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Chapter 1

Introduction

Dynamics deals with matter in motion or, more generally, with the evolution
of phenomena over time. Virtually everything can be studied from this per-
spective, albeit that for instance the dynamical aspect of a phenomenon at
rest is not quite fascinating. The same is true for the opposite of standstill, in
which the past has no implications for the future. The interesting case is in
between, if there is both change and memory, if history contains information
about a changing future.
Dynamical models describe relations between past and future. They form
the central objects in systems theory, incorporating system identification and
control as main branches, and in time series analysis. System identification
and time series analysis are partly overlapping fields of research, both concer-
ning the construction of dynamical models on the basis of observed behaviour.
Dynamic modelling is also the subject of this monograph.
The literal meaning of identification is to determine the identity of a pheno-
menon, to reconstruct what it is. In system identification this applies to the
situation in which the qualitative aspects of a phenomenon are known, and the
numerical value of some physical parameters is estimated from measurements.
The qualitative aspects determine a model class, in which each model cor-
responds to specific values of the parameters. By analysing the quantitative
aspects of observed behaviour of the phenomenon, the true values are esti-
mated. A typical example is the estimation of the value of electrical elements
in a circuit whose structure is known. As the relation between parameters
and data is often non-linear, even for linear dynamic models, this is in general
a highly non-trivial task, which gives parameter estimation and algorithmic
aspects a well-deserved prominent place in identification.
In many situations however, the objective of identification is better described
as formulating approximate statements on the behaviour of a phenomenon,
rather than as aiming at an exact description of the internal structure. This
involves a shift in three dimensions.

1. exact → approximate

Even if the ultimate goal is exact modelling, this is often far beyond the ability
of the modeller, and then it is preferable to formulate more modest aims that
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are realistic. In particular if there is lack of knowledge on the physical structure
of the phenomenon, or if its structure is too complicated to be exploited by
the modeller, it is in general not possible to discover the truth. For such
relatively abstract objects as economic phenomena, the involved processes are
in general extremely complex, and existing background theory is often not
beyond dispute. Moreover, the limited amount of available data may induce
severe limitations on the achievable model complexity. In such situations one
cannot expect much more from models than to describe approximate features
of the phenomenon of interest.
Approximation is not only due to the limitations of the modeller, an exact
model is in many cases not even desirable as it would be too complex to be
useful. This is most apparent in model reduction, which concerns reduction
of the complexity of a model of which the internal structure might be preci-
sely known but is too involved to be tractable. This amounts to a conscious
exchange of exactness for simplicity. For real phenomena a similar type of
trade-off is often essential.

2. internal → external

Approximate models often do not reflect the internal structure of phenomena.
If the internal mechanism is unknown, complex or abstract, this is often not
feasible, not desirable or not well-defined. Consequently, one has to concen-
trate on the external behaviour of a phenomenon, so this shift is more or less
inherent in approximate modelling. For example, most macro-economic models
consist of approximate statements on economic quantities, without reflecting
the actual structure of the underlying economic reality.

3. closed → open

In general it is impossible or undesirable to isolate a phenomenon completely
from its environment. By definition, the environment falls outside the scope
of the model, but may affect its behaviour. Then it is reasonable to work with
open models, which take into account external effects that are in principle left
unexplained.
To summarize, we view a model as a description of phenomena that is

1. approximate, as it leaves details unexplained;
2. external, as it leaves the internal structure unexplained;
3. open, as it leaves the effect of the environment unexplained.

In this monograph we introduce a novel approach to dynamic modelling that
takes full account of this view on models, both in methodology and in termi-
nology. We consider the proposed method, called Global Total Least Squares
(GTLS), as a straightforward and practical elaboration of these principles in
the context of linear, time-invariant systems. It is a deterministic approach for
modelling on the basis of multivariable time series by approximate dynamic
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relationships. This method is described in detail in the next chapters, and it
is compared with existing methods in identification and time series analysis.
We take account of the approximate character of models by allowing for a gap
between model behaviour and observed time series, also called the misfit of
a model. This is in contrast with the idea that the mere existence of such a
gap is a reason to reject a model. Then one would have to increase the model
complexity until this gap has become invisible, or absorb it in the model by
incorporating stochastic disturbances. In approximate modelling we measure
the misfit of models, and consider it as one of the factors that determine model
quality.
We take account of the external character by defining models in terms of their
external behaviour. For the GTLS method this means that we define models as
the solution set of difference equations, while we view the equations themselves
merely as a tool to describe such sets. In fact we will make use of different
representations of such sets, called isometric state representations, which form
the corner stone of the algorithmic aspects of the GTLS approach.
We take account of the open character of models by allowing for indeterminism,
i.e. some arbitrariness in the behaviour that is left completely unspecified by
the model. So the effect of the environment of a phenomenon is reflected by a
certain degree of freedom, corresponding to that part of the model behaviour
that is not governed by the phenomenon itself but determined by external
effects. In the GTLS method the environment is represented by ’unknown
inputs’, variables whose value is left completely unspecified. This amounts to
partial models with less equations than the number of components in the time
series.
Summarizing, our view on models as approximate, open descriptions of the
external behaviour is reflected in our methodology as follows:

1. approximate ⇒ allow for a misfit of models.
2. external ⇒ define models in terms of their external behaviour.
3. open ⇒ allow for indeterminism.

In our opinion, in time series analysis and identification there is a certain ten-
sion between theory and practice concerning these points, even in the rich
theory on linear, time-invariant (stationary) modelling. Despite the fact that
in many applications these aspects are obviously relevant, and probably re-
cognized by the modeller, they are not fully reflected in the terminology and
methods that are used, both in system identification and econometrics. In the
sequel of this chapter we motivate this further by discussing these aspects at a
general and intuitive level. We first introduce some general notions concerning
our starting point of modelling, and then indicate the distinctive contrasts with
the mainstream approach in time series analysis and system identification.

1.1 Starting Point for Modelling

The starting point for our discussion on modelling is visualized in Fig. 1.1.
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Figure 1.1: Starting point for modelling.
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The concepts occurring in this diagram have the following meaning. A phe-
nomenon is a part of the reality that is more or less conceived as an entity.
One may think of physical phenomena, or more abstract ones as economic
quantities like inflation or interest on loans.

The environment of a phenomenon is defined as that part of reality that may be
of influence on the behaviour of the phenomenon, but falls outside the scope of
the model. By definition this excludes detailed statements on the environment
in models, as this would amount to incorporating it in the model. But it does
not exclude to account for the effect of the environment on a phenomenon, for
instance by considering it as a source of indeterminism.

Measurements are the result of our perception of a phenomenon. They repre-
sent the observed behaviour of a phenomenon, and for simplicity we consider
them as known facts.

The set of conceivable events denotes what theoretically might be thinkable. It
corresponds to the imaginable outcomes of measuring, while the measurements
point out some events that actually have taken place. A measurement has
several conceivable outcomes, otherwise it is a completely trivial one that need
not to be carried out. So it is inherent in measuring to imagine unobserved
events, to think of behaviour that does not take place. As the notion of
conceivable events obviously precedes the measurements, we can conclude that
it must be inherent in our perception of a phenomenon.

For clarity we emphasize at this point that by conceivable events we mean
events that we can in principle imagine to happen, without necessarily consi-
dering them as realistic, as serious candidates for real events at some time or
under certain circumstances. For example, we think of a planet taking some
place at some time, and only then we can ask ourselves what kind of orbit
it actually follows. The set of conceivable events contains in this case for in-
stance a square orbit, while only in a later stage of modelling the phenomenon
of planetary motion, after taking measurements, this may be ruled out as an
unrealistic one that never is to occur anywhere in the universe.
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1.2 External Modelling

We have sketched the following situation in which modelling takes place. We
want to model a phenomenon, a part of reality. Somehow we have become
aware of the phenomenon, and have an idea about its type of behaviour, the
type of events that take place. Further we did observe some of those con-
ceivable events that actually have taken place, represented by the available
measurements. This has been depicted in Fig. 1.1.
Roughly speaking, the task of the modeller is to explain the measurements.
The ultimate answer would be a description of the internal structure of the
phenomenon from which it is completely clear why it behaved like we observed,
and how it will behave under different circumstances. As we have argued in the
introduction, this is often not achievable, and one cannot expect much more
than an approximate description of the external behaviour of the phenomenon.
So from this perspective, models represent theory on conceivable events. An
obvious question is, what kind of statements a model makes about such events.
In some situations it may be the aim of the modeller just to give a clear repre-
sentation of the observed facts, without making any statement on unobserved
behaviour. Think for instance of the design of a town plan. However, often
a model does not only concern the measurements, but also the general fea-
tures of a phenomenon, containing information about what could come, or has
been, or would be under different circumstances or manipulations. Then mo-
dels are not only a simplified representation of reality, they are also intended
to tell us more than we actually observed, to extend our insight in reality. In
our opinion this is a strong driving force behind modelling, to gain knowledge
on the unobserved, the idea that from what we observed we can learn some-
thing more general about the phenomenon. Having registered what actually
happened, the modeller tries to tell something about what will happen, or
could have happened under different circumstances. Therefore we propose the
following viewpoint.

A model indicates to what extent conceivable behaviour is realistic.

Stated otherwise, a model indicates to what extent imaginable events are in
correspondence with how a phenomenon really might behave. Viewing models
as representing theory on the external behaviour of a phenomenon, it is natural
also to concentrate on the external behaviour of models, to judge them by their
implications at the level of concrete events. This is indeed the central idea of
our view on models. We judge models by their logical content, their concrete
implications for reality. This means that we do not take into account how such
implications may be described by underlying mechanisms or reasons. In terms
of figure Fig. 1.1, such notions refer to what is behind the plane of conceivable
events, to the interior of the phenomenon, while in the ’behavioural’ approach
we will not look behind the plane of conceivable events. We will concentrate
on what a phenomenon might do, not on how or why.
Consider for example the modelling of the phenomenon ’earthy gravity’ as ”the
gravitational force is 10 m/s2”. This is not a direct statement about events.



6 CHAPTER 1. INTRODUCTION

Its logical content contains statements as ”objects fall with an acceleration of
10 m/s2 to the earth”. We consider ’force’ as an auxiliary term, an abstract
notion used to formulate statements on events.

Two types of models play an important role in systems theory and time series
analysis, namely deterministic and stochastic models. Deterministic models
are defined in terms of equations and inequalities, in terms of restrictions that
may be fulfilled or not, while stochastic models make less strict distinctions by
using the concept of probability. From the external viewpoint, i.e., abstracting
from model mechanisms, deterministic models correspond to a bipartition of
events into those which are in accordance with the model (the model behavi-
our), and the rest. Similarly, from the external perspective stochastic models
amount to a probability distribution for the phenomenon’s behaviour.
According to the foregoing, we will define deterministic models in terms of
their behaviour. This is the central idea in the so-called behavioural approach
to systems theory, as introduced by Willems in a series of papers [44, 45,
46]. There this idea is worked out consequently, incorporating theory on the
formulation of model quality from this perspective.
The behavioural approach is in contrast with the common use in identification
and time series analysis in which models are defined as processes, input/output
mechanisms, transfer functions, or as sets of equations. Model quality is then
usually defined in terms of model parameters, corresponding to coefficients in
these descriptions. We view such definitions as representations of models, as a
way of describing their external behaviour, as indispensable tools in estimation
procedures, but not as models themselves. Consequently, the quality of models
should be expressed without reference to numerical representations, directly
in terms of their external behaviour.
This is not only a matter of terminology, it is also of practical importance. It
helps to make a clear distinction between parametrization problems, involving
the relation between models and their numerical representation, and real iden-
tification problems, concerning the relation between models and observations.
If identification is viewed as a parameter estimation problem, the uniqueness of
the parametrization is essential, but often hard to achieve, especially in multi-
variable analysis. By concentrating on the behaviour in model estimation, this
non-uniqueness of parameters is less important as the parameters are deprived
of any intrinsic meaning. In fact, it turns out that multivariable models do
not cause substantial additional difficulties in our estimation procedures.

1.3 Approximate Modelling

We have argued that in describing the external behaviour of phenomena it is
natural to define a model as a set of statements on conceivable events. The
model statements can have various interpretations. In their strict interpreta-
tion they are supposed to be in exact correspondence with reality. Then the
behaviour of a deterministic model is claimed to consist precisely of all possible
events, and the distribution of a stochastic model is supposed to describe the
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true likelihood of the occurrence of events. More precisely, this should reflect
the probability of observations as a sample from a population. We will refer to
this as exact modelling. This is relevant for instance in a simulation context,
where the data is generated by known models.
In practice models most often have the less strict interpretation of being ap-
proximative descriptions instead of making statements on the behaviour of a
phenomenon that are exactly in correspondence with reality. Approximate
stochastic models indicate the likelihood of events to some accuracy level,
or express the degree of belief of the modeller which are by definition not
claimed to reflect a real stochastic mechanism. Approximate deterministic
models describe which events play a dominant role, are relatively large or
frequent components in the behaviour of the phenomenon. Another form of
approximate modelling is worst-case identification, where the main purpose is
to describe a set of imaginary events that surely contains all realistic ones,
rather than excluding all unrealistic behaviour.
At this point we like to motivate our choice in this monograph concerning

deterministic ↔ stochastic

modelling. One may state that the stochastic approach is by far the most
popular one in identification and especially in time series analysis. For an
overview on stochastic time series analysis we refer to [7, 17, 24]. Nonetheless,
we will use the deterministic approach, for the following three reasons.
Firstly, the use of stochastics is not compelling in approximate modelling,
even in the presence of random, irregular properties of the phenomenon of in-
terest. Namely, as we allow for a gap between models and reality, we may leave
some details unexplained and concentrate on features of more regular nature.
Further, a part of the irregularities may be assigned to the influence of the
environment. As the environment is left unexplained, this induces some inde-
terminism in the model. For clarity we remark that according to the standard
terminology a model can be both deterministic and indeterministic, as it may
contain degrees of freedom without using a stochastic framework. So our first
argument is that stochastics is not the only way to handle irregularities, dis-
turbances and randomness, as open approximate deterministic models are also
fairly flexible.
Secondly, the use of a stochastic framework is in many cases not very convin-
cing. The gap between reality and our relatively simple models has not always
the stylized nature of a random variable. From a methodological point of
view it is then preferable to exclude uncomprehended aspects from modelling,
instead of incorporating them as a stochastic disturbance.
This brings us to a more pragmatic motive for using the deterministic ap-
proach: approximate stochastic modelling is much more complex. The ques-
tion to what extent a given observation deviates from a certain stochastic
distribution is much more involved than the question to what extent it de-
viates from a certain set of events, because there is a less clear borderline
between stochastic disturbances in the model, and the gap between the phe-
nomenon and the proposed stochastic properties. The main problem is not
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so much that this borderline is soft, i.e., that the disturbances in the model
mix with deviations from the model, but that this borderline has a much more
complex nature than for deterministic models. For example, if we state that a
phenomenon behaves like a Gaussian white noise process, this implicitly pro-
poses a certain distribution for the standard deviation of the fourth moment
of the second order sample autocorrelation, and an observation that is in good
correspondence with most other implications of the model might point out a
serious deviation from this aspect. This also illustrates that the likelihood of
observations is by no means sufficient to formalize to what extent a stochastic
model is approximate, as such a model has many facets that can be tested in
innumerably many ways.

1.4 Open Modelling

As stated before, it is often impossible or undesirable to isolate phenomena
from their environment. This raises the question in how far the environment
should be taken into account in modelling. One possibility is to incorporate
the environment in the model, which means in fact that one changes his mind
and start to model an extended phenomenon, namely the original one plus
its environment. This might work if the scope of the model has been chosen
inappropriately, but more often than not it is not feasible to model the en-
vironment in a satisfactory way. Moreover, the same problem returns, now
concerning the environment of the environment and so on. In order to avoid
ambiguity in terminology we repeat our definition of the environment of a phe-
nomenon as that part of reality that may be of influence on the behaviour of
the phenomenon, but falls outside the scope of the model.

This means that the environment causes indeterminism, as some aspects of
the external behaviour of the phenomenon are not determined by its intrinsic
properties but by external unmodelled effects. As we argued before, it is then
natural to allow for indeterminism in the model as well, by incorporating some
degrees of freedom in the model behaviour. A straightforward way to formalize
this is to represent the effect of the environment as unspecified inputs, which
are not part of the data (as exogenous variables), but have to be constructed
during the identification process. The value of these inputs is left completely
free by the model, without a preference for small values over large ones. This
corresponds to partial models, in which some aspects of the phenomenon’s
behaviour are assigned to unmodelled external effects.

This deviates from the common deterministic approaches in which the envi-
ronment often consists of known inputs, i.e., variables whose value is known
to the modeller and forms part of the measurements in the modelling process.
This refers to situations in which the modeller has a precise idea about which
variables influence the phenomenon of interest, and moreover the known inputs
often represent control variables that can be manipulated. In fact this means
that the inputs fall within the scope of the model, so the phenomenon may be
considered as an isolated input/output system.
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We remark that our approach also results in models that can be given the
interpretation of input/output systems, but in a different way. The inputs
represent the effect of the environment and hence they are not part of the
data. As such they do not correspond to the usual notion of inputs, and in
fact they are better called auxiliary inputs, which reflects the fact that it is
just an auxiliary term, a way of talking about indeterminism in models. The
comparison between our approach and input/output modelling is in fact even
more subtle, but this will be discussed later on. We will also show how to
modify the GTLS approach for modelling on the basis of input/output data
without allowing for approximation errors for the input variables.

In stochastic modelling the environment is often represented by certain exoge-
nous variables or by random variables with a specific distribution, most often
white noise. The first corresponds to ’known inputs’, which is comparable to
the input/output setting as described above. The latter is a more loose way of
modelling the environment, but nevertheless much stronger than considering
completely unspecified inputs. Modelling the environment as a specific random
variable in general induces a preference for small effects, and in many cases
models are even estimated on the basis of minimizing the size of the shocks
from the environment. However, incorporating pure indeterminism causes pro-
blems in the stochastic approach, as free variables with completely unspecified
value do not fall within the definition of a random variable.

Summarizing, we account for the effect of the environment by indeterminism in
the model behaviour, which is in contrast with most approaches in which one
presumes certain stochastic properties of the environment and/or represent it
by known inputs.

1.5 Overview

This monograph may be divided in three parts. In the first part we describe
what the GTLS method is, and why we consider it as a useful addition to time
series analysis. In the second part we describe how to construct GTLS models
from a given time series. The last part consist of applications and extensions.
An overview is given in the following scheme.

We have chosen for a somewhat abstract description of the GTLS method
in which we concentrate on the essential features, without any reference to
model representation or parametrization issues. The static case serves as a
simple illustration of the method at the same abstract level. In order to make
things more concrete, we give alternative formulations in terms of difference
equations and input/output systems. The method is put in contrast with other
least squares methods, which further explains the term global and total in the
name GTLS.

The part on the solution method is of a somewhat technical nature. The basic
ingredients are state space representations, Riccati equations, the singular va-
lue decomposition and iterative Gauss-Newton algorithms. Although we have
tried to make this part self-contained, some familiarity with these issues may
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Table 1.1: Overview of monograph.

What & Why? Chapter 2
What is GTLS? Section 2.1
Why GTLS? Section 2.2
Further explanation of GTLS
- the static case Section 2.3
- description by difference equations Section 2.4.2
- description by input/output systems Section 2.4.3,4
- comparison with other least squares methods Section 2.5

How? Chapter 3 – 5
Tool: the Isometric State Representation Chapter 3
Evaluation of GTLS criterion Chapter 4
Construction of GTLS models Chapter 5

Applications and Extensions Chapter 6
in econometrics Section 6.1 – 6.3
in systems theory Section 6.4 – 6.5

be helpful. The method is illustrated by a simple leading example. Appendix
B contains an implementation of the algorithms in Matlab.
The applications in the last chapter concern time series on economic quanti-
ties (interest rates in the United States and seasonal consumption and income
in the German Federal Republic), a simulation experiment with multiple out-
puts (also called a simultaneous equation model), results on optimal model
reduction, and the construction of models on the basis of input/output data.
A brief explanation of some basic notions and the explanation of the used
notation are listed in the back.

The main part of this monograph has been published in [33, 36, 34, 32]. The
first paper concerns a heuristic method for the construction of models from
data that is used in Section 5.6 to determine initial models for the iterative
algorithms. In [34] the GTLS problem is analysed for infinite square summable
time series, while in [32] we concentrate on finite data. In [36] we give a
description of the GTLS problem in terms of difference equations. We remark
that [12] contains an analysis of the GTLS problem for single-input single
output systems in terms of Hankel matrices.
The applications on economic data and the various extensions of the GTLS
method described in Chapter 6 have not been published elsewhere.



Chapter 2

Global Total Least Squares

Global Total Least Squares (GTLS) is a method for modelling a dynamical
phenomenon on the basis of time series reflecting several quantitative aspects
of the phenomenon. The goal is to determine the main characteristics of the
joint evolution of these aspects. We take a deterministic approach and restrict
ourselves to linear, time-invariant models. So we aim at an approximate des-
cription of the behaviour of the phenomenon in terms of linear relations that
do not vary over time.

One of the main themes of this monograph is to give an interpretation of
the complete modelling process at the level of external behaviour, without
reference to internal model mechanisms. This is based on the consideration
that models often do not reflect the internal structure of the phenomenon, but
only concern their external behaviour. Then it is natural to concentrate on the
external behaviour of models as well. In this chapter we describe the GTLS
method according to this view point. Models are defined in terms of their
behaviour, namely as sets of time series, and model criteria are formulated
in geometrical terms, namely the dimension of models and their distance to
data. This results in a purely set-theoretic description of the GTLS method,
to determine models with minimal distance to the data under size constraints.

This description of GTLS is simple in the sense that it only involves basic
mathematical notions as set, dimension and distance. Moreover, in this way
we restrict ourselves entirely to the relation between models and data, without
having to pay attention to technical topics as the relation between models and
parameters in numerical representations, as we need not make any reference
to representations at all.

On the other hand we feel that such a description might be considered as so-
mewhat unusual or perhaps as too abstract. Therefore, as an illustration we
discuss the special case of static modelling which will evoke a clear geometrical
picture of what GTLS is about. Further we give alternative, more concrete for-
mulations in terms of difference equations and transfer functions. The method
is compared with others in order to illustrate some distinctive aspects. We
remark that the next chapters, concerning the construction of GTLS models,
are quite concrete in terms of numerical representations of systems.

We conclude this chapter by giving a motivation of the specific choices under-
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lying the method, and indicate some limitations.
We remark that we treat several extensions of the standard GTLS problem in
Chapter 6. This concerns e.g. the scaling of variables, and periodic models.

2.1 Behavioural Description

2.1.1 Starting Point

The starting point for GTLS modelling is visualized in Fig. 2.1.

Figure 2.1: Starting point for GTLS.
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The aim is to determine the realistic content of conceivable behaviour (repre-
sented by the set of time series over Z) from knowledge on what actually has
taken place (represented by an observed time series). In the picture the data
consists of two components (q = 2) over five time instants (N = 5).

Compared to the general starting point as depicted in Fig. 1.1, we now assume
that the phenomenon is of such a type that its behaviour can be represented
by a multivariable time series. This means that it should consist of several
quantitative aspects whose value can be measured at regularly spaced time
instants. Alternatively, it may concern several separate phenomena. This is
merely a matter of terminology, and we will view the object of modelling as
one phenomenon with several aspects. According to the terminology used in
the introduction, we say that the conceivable behaviour of the phenomenon
consists of time series with a certain number of components.
Further we assume that measurements are available consisting of a multiva-
riable time series, representing behaviour that actually has taken place. The
time interval corresponding to the measurements is called the observation in-
terval, which we assume to be finite, and we suppose that there are no missing
data points.
Conceivable events are defined as time series over the infinite time axis Z,
the set of all integers {. . . ,−1, 0, 1, . . .}, irrespective of the actual observation
interval, for the following reasons. Models often do not only concern the ob-
servation interval, but represent more general statements concerning also the
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future evolution of phenomena, or their unobserved past. Then it is appro-
priate to define conceivable behaviour according to such a purpose. As this
may depend on the application, we choose a time axis that contains all finite
intervals. Afterwards one can restrict the attention to those model statements
concerning relevant time instants, and ignore the rest. Further, we will consi-
der time-invariant models, which almost automatically apply to the whole time
axis Z. Another reason for taking the infinite time axis Z is that it streamlines
the representation of models in our approach.
The starting point as sketched above can be summarized in mathematical
notation as follows. Let q denote the number of aspects, or equivalently, the
number of components of the time series, and let N be the length of the
observation interval, defined as the number of time instants. For simplicity we
start numbering the time instants at t = 1, so we consider observation intervals
{1, . . . , N}, or [1, N ] for short.

measurements:
time series with q components w : T → Rq on the observation
interval T = [1, N ] ⊂ Z or, equivalently, matrices w ∈ Rq×N .
conceivable events:
the set of all infinite time series with q components {w′ : Z → Rq},
or equivalently, the set (Rq)Z.

Example. We consider measurements consisting of the (multivariable) time
series

{w(1), . . . , w(5)} =

[
3 0 2 1 4
1 1 0 0 1

]
,

cf. Fig. 2.1. So q = 2, N = 5, and the observation interval T equals
{1, 2, 3, 4, 5}. The time series w is identified with a (2×5)-matrix in which the
i-th column represents a ’fact’ (concerning two aspects of a phenomenon, or
concerning two phenomena) at time i. The set of conceivable events consists of
all time series on Z with two components, representing arbitrary (imaginary)
behaviour of the two aspects at every time, including non-observed past and
future. 3

We consider the measurements as observed facts about the phenomenon. The
conceivable events represent which behaviour is theoretically imaginable, they
indicate the type of behaviour. According to our discussion in the introduc-
tion, we view modelling as making statements about the realistic content of
conceivable behaviour. So on the basis of our knowledge of what actually has
taken place, we try to determine to what extent time series over Z are in corre-
spondence with how the phenomenon really might behave, e.g. in the future,
in the past, or under different circumstances.

2.1.2 Model Class

In the GTLS method we use deterministic models, representing restrictions on
time series that may be satisfied or not. We define models in terms of their
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external behaviour, the set of time series that are in accordance with the model
restrictions.

Definition 2.1.1 (Models) Models are subsets of time series, that is, with
behaviour B ⊂ (Rq)Z.

The symbol B stands for behaviour, and in our approach we identify models
with their behaviour.
We will not consider all types of models, but make a rigorous choice for some
structural properties. The first condition is that models should reflect time-
invariant relationships, i.e., properties of the phenomenon that do not depend
on time. This is expressed at the level of behaviours by the condition of shift-
invariance. Let σ denote the shift operator, defined by (σf)(t) = f(t+1). For
sets of time series it is defined as the shift of all elements.

Definition 2.1.2 (Shift-Invariance) A model B ∈ (Rq)Z is called shift-
invariant if σB = B.

This means that if a time series belongs to a model, all its forward and bac-
kward shifts should also be contained in it.
Secondly, we will restrict our attention to linear models, i.e. models that are
linear spaces. Let λŵ denote scalar multiplication of all components of the
time series ŵ by λ ∈ R, and let λB denote the set {λŵ; ŵ ∈ B}.

Definition 2.1.3 (Linearity) A model B ∈ (Rq)Z is called linear if λB +
µB = B for all λ, µ ∈ R.

These two conditions characterize the model class in the GTLS method. So
we define

Definition 2.1.4 (Model Class) In GTLS the model class consists of linear,
shift-invariant subspaces of time series over Z with q components. It is denoted
as Bq, or if we leave q unspecified, by B.

Such models reflect linear relationships that are independent of the time in-
stant. As they are closely related to dynamical systems, we will also refer to
them as systems if we discuss their properties rather than their relation to
data.
Example. As an illustration, we consider the system

B = {ŵ : Z → R2; ŵ2(t) = αŵ2(t− 1) + βŵ1(t)}, (2.1)

where α, β denote fixed real numbers. This system consists of a linear, shift-
invariant set of time series with two components, so it belongs to B2. Clearly
every (set of) difference equation(s) define(s) a linear, shift-invariant system.
Conversely, under a mild extra condition all linear, shift-invariant systems
admit a description in terms of linear difference equations with constant coef-
ficients, which is discussed in Section 2.4. 3
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We remark that this model class does not form the main innovative aspect
of the GTLS approach. Although its definition without reference to model
parameters might be somewhat unusual, it is determined by the quite conven-
tional structural properties of linearity and time-invariance. The distinctive
feature of GTLS concerns the way in which the accuracy of these models are
measured, as described in the next section.

2.1.3 Model Criteria

We have defined models as subsets of time series that are linear and shift-
invariant. The central question is now which of them are good models for an
observed time series. Stated in our terminology, which subsets of time series
form a good description of the phenomenons behaviour? In this section we
indicate the two criteria on which the GTLS approach is based.
Firstly, a model should be in correspondence with the data. In exact modelling
this would mean that the model should contain the observation in its beha-
viour, or more precisely, in the restriction of its behaviour to the observation
interval. In mathematical notation, exact modelling requires w ∈ BT , with w
denoting the observation and BT the restriction of B to the observation interval
T .
As motivated in the introduction, it is often not realistic to stick to this severe
requirement, and it is then more appropriate to impose it only in an approxi-
mate sense. This means that a model should be accurate, i.e., that it should
contain a time series that is close to the data. So the first criterion in our
approach is

accuracy: a model should have a low misfit

The formalization of this requires a kind of distance measure between data
(one time series) and a model (a set of time series). We consider the Euclidean
distance between the data and the closest element in the model behaviour. In
principle the Euclidean norm is only defined for vectors, but by identifying a
matrix w̃ ∈ Rq×N with a point in RqN we can extend its definition to matrices
in the obvious way. So we define for w̃ ∈ Rq×N ,

‖w̃‖2 := Σt∈T Σq
i=1w̃i(t)

2 (2.2)

where w̃i denotes the i-th component of w̃, which means that we take into
account the ’sum of squares’, both over the time instants and the components.
This is also called the Frobenius norm of the matrix w̃ ∈ Rq×N . For the Eucli-
dian norm of a vector a we use the notation |a|, so that ‖w̃‖2 = Σt∈T |w̃(t)|2.
The misfit of a model is defined as follows.

Definition 2.1.5 (Misfit) The misfit of a model B ∈ Bq with respect to a
time series w : T → Rq is defined as

d(w,B) := min
ŵ ∈ BT

‖w − ŵ‖. (2.3)
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This will also be called the ’total least squares’ criterion, where the term
total refers to the fact that we allow for deviations in all components. The
squared misfit is comparable to the so-called ’sum of squares residuals (RSS)’
in (orthogonal) regression models, but the definition of what residuals are in
GTLS is quite different from other methods, as explained in Section 2.5.

The second criterion underlying the GTLS approach is that a model should
be powerful, i.e., it should exclude many conceivable events as unrealistic or
hardly present in reality. This is an obvious criterion: the smaller a behaviour,
the stronger the statements it represents on the behaviour of a phenomenon.
In the context of deterministic behavioural modelling this means a preference
for small models. So we also aim at

power: a model should be small.

As the models we consider are defined as linear subspaces of time series, an
obvious way to formalize this is in terms of their dimension. The most straight-
forward way to do this would be to define the size of models simply as their
dimension as a subspace of (Rq)Z. However, this is infinite in general as Z is
infinite. Therefore we consider their dimension on finite time intervals. As
models are time-invariant, this only depends on the length of the interval. In
our definition of the size of a model we also exploit the fact that the increase
of the dimension of B[1,t] with the length of the interval is constant (except for
small t).

Definition 2.1.6 (Size, Rank, Degree) The size of a system B ∈ B is de-
fined as the pair of integers (m,n) such that dim(B[1,t]) = mt + n for t ≥ n.
Then m is called the rank of the system, and n its degree. Sizes are partially
ordered by (m′, n′) ≤ (m,n) if m′ ≤ m and n′ ≤ n.

Proof of correctness. For a proof of the existence and unicity of (m,n) we refer
to Appendix A.2.

The rank of a system denotes its degree of freedom at each time instant. This
reflects indeterminism in the model that can be considered as due to external
effects that continuously affect the phenomenon. The degree of a system cor-
responds to the freedom due to initial conditions that are left unspecified by
the model. Namely, the dimension of B[1,t] is n larger than the dimension on
the same interval if the past would have been specified. We will give a further
interpretation in terms of representations of models in Section 2.4.

Example. Again we consider the system (2.1),

B = {ŵ : Z → R2; ŵ2(t) = αŵ2(t− 1) + βŵ1(t)}.

In addition we suppose that α and β are not both zero. Then this restriction is
not effective on intervals of length 1, so B[1,1] is the set of all data points in R2,
which has dimension 2. The set B[1,2] is a three-dimensional space, as ŵ1(1),
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ŵ2(1) and ŵ1(2) can be chosen arbitrary, and determine the value of ŵ2(2).
Similarly, the dimension of dimB[1,t] equals 1 + t, from which it easily follows
that rank(B) = 1. This corresponds to the fact that at each time instant one
variable can be chosen arbitrarily. In addition, one initial condition can be
chosen, which corresponds to the fact that degree(B) = 1. For α = 0 and
β = 0 the degree is zero. Later on we will see that, roughly speaking, the rank
corresponds to the number of components minus the number of equations, and
the degree to the sum of the lags of the equations. 3

2.1.4 Global Total Least Squares

Two criteria for model quality have been formulated, accuracy and power,
which are formalized in the definition of respectively the misfit and size of
models, see Definitions 2.1.5 and 2.1.6. We want to keep both small, but they
are competing objectives and somehow we have to make a trade-off between
them. As an illustration of this, we consider the following two extreme cases.

extremely small: extremely large:
rank(B) = 0, degree(B) = 0 rank(B) = q, (then degree(B) = 0)

In the first case B consists only of the zero time series, so it has misfit d(w,B) =
‖w‖ with respect to every observation w. This corresponds to a trivial isolated
(autonomous) system that declares all events as unexplained details. In the
second case, all time series on the observation interval are compatible with the
system, in particular the observation itself, so d(w,B) = 0. This corresponds to
an overly open system that declares everything as due to external unmodelled
effects.
This shows that the optimization of both criteria separately leads to trivial
models that do not assign any aspect of the data to intrinsic properties of the
phenomenon. The interesting cases are somewhere in between both extremes.
We take a simple approach to the involved trade-off by considering minimizing
the misfit of a model for a specified constraint on its size.

