in a common unit of value loss, see e.g.

Tapiero (2003) for an application in inventory control.

A well-known shortcoming of using VaR as risk limit is that it stimulates concentration

of risk, because it is insensitive for the actual level of the worst losses that can be ignored

under a given confidence level. In the financial industry, with an abundance of opportunities

to exploit any loophole at large scale, this aspect can be really harmful, and has led to

considerable interest in TVaR as an alternative, also called Average VaR, Conditional VaR,

or Expected Shortfall (Artner et al. 1999; Szegö 2002; Föllmer and Schied 2004; McNeil et

al. 2005; Pflug 2007). TVaR measures the expected loss on the probability mass that is

ignored in VaR, thus avoiding the anomalies in VaR as risk limit. We refer to Rockafellar and

Uryasev (2002) for a fundamental result on optimizing performance under TVaR-constraints.

Anyhow, due to the intuitive appeal of VaR and VaR-like measures, for modelers as well

as managers and regulators, it may be expected that they will remain the main standards

in the financial industry for the coming years, if not decades.

The aim of this paper, however, is not primarily related to the controversy VaR vs.

TVaR (we take our starting point in TVaR, and indicate how to derive a corresponding

VaR-version), nor to optimizing performance under VaR-like restrictions (we only compute

the outcome of these constraints for a given position).

Our primary concern is the dynamics of risk measurement itself, which brings us to the

heart of the matter: our findings suggest that the evaluation of dynamic risk measures

requires a new class of algorithms, more complex than Dynamic Programming, yet with

sufficient structure to maintain some weaker, iterative form of backward recursive evaluation.

In fact, it is surprisingly difficult to extend a static notion of risk to a multiperiod setting,

without violating certain compelling rules for the consistency of risk levels over time. The

literature on dynamic risk measures and their time consistency properties is rapidly growing,

but here we just briefly sketch the situation for VaR and TVaR. Straightforward extensions,

such as TVaR over the remaining horizon, are severely time-inconsistent, in the sense that

initial risk levels may decrease with probability one in the next period (Artzner et al. 2007).

An obvious way to avoid time inconsistency is to adhere to a backward recursive definition,

corresponding to so-called (strongly) time consistent risk measures, satisfying (8.1), but for

TVaR this leads to accumulation of conservatism, as explained in Roorda and Schumacher

(2007), henceforth RS07. In continuous time such strongly time consistent versions don’t

even exist, cf. Kupper and Schachermayer (2009).

Sequential Tail-Value-at-Risk (STVaR) has been introduced in RS07 as a weakly time

consistent dynamic version of static TVaR. On the one hand, it avoids the type of time
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inconsistency as indicated above, by imposing so-called sequential consistency, which is the

property that risk levels should never increase or decrease for sure, as expressed in (8.2). In

fact, STVaR is the most conservative risk measure with this property that is dominated by

TVaR over the entire (and remaining) horizon. On the other hand, accumulation of conser-

vatism is avoided by deliberately giving up the backward recursive structure, corresponding

to strong time consistency. We remark that STVaR does not involve any extra parameters,

besides the confidence level, unlike the proposal for multiperiod TVaR in Pflug (2007).

We present an algorithm for computing STVaR in a binomial tree model, for a path-

independent payoff. In RS07 it already has been shown that the optimization related to

STVaR amounts to a Linear Programming problem. The algorithm presented here exploits

more specific features of the problem, that allow for a solution by a finite sequence of

backward recursions, despite the fact that it is, for reasons indicated above, not strongly time

consistent and hence does not follow the standard backward recursive scheme of Dynamic

Programming.

From this perspective, the algorithm not only is a computational tool for solving the

STVaR optimization problem, in a perhaps overly simple setting, but also provides an

illustration of how exactly the weakly time consistent dynamics of risk processes can deviate

from the certainty equivalence principles for value processes. This may serve as a blueprint

for computing weakly time consistent risk measures in more advanced settings, e.g. in

continuous time.

The paper is organized as follows. In Section 2 we repeat the definition of STVaR, and

reformulate it as an optimization problem over admissible weighting functions. The algo-

rithm is described in Section 3 (outline) and 4 (implementation). The proof of correctness

can be found in Section 6, after an explanation how the output of the algorithm should be

interpreted in terms of weighting functions. In Section 7 the working of the algorithm is

further explained by an example. Time consistency aspects are discussed in Section 8, and

conclusions follow in Section 9.

1.1 Notation

For the notation, we use a simplified version of that in RS07. We consider a binary tree over

T periods. N denotes the set of all nodes, N ′ the set of all nodes except the final ones, and

Nt is the set of nodes at time t, so N = N ′ ∪NT . The root of the tree is denoted as 0. Nτ

consists of the nodes at stopping time τ , so that τ is the first time a path reaches Nτ . For a

subset S ⊆ N the stopping time of reaching S for the first time is denoted as τ(S). Notice

that Nτ(S) is the minimal set of stopping nodes for τ(S), e.g. Nτ(N) = 0. For each node ν

in N ′ the tree has an up-branch and a down-branch, to nodes indicated by respectively νu,
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νd. The subtree with root ν is indicated as F (ν).

