
How to apply Tail Value at Risk over multiple time steps

avoiding accumulation of conservatism and extra parameters

Berend Roorda∗ J.M. Schumacher†

Extended abstract for the Bachelier Finance Society World Congress

July 2008, London

Abstract

We compare two different definitions of Tail-Value-at-Risk in multiperiod models: the well-

known backward recursive dynamically consistent definition (DTVaR), and the sequentially

consistent version (STVaR), satisfying a weaker form of time consistency that only requires

that acceptability levels do not exceed essential extremes later on. We extend the proposal for

STVaR in Roorda and Schumacher (2007) to a more general setting, and indicate why STVaR

is to be preferred if low levels (conditioning on tails with low probability) plays a role, as e.g.

in a regulatory context. We show how the backward recursion in DTVaR can be restored for

STVaR, to some extent, and indicate how this can be exploited in evaluation by Monte-Carlo

simulation.

We compare two different definitions of Tail-Value-at-Risk in multiperiod models: the well-

known backward recursive dynamically consistent definition (DTVaR), and the sequentially

consistent version (STVaR), satisfying a weaker form of time consistency that only requires

that acceptability levels do not exceed essential extremes later on. We indicate why STVaR

is to be preferred if low levels (conditioning on tails with low probability) plays a role, as

e.g. in a regulatory context. It is shown how the backward recursion in DTVaR can be

restored for STVaR, to some extent, and we indicate how this can be exploited in evaluation

by Monte-Carlo simulation.

Keywords: convex risk measures; acceptability measures; weak time consistency; Tail Value

at Risk.

1 Introduction

We take our starting point in the well-known single-period risk measure Tail Value at Risk (TVaR),

also known as Expected Shortfall, Conditional Value at Risk, or Average Value at Risk (see e.g.
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Föllmer and Schied (2004), Pflug (2007), and the references therein). We prefer to define TVaR

as an acceptability measure, with acceptability being the negative of riskiness. For a given prob-

ability space (Ω,F , P ), let L∞ = L∞(Ω,F , P ) represent the set of all financial positions under

consideration. Then TVaR at level c ∈ [0, 1], under reference measure P , is defined by

(1.1) TVaRc(X) := inf{EP [LX]|L ∈ L∞, 0 ≤ L ≤ c−1, EP [L] = 1}

or, in dual form,

(1.2) TVaRc(X) = inf{EQ[X]|dQ

dP
≤ c−1}

where dQ
dP denotes the density of Q with respect to P . This amounts to considering the average of

X over the worst c probability mass, if (Ω,F , P ) is non-atomic.

It is important to notice that the interpretation of the outcome of TVaRc(X) heavily depends

on the level c. For c = 1, and P a martingale measure, it would correspond to an arbitrage-free

price for X. For the other extreme, c = 0, it amounts to the worst outcome of X, hence the cash

amount needed for full protection against any loss. In between the interpretation gradually changes

from risk-adjusted prices, for c not far away from 1, to required risk capital for providing protection

against losses up to a certain confidence bound, typically with c = 0.05, or even c = 0.0001 for

annual Economic Capital models at AAA-rated banks. Rather than prices, the corresponding

amounts for c close to zero represent cash amounts that are most probably never to be used for

X; they are by no means a sound basis for exchanging X for cash. This difference between high

and low levels is important in the sequel.

An obvious way to extend TVaR to a multiperiod model is by applying TVaR backward re-

cursively over each step. We call this Dynamic TVaR (DTVaR). So we consider a filtered prob-

ability space (Ω,F , (Ft)t=0,...,T , P ), F0 = {∅, Ω}, FT = F . L∞t = L∞(Ω,Ft, P ) is the set of

Ft-measurable random variables. A multiperiod acceptability measure is a family Φ = (φt)t=0,...,T

with φt : L∞ → L∞t . We write φ for φ0. In the sequel, all inequalities and equalities applied to

random variables are understood to hold P -almost surely.

The initial measure DTVaRc,0, or DTVaRc for short, can be expressed as

(1.3)

DTVaRc(X) := inf{EP [XΠT
s=1Ls] |Ls ∈ L∞s , 0 ≤ Ls ≤ c−1, EP [Ls|Fs−1] = 1 for s = 1, . . . , T}.

At later time, DTVaRc,t allows for a similar expression, with expectation now conditional on

Ft, and s starting in t + 1. Dual formulations are obtained, analogous to (1.2), by letting Ls

correspond to EP [dQ/dP |Fs]
EP [dQ/dP |Fs−1]

, cf. Artzner et al (2007).

2 What is the problem with DTVaR?

There is no problem as long as the outcome of φt(X) can be interpreted as the value of X at time

t. Then one could exchange X for φt(X) at time t, and, ignoring that this cannot be reversed in

general, it makes sense to impose the rule that the acceptability of X must be the same as the
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acceptability of its value at time t,

φ(X) = φ(φt(X)).