A GTLS model is a linear, shift-invariant space of time series of
restricted dimension that has minimal total least squares distance
to a given multivariable time series.

A more formal description is as follows. Let Bq,m,n denote the systems in Bq

with size at most (m,n), i.e., linear, shift-invariant systems with rank at most
m and degree at most n.

Definition 2.1.7 (The Global Total Least Squares Problem)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (m,n),
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determine:

• a system B∗ ∈ Bq,m,n with minimal misfit d(w,B).

B∗ is called a GTLS model for w of size (m,n).

The name Global Total Least Squares is based on the used misfit criterion of
Definition 2.1.5. So ’least squares’ refers to summation of squares of deviations
at each time, ’total’ to the fact that we allow for deviations in all components.
The term ’global’ is used to reflect the fact that we approximate the data by
a time series that belongs as a whole to a linear, shift-invariant model. This
is put in contrast with other methods in Section 2.5.

The GTLS problem involves a double minimization. The inner minimization,
the evaluation of the misfit d(w,B), amounts to optimization over a linear
space. Secondly, we have to determine a system for which this misfit is as
small as possible. This is the hard part in the GTLS approach, as it consists
of a non-quadratic optimization problem over a non-convex set.
For further explanation we give an alternative formulation in which both mini-
mizations are combined into one. Let Bq,m,n denote all time series that belong
to a system in Bq,m,n, i.e.,

Bq,m,n := {ŵ : Z → Rq; there exists a B ∈ Bq,m,n such that ŵ ∈ B}. (2.4)

Elements in this set are called regular, provided that m < q, as they satisfy
linear, time-invariant relations. The GTLS problem can be interpreted as an
optimal approximation of the data by regular time series, as follows.

Definition 2.1.8 (GTLS as Decomposition)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (m,n),

determine:

• a decomposition w = ŵ∗ + w̃∗ with ŵ∗ ∈ Bq,m,n
T and ‖w̃∗‖ minimal.

2.2 Motivation

In the introduction we have argued that it is often realistic to view models
as approximate descriptions of the external behaviour of a phenomenon that
moreover should have an open character as the effect of the environment should
be taken into account. This viewpoint is the main theme of the introduction,
where it is discussed at a general level. The GTLS approach fits perfectly in
this perspective.
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1. GTLS models are approximate, as a misfit between models and data is
allowed, and hence they leave details unexplained (corresponding to w̃∗

in Definition 2.1.8).

2. GTLS models are externally defined in terms of their behaviour, so they
leave the internal structure of phenomena unexplained.

3. GTLS models are open, as they contain a degree of freedom at each time
instant, denoted by their rank. So they leave a part of the behaviour
unexplained that may be considered as due to external effects.

The GTLS method means a choice for a deterministic approach, as opposed
to using stochastic models. This has been motivated in Section 1.3 and 1.4,
by pointing at the fact that the formalization of our modelling principles is
relatively straightforward in a deterministic setting.
In the description of the GTLS method we took our starting point in the
definition of models as subsets of time series, cf. Definition 2.1.1. This can be
considered as a consequence of defining deterministic models in terms of their
external behaviour, in the context of time series analysis. Once this definition
has been adopted, it is natural to define the other modelling concepts in the
same spirit. This forms the main motivation for the way in which the GTLS
approach is described.
The preceding considerations give a general motivation for the GTLS method
and the used terminology. In the sequel we discuss additional choices behind
the approach, concerning the model class and the used criteria for model qua-
lity.

2.2.1 Motivation of Model Class

The model class in GTLS is characterized by two properties, linearity and
time-invariance. These are quite conventional assumptions in identification for
which there has already been developed a rich theory, but nevertheless even in
this classical context our modelling principles lead to a different method. The
GTLS method may serve as an illustration of these principles in a well-known
context. Notice however that it concerns multivariable analysis, for which the
theory is less extensive. Moreover, in Chapter 6 we treat various extensions in
which these assumptions are weakened, e.g. by replacing time-invariance by
periodicity. We further remark that the algorithm for determining an optimal
approximation, within a given system, of the data, applies to linear time-
varying models as well.
A more intrinsic argument to impose linearity and time-invariance is that
many phenomena expose a corresponding type of behaviour, albeit often only
approximately. This is reflected by the fact that many physical laws express
linear, time-invariant relations, and also in economic theory they play an im-
portant role, as in the simple law that in equilibrium supply equals demand.
Moreover, non-linear systems can be approximated by linearizations around a
certain working point, and the variation of properties of phenomena over time
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may be slow, so that they are approximately constant on short intervals. In
these situations several linear, time-invariant models could be estimated from
parts of the data.
We hasten to admit that in many situations the reason to impose these proper-
ties is of much more pragmatic nature. Generally speaking, in identification
the model class cannot be based only on knowledge about the type of pheno-
menon that is modelled, but one also has to take into account practical limi-
tations. Firstly, the construction of models should be feasible. In particular
this requires numerical representation of models, and for linear, time-invariant
systems this is well-developed. In the estimation of GTLS models from data
we will make use of theory on model representation, more specifically of state
representations, albeit that we develop a new variant. Secondly, the resulting
models should be transparent enough to give insight in the phenomenon’s be-
haviour. The restriction to linear time-invariant systems guarantees that once
a GTLS model has been constructed, there is an extensive theory available for
analysing its properties.
We want to remark, however, that adopting linearity and time-invariance can-
not always be assigned exclusively to pragmatism. Simplification is not only
due to practical limitations, it can also be viewed as inherent in modelling.
Only if the object of modelling is of such a simple nature that we can overlook
it completely, ’true’ models come into the picture, as in simulation studies with
a relatively simple data generating process.
Therefore we adopt the viewpoint that in principle the model class may be
chosen as one likes, and we then judge it afterwards on the basis of the results.
This is perhaps an overly defensive standpoint, but in our opinion it is in
accordance with a significant part of the modelling practice.
The question may arise how far the restriction to linear, time-invariant models
limits the scope of the GTLS approach. This question is hard to answer in
general, but we want to emphasize that the answer is not that it only applies
to phenomena that exposes ’linear’, ’time-invariant’ or ’stationary’ behaviour
(here we use these terms in an informal way). Notice that GTLS models
contain indeterminism at each time instant, which is reflected by their rank.
In this way we can incorporate ’non-stationary’ behaviour in models, which is
then viewed as due to varying conditions in the environment and hence left
unexplained. Further, if non-linearities have a relatively small effect on the
external behaviour, in approximate modelling they may be declared to be the
unexplained details that form the gap between models and data.

Remark on linearity and time-invariance.
We also want to point at a general methodological consideration concerning the
choice of a model class, concerning the coherence of model restrictions. We discuss
this topic in an informal way, as in fact it goes somewhat beyond the scope of this
monograph.
By definition a GTLS model represents linear, time-invariant relations, each of which
has concrete implications at each time instant (due to shift-invariance) and for each
quantity (due to linearity). For example, consider the relation y(t) = u(t− 1). This
induces an infinite number of concrete restrictions, among which ’if u(1) = 3 then
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y(2) = 3’, ’if y(2) = 3.27 then u(1) = 3.27’ and ’if u(2) = 3 then y(3) = 3’. We view
this as a coherent set of restrictions, emanating from one and the same relatively
abstract model law denoted as ’y(t) = u(t − 1)’. In our discussion below we also
make this distinction between concrete restrictions involving the occurrence of one
event and more abstract relations reflecting a general property.
The coherence of concrete restrictions is a quite essential feature of models. Namely,
this makes it possible that, at least in principle, one relation can be confirmed by
the data several times, as it induces several concrete restrictions. Then, depending
on the strength of the relation, on the accuracy of confirmation of its concrete
implications by the data, and on how often they are confirmed, this gives us (some)
confidence in adopting the relation as a general property of the phenomenon. This
means that we also accept its implications that have not been confirmed by the
data, e.g. involving the future (prediction) or different circumstances (simulation).
Clearly every statement involving hypothetical, unobserved behaviour can only be
motivated by the data indirectly, namely by the confirmation of coherent restrictions
concerning the data.
Imposing linearity and time invariance is one way to guarantee such coherence,
and of course both can be modified in many ways. One could replace linearity by
more sophisticated functional forms, or time-invariance by the weaker requirement
that regularities may change in a certain time-invariant way. Our main point is
that in time series analysis these conditions cannot simply be dropped but have to
be replaced by other structural requirements that somehow guarantee coherence of
concrete restrictions implied by models, both in time and quantity.
In order to illustrate this we consider the consequences of simply releasing either
time-invariance or linearity. If we drop time-invariance, we may freely impose com-
pletely different linear restrictions at each time. For instance, this does not exclude
the model

B = {λ(w− ∧ w ∧ w+); λ ∈ R} (2.5)

with w− and w+ fixed arbitrary backward- and forward extensions of the data, and ∧
denoting concatenation. Notice that this model is linear, exact, as it has zero misfit,
and extremely small, as it consists of a one dimensional space. So with respect to
the criteria of accuracy and size it is an excellent model, but clearly it makes no
sense. The concrete restrictions concerning the observation interval are only trivially
supported by the data, the others even not at all, and due to the complete lack of
coherence in time they do not reflect a general property that in principle could be
confirmed repeatedly by the data.
Similarly, if we drop the condition of linearity, we may freely impose completely
different time-invariant relations for different quantities. So we may consider all
functional forms that are independent of time, and without imposing additional
model structure this also leads to nonsense models. For example, for data w : T → Rq

we may come up with the model

B = {ŵ : Z → Rq; ŵ(t) = f(ŵ(t− 1))} (2.6)

with f a time-invariant function on Rq that satisfies f(w(t − 1)) = w(t) (if there
are data points w(t1) and w(t2) that coincide exactly, then f is not a function but
a relation). This model is time-invariant, exact and extremely small, but in general
the restrictions for different quantities are poorly motivated, and again we would not
have much confidence in its predictions or any statement concerning hypothetical
situations.
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So we may summarize that in time series modelling one always has to guarantee
coherence of model restrictions, both in time and quantity, and imposing linearity
and time-invariance is a rigorous way to do so. 3

2.2.2 Motivation of Model Criteria

The model criteria underlying the GTLS method, accuracy and power, are of
quite general nature. Clearly both are desirable properties of models which
do not need further motivation. Here we motivate how they are formalized in
the GTLS approach, and make some remarks on whether they are sufficient
to characterize model quality.
The criterion of accuracy has been formalized in the definition of misfit, cf.
Definition 2.1.5, which in fact expresses the absence of accuracy. In this de-
finition we take into account the distance between the data and the closest
element in the model. This is an obvious idea, while the choice for measuring
the distance by the Euclidean- or total least squares norm is mainly a matter
of convenience. Least squares estimation plays a dominant role both in time
series analysis and system identification, not in the last place because it has
some convenient mathematical properties that play a role in the estimation of
models. It also concerns stochastic modelling, as it is equivalent with maxi-
mum likelihood estimation for normally distributed data generating processes.
The idea is that a deviation of 2 is considered as 4 times as worse as a unit de-
viation. Of course this involves some arbitrariness, and a disadvantage is that
exceptional high deviations are given a huge weight, which is not always de-
sired. On the other hand, some choice has to be made, and ’least squares’ has
proven its value in practice as a reasonable option. Moreover, it has convenient
mathematical properties that play a role in the estimation of models.
To allow for deviations in all components is somewhat less conventional. In
most approaches one makes a prior distinction into input- and output compo-
nents, or into exogenous and endogenous variables and does not approximate
the first group. In our approach the choice for a total least squares criterion
is natural, as we do not make such a distinction but treat all variables on the
same footing. As compared with the use of exogenous variables, we represent
the environment by ’unknown’ exogenous variables, as discussed in Section 1.4.
Another aspect of the definition of misfit is its global character. As already
mentioned, this refers to the fact that the data is approximated by a time series
that belongs as a whole to a linear, time-invariant system. This is an obvious
choice in our exposition, as a local version would amount to approximating
the data part by part, which seems artificial. Nevertheless, the majority of the
identification methods is of this nature. Namely, models are often defined in
terms of difference equations, and deviations are then defined as an equation
error, in terms of the local implications of these equations. In particular, many
methods are based on minimizing the first step ahead prediction error of the
equations. We further discuss this issue in Section 2.5, where we compare
GTLS with several local methods.
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Concerning the definition of size, once models have been defined as linear
subspaces it is an obvious choice to consider their dimension. The rank and
degree as defined in Definition 2.1.6 determine this dimension completely on
intervals with length at least equal to the degree. In practice the tolerated
degree is often chosen much smaller than the observation interval, so that the
precise dimension on shorter intervals may be considered as a detail. A more
pragmatic argument not to consider the dimension on shorter intervals is that
we cannot handle such a refinement in our procedures.
Summarizing, accuracy and power are convincing model criteria, and their
formalization in terms of misfit and size is straightforward.

The question may arise whether these criteria are sufficient to characterize good
models. First we want to emphasize that in a general context the answer is no.
If we simply drop the condition of linearity or time-invariance, these criteria
certainly do not exclude completely trivial models, as has been discussed in
Section 2.2.1. So in the following discussion the restriction to linear, time-
invariant models is essential. Further, the quality of models may depend on
specific requirements dictated by the type of application, which of course we
cannot take into account at this general level.
In the GTLS approach the above question amounts to whether a linear, shift-
invariant model with low misfit and small size is a good model. Generally
speaking, we may say that such a model indeed has its value, in the following
respect. If the size of a system is small, this means that the time series be-
longing to it satisfy non-trivial linear relations at each time-instant exactly.
The lower the rank and degree of a system, the lower its dimension, so the
stronger the statements for its behaviour. Now if the misfit is also small, these
model statements apply to the data as well, modulo some small unexplained
details. So a GTLS model with small size and low misfit with respect to the
data represents non-trivial general properties of the behaviour of the underly-
ing phenomenon that are repetitively confirmed by the data up to some small
deviations. In many situations this is considered as a good characterization of
model quality.

2.2.3 Model Objectives

The last aspect of the GTLS approach we want to discuss is the way in which
the two criteria of accuracy and power are worked into one final objective. We
consider the minimization of the misfit of models with respect to data under a
constraint on their size, cf. Definition 2.1.7. Solving this problem for different
restrictions on the rank and degree gives an impression of the involved trade-off
between the tolerated size and the resulting approximation error. The search
for a reasonable size constraint is facilitated by the fact that the error decreases
for increasing tolerated rank or degree. Moreover, by definition the rank of a
system with q components is between zero and q, and as the data is finite, only
a finite number of degrees is relevant. So in principle all combinations can be
tried out, while in practice it often suffices to consider only a few of them.
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We could also have considered the converse approach, namely minimizing the
size under a misfit constraint. This is a valid approach as well, and the ad-
vantage is that then the bound consists of one number instead of two. A less
attractive aspect is that then this bound is a real number, so that in principle
there are infinitely many relevant bounds.
Notice that by considering the minimization of the misfit for all relevant size
constraints we would also obtain the complete answer to this reverse optimi-
zation problem. So from a logical point of view both approaches are in fact
equivalent.
A more general approach to make a trade-off between accuracy and power
would be to develop a criterion function that relates to the size and misfit of a
model a certain value of model quality, based on more inherent considerations.
Examples of such types of trade-offs are Akaike’s and Bayes information crite-
ria, and Rissanen’s minimum description length principle. We do not address
these approaches, as the need for an automatic trade-off of accuracy and power
in the context of modelling on the basis of one time-series is not that strong,
and instead it is often preferable to consider several possibilities, corresponding
to different tolerated sizes.
Concerning the ordering on sizes as defined in Definition 2.1.6, this is an ob-
vious choice as far as it compares models. We use a partial ordering in which
we do not compare models if one model has a higher degree but lower rank
than the other. The reason for this is that on short intervals one model may
have a higher dimension than the other, while on long intervals its dimension is
lower, so that an ordering will depend on a preference for intervals of a certain
length. Alternatively, we could consider the lexicographic ordering, in which a
model is called smaller than another one if either its rank is smaller or if the
ranks are equal but its degree is smaller. A motivation for this would be that
this is a full ordering, and that ’smaller’ then coincides with ’having smaller
dimension on long intervals’. A disadvantage is that this inevitably leads to
autonomous models, i.e., with zero rank, as it is always preferable to choose a
high degree of models to taking the rank equal to one.

The motivation of the GTLS approach is summarized in Table 2.1.

2.3 Static Total Least Squares

As an illustration of the GTLS method we first consider the static case, i.e., we
consider the approximate modelling of an observed multivariable time series
by means of linear time-invariant non-dynamic relations. In fact, this amounts
to a well-known method.

’GTLS for tolerated degree zero’ coincides with the method called
(static) ’total least squares’ or ’orthogonal regression’.

We briefly discuss the model class and model criteria for this situation, and
describe how the corresponding estimation problem is solved.
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Table 2.1: Motivation of GTLS as straightforward formalization of modelling
principles.

principle GTLS
View on Models: approximate allow for misfit

choice for deterministic models
external models as subsets of time series
open indeterminism at each time instant

Model Class: pragmatism, linearity and shift-invariance
(coherence)

Model Criteria: accuracy small total least squares
distance to the data

power small dimension

Model Objective: trade-off minimize misfit under constraint
on size

According to Definition 2.1.4, the model class consists of subspaces of time
series that are linear and shift-invariant. In addition we now impose that
models are static, which can be formalized at the level of their behaviour by
the condition

{w(t) ∈ B[t,t] for all t ∈ Z} ⇒ {w ∈ B}. (2.7)

This means that all model restrictions can be evaluated pointwise, i.e., sepa-
rately for each time instant. This is in contrast with dynamic models that
relate behaviour at different time instants, so that the past behaviour has
implications for the future.
So a linear, shift-invariant static model takes the form

B = {w : Z → Rq; w(t) ∈M for all t ∈ Z}, (2.8)

with M a linear subspace of Rq. It is easily verified that the misfit of such a
model can be evaluated pointwise, and that the misfit at each time instant t is
given by the orthogonal distance between data point w(t) and M. Concerning
the size of static models, notice that dim(B[1,t]) = mt with m the dimension of
M, so its rank equals m and it has zero degree.
We say that ŵ ∈ Rq×N has rank m if it belongs to a static system of rank
m and not to one of lower rank. This corresponds to the common definition
of the rank of a matrix. Now the static total least squares problem can be
formulated as follows.

Definition 2.3.1 (Static Total Least Squares)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated rank m,



26 CHAPTER 2. GLOBAL TOTAL LEAST SQUARES

determine

• a decomposition w = ŵ∗ + w̃∗ with rank(ŵ∗) ≤ m and ‖w̃∗‖ minimal.

We call ŵ∗ the static rank-m approximation of w. Generically this approxima-
tion indeed has rank m, but for degenerate cases its rank can be smaller. The
solution to this problem is given by the singular value decomposition (SVD),
see e.g. [16]. We denote the usual Euclidean norm on vectors a by |a|.
Definition 2.3.2 (Singular Value Decomposition)
Every w ∈ Rq×N can be decomposed as w = Σq

i=1λiuiv
>
i , with

1. λ1 ≥ . . . ≥ λq ≥ 0, called the singular values of w;

2. ui ∈ Rq×1 with |ui| = 1 and ui ⊥ uj = 0 for i 6= j, called the left singular
vectors of w;

3. vi ∈ RN×1 with |vi| = 1 and vi ⊥ vj for i 6= j, called the right singular
vectors of w.

The singular values are uniquely determined, and if they are distinct, then the
singular vectors are also uniquely determined, up to a sign.

So this decomposes a matrix with q rows as the sum of q matrices of rank
one (or zero) that are mutually orthogonal and ordered according to their
magnitude. The static total least squares problem is solved by the SVD as
follows. Define Um := [u1, . . . , um] ∈ Rq×m.

Proposition 2.3.3 (Optimal Static Approximation)
Let w = Σq

i=1λiuiv
>
i be the SVD of w ∈ Rq×N . Then

• ŵ∗ := Σm
i=1λiuiv

>
i is the static rank-m approximation of w

• Bm
stls := {ŵ : Z → Rq; w(t) ∈ im(Um)} is a corresponding optimal static

model

• d(w,Bm
stls)

2 = Σq
i=m+1λ

2
i

Proof. This result follows immediately from the properties of the SVD, cf. [16]
♣
We remark that generically ŵ∗ is unique, namely if λm 6= λm+1.

Example. Figure 2.2 shows the scatter diagram of measurements consisting
of two components (u, y) at twenty time instants, so q = 2 and N = 20. The
optimal static total least squares model of rank one, B1

stls, consists of a line
that minimizes the sum of the squared orthogonal (Euclidean) distances of
each point to the line. The optimal rank-1 approximation ŵ∗ ∈ B1

stls of the
data consists of the orthogonal projection of each point on this line.
For comparison we also depict two regression lines, denoting optimal models
if no approximation is allowed in either u or y. These lines minimize respecti-
vely the sum of squared vertical and horizontal distances to the line, and are
obtained by regression of respectively y on u and u on y.

3
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Figure 2.2: Total Least Squares compared to regression.
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In the scatter diagram of measurements, the solid line denotes the Static
Total Least Squares model, and the dashed lines the two regression models;
the dotted lines indicate which distance is minimized in the three different
models.

2.4 Alternative Formulations

In the previous sections we have given an abstract definition of the GTLS
method at a purely set-theoretic level. For the case of static models this
leads to the well-known method of orthogonal regression. In this section we
give some alternative formulations of the GTLS problem in terms of concrete
numerical representations of models, which may be helpful to gain further
intuition for the GTLS method. However, we first have to address the notion
of completeness, which plays a role in the representation of GTLS models.

2.4.1 Completeness

Before we discuss various descriptions of the GTLS problem in terms of nu-
merical representations, we address a subtlety concerning the properties of
systems over infinite lag. This may be considered as a small price we have to
pay for defining models on the infinite time axis Z.
The problem is that models that coincide on all finite time intervals may be
different in their behaviour on the infinite time axis Z. We illustrate this by
an example.

Example. Compare the system (2.1),

B = {ŵ : Z → R2; ŵ2(t) = αŵ2(t− 1) + βŵ1(t)},

with the system Bfin consisting of all time series in B that have finite support,
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i.e.,

Bfin = {ŵ ∈ B; ∃t0, t1 ∈ Z such that ŵ(t) = 0 for t < t0 and t > t1}.

Both systems coincide on finite intervals: every finite part of a trajectory in B
is also a finite part of a trajectory in Bfin. On the other hand, B contains time
series with infinite support, so the systems are not equal. 3

As representations should define a model unambiguously, behind them there
is a choice on the limiting properties of models. Notice that such a choice is
irrelevant for the quality of systems as GTLS models, as this is entirely defined
in terms of their behaviour on finite time.

Roughly speaking, we will assume that there are no restrictions that concern
infinite lags, which is formalized by the property of completeness.

Definition 2.4.1 (Completeness) A model B ∈ (Rq)Z is called complete if
it satisfies the condition

{wT ∈ BT for all finite intervals T ⊂ Z} ⇒ w ∈ B (2.9)

So completeness means that if a time series is in correspondence with the model
on finite intervals, it is admissible as a whole. Notice that the system B in the
preceding example is complete, while Bfin is not. This condition can indeed be
imposed without loss of generality.

Lemma 2.4.2 (Complete Models)
For each system B in the GTLS model class Bq there exists a unique model B̄ ∈
Bq that coincides with B on finite intervals. This model is called the completion
of B and is given by B̄ = {w : Z → Rq; wT ∈ BT for all finite intervals T ⊂
Z}.

Proof. See Appendix A.2.

Therefore, in the GTLS approach we can restrict the attention to complete
models, and define the model class accordingly.

Definition 2.4.3 (Model Class of Complete Models) B̄q denotes the class
of complete models in Bq, i.e., the class of linear, shift-invariant, complete
subspaces in (Rq)Z. If we want to leave the q unspecified, we denote it by B̄.
Similarly, B̄q,m,n denotes the class of complete models in Bq,m,n.

In the sequel we only impose completeness where it is relevant, e.g. in the
discussion of numerical representations of systems. Examples of non-complete
systems that are of practical relevance are l2-systems, which are discussed in
[34].
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2.4.2 Difference Equations

The GTLS problem can be formulated in terms of linear difference equations
with constant coefficients and finite lag. For time series with q components
such equations take the form

r0ŵ(t) + . . . + rdŵ(t− d) = 0, ri ∈ R1×q (2.10)

Here d denotes the lag of the equation, provided that r0 6= 0 and rd 6= 0.
A set of p of such equations can be grouped in matrix notation as follows.

R0ŵ(t) + . . . + Rdŵ(t− d) = 0, Ri ∈ Rp×q (2.11)

This equation describes a set of time series consisting of its solution set

{ŵ : Z → Rq; R0ŵ(t) + . . . + Rdŵ(t− d) = 0, for all t ∈ Z}, (2.12)

which equals the intersection of the solution sets of the individual equations.
Two sets of equations are called equivalent if their solution sets coincide. Equa-
tions are called independent if they cannot be replaced by a smaller equivalent
set of equations, i.e., by a smaller set of equations with the same solution set.
Another relevant feature of matrix difference equations (2.11) it their total lag,
which is defined as the sum of the lags of the individual equations.
GTLS models can be described in terms of difference equations as follows.

Proposition 2.4.4 (Representation by Difference Equations)
The class of solution sets of linear, time-invariant difference equations of fi-
nite lag coincides with B̄, the class of linear, shift-invariant complete systems.
Moreover, for systems in B̄q it holds that

• their rank equals q − p, with p the number of independent equations that
describe the system, and

• their degree equals the minimal possible total lag in such a description.

Proof. See Appendix A.2.

Example. We consider two equations for time series with three components,

ŵ2(t) = ŵ2(t− 1) + ŵ1(t)

ŵ3(t) = ŵ2(t) + ŵ1(t− 1) (2.13)

In matrix notation this gives
[

1 −1 0
0 1 −1

]
ŵ(t) +

[
0 1 0
1 0 0

]
ŵ(t− 1) = 0. (2.14)

These equations are independent, as they cannot be replaced by one equivalent
equation. Both equations are first order, so their total lag equals 2. From
the proposition it follows that these equations define a linear, shift-invariant,
complete system of rank 3− 2 = 1 and degree 2. 3

This leads to following formulation of GTLS, cf. Definition 2.1.8.
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Definition 2.4.5 (GTLS in terms of Difference Equations)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (q − p, n),

determine:

• a decomposition w = ŵ∗+ w̃∗, with ŵ∗ satisfying (at least) p independent
linear time-invariant difference equations of total lag at most n and with
‖w̃∗‖ minimal.

We remark that an optimal approximation ŵ∗ satisfies more than the required
number p of independent equations only if the data itself already does, which
is proved in Section 5.1.
So GTLS corresponds to the approximation of an observed time series by a re-
gular one that satisfies a certain number of independent equations of restricted
total lag. Stated equivalently, the GTLS method for data w and tolerated size
(m,n) amounts to:

determine p := q − m independent equations of total lag at most
n for which we have to change the data w by a minimal amount
w̃∗ such that w− w̃∗ satisfies the equations exactly, throughout the
whole observation interval.

If the misfit is small, i.e., if w̃∗ is small, the equations can be considered as
due to intrinsic properties of the phenomenon, as they reflect a structural
restriction on the phenomenons external behaviour. Here w̃∗ corresponds to
the ’unexplained details’, cf. the introduction. Further, in general we impose
fewer restrictions than the number of components, i.e., p < q, so the equations
do not determine the behaviour completely, even not modulo initial conditions.
This results in indeterminism at each time instant, which reflects the fact that
a part of the behaviour is not so much inherent in the phenomenon but due to
unmodelled external effects.
As the GTLS criterion measures the difference between the data and the be-
haviour that is in exact correspondence with the model laws, it is called a
behavioural misfit. This is in contrast with equation error oriented criteria,
which measure the deviations from the model laws at each time separately.
The use of a behavioural misfit is the distinctive feature of the GTLS with
respect to the deterministic approximate modelling procedures in [44, 20], and
also with respect to most stochastic methods.

2.4.3 Auxiliary Inputs

In GTLS modelling we take account of the effect of the environment by incor-
porating indeterminism in the model behaviour. This is reflected by allowing
for a nonzero rank of systems or equivalently by imposing less equations than
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the number of components in the time series, leading to a degree of freedom
at each time instant.
In linear models these external effects can be represented as auxiliary inputs,
which is depicted in the following diagram.

Figure 2.3: GTLS in terms of auxiliary inputs.
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In GTLS the behaviour of a phenomenon is explained approximately as the
effect of free, unobserved auxiliary inputs (representing the environment) in
a linear, time-invariant system.

The auxiliary inputs consist of time series over Z, and their value determines a
time series in the model behaviour, modulo initial conditions. The environment
is left unmodelled, so the value of the auxiliary inputs is completely free. We
use the term i/o-system if they are viewed as mappings, in order to distinguish
it from systems in the GTLS model class which are defined as sets.
In order to formulate the GTLS problem according to this scheme, we have
to answer the question which i/o-systems correspond to linear, shift-invariant
models of a certain rank and degree. As explained before, without loss of
generality we can restrict our attention to models that are complete, so this
amounts to the question for which i/o-systems G it holds that the set of all
outputs belongs to B̄q,m,n, i.e., the class of linear, shift-invariant complete
subsets of time series over Z with q components.
This can be answered in quite conventional system theoretic notions. Namely,
models of rank m and degree n correspond to linear, time-invariant i/o-systems
with m inputs and McMillan degree (or state dimension) n. In fact, this class
of systems plays a central role in systems theory, where such systems are
represented e.g. by rational transfer functions, state space descriptions or
impulse response representations.
For those who are less familiar with these notions we remark that we discuss
this topic in further detail in the next chapters, as the scheme in Fig. 2.3
also plays a role in our estimation procedures. The GTLS problem can be
formulated in terms of auxiliary inputs as follows.

Definition 2.4.6 (GTLS in terms of Auxiliary Inputs)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z
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• tolerated size (m,n),

determine:

• a linear, time-invariant transfer function G with m inputs, q outputs,
and McMillan degree at most n, and

• an auxiliary input sequence v̂∗ : Z → Rm,

such that for the corresponding output ŵ∗ := Gv̂∗, ‖w − ŵ∗
T‖ minimal.

This relates the GTLS method to the output error method (see e.g. [24]) in
which a system is determined for which the output to a given input approxi-
mates the data as close as possible. The difference is that in the output error
method the input is supposed to be known, so it is in fact part of the data,
while in the GTLS approach the input is an auxiliary notion that represents
the indeterminism in the model and is hence unknown. So we can conclude
that

GTLS corresponds to the output error method, but with unknown,
artificial inputs.

The output error method is further discussed in Section 2.4.4 and 2.5.
We remark that the optimal G and v̂∗ are by no means uniquely determined
by the GTLS criterion, even if the optimal approximation ŵ∗

T is unique. This
is discussed in detail in the next chapter. Here we only make some informal
remarks. It turns out that we can always choose G to be causal, i.e., such
that outputs do not depend on future inputs, which means that the auxiliary
inputs v̂ only have a future effect on ŵ. Hence the values of v̂∗(t′) for t′ > N are
irrelevant. In fact, ŵ∗ is determined by v̂∗T and an initial state, representing
the degree of freedom due to initial conditions. The non-uniqueness of G
may be illustrated by the fact that (almost without loss of generality) we can
choose G to be isometric, i.e., such that ‖Gv̂‖ = ŵ. This is one of the key
ideas underlying the representations of systems that we use in our estimation
procedures.

2.4.4 Input/Output Decomposition

GTLS models have an indeterministic character in order to account for un-
known external effects. In the previous interpretation of the GTLS method
these effects were represented as auxiliary inputs. Another interpretation is
based on assigning all indeterminism in the model behaviour to some compo-
nents of the time series, and to view the remaining ones as their ’effect’ or
’output’. In this way we break the symmetric treatment of all components
as we divide them into two groups ŵ = (û, ŷ), where û is considered to be
determined by the environment, and ŷ as the effect of the environment and
of intrinsic properties of the phenomenon. This is depicted in the following
scheme.
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Figure 2.4: GTLS in terms of an input/output decomposition.
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û ŷ
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If we take our starting point in an input/output decomposition of data com-
ponents, in GTLS the output behaviour of a phenomenon is explained ap-
proximately as the effect of approximate inputs in a linear time-invariant
system.

Here we use the subindex in Gi/o in order to make a distinction with the role of
i/o-systems in Fig. 2.3 as a mapping from auxiliary inputs to all components
in the model behaviour. The GTLS problem can be formulated in terms of
input/output decompositions as follows.

Definition 2.4.7 (GTLS in terms of I/O Decomposition)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (m,n),

determine:

• a linear, time-invariant system Gi/o with m inputs, q −m outputs, and
at most n states,

• an input sequence û∗ : Z → Rm, and

• a decomposition of the data w = (u, y), with u consisting of m compo-
nents,

such that for the corresponding output ŷ∗ := Gû∗, ‖u − û∗T‖2 + ‖y − ŷ∗T‖2

minimal.