The outcome space Ω is identified with full paths in the tree, so ω ∈ Ω can be repre-

sented as (0, ν1, . . . , νT ) with νt ∈ Nt and all nodes connected by branches; ωt is the event

corresponding to the path up to and including t. Ωτ is the outcome space of all paths that

are stopped in τ .

The probability for an up-branch is p. E[·] denotes expected value in the binomial

tree; Et[·] is the expected value conditioned at t. For a stopping time τ , Eτ denotes the

corresponding conditional expectation. We also make use of the notation Eν [·], which is

the expected value conditioned on node ν, seen as an operator on F (ν), and it will be

independent of the path to ν unless explicitly mentioned.

For a function h : Ω→ R, |h|t denotes the maximum of h conditioned at Ft; |h|ν is the

maximum of h on the subtree F (ν). Further, with a function h : N → R, we associate the

function hτ : Ω→ R defined by hτ = {ω 7→ h(ν) | ν the end point of ωτ}.

2 Sequentially consistent TVaR

Let be given a binomial tree model over T periods with probability p for an up-branch, and

a path-independent payoff X : NT → R. STVaR at level α is defined as (cf. RS07)

STVaRα(X) = inf
Z∈Z

E[ZX] (2.1)

with

Z = {Z : Ω→ R |E[Z] = 1 and 0 ≤ Z ≤ α−1Zt for t = 0, . . . , T} (2.2)

writing Zt for Et[Z]. In particular, 0 ≤ Z ≤ α−1 in Z. It turns out to be convenient to

rewrite this as

STVaRα(X) = inf
W∈W

E[WX]/E[W ] (2.3)

with W the set of admissible weighting functions, given by

W = {W : Ω→ [0, 1] | |W | = 1 and Et[W ] ≥ α|W |t for t = 0, . . . , T}. (2.4)

The equivalence of both formulations follows readily from taking W = Z/|Z| for a given Z

in Z, or, conversely, Z = W/E[W ] for a given W ∈ W.Proof: W and Z differ only in a scalar

(that is always nonzero). After rewriting the second inequality in (2.2) as |Z|t ≤ α−1Zt, the

result follows immediately.

Notice that Z and W only differ in scaling. Where Z represents a relative density, having

unit expected value, W is a scaled version of Z so that its maximum is 1.Also notice that

if Z < α−1, still |W | = 1, yet E[W ] > α for W = Z/|Z|. Similarly, Z/Zt is the conditional
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relative density on F (ν), while W t := W/|W |t is the same object, down-scaled to maximum

value 1. We let W ν denote the weighting function on F (ν) with values W/|W |ν ; note that

this may depend on the path to ν. 1

Intuitively, W (ω) can be seen as the survival probability of a path ω, in the sense that

the contribution of a path ω to the expectation in the numerator of (2.3) equals E[1ωX(ω)]

times the ’probability’W (ω) to ’survive’ the selection of contributing paths; W ν has a similar

interpretation on the subtree F (ν). As we will see, worst case paths will always certainly

contribute to the STVaR outcome, regardless the value of α > 0, hence get weight 1 in a

solution of (2.3).2 Best-case paths get zero weight, unless α is too close to 1 to allow for this.

The optimal weight for paths in between, however, turns out to be heavily path-dependent,

and optimal weights for different paths to the same end node may actually vary from 0 to

1.

We will refer to the conditional expected survival probability Eν [W ν ] as the probability

mass in ν (under W ), and to Eν [W νX]/Eν [W ν ] as the level of node ν (under W ). Note

that both quantities are functions of paths to ν, in principle. We will, however, manage to

work only with weighting functions for which W ν is (essentially) independent of the path

to ν, so that the probability mass and level of a node ν are constants in resp. [0,1] and R.

For such weighting functions W we define the triple of functions on N :

y(ν) = Eν [W ν ] ’the probability mass in ν (under W )’

g(ν) = Eν [W νX] ’the raw level in ν (under W )’ (2.5)

f(ν) = g(ν)/y(ν) ’the level in ν (under W )’

which play a basic role in the implementation of the algorithm. The STVaR condition

requiring that probability mass along paths never falls below α,3 can now be expressed as

y(ν) ≥ α for all ν ∈ N. (2.6)

For the intuition we remark that ordinary Tail Value at Risk, over [0,T] as a single period,

would only impose this restriction for ν = 0, which always allows for a path independent

1Some care has to be taken with regard to ’trivial’ subtrees F (ν) on which W and Z vanish, to make W ν

(and W t, Z/Zt) well defined for any ν ∈ N ′. We could adopt the convention in Delbaen (2006) to set W ν

(and Z/Zν) equal to 1 on F (ν) in that case, as this will never cause a violation of the STVaR conditions, even

for α = 1. In principal this will do, but this may cause artificial path dependencies in weighting functions,

in case |W |ν is not zero for all paths to ν; alternatively, we then can also ’paste’ such a non-trivial value of

W ν , as will be explained later on.

2To be precise, only in the trivial case with STVaRα coinciding with the worst case outcome, having

probability exceeding α, solutions exist with weight below 1 for (some) worst-case paths.