This is the axiom of strong time consistency (see Frittelli and Rosazza Gianin (2004), Roorda and

Schumacher (2007), Föllmer and Penner (2006), Artzner et al (2007), which essentially reduces

multiperiod acceptability to backward recursive static acceptability. It is clear that DTVaR satisfies

this axiom.

However, we already indicated that for low values of c, the outcome of DTVaRc(X) cannot be

treated as values of X anymore, and then strong time consistency becomes less appropriate. In

fact, the axiom would lead to an absurd accumulation of conservatism over the entire period. As an

illustration, one could consider DTVaRc(X) for c = 0.01, T = 10, and X lognormally distributed.

This is the average value of X assuming a sequence of ten extreme downturns at a row, which

amounts taking a conditional expectation EP [X|B] with P (B) = 10−20. We refer to Roorda and

Schumacher (2007) for another small example illustrating this point.

3 What then is an appropriate notion of time consistency?

It is clear that strong time consistency is incompatible with the combination of low levels and

many time steps. Therefore, we consider ’weaker’ forms of time consistency, that, on the one hand,

still guarantee some desirable properties of the measure, but, on the other hand, are more flexible

than the certainty equivalent principle.

We consider the following notions of weak time consistency.

Definition 3.1 Φ = (φt)t=0,...,T is said to be conditionally consistent if it satisfies the following

condition for all t = 0, . . . , T − 1 and all X ∈ L∞:

(3.1) φt+1(X) ≥ 0 ⇔ for all F ∈ Ft+1, φt(X11F ) ≥ 0.

Definition 3.2 Φ = (φt)t=0,...,T is said to be sequentially consistent if it satisfies the following

two conditions for t = 0, . . . , T − 1, and all X ∈ L∞:

1. φt+1(X) ≥ 0 ⇒ φt(X) ≥ 0 (’acceptance consistency’)

2. φt+1(X) ≤ 0 ⇒ φt(X) ≤ 0 (’rejection consistency’)

These notions have been analyzed in some detail in Roorda and Schumacher (2007), in a more

restrictive setting with finite outcome space. We currently finalize a working paper in which

we have generalized the results to the setup with (Ω,F , (Ft)t=0,...,T , P ). We here mention two

results that are crucial now. Firstly, under some mild conditions, sequential consistency implies

conditional consistency. Secondly, under both forms of weak time consistency, and also under strong

time consistency, the initial acceptability measure φ already completely determines all subsequent

measures φt for t = 1, . . . , T , by the update rule

(3.2) φt(X) = ess sup{Y ∈ L∞t |φ((X − Y )11F ) ≥ 0 for all F ∈ Ft}.
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Notice that DTVaR as given above indeed satisfies this update rule. We remark that the rule itself

is in fact obvious, and not new, cf. Tutsch (2006).

Both notions of weak time consistency are quite natural, not only in the context of pricing,

with c close to 1, but also in a regulatory context, with c close to zero. We will now focus on the

applying the strongest of the two, sequential consistency, on multiperiod TVaR.

4 How to apply TVaR in a sequentially consistent way?

In view of the results in Roorda and Schumacher (2007), it is not a surprise that a sequentially

consistent extension of TVaR to a dynamic setting can be obtained as the update of the following

initial measure.

(4.1)

STVaRc(X) := inf{EP [XΠT
s=1Ls] |Ls ∈ L∞s , 0 ≤ ΠT

s′=sLs′ ≤ c−1, EP [Ls|Fs−1] = 1 for s = 1, . . . , T}.

Again, for later time, STVaRc,t allows for a similar expression, with expectation now conditional

on Ft, and s starting in t + 1. Notice the crucial difference with just taking TVaRc over the entire

period, which would amount to imposing the inequalities in (4.1) only for s = T . This is the key in

avoiding the problem of extending TVaR to the dynamic case as signalled in Artzner et al. (2007)

It can be derived that STVaR is indeed sequentially consistent. Accumulation of conservatism is

now avoided by construction, as only probability measures are taken into account having derivative

at most c−1, instead of c−T in DTVaR. Notice that the definition does not involve any extra

parameters, unlike the definition in Pflug (2007, Def. 3.29).

In the presentation we will illustrate that STVaRc is really different from DTVaR or variants

of it with time depending levels, by a simple example.

We will also pay attention to computational aspects. STVaR of course can no longer be com-

puted by straightforward backward recursion, but we will describe a more subtle recursive scheme

for STVaR. Based on these results, we will determine an expression of STVaRc as a conditional

expectation EP [X|B] with P (B) = c, which can also serve as a basis for calculating STVaR by

Monte-Carlo simulation.
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