This interpretation relates the GTLS method to the output error method in
yet another way, cf. Section 2.4.3.

GTLS corresponds to the output error method, but with also the
inputs approximated.
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We conclude with some intuitive remarks. The input-output decomposition is
not inherent in GTLS systems On the contrary, generically every GTLS system
as defined in Definition 2.4.3 with rank m admits an arbitrary decomposition
into m free components and q−m remaining ’output’ components, just as for
a (q × m) matrix generically every set of m rows is non-singular and hence
the remaining rows are linearly dependent on these. In Section 3.4 we give a
construction for making input/output decompositions for GTLS systems.
These i/o-systems Gi/o relate to i/o-systems G in terms of auxiliary inputs as
introduced in Section 2.4.3 as follows. Notice that G has q outputs, cf. Fig.
2.3, while Gi/o has q −m. An input/output decomposition corresponds to a
representation in which the auxiliary inputs v̂ equal the input components in
the behaviour û. For example, if we decide to consider the first m components

in the model behaviour as inputs, i.e. ŵ =

(
û
ŷ

)
, this corresponds to taking

G of the form G =

[
Im

Gi/o

]
. Indeed, without loss of generality we can take G

of this type, i.e. with m rows forming an identity matrix.
So one GTLS system of rank m can be described by several different i/o-
systems with m inputs and q −m components. Further, it is not exceptional
that some of these are stable, and others unstable. This means that

stability is not an intrinsic property of GTLS models,

but relates to a chosen input/output decomposition. Input/output decompo-
sitions are further discussed in Section 3.4.

2.5 Comparison with other Methods

In this section we compare GTLS with two well-known methods in time se-
ries analysis and system identification, namely ARX (Auto Regression with
eXogenous variables) and OE (Output Error). In addition we also discuss a
’local total least squares’ method (LTLS), which is a simple modification of
the static total least squares method of section 2.3 for the dynamic case. For
expository reasons we restrict ourselves to first order models for time series
consisting of two components. We assume that the data consists of a time
series with components called u and y, so

w =

[
u
y

]
=

[
u(1) . . . u(N)
y(1) . . . y(N)

]
(2.15)

The common feature of the above-mentioned methods is that they all relate to
linear, time-invariant difference equations for u and y, and moreover that they
measure deviations from such equations by a least squares criterion. However,
they differ in the way deviations are defined, and we will discuss these various
approaches as an illustration of the ’global’ and ’total’ character of GTLS. We
remark that ARX and OE are usually presented in a stochastic context, but
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they can also be interpreted as methods for minimizing a certain least squares
criterion, in which the stochastic interpretation is not essential.
As we restrict ourselves to first order models, the equations take the form

ŷ(t) = βŷ(t− 1) + α0û(t) + α1û(t− 1). (2.16)

Here we have scaled the coefficient of y(t) to one, which means that in this
discussion we do not consider the case where this would be zero. In general the
data does not satisfy any relation of this type exactly, and the crucial question
is, how to define the accuracy of the equation with respect to the data.
In ARX modelling one takes into account the first step ahead prediction error
for one of the variables (y, say). This corresponds to defining deviations as

εarx(t) := y(t)− ŷ(t) with ŷ(t) = βy(t− 1) + α0u(t) + α1u(t− 1) (2.17)

for t = 2, . . . , N , so the equation is considered as a prediction mechanism.
The aim is to determine parameter values such that the sum of squares of the
deviations is minimized. The corresponding estimation problem is solved by
regression of y(t) on y(t− 1), u(t) and u(t− 1).
The LTLS method also takes into account the deviations from an equation for
each time separately, as in ARX, but it allows for deviations in all variables
occurring in (2.16), so both in u and y and both in past and present. The op-
timal first order LTLS model equals the optimal static model for the sequence

H(t) =

[
w(t− 1)
w(t)

]
, t = 2, . . . , N , which is determined by the SVD, cf. Sec-

tion 2.3. This means that the deviations are defined as a four-dimensional
sequence

εltls(t) :=




u(t)− û(t)
y(t)− ŷ(t)

u(t− 1)− ûp(t− 1)
y(t− 1)− ŷp(t− 1)


 with ŷ(t) = βŷp(t−1)+α0û(t)+α1ûp(t−1),

(2.18)
with û, ŷ, ûp, ŷp such that the sum of squares of the deviations is minimal.
Notice that in general û(t) 6= ûp(t) and ŷ(t) 6= ŷp(t), so that û, ŷ is not a global
solution of the difference equation.
In the output error method one takes into account how much y deviates from
the effect of u according to the equation (2.16), i.e.,

εoe(t) := y(t)− ŷ(t) with ŷ(t) = βŷ(t− 1) + α0u(t) + α1u(t− 1) (2.19)

for t = 2, . . . , N . Again the sum of squares is minimized, now over the pa-
rameters and an initial value for ŷ(1). This means that in OE equations are
interpreted as input/output systems that map the input u to the output y.
A more conventional notation for (2.19) in this approach would be in transfer
function notation as

ŷ =
α0 + α1σ

−1

1− βσ−1
u, (2.20)
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where σ−1 denotes the inverse time shift σ−1f(t) = f(t− 1). For an iterative
algorithm for determining locally optimal OE models we refer to the overview
in [3].
In the GTLS method we allow for deviations in both u and y, so in this case
the deviation also consists of two components, defined by

εgtls(t) :=

[
u(t)− û(t)
y(t)− ŷ(t)

]
with ŷ(t) = βŷ(t− 1) + α0û(t) + α1û(t− 1) (2.21)

for t = 1, . . . N . Now the aim is to minimize the sum of squares of the de-
viations over the parameters and over all values û(t) and ŷ(t) satisfying the
equation. So in GTLS we view the equation as the description of a solution
set. This shows that from a logical point of view the GTLS approach is the
most obvious choice as a measure of the accuracy of an equation among the
three least squares methods. Namely, it measures the distance between the
data and that what is in correspondence with all logical consequences of the
equation.
Notice that both ARX and OE make an a priori distinction between vari-
ables into exogenous/endogenous or inputs/outputs, while GTLS treats both
variables on the same footing. This corresponds to the distinction between
ordinary and total least squares in static modelling, cf. Section 2.3, so we
could call ARX and OE ’ordinary least squares methods’. Further, LTLS and
ARX models are only based on the first step ahead predictions of equations,
ignoring their implications over a longer lag, and therefore we call these local
methods. For instance, by adding (2.16) for two subsequent time-instants we
obtain

ŷ(t) = (β−1)ŷ(t−1)+βy(t−2)+α0û(t)+(α0+α1)û(t−1)+α1u(t−2), (2.22)

but this second order equation is not taken into account, although it is a
logical consequence of (2.16). This is in contrast with GTLS and OE, in which
respectively (û, ŷ) as defined in (2.21) and (u, ŷ) in (2.19) are global solutions of
the equations, and hence satisfy also all higher order implications. It seems to
be inherent in this global character that the corresponding estimation problems
are relatively complex. The solution of the GTLS problem is the main issue
of this monograph.
We summarize the comparison in the following table.

Table 2.2: Comparison of least squares methods.

least squares methods ordinary total
local ARX LTLS

global OE GTLS

We remark that there are several other results on dynamic modelling with a
symmetric treatment of all data components, but these methods do not give
a decomposition in terms of global solutions of difference equations. For in-
stance, the symmetric modelling approach described in [13] amounts to the
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decomposition of dynamic stochastic processes into a structured part, satisfy-
ing deterministic relations, and an error system. However, this dynamic ’error
in variables’ approach is not compatible with GTLS, as the analysis is perfor-
med for fixed frequencies and without an order restriction on the relations. The
dynamic extension of the Frisch scheme, introduced in [5], concerns the recon-
struction of dynamic relations under corruption of all components by white
noise, but is not applicable to general data. Also the stochastic realization
problems treated in [42] and dynamic factor analysis as proposed in [9, 23] are
quite different from GTLS, cf. also [21].

2.6 Limitations

In this section we want to delimit the scope of this monograph in order not
to raise expectations that we cannot come up to. We do not address the
first stages of time series analysis, involving data acquisition and preliminary
manipulations, but simply take our starting point in a given time series. The-
oretically the method is applicable to every multivariable time series, but this
is of course no guaranty that it yields valuable models in all cases.

Not only the scope of the GTLS method is limited, we should also clearly
state that we are not able to give a complete solution of the GTLS problem
(Definition 2.1.7). As is common for non-linear optimization problems, a one
shot algorithm that determines a globally optimal model seems inachievable.
We present an iterative algorithm for determining locally optimal models. The
the solution will then depend on the initial models in which the algorithms are
started, and therefore we also briefly discuss a heuristic method for determining
reasonable starting points. We do not address the issue of determining the
number of locally optimal systems.

Secondly, for technical reasons concerning the numerical representation of sys-
tems we will exclude so called non-stabilizable systems (stabilizability is defi-
ned in Definition 3.2.3, see also the list of basic notions). In such systems an
exponential growth of most system trajectories cannot be avoided, despite the
degrees of freedom in the model. This is a highly specific case, as almost all
systems in the GTLS model class are not of this type. Moreover, by exploiting
the fact that GTLS is completely symmetric in time, in fact we only have
to exclude systems that are neither stabilizable nor ’anti-stabilizable’, which
means stabilizable for the reversed time direction.

Finally we want to point at a limitation that is inherent in the GTLS method,
but perhaps somewhat implicitly. GTLS is only applicable for data consisting
of time series of two or more components, as for a time series with one com-
ponent (q = 1), the GTLS problem becomes rather trivial. Namely, we either
have to allow for systems with rank one (m = 1), which are trivial systems with
behaviour consisting of all single component time series, or we have to impose
a zero rank, which corresponds to autonomous systems whose behaviour is en-
tirely determined by some initial conditions. The latter case might have some
practical relevance, but in general these models are not flexible enough to mo-
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del the data. So the simplest non-trivial case we consider concerns time series
with two components (q = 2) and models with tolerated rank one (m = 1).



Chapter 3

Isometric State
Representations

In the previous chapter we described the GTLS method in purely geometrical
terms. Systems are defined as sets of time series, and we aim for a linear,
shift-invariant system of restricted dimension that has minimal distance to
given data.
In this chapter we introduce isometric state representations (ISR’s), which
form the main tool in the construction of GTLS models from data.
A representation of a system is a concrete description of its behaviour. In the
definition of the GTLS problem we need not make any reference to represen-
tations. However, they do become relevant as soon as we want to specify a
model, i.e., if we want to indicate which time series belong to it and which not.
There are many ways to represent a linear, time-invariant system. They can
be described as the solution set of difference equations, cf. Section 2.4.2, or
by more structured representations that make explicit the memory (or state)
of a system or possible input/output decompositions of the system variables.
For an overview of system representations we refer to [44, 46]. As far as
the specification of systems is concerned, the type of representation is hardly
relevant. Different representations of the same system are just different ways
of describing the same object, and moreover algorithms exist for converting
one type into another.
However, from a practical point of view the type of representation is important.
Representations play a basic role in the implementation of algorithms, and an
appropriate choice may streamline algorithms considerably. We choose to use
ISR’s as they turn out to form a highly appropriate tool in the GTLS method.
They are based on the following principles.

1. The memory of a system is made explicit by state variables.

The state of a system is one of the central notions in systems theory, which
has proved its merits both in identification and control. The state represents
all features of the past behaviour of a system that are relevant for its future
evolution, so we may say that it represents the heart of the system dynamics.
A mathematical characterization is that state representations describe systems
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in terms of first order relations. In the development of the GTLS algorithms
the notion of state turns out to be essential at various points.

2. Symmetry in the system variables.

The best-known type of representations with state variables are the so called
input/state/output (i/s/o-) representations. These are based on an a priori
decomposition of system variables between inputs and outputs. The inputs
are free, unrestricted variables, which determine the output (modulo initial
conditions). In the GTLS method we do not make a preliminary distinction
into inputs and outputs, but we treat all components of an observed time series
on the same footing. It is then natural to reflect this in the representations
also.

3. Indeterminism is made explicit by auxiliary inputs.

The systems in the GTLS model class are indeterministic, as they contain a
degree of freedom at each time instant, which is reflected by their rank. This
indeterminism is reflected by auxiliary inputs, which are auxiliary variables
whose value determines a system trajectory (again modulo initial conditions).
We use the term state representation (SR) for descriptions that make use of
state variables and auxiliary inputs. SR’s are introduced in [44], where they
are called state space systems. We discuss them in the next section.

The absence of an input/output decomposition is an innovative aspect of
SR’s with respect to the mainstream approach in system theory. In order
to give some intuition on SR’s, the precise relation with the classical i/s/o-
representations is explained in Section 3.4.

4. Each state component and each auxiliary input has a normalized
effect on the external behaviour of the system.

State representations are highly non-unique, and this can be exploited to im-
pose that the auxiliary variables should have a normalized effect on the system
trajectories, which means that the norm of an auxiliary input equals the norm
of its effect on system trajectories. This restriction can be imposed almost
completely without loss of generality, as we only have to exclude so-called
non-stabilizable systems. ISR’s turn out to be useful in the evaluation of the
misfit of systems, and they have convenient properties that play a role in the
iterative algorithms for the construction of GTLS models. We introduce ISR’s
in Section 3.2.

SR’s with only a normalization condition on the auxiliary inputs are used in
[47]. The innovative aspect of ISR’s is that all auxiliary variables, both the
state and the auxiliary inputs, have a normalized effect. To our knowledge
their use in identification is new.
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3.1 State Representations

State representations are defined as follows.

Definition 3.1.1 (State Representation)
A state representation (A,B,C,D) of a system B is a description of the form:

B = {ŵ : Z → Rq;
there exists a state trajectory x̂ : Z → Rn and
an auxiliary input v̂ : Z → Rm such that

σx̂ = Ax̂ + Bv̂

ŵ = Cx̂ + Dv̂}, (3.1)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n, D ∈ Rq×m and n,m ∈ N. This system
is denoted as B(A,B, C,D).

The variables x̂ and v̂ are auxiliary variables with the following interpretation.
The auxiliary input v̂ is a free variable representing the indeterminism in the
system at each time-instant. The state x̂ represents the memory of the system.
Two system trajectories with the same state at a certain time instant allow
for exactly the same continuations in the system from that time instant on, so
the state contains all information from the past that has implications for the
future. Another interpretation is that the state at time t0, x̂(t0), represents the
degrees of freedom due to initial conditions at t0, i.e., the additional freedom
from t0 on if the value of the time series before t0 is not specified.
In order to give some further intuition, we briefly consider the two simple cases
where either there are no states (n = 0) or there are no auxiliary inputs (m =
0). In the first case SR’s take the form (−,−,−, D), with − the empty matrix,
so ŵ(t) = Dv̂(t). This describes the static system with system trajectories
taking their value in the image of D at each time. This illustrates that in
the dynamic case there is indeterminism in the direction of the image of D at
each time. If there are no auxiliary inputs, SR’s are of the form (A,−, C,−),
describing autonomous systems in which there are only degrees of freedom due
to initial conditions.
The class of systems that can be represented by SR’s is precisely the class of
linear, shift-invariant, complete systems. A feature of SR’s that is of crucial
importance in the GTLS approach is that the number of auxiliary inputs and
state variables correspond to respectively the rank and degree of a system.

Proposition 3.1.2 (State Representation of Systems)

1. Every linear, shift-invariant complete system admits a state representa-
tion.

2. Conversely, every state representation corresponds to a linear, shift-
invariant complete system.
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3. Systems B ∈ B̄q,m,n, i.e., with rank at most m and degree at most n, are
precisely those systems that can be described by a state representation
with m auxiliary inputs and n state variables.

Proof. See Appendix A.3.

SR’s for a system are highly non-unique. SR’s are called equivalent if they
represent the same system. One source of non-uniqueness is the possible pres-
ence of ineffective auxiliary variables, i.e., state components or auxiliary inputs
that have no effect on system trajectories. We call an SR minimal if both the
number of states and auxiliary inputs are minimal. From Proposition 3.1.2.3
it follows that in a minimal SR the number of auxiliary inputs must equal the
rank of a system, and the state dimension the degree. For future reference we
formulate this fact as a corollary.

Corollary 3.1.3 (Minimal SR) In a minimal state representation of a sys-
tem B the number of auxiliary inputs equals the rank of B , and the number of
state variables equals the degree of B .

Even minimal SR’s are highly non-unique. From a given SR we obtain equi-
valent ones as follows. For expository reasons we display the system matrices
in one block-matrix.

Proposition 3.1.4 (Equivalent State Representations)
The state representations

[
A B
C D

]
and

[
S(A + BF )S−1 SBR
(C + DF )S−1 DR

]

represent the same system for all invertible S ∈ Rn×n, invertible R ∈ Rm×m,
and F ∈ Rm×n. Moreover, if (A,B, C, D) is minimal, then all minimal equi-
valent state representations are obtained in this way.

Proof. See Appendix A.3.

So the non-uniqueness of minimal SR’s can be assigned to three sources:

• a basis transformation of the state x̂ → Sx̂,

• a basis transformation of the auxiliary inputs v̂ → R−1v̂,

• addition of state components to the auxiliary input v̂ → v̂ − Fx̂.

The choice of basis in the state space, corresponding to S, is a well-known
non-uniqueness of state space representations. In our framework the auxiliary
input v̂ is merely a tool to describe the system behaviour, and need not have
external significance. This allows for a basis transformation for the auxiliary
input, corresponding to R. Further the behaviour is invariant under a static
state feedback F to this auxiliary input. This is in contrast with the common
notion of feedback to the actual input of the system, which would affect the
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set of compatible input-output pairs. As a consequence, in our framework the
spectrum of the A-matrix is not an intrinsic property of a system. In the next
section we exploit this non-uniqueness in order to obtain SR’s with convenient
properties for computing the misfit of a model with respect to data.
As stated before, in minimal SR’s the number of auxiliary variables corresponds
to the size of a system. Minimality can also be expressed more concretely
in terms of rank conditions on the matrices (A,B, C,D). We mention the
following characterization, as it is will play a role in the construction of ISR’s.
The observability condition for a pair of matrices is spelled out in the proof.

Proposition 3.1.5 (Minimal State Representations)
A state representation (A,B, C,D) is minimal if and only if:

1. the matrix [A B] ∈ Rn×n+m has full row rank n

2. for all F ∈ Rm×n is (A + BF, C + DF ) observable

3. D has full column rank m.

Proof. See Appendix A.3.

The proposition indicates three types of ineffective auxiliary variables. Firstly,
some components of the state might be zero, namely if the matrix [A B]
contains zero rows, and these variables can be removed. Similarly, if this
matrix has not full row rank n, this implies that some linear combinations of
the state variables are zero, and then their number can also be reduced. The
second condition excludes that the future effect of the state can be cancelled by
a certain combination of auxiliary inputs. The third source of non-minimality
concerns the case in which some auxiliary inputs have no or only a delayed
effect.

Leading Example. We describe a simple example, which will be used in the
following sections to clarify the introduced general framework. Consider the
linear time-invariant system

Bex := {ŵ : Z → R2; ŵ = (û, ŷ) with

ŷ(t) = 2/3 ŷ(t− 1) + 2û(t)− 2û(t− 1)}. (3.2)

The state of a system should represent all information from the past that is
relevant for the future. The relation between past and future in B can be
expressed as

2/3 ŷ(t− 1)− 2û(t− 1) = ŷ(t)− 2û(t), (3.3)

so we can define for instance x̂(t) = ŷ(t− 1)− 3û(t− 1), cf. also the proof of
Proposition 3.1.2.1. This can be written in input/state/output form as

x̂(t + 1) = 2/3 x̂(t)− û(t); ŷ(t) = 2/3 x̂(t) + 2û(t). (3.4)
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From this it is easy to obtain an SR by taking the auxiliary input v̂ to be equal
to û, which gives

Bex = B(2/3,−1,

[
0

2/3

]
,

[
1
2

]
). (3.5)

The representation (3.5) is minimal. An SR equivalent to (3.5) is given by

(1,−1/2,

[
−1/3

0

]
,

[
1/2
1

]
), which follows from Proposition 3.1.4 by taking

S = 1, R = 1/2 and F = −1/3. Note that in this representation the auxiliary
input is given by y. This also illustrates that the eigenvalues of A are not
intrinsic for the system B. 3

3.2 Isometric State Representations

In this section we define isometric state representations (ISR’s), which form
the cornerstone in the construction of GTLS models. ISR’s are a special type
of SR’s defined by a local isometry property involving the state variable.

Definition 3.2.1 (Isometric State Representation) A state representation
(A,B, C, D) is called isometric if for all x ∈ Rn,v ∈ Rm, w ∈ Rq and z ∈ Rn

such that z = Ax + Bv and w = Cx + Dv it holds

|v|2 + |x|2 = |w|2 + |z|2. (3.6)

Equivalently, [
A B
C D

]> [
A B
C D

]
=

[
In 0
0 Im

]
. (3.7)

We illustrate this definition by considering the static case (n = 0) and the
autonomous case (m = 0). ISR’s without state variables just consist of an
isometric matrix D, i.e. with D>D = Im. This describes the system

B = {ŵ : Z → Rq; ∃v̂ : Z → Rm such that ŵ(t) = Dv̂(t)∀t ∈ Z}. (3.8)

Notice that the auxiliary input has a normalized effect, as |ŵ(t)| = |Dv̂(t)| =
|v̂(t)|. In static ISR’s this effect is even immediate, while in the dynamic
case it is in general distributed over different time instants. ISR’s without
auxiliary inputs take the form (A,−, C,−) with A>A + C>C = In, describing
the autonomous system

B = {ŵ : Z → Rq; ∃x̂ : Z → Rn such that

x̂(t + 1) = Ax̂(t); ŵ(t) = Cx̂(t)∀t ∈ Z}. (3.9)

The system trajectories in this system are completely determined by the value
of the state at one time instant. The isometry condition implies that each
initial state has a normalized future effect on system trajectories, i.e., the norm
of a system trajectory on Z+ equals the norm of the corresponding initial state
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at t = 0, at least if A is asymptotically stable. Notice that if A is singular,
some states cannot occur in (3.9). The exceptional cases in which A is singular
or not asymptotically stable is further discussed later on.

The local property (3.6) that characterizes ISR’s induces an isometry on finite
intervals that will play a central role in the sequel.

Proposition 3.2.2 (Isometry on Finite Time)
Let B denote a system with isometric state representation (A,B,C,D), and let
v̂ and x̂ denote auxiliary input and state trajectory corresponding to a system
trajectory ŵ ∈ B in this representation. Then for all finite intervals [1, N ] ⊂ Z
it holds that

|x̂(1)|2+ |v̂(1)|2 + . . . + |v̂(N)|2 =

|ŵ(1)|2 + . . . + |ŵ(N)|2 +|x̂(N + 1)|2. (3.10)

Proof. This follows immediately from the summation of (3.6) with x = x̂(t)
and z = x̂(t + 1) over time instants t ∈ T . ♣

This shows that the state and the auxiliary input have a normalized effect
on the system trajectories. Namely, the squared norm of ŵ on finite intervals
equals the squared norm of the auxiliary variables and initial state, minus the
squared norm of the final state which will have an effect after the interval.

Remark. In system theoretic terminology, ISR’s are realizations of inner (stable,
all-pass) transfer functions with an output normal state. To our knowledge, its use
in identification is new. 3

The isometry property (3.7) can be imposed almost without loss of generality.
The exceptional cases concern systems that are not stabilizable.

Definition 3.2.3 (Stabilizability) A system is called stabilizable if all tra-
jectories on finite time intervals admit a continuation within the system that
converges to zero.

This corresponds to the classical definition in terms of inputs and states, im-
posing that the state in a minimal input/state/output representation can be
made converging to zero by choosing appropriate inputs. Examples of non-
stabilizable systems are for instance B(α, 0, 1, 0) with α ≥ 1, which consists of
exponentials ŵ(t) = cαt with c ∈ R.

Notice that by choosing zero auxiliary inputs in an ISR from a certain time on
the isometry property (3.6) guarantees the convergence of the corresponding
system trajectory to zero. So clearly an ISR cannot represent a system that is
not stabilizable. The next proposition states that this forms the only exception.

Proposition 3.2.4 (Existence of ISR) A linear, shift-invariant, complete
system admits an isometric minimal state representation if and only if it is
stabilizable.
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Proof. Every system that can be described by an ISR is stabilizable, as every
system trajectory in it can be made converging to zero by applying zero auxi-
liary inputs from a certain time on. Namely, then the lefthand side in (3.10) is
bounded by a finite value for all N ∈ Z+, which implies that limN→∞ ŵ(N) = 0.
The fact that all stabilizable systems admit an ISR is proved by construction
in the next proposition. ♣

Proposition 3.2.5 (Construction of ISR) Let (A,B, C, D) be a minimal
state representation of a stabilizable system, and let K ∈ Rn×n be the unique
symmetric positive definite solution of the algebraic Riccati equation

K = A>KA−(B>KA+D>C)>(B>KB+D>D)−1(B>KA+D>C)+C>C. (3.11)

Let the matrices S ∈ Rn×n,F ∈ Rm×n and R ∈ Rm×m be solutions of the
equations:

S>S = K (3.12)

RR> = (B>KB + D>D)−1 (3.13)

F = −(B>KB + D>D)−1(B>KA + D>C). (3.14)

Then (S(A + BF )S−1, SBR, (C + DF )S−1, DR) is an equivalent isometric
minimal state representation.

Proof. See Appendix A.3.
Implementation: SR2ISR in Appendix B.1.

The isometry condition (3.7) reduces the non-uniqueness of SR’s considerably,
but also minimal ISR’s are not uniquely determined by a system, as we can
apply unitary basis transformations on the auxiliary variables. A matrix M is
called unitary if M> = M−1.

Proposition 3.2.6 (Equivalence of ISR’s) The isometric state represen-
tations [

A B
C D

]
and

[
UAU> UBV
CU> DV

]

represent the same system for all unitary matrices U and V . Moreover, if
(A,B, C, D) is minimal, then all minimal equivalent isometric state represen-
tations are obtained in this way.

Proof. See Appendix A.3.

So the auxiliary variables are uniquely determined by system trajectories mo-
dulo norm-preserving transformations. This illustrates the fact that the auxi-
liary variables in a minimal ISR do not only have a qualitative interpretation,
as in every minimal SR, but also a quantitative meaning, cf. (3.10).
One might wonder if ISR’s are not by definition minimal, as every auxiliary
variable should have a normalized effect on the system variables. Indeed, the
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number of auxiliary variables in every ISR is minimal. This is obvious for the
static case (n = 0), and is proved below for the dynamic case. However, the
isometry property (3.6) does not exclude the presence of ineffective state com-
ponents that retain all ’energy’ for themselves, ad infinitum. As an illustration,
consider the trivial ISR

[
A B
C D

]
=

[
1 0
0 1

]
, (3.15)

which is not minimal as it represents the trivial static system consisting of all
time series with one component. Similarly, all ISR’s corresponding to a square
unitary matrix correspond to trivial systems, as they have rank equal to the
number of system variables, and hence do not represent any restriction.
In Proposition 3.1.5 minimality conditions are formulated in terms of the sys-
tem matrices in an SR, and these also apply to ISR’s. The combination of
the isometry condition and minimality has some implications that we want to
make explicit as they play a role in the sequel. We also give an alternative
characterization of minimality for ISR’s. A matrix is called (asymptotically)
stable if it has no eigenvalues with absolute value larger than (or equal to) one.

Proposition 3.2.7 (Minimality of ISR’s)

1. In a state representation that is isometric the number of auxiliary inputs
is minimal.

2. In an isometric state representation (A,B,C,D), the matrix A is stable.
If the representation is minimal then A is asymptotically stable.

3. Define for an ISR (A, B, C, D) with state dimension n the matrix W :=

[An...An−1B
... . . .

...B]. Then (A,B,C,D) is minimal if and only if W is
non-singular and WW> asymptotically stable.

Proof. See Appendix A.3.

The characterization of minimality for ISR’s can be interpreted as follows. The
matrix W denotes the mapping from an initial state (x̂(1), say) and auxiliary
inputs on the interval [1, n] to the resulting final state x̂(n + 1), so

W : {x̂(1); v̂(1), . . . , v̂(n)} → x̂(n + 1). (3.16)

Now if W is singular, this implies that some states are not reachable. Even
if we would start the system in an unreachable state, i.e. a state that is not
contained in the image of W , the system would leave this state and never
return to it. If WW> is not asymptotically stable, this would mean that there
exists a combination of initial state and auxiliary inputs that store all their
’energy’ in the final state, so that there is nothing left for the system trajectory.

Leading Example - Continued. We apply the construction of Proposition
3.2.5 to the SR (3.5) of the system Bex. This yields K = 4/9, S = 2/3, R = 3/7
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and F = 4/21, resulting in the isometric representation

σx̂ = 6/7 x̂− 2/7 v̂; ŵ =

[
−2/7
3/7

]
x̂ +

[
3/7
6/7

]
v̂ (3.17)

According to Proposition 3.2.7, Bex has a unique ISR with state dimension
one, modulo sign changes for the state and for the auxiliary input. 3

3.3 State Representations on Finite Time
In this section we discuss a subtlety concerning the representation of systems on
finite intervals. It will not play an important role in the sequel, and may be skipped
in first reading.
The GTLS problem is formulated in terms of the behaviour of systems on finite
time intervals. Therefore, with an SR we will also associate a behaviour on finite
intervals, as follows.

Definition 3.3.1 (State Representation for Finite Intervals)
A state representation (A,B,C, D) of the restriction of a system B to a finite time
interval T = [t0, t1] ⊂ Z is a description of the form

BT =
{ŵ : T → Rq; ∃ x̂(t0) ∈ Rn, v̂ : T → Rm such that
x̂(t + 1) = Ax̂(t) + Bv̂(t) and ŵ(t) = Cx̂(t) + Dv̂(t)}. (3.18)

We write BT = BT (A,B,C, D).

Roughly speaking it does not make any difference whether we consider SR’s for finite
time or for behaviours on Z. The restriction of a system to a certain interval just
corresponds to a restriction of the auxiliary variables to the same interval, except for
some degenerate cases. This is made precise below. We remark that the exceptional
cases only play a minor role in the sequel.

Proposition 3.3.2 (SR’s for Z and Finite Time)
Let B denote a linear, shift-invariant complete system of degree n. Then

B[1,n+1] = B[1,n+1](A, B,C, D) ⇒ B = B(A, B,C, D). (3.19)

Conversely, if (A, B,C, D) is minimal, then

B = B(A,B, C, D) ⇒ BT = BT (A,B, C, D) (3.20)

for all finite intervals T ⊂ Z.

Proof. See Appendix A.3.

Leading Example - Continued. Consider again the SR (3.5). From (3.20) it
follows that this also represents the behaviour on all finite intervals, as described in
Definition 3.3.1. Conversely, (3.19) states that every SR that describes B[1,2] also
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describes B. Clearly this is not true for SR’s that describe B[1,1]. To illustrate the
role of minimality in (3.20) we consider the non-minimal SR for B given by

(

[
0 0
0 2/3

]
,

[
0
−2/3

]
,

[
1 0
0 1

]
,

[
1
2

]
)

The first state component is ineffective in representing behaviours on Z. However,
in (3.18) we could choose an arbitrary value for this component at t = 1, and
this would yield additional freedom in the behaviour. It is easily verified that the
behaviour described by (3.18) for the non-minimal SR and T = [1, 2] has dimension
4, while dim(B[1,2]) = 3. For instance, the first space contains the trajectory given
by û(1) = 1, û(2) = ŷ(1) = ŷ(2) = 0, which is not contained in dim(B[1,2]). 3

3.4 Relation with i/s/o Representations

Input/state/output (i/s/o-) representations are the counterparts of SR’s in
which there is an explicit partition of system variables into inputs and out-
puts. In this section we describe how to convert one into the other. The
reason to discuss this issue is twofold. By explaining the relation between
SR’s and i/s/o-representations we aim to give additional intuition for SR’s.
Further, input/output decompositions play a role in some applications. The
translation of SR’s into i/s/o-representations shows how to determine such a
decomposition. I/s/o-representations are defined as follows.

Definition 3.4.1 (i/s/o Representations)
An input/state/output representation (A′, B′, C ′, D′) of a system B is a des-
cription of the form:

B = {ŵ = (û, ŷ) with û : Z → Rm and ŷ : Z → Rp;
there exists a state trajectory x̂ : Z → Rn such that

σx̂ = A′x̂ + B′û

ŷ = C ′x̂ + D′û, (3.21)

with A′ ∈ Rn×n, B′ ∈ Rn×m, C ′ ∈ Rp×n, D′ ∈ Rp×m and n,m, p ∈ N. This
system is denoted as Bi/o(A′, B′, C ′, D′).

The inputs û are unrestricted or free variables, that determine the outputs ŷ
of the system modulo initial conditions. Notice that the difference with SR’s
as defined in Definition 3.1.1 is not the shape of the system matrices, but their
interpretation. An i/s/o-representation of a system is also an SR for a different
system. In order to avoid confusion we use primes for the system matrices in
i/s/o-representations.
The construction of SR’s from i/s/o-representations is really simple. The ex-
plicit input/output decomposition can be eliminated by taking the auxiliary
input equal to the actual input û .
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Proposition 3.4.2 (From i/s/o to SR) Let (A′, B′, C ′, D′) denote an in-

put/state/output representation of a system B . Define C :=

[
0
C ′

]
and

D :=

[
Im

D′

]
. Then (A′, B′, C, D) is a state representation for B .