3This does not exclude that W can become zero on F (ν): even then the conditional version W ν is always

(artificially) defined in such a way that probability mass is not below α.
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optimal weighting function. However, it lacks the property of sequential consistency, as is

illustrated by Example 8.1.

3 Outline of the algorithm

The algorithm determines a finite sequence of decreasing admissible weighting functions

W(0), . . .W(K) =: W ∗ so that W ∗ is a solution of (2.3). It starts with taking W = W(0) ≡ 1,

corresponding to initial probability mass one in all nodes, and computing g(0) = f(0) =

E[WX] = E[X]. If α = 1, the algorithm is already finished, so we assume that α < 1.

The main idea behind the algorithm is simple: in each loop it maximally reduces weights

of paths leading to nodes with maximum level, and it stops, roughly speaking, when the

probability mass at the root has been decreased to α.

In the first step it maximally reduces the probability mass of nodes with maximum level

M := maxν∈NT
X(ν). Such nodes are called M -nodes. Notice that also nodes ν before T

can be M -nodes (under W ≡ 1), namely if X = M on the entire subtree F (ν), cf. (2.5).

If in every node ν ∈ N ′, P (X = M |ν) ≤ 1− α, we can simply annihilate all weights for

paths to M -nodes, i.e., set W = 1X<M .Note: The rule does not hold per node separately,

i.e., it is not true that every node allows for full reduction of probability mass by q(ν), as

soon as q(ν) = P (X = M | ν) ≤ 1 − α. Think of early nodes with q(ν) small, with a link

to a node where (2.6) is binding. If not, we construct a weighting function W ∈ W that

corresponds to maximal reduction at rate M in each node, respecting the STVaR condition

(2.6). This typically involves weights between 0 and 1 for some paths to M -nodes, as is

illustrated by the example below. Nodes with probability mass at minimum level α are

called STVaR-nodes.

The algorithm can be stopped at this point if y(0)(= E[W ]) = α, i.e., if 0 itself has

become an STVaR node. Then f(0)(= E[WX]/E[X]) = STVaRα(X). This also holds if

the root itself has become an M -node, so if f(0) = M , which can only happen in the first

loop if X is the constant M .

For the next loop, all nodes with minimal probability mass α (if any) are collected in the

set S, and all M -nodes in Ex. These are considered as stopping nodes, and the corresponding

stopping time τ replaces the role of T .Three alternatives for stopping time: (i) τ(S), so no

stop in Ex: possible, but proofs get more complicated. (ii): τ(Ex∪S ∪ C) with C the set

of nodes with an outgoing branch cut: this does not work, because in subtree of ν ∈ C

still reduction possible. (iii) τ(Ex)?? Then we again perform maximal reduction, similarly

as before, but now in Ωτ , of probability mass at the maximum possible rate M , which is

now decreased to M = max{f(ν) | ν ∈ Nτ \ Ex}, because all nodes in Ex already have zero

weight. New nodes with f(ν) = M and with y(ν) = α are added to resp. Ex and S.
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This construction is repeated until τ = 0. Then 0 ∈ S and/or 0 ∈ Ex, and in both cases

f(0) = STVaRα(X). In case 0 ∈ Ex, this coincides with the worst case outcome of X.

4 The algorithm

The basic variables in the algorithm are the triple (y, g, f) as defined in (2.5). They are

initialized according to the weighting function W ≡ 1:

• y(ν) := 1 for all ν ∈ N .

• g(ν) := X(ν) for ν ∈ NT , and, backward recursively, g(ν) := pg(νu) + (1− p)g(νd).

• f(ν) := g(ν)/y(ν) = g(ν)

If α = 1, f(0) = STVaRα(X), and the algorithm stops. Assume from now on that α < 1.

The other basic variables are S = {ν ∈ N ′ | y(ν) = α}, Ex = {ν ∈ N | ν has been

M -node}, and τ = τ(Ex∪S). Initially, S := ∅, Ex := ∅, τ := T .

In addition to the notation Nτ , the set of end nodes in Ωτ , we also need notation for the

set of all nodes occurring in Ωτ as non-final nodes, N<τ := {ν ∈ N ′ |ωτ crosses ν for some

ω ∈ Ω}. Further, N≤τ = Nτ ∪N<τ .

Now repeat the following loop as long as τ > 0, or, equivalently, y(0) > α and 0 6∈ Ex.

The previous version had as second condition Ex 6= N , but this is not correct. Nodes can

remain outside Ex if they become unreachable in Ωτ . Some other changes: the definition of

τ was τ(S ∪ NT ), now also stopping as soon as Ex is reached. I removed some ineffective

assignments in nodes outside N≤τ .

1. Define M := max{f(ν)|ν ∈ Nτ \ Ex}, and NM := {ν ∈ N≤τ | f(ν) = M}, the set of

(new) M -nodes in the loop.