Proof. This follows immediately from the fact that the auxiliary input in the
SR equals the input in the i/s/o-representation. ♣
Implementation: ISO2SR in Appendix B.1.

The converse question, how to determine an i/s/o-representation from a gi-
ven SR, is only slightly more involved. This amounts to determining a valid
input/output decomposition of the system variables ŵ = (û, ŷ), i.e. with unres-
tricted input components û that determine the remaining output components
ŷ, up to initial conditions. In view of Proposition 3.1.5 we can restrict the
attention to SR’s with an injective D-matrix, and for simplicity we assume
that the first m rows of D are independent.

Proposition 3.4.3 (From SR to i/s/o) Let (A,B,C,D) be a minimal state

representation of a system B , with C =

[
Cu

Cy

]
, D =

[
Du

Dy

]
, and Du inverti-

ble. Then (A−BD−1
u Cu, BD−1

u , Cy−DyD
−1
u Cu, DyD

−1
u ) is an input/state/output

representation of B .

Proof. The auxiliary input v̂ in the SR and the input û in the i/s/o-representation
are related by û = Cux̂+Duv̂. Substituting v̂ = D−1

u (Cux̂− û) in the SR equa-
tions (3.1) gives the result. ♣.
Implementation: SR2ISO in Appendix B.1.

This explains how the system matrices in an SR are related to i/s/o-representations.
Perhaps even more enlightening is the relation between the auxiliary variables
in both type of representations. Notice that the state variables in both re-
presentations completely coincide, i.e. x̂ is a state trajectory for ŵ ∈ B in a
minimal i/s/o-representation if and only it is one in a minimal SR. Further, the
auxiliary input in an SR can be chosen equal to the actual input components
of a system trajectory. The extra freedom in the auxiliary inputs in SR’s as
compared to the actual inputs in i/s/o-representations is the addition of state
components and a basis transformation, i.e., v̂ = R(û − Fx̂) for some F and
invertible R.
As the number of (auxiliary) variables in minimal representations of both types
are equal, this means that the rank and degree of a system equal the number
of inputs and states in a minimal i/s/o-representation.

Leading Example - Continued. An example of the construction of an i/s/o-
representation from an SR has already been given in the leading example of
Section 3.1. We illustrate the converse direction by applying Proposition 3.4.3
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to the ISR given in (3.17). For input u the construction yields the i/s/o-
representation (2/3,−2/3, 1, 2), which is indeed in correspondence with (3.4).
Both entries in D are non-zero, so we could also take y as input variable. 3
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Chapter 4

Evaluation of the Misfit

In this chapter we treat the first part of the GTLS problem: how to evaluate
the misfit of a given system with respect to an observed time series. Stated
otherwise, we determine how to change the data by a minimal amount in order
to make it satisfy the laws of a given system. The distinctive aspect of the
GTLS approach is that we consider the global approximation of the data by one
system trajectory that belongs to the system on the entire observation interval,
instead of taking into account only local equation misfits as in prediction error
oriented methods. Another appealing feature of the GTLS misfit is that it
measures the accuracy of the system laws simultaneously, not in terms of errors
with respect to the individual equations.
Due to this global character the evaluation of the misfit for a given system is
not a trivial problem, in contrast to for instance the evaluation of the first step
ahead prediction errors of a given system. On the other hand, it concerns a
linear optimization problem that can be solved in a straightforward way.
We present an algorithm in terms of ISR’s that were introduced in the previ-
ous chapter. The algorithm is based on a simple formula for the orthogonal
projection onto linear spaces in terms of isometric operators. We also describe
the orthogonal complement of systems by ISR’s, which reveals the structure
of the approximation error.

4.1 Orthogonal Projection onto Systems

In this section we consider the first part of the GTLS problem, namely the
evaluation of the misfit (Definition 2.1.5). We determine this misfit by con-
structing the optimal approximation of an observed time series by a system
trajectory in a given linear, shift-invariant system. In fact this amounts to the
simple mathematical problem of projecting a point (the data) onto a linear
space (the system), but we pay some extra attention to the use of ISR’s in
this.
Our approach is based on the following result on the orthogonal projection
onto linear spaces. Let G : Rk → R` denote a linear function. The adjoint of G
is a linear function G∗ : R` → Rk defined by the condition 〈w, Gv〉 = 〈G∗w, v〉
for all w ∈ Rk and v ∈ R`, where 〈., .〉 denotes the inner product both on Rk
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and R`. So the adjoint of a matrix is given by its transpose. The function G
is called isometric or norm-preserving if 〈Gv, Gv〉 = 〈v, v〉. It follows that G is
isometric if and only if G∗G = Ik.
The orthogonal projection onto a linear space admits a simple expression in
terms of an isometric function with image equal to that space.

Lemma 4.1.1 (Orthogonal Projection) Let M denote a linear subspace
of R`, and G : Rk → R` a linear isometric function with image equal to M.
The orthogonal projection of w ∈ R` onto M is given by

ŵ = GG∗w. (4.1)

Further, ŵ is the optimal approximation within M of w in the Euclidian me-
tric.

Proof. See Appendix A.4.

We remark that GG∗ is comparable to the so-called ’hat-matrix’, a term used
in statistical literature to indicate a mapping from data to estimate.

Example. We give a simple illustration. Let ` denote a line in the real plane,
described by

` = {ŵ ∈ R2; there exists v̂ ∈ R such that ŵ =

[
a
b

]
v̂}

with a, b fixed real numbers. By appropriate scaling we can obtain a2 + b2 = 1,
which yields the description of the line as the image of an isometric function

M :=

[
a
b

]
. The orthogonal projection of a point w ∈ R2 onto `, depicted in

Fig. 4.1 is given by ŵ = MM>w.

Figure 4.1: Orthogonal projection.
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The figure clearly shows that this is coincides with the optimal approximation
of w by a point on the line. Further notice that, independent of the value of
w, the approximation error w̃ = w− ŵ lays on the line orthogonal to `, which

is the image of M̃ =

[
−b

a

]
. 3
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For the orthogonal projection onto systems we take our starting point in an
observed time series

w : T → Rq with T = [1, N ]. (4.2)

For a given system B we have to determine the element in BT that is the closest
to w. Notice that BT is a linear space in (Rq)N , which can be identified with
RqN in the obvious way. So in order to determine the optimal approximation,
within a given system B it suffices to determine a linear isometric operator
G with image equal to BT . For this purpose we use the parametrization of
BT in terms of initial states x̂1 and auxiliary inputs v̂ : T → Rm in an SR as
described in (3.18). This indeed corresponds to the representation of BT as
the image of a linear operator, but it is in general not isometric. As a first
attempt to obtain the isometry property let us consider the operator induced
by an ISR. We assume that B is stabilizable, which guarantees the existence
of an ISR, cf. Proposition 3.2.4. So we consider the mapping

(x̂1, v̂)
ISR−→ ŵ

with ŵ defined as in (3.18) for an ISR of B . It follows from Proposition 3.2.2
that then

|x̂1|2 + ‖v̂‖2 = ‖ŵ‖2 + |x̂N+1|2, (4.3)

with x̂N+1 the end state corresponding to ŵ. Notice that if the last term would
be absent, this mapping would be an isometry, for the obvious choice of norms.
The equation also shows that ISR’s induce an isometry from the pair (x̂1, v̂)
to the pair (ŵ, x̂N+1), for the obvious choice of norms. Therefore we make a
slight adaptation by also taking into account the end state at time N + 1 for
trajectories ŵ, so we define the operator G by

G : (Rn × Rm×N) → (Rq×N × Rn), G(x̂1, v̂) := (ŵ, x̂N+1), (4.4)

with ŵ, x̂N+1 defined by x̂(t + 1) = Ax̂(t) + Bv̂(t); ŵ(t) = Cx̂(t) + Dv̂(t),
t ∈ [1, N ] for an ISR (A,B, C, D) of B .
This is an isometric operator, with image equal to BT , albeit that it also
attaches the corresponding end state to trajectories. It turns out that we can
use the result in Lemma 4.1.1 for G with only a slight modification, as follows.

Proposition 4.1.2 (Orthogonal Projection onto Systems)
Let w : T → Rq denote an observed time series,and B a given stabilizable
system. Define

(ŵ, x̂N+1) := GG∗(w, xN+1) (4.5)

with G the operator induced by an ISR of B as defined in (4.4), and xN+1 ∈ Rn

chosen such that ‖w − ŵ‖ is minimal. Then ŵ is the orthogonal projection of
w onto BT .

Proof. See Appendix A.4.

Summarizing, the optimal approximation in a given system equals the ortho-
gonal projection onto that system, which can be determined a backward and
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forward recursion in terms of an ISR, and an optimization problem over Rn.
In order to streamline the implementation of this procedure we first derive
some additional results concerning the orthogonal complement of systems in
the next section.

Leading Example - Continued. We illustrate Proposition 4.1.2 by consi-
dering the orthogonal projection of the time series

wex =

(
uex

yex

)
=

[
1 1 0
3 1 0

]
(4.6)

onto the system Bex, defined by

ŷ(t) = 2/3 ŷ(t− 1) + 2û(t)− 2û(t− 1)}, (4.7)

cf. (3.2). First we construct G as defined in (4.4). Let (A, B, C, D) denote the
ISR for Bex computed in (3.17), then G can be specified in matrix notation by

G :




x̂1

v̂1

v̂2

v̂3


 →




C D 0 0
CA CB D 0
CA2 CAB CB D
A3 A2B AB B







x̂1

v̂1

v̂2

v̂3


 =:




ŵ1

ŵ2

ŵ3

x̂4


 (4.8)

which maps the initial state and auxiliary inputs to the system trajectory and
end state corresponding to the ISR. From (4.3) it follows that this mapping is
isometric. The adjoint G∗ is given by the transpose of this matrix, for which
we give a system theoretic interpretation in Section 4.3. The evaluation of
equation (4.5) amounts to a simple linear optimization problem over x̂4 ∈ R,
which yields x̂4 = 0.55 and

ŵex =

[
1.10 0.67 0.24
2.97 1.13 −0.12

]
(4.9)

This is the closest time series to w that satisfies the system law (4.7) of Bex,
so the misfit of Bex with respect to the data equals ‖wex− ŵex‖ = 0.45. Stated
otherwise, the data is 0.45 away from what is in exact correspondence with
the system laws.
In order to illustrate the global character of the GTLS misfit, we compare it
with the first step ahead prediction error induced by Bex. These are simply
evaluated by substituting the data in the right hand side of (4.7), separately
for t = 2 and t = 3, and subtracting the prediction for yex(t) from its actual
value. This gives predictions 2 and −4/3 for respectively y(2) and y(3), so the
prediction errors equal −1 and 4/3 for t = 2, 3. Replacing y(2) and y(3) by
these predictions does not result in a time series that satisfies (4.7).
We remark that in principle this procedure for determining the GTLS misfit is
also applicable for long time series, but then this involves very large matrices.
Therefore we will develop in Section 4.3 an algorithm in terms of recursive
formulas. 3
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4.2 The Orthogonal Complement of Systems

In the previous section we have seen that the optimal approximation of data
within a system B equals the orthogonal projection of the data onto that sys-
tem. This implies that the approximation error is contained in the orthogonal
complement of the system. In this section we present some results on the re-
presentation of the orthogonal complement by ISR’s. Although these results
are not essential for the construction of the optimal approximation, they play
a crucial role in the construction of GTLS models in the next chapter.
There is a close relationship between the ISR’s of a system and its orthogonal
complement. For a system B and a finite time interval T the orthogonal
complement of BT is defined by

(BT )⊥ := {w̃ : T → Rq; 〈w, w̃〉 = 0 for all w ∈ BT}, (4.10)

where the inner product is defined by 〈w, w̃〉 := Σt∈T w(t)>w̃(t). Let B0
T denote

the time series in BT that can be preceded and continued by zeros in the system
B . The orthogonal complement of systems can be described in terms of ISR’s
as follows.

Proposition 4.2.1 (Orthogonal Complement)
Let (A,B, C, D) denote an ISR of a system B , and let B̃ and D̃ such that[

A B B̃

C D D̃

]
is a unitary matrix. Then BT (A,B, C,D)⊥ is given by

B0
T (A, B̃, C, D̃) =

{w̃ : T → Rq; {. . . , 0, 0, w̃, 0, 0, . . .} ∈ B(A, B̃, C, D̃)}. (4.11)

Proof. See Appendix A.4.

In order to get some intuition we suggest first to consider the static case, i.e.,
with A,B,C empty matrices and [D D̃] a unitary matrix.
Notice that (A, B̃, C, D̃) is also isometric, so we may call this an ISR of the
orthogonal complement of B . To give this a formal meaning, we define the
orthogonal complement B⊥ of B on the infinite time axis equal to the time
series in B(A, B̃, C, D̃) with finite support, i.e., which are zero outside a finite
interval.
The fact that time series in (BT )⊥ can be extended by zeros in B(A, B̃, C, D̃)
can be interpreted as follows. If the error would not have zero boundary states
in this system, this would imply that for all extensions of the data the misfit
with respect to B would increase. Clearly this is not true for an extension
that consists of a forward or backward continuation within B of the optimal
approximation of a time series in BT . Such an extension of the data corresponds
to an two-sided extension of the approximation error by zeros.

Remark. The proposition can be used to derive the following characterization of
minimal ISR’s, which is an alternative to Proposition 3.2.7. The controllability
condition for a pair of matrices is spelled out in the proof.
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Proposition 4.2.2 (Minimality of ISR) An isometric state representation is
(A,B, C,D) is minimal if and only if

1. [A B] has full row rank

2. (A, B̃) controllable, with B̃ as in Proposition 4.2.1.

Proof. See Appendix A.4.

The first condition has already been discussed in Proposition 3.1.5. The second con-
dition can be interpreted as follows. Only the system trajectories in B(A, B̃, C, D̃)
with finite support play a role in (4.11). Uncontrollable (autonomous) modes cor-
respond to exponentials, which have infinite support, so they are superfluous in
describing the orthogonal complement. 3

Leading Example - Continued. We use Proposition 4.2.1 to determine an
ISR for the orthogonal complement of Bex on the basis of the ISR (3.17). This

gives (6/7, 3/7,

[
2/7

−3/7

]
,

[
−6/7

2/7

]
), which corresponds to the equation

y(t) = y(t− 1)− 1/3 u(t) + 1/2 u(t− 1). (4.12)

So every time series with finite support that is orthogonal to Bex satisfies
this difference equation. This holds in particular for the approximation error
w̃ex := wex− ŵex, with data wex given by (4.6), and its optimal approximation
in Bex given by (4.9). This approximation error equals

w̃ex =

[
−0.096 0.331 −0.235

0.032 −0.126 0.118

]
. (4.13)

According to Proposition 4.2.1, this sequence, extended by zeros, satisfies
(4.12). (Proposition 4.2.2 states that the ISR for the orthogonal complement
is controllable.) 3

4.3 Projection Algorithm

In this section we present an algorithm for the orthogonal projection of an
observed time series onto a given system. The algorithm is an implementation
of Proposition 4.1.2, and also exploits the characterization of the orthogonal
complement of systems in terms of ISR’s, as developed in the previous section.
First we determine an expression for the adjoint of G.

Lemma 4.3.1 (Adjoint) The adjoint of G is given by G∗(w, xN+1) = (x1, v̂)
with v̂, x1 defined by the backward recursive formulas with t ∈ {N, . . . , 1},

x(t) = A>x(t + 1) + C>w(t)

v̂(t) = B>x(t + 1) + D>w(t), (4.14)
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Proof. This is immediately clear from the representation of G as a matrix, cf.
(4.8), and the fact that the adjoint of a matrix is given by its transpose. ♣

Now the optimal approximation in a given system can be determined as follows.
In order to increase the readability, the details of the simple linear optimization
problem in the second step is described in the proof of correctness of the
algorithm.

Algorithm 1 (Optimal Approximation in Given System)

Data: • An observation w : T → Rq, T = {1, . . . , N}
• A stabilizable system B with minimal ISR (A,B,C, D).

Step 1: Determine B̃ and D̃ such that

[
A B B̃

C D D̃

]
is a unitary ma-

trix.

Step 2: Define v̂, ṽ and x by the backward recursive equations

x(t) = A>x(t + 1) + C>w(t)

v̂(t) = B>x(t + 1) + D>w(t)

ṽ(t) = B̃>x(t + 1) + D̃>w(t), (4.15)

with the end state x(N + 1) determined such that ‖ṽ‖ is mini-
mal.

Step 3: Define ŵ by

x̂(t + 1) = Ax̂(t) + Bv̂(t) with x̂(1) = x(1)

ŵ(t) = Cx̂(t) + Dv̂(t), (4.16)

and define w̃ by

x̃(t + 1) = Ax̃(t) + B̃ṽ(t) with x̃(1) = 0

w̃(t) = Cx̃(t) + D̃ṽ(t), (4.17)

Result: • ŵ is the optimal approximation of w in B .

• w̃ = w − ŵ is the corresponding approximation error.

• d(w,B) = ‖w̃‖ = ‖ṽ‖.

Proof. See Appendix A.4.
Implementation: Alg1 in Appendix B.2.

The relation with Proposition 4.1.2 is as follows. Let G be the operator in-
duced by (A,B, C, D), as described in (4.4), and define G̃ similarly as the
operator induced by (A, B̃, C, D̃). The second step is the combined evaluation
of G∗(w, xN+1) and G̃∗(w, xN+1) denoted respectively by (x1, v̂) and (x1, v̂). So



60 CHAPTER 4. EVALUATION OF THE MISFIT

in the third step we determine ŵ = GG∗(w, xN+1) (and w̃ = G̃G̃∗(w, xN+1)).
This is in correspondence with Proposition 4.1.2 as xN+1 is determined such
that ‖w − ŵ‖ = ‖ṽ‖ is minimal.
We remark that for the mere evaluation of the misfit the third step is su-
perfluous, as it is already determined in the second step, by the norm of ṽ
.
This algorithm is a modified version of the projection algorithm in [47], which
concerns the optimal approximation of infinite square summable time series.
New aspects of Algorithm 1 are the estimation of boundary states, the use of
ISR’s and the results on the approximation error.

Leading Example - Continued. In order to illustrate the algorithm we
consider the optimal approximation in the system Bex, defined by (4.7) for a
system trajectory in Bex that is corrupted by white noise. The regular part wr

consists of two components, ur and yr, where ur is the realization of a white
noise process with unit variance, and yr is satisfies the system law of Bex, so

yr(t) = 2/3 yr(t− 1) + 2ur(t)− 2ur(t− 1), (4.18)

for t ∈ [1, 100]. The observation w consists of two components u and y, with

u(t) = ur(t) + η(t); y(t) = yr(t) + ε(t), (4.19)

where η and ε are independent white noise processes with variance 0.25, both
independent of ur.
The misfit of Bex equals ‖w̃‖ = 5.20, as compared to ‖w‖ = 22.72, so the
relative misfit is given by 5.20/22.72 = 0.23. This is considerably smaller than
the Euclidian norm of the white noise by which the observation was corrupted
(recall that w = wr + wn, with wr ∈ Bex and wn white noise; in our example
‖wn‖ = 7.62). This can be explained as follows. The optimal approximation is
simply obtained by projecting the noise wn on Bex, with a resulting decompo-
sition wn = ŵn + w̃n, where ŵn ∈ Bex and w̃n ∈ B⊥ex. In our case, ‖ŵn‖ = 5.56
and ‖w̃n‖ = ‖w̃‖ = 5.22. So the noise is distributed nearly equally over the
system (Bex)[1,100] and its orthogonal complement, which corresponds to the
fact that they are nearly equally large linear subspaces of R2×100, of dimension
respectively 101 and 99. 3

4.4 Recursive evaluation of misfit

The algorithm in Section 4.3 does not only determine the misfit of a system
with respect to a time series, but also determines the approximation error
(or ’residuals’) at each time instant. The approximation error indicates how
the misfit is distributed over the observation interval. If it consist of some
high peaks, this might point exceptional deviations at the corresponding time
instants, while a ’white noise like’ error indicates that the misfit is equally
distributed over time. Notice, however, that a high peak in the approximation
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error at time t, w̃(t), is not necessarily due to a large deviation in the data
at exactly that moment, but may also be the effect of observations in the
neighbourhood of t.
In order to gain additional insight in the location of deviations, we analyse the
effect of each individual observation on the misfit recursively, i.e. given the
observations in the past, but independent of observations in the future. Let
ŵt denote the optimal approximation, within a given system B , of w[1,t], so

ŵt : [1, t] → Rq ∈ B[1,t] minimizes ‖w[1,t] − ŵ‖ (4.20)

Then the problem of determining these optimal approximations ŵt recursively
in time can be formulated as follows.

Definition 4.4.1 (Recursive Evaluation of Misfit)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (m,n).

determine:

• ŵt(t) as a function of the previous approximations ŵt−1 and the new
observation point w(t).

We make use of the following notation. Let B denotes a given system with
ISR (A,B,C,D), and let B̃, D̃ be defined as in Algorithm 1. The observation
interval is given by [1, N ] . Further
ŵt: the optimal approximation within B of the observation up to and including

time t, cf. (4.20).
w̃t: the approximation error corresponding to ŵt.
x̂t, v̂t: the state and auxiliary input corresponding to ŵt in (A,B, C,D).
x̃t, ṽt the state and auxiliary input corresponding to w̃t in (A, B̃, C, D̃).
xt: x̂t + x̃t.

Notice that ŵt, w̃t, v̂t and ṽt are time series defined on {1, . . . , t}, while x̂t, x̃t

and xt are also defined for time t + 1.
In this notation, the optimal approximation determined in Algorithm 1 is
denoted by ŵN and its corresponding state by x̂N . In the recursive algorithm
we determine the values for x̂t(t + 1) and ŵt(t) recursively for t = 1, . . . , N .
Comparing ŵt(t

′) and ŵN(t′), both are approximations of w(t′), where the first
one is optimal given the observations up to time t, while the latter is based
on the whole observation. Stated according to the common terminology in the
literature, Algorithm 1 determines the smoothed values of the optimal approxi-
mation and the corresponding state, while the recursive algorithm computes
their past-induced values.
The algorithm is based on the following considerations. Suppose we have
observed a time series {w(1), . . . , w(t − 1)} and determined its optimal ap-
proximation in B ,

w(t′) = ŵt−1(t
′) + w̃t−1(t

′), for t′ ∈ {1, . . . , t− 1},
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where ŵt−1 ∈ B[1,t−1] with final state x̂t−1(t). First consider the case that the
next observation is a continuation of ŵt−1 within B , i.e., w(t) = Cx̂t−1(t) +
Dv̂(t) for some v̂(t) ∈ Rm. Obviously, this will not increase the misfit, as there
is no reason to change the approximation before t, and no approximation error
has to be made at t.
Next suppose that w(t) is not compatible with ŵt−1 in B , i.e., ε(t) := w(t)−
Cx̂t−1(t) 6∈ imD. Then we have to approximate the observation by

ŵt(t) = Cx̂t(t) + Dv̂t(t), (4.21)

where x̂t(t) and v̂t(t) have to be determined such that the increase of the
squared misfit, denoted by m(t)2, is as small as possible. This increase consists
of two parts:

• the approximation error at time t, i.e., |w(t)− ŵt(t)|, denoted by m2
0(t)

• an increase of misfit over the past, denoted by m2
−(t), due to changing

the state x̂t−1(t), which is optimal for {w(1), . . . , w(t− 1)}, into x̂t(t).

In general, keeping the past approximation ŵt−1 fixed, hence keeping x̂t−1(t)
fixed, would lead to a large approximation error at time t, while minimizing
the error at t alone would lead to a large increase of the misfit over the past
due to the large change in the state at time t. The optimal strategy is a trade
off between both approaches. The main result underlying the algorithm is that
the only feature of the past observations that determines this trade off is the
final state x̂t−1(t) of the optimal approximation. Equivalently, given x̂t−1(t),
the optimal values for x̂t(t) and v̂t(t) in (4.21) are independent of the past
observations. This opens the way to compute the optimal values for x̂t(t + 1)
and v̂t(t) in (4.21) recursively.

Algorithm 2 (Recursive Approximation within a Given System)

Data: • An observation w : T → Rq, T = {1, . . . , N}
• A stabilizable system B with minimal ISR (A,B,C, D).

Step 1: Determine B̃ and D̃ such that

[
A B B̃

C D D̃

]
is a unitary ma-

trix.

Step 2: Define W̃t, F̃t, G̃t and H̃t for t ∈ T by the equations

W̃t+1 = AW̃tA
> + B̃B̃>; W̃1 = 0

F̃t = AW̃tC
> + B̃D̃>,

G̃t = CW̃tC
> + D̃D̃>

H̃t = G̃t − F̃>
t W̃−1

t+1F̃t

If the inverse does not exists, replace by a pseudo-inverse.
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Step 3: Define for t ∈ T ,

ε(t) = w(t)− Cx̂t−1(t) (4.22)

x̂t(t + 1) = Ax̂t−1(t)− W̃−1
t+1F̃tε(t); x̂0(1) = 0 (4.23)

ŵt(t) = Cx̂t(t) + (I − H̃t)ε(t). (4.24)

and further

m(t)2 = ε(t)>H̃tε(t); (4.25)

m0(t)
2 = ε(t)>H̃2

t ε(t) (4.26)

m−(t)2 = ε(t)>(H̃t − H̃2
t )ε(t) (4.27)

Result: • x̂t+1(t) is the end state of the optimal approximation of
{w(1), . . . , w(t)} in B.

• ŵt(t) is the optimal approximation of {w(1), . . . , w(t)} at
time t.

• m(t)2 is the increase of squared misfit due to observation
w(t).

• m(t)2 = m−(t)2 + m0(t)
2, where m2

−(t) denotes the incre-
ase of the squared misfit due to observation w(t) on the
past {1, . . . , t− 1}, and m0(t) the misfit at t.

Proof. See Appendix A.4.
Implementation: Alg2 in Appendix B.2.

Concerning the interpretation of this algorithm, we make the following re-
marks.

• The matrix W̃t is the finite time controllability gramian corresponding
to (A, B̃). It measures the cost of changing the optimal end state: a
change into x̂t−1(t)+ x̄(t) requires an increase of the squared norm of the
auxiliary variables ṽt by x̄(t)>W̃tx̄(t), as shown in the proof.

• The algorithm is comparable to Kalman filtering in the sense that it
concerns the recursive reconstruction of the (unobserved) state from an
observed time series. For a description of the Kalman Filter we refer to
[2]. In the sequel we assume some familiarity with this subject. The main
difference is that in Kalman filtering the estimation of the state is based
on (a priori) stochastic assumptions on the data generating process for
w, while the ’GTLS-filter’ is entirely based on the (also a priori) chosen
deterministic misfit criterion. In addition, GTLS models contain some
degrees of freedom at each time instant, while Kalman Filtering takes its
starting point in a complete (stochastic) specification of a process.

• The matrix W̃−1
t+1F̃t in the third step plays the role of the so-called Kal-

man gain, indicating the weights by which the deviations ε(t) influence
the state evolution.
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• One may compare ε(t) to an innovation process, representing the ’unex-
pected’ part of a new observation w(t) given the final state x̂t−1(t) of the
approximation ŵt−1. A zero innovation ε(t) corresponds to an observa-
tion w(t) that is in perfect correspondence with the implications of the
system B , and hence does not lead to an increase of misfit, cf. (4.25).

• The effect of a nonzero innovation at time t on the misfit is measured
by the matrix H̃t. Equation (4.25) states that the increase of squared
misfit at time t, m(t)2, equals ε(t)>H̃tε(t). For a good understanding of
the algorithm it is important to notice that H̃t is singular: H̃tD = 0.
This reflects the fact that values of ε(t) in the image of D do not cause
an increase of misfit. Such an ’innovation’ corresponds to an observation
of the form w(t) = Cx̂t−1(t) + Dz, with z ∈ Rm, which is a continuation
of the approximation wt−1 in B, and hence causes no error at time t.
Stated otherwise, the kernel of H̃t represents the degrees of freedom in
the system B at time t.

An observation w(t) for which ε(t) is not contained in the kernel of H̃t

leads to an increase of misfit. The equations (4.26) and (4.27) show how
the approximation error is divided over the past (due to a revision of the
approximation before t) and present.

• The system matrices involved in Step 3 are time dependent, but indepen-
dent of the observation. For N →∞, W̃t converges to the controllability
gramian W̃ of (A, B̃), which is well defined as A is asymptotically stable,
cf. Proposition 3.2.7.1. Consequently, if W̃t has become equal to W̃ wit-
hin a sufficiently high precision level, it can be replaced by W̃ , resulting
in a time-invariant filter for the optimal approximation in Step 3. This
is comparable to the so-called steady state Kalman filter.

We conclude this chapter by some reflections on the following question: What
does a model B imply for an observation w(t) given the past observations
{w(1), . . . , w(t − 1)}? Clearly the answer depends on the relationship bet-
ween model and data we assume. If B is known to be an exact model for w,
the answer is obvious: w(t) belongs to the set

{w(t); w(t) = Cx̂t−1(t) + Dz for some z ∈ Rm}, (4.28)

where x̂t−1(t) is the optimal end state constructed on basis of the previous
observations. Equivalently, the ’innovation’ ε(t) is then contained in the kernel
of H̃t, which equals the image of D for t > n, as explained before.
On the other hand, if no assumptions are made on the quality of B for w, of
course nothing can be said about the value w(t). The results of the algorithm
are still valid in this case, as it is obtained without any assumption on the
relation between system and data, but nothing can be said about ε(t) and
hence nothing about w(t).
The most interesting question from a practical point of view concerns situations
in between these extremes, in which we know that the system B is an accurate
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model for w, i.e. with a low misfit. On basis of the foregoing results we can
determine the set of all values for w(t) that lead to a certain increase of squared
misfit µ. From (4.25) it follows that this set is given by

{w(t); |H̃1/2
t (w(t)− Cx̂t−1(t)| = √

µ}.

So the level curves of the GTLS criterion consist of elliptic ’cones’ around the
’exact’ data points (4.28). This gives a rather detailed answer to the question
for approximate models. We refer to Section 6.4.1 for an illustration of this
fact.
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Chapter 5

GTLS Models

GTLS models are systems of restricted size that have minimal misfit with
respect to an observed time series. In the previous chapter we described an
algorithm for the evaluation of the misfit for a given system, in terms of isome-
tric state representations. Now we come to the central problem in the GTLS
approach, namely to determine a system of restricted rank and degree that
has minimal misfit with respect to the data.

This is a relatively complex problem as compared to the evaluation of the
misfit, as it concerns optimization over a space that is non-linear, even non-
convex. For the static case this is solved by the singular value decomposition
(SVD), for the dynamic case we have to resort to iterative procedures that
determine locally optimal models.

Another complication is the fact that neither the existence nor the uniqueness
of solutions is guaranteed. Therefore, most results in this chapter are valid for
generic data, i.e. with the exclusion of a set that has zero measure.

We will consider the GTLS problem at three levels:

GTLS: at the level of trajectories, as in Definition 2.1.8,
GTLS-SR: as an optimization problem in terms of SR’s,
GTLS-ISR: as an optimization problem in terms of ISR’s.

We start with an analysis of the GTLS problem at the first level, by discussing
the existence and uniqueness of solutions, and the occurrence of local optima.
This is followed by two algorithms for the construction of locally optimal mo-
dels, based on the formulation of the GTLS problem in terms of respectively
state representations (GTLS-SR) and isometric state representations (GTLS-
ISR).

The first algorithm consists of three model improvement constructions to lo-
wer the misfit. From these constructions we derive a characterization of the
stationary points of the GTLS criterion in terms of orthogonality conditions.
This is used to determine the optimality margin of an approximation of the
data, which indicates how much the data has to be changed to make the ap-
proximation a stationary point. The algorithm also shows how to exploit the
SVD for the dynamic case.

The second algorithm is a Gauss-Newton algorithm in terms of ISR’s.
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The result of the iterative algorithms depends on the chosen initial model, as
there may be several local optima. One way to account for this is to start the
algorithms in several models and to compare the results, in the hope to find
the global optimum. In fact this seems to work quite well in applications that
concern small systems. A more sophisticated approach is to use a heuristic
method to determine ’good’ initial values that may be expected to be close
to the global optimum. In Section 5.6 we present such a procedure, based on
canonical correlation analysis of the data.

5.1 On Existence and Uniqueness

In this section we discuss the existence and uniqueness of solutions for the
GTLS problem. For the analysis of these issues we take our starting point
in the formulation of the GTLS problem as the approximation of the data by
regular time series,

GTLS : minimize ‖w − ŵ‖ over ŵ ∈ Bq,m,n
T , (5.1)

as formulated in Definition 2.1.8. As before, T denotes the observation interval,
q the number of components in the data, and m and n denote the tolerated
rank and degree. In the sequel we exclude the trivial case m = q.
First we discuss some properties of the set Bq,m,n

T that indicate the difficulty
of the GTLS problem. This set is not linear, and even not convex. In general
the sum of two of its elements belong to a system with rank 2m and degree
2n, or it is even not regular if 2m ≥ q. For instance, the sum of two singular
matrices in R2×N is in general not singular. Moreover Bq,m,n

T is not a closed set
(in the ’standard’ topology of pointwise convergence), and related to this, the
optimal approximation of a data point in Bq,m,n

T need not exist. We illustrate
this by a simple example.