2. For t = T − 1 down to 0, for all nodes ν ∈ (Nt ∩N<τ ) \NM (the non-final nodes in

Ωτ at t with y > α and f < M):

• If f(νu) = M > f(νd) (ν is a pre-M -node),

yred := (1− p)y(νd) (the probability mass after a cut) (4.1)

If yred < α, define w := (α− (1− p)y(νd))/(py(νu)), and

y(ν) := α (4.2)

g(ν) := wpg(νu) + (1− p)g(νd) (4.3)

f(ν) := g(ν)/α, (4.4)
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else set

y(ν) := yred (4.5)

f(ν) := f(νd) (4.6)

g(ν) := y(ν)f(ν) (4.7)

• If f(νd) = M > f(νu) (ν is a pre-M -node),

yred := py(νu) (the probability mass after a cut) (4.8)

If yred < α, define w := (α− py(νu))/((1− p)y(νd)) and set

y(ν) := α (4.9)

g(ν) := pg(νu) + w(1− p)g(νd) (4.10)

f(ν) := g(ν)/α, (4.11)

else set

y(ν) := yred (4.12)

f(ν) := f(νu) (4.13)

g(ν) := y(ν)f(ν) (4.14)

• otherwise (no branch to M -node):

y(ν) := py(νu) + (1− p)y(νd)

g(ν) := pg(νu) + (1− p)g(νd) (4.15)

f(ν) := g(ν)/y(ν)

3. Adjust bookkeeping variables

• Ex := Ex∪NM

• S := S ∪ {ν ∈ N<τ | y(ν) = α}

• τ := τ(Ex∪S ∪NT ) (then Nτ ⊆ S are the ’reachable’ stopping nodes).

Here ends the loop.

After the last loop, f(0) = STVaRα(X).

5 The weighting function determined by the algorithm

In this section we explain how to interpret the algorithm in terms of admissible weighting

functions, and describe the structural properties that are preserved after each loop. Opti-

mality properties are addressed in the next section.
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Notation requires some extra attention in carefully discriminating between values of

variable at the beginning and the end of a loop. To suppress indices, we simply write

W for the weighting function corresponding to the end of the loop under consideration,

and use M ,S,τ , etc. for the value of the other variables in that stage. By a subscript

prev we indicate the values of variables as determined by the previous loop, so we write

Wprev,Mprev,Exprev,Sprev etc. For convenience, we write τ for τprev, and y, g, f for the

value of the triple as determined by the previous loop. These are hence the initial values for

the loop under consideration.

It is clear that after a loop the triple (y, g, f) consists of functions onN with α ≤ y(ν) ≤ 1,

g(ν) = y(ν)f(ν), and for ν ∈ NT , y(ν) = 1 and f(ν) = X(ν).

The triple (y(ν), g(ν), f(ν)) in any node ν ∈ N<τ is redefined in the loop by an assignment

of the form

y(ν) = wu(ν)py(νu) + wd(ν)(1− p)y(νu)

g(ν) = wu(ν)pg(νu) + wd(ν)(1− p)g(νu) (5.1)

f(ν) = g(ν)/y(ν)

with branch weights wu(ν), wd(ν) in [0, 1].

The weighting function W corresponding to the end state of a loop is partly determined

by these branch weights, partly by pasting the previously determined weighting function

on subtrees as soon as the path reaches, before T , an STVaR-node ν ∈ Sprev or a former

M -node in Exprev. This pasting reflects the fact that in all nodes outside N<τ , in particular

on Nτ , Exprev, as well as Sprev, no changes are made anymore. In fact this also holds for

new M -nodes, hence for Ex.

The loop only affects the weight for a branch from a non-M -node ν to an M -node ν′

(such ν must have exactly one branch to an M -node, and is called a pre-M -node). Clearly

every path in Ωτ can have at most one such a transition, because either the M -node ν′ itself

is in Nτ , or the entire subtree F (ν′) stopped at τ must consist of M -nodes, and then the

remainder of the path in Ωτ does not contain other pre-M -nodes. Of course, full paths in

Ω can contain several pre-M -nodes.

Let Λ : Ω → [0, 1] be the function that assigns to all paths ω ∈ Ω the branch weight

from the first pre-M -node to M -node, as determined by the loop, or the value 1 if it does

not contain any such transition. Then the weighting scheme W determined by the loop can

be expressed recursively as

W = |W |τW τ with W τ = W τ
prev and |W |τ = Λ (5.2)

The identity W τ = W τ
prev reflects the pasting at τ .
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It is important to notice that all branch weights in Ωτ are crisp, i.e., either zero or

one, which can be proved as follows. In the loop intermediate weights only are assigned to

branches if the corresponding pre-M -node becomes a new stopping node in S, so that such

branch weights apply after τ (and before τ). Assuming, as induction hypothesis, that before

the loop also all branch weights in Ωτ were crisp, then this hence also holds after the loop

on Ωτ .

In a similar way, it is easily derived that all branch weights in Ωτ are one, except for the

last transition of paths in this space that end up in Ex, which must be a cut link with zero

weight. Indeed, paths stopped at τ that end at τ in Exprev or in an M -node have their final

branch cut (in resp. a previous and the current loop), while other paths in Ωτ keep unit

branch weights.

Consequently, τ(ω) is the first moment that a path ω ∈ Ω reaches a node ν with (i)

y(ν) = α (iff ν ∈ S) and/or (ii) f(ν) ≥M (iff ν ∈ Ex) and/or (iii) ν ∈ NT .