Example. (No solution for GTLS.)
In order to illustrate the exceptional cases, we first consider the simple case
with tolerated size at most (m,n) = (0, 1), i.e., autonomous models of degree
at most one, and the following data sequence

w = [0, 0, 1]. (5.2)

The optimal approximation of this data sequence does not exist, which can be
seen as follows. Clearly w can not be generated by an autonomous model of
rank one, so a zero misfit cannot be achieved. On the other hand, arbitrarily
low misfits can be achieved for the system {w : Z → R; w(t) = cαt with c ∈ R},
by taking α sufficiently large. This shows that there does not exist an optimal
autonomous system of degree one for w.
Similarly, there does not exist an optimal model for

w = [1, 0, 0] (5.3)
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of this size. Arbitrarily low misfits are obtained by taking α sufficiently close
to zero, but w is not a part of an exponential time series on Z.
These examples are easily extended to the non-autonomous case. For instance,
from the same type of reasoning it follows that there does not exist an optimal
system of rank one and degree one for the vector time series

w =

[
0 0 1
a b c

]

if a 6= 0. 3

Not only existence of solutions, also uniqueness is not guaranteed.

Example. (Non-uniqueness of solution)
As in the previous example we consider tolerated rank zero and degree one,
now for the data w = [0, 1, 0]. Approximations take the form c[1 λ λ2] for
c, λ ∈ R. It is easily verified that for given λ the optimal value for c is given by

λ
1+λ2+λ4 , and that the corresponding GTLS criterion equals 1− λ2

1+λ2+λ4 . This
achieves its optima in λ = ±1 and c = ±1/3, so both ŵ1 = [1/3, 1/3, 1/3] and
ŵ2 = [−1/3, 1/3,−1/3] are globally optimal approximations in B1,0,1. 3

Summarizing, the GTLS problem amounts to an optimization over a non-
convex set, and neither the existence nor the uniqueness of solutions is gua-
ranteed.

However, things are not as bad as this might suggest. The previous examples
are degenerate cases, and for generic data the situation seems much simpler. In
the following conjecture we list some statements that fall in the class ’obvious
but not obvious to prove’.

Conjecture 5.1.1 (Existence and Uniqueness of Solutions)

1. For generic data there exists a unique solution of the GTLS problem
(5.1).

2. For generic data there is a unique stabilizable system of full tolerated size
that contains the optimal approximation.

3. The solution is continuous in generic data.

For a motivation we refer to Appendix A.5.

On the basis of this conjecture we speak in the sequel of the GTLS approxi-
mation of the data or the GTLS system (of a certain tolerated size), without
claiming that there could not happen to be another global optimum. Both an
optimal trajectory and the corresponding system are called the solution of the
GTLS problem.
The second conjecture implies that the GTLS problem can be treated in terms
of (minimal) ISR’s, which only exist for stabilizable systems. Continuity of
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the solution indicates that small changes in the data, such as round-off errors,
do not have a dramatic effect.

The non-linear character of the optimization problem causes serious problems
from a practical point of view. As mentioned before, we are not able to develop
an algorithm that is guaranteed to determine the globally optimal solution of
the GTLS problem. Instead, we have to set out to the less ambitious goal of
determining locally optimal solutions, i.e., approximations that are the closest
to the data at least in a small neighbourhood. This can be formalized as
follows. We call a set V ⊂ Bq,m,n

T open in Bq,m,n
T if there is an open set R in

Rq×N such that V = Bq,m,n
T ∩R. It is easily verified that this induces a topology

on Bq,m,n
T . A neighbourhood of a data point is an open set that contains that

point.

Definition 5.1.2 (Local Optimality) A trajectory ŵ ∈ Bq,m,n
T is called lo-

cally optimal if it is the closest approximation to the data in a neighbourhood
of ŵ. A system in Bq,m,n is called locally optimal if it contains a trajectory that
is locally optimal (in Bq,m,n

T ).

Clearly a global solution is also locally optimal, but in nonlinear problems the
occurrence of several models that are only locally optimal is a rule rather than
an exception. We conjecture that there exists finitely many local optima, and
that upper bounds for their number can be estimated in terms of the length
of the data and the tolerated size, but we have to leave this issue for further
research.
Summarizing, although there are exceptional cases in which there exists no or
more than one solution to the GTLS problem, we conjecture that this only
concerns non-generic data. The algorithms we present only determine locally
optimal models, which are in general not unique. This means that they do not
necessarily yield the optimal solution, and in order to account for this fact, we
accompany the iterative algorithms by a heuristic method to determine good
initial values.

Remark. It is of some interest to know that from every initial point in Bq,m,n every
other element can be reached by a continuous path, i.e., the set Bq,m,n

T is pathwise
connected. A trivial way to see this is the connection of two points z1, z2 via zero by
{λz1} ∪ {µz2} with λ, µ ∈ [0, 1] ⊂ R.
Of course it is not true that there exists a path from every point to the global
optimum on which the misfit is decreasing, which means that the global optimum
might be unreachable from some initial points along iterative improvements. So
despite the fact that Bq,m,n

T is pathwise connected, it is still important to vary initial
models in order to find the global optimum. 3

5.2 Model Improvement Constructions

The basic idea of our algorithm is to determine repeatedly local improvements
of a given approximation of the data, until no direction can be found in which
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the distance to the data decreases. This results in a sequence of models with
decreasing misfit that, roughly speaking, converges to a local optimal solution.
The first algorithm we present is based on the expression of the GTLS cri-
terion as a parameter optimization problem in terms of SR’s. We make use
of the result in Proposition 3.3.2, which describes how SR’s represent system
behaviours on finite time intervals. Let T = [1, N ] denote the observation
interval, and let ŵ denote the outcome corresponding to the initial state x̂1

and auxiliary inputs v̂ : T → Rm in the SR (A,B,C, D), so

x̂(t + 1) = Ax̂(t) + Bv̂(t)

ŵ(t) = Cx̂(t) + Dv̂(t) (5.4)

for t ∈ T , cf. (3.18) with x̂(1) = x̂1. According to this we define the function
G that maps an SR, an initial state and an auxiliary input sequence to the
corresponding system trajectory ŵ : T → Rq, i.e.,

G(A,B, C, D, x̂1, v̂) := ŵ (5.5)

The GTLS problem (5.1) is (practically) equivalent to

GTLS-SR : minimize ‖w −G(A,B, C, D, x̂1, v̂)‖. (5.6)

Remark. In fact there is a slight difference with the GTLS problem as formulated
in (5.1), related to the difference between SR’s on finite time and on Z as discussed
in Section 3.3.
As an illustration of the exception case, we consider the data w as given in (5.3).
This belongs to BT (0,−, 1,−) for initial state x̂(1) = 1, so (5.6) has a solution with
zero misfit for w, while it has been proved that (5.1) has not, see Section 5.1.
This means that (5.6) may have some ’pseudo-solutions’ that consist of system tra-
jectories starting at t = 1 that cannot be extended to the past {t < 0}. Stated
otherwise, some states of the system are not reachable from the past. As this plays
no role in all our simulations, we ignore this detail in the sequel. 3

We follow an iterative approach for the nonlinear problem (5.6). In each step
we keep some parameters fixed, such that the resulting subproblem becomes
sufficiently simple. For instance, for fixed (A,B, C, D) the resulting problem
in v̂ and x̂(1) is solved by the projection scheme discussed in the foregoing
chapter. We consider the following subproblems.

Problem 1: Optimal C, D
For given A, B, v̂ and x̂(1), solve the GTLS problem for C and D.

Problem 2: Optimal B and D and x̂(1)
For given A, C and v̂, solve the GTLS problem for B, D and x̂(1).

Problem 3: Optimal B, D and v̂ in an ISR
For given A and C with A>A + C>C = In and given x̂(N + 1),
solve the GTLS problem for B, D and v̂ under the restriction that
(A,B, C, D) is isometric.
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Notice that for the first two problems the approximation as defined in (5.6)
is linear in the parameters. This means that the misfit is quadratic in these
parameters, and hence these problems have a unique solution that is relatively
easy to determine. The third problem is precisely the problem that can be
solved by the SVD. In comparison with the static case, for which the SVD
yields a complete solution, cf. Section 2.3, we can say that it also solves the
GTLS problem for ’fixed memory structure’, as A and C determine the effect
of the state on system trajectories. In the next theorem we give constructive
solutions of these problems. The variables ŵ, x̂ and v̂ are defined as in (5.4).
In order to shorten the notation, we use x̂ and σx̂ for the state on respectively
time interval [1, N ] and [2, N + 1].

Theorem 5.2.1 (Model Improvement Constructions)

1. Construction 1 (Projection of the Approximation Error)
Let E denote the linear space

E := {ŵ : T → Rq; ∃C ∈ Rq×n and D ∈ Rq×m

such that with σx̂ = Ax̂ + Bv̂

it holds that ŵ = Cx̂ + Dv̂}. (5.7)

Let P , Q and x1 denote the coefficients of the orthogonal projection of
w onto E, say ŵ′ = Px̂ + Qv̂ with x̂(1) = x̂1. Then B1 := B(A,B, P,Q)
solves problem 1.

2. Construction 2 (Dual version of construction 1)
Define the linear space F by

F := {ŵ : T → Rq; ∃B ∈ Rn×m, D ∈ Rq×m and x̂1 ∈ Rn

such that with σx̂ = Ax̂ + Bv̂, x̂(1) = x̂1,

it holds that ŵ = Cx̂ + Dv̂}. (5.8)

Let P,Q denote the coefficients of the orthogonal projection ŵ′ of w onto
F , i.e., ŵ′ = Cx̂+Qv̂ and x̂ = Ax̂+P v̂. Then B2 := (A,P, C, Q) solves
problem 2.

3. Construction 3 (SVD on auxiliary inputs)

Let B̄ ∈ Rn×q, D̄ ∈ Rq×q be such that

(
A B̄
C D̄

)
is a unitary matrix.

Let v : [1, N ] → Rm be defined by

x = A>σx + C>w; x(N + 1) = x̂(N + 1)

v = B̄>σx + D̄>w, (5.9)

with SVD v = Σq
i=1λiuizi, and let Um := [u1, . . . um] ∈ Rq×m. Then

B3 := B(A, B̄Um, C, D̄Um) solves problem 3.
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Proof. Parts 1 and 2 follow immediately from the definitions of E and F . For
part 3, observe that (A,B,C,D) is an ISR if and only if there exist B̃, D̃ and
a unitary V such that [B B̃] = B̄V and [D D̃] = D̄V . For the representation
(A,BV,C,DV ) Algorithm 1 gives as auxiliary input for the approximation and

error v̂′ and ṽ′
(

v̂′

ṽ′

)
= V >v, with misfit ‖ṽ‖. By taking V = [u1, . . . , uq],

this misfit is determined by the q −m smallest singular values of v, which is
minimal. ♣
Implementation: mic1, mic2, mic3 in Section B.2.

From this theorem it follows that the iterative application of these three con-
structions leads to a sequence of models with monotonically decreasing misfit.
The question is whether these constructions are sufficient to determine locally
optimal models. Stated otherwise, if an approximation is not locally optimal,
does then at least one of the constructions yield an improvement? Roughly
speaking, this is indeed the case. The proof of this result is based on a charac-
terization of local optimality, which is the topic of the next section, where we
also present a GTLS algorithm in terms of the constructions in Theorem 5.2.1.

Leading Example - Continued. In order to illustrate the foregoing, we
consider the data w = (u, y) described in Section 4.3, see (4.19). We apply the
model improvement constructions to the model Bex as defined in (3.2), and
to a randomly chosen model Brand. The parameters of an SR of Brand were
obtained by a random sample from the standard normal distribution.

In Table 5.1 the resulting relative misfits are listed, i.e. the misfits divided
by the norm of the data. The first row shows the initial misfits. The next
three rows contain the misfits of the models obtained by applying each of the
constructions separately and only once. This shows that each individual con-
struction can give a significant decrease of the misfit. The last row shows the
misfit resulting from applying these constructions iteratively until convergence.

Table 5.1: Model improvements.

model Bex Brand

relative misfit 0.2287 0.7368
construction 1 0.2249 0.2340
construction 2 0.2251 0.2420
construction 3 0.2286 0.2333
limit 0.2236 0.2236

Construction 1 transforms model Brand with relative misfit 0.7368 into an
improved model with relative misfit 0.2340. Applying construction 1, 2 and
3 iteratively leads to a sequence of relative misfits that converges to 0.2236,
both for Bex and Brand as initial model.

For both initial models the decrease of misfit becomes below 10−10 after about
20 iterations. Later on we compare the performance of the algorithm with the
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Gauss-Newton algorithm, in Section 5.5. The limiting model is the same in
both cases, which suggests that it is (at least locally) optimal. It is given by

Bgtls = {(u, y) : Z → R2 y(t) = 0.67y(t− 1) + 1.84u(t)− 1.96u(t− 1)}. (5.10)

The parameters of this system are relatively close to those of the data genera-
ting system, cf. equation (3.2). 3

5.3 Optimality Conditions

In this section we investigate whether the model improvement constructions in
the previous section are powerful enough to determine locally optimal models.
First we derive necessary conditions for optimality from the fact that for an
optimal model the model improvement constructions can give no improvement.
Although we conjecture that the following result is valid for all stabilizable
systems, we only managed to prove it for controllable systems, i.e. systems for
which all trajectories on finite time admit a continuation that becomes zero
within finite time. We express the optimality conditions in terms of empirical
covariances. For two sequences a : T → Rk and b : T → Rl this is defined as
cov(a, b) := Σt∈T a(t)b(t)> ∈ Rk×l. Further, by cov([a1, a2], [b1, b2],) we denote
the covariance matrix of the combined trajectories [a>1 a>2 ]> and [b>1 b>2 ]>.

Theorem 5.3.1 (Optimality Conditions) Let B denote a controllable
GTLS model for an observation w. Let ŵ ∈ B denote the optimal approxi-
mation of w, and w̃ = w− ŵ the corresponding approximation error. Let x̂, v̂
denote respectively the state and auxiliary input corresponding to ŵ in a mini-
mal state representation of B, and let x̃, ṽ be defined analogously for w̃ in B⊥.
Then the following equivalent conditions hold:

1. cov(v̂, ṽ) = 0, cov(v̂, x̃) = 0 and cov(x̂, ṽ) = 0;

2. cov([v̂, x̂], [ṽ, x̃]) = 0;

3. cov([ŵ, σx̂], [w̃, σx̃]) = 0;

4. cov([v̂, x̂, ŵ, σx̂], [ṽ, x̃, w̃, σx̃]) = 0;

Proof. See Appendix A.5.

In practice, in order to evaluate to what extent these conditions are satisfied
it may be useful to consider the empirical correlations, i.e., the covariances
scaled by the magnitude of the variables.
Next we investigate to what extent these conditions are sufficient for optimality.
It is not difficult to check that the number of free parameters in (A,B, C, D)
modulo the equivalence of Proposition 3.1.4, is given by nq+m(q−m). This is
precisely the number of equations in Theorem 5.3.1.1, and the other conditions
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can be derived from these. This indicates that the conditions determine a finite
number of models.
In fact, these conditions characterize the stationary points with respect to the
GTLS criterion (5.6). Stationary points are those values of parameters in
which a differentiable criterion function has zero derivative. Notice that G as
defined is (5.5) is a polynomial function, so this notion is well-defined for G.
With a slight abuse of terminology, we also call the approximation and system
corresponding to a stationary point of G a stationary point.

Theorem 5.3.2 (Characterization of Stationary Points) A system B sa-
tisfies the optimality conditions of Theorem 5.3.1 if and only if B is a stationary
point of the GTLS criterion.

Proof. See Appendix A.5.

This establishes the fact that only for stationary points none of the improve-
ment constructions yields a decrease of misfit. So by iteratively applying these
constructions stationary points can be obtained. In order to be specific we
formulate the following algorithm.

Algorithm 3 (Model Improvement Algorithm)

Data: • An observation w : T → Rq, T = {1, . . . , N}
• An isometric state representation (A,B, C, D) with m auxi-

liary inputs and n states, corresponding to an initial model
B ∈ Bq,m,n

Step 1: Determine optimal v̂ and x̂(1) by Algorithm 1.

Step 2: Determine optimal C and D by the first construction in The-
orem 5.2.1, and transform the result to an equivalent ISR.

Step 3: Determine optimal B, D and x̂(1) by the second construction
in Theorem 5.2.1, and transform the result to an equivalent
ISR.

Step 4: Determine optimal B, D and v̂ in an ISR, i.e., such that (3.7)
remains valid, by the third construction in Theorem 5.2.1, and
redefine B as the system corresponding to the resulting ISR.

Step 5: If the misfit has decreased go to step 1, else stop.

Result: B is a stationary point with respect to the GTLS criterion.

Proof. If the misfit has not decreased in Step 2, 3 and 4, then none of the
model improvement constructions yields an improvement. This implies that
the optimality conditions in Theorem 5.3.1 are valid. Now the result follows
from Theorem 5.3.2. ♣
Implementation: GTLS in Section B.2.
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We remark that we do not have theoretical or practical reason for the order in
which the constructions are applied.
Of course, in practice the algorithm is stopped when the decrease of misfit
has come below a certain threshold, depending on the required accuracy. So
the result should be interpreted as that a stationary point is approximated
within arbitrary precision. In the next section we develop a measure for the
distance of models to an exact stationary point. Although the algorithm leads
to a converging sequence of misfits, it is conceivable that it might yield a non-
converging series of stationary points. This seems a very unlikely situation, at
least for generic data. Moreover, also in that case the algorithm does yield a
stationary point within arbitrary accuracy. As much as it is worth, we mention
that we never encountered convergence problems in any of our simulations. We
leave a thorough analysis of the convergence properties of the algorithm as an
issue for further research.

Leading Example - Continued. The covariances of Theorem 5.3.1 give
a first indication of the optimality of a model. In order to make this scale
invariant we consider the correlations in an ISR. For the nominal model Bex

they are around 0.3, for the randomly chosen model Brand correlations of 0.8
occur, while for the model Bgtls in (5.10) the correlations are approximately
zero, below 10−5. This confirms that Bgtls is indeed (locally) optimal.
Next we investigate whether the model order can be deduced from the data.
For this purpose we determine models of various degree by Algorithm 3. Their
misfits are listed in Table 5.2. The misfit of the optimal static model is given
by the smallest singular value of w.

Table 5.2: Order selection.

order n = 0 n = 1 n = 2 n = 3 n = 4
rel. misfit 0.295 0.224 0.218 0.210 0.201

The first order GTLS model for the data w = (u, y) given by (4.19) is sub-
stantially more accurate than the static GTLS model, and only slightly less
accurate than higher order models.

This motivates the choice of a first order model. It is substantially better
than the static model, and a further increase of the order gives only small
improvements. 3

5.4 Optimality Margin

The foregoing results can be used to analyse whether a proposed system B
is close to optimality, or more precisely, whether it is close to a stationary
point. This is for example relevant in the formulation of stopping criteria for
the iterative algorithm of Section 5.3. Perhaps the most convincing way to
evaluate optimality is to consider the distance between B and a GTLS model
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B∗, as defined in Definition 2.1.7. However, this is in general not feasible
as it would require the knowledge of B∗. Instead of asking how much the
system should be changed to become optimal for the observed data w, we will
consider the question how much these data should be changed to make the
given system optimal. For pragmatic reasons we consider the distance to the
nearest stationary point, defined as

min{‖w̄‖; B is stationary for w − w̄}. (5.11)

Because it seems difficult to evaluate this distance exactly, we present an upper
bound that is relatively easy to compute. This upper bound is obtained by
allowing only adjustments of the data that belong to (BT )⊥, so that the optimal
approximation of the data within BT is not affected. This leads to the following
definition of the optimality margin.

Definition 5.4.1 (Optimality Margin) The optimality margin of a system
B with respect to an observation w is defined as

min{‖w̄‖; w̄ ∈ (BT )⊥ and B is stationary for w − w̄}. (5.12)

The following result shows that the computation of the optimality margin is
relatively easy.

Proposition 5.4.2 (Optimality Margin) Let ŵ denote the optimal approxi-
mation of w in BT and let w̃ := w− ŵ denote the corresponding approximation
error. Further define Z := {z ∈ (BT )⊥; B is stationary for ŵ + z}. Then Z
is a linear space, and the optimality margin is given by ‖w̃ − w̃′‖, where w̃′ is
the orthogonal projection of w̃ on Z.

Proof. See Appendix A.5.

Under the assumption that a model B is globally optimal for adjusted data
w− w̄, the optimality margin can also be used to determine a lower bound for
the minimal misfit for w, as follows.

Proposition 5.4.3 (Bounds for the Minimal Misfit) Let be given an ob-
servation w, and let e∗ be the minimally achievable misfit under a certain size
constraint. Further let B be a GTLS model of tolerated size for adjusted data
w − w̄ with misfit e := d(w,B). Then it holds

e− 2‖w̄‖ ≤ e∗ ≤ e (5.13)

Proof. Let B∗ denote a GTLS model for the original data w, so that d(w,B∗) =
e∗. Then the upper bound follows from the optimality of B∗. For the lower
bound we use the properties of the misfit that d(w,B) ≤ ‖w‖ and d(w1 +
w2,B) ≤ d(w1,B) + d(w2,B), so that e = d(w,B) ≤ d(w̄,B) + d(w − w̄,B) ≤
‖w̄‖ + d(w − w̄,B∗) ≤ ‖w̄‖ + d(w,B∗) + d(w̄,B∗) ≤ 2‖w̄‖ + e∗. Here we have
used the optimality of B for w − w̄ in the second inequality. 2
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Leading Example - Continued. In the previous part of the leading example
we evaluated the optimality of Bgtls on basis of correlations. From the optima-
lity margins we obtain more precise information about the optimality of the
systems. They are listed in Table 5.3.

Table 5.3: Optimality margins.

model Bgtls Bex Brand

optimality margin 1.46 ∗ 10−6 1.04 15.06

The model Bgtls, given by (5.10), is exactly a stationary point for w − w̄,
with w the data generated according to (4.19), and w̄ a time series with
‖w̄‖ = 1.46 ∗ 10−6. There does not exist a smaller change w̄ for which ŵ (the
optimal approximation in Bgtls of w) is exactly a stationary point of w − w̄.

This shows that it requires only a change of the observation of the order ‖w̄‖ ≈
10−5 to make Bgtls a stationary point, cf. (5.12). Now assume that Bgtls is
globally optimal for w− w̄, which is a reasonable assumption. The evaluation
of the bounds in Proposition 5.4.3 for the data in this example with e = 5.0792
and 2‖w̄‖ ≈ 10−5 shows that the optimal misfit e∗ ≈ 5.0792 is determined
within an accuracy of 10−5. This also shows that Bgtls is optimal within this
accuracy level. 3

5.5 A Gauss-Newton Algorithm for GTLS

In this section we present a Gauss-Newton algorithm for the construction of
stationary points of the GTLS criterion. As already mentioned in the previous
section, it is in general much faster than Algorithm 3 in Section 5.3. Moreover,
the results on system representations underlying this algorithm might be of
independent interest.
The starting point of Gauss-Newton methods is the function (H, say) that
maps model parameters to the sequence of corresponding residuals whose sum
of squares has to be minimized. In each iteration the parameter values are
improved on basis of the derivative of this function. More precisely, for given
parameters θ0 new parameter values θ0 + θ̄ are determined that solve the
quadratic optimization problem in terms of the Jacobian of H,

minimize‖H(θ0) +

(
dH

dt
|θ0

)
θ̄‖. (5.14)

This is a quadratic optimization problem, as the derivative of H in the point θ0

is a linear function of θ̄. The details are discussed below. Descriptions of Gauss-
Newton methods can be found in many textbooks on system identification and
econometrics, e.g. [24, 8]. In the statistical literature it is called the method
of scoring, cf. [31]. In [30] an interpretation is given of the Gauss-Newton
method as a Riemannian steepest descent algorithm, cf. also [18].
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The Gauss-Newton algorithm for GTLS is based on a formulation in terms of
ISR’s, based on equation (4.15) in Algorithm 1. Let ṽ denote the effect of final
state x̂N+1 in (4.15) for ISR’s (A, B̃, C, D̃), so

x(t) = A>x(t + 1) + C>w(t)

ṽ(t) = B̃>x(t + 1) + D̃>w(t), (5.15)

So, although ṽ are not residuals in the literal sense, it is indeed their sum of
squares that have to be minimized. According to this we define the function H
that maps an ISR and final state to the corresponding sequence ṽ : T → Rq−m,
i.e.,

H((A, B̃, C, D̃), xN+1) = ṽ. (5.16)

The ISR (A, B̃, C, D̃) represents the orthogonal complement of a system B
with ISR (A,B,C,D), cf. Proposition 4.2.1.
One of the results in Algorithm 1 it that for an appropriate choice of xN+1,
‖ṽ‖ equals the misfit of B, so the GTLS problem amounts to

GTLS-ISR: minimize‖H((A, B̃, C, D̃), xN+1)‖ (5.17)

for x̂N+1 ∈ Rn, and for A, B̃, C, D̃ satisfying

[
A B̃

C D̃

]> [
A B̃

C D̃

]
=

[
In 0
0 Iq−m

]

.
Remark. There is a minor difference between (5.17) and the GTLS problem in
terms of SR’s as formulated in (5.6), as non-stabilizable systems do not have an ISR,
cf. Proposition 3.2.4. In view of our conjecture 5.1.1.2, we ignore this difference in
the sequel.
Secondly, we briefly discuss the existence of a solution for (5.17), cf. also 5.1.1.1.
Notice that H is a polynomial function, hence continuous. If we bound the norm of
xN+1 by a constant c ∈ R, its domain is a compact set, so H achieves its minimum
on this domain. This implies that if there does not exist a solution, the infimum of
H corresponds to an infinite norm of xN+1, cf. also the example (5.2), which seems
to be a non-generic case. Moreover, this problem is easily detected in numerical
simulations, by considering ‖xN+1‖ in each iteration. 3

Notice the remarkable reduction of number of parameters with respect to the
formulation in terms of SR’s (5.6) which also concerns the optimization over
auxiliary inputs. The price we have to pay for this is that the parameter space
is of a more complex nature, as the isometry condition is quadratic in the
system parameters. So we have obtained a simpler formula for the misfit on a
more complex parameter set.

With a slight abuse of terminology we call ((A, B̃, C, D̃), xN+1) a stationary
point of H if the derivative of ‖H((A, B̃, C, D̃), xN+1)‖ is zero. Our aim is to
determine stationary points by Gauss-Newton iterations. We first introduce
some notation.
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• w is a given observation on the time interval [1, N ] with q components

• (m,n) denotes the tolerated size

• (A,B, C, D) denotes an ISR with m auxiliary inputs and n state variables

• I is the space of ISR’s with q−m auxiliary inputs and n state variables,
so H is a function on I × Rn.

• Elements (A, B̃, C, D̃) ∈ I represent the orthogonal complement of mo-
dels B(A,B, C, D) as described in Proposition 4.2.1.2.

• Uk denotes the space of k × k unitary matrices, so that

[
A B B̃

C D D̃

]
∈ Un+q (5.18)

• TMI is the tangent space of I in the ISR M ∈ I. This consists of a
linear space of SR’s through M tangent to I. Elements ∆M ∈ TMI
are called a variation of M in the direction of other ISR’s, or simply a
variation of M . Similarly, elements of TMUk are called variations of M
in the direction of other unitary matrices.

Our Gauss-Newton algorithm for determining stationary points of the function
H has the following structure.

1. Choose initial values in the domain of H, i.e., choose an ISR M :=
(A, B̃, C, D̃) ∈ I and a value for the end state xN+1 ∈ Rn. Let H0

denote the value of H in the initial point.

2. Determine how ṽ varies if the initial values are varied, i.e., if the initial
ISR is varied in the direction of another ISR, and if the end state is varied.
This amounts to determining the derivative H ′ of H in the initial point,
or, in geometrical terms, determining the tangent space of the image of
H in that point.

3. Determine the optimal variation of the initial ISR and end state on the
basis of this derivative, i.e., determine (∆A, ∆B̃, ∆C , ∆D̃) and x̄N+1 that
minimizes ‖H0 + H ′((∆A, ∆B̃, ∆C , ∆D̃), x̄N+1)‖1.

Stated in geometrical terms, determine the optimal variation on the basis
of the tangent space of imH which is considered as an approximation of
imH in H0.

1H ′((∆A, ∆B̃ , ∆C ,∆D̃), x̄N+1) is the derivative of H in the
(fixed) point ((A,B, C,D), xN+1), in the direction (∆A, ∆B̃ , ∆C ,∆D̃), x̄N+1). This is of-
ten denoted as H ′ |(∆A,∆B̃ ,∆C ,∆D̃),x̄N+1) ((A,B,C, D), xN+1), but we consider the derivative
as a mapping of parameter variations with ((A,B, C, D), xN+1) fixed.
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4. If the resulting model is equal to the initial one, it is a stationary point,
so stop. If the resulting model improves the previous one, repeat the
algorithm for this model, otherwise first halve the size of the variation
repeatedly until it corresponds to a better model.

In deriving a Gauss-Newton algorithm for GTLS there are two aspects that
deserve additional attention.

• The domain of H, I × Rn, is determined by a non-linear restriction, cf.
(5.18).

• ISR’s for a given system are not unique, cf. Proposition 3.2.6

Concerning the first point, we have to analyse how to vary an ISR into the
direction of other ISR’s. For expository reasons we not only consider variations
of (A, B̃, C, D̃), but also the corresponding variations of (A,B,C, D). So this
amounts to the question how to vary a unitary matrix as given in (5.18) into
the direction of another unitary one, which is answered in the following lemma.

Lemma 5.5.1 The tangent space of the space of unitary matrices U in a point
M is given by TMU = {MK; K + K> = 0}.

Proof. See Appendix A.5.

Notice that for a variation MK ∈ TMU , the matrix M + MK is unitary up to
a quadratic term in K as (M + MK)>(M + MK) = I + K>K. Although the
quadratic term is negligible if K is sufficiently small, this implies that the state
representation corresponding to M +K is not exactly isometric anymore. The-
refore, after computing the optimal variation in Step 3 of the Gauss-Newton
algorithm, we have to transform the resulting state representation to an equi-
valent ISR.
The non-uniqueness of ISR’s can be exploited to decrease the number of va-
riations that we have to take into account in the Gauss-Newton algorithm.
More precisely, we will show that without loss of generality we can restrict our
attention to variations of (5.18) of the form

[
∆A ∆B ∆B̃

∆C ∆D ∆D̃

]
=

[
A B B̃

C D D̃

] 


0 L P
−L> 0 Q
−P> −Q> 0


 , (5.19)

This means that for all variations as described in Lemma 5.5.1, there exists
an equivalent variation corresponding to zero diagonal blocks of K. Moreover,
if (A,B,C,D) is minimal, different variations of this form are not equivalent,
i.e., they all correspond to changes into the direction of different systems.
This means that generically we have taken full account of the non-uniqueness
of ISR’s in this way, and that (5.19) are canonical forms for the perturbations
of ISR’s.
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We use this result in the following Gauss-Newton algorithm for H. In each
iteration we determine the variation of parameters of the form (5.19) (and a
variation x̄N+1 of xN+1) that minimizes

‖H((A,B,C, D), xN+1) + H ′((∆A, ∆B̃, ∆C , ∆D̃), x̄N+1)‖. (5.20)

Algorithm 4 (Gauss-Newton for GTLS)

Data: • An observation w : T → Rq, T = {1, . . . , N}
• A bound (m,n) for the model size

Step 1: Choose an initial isometric state representation (A, B̃, C, D̃) ∈
I and determine B and D such that

[
A B B̃

C D D̃

]
is a unitary

matrix. Construct x, v̂ and ṽ according to Algorithm 1 in
Section 4.3. This gives an initial value for xN+1 that is optimal
for the chosen initial ISR, so that ṽ in Algorithm 1 equals
H(M, xN+1) =: H0.

Step 2: The derivative v̄ := H ′(∆M , x̄N+1) of H in (M, xN+1) for
∆M := (∆A, ∆B̃, ∆C , ∆D̃) of the form (5.19) is given by

x̄(t) = A>x̄(t + 1) + Lv̂(t) + P ṽ(t); x̄(N + 1) = x̄N+1

v̄(t) = B̃>x̄(t + 1)− P>x(t)−Q>v̂(t)}. (5.21)

Define

T := {v̄; ∃L, P, Q, x̄(N + 1) such that v̄ satisfies (5.21)},
(5.22)

which can be considered as the relevant part of the tangent space
of imH in ṽ.

Step 3: Compute the orthogonal projection of ṽ onto T , denoted by
ṽ′, and let L, P , Q and x̄N+1 denote the corresponding values
of the parameters in (5.22). Define ∆A, ∆B, ∆C , ∆D, ∆B̃, ∆D̃)
according to (5.19). Redefine (A,B, C, D) as an ISR for B(A−
∆A, B −∆B, C −∆C , D −∆D), and redefine B̃, D̃ by (5.18).

Step 4: If the orthogonal projection ṽ is zero, then B(A,B, C, D) is a
stationary point, so stop. If the misfit d(w,B(A,B, C, D)) has
decreased, repeat the algorithm for this model, otherwise first
halve L, P,Q and x̄(N + 1) repeatedly, until the corresponding
model improves the initial one.

Result: B(A,B,C, D) is a stationary point with respect to the GTLS
criterion.
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Proof. See Appendix A.5.
Implementation: GTLS in Appendix B.2.

The implementation concerns the following issues. In addition to Algorithm 1,
which is used in Step 1 and 4, Step 3 involves the computation of an orthogonal
projection in Rp×N to determine the optimal variation, and solving an n × n
Riccati equation for the transformation to isometric form, as is described in
Proposition 3.2.5.