Returning to the level of weighting functions, it is now clear that W ν is path independent,

if we restrict the attention to Ωτ , and it is easily verified that W ν is linked to the triple

(y, g, f) by (2.5)

To see that this is indeed an admissible weighting scheme, i.e., that W ∈ W, observe

that by construction (2.6) holds. Moreover, |W | = 1 follows directly from the fact that in

all nodes, at least one of the branch weights is 1. From an obvious inductive argument it

then follows that W is admissible.

The structure sketched above can be translated to the following properties of W . Define

1≥M : the indicator function of Ω≥Mτ := {ω ∈ Ω |ωτ ends in Ex} (5.3)

1<M : the indicator function of Ω<Mτ := {ω ∈ Ω |ωτ ends outside Ex} (5.4)

This notation is motivated by the fact that paths end in Ex precisely when their end level

is larger or equal to M , as explained above.

Lemma 5.1 The weighting function W determined at the end of the loop has the following

structure.

1. W = 1<MW τ , or, equivalently, |W |τ = 1<M

2. W τ is path independent on Ωτ , with Eτ [W τ ] = yτ and Eτ [W τX] = gτ .

3. For a stopping time σ ≤ τ ,

Eσ[W ] = yσ = Eσ[1<Myτ ], in particular y(0) = E[W ] = E[1<Myτ ] (5.5)

Eσ[WX] = gσ = Eσ[1<Mgτ ], in particular g(0) = E[WX] = E[1<Mgτ ] (5.6)
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6 Proof of correctness

We have to show that if the algorithm stops, f(0) = STVaRα(X), and furthermore that

the number of loops is finite. The claim on correctness will be derived mainly from two

optimality properties that hold after each loop,

• semi-optimality in Ωτ , i.e., in all nodes ν ∈ N≤τ , for any triple (ỹ, g̃, f̃) corresponding

to some V ∈ W for some ω ∈ Ω with ωτ ending in ν, with ỹ = y(ν), it holds that

g̃ ≥ g(ν) and, equivalently, f̃ ≥ f(ν)

• (full) optimality at τ , i.e., in the same notation, for all ν ∈ Nτ and V ∈ W, not

necessarily with ỹ = y(ν), f̃ ≥ f(ν).

Then it is obvious that the algorithm correctly stops when τ = 0. For the proof we need a

somewhat stronger formulation.

Lemma 6.1 At the end of each loop, semi-optimality in Ωτ and optimality at τ holds. Fur-

thermore, for any V ∈ W, with (ỹ, g̃, f̃) the corresponding triple in a node ν and a given

path to ν in Ωτ ,

for ν ∈ N<τ : g̃ ≥ g(ν) +M [ỹ − y(ν)]+ −Mnext[ỹ − y(ν)]− (6.1)

for ν ∈ Ex : g̃ ≥ g(ν) +Kν [ỹ − y(ν)]+ − f(ν)[ỹ − y(ν)]− (6.2)

for ν ∈ S : g̃ ≥ g(ν) +Mν(ỹ − y(ν)) and ỹ ≥ y(ν) (6.3)

with Mν > f(ν) the reduction rate in the loop that made ν belong to S, and Kν > f(ν) the

reduction rate in the loop before ν became an M -node.

Proof It is straightforwardly verified that the three inequalities imply semi-optimality in

ν ∈ Nτ , by substituting ỹ = y(ν) in (6.1), as well as (full) optimality for ν ∈ Nτ , by using

Kν ,Mν > f(ν) = g(ν)/y(ν) in (6.2) and (6.3). So it suffices to prove the inequalities.

Consider V ∈ W, and assume as induction hypothesis that the inequalities hold at the

end of the previous loop, so on Ωτ we have

for ν ∈ N<τ : g̃ ≥ g(ν) +Mprev[ỹ − y(ν)]+ −M [ỹ − y(ν)]− (6.4)

for ν ∈ Exprev : g̃ ≥ g(ν) +Kν [ỹ − y(ν)]+ − f(ν)[ỹ − y(ν)]− (6.5)

for ν ∈ Sprev : g̃ ≥ g(ν) +Mν(ỹ − y(ν)]) and ỹ ≥ y(ν) (6.6)

We first concentrate on (6.2) and (6.3). The loop does not affect nodes in Exprev and

Sprev, so for ν ∈ (Ex∪S) ∩ (Exprev ∪Sprev), (y(ν), g(ν), f(ν)) = (y(ν), g(ν), f(ν)), and for

these ν the lemma follows immediately. All other nodes in Ex∪S must satisfy (6.4). Now
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if such ν belongs to Ex, it must be an M -node, with f(ν) = M , and (6.4) implies (6.2)

directly. Otherwise, such ν is a new STVaR-node in S. Because the reduction in the loop

(if any) is at rate exactly M in Ωτ , it follows that

g(ν)− g(ν) = M(y(ν)− y(ν)) (6.7)

and together with (6.4) this implies (6.3).

So we have proved (6.2) and (6.3), and we already showed that this implies that fτ is

minimal, i.e., in obvious yet incorrect notation, f̃τ ≥ fτ . Another consequence is that

g̃τ − gτ ≥M(ỹτ − yτ ). (6.8)

We now prove (6.1) for ν = 0, the proof for other nodes in N<τ is entirely similar.

Decompose ỹ − y(0) = E[V −W ] = E[Eτ [V −W ]] into three terms δ1 + δ2 − δ3, given by

E[1≥M |V |τ ỹτ ] + E[1<M |V |τ (ỹτ − yτ )]− E[1<M (1− |V |τ )yτ ].

Similarly, decompose g̃ − g(0) into three terms g1 + g2 − g3, given by

E[1≥M |V |τ g̃τ ] + E[1<M |V |τ (g̃τ − gτ )]− E[1<M (1− |V |τ )gτ ].

Now (6.1) directly follows from g1 ≥ Mδ1, g2 ≥ Mδ2, and g3 ≤ Mnextδ3. Here the first

two inequalities are obtained from (6.8), and the third one from the fact that on the support

of 1<M , f ≤Mnext and hence g ≤Mnexty. �

Lemma 6.2 The algorithm stops within 1/2(T + 1)(T + 2) loops.

Proof The algorithm starts with Ex = ∅, and in each loop this set is extended by at least

one M -node. If the algorithm would not have terminated before the 1/2(T + 1)(T + 2)-th

loop, then after that loop Ex = N , hence 0 ∈ Ex, and the algorithm stops. In fact 0 ∈ Ex

already one loop earlier, because it cannot be the case that the root is the only element

outside Ex. �

So we have proved the following result.

Theorem 6.3 The algorithm terminates within 1/2(T + 1)(T + 2) loops (the number of

nodes in the tree) and then f(0) equals STVaRα(X).

7 Example

We illustrate the working of the algorithm by an example. Meanwhile we discuss discuss

some aspects of it that may be less obvious. The example is also used to describe the

resulting optimal weighting scheme.
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7.1 First step

We consider a binary tree with p = 1/2, T = 4, and payoff X as indicated in the picture

below, with maximum value M = 4. E[X] = 2 15
16 . We apply the first loop of the algorithm

for STVaR level α = 3/8. The end result of the first step can be visualized as follows.
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The M -nodes are indicated by open circles. The pre-M -nodes are nodes A and B, they

have exactly one branch to an M -node. Starting in node A, the last one, we see that the

branch to its M -node can be cut completely. Formally, we set WA(Au) = 0, and keep

WA(Ad) = 1, with Au,Ad the nodes reaches from A after resp and up- or down-branch.

This leaves node A with probability mass 1/2, which is not below α, as required. Obviously,

the level in node A after this cut is given by f(A) = 3.

For node B the branch to the M -node cannot be cut completely, taking into account

that node A has not full probability mass anymore: this would yield probability mass

1/4 in B, which is below α. Setting the transition weight equal to w = 1/4, as depicted

above, the probability mass is reduced to α exactly. This brings the value f(B) down to

wp4 + (1 − p)23 = 31
3 . This is actually the STVaRα value of X on F (B), and therefore B

is called an STVaR-node.

The probabilities and levels in the other nodes follow (4.15), corresponding to unit tran-

sition weights. This gives y(0) = 23
32 , f(0) = 212

23 .

At the end of the loop, the stopping time τ equals τ(B ∪NT ). Intuitively speaking, in

the backward recursions of later loops, node B will pass its STVaRα value to earlier nodes,

regardless of any further reductions of nodes in F (B). So, in forward perspective, for paths

through B there is no reason to ’look behind’ node B. Formally, the outcome space will

now be restricted to Ωτ . Notice that the path duuu still belongs to Ωτ . It is the only path

that arrives at τ in Ex, hence the only one with zero weight in Ωτ .

We remark that it is not crucial that the reduction in node A is passed through to node

B. Alternatively, one could determine in node B, regardless of the reduction in node A,

one weight w′ ∈ [0, 1] for all paths to M -nodes through B, which would then be given

by w′P (X = M |B) + P (X < M |B) = w′ 34 + 1
4 = α, so w′ = 1

6 . This is conceptually
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straightforward, but there are several disadvantages. The reduction as computed in A

only would apply to paths that do not first cross B, introducing an (unnecessary) path-

dependency for WA. Secondly, in node B all (multiperiod) paths to M -nodes have to be

determined, while the original method can do with backward recursion over single steps. In

addition, it is not clear that assigning the same weight to all paths to M -nodes is a valid

construction in general.

7.2 Second step

Taking starting point in the end result of the first step, now the maximum reduction rate

M has become 3 1
3 , and B becomes the new M -node. Reduction now takes place in the only

pre-M -node C, and it turns out that cutting its branch to B reduces its probability mass

exactly to y(C) = α. The corresponding level is f(C) = 2 2
3 , copied from the node below B.

So the picture now becomes
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This updates the stopping time τ to τ(C ∪ NT ). Notice that B, which was already a

stopping node in S, now also belongs to Ex. At the root now y(0) = 5
8 and f(0) = 22

5 .

Notice that not all paths from C to X < M have unit weight after reduction at rate

M . For example, the path ω = uudd leads to X(ω) = 3, yet W (ω) = 0. By giving this

path some extra weight in WC the pair y(C), g(C) would increase to y(C) + δ, g(C) + 3δ.