Leading Example - Continued. We apply Algorithm 4 for the data (4.19)
and initial models Bex and Brand, cf. Section 5.3. This results in the same
model determined by Algorithm 3 given by (5.10). In Fig. 5.1 the decrease of
misfit in each iteration is shown, and compared with the results of Algorithm
3. This shows that the Gauss-Newton algorithm is considerably faster than
Algorithm 3.

Figure 5.1: Performance of the Gauss-Newton algorithm and the model
improvement constructions compared.
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5.6 Initial Models

As the iterative algorithms only determine locally optimal solutions, their out-
come may be determined by the choice of initial models. In order to increase
the chance to converge to a globally optimal solution of the GTLS problem it
is of importance to determine good initial models that are close to the global
optimum. In this section we present a heuristic method for this purpose.
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The procedure consists of two steps. First we construct an approximate state
trajectory for the observed time series. Our method is an approximate ana-
logue of an exact realization algorithm in [44, part II, algorithm 6], and has
been described in [33]. The main idea is to construct a state trajectory di-
rectly from the data, without first determining an (approximate) model. The
state is expressed in terms of canonical correlations between past and future
of the observations. These correlations also give an indication for a reasonable
dimension of the state space. This step resembles the stochastic realization
algorithm described in [1], see also [4].
As a second step we use the constructed approximate state trajectory to deter-
mine an SR of an approximate model for the observed time series. The system
matrices are determined as a total least squares solution of equations in terms
of the constructed state trajectory, by means of the SVD.
Nowadays there has been developed a whole class of identification algorithms
in which first an (approximate) state space is constructed from the data, and
then the system matrices in a state representation. For an overview on these
so-called subspace methods we refer to [11, 40, 41]. The distinctive feature of
our approach is that we consider all variables in a symmetric way, i.e., the
decomposition into inputs and outputs need not be given.
A disadvantage of the canonical correlation approach is that it does not take
into account the size or energy content of the data in different directions, as
correlations are scale-invariant. This implies that highly correlated directions
in past and future with only a tiny energy content are preferred over slightly less
correlated dominant components. This may lead to less satisfactory results,
and therefore we describe how this method can be modified in order to suppress
this effect.

5.6.1 The Exact Case

As an introduction to the procedure we first describe the relatively simple case
in which the data consists of an exact system trajectory

ŵ : Z → Rq ∈ B. (5.23)

Let (m,n) denote the size of B , so B is the behaviour of a system with m
(auxiliary) inputs and state dimension n. Further we suppose that there does
not exist a system of smaller size that contains ŵ. From the existence of SR’s,
cf. Proposition 3.1.2, it follows that such a trajectory takes the form

σx̂ = Ax̂ + Bv̂; ŵ = Cx̂ + Dv̂, (5.24)

with x̂ an n-dimensional state trajectory, v̂ an m-dimensional auxiliary input,
and (A,B, C,D) a minimal SR. The basic question is how to construct (5.24)
from (5.23), including m and n. The idea is first to determine a valid state
trajectory x̂ , and then the remaining parameters in (5.24).
This raises the question to what extent x̂ is unique for ŵ . Clearly it is
not completely unique, as with a solution x̂ , also Sx̂ is a solution for all
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non-singular matrices S ∈ Rn×n, cf. Proposition 3.1.4. This choice of basis,
however, is the only source of non-uniqueness.

Lemma 5.6.1 The state trajectory x̂ in (5.24) is uniquely determined by the
data ŵ, modulo a basis transformation of the state space.

Proof. In [44, Section 17] it is shown that the system B, which we have defined
as the smallest system containing ŵ, is uniquely determined by ŵ (it is called
the ’most powerful unfalsified model’ for ŵ). The uniquenes of x̂ modulo a
basis transformation S then follows from Proposition 3.1.4. ♣

So we conclude that the state trajectory for ŵ is ’essentially’ unique. In [44,
Section 17] it is described how to construct the state trajectory directly from
an observed time series.
The key idea behind this realization algorithm is that the state is characterized
by the property that it is both a linear function of the finite past and of the
finite future of ŵ.

Lemma 5.6.2 Let H− and H+ denote the space of time series spanned by the
finite past and future of ŵ respectively, i.e.,

H: = {z : Z → R;
z(t) = L−col(ŵ(t− 1), . . . , ŵ(t− k)) for some k ∈ N, L− ∈ R1×qk}
H+ := {z : Z → R;
z(t) = L+col(ŵ(t), . . . , ŵ(t + k − 1)) for some k ∈ N, L+ ∈ R1×qk}

(5.25)

and define X as their intersection. Then X is a finite dimensional space, and
a state trajectory x̂ for ŵ consists of an (arbitrary) basis of X .

Proof. See Appendix A.5.

The actual reconstruction of the state trajectory is performed in terms of
Hankel matrices of the data, which consist of blockrows containing time shifts
of the data. We make use of the following notation.

H2k :=




. . . ŵ(−k) ŵ(1− k) ŵ(2− k) . . .
...

...
...

. . . ŵ(−1) ŵ(0) ŵ(1) . . .

. . . ŵ(0) ŵ(1) ŵ(2) . . .
...

...
...

. . . ŵ(k − 1) ŵ(k) ŵ(k + 1) . . .








=: H−
k





=: H+
k

(5.26)

The interpretation is that in each column of H2k the upper part represents the
past and the lower part the future at the time instant corresponding to the
first row of H+

k . So by convention the present is included in the future. If the
degree of the system containing ŵ is known, then we can choose k = n. We
remark that in fact every value k ≥ ν will do with ν the observability index of
the system containing ŵ, which can be considerably smaller than its degree.
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If n is unknown, in fact we should take k = ∞, which means in practice that
k should be chosen ’large enough’.
From Lemma 5.6.2 it follows that a state trajectory for ŵ is characterized by
the fact that it is a linear combination both of the rows in H−

k and H+
k if k ≥ n.

So if n is known, the construction of a minimal state trajectory amounts to
determining L−, L+ ∈ Rnq×n, both of rank n, such that

L−H−
n = L+H+

n =: x̂ (5.27)

If n is unknown, we should determine L− and L+ of maximal rank, say nk.
Clearly nk is non-decreasing with k, and bounded by the actual minimal state
dimension for ŵ. So n can be determined as the dimension of the intersection
of the rowspan of H−

k and H+
k for large enough k.

As a final step the system matrices A,B, C, D and the auxiliary input v̂ in
(5.24) can be determined from the static linear relations that are satisfied by
(ŵ(t), x̂(t), x̂(t + 1)). We discuss the details in the context of non-exact data.

5.6.2 Approximate State Trajectories

We have described how to construct a state trajectory for an observed time
series that belongs to an (unknown) system as the intersection of the rowspan of
the past and future Hankel matrices. However, if a time series does not satisfy
any linear time-invariant relationship exactly, then this intersection is zero, as
there are no exact linear relations between past and future. The question arises
how to define and construct an approximate state trajectory for such time
series. An obvious choice is to consider a state trajectory in the optimal GTLS
system for the data (of reasonable size), but a direct construction of this from
the data seems not feasible. Several methods for constructing approximate
states from observations have been developed. We refer to [10, 39] for an
overview.
In our procedure we construct the state by determining an approximate in-
tersection of past and future in the following way. Let H− and H+ denote
respectively a past and future Hankel matrix for ŵ with a certain number of
blockrows k, defined as in (5.26) but now for finite data. We discuss the choice
of k later on. Let H− and H+ denote the rowspaces of respectively H− and
H+, i.e., the linear space that is spanned by the rows in these matrices. The
first direction `1 in the approximate intersection is chosen such that the maxi-
mum of the angles with H− and H+ is minimal. For one dimensional H− and
H+ this would give the bisecting line. The i-th direction `i is determined by
the same criterion, under the extra condition that `i is orthogonal to the pre-
viously constructed directions `1, . . . , `i−1. The dimension of the intersection
can be based on the corresponding angles. In the next section we discuss the
implementation of this procedure.
This approximate intersection is closely related to the canonical variables of
the pair (H−,H+). These are defined as follows. The first canonical angle
is the smallest possible angle between two lines `−1 and `+

1 in the two spaces
respectively. The second canonical angle is the smallest possible angle between
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two lines in the two spaces, under the extra condition that these lines are
orthogonal to the previous ones. The other canonical angles are determined
in a similar way. The pair of unit vectors x−i ∈ `−i and x+

i ∈ `+
i are called

the i-th canonical variables. The angle αi between `−i and `+
i is called the

i-th canonical angle, and cos(αi) the i-th canonical correlation. Now the i-th
direction in the approximate intersection `i is given by the span of (x−i + x+

i ).
For i = 1 this is obvious, the proof for i > 1 is left as an easy exercise.
The construction can also be motivated as follows. Let x1 be the unit vec-
tor such that the sum of squares of the distances to H− and H+ is minimal,
i.e., such that it minimizes d(x1,H−)2 + d(x1,H+)2, where d denotes the Eu-
clidean distance. Determine x2, . . . , xn in the same way, under orthogonality
conditions as before. Then `i = span(xi).
This construction of the state shows absolute preference for directions in the
exact intersection. Hence for an exact time series it yields an exact state
trajectory.

One of the main disadvantages of this procedure is that it treats every direction
in the past and future in the same way, i.e., disregarding the corresponding
energy content in the data. We define the energy of a direction a>H as

‖a>H‖2

|a|2 , (5.28)

with a a vector of appropriate length. If the Hankel matrices H− and H+ are
nearly singular their rowspan contains directions with almost zero energy. The
canonical correlations approach, which only takes angles into account and not
sizes, causes enormous amplification in these directions, with a disturbing effect
on the identified model. One way to avoid nearly singular Hankel matrices is
to choose a relatively small number k of block rows in (5.26), but this limits
the order of the resulting system and the global character of the procedure, as
only relations over a small lag are considered.
In fact we want to determine those directions which are approximately common
in past and future and which have, at the same time, a sufficient energy in
both past and future. We propose the following somewhat rough but simple
modification of the method. First we delete all directions in past and future
corresponding to an energy below a certain threshold value θ. More precisely,
all singular values of the past and future Hankel matrices of the data below√

θ are replaced by zero. Then we perform canonical correlation analysis on
the remaining directions in the past and future. Simulations indicate that this
method is indeed superior to direct canonical variable analysis, cf. Section 6.1
and a more extensive discussion in [33].

5.6.3 The Modified Canonical Correlation Algorithm

In the previous section we sketched a method for determining an approximate
state trajectory from an observed time series. Here we describe how to trans-
late this to a concrete algorithm for the construction of initial models for the
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GTLS procedure. First we discuss the structural aspects of the algorithm,
including the choice of the size of the Hankel matrices and the threshold va-
lue for the directional energy, and we conclude by an implementation of the
procedure in terms of SVD.
Let the observation be denoted by w : T → Rq with T = [1, N ]. The procedure
computes an SR of an approximate model for w based on the approximate
intersection of the matrices

H− :=




w(1) . . . w(N − 2k + 1)
...

...
w(k) . . . w(N − k)


 ,

H+ :=




w(k + 1) . . . w(N − k + 1)
...

...
w(2k) . . . w(N)


 . (5.29)

This intersection is computed by a modified canonical correlation analysis with
a threshold θ for the directional energy content in H− and H+ as defined in
(5.28).

Initialization
Reasonable values for the rank m and degree n of the approximate model have
to be determined. Also the procedure parameters k (the size of the Hankel
matrices) and θ (the threshold for the directional energy) must be chosen. This
can be done by computing models for different values of the parameters and
comparing the resulting modelling errors. Various approaches are possible. For
example, we can assume m and n as fixed, which determines the desired size
of the model, or we can fix the k and θ, and then determine n as the number
of canonical correlations close to one and consider the results for several values
of m.
It is difficult to give general rules which apply for all kinds of applications. We
only give some rough guidelines based on our experience from simulations.

Step 1. Construction of an Approximate State Trajectory
Construct the Hankel matrices H− and H+ as given in (5.29), with k reasona-
bly large. For an observation of length about 100 we typically take k between
8 and 20. Determine a value for the threshold θ, on the basis of the singu-
lar values of H− and H+. This threshold corresponds to putting all singular
values below

√
θ to zero, so θ should be chosen such that all ’nearly zero’ sin-

gular values are cancelled. Let H−
θ and H+

θ denote the matrices obtained by
removing low energy directions in this way in respectively H− and H+.
If n is not specified, determine n as the number of small canonical angles. Let
(x−i , x+

i ), i = 1, . . . , n denote the first n pairs of canonical variables, and let
L−i , L+

i denote the corresponding canonical coefficients, so that x−i = L−i H−
θ

and x+
i = L+

i H+
θ . By definition the canonical variables are scaled to one, so

Ei := 1/(|L−i |2 + |L+
i |2) (5.30)
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is a natural measure for the total directional energy in past and future, cf.
(5.28). Define x̄i = col(

√
Ei(x

−
i + x+

i )), i = 1, . . . , n as an approximate state
trajectory for w. The scaling by Ei is imposed in order to make the norm of
the state components in accordance with the data. Notice that x̄ is defined for
t ∈ [k + 1, N − k + 1], which is the time axis for the upper row in H+ in (5.29)

Step 2. Determination of an Approximate System
Construct the matrix

M :=




x̄(k + 1) . . . x̄(N − k)
x̄(k + 2) . . . x̄(N − k + 1)
w(k + 1) . . . w(N − k)


 , (5.31)

and compute its SVD M = USV >. For an exact time series in a system of size
(m,n) as given in (5.23) the matrix M would have rank n + m, which follows
immediately from (5.24). Hence, if m is not specified, m is determined such
that the last n + q −m singular values are small compared to the first n + m
ones. We remark that in most of our simulations the only relevant value for m
is one. By putting the last n+q−m singular values equal to zero we obtain an
approximation Mr of M with rank n+m. In fact Mr is the optimal rank m+q
approximation of M for the static total least squares criterion, cf. Proposition

2.3.3. Now determine a matrix of the form




In 0
A B
C D


 ∈ R(2n+q)×(n+m) with

image equal to Mr. Then (A,B,C,D) is taken as an SR of an approximate
model for w, which is motivated as follows. Let x̄′ denote the first n rows in Mr,
which is the approximation of x̄ in M . Assume that x̄′ is non-singular. As Mr

is of rank n+m, there exists an m-dimensional sequence v̂(k +1), . . . v̂(N −k)

such that Mr =




In 0
A B
C D




(
x̄′

v̂

)
. So there exists a sequence v̂ such that the

equations induced by the SR hold approximately for the data w and the state
trajectory x̄ constructed in the first step.

We conclude by an implementation of these steps in terms of the SVD, for
given values of the procedure parameters k and θ and desired size (m,n) of
the approximate system.

Algorithm 5 (Modified Canonical Variables Method)

Data: • An observation w : T → Rq, T = [1, N ]

• Tolerated size (m,n)

• Values for the procedure parameters k (the size of the
Hankel matrices) and θ (the threshold for the directional
energy)
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Step 1: Determine the SVD’s H− = U−S−V >
− and H+ = U+S+V >

+ for
H−, H+ given in (5.29).
Remove the columns in V−, V+ corresponding to singular values
that are smaller or equal to

√
θ.

Let USV > denote the SVD of V >
− V+. Define for i = 1, . . . , n,

Ei := 1/(‖U>
i S−1

− ‖2 + ‖V >
i S−1

+ ‖2), according to (5.30), and
x̄i :=

√
Ei(U

>
i V >

− +V >
i V >

+ ), with Ui, Vi equal to the i-th column
of U, V .

Step 2: Determine the SVD M = USV > for M as defined in (5.31).
Define Mr := UrSrV

>
r with Ur, Vr the first n + m columns of

U, V and Sr the upper left square block of S of size n + m.
Define K as the first n rows of Ur, and determine the SVD
K = Ū [S̄ 0]V̄ > with S̄ square. Define

Z := V̄

[
S̄−1Ū> 0
0 Im

]
, then UrZ takes the form




In 0
A B
C D


.

Result: (A,B, C,D) is an SR of the approximate model for w as descri-
bed by the modified canonical approach.

Proof. See Appendix A.5.
Implementation: Alg5 in Appendix B.2.

Leading Example - Continued. We determine the canonical correlations
between past and future for data w defined by (4.19). These are depicted in
Fig. 5.2 for several sizes of the Hankel matrices in (5.29).
These correlations do not point unambiguously in the direction of a first order
model, as there is no clear gap between the first and second correlation. The
reason is that for a large number of blockrows k in (5.29) coincidential relations
occur between the past and future noise. As an illustration of this fact, we also
depict the canonical correlations for the white noise component in the data in
Fig. 5.2, for k = 16. This also shows that the relations between past and
future corresponding to the highest canonical correlation may be affected by
white noise.
Therefore we repeat the computation for an energy threshold θ = 100, which
means that all singular values in the Hankel matrices below 10 are removed.
This value is chosen as there appears to be a ’tail’ of relatively small singular
values below 10 for all values of k, cf. Fig. 5.3. For comparison we remark that
the total energy content for all directions in past and future Hankel matrices
for the white noise component in the data is below 8.
The resulting matrices H−

θ , H+
θ have dimension 1,4,9 and 16 for respectively

k = 1,4,8 and 16, which means the removal of respectively 1,4,7 and 16 low
singular values. The canonical correlations for θ = 100 are depicted in Fig.
5.4. This shows a larger gap between first and second correlation, so after
removing the low energy directions the ’true’ model order n = 1 becomes more
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Figure 5.2: Canonical correlations between past and future in the simulated
data of the leading example.
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For the data w = (u, y) generated according to (4.19), the canonical correla-
tions between past and future (the rowspan of respectively (H−) and (H+)
in (5.29)) are given for k = 1, 4, 8, 16. The number of correlations equals 2k.
The dashed line corresponds to the canonical correlation of the white noise
component in the data for k = 16.

Figure 5.3: Singular values in past and future Hankel matrices for the lead-
ing example.
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The singular values in past and future Hankel matrices (solid line and dashed
line respectively) for k = 1, 4, 8, 16. The number of singular values equals 2k.
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clear. This is most obvious from the canonical angles, which are related with
the correlations by cosαi = ci, with αi the angles and ci the correlations.

Figure 5.4: Canonical correlations after removing small energy directions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

* *
*

*

*

* *

*

*
*

*

*

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

30

40

50

60

70

80

90

0 5 10 15

*

*

*

*
*

*

*

*

*

*

*
*

*
*

*

*

*

*

* *
*

*

*

* *

*

*
*

*

*

Left: As in Fig. 5.2, now after removing directions in past and future with
energy threshold (5.28) below θ = 100, i.e., with all singular values in H−, H+

in (5.29) below
√

θ put to zero. For k = 1, 4, 8, 16 there are resp. 1, 4, 9, 16
directions left.
Right: the corresponding canonical angles (in degrees). The angles αi are
related to the correlations ci by αi = 180

π arccos(ci). The gap between first
and second correlations or angles is now much clearer than in Fig. 5.2, even
for k = 16.

In Table 5.4 we list the relative misfits for all constructed models.

Table 5.4: Relative misfits of initial models obtained by Algorithm 5.

rel. misfit k = 1 k = 4 k = 8 k = 16
θ = 0 0.267 0.227 0.226 0.291
θ = 100 0.299 0.225 0.224 0.232

For the data generated by (4.19), the best first order initial model is obtained
by applying Algorithm 5 with procedure parameters k = 8 (determining the
size of the Hankel matrices in (5.29)) and θ = 100 (denoting the energy
threshold (5.28)).

This shows that the use of a threshold for the energy improves the results. For
a more convincing illustration of this fact we refer to [33] and Section 6.1. 3



Chapter 6

Applications and Extensions

We illustrate the GTLS method by several applications. Our aim is to show
what type of results can be obtained by this approach for real data as well as
in simulation experiments, and to put this in contrast with some conventional
methods.

The first example concerns long and short term interest rates in the United
States. We determine linear, time-invariant relations with minimal misfit, and
compare the results with those obtained by the local methods ARX and LTLS,
described in Section 2.5.

As an extension to the GTLS method we consider the incorporation of con-
stants and trends in models, in Section 6.2.

In Section 6.3 we extend the theory to periodic models, i.e., models corre-
sponding to different relations in each period. As an illustration we consider
seasonal models for the consumption and income in the German Federal Re-
public (GFR).

In order to illustrate the simultaneous character of the GTLS criterion for more
than one system equation, we describe a simulation experiment with a system
with two outputs, i.e., described by two equations. We also discuss the use of
the recursive evaluation of the misfit, as described in Section 4.4, for detecting
outliers in the data.

The fourth group of experiments shows the use of the GTLS method for model
reduction, i.e., the approximation of a system by one of smaller size. We
describe how to determine the optimal impulse response approximation for a
system, and extend this result to optimal frequency-weighted approximation.
We also show the use of GTLS for modelling input/output data.

6.1 US Interest Rates

In this section we analyse monthly observations of the long and short term
interest rates in the United States from in January 1957 through April 1989.
The short term interest rate is the 3-month US treasury bill rate, and the
second series consists of interest rates with a maturity of 10 years. These
series are depicted in Fig. 6.1.
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Figure 6.1: Long and short term interest rates in the United States.
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The interest rates (solid line: long term, dashed line: short term) in the US
from Januari 1957 through April 1984.

Our goal is to gain insight in the joint behaviour of these interest rates. The
ultimate goal of modelling would be an exact and complete explanation of
the data in terms of underlying economic processes, involving e.g. the general
condition of the economy and the strategies of banks and governments. Ho-
wever, this seems not feasible. In the GTLS approach we aim at a much more
modest goal, namely to determine partial approximate relationships between
the interest rates that are linear and time-invariant. We do not concentrate
on underlying mechanisms, but we try to recognize patterns in the data that
represent typical behaviour of the interest rates.

In this example we split the observation interval into two parts, the sample
interval Ts and the validation interval Tv, given by

sample interval: Ts = [1, 200] (Jan 57 – Aug 73)
validation interval: Tv = [201, 388] (Sep 73 – Apr 89).

(6.1)

We write ws for the part of the data in the sample, and wv for the part out of
sample.

We determine GTLS models for ws, i.e., models of tolerated rank m and degree
n for which we have to change the data by a minimal amount in order to
make it satisfy the system laws throughout the whole sample interval. As
the data consists of two components (q = 2), the only reasonable choice for
the tolerated rank is one (m = 1), so we consider models described by one
difference equation. Reasonable values for the model order are based on the
canonical correlations of the data, as described in Section 5.6.
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6.1.1 Initial Models

First we determine initial models from canonical correlation analysis of the
data by Algorithm 5, which also gives an indication of a reasonable choice of
the model order. After a first rough analysis we decided to apply the algorithm
with k = 8, 14, 20 in (5.29), and for the threshold for the directional energy
θ = 0 and θ = 10 (which is 0.001 ∗ ‖ws‖2), cf. (5.28). In Table 6.1 some of the
canonical correlations for k = 20 are listed. For θ = 0 the number of rows in
past and future Hankel matrices equals 2 ∗ 20 = 40, so there are 40 canonical
correlations. For θ = 10, 27 directions in past and future are removed, so there
are 13 canonical correlations. We also list the energy contents corresponding
to the canonical variables, as defined by (5.30).

Table 6.1: Canonical correlations between past and future of the US interest
rates, with and without removing small energy directions.

θ = 0 θ = 10
can. corr. energy can. corr energy

1 0.9999 1183 0.9995 11202
2 0.97 11 0.94 93
3 0.89 3.2 0.65 16
4 0.85 1.6 0.54 12

13 0.005 10
40 0.01 0.2 – –

Canonical correlation between past and future (the rowspan of resp. H−

and H+ in (5.29) with k = 20). For θ = 0 (ordinary canonical correlation
analysis) there are 40 canonical correlations. For θ = 10 there are 27 singular
values below

√
10 put to zero, both in H− as in H+, so there are 13 canonical

correlations. The energy is a measure for the size of the data corresponding
to the canonical variables, as defined by (5.30).

There are two correlations very close to one, indicating two nearly deterministic
linear relations between past and future. For θ = 10 the corresponding energy
content in the data is clearly higher than for the ordinary canonical variables
corresponding to θ = 0. For k = 8, 12 the pattern is similar. This motivates
to choose model order n = 2. For comparison we also determine models for
n = 0, 1, 3, 8. The misfit of the optimal static model (n = 0) is computed
by the SVD, as described in Proposition 2.3.3. For n = 1, 2 the procedure
parameters k = 14, θ = 0 give the lowest misfit, while for n = 3, 8 the values
k = 20, θ = 10 are optimal. In Table 6.2 we list the resulting relative misfits,
i.e., the misfit divided by the Euclidian norm of the data.
This confirms our choice for a second order model, as for higher order the
misfit does not decrease considerably.

6.1.2 GTLS Models

We use Algorithm 4 for the construction of GTLS models for tolerated rank
n = 1, 2, 3, 8 with the initial models obtained as just described. We remark



96 CHAPTER 6. APPLICATIONS AND EXTENSIONS

Table 6.2: Relative misfits of initial models for the US interest rates.

order n = 0 n = 1 n = 2 n = 3 n = 8
relative misfit 0.100 0.049 0.036 0.032 0.032

The relative misfits of initial models obtained by Algorithm 5 with procedure
parameters (k = 14, θ = 0) for n = 1, 2, and (k = 20, θ = 10) for n = 3, 4.

that the incorporation of intercepts is discussed in Section 6.2.1. The iterations
are stopped when the decrease of misfit has come below 10−5. The number of
iterations needed to achieve convergence of the misfit at this level of precision
varies from 5 (for n = 1) to about 30 (for n = 2, 3, 8). The resulting misfits
are listed in Table 6.3.

Table 6.3: Relative misfits of GTLS models for the US interest rates.

order n = 0 n = 1 n = 2 n = 3 n = 8
relative GTLS misfit 0.100 0.035 0.024 0.021 0.018

The models with these misfits are computed by the iterative Gauss-Newton
algorithm (Algorithm 4), with initial models obtained by Algorithm 5 as
described in Section 6.1.1.

So the GTLS algorithm gives an improvement with respect to the initial models
of about 50%, cf. Table 6.2.
The GTLS models Bn

US for n = 0, 1, 2, 3 are given by the following equations
for the long and short term interest rates `, s.

B0
US : `(t) = 1.11s(t)
B1

US : `(t)− 0.992`(t− 1) = 0.28{s(t)− 0.96s(t− 1)}
B2

US : `(t)− 1.9660`(t− 1) + 0.9665`(t− 2) =
0.2787{s(t)− 1.8910s(t− 1) + 0.8930s(t− 2)}

B3
US : `(t)− 3.28`(t− 1) + 3.56`(t− 2)− 1.28`(t− 3) =

0.11{s(t) + 3.74s(t− 1) + 4.41s(t− 2)− 1.67s(t− 3)}

(6.2)

The static equation shows that during the sample period the return on loans
over 10 years is about 11% higher than for short term loans. Notice the sub-
stantial decrease in misfit for the dynamic models, which indicates a structural
dynamic relation.

Remark on taking first differences.
The first order model expresses a relation between the short term interest rates and
the increase of the long term interest rates. The coefficient 0.992 is close to 1, which
seems to indicate a ’unit root’ in the long term interest rates. The question arises if
this model is close to ∆`(t) = 0.28(s(t)−0.96s(t−1)) with ∆ the difference operator.
Perhaps surprisingly, this is not at all the case: replacing 0.992 by 1 makes a lot of
difference with respect to the global GTLS criterion. The model with a unit root
has relative misfit 0.26, so it requires a change of 26% of the data to make it satisfy
the equation with the unit root, which is even much more than for the static model.
This can be explained as follows. Indeed 1 is close to 0.992, but 1t and 0.992t deviate
more and more for increasing t, for instance, 0.99287 = 0.5 (lag 87 corresponds to
about 7 years). In the GTLS method this difference plays an important role, as also
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all higher order implications of difference equations are taken into account. This
indicates that the GTLS criterion is quite sensitive (hence informative) near unit
roots.
This is in sharp contrast with e.g. the first step ahead prediction criterion, as this
would only change the induced predictions by (1− 0.992)`(t− 1), which is less than
one percent of the size of the data.
Similarly, if we replace in the second order model the left hand side by ∆2`(t), the
relative misfit is 0.42. This means an increase of misfit by a factor 17, while it has
a minor effect on the first step ahead predictions.
Even if we only change one root of the second order model to a unit root, the
misfit increases dramatically. For instance, if we replace the left hand side in the
second order model by ∆`(t) − 0.9663∆`(t − 1), the relative misfit becomes 0.28,
and replacing the righthandside by 0.2787(∆s(t)−0.8920∆s(t−1)) yields a relative
misfit of 0.31.
These results should make us very careful in taking first differences of the data if our
goal is to determine (long term) relations for the original series, even if the model
contains ’nearly unit roots’, as the results for the original and differences series are
not compatible. A good model (in some sense) for the first differences need not
induce a good model (in that sense) for the original series. A further analysis of the
effect of differencing in GTLS modelling, e.g. by means of simulation studies, is left
as a topic for further research. 3

The list of misfits in Table 6.3 again motivates to choose n = 2 as a reasonable
value for the model order. In the sequel we concentrate on this case. In Fig.
6.2 the corresponding optimal approximation is shown. For comparison we
also depict the approximation error of the static model.
The optimal approximation in this figure satisfies the second order equation
in (6.2) exactly, throughout the whole sample interval, and there is no time
series closer to the data that satisfies a second order difference equation. As
the approximation error is relatively small (about 2%), the data confirms this
equation at each time instant, hence 198 times, modulo some unexplained de-
tails. Moreover, also all logical implications of this law are confirmed. For
instance, all tenth order equations that can be derived from this law are con-
firmed 190 times, modulo the small approximation error. This is rather strong
evidence for viewing this law as an intrinsic property of the interest rates, that
also holds approximately outside the sample interval.
As an additional interpretation of the GTLS model B2

US, we consider its ortho-
normal basis induced by an ISR. Let b : Z → Rq denote the impulse response
corresponding to an ISR of the GTLS system, i.e., the effect of an auxiliary
input consisting of a pulse at t = 1. From the properties of ISR’s it follows
that b and its shift form an orthonormal basis for B2

US, i.e., b has unit norm,
it is orthogonal to all its shifts σkb, and the span of {σkb; k ∈ Z} equals B2

US.
This b is depicted in Fig. 6.3, together with b⊥, which is the orthonormal basis
vector of the orthogonal complement of the model.
As the second order model has misfit 0.024, 98% of the data on Ts consists
of linear combinations of this basis vector and its shifts. Conversely, only 2%
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Figure 6.2: Optimal second order approximation of US interest rates on the
sample interval.
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The solid lines are the long term (upper plot) and short term (lower plot)
monthly US interest rates on the sample interval (Jan 57 – Aug 73). The
optimal approximation in the second order GTLS model B2

US in (6.2) is given
by the dashed lines in both plots (the approximation of the short term rates
is so close that it is hardly visible). This approximation satisfies the model
equation exactly, and there is no time series closer to the data that satisfies
a second order equation. For comparison we also depict the corresponding
approximation error and the error of the optimal static model B0

US (solid and
dashed lines around zero in both plots).
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of the data is composed of linear combinations of b⊥. Hence we may consider
b as a ’stylized’ fact that is dominant throughout the complete observation
interval, and b⊥ as nearly absent.

Figure 6.3: Stylized fact in the US interest rates and its orthogonal comple-
ment.
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Left: basis vector for B2
US (solid line: long term interest, dashed line: short

term interest). This vector and its shifts form an orthonormal basis for B2
US .

About 98% of the interest rates on the sample interval (6.1) consists of linear
combinations of this basis vector and its shifts (restricted to the sample in-
terval).
Right: basis vector for the orthogonal complement of B2

US . This type of
behaviour is almost completely absent in the data.

The typical behaviour consists of a local shock in the short term interest rates,
combined with a relatively small change in the long term rates with a positive
after effect. This reflects the fact that the long term interest rate is less volatile,
as it reacts more slowly on external effects.
The coefficients of the data with respect to the basis b, b⊥ equal respectively
the auxiliary input for the approximation and the error, cf. (4.15), which is
depicted in Fig. 6.4.
The auxiliary input for the approximation is quite close to the short term
interest rate, although we treated it similar to the long term interest rates.
This motivates to consider the long term as the effect of the short term.

Remark on cointegration analysis.
The aim of cointegration analysis is to determine cointegration relations for the data,
i.e. linear combinations of non-stationary components that yield a stationary series.
This topic is nowadays part of every modern textbook on econometrics. A typical
outcome of cointegration analysis for long and short term interest rates is that both
series individually are viewed as random walks, while the difference between both
is considered as a stationary process. This means that there is a common non-
stationary part in both interest rates.
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Figure 6.4: Representation of US interest rates with respect to the the
orthonormal basis of the second order GTLS model.
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The solid line is the auxiliary input of the optimal second order GTLS ap-
proximation on the sample interval (6.1) depicted in Fig. 6.2 in an ISR of
B2

US in (6.2). Equivalently, these are the coefficients of the approximation
with respect to the orthonormal basis for B2

US depicted in the Fig. 6.3 (left).
The dashed line depicts the coefficients of the approximation error with res-
pect to the orthonormal basis for the orthogonal complement of B2

US depicted
in Fig. 6.3 (right).

There are some similarities with the results of GTLS modelling. The approximation
ŵs on the sample interval might be considered as a ’non-stationary’ part in the
interest rates. The individual components of ŵs are closely related, as they are both
the effect of one common ’non-stationary’ (hidden) factor, namely the auxiliary input
of the approximation depicted in Fig. 6.4. The approximation error is comparable to
a ’stationary’ part, as it is the effect of the rather stationary looking factor depicted
as the dashed line in Fig. 6.4.
More generally, if we relate ’large’ to ’non-stationary’ and ’small’ to ’stationary’,
the GTLS method leads to the decomposition of the data into a stationary and
non-stationary part, like cointegration analysis. However, the non-stationary parts
in each component are not litteraly ’common’ (so that they would cancel in some
linear (static) combination of components, as in cointegration analysis), but they
are dynamically related. 3

6.1.3 Validation

We use the remainder of the data for validating the GTLS model. The question
is, whether the GTLS model is in good correspondence with the behaviour of
the interest rates during the next 188 quarters after the sample interval. Stated
otherwise, we have ruled out those time series that deviate considerably from
the solution set of the equation as unrealistic behaviour of the interest rates,
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and we check whether this is true on the validation interval. We also consi-
der the validation on [201 : 260] separately, excluding the relatively volatile
behaviour during the last part of the observation interval.
We first determine the optimal approximation, within B2

US in (6.2), on the
complete observation interval T = [1, 388], which is depicted in Fig. 6.5.

Figure 6.5: Validation of the second order GTLSmodel for the US interest
rates.
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The solid lines are the long and short term monthly US interest rates on the
complete observation interval (Jan 57 – April 89), also depicted in Fig. 6.1.
The dashed lines depict its optimal approximation in the second order GTLS
model based on the data on the sample interval (– Aug 73).

We see that the misfit remains small at the validation interval, although it is
somewhat higher than on the sample interval. The increase in misfit can be
due to a general increase of volatility of the interest rates, or to a change of
the regularity towards a different second order equation. In the first case the
GTLS model still would be nearly optimal, while in the latter case there would
be a substantially better second order model. Therefore we also determine the
GTLS model for the data on the validation interval. This is given by

`(t)− 1.9274`(t− 1) + 0.9286`(t− 2) =
0.4050(s(t)− 1.8808s(t− 1) + 0.8842s(t− 2)) (6.3)

In Table 6.4 we compare the relative misfit of the GTLS model for wv (the data
on the validation interval) and that of ws (the data on the sample interval).
This shows that the largest part of the increase of the misfit on the validation
interval is due to an increase of volatility, as the minimal relative misfit of the
second order GTLS model based on wv (0.042) is only about 15% lower than
of the GTLS model based on ws. In the first part of the validation interval
[201 : 260], the relative misfit has hardly increased. As the misfit of the model
B2

US remains low at the validation interval, and is comparable to the misfit of
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Table 6.4: Validation of second order GTLS model for the US interest rates
in terms of relative misfits.

time interval on [1,200] on [201:260] on [201:388]
GTLS model on [1,200] 0.0242 0.0259 0.0483
GTLS model on [201:388] 0.0322 0.0298 0.0418

The second order GTLS model for the first 200 observations (B2
US) has relative

misfit 0.0259 for the next 60 observations. The second order GTLS model for
the data on the validation interval has relative misfit 0.0418 on that interval.

the optimal model for the validation data, we conclude that the system law
in (6.2) is indeed confirmed on the validation interval, although the size of
deviations has increased.

6.1.4 Analysis of Outliers

We investigate whether the misfit of obtained models is due to so-called out-
liers, i.e., exceptionally high deviations from the model restrictions at only a
few time instants. The recursive projection Algorithm 2 in Section 4.4 gives
insight in how the misfit is affected by each subsequent observation, given the
values in the past. An outlier corresponds to an exceptionally high increase
of the misfit at a certain time instant. In Fig. 6.6 we compare the sequence
m(t), denoting the square root of the increase of the squared misfit due to the
observation w(t), given its past, and |w̃(t)|, which is the misfit at time t given
the whole observation, as computed just before.

Figure 6.6: Analysis of outliers in the US interest rates.
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The solid line is the size of the approximation error of the second order GTLS
model B2

US in (6.2) at each time instant (|w(t) − ŵs(t)|). The dashed line is
the square root of the increase of the squared misfit of B2

US due to observation
w(t) given the past observations (m(t)).



6.1. US INTEREST RATES 103

The increase of misfit due to an new observation given the past, corresponding
to m(t), has no exceptionally high peaks, although on average the peaks in-
crease at the end of the interval. We conclude that there is no severe outlier,
but a structural increase of volatility.
Notice that the recursive misfit sequence m(t) is close to the size of the misfit
‖w̃‖. This means that the misfit at time t is for the largest part determined
by past values of the interest rates, and hardly affected by their future. Hence
we might say that the future confirms the past-induces approximations.

6.1.5 Comparison with Local Methods

As a further illustration of the global character of the GTLS approach we
compare the results with those obtained by the local methods ARX and LTLS,
which are described in Section 2.5. For ws the second order ARX model is given
by

`(t)− 1.0030`(t− 1) + 0.0124`(t− 2) =
0.1422{s(t)− 0.4899s(t− 1)− 0.4168s(t− 2)}+ ε(t), (6.4)

with ε the first step ahead prediction error. Here we have chosen s as exogenous
variable, and ` endogenous, in accordance with our findings in Section 6.1.2, cf.
Fig. 6.3, and also in correspondence with the so-called expectation hypothesis
on interest rates, see e.g. [37]. The LTLS method yields for ws

`(t)− 2.0108`(t− 1) + 1.0109`(t− 2) ≈
0.0960(s(t)− 1.8234s(t− 1) + 0.8249s(t− 2)), (6.5)

with the interpretation that this equation is locally optimally fitting, i.e., the
equation holds for each time separately for minimal changes of all involved
variables, cf. (2.18). The misfits of these models on the sample and validation
interval are given in Table 6.5.

Table 6.5: Misfit for local methods ARX and LTLS compared with the misfit
of the GTLS model.

relative misfit on sample on validation
ARX 0.037 0.084
LTLS 0.132 0.171
GTLS 0.024 0.048

It takes a change of the data of 3.7% to make the US interest rates satisfy the
second order ARX equation (6.4) exactly (i.e. with ε(t) = 0) on the sample
interval (6.1). It takes a change of 17.1% of the data to make it satisfy the
LTLS equation (6.5) on the validation interval. The GTLS model defeats
both models on the sample interval (by definition of GTLS), and also on the
validation interval.

This clearly shows that the system laws obtained by the local methods have
less quality with respect to the global GTLS criterion.
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To do justice to the ARX method, we also compare the first step ahead predic-
tion errors for the long term interest rates, which is the criterion on which the
ARX model is based. In Table 6.6 we list the first step ahead prediction errors
for the long term interest rates induced by the obtained models. On the sam-
ple interval this is by definition the smallest for the ARX model, and also on
the validation interval ARX defeats the other methods, albeit less pronounced.
This shows that the ARX and GTLS models contain different information on
the interest rates. A comparison of their quality will depend on a preference
for local or global criteria.

Table 6.6: First step ahead prediction error for the long term interest rate
for the methods ARX, LTLS and GTLS.

rel. prediction error on sample on validation
ARX 1.60 4.63
LTLS 2.21 5.54
GTLS 2.47 5.66

The LTLS model (6.5) induces a first step ahead prediction error for the long
term interest rates on [3, 200] with norm 1.60. The GTLS model B2

US in (6.2)
induces prediction errors on [203 : 388] of norm 5.66. The ARX model defeats
both models on the sample interval (by definition of ARX), and also on the
validation interval, although less pronounced.

For further comparison we also consider the predictions over a long interval
induced by these models. We determine the predictions for the long term
interest rates on the validation interval (September ′73 - April ′89), from the
model based on the sample interval (January ′57 - August ′73), the data on
this interval, and the short term interest rates on the validation interval. The
results are depicted in Fig. 6.7.
Notice that the computation of the k-step ahead prediction involves the (k+1)-
th order implications of the second order difference equation in (6.2), so for
instance the prediction of `(388) involves the 189-th order implication. In the
GTLS method we take account of these implications for all k, whereas the
local methods only consider them for k = 1. This difference is reflected in the
quality of the predictions, as especially at the end of the prediction interval
the GTLS method turns out to give better results.

6.2 Constants and Trends

As an extension of the GTLS method we consider the handling of constants,
also called intercepts. Instead of the restriction to linear models, it is sometimes
desirable to impose a weaker condition that allows for adding a constant to each
component of a time series in the model behaviour. This might be relevant,
for example, after taking the logarithm of measurements, as then constants
correspond to the scaling of the original series. Then we replace the condition
of linearity 2.1.3 by
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Figure 6.7: Long term predictions of long term interest rates from short
term interest rates.
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The solid line is the long term interest rates on the validation interval (Sep
73 – April 89). The dashed line is the prediction induced by the GTLS model
B2

US in (6.2), the dahs/dotted line the prediction induced by the ARX model
(6.4). Predictions are based on past (long and short term) interest rates on
the sample interval (Jan 57 – Aug 73), and the short term interest rates on
the validation interval.

Definition 6.2.1 (Linearity modulo Constants) A model B ∈ (Rq)Z is
called linear modulo constants if there exists a constant time series c such that
{w − c; w ∈ B} is linear.

The misfit and size of such models are defined in the obvious way. The corre-
sponding extension of the GTLS problem can be formulated as

Definition 6.2.2 (GTLS with Constants)
Given:

• an observation w : T → Rq, with T = [1, N ] ⊂ Z

• tolerated size (m,n),

determine:

• a decomposition w = ŵ∗ + c + w̃∗ with ŵ∗ ∈ Bq,m,n
T , c a constant time

series, and ‖w̃∗‖ minimal.

The estimation of the optimal constants in c can be incorporated in a straight-
forward way in the iterative estimation procedures for the standard GTLS
problem. Let C denote the set of all constant time series {w : Z → Rq; w(t) =
c for some c ∈ Rq}.
Proposition 6.2.3 (GTLS with Constants) The GTLS problem with con-
stants can be solved by the following modifications of the GTLS algorithms:
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• In Algorithm 1, replace in the second step w(t) by w(t)−c, and determine
x(N + 1) and c such that ‖ṽ‖ is minimal.

• In Algorithm 3, replace E and F by E ′ := E + C and F ′ := F + C.

• In Algorithm 4, add to T also the effect of constant time series on v̄ in
(5.21).

Proof. See Appendix A.6.

In addition to constants, it is also easy to incorporate trends, i.e., straight lines
c+dt with c, d constants in Rq in the modelling of time series. Many time series
in economics show an exponential growth, which becomes a linear trend after
taking logarithms. Then one might first remove this trend in order to obtain
a time series that looks more ’stationary’, so that it can be modelled as the
realization of a stationary stochastic process. We remark that in our approach
it is not compulsory first to transform the data to a ’stationary’ series, as
non-stationary behaviour may be absorbed by the degrees of freedom in time-
invariant models, cf. our discussion in Section 6.1.2. The estimation of optimal
trends can be handled as before, just by replacing c by c + dt in the previous
exposition.

In the same way quadratic trends (c + dt + et2) can be handled. In fact the
incorporation of a linear set of deterministic components leads to a linear
extension of the spaces E , F and T in the algorithms. Besides trends to
arbitrary order, this also concerns all kinds of dummy variables, but we will
not pay attention to this issue.

6.2.1 Constants and Trends for US Interest Rates

It is not a prerequisite of the GTLS method that the observation should con-
sist of a ’stationary’ time series, i.e. with the same type of behaviour in all
components during the observation interval. Although GTLS models are time-
invariant, non-stationary behaviour can be incorporated in the model as there
is a degree of freedom at each time-instant. This is apparent in the results
obtained for the US interest rates in the previous sections.

Nevertheless there may be reasons to incorporate constants and trends in mo-
dels. If we allow for constants, the dynamic part of optimal models is not
affected by the level of the data components. For instance, then it makes no
difference whether we analyse the interest rates themselves, or the correspon-
ding multiplication factor given by the interest rate plus 100%, which is also
a reasonable starting point.

The effect of constants and trends on the misfit is shown in Table 6.7. The
models are estimated on the sample interval consisting of the first 200 obser-
vations.

The models are given by the equations
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Table 6.7: Effect of constants and trends on the relative misfit of second
order GTLS models.

rel. misfit on [1:200] on [201:260] on [201:388]
no const, no trend 0.0242 0.0259 0.0483
const., no trend 0.0232 0.0266 0.0575
const. and trend 0.0228 0.0225 0.1147

The first line is also depicted in Table 6.4. Incorporating a constant term
(and trend) decreases the relative misfit on the sample interval from 0.0242
to 0.0232 (0.0228), but this leads to an increase of the relative misfit on the
validation interval from 0.0483 to 0.0575 (0.1147).

B2
US : `(t)− 1.9660`(t− 1) + 0.9665`(t− 2) =

0.2787(s(t)− 1.8910s(t− 1) + 0.8930s(t− 2))
constants : `(t)− 1.9695`(t− 1) + 0.9713`(t− 2) =

0.3029(s(t)− 1.9340s(t− 1) + 0.9384s(t− 2)) + 0.0027
const&trend : `(t)− 2.0042`(t− 1) + 1.0058`(t− 2) =

0.2714(s(t)− 1.9723s(t− 1) + 0.9732s(t− 2))+
+0.0041 + 2.02 10−5t

(6.6)

We conclude that the incorporation of constants and trends is not effective in
explaining the data, as it hardly decreases the misfit and, moreover, even leads
to a higher misfit on the validation interval.
Notice that the left hand side of the last model equation almost equals the
second difference of `(t), as in (6.2). However, if we replace it by the second
difference, the relative misfit increases to 0.0398. Imposing only one unit root
by replacing the left hand side by ∆`(t) − 1.005∆(`(t) yields relative misfit
0.0354. This shows again that replacing nearly unit roots by exact unit roots
may lead to a relatively large increase of misfit, although the effect is less
dramatic than in Section 6.1.2.

6.3 Periodic GTLS

Many phenomena are known to exhibit periodic behaviour, and then it is
appropriate to take account of that in modelling. In such situations the
condition of time-invariance (2.1.2) may be too severe, as this does not allow
for periodically changing model restrictions.
A straightforward way to weaken shift-invariance to periodicity is as follows.

Definition 6.3.1 (Periodic Systems) A system P ∈ (Rq)Z is called perio-
dic of period π if it satisfies σπP = P.

Stated otherwise, models of period π do not change under shifting the time
axis over π time-instants. Of particular practical interest are the cases π =
4 and π = 12 for respectively quarterly and monthly data. Quarterly and
monthly models have been studied extensively in econometrics, see e.g. [14,
28]. The differences between periodic GTLS and other methods for periodic
modelling are the same as for the time-invariant case: its global character
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and the symmetric treatment of all data components, cf. Section 2.5, and
further the absence of stochastics and its formulation without reference to
model parameters.
Most definitions and results for the time-invariant case can be extended to
the periodic case in the obvious way. The behaviour of linear periodic models
on a finite interval T consists of a linear subspace of (Rq)T . As for time-
invariant models, we define the rank of periodic models in terms of the increase
of dimension at each time, and the degree in terms of the number of initial
conditions at each time, which now may depend on the period.

Definition 6.3.2 (Periodic Size, Rank, Degree) The size of a linear
periodic system P of period π is defined as the pair of π-tuples
(m1, . . . , mπ; n1, . . . , nπ) such that with mkπ+i := mi and nkπ+i := ni,
dim(P[t0,t1]) = nt0 + Σt1

t=t0mt for t1 − t0 ≥ max{n1, . . . , nπ}. The tuples
(m1, . . . , mπ) and (n1, . . . , nπ) are called respectively the periodic rank and de-
gree of P.

For a proof of correctness of this definition we refer to Appendix A.6.
The sizes of systems are partially ordered by comparing the size at each period,
i.e.,

(m1, . . . ,mp;n1, . . . , np) ≤ (m′
1, . . . , m

′
p; n

′
1, . . . , n

′
p) if mk ≤ m′

k and nk ≤ n′k (6.7)

for all k = 1, . . . , p.
We remark that for a time invariant system of size (m,n), the periodic size is
just given by (m, . . . , m; n, . . . , n).
The misfit of linear periodic models is defined exactly as for the time-invariant
case. The periodic GTLS problem consists of the construction of a periodic
linear model of tolerated size with minimal misfit with respect to an observed
time series.
Periodic SR’s (PSR’s) are state representations in which the system matrices
depend on the period. Periodic ISR’s (PISR’s) are PSR’s that satisfy (3.7) at
each period. Periodic difference equations have coefficients that depend on the
period. We summarize some results on the representation of periodic systems
in the following proposition.

Proposition 6.3.3 (Periodic Systems) Let P denote a periodic linear com-
plete system. Then

1. P is the solution set of a set of periodic linear difference equations of
finite lag.

2. P can be described by a periodic state representation, and its periodic
rank and degree equal the minimal number of auxiliary variables and
states for each period.

3. (conjecture) If P is stabilizable, it admits a periodic isometric state re-
presentation.
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Proof. See Appendix A.6 The proof of 3. is not complete, so it is a conjecture.

The relation between the periodic rank of a system and its representation in
terms of periodic difference equations is straightforward. The periodic rank mk

equals q minus the number of independent equations that apply at period k,
completely analogous to the time-invariant case. However, the periodic degree
does not correspond to the minimal total order of these equations, but is a
mixture of the total orders of the equations for all periods. We explain this by
the following example.

Example. Consider a linear model in two variables (u, y) of period two, that
is described by

{(u, y) : Z → R2; yt = ut−1 if t odd and yt = ut−100 if t is even} (6.8)

In the long run dim(B[1,t]) = t + 50, as we can freely choose values for u
and for y1, y2, y4, . . . , y96, y98 (this determines y100 = y1). Similarly, for large t
dim(B[2,t+1]) = t + 50, as besides u the values of y at the even time instants
on [1, 100] are free. This implies that the rank of the model equals (m1,m2) =
(1, 1), and the degree (n1, n2) = (50, 50). Notice that both at odd and even
time-instants the system should somehow remember the last 50 values of u at
the even time-instances.

This also illustrates that not all combinations of periodic degrees can occur.
Consider a linear model of period two consisting of time series of two variables,
so its rank is a pair of integers (m1,m2), and clearly 0 ≤ mk ≤ 2. Let us
assume that m1 = m2 = 1, as in the previous example, and moreover that now
n1 = 1. Then it is impossible that e.g. n2 = 100, as this would mean that at
even time instances the number of degrees of freedom due to initial conditions
is 100, while at the next odd time instant this is suddenly reduced to one,
which clearly is impossible. In fact, it is easily derived that in this example
0 ≤ n2 ≤ 2.

More generally, the periodic degree in two subsequent periods cannot differ
more than the number of system variables, i.e.,

|nk − nk+1| ≤ q, k = 1, . . . , π, (6.9)

as the state at time t is a linear function of the previous state and the system
trajectory at time t− 1, which follows from the definition of SR’s. 3

Once it is known how to determine periodic ISR’s, the construction of periodic
GTLS models requires only some minor modifications of the algorithms. In
all algorithms we replace SR’s by PSR’s and ISR’s by PISR’s. Further, the
projections onto linear spaces is decomposed into p projections for each period,
which gives the optimal variations of the periodic system matrices.
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6.3.1 GFR Seasonal Consumption and Income

We illustrate the periodic GTLS method by applying it on the seasonal con-
sumption and income in the German Federal Republic (GFR) during the years
1960–1987, cf. [25, Table E.4]. In Fig. 6.8 the data is depicted, together with
the optimal approximation in the periodic first order GTLS model.

Figure 6.8: Seasonal consumption and income in West Germany and their
first order seasonal GTLS approximation.
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Seasonal West German real per capita personal disposable income (upper
solid line) and personal consumptions expenditures (lowed solid line) from
1960 through 1987. The optimal approximation in the first order seasonal
GTLS model for the first 100 observations is given by the dashed lines (hardly
visible as they are very close).

In Table 6.8 we compare the misfit of periodic models with those of time-
invariant models for order zero and one. The models are based on the data
over [1, 100], and the misfit is computed over the complete observation interval.

Table 6.8: Misfits of time-invariant and periodic GTLS models for GFR
seasonal consumption and income.

misfit static first order
time-invariant 609 564
periodic 417 225

The optimal first order time-invariant GTLS model for the first 100 observa-
tions has misfit 564 (on the complete observation interval [1, 112]). For the
first order periodic model this is 225, which equals the norm of the difference
between the data and its optimal approximation in the system depicted by
resp. the solid and dashed lines in Fig. 6.8.

The approximation errors are depicted in Fig. 6.9. Notice that the approxi-
mation error for the time-invariant models clearly shows a seasonal pattern,
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while this is less apparent for the periodic models.

Figure 6.9: Approximation errors of time-invariant and periodic GTLS mo-
dels for GFR seasonal consumption and income.
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Approximation error in income (solid lines) and consumption (dashed lines)
for static time-invariant and seasonal model (upper plots) and first order
time-invariant and periodic models (lower plots).

The models are given by the following equations, where c denotes consumption
and i income.

n = 0 time-inv. ct = 0.87it
I ct = 0.85it

II ct = 0.90it
III ct = 0.89it
IV ct = 0.87it

n = 1 time-inv. ct − 0.983ct−1 = 0.81(it − 0.981it−1)
I ct − 0.32ct−1 = 2.06(it − 0.66it−1)

II ct − 1.14ct−1 = 0.94(it − 1.08it−1)
III ct − 1.05ct−1 = 0.55(it − 1.08it−1)
IV ct − 1.40ct−1 = −0.27(it − 0.18it−1)

(6.10)

This indicates that the consumption and income are related by a linear equa-
tion that depends on the period. However, the periodic model class covers
the time-invariant class of the same order as a special case, so the misfit for
every time series with respect to its periodic GTLS model is lower than with
respect to its time-invariant GTLS model of the same order. Therefore we also
compare the periodic model with a higher order time-invariant one. The total
number of parameters in the time-invariant model class of rank m and degree
n, Bq,m,n, equals nq + mp, and each system in this model class has dimension
mN + n with N the length of the observation interval, cf. Section 5.1. For
seasonal models with all periodic ranks equal to m and periodic degrees equal
to n the model class contains 4(nq + mp) parameters, and each periodic mo-
del in this class has dimension mN + n. For N = 112 the total number of
parameters for the first order periodic case equals 12 + 113 = 125. For the



112 CHAPTER 6. APPLICATIONS AND EXTENSIONS

time-invariant case we take n = 4, which corresponds also to 9 + 116 = 125
parameters. The resulting system for the first 100 observations is given by

ct + 0.046ct−1 − 0.011ct−2 + 0.013ct−3 − 0.932ct−4 =
0.71(it + 0.038it−1 − 0.006it−2 + 0.049it−3 − 0.933it−4) (6.11)

and has misfit 254 over the complete observation interval. The approximation
errors are compared in Fig. 6.10. We remark that the peak around t = 60
(1974) might be explained as the effect of the oil crisis.

Figure 6.10: Comparison between first order seasonal and fourth order time-
invariant GTLS model for GFR seasonal consumption and income.
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In order to make the data satisfy the first order periodic equation in (6.10)
we have to substract from the data the approximation error corresponding
to the solid lines, with norm 225 (see Table 6.8). In order to make it satisfy
the fourth order time-invariant equation (6.11) we have to substract the ap-
proximation error given by the dashed lines (with norm 254). (The relatively
high deviation around t = 60 (1974) might be explained as an effect of the oil
crisis.)

It turns out that the periodic first order model is only slighly more accurate
than the fourth order time-invariant one. This shows that, although both com-
ponents of the data clearly show a seasonal behaviour, they nevertheless satisfy
a time-invariant relation rather accurately. An explanation could be that the
periodicity in consumption and income separately is due to seasonal external
effects that hardly affects the dynamic relationship between both quantities.
We leave a thorough comparison between the periodic and time-invariant mo-
dels as a topic for further reasearch.

6.4 Multiple Outputs

In this example we consider a system with multiple outputs, so that a single
difference equation does not suffice to describe the system. Our aim is to
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show how GTLS handles simultaneous equations. For simplicity we consider a
system with one input and two outputs. The data are generated as w = w′+e,
where w′ ∈ B3,1,2 satisfies the equations

w′
2(t) = w′

2(t− 1) + w′
1(t)

w′
3(t) = w′

2(t) + w′
1(t− 1) (6.12)

For w1 we take white noise with unit variance, and for e a three-dimensional
white noise process with independent components and variance 0.01. The
relative size of the noise is given by ‖e‖/‖w‖ = 0.20. The observation interval
has length 50. The GTLS model of rank one and degree two is described by

w2(t) = 0.95w2(t− 1)− 0.04w2(t− 2) + 1.08w1(t) + 0.07w1(t− 1) + 0.15w1(t− 2)
w3(t) = 0.95w3(t− 1)− 0.04w3(t− 2) + 1.12w1(t) + 1.08w1(t− 1)− 0.89w1(t− 2)

(6.13)
and has relative misfit 0.15. In fact both GTLS algorithms yield an ISR of
this model with two state variables and one auxiliary input. We translated
this into difference equations by using Proposition 3.4.3 and transforming the
resulting input/state/output representation into difference equations by state
elimination (which is a standard procedure in Matlab). We remark that the
equations are not uniquely defined by the model, as every pair of independent
linear combinations of these equations represent the same system.
The GTLS model consists of all time series that satisfy both equations. So the
data satisfies these equation simultaneously, throughout the whole observation
interval, after a modification of the size of 15% of the data. It takes a larger
change to make the data satisfy any other set of two independent equations
with total lag 2 that is not logically equivalent to (6.13).
In contrast to for instance Vector Auto Regression (VAR), cf. e.g. [25, 27], in
which each equation corresponds to a prediction for a specific component, the
equations in (6.13) play a symmetric role, and may be replaced by an arbitrary
couple of logically equivalent equations.
The non-uniqueness of parameters is often called an ’identification problem’,
but in our approach the term ’representation issue’ seems more appropriate:
we do not estimate parameters in equations, but use equations to represent
estimated models which are defined as sets of time series. In fact we use ISR’s in
our algorithms, for which the multi-equation case (rank m less than q−1, with
q the number of components) can be treated exactly like the single-equation
case (m = q − 1).
Another issue in simulation experiments is the relation between the estimated
model and the ’data generating process’, which we only briefly discuss. For a
first comparison we transform the model equations (6.12) to

w′2(t)− w′2(t− 1) = w′1(t)
w′3(t)− w′3(t− 1) = w′1(t) + w′1(t− 1)− w′1(t− 2), (6.14)

which are similar to the estimated equations. However, a comparison at this
level has several drawbacks. Firstly, the equations may be replaced by an
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arbitrary couple of logically equivalent equations, as this represents exactly the
same system. Secondly, it involves arbitrariness in the sense that any other
type of representation may be chosen as well and probably leads to different
results.
It would be more in the spirit of the GTLS approach to compare both systems
as sets of time series, independent of representations. Notice that the systems
are somehow close together, as the data belongs to both approximately. A
more thorough analysis might for example concern the computation of the
canonical angles between both models on the observation interval. We leave
this issue as a topic for further research.
In order to reconstruct the size of the model from the data, we compare the
misfits of GTLS models of various complexity in Table 6.9.

Table 6.9: Selection of rank and degree in a simultaneous equations model.

rel. misfit n = 0 n = 1 n = 2 n = 3 n = 4
m = 1 0.55 0.24 0.15 0.15 0.14
m = 2 0.21 0.10 0.091 0.085 0.075

It takes a change of 14% of the data to make it satisfy two independent
linear difference equations with constant coefficients and sum of degree at
most 4 (m = 1, n = 4). To make it satisfy one such an equation of order one
(m = 2, n = 1) requires a change of 10%.

For rank one, the misfit hardly decreases for orders above two. This could be
expected, as the regular part of the data belongs to a system of order two. For
rank two the results suggest to take the order one. Comparing the complexities
(m,n) = (1, 2) and (2, 1), the first one of course leads to a larger misfit, as
it imposes more restrictions. However, the relative misfit is still small, which
motivates to choose (m,n) = (1, 2).

6.4.1 Recursive Evaluation of the Misfit

The recursive projection Algorithm 2 in Section 4.4 gives insight in how the
misfit is affected by each subsequent observation, given the values in the past,
cf. also Section 6.1.4. In this section we consider its application on the simula-
tion data of the preceding section, consisting of three components. In Fig. 6.11
we compare the sequence m(t)2, denoting the increase of the squared misfit
due to the observation w(t), given its past, and |w̃(t)|2, which is the squared
misfit at time t given the whole observation, as computed just before. For
comparison we also plot the size of the noise e in the simulated data, |e(t)|2.
This illustrates that the recursive procedure can be helpful for locating excep-
tional deviations in the data. For example, consider the results around t = 37.
The peak in m(t)2 at t = 38 clearly shows a relatively high deviation in the
data at that point, while this is not obvious from the misfit sequence |w̃(t)|2, as
this shows a moderate error for both w(37) and w(38). So, although it appears
to be optimal to distribute the deviation in w(38) over several time-instances
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Figure 6.11: Recursive evaluation of the misfit in a simultaneous equations
model.
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The dashed line in the upper plot is the squared approximation error of the
model given by (6.13) at each time instant (|w̃(t)|2). The solid line is the
increase of squared misfit due to observation w(t), given the past observations
(m(t)2). This indicates w(37) as an outlier. This is confirmed by the lower
plot, which depicts the size of the noise in the data generating process (|e(t)|2).
The noise around t = 25 is also large in absolute value, but it turns out to be
in less sharp conflict with the model laws in (6.13).

afterwards, the recursive procedure clearly points out its exact location. In-
deed, it turns out that the noise e in the simulated data has a peak at t = 38.
However, notice that not all peaks in the noise lead to a high increase of the
misfit, as they may be in correspondence with the degree of freedom in the sys-
tem at each time-instant, due to the fact that there are only two independent
equations for three components.
As a further illustration of Algorithm 2 we give an interpretation of the matrix
H̃t, which measures the effect of ’innovations’ ε on the misfit, cf. (4.25). We
consider the steady state value H̃ := limt→∞ H̃t. The singular value decompo-
sition (cf. Definition 2.3.2) of H̃ is given by

H̃ =




0.45 −0.68 0.58
−0.81 −0.06 0.58

0.35 0.73 0.58







0.97 0 0
0 0.56 0
0 0 0







0.45 −0.68 0.58
−0.81 −0.06 0.58

0.35 0.73 0.58



>

(6.15)

This gives a picture of the effect of an observation on the misfit, given the
past. If w(t) happens to be equal to Cx̂t(t), then ε(t) := w(t)−Cx̂t(t) = 0, so
the misfit does not increase. Moreover, w(t) may vary in the direction of the
kernel of H̃ without any cost. This means that given the observations up to
time t, the model leaves the level of the next observation completely free: an
observation w(t) + [c c c]> leads to the same increase of misfit for all c ∈ R.
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This is in accordance with (6.12), as the equations remain valid on [1, t] if the
same constant is added to all three components of w(t). If ε(t) is not of the
form [c c c]> the misfit is increased. The ratio between the nonzero singular
values gives the relative severeness of deviations in the direction of the first
and second singular vectors of H with respect to the GTLS criterion.

6.5 Optimal Model Reduction

In this section we show how the GTLS approach can be used for model reduc-
tion, i.e., the approximation of a system by a smaller one. This amounts to
the reduction of the rank and/or degree of a system, cf. Definition 2.1.6, but
we only consider the reduction of the degree. The basic idea is to determine a
GTLS system of reduced order for a system trajectory in the original system.
We concentrate on the case that this system trajectory consists of a systems
impulse response. We extend the results in Section 6.5.2 to optimal frequency
weighted model reduction. Finally we show that the algorithm can handle
noncausal systems without any additional difficulty.

6.5.1 Impulse Response Approximation

We consider the single input, single output system B with poles in ±0.9i and
−0.7± 0.6i and gain 0.5, so

B = {(u, y) : Z → R2; y(t) = 0.5u(t)− 1.4y(t− 1)+

−1.66y(t− 2)− 1.13y(t− 3)− 0.69y(t− 4).} (6.16)

This system has one input, and state dimension n = 4, so its complexity is
(1, 4). We consider reduction to complexity (1, 2). The data w ∈ B consists of
two components u and y, where u is a unit pulse at time t = 0 and y is the
corresponding response. The aim is to determine a second order system with
impulse response y′ as close as possible to y, i.e. with ‖y − y′‖ minimal. As y
and y′ are infinite sequences, it is conventional to call this the l2-norm instead
of the Euclidian norm, and therefore we refer to this as the l2-optimal impulse
response approximation problem, cf. [38] and the references therein.
First we apply the GTLS algorithm, starting in a randomly chosen model.
When the decrease in the misfit has become sufficiently small, below 10−10,
the iterations are stopped. Notice that this is a naive approach to l2-optimal
impulse response approximation, as we also allow for adaptation of the input.
The final model Bgtls is compared in Table 6.10 with the balanced reduction
Bbal and the Hankel norm reduction Bhank, that have been developed especially
for model reduction, see [15] and [26].
The error in the impulse response in Bgtls is somewhat larger than that in Bbal

and Bhank. If one is interested in this response then one should prevent an
approximation of the input, so that an optimal approximation of the output
becomes the criterion. This is achieved by taking the norm ‖w̃‖2

α := α2‖ũ‖2 +
‖ỹ‖2 with α sufficiently large. It is easily verified that this corresponds to
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Table 6.10: GTLS compared with balanced reduction and Hankel norm
approximation.

approximation criteria Bgtls Bbal Bhank

misfit with respect to w 0.32 0.36 0.38
error in impulse response 0.54 0.46 0.57
Hankel norm distance 0.93 0.80 0.74

It takes a change with norm 0.32 in the impulse and its response to make it
satisfy a second order linear difference equation with constant coefficients. It
takes a change with norm 0.57 to make the observed impulse response y equal
to the impulse response of Bhank.

the unweighted GTLS problem for data (αu, y). The effect of increasing α is
given in Table 6.11. This shows that for large α the method determines better
approximations of the impulse response.