This seems to contradict Lemma 6.1, which states that the increase rate in g is at least

M = 3 1
3 , hence cannot be 3. However, this extra weight would make WC (and hence W )

an inadmissible weighting scheme, violating (2.6) in node B. Instead, the minimum rate of

increase is exactly M = 3 1
3 , corresponding to giving back the cut branch to B some positive

weight.

This is the crucial difference with considering TVaR over the remaining period, as dis-

cussed in Section 8. It also illustrates that W is not closed under increasing weighting

schemes bounded by 0 and 1, if it is allowed to increase the support of W.
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7.3 Remaining steps

In the third loop, the reduction rate is M = 3, and there are two M -nodes, D and A.

Reduction at this rate takes place in the pre-M -nodes E (first) and F . This leads to the

following situation after the third loop.
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The value in F is now 2 1
3 . The stopping nodes in Nτ are now C and D. Notice that

the reduction in F is not affecting the level of the STVaR-node C. A subtle point arises

here: on the original outcome space Ω, WF is path dependent, as its value really depends

on whether the path addresses C or not. However, the path via C to F is excluded in Ωτ ,

and on this space path independency of WF holds, albeit in a trivial way in this example,

leaving just one path to F .

At the root, y(0) = 15
32 , still beyond α, and f(0) = 21

5 .

Finally, node C becomes M -node with level M = 2 2
3 . Maximum reduction at this rate

corresponds to weight w = 1/2 for the first up-branch, and level 2 1
12 for the root, which is

the outcome of STVaRα(X). The end situation is depicted below.
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7.4 Final state

The final state in the example is typical: the root has one branch to a node in S (u in this

case), with level equal to the last reduction rate, i.e., f(u) = M . The other node, d in this

case, has level f(d) < M , and probability y(d) > α. Optimality of the final weighting scheme

is reflected by the fact that in node d, probability mass can only be increased at increase
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rate beyond M , and decreased at rate below M . Intuitively, instead of taking the STVaR

value in d, the node is filled with extra probability mass until the increase rate begins to

exceed the level f(u).

It is clear that in the final situation, Ex = {ν ∈ N | STVaRα(X|ν) ≥ M}.Nodes in Ex

have been M -node in a loop, and then their level was minimal and equal to a reduction

rate > M . Any node with minimal level < M cannot have been an M -node. So τ(Ex∪NT )

is the stopping time of reaching STVaRα level M for the first time. There are three types

of paths in Ωτ(Ex∪NT ): those ending in T without reaching Ex, hence in X < M , having

weight 1, those crossing S just before stopping in Ex, having level below M , and weight α,

and those having in the last step a cut link to Ex, while the probability mass is still above

α, having weight zero.

So the working of the algorithm can be summarized as follows. It determines the region

Ex of nodes where the STVaRα level exceeds a certain level M , and maximally reduces the

last branch weight of paths arriving at Ex, giving priority to branches to Ex-nodes with

higher level, while respecting (2.6). The level M (the final reduction rate) is determined as

the highest level for which then the root gets probability mass α.4

8 Time consistency aspects

The raison d’être of STVaR is that it avoids time inconsistency problems in defining Value-

at-Risk in a multi-period setting. We briefly illustrate this aspect in the context of the

algorithm. First we will summarize some basic notions, see RS07 for a more extensive

description. This involves the extension of a risk measure φ0, such as STVaRα, to a sequence

of refined risk measures {φt}t=0,...,T , also called updates of φ0, that take t as initial time.

A sequence of updates {φt}t=0,...,T is called strongly time consistent if the ’risk-equivalence’

principle

φ0(φt(X)) = φ0(X) (8.1)

holds, and sequentially consistent if

φt(X) ≥ 0⇒ φu(X) 6< 0 and φt(X) ≤ 0⇒ φu(X) 6> 0 for t < u. (8.2)

Intuitively, this means that φt(X) is in the range of φu(X), or, for binomial trees, that

φν(X) ∈ {λφνu + (1− λ)φνd |λ ∈ [0, 1]}.

4In the trivial case where the algorithm stops because of 0 ∈ Ex, M is the worst-case outcome of X, and

the algorithm possibly leaves the root with more than minimal probability mass, but even then it could be

reduced to α, afterwards.
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A fundamental observation is that initial risk measures φ0 admit only one update at

t that has a chance of being sequentially and/or strongly time consistent, so (weak) time

consistency can also be seen as a property of the initial risk measure itself.

For a coherent risk measures φ0, which is representable as the worst expected value

operator over a set of probability measures, this update φt amounts to conditioning expected

values on the information at t, cf. RS07. We refer to Roorda and Schumacher (2009) for a

much more general result, for convex and even non-convex risk measures and an even weaker

type of time consistency.

Applying this to φ0 = STVaRα[·], as defined in (2.3), we have

φt(X) = inf
W∈W

Et[WX]/Et[W ] (8.3)

which is nothing else than STVaRα over subtrees with roots in Nt.

It may be illuminating to compare this to taking the initial measure equal to TVaR over

the entire horizon, cf. the remark after (2.6). This is not sequentially consistent, as is shown

by the following small example.5 Other examples, involving a path dependent payoff, can

be found in RS07 and in Artzner et al. (2007).

Example 8.1 Consider a binary tree with two steps, Ω = {uu, ud, du, dd}, and X(uu) = 0,

X(ud) = X(du) = 1, and X(dd) = −1. Assume probability 3/4 for up, 1/4 for down.

Consider TVaRα with α = 1/2. Then in u and d, the outcome is 0, while for the entire

period [0, T ] the algorithm yields outcome -1/8.

STVaR is in fact the most conservative risk measure dominated by TVaR that is sequen-

tially consistent. So, combining the restriction that risk should not be seen as higher than

TVaRα over the entire horizon, with the natural requirement that risk levels should never

increase or decrease for sure, automatically leads to the STVaR concept. This also holds for

each subtree separately.

The first moment that the gap between STVaR and TVaR becomes visible in the original

example is after the last step of the algorithm, in the root node 0. The STVaR level in 0

has been determined at 2 1
12 , while the corresponding TVaR level is 2. This is obtained by

giving full weight to paths to end value 1 and 2, and the remaining probability mass of 1/16

to some path ending in value 3, say a path crossing C. The conflict with (2.6) now arises

in node C, which has probability mass 5/16 < α = 3/8. This illustrates that TVaR allows

a degree of conservatism in future states, that will be considered as too excessive when that

state actually materializes. It is exactly this type of inconsistency that STVaR avoids. We

remark that in other examples this difference can be much more pronounced.

5The example in Section 7 is not suitable for this, because it has a monotone payoff.
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On the other hand, STVaR is not strongly time consistent, and we argued in RS07 why

this can be a desirable property, in particular in the context of capital requirements (as

opposed to pricing measures). Examples of strongly time consistent risk measures domi-

nated by TVaR over the entire period correspond to taking TVaRαt over period [t, t + 1],

e.g. αt = α1/T . These can be computed backward recursively according to the dynamic

programming principles. This prescribes the level of TVaR in each period a priori, as if

the time profile of most adverse events is time homogeneous or predetermined, regardless

the position. Moreover, for large T there is in fact no reasonable approximation of TVaR

that is strongly time consistent, and for continuous time the whole concept fails, as already

indicated in the introduction. In contrast, STVaR lets the induced level of conservatism

depend on the position X, without making any ad hoc choice on the timing of risk. It is the

position X that determines whether nodes contribute at most conservative level (the ones

in S and Ex), or less conservatively, just as it turns out to be most adverse.

This clearly indicates that STVaR is fundamentally different from strongly time consis-

tent versions of TVaR per period, on the one hand, and TVaR over the remaining horizon,

on the other. This discrepancy is further underlined by the fact that STVaR is not comono-

tonically additive, and hence can also not be represented as a mixture of TVaR with different

confidence levels (Kusuoka 2001; Föllmer and Schied 2004, Thm 4.87). We conclude this

section by a counter example for comonotonic additivity.

Example 8.2 In the same setting as the previous example, consider now the comonotone

family of positions {Xµ}µ∈(0,1) with Xµ(uu) = 1, Xµ(ud) = Xµ(du) = 0, and Xµ(dd) = µ.

Take α = 3/4 and p = 1/2. The STVaR algorithm starts with creating an STVaR node in the

node u (in obvious notation) with corresponding level f(u) = 1/3. If µ < 1/3, the algorithm

proceeds with reducing the branch weight to u, and results in STVaR(Xµ) = 1
9 + 1

3µ. If

µ ≥ 3, the second loop reduces the branch weight to dd, which creates first an STVaR-node

in d of level 1
3µ, and then, in the same loop, determines the STVaR value of Xµ in the root

as 1
6 + 1

6µ. Now it is easily verified that for a pair of positions Xµ, Xµ′ with 0 < µ < 1/3 < 1,

STVaR(Xµ) + STVaR(Xµ′) < STVaR(Xµ +Xµ′) = 2 STVaR(X(µ+µ′)/2). For instance, for

µ = 1/6and µ′ = 1/2, the left-hand side equals 1
6 + 1

4 , while the right-hand side is 5
12 .

9 Conclusions

We showed how STVaR can be computed by a sequence of backward recursions, and used

the algorithm to illustrate and motivate the difference with other versions of multiperiod

TVaR.

This has been done in an extremely simple setting, for path independent positions on
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a binomial tree, so that attention can be focussed on conceptual aspects entirely. It is

straightforward to generalize the algorithm to multinomial trees, and mild forms of path

dependency. Time steps can be refined in order to approximate continuous time STVaR.

The interpretation of τ as the first time that conditional STVaR hits a level M suggests a

link with optimal stopping problems in the spirit of American option pricing. This could

be further exploited in order to develop stochastic calculus for STVaR itself as a continuous

time process.

Perhaps more crucial for the acceptance of a risk measure in the industry is an absolutely

transparent interpretation. In this respect VaR over a single period still sets the standard,

despite its shortcomings that have been widely addressed in the literature. Now VaR can

be reconstructed from TVaR by the rule

VaRα := lim
δ↘0

(α+ δ) TVaRα+δ

α+ δ
,

and, inspired by this rule, one could develop a ’sequential’ version of Value-at-Risk at confi-

dence level 1−α. Such a notion can be helpful in further developing sequentially consistent

risk measures that can compete with VaR in terms of transparency.
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