Table 6.11: Effect of scaling in GTLS.

scaling factor α = 1 α = 10 α = 100
‖.‖α-misfit with respect to w 0.3204 0.4457 0.4476
error in impulse response 0.5407 0.4477 0.4476

α = 1 corresponds to unweighted GTLS, cf. Table 6.10. The minimal value
of α2‖ũ‖2 + ‖ỹ‖2 for which (û, ŷ) := (u− ũ, y − ỹ) belongs to a second order
linear time-invariant system equals 0.4457 for α = 10. The error in impulse
response for the corresponding system equals 0.4477.

This also gives bounds for the minimally achievable error in the impulse
response, which we denote by e∗. Let Bα be the GTLS model for ‖.‖α,
and let yα be the impulse response of Bα, then it is easily checked that
d(w,Bα) ≤ e∗ ≤ ‖y − yα‖. By increasing α we can obtain an arbitrarily
accurate estimate of e∗. This gives a solution method for the least squares
optimal impulse response approximation problem. For α = 100 we obtain
e∗ = 0.4476, see Table 6.11. The corresponding model is given by the equation
y(t) = −1.35y(t − 1) − 0.78y(t − 2) + 0.50u(t) + 0.11u(t − 1) − 0.21u(t − 2).
The impulse response is depicted in Fig. 6.12.

6.5.2 Frequency Weighting

In the previous section we described how to determine the optimal approxima-
tion of an impulse response by the impulse response of a lower order system.
One could question the quality of the result as an approximation of the whole
system, and not only of the impulse response. Therefore we consider the dif-
ference in outputs for all frequencies, i.e., we compare the size of the effect of
sinusoidal inputs on the outputs in the original system with their effect in the
reduced system, for all frequencies. This is shown in Fig. 6.13, which is called
the error magnitude response.
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Figure 6.12: Second order l2-optimal impulse response approximation of a
fourth order system.
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The solid line is the impulse response of the fourth order system B in (6.16).
The dashed line is its l2-optimal approximation of second order.

Figure 6.13: GTLS compared to balanced reduction and Hankel norm ap-
proximation in terms of magnitude responses.
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Magnitude response of the difference between the system B in (6.16) and its
approximations, obtained by GTLS (solid line), balancing (dashed line), and
Hankel approximation (dash/dotted line).
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The l2-optimal approximation of the impulse response corresponds to the mi-
nimization of the squared error magnitude response, integrated over all fre-
quencies in [0, π], i.e.

∫ π

0
|G(eiω)−Greduced(eiω)|2dω, (6.17)

where G,Greduced denote the transfer function of the system of full and reduced
order.

This criterion has the property that the error for all frequencies is weighted
equally. This is reasonable for instance if the input consists of white noise,
which is composed of all frequencies in equal quantities. However, if one ex-
pects dominant frequencies in the input, it may be desirable to emphasize
those frequencies in the criterion. Then we should not take our starting point
in the impulse response of the system, but in a system trajectory in which
the input has a typical frequency distribution. This is motivated by the fact
that the l2-optimal approximation of the output for an input with frequency
content U(ω) := Σt∈T u(t)eiωt, minimizes the criterion

∫ π

0
|U(ω)|2|G(eiω)−Greduced(eiω|)2dω, (6.18)

So the frequency weights in the input are precisely the frequency weights in
the criterion that is minimized. This result applies to infinite sequences with
finite l2-norm. For finite series there is a minor boundary problem, as a part of
the effect of the inputs falls outside the observation interval. Nevertheless, the
idea of optimal frequency weighted approximation is still valid for the finite
time case. In the GTLS approach we do not assume the inputs and outputs
to be zero after the observation interval, but estimate an optimal final state,
which decreases the ’finite time effect’.

As an example we consider two frequency weighted approximations. First we
try to improve the approximation at low frequencies. This means an emphasis
on long term dynamics in contrast to local changes, which correspond to high
frequencies. Therefore we take as input ulow the effect of white noise in a
low-pass filter,

ulow :=
1

1− 0.9σ
ε, (6.19)

of length 128. We determine the optimal approximation of the corresponding
output, as described in Section 6.5.1 with α = 100. The error magnitude
response, depicted in Fig. 6.14, shows that indeed the accuracy for low fre-
quencies has increased, at the cost of a slightly worse approximation at higher
frequencies.

As a second example we consider an input with extreme high energy con-
tent for frequency π/2, in order to improve the results around that frequency.
Therefore we take as input

uπ/2(t) = sin(πt/2) + ε(t) (6.20)
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with ε white noise with variance 0.005. The white noise is added to avoid the
degenerate case of approximating a system in only one frequency. Fig. 6.14
shows that indeed the approximation around π/2 is quite accurate, although
at high costs for other frequencies.

Figure 6.14: Error Magnitude for frequency-weighted l2-optimal approxi-
mations.
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Magnitude response of the difference between the system B in (6.16) and
its approximations with emphasis on low frequency, by taking input (6.19)
(dash/dotted line), and on the frequency π/2, by taking input (6.20) (dotted
line). For comparison the results of unweighted l2-optimal impulse response
approximation (solid line) and balanced reduction (dashed line) are shown
again.

6.5.3 Noncausal Systems

Suppose we are interested in detecting rapid changes in an observed signal.
In order to mitigate the effects of small irregularities, a smoothed version of
the signal is obtained by convolution with the filter1 φ(x) = (5/

√
2π) e−x2

.
Rapid changes of a signal w1 will be detected by the second derivative of this
smoothed version, w2, which is related to w1 by the ’Mexican hat’,

w2(t) = − d2

dt2

{∫ ∞

−∞
ϕ(x)w1(t− x)dx

}
. (6.21)

In the simulations we consider a discrete time version w2(t) = ΣN
j=−NGjw1(t−

j) with N = 40 and time steps of size 0.2, so Gj is the steplength 0.2 times
the second derivative of ϕ in 0.2j. Note that w2 is not a causal output, as the
value of w2(t) depends on the future values of w1.
First we apply Algorithm 4 to the impulse response observation, i.e., w1 is a
unit pulse at time t = 0 and w2 is the corresponding response, see Fig. 6.15.

1For comparison we mention that the normal density is given by (2π)−
1
2 e−

1
2 x2

.
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Initial models for the iterations are determined by Algorithm 5, as described
extensively in [33].

Figure 6.15: The Mexican hat.
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This is the effect of a pulse w1 on w2 in the system (6.21).

The misfits of the optimal models of orders 2, 4 and 6 are given in Table 6.12.
They are compared with the optimal Hankel norm approximations of orders
2, 4, and 6. These are obtained by approximations of orders 1,2 and 3 of the
causal part of the impulse response, and using the symmetry of the Mexican hat
to estimate the anticausal part. Analogously we determined approximations
by balanced reduction. In Table 6.12 we also list the error in the impulse
response of these models, i.e., the Euclidian distance between the systems
impulse response and the Mexican hat w2, with norm ‖w2‖ = 0.35.

Table 6.12: GTLS compared with balanced reduction and Hankel norm
approximation in reducing the Mexican hat.

model Bgtls Bbal Bhank

n=2 misfit 0.17 0.18 0.32
error in impulse response 0.21 0.20 0.34

n=4 misfit 0.046 0.047 0.052
error in impulse response 0.051 0.050 0.055

n=6 misfit 0.0070 0.0071 0.0078
error in impulse response 0.0076 0.0075 0.0081

It requires a change of norm 0.17 to make the data (w1, w2) belong to the
second order GTLS model, while the impulse response of this system differs
0.21 from the Mexican hat. Balanced reduction of the right half of the Mexi-
can hat to a third order system, and using the symmetry in the Mexican hat,
yields a sixth order model with misfit 0.0071.

Hankel norm reduction and especially balancing give rather good results. Ho-
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Figure 6.16: GTLS approximations of the Mexican hat.
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The solid lines give the impulse (upper plot) and the Mexican hat (lower
plot). The dashed lines depicts the optimal approximation of the data of
second order, and the dash/dotted lines of fourth order (hardly visible).

wever, they can only be used when a causal impulse response is available. The
GTLS method makes no use of the symmetry of the observed signals, but this
property is preserved well in the identified models. This is illustrated in Fig.
6.16, which contains the optimal approximations of orders 2 and 4.

We also apply the GTLS method to data we consisting of two noisy steps for
the input and the corresponding system output. These data and the optimal
approximation of order 4 are given in Fig. 6.17. We should mention that the
approximation error in the input is so small that it is nearly invisible in this
figure.

The misfit of this model and the error in its impulse response are listed in the
first column of Table 6.13. In view of the results for n = 4 in Table 6.12, this
shows that the identified model is an accurate approximation of the Mexican
hat.

In order to illustrate the difference between global and local methods, we finally
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Figure 6.17: Estimating the Mexican hat from noisy step measurements.
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The solid lines depict the data: a noisy step as input and its (smooth) effect
in the Mexican hat filter (6.21). The dashed lines depict the optimal fourth
order GTLS approximation.

consider once more the local total least squares method described in Section
2.5. The results for the fourth order model are given in the second column in
Table 6.13.

Table 6.13: Local versus global method for the Mexican hat.

method Global TLS Local TLS
misfit with respect to we 0.11 1.17
error in impulse response 0.066 0.522

The fourth order GTLS model for the noisy step measurement wn (solid lines
in Fig. 6.17) has misfit 0.11. The difference between the impulse response of
the fourth order Local TLS model for this data and the Mexican hat equals
0.522, which is even larger than the size of the Mexican hat itself (0.35).

This clearly shows that, perhaps not surprisingly, the local method gives poor
results with respect to the global total least squares criterion. For example,
the error in the impulse response of the local model is even larger than the
Mexican hat itself, which has norm ‖w2‖ = 0.35. This illustrates that local
methods may completely miss global relations in the data.
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Chapter 7

Conclusions

Global Total Least Squares (GTLS) is a method for determining approximate
deterministic models for an observed time series. Models are defined as sets of
time series that are linear and shift-invariant, and the aim is to determine a
model of restricted dimension with minimal distance to the data. For further
explanation we gave concrete descriptions in terms of difference equations and
linear systems.
In the solution method, state representations played a central role. In par-
ticular isometric state representations turned out to be a useful tool in the
GTLS algorithms. The reason is that they induce an orthonormal basis of
a model and give insight in the relation between a model and its orthogonal
complement. This was exploited in Algorithm 1, which determines the time
series in a given model that is closest to the data. It also played a basic role in
the recursive version Algorithm 2, which can be considered as a deterministic
version of Kalman filtering. We derived optimality conditions that characte-
rize stationary points of the GTLS criterion, i.e., models for which the misfit
has zero derivative (as a function of model parameters). These conditions were
derived from three model improvement constructions, that were worked into
an algorithm for determining GTLS models, Algorithm 3. Considerably faster
is the second GTLS Algorithm 4 in terms of Gauss-Newton iterations. Also
in this algorithm isometric state representations plays a crucial role. Initial
estimates were determined on basis of a modified canonical correlation analysis
in Algorithm 5.
We concluded by several applications, concerning both economic time series
and system theoretic issues.

We come to the following conclusions:

The behavioural approach to systems theory gives a useful frame-
work for time series analysis.

In our opinion it is enlightening in identification to concentrate on the beha-
viour of systems, i.e., the set of events that are compatible with it, instead of
taking a starting point in a particular type of description of systems, as diffe-
rence equations or state representations. The idea is that it is important what
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a model says, and not how. The behavioural definition of models as sets of
time series enables a description of the GTLS identification problem without
any reference to model parameters. In this way we can make a clear distinc-
tion between identification problems, concerning the relation between data and
model, and parametrization issues, concerning the numerical representation of
models. In particular the uniqueness of representations plays a minor role in
the algorithms, as we concentrate on system behaviour. In our approach it is
not necessary to achieve uniqueness of parameters by choosing canonical forms,
which is a complex issue especially for multi-input multi-output systems.

The open approximate deterministic modelling methodology is suit-
able for economic time series analysis.

Our modelling approach has some attractive properties that are relevant in
econometrics. Firstly, we treat all variables symmetrically, without a priori
distinction in explanatory (exogenous, inputs) variables and explained (endo-
genous, output) variables. In many cases in econometrics it is not obvious how
to make such a decomposition, and then this is a desirable property of GTLS.
Secondly, no stochastic assumptions are made, neither on external effects, as
we use free auxiliary inputs to represent the effect of the environment, nor on
deviations in the data with respect to the model, as we only minimize the size
of these deviations. This is well-suited for many applications in econometrics,
in which representing the environment or model deviations as random variables
may be hard to defend.

GTLS is new.

The method has quite conventional aspects: models are linear and time-
invariant, and the accuracy of models is measured by the sum of squared
residuals. The distinctive feature of GTLS is the way in which the residuals
are defined: as the difference between the observed time series and the closest
time series that is in exact correspondence with the model laws. For the static
case this amounts to (static) total least squares or orthogonal regression, cf.
Section 2.3, but for the dynamic case the method is new. The method is called
’global’ because we compare the data with time series that satisfy the (deter-
ministic) model equations throughout the entire observation interval. This is in
contrast with ’local’ methods that take into account approximation errors on
small intervals separately, e.g. the first step ahead prediction errors. The term
’total’ refers to the fact that we allow for approximation errors in all data com-
ponents, in contrast to methods that explain some (endogenous) components
in terms of unexplained (exogenous) components that are not approximated.
The combination of its global character and the symmetric treatment of all va-
riables makes the difference with other least squares methods. GTLS models
are also different from dynamic ’errors in variables’ and ’factor’ models.

GTLS is feasible.
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The iterative GTLS algorithms, together with the heuristic algorithm 5 for
determining initial models, turns out to be sufficiently powerful to determine
small GTLS models at high accuracy in short time. The estimation of simul-
taneous equations does not cause additional problems. With some effort the
method can be extended to the periodic case. On the other hand, resulting
models might be only locally optimal, and we did not analyse the performance
of the algorithms for the construction of large models.

GTLS gives promising results.

The applications illustrate the use of GTLS in various situations. The example
on the US interest rates shows that its scope is not restricted to ’stationary
looking’ time series, as the non-stationary aspects may be incorporated in the
degree of freedom in the system represented by the auxiliary input. GTLS is
not only new from a theoretical point of view, it also gives different results in
applications on real data. This was illustrated by the results on ’unit roots’.
As the GTLS criterion takes into account the global implications of difference
equations, it makes a sharp distinction between permanent effects (unit roots)
and long lasting but decaying effects (nearly unit roots). The GTLS method
is also of use in optimal model reduction, and the modelling of input/output
data.

We have already proposed some technical topics for further research in the
previous chapter (see also the index on ’further research’) We conclude by
some general ideas that may deserve further investigation.

Analytic approach to GTLS.

We have derived optimality conditions for stationary points of the GTLS cri-
terion. One could try to solve these equations analytically. The advantage of
such a method would be that it might give the exact global optimal GTLS
model. This might also give insight in the number of local optima. Interesting
results in this direction are obtained in [19].

Stochastic analysis of GTLS.

In order to obtain additional insight in the GTLS method, a stochastic analysis
of the method would be interesting. For which data generating processes does
the GTLS method give consistent estimates? How can the GTLS problem
be formulated on the level of random variables? What are the statistical
properties of the misfit in simulation experiments? Some of these questions
are discussed in [22], but this is still a large open field.

Analysis of isometric state representations.

Isometric state representations form a highly structured representation of li-
near time-invariant systems in which all system variables are treated symme-
trically. These representations may be exploited to gain further insight in the
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structure of linear systems. For instance, both the eigenvalues and the singular
values of the A matrix are uniquely determined for a system, so they reflect
properties of the system that are independent of input/output decompositi-
ons. It would be interesting to relate these ’system-invariants’ to the memory
length of systems.

Use of GTLS for robust control.

The aim of robust control is to develop controllers that do not only stabilize
a given system, but also all systems in a certain neighbourhood. In this way
one takes account of the approximate character of models. One of the popular
approaches is based on a definition of the neighbourhood of systems in terms
of so-called coprime factor perturbations, cf. [43]. We briefly indicated a
relationship between this type of model uncertainty and ISR’s in [35], that
might serve as a starting point for further analysis.
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Proofs

A.2 The Global Total Least Squares Method

Correctness of Definition 2.1.6. We refer to [44], but in order to give some
intuition behind the definition we give the proof below.
As B[1,t] is a linear space, its dimension is well-defined. Consider the sequence dt :=
dim(B[1,t]). Clearly dt is increasing, and 0 ≤ dt ≤ q. So the increase of dimension,
∆dt := dt − dt−1, is a sequence of numbers between zero and q. Moreover, this
sequence is non-increasing, which can be seen as follows. Suppose that ∆dk > ∆dk−1

for some k ∈ N. This would mean that there is a larger degree of freedom in B for
w(k) given w(1), . . . , w(k− 1) than for w(k− 1) given w(1), . . . , w(k− 2). By time-
invariance the latter is equal to the degree of freedom for w(k) given w(2), . . . , w(k−
1), which by definition cannot be smaller than for the degree of freedom given
w(1), . . . , w(k − 1). So the condition ∆k > ∆k−1 leads to a contradiction, from
which it follows that ∆dt is non-increasing.
As 0 ≤ ∆dt ≤ q this means that ∆dt reaches its limit value within finite time. Let m
denote this limit value, and Tlim the smallest time instant for which this is reached,
so ∆dt′ = m for all t′ ≥ Tlim. Then there exists an n ∈ N such that dt = mt + n
for t ≥ Tlim. By definition, ∆dt′ > m for 1 ≤ t′ < Tlim, from which it follows that
dt > mt + Tlim. So Tlim ≤ n, from which the result follows.
We remark that models that coincide on finite intervals have the same size, so
completeness plays no role in this definition. This should not be surprising, as
completeness only concerns infinite-lag properties of B , while the definition of rank
and degree only concern finite time intervals. ♣

Proof of Lemma 2.4.2. Clearly B̄ is complete and B̄T = BT for all finite intervals
t ⊂ Z. Further, B̄ ∈ Bq, as it is linear and shift-invariant. Concerning the uniqueness
of B̄, let B′ denote a complete model that coincides with B on finite intervals. Then
ŵ ∈ B′ ⇒ ŵT ∈ BT for all finite T ⇒ ŵ ∈ B̄, and conversely, ŵ ∈ B̄ ⇒ ŵT ∈ BT

for all finite T ⇒ ŵT ∈ B′T for all finite T ⇒ ŵ ∈ B′. So B′ = B̄, which proves
uniqueness. ♣

Proof of Proposition 2.4.4. Clearly the solution set (2.12) is linear, shift-
invariant and complete. The fact that every system in B̄q admits such a description
is proved by construction in [44, Theorem 10], in which also the other claims of
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the proposition are proved. As the results are well-established, we give a somewhat
informal proof on an intuitive level.
Let B denote a system in B̄q with rank m and degree n, and suppose that it equals
the solution set of p independent difference equations of total lag n′, cf. (2.12). We
first show that p = q −m, then that n′ ≥ n, and finally we indicate how to obtain
a description with total lag n′ = n.
As the equations are time-invariant, they can be organized in such a way that the
leading matrix coefficient R0 in (2.11) does not contain zero rows. Moreover, we may
even assume that R0 is of full row rank p, otherwise we could obtain an equivalent
set of p equations with a zero row in R0 by taking linear combinations, then shift
the equations such that this zero row vanishes, and repeat this procedure until R0

has rank p. By assumption B is given by (2.12), so for t > d there must hold p
independent linear equations for w(t) given the past {w(t′); 1 ≤ t′ < t}. This
means that the number of degrees of freedom at each time instant equal q − p, so
m = q − p.
Next we prove that the total lag n′ ≥ n. Therefore we compare for t ≥ n the
dimension of dim(B[1,t]) with the dimension on this interval if the past {w(t′); t′ ≤ 0}
would have been specified. By definition of rank and degree, the first equals mt + n
while the latter equals mt, which is n smaller. This must be due to the fact that for
t ≥ n there hold n linear relations that involve both time instants in [1, t] and time
instants t′ < 1. Clearly a set of linear time-invariant difference equations cannot
impose more independent linear relations of this type than their total lag, from
which it follows that n′ ≥ n.
Finally we indicate how to obtain a description with minimal total lag n′ = n.
Consider the first time instant t1 for which dim(B[1,t1]) is rank deficient, i.e. has
rank below qt1. Determine a corresponding linear relation, which is of lag t1−1. By
shift-invariance this relation must hold at every time, which implies that for t ≥ t1
it holds that dim(B[1,t]) ≤ (q − 1)t. If B would be equal to the solution set of this
equation, equality would hold. Now repeat the procedure by considering the first
time-instant t2 ≥ t1 for which equality does not hold, determine the corresponding
second relation, and compute the induced restrictions on the model dimension. This
should be repeated until the actual dimension of B is exactly in correspondence with
the restrictions induced by the constructed relations. By completeness it then follows
that B equals their solution set. By careful bookkeeping it can be shown that the
number of independent equations equals q − m, and that their total lag equals n,
the degree of B . ♣
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A.3 Isometric State Representations

Proof of Proposition 3.1.2. 1. This is proved by construction in [45, Theorem
9]. There also the construction of SR’s from a description in terms of difference
equations is described. We give some intuition by describing how to translate a
system described by one equation to state space form, so we consider

B = {ŵ : Z → Rq; r0ŵ(t) + . . . + rnŵ(t− n) = 0, for all t ∈ Z}, (A.1)

with ri ∈ R1×q and r0 and rn nonzero. We assume that the equation is scaled such
that r0r

>
0 = 1. Now the definition of the state at time t = 1 can be derived from

those restrictions that both involve the past {t′ < 1} and the future {t′ ≥ 1}, as
follows. We define the n components of the state at t = 1 by

past future
x̂1(1) := rdŵ(t− d− 1) + . . . + r1ŵ(0) = −r0ŵ(1)

...
...

x̂n(1) := rdŵ(0) = −rd−1ŵ(1)− . . .− r0ŵ(d)

Notice that the state is both a linear function of the past and of the future. This is
a characterizing property of the state that is further discussed in cf. Section 5.6.1.
It is easily derived that ŵ(1) can be expressed as

ŵ(1) = [−r>0 ; 0 . . . 0]x̂(1) + Dv̂(1) (A.2)

with D ∈ Rq×q−1 such that r0D = 0. Now the state evolution equation follows from
substituting this in the equations

x̂1(2) = x̂2(1) + r1ŵ(1)
...

...
x̂n−1(2) = x̂n(1) + rn−2ŵ(1)

x̂n(2) = rn−1ŵ(1).

2. Trivial
3. For a system B of size (m,n) there exists an SR with m auxiliary inputs and
n states. This is proved by construction in [45, Theorem 9,10], and we mention
that this also follows from the proof of the sufficiency of the minimality conditions
that will be given in Proposition 3.1.5. For systems that are smaller than (m,n) an
SR with m auxiliary inputs and n states is obtained by adding ineffective auxiliary
variables. This proves the existence of SR’s for systems B ∈ B̄q,m,n.
The proof of the fact that there does not exist SR’s with less auxiliary inputs than
the rank of a system or with smaller state dimension than its degree is left to the
reader.

♣

Proof of Proposition 3.1.4. By definition, ŵ is contained in B(A,B,C, D) if and
only if there exist an v̂ and x̂ such that σx̂ = Ax̂ + Bv̂ and ŵ = Cx̂ + Dv̂. These
equations are equivalent to σ(Sx) = S(A + BF )S−1(Sx) + SBR(R−1(v−Fx)) and
w = (C + DF )S−1(Sx) + DR(R−1(v − Fx)), provided that S and R are invertible.
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This shows the equivalence of the representations. For a proof of the fact that for
minimal representations all equivalent representations are obtained in this way we
refer to [20, Corollary II.3-25]. This proof relies on the fact that the state in a
minimal SR for a given system trajectory is unique modulo a basis transformation,
which is derived in [45, 2.4.3, 3.2.5, 4.7.5]. ♣

Proof of Proposition 3.1.5. Necessity of 1. Clearly x̂(t) ∈ im[A B] for all t ∈ Z,
as it satisfies x(t) = Ax(t− 1) + Bv(t− 1) for some x(t− 1) ∈ Rn and v(t− 1) ∈ Rn.
Now if [A B] has not full row rank, there is a basis transformation of the state
x̂ → Sx̂ such that Sx̂ contains zero components. Removing these components yields
an equivalent SR with less states.
Necessity of 2.
The matrix pair (A,C) is called observable if the matrix col(C, CA,. . . ,CAn−1) has
full column rank n. Suppose there exists an F such that (A + BF, C + DF ) is not
observable. Then the unobservable components of the state can be removed, as in
the previous part.

Necessity of 3. An obvious condition is that

[
B
D

]
has full column rank, so it

suffices to prove that kerD ⊂ kerB. Suppose kerD\kerB 6= {0}, then there exists

an invertible R ∈ Rm×m such that

[
BR
DR

]
=

[
B′ b
D′ 0

]
with 0 6= b ∈ Rn. Then B

is represented by σx = Ax + B′v′ + bz and w = Cx + D′v′. As z influences w only
with a delay, we remove its direct influence on σx by defining σx′ := σx− bz. This
gives σx′ = Ax′+B′v′+Abσ−1z and w = Cx′+D′v′+Cbσ−1z. Hence (A,B,C, D)
is equivalent to (A, [B′ Ab], C, [D′ Cb]). From Proposition 3.1.4 it follows that this
is equivalent to (A + Abf, [B′ Ab], C + Cbf, [D′ Cb]), for all f ∈ R1×n. As b 6= 0, f
can be chosen such that In + bf is singular, by taking f = −b>/‖b‖2. It is easily
verified that then (A + Abf,C + Cbf)=(A(In + bf), C(In + bf)) is not observable.
From the necessity of 2 it follows that the state dimension can be reduced.

Sufficiency of the conditions.
Let (A,B,C, D) be an SR with m auxiliary inputs and n states that satisfies con-
ditions 1,2 and 3, and consider B(A,B, C,D). We show that its rank equals m and
its degree n, or, equivalently, that dim(B[1,t]) = mt + n for t ≥ n.
As [A B] has full rank, every state can occur at t = 1, so there are no restrictions
on x̂(1). Then

BT = ŵ : T → Rq; ∃x̂(1) ∈ Rn, v̂ : T → Rm such that
x̂(t + 1) = Ax̂(t) + Bv̂(t) and ŵ(t) = Cx̂(t) + Dv̂(t). (A.3)

As v̂ is a free variable, and rankD = m, dim(B[1,t]) ≥ mt, from which it is easily
seen that rank(B) = m.
In order to prove that degree(B) = n we will derive a contradiction from dim(B[1,t]) <
mt + n for t > n. Namely, then there must exists a nonzero initial state x̂(1) and
auxiliary inputs v̂ : T → Rm such that the corresponding system trajectory on T
in (A.3) satisfies ŵ = Cx̂ + Dv̂ = 0. Let D] ∈ Rm×q denote the left-inverse of
D, so that D]D = Im. The existence is guaranteed by the injectivity of D. From
D]Cv̂ + D]D = D]ŵ = 0 it follows that v̂ = −D]Cx̂. Define F := −D]C, then
x̂(t + 1) = (A + BF )x̂(t) and ŵ(t) = (C + DF )x̂(t) = 0, so (A + BF,C + DF ) is
unobservable, which contradicts the second minimality condition. ♣
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Proof of Proposition 3.2.5.
Write (A′, B′, C ′, D′) := (S(A + BF )S−1, SBR, (C + DF )S−1, DR). Then

(
A′ B′

C ′ D′

)
=

(
S 0
0 Im

) (
A B
C D

) (
S−1 0
FS−1 R

)
.

Equation (3.7) for (A′, B′, C ′, D′) gives, with K = S>S,

(
A> C>

B> D>

) (
K 0
0 Im

) (
A B
C D

)
=

(
S−1 0
FS−1 R

)−T (
S−1 0
FS−1 R

)−1

=

(
S> −F>R−>

0 R−>

) (
S 0
−R−1F R−1

)
=

(
K + F>(RR>)−1F −F>(RR>)−1

−(RR>)−1F (RR>)−1

)
.

Now verification of the equations (3.13), (3.14) and (3.11) is straightforward. For
a proof of the uniqueness of K we refer to [29, Theorem 2.1]. We remark that
the criterion for the existence and uniqueness of a positive definite solution for K
formulated there is that (A,B) is stabilizable and (A,B, C,D) strongly observable
(which is the same as the second condition in Proposition 3.1.5.2), so the injectivity
of D is not essential. ♣

Proof of Proposition 3.2.6. The equivalence of the representations is obvious.
The fact that all minimal ISR’s are obtained this way can be derived as follows.
From the proof of Proposition 3.2.5 it follows that the equations (3.12) - (3.14) are
necessary conditions. Equation (3.12) determines S modulo a left unitary factor,
corresponding to U . Equation (3.13) determines R modulo a right unitary factor,
corresponding to V . ♣

Proof of Proposition 3.2.7. 1. Let m denote the number of auxiliary inputs in an
ISR. If rank(B) < m then dim(B[1,t]) < (m−1)t+n′ for all t larger than some n′ ∈ N.
This implies the existence of a t−n′ dimensional linear space of auxiliary inputs on
T = [1, t] that yield a zero system trajectory for zero initial state. For N > n′ + n
this space has dimension larger than n, so there must be a non-zero auxiliary input
v̂ : [1, N ] → Rm that corresponds to a zero system trajectory ŵ = 0 with both the
initial state x̂(1) and final state x̂(N + 1) equal to zero. This contradicts (3.6).
2. From (3.7) it follows that A>A = In − C>C, hence |Ax|2 = |x|2 − |Cx|2 ≤
|x|2. So A is stable. We prove that the representation is not minimal if A is not
asymptotically stable. In that case A has an eigenvalue λ with |λ| = 1. Let x
denote a corresponding eigenvector, and x∗ its complex conjugate. Then |Cx|2 =
x∗C>Cx = x∗x− x∗A>Ax = |x|2 − |Ax|2 = 0. This implies that CAkx = 0, k ≥ 0,
so that (A,C) is not observable and hence not minimal.
3. Let m denote the number of auxiliary inputs, and n the number of state variables
in (A,B,C, D). This ISR is minimal if and only if (m,n) equals the size of the system
B := B(A,B, C,D), cf. Corollary 3.1.3, and this is equivalent to the condition that

dim(B[1,N ]) = mN + n (A.4)
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for all N ≥ n, cf. Definition 2.1.6. By definition of SR’s, if ŵ ∈ B[1,N ], then there
exist an initial state x̂(1) and auxiliary inputs v̂ : [1, N ] → Rm such that

ŵ(t) = Cx̂(t) + Dv̂(t) for x̂(t + 1) = Ax̂(t) + Bv̂(t). (A.5)

Notice that ŵ is a linear function of the initial state and auxiliary inputs, and that
the number of parameters for B[1,N ] equals mN + n. So (A.4) is equivalent to the
following two conditions.

a: Every initial state x̂(1) can occur.

b: The parametrization is injective for N ≥ n.

We prove that a is equivalent to ’W non singular’, and that b is equivalent to ’WW>

asymptotically stable’. Then the result follows immediately.
The condition a is equivalent to the condition that [A B] has full row rank n, cf.
Proposition 3.1.5.1. Namely, for all k ∈ N it holds that

rank([A B]) = n ⇔ rank([Ak...Ak−1B
... . . .

...B]) = n.

This is easily derived from an inductive argument, based on the fact that rank([A B]) =
n if and only if rank([A.[A B] B]) = n. Taking k = n yields a ⇔ rank[A B] = n.
It remains to prove that condition b is equivalent to ’WW> asymptotically stable’.
Condition b means that for N ≥ n all nonzero parameters x̂(1) ∈ Rn and v̂ : [1, N ] →
Rm correspond to a nonzero system trajectory ŵ on [1, N ]. Clearly this is true for
all N ≥ n if and only if it is true for N = n. From (3.6) it follows that this is
equivalent to the condition that

|x̂(n + 1)|2 < |x̂(1)|2 + |v̂(1)|2 + . . . + |v̂(n)|2,

for all x̂ and v̂ that can occur in (A.5). Now this is exactly the same condition
as ’WW> asymptotically stable’, as W denotes the mapping from x̂(1) and v̂ to
x̂(n + 1). ♣

Proof of Proposition 3.3.2. First we prove that

B[1,n+1] = B[1,n+1](A,B,C, D) ⇒ B[1,n+2] = B[1,n+2](A,B, C, D). (A.6)

⊃: Suppose ŵ ∈ B[1,n+2](A,B, C, D). Then clearly both ŵ[1,n+1] and ŵ[2,n+2] in
B[1,n+1](A,B, C, D) = B[1,n+1]. Hence ŵ[1,n+1], ŵ[2,n+2] ∈ V := {ŵ : [1, n + 2] →
Rq; ŵ[1,n+1] ∈ B[1,n+1] and ŵ[2,n+2] ∈ B[2,n+2]}. We show that V = B[1,n+2], from
which it follows that ŵ ∈ B[1,n+2]. Clearly B[1,n+2] ⊂ V, so if the dimension of
both sets are equal, then B = V. Indeed, dimV = dim(B[1,n+1]) + dim(B[2,n+2]) −
dimb[1, n + 1] = (n + 2)m + n = dim(B[1,n+2]), with m the rank of B.
⊂: Suppose ŵ ∈ B[1,n+2]. From time-invariance of B it follows that both ŵ[1,n+1]

and ŵ[2,n+2] are in B[1,n+1] = B[1,n+1](A,B, C,D). In order to show that ŵ ∈
B[1,n+2](A,B, C, D) we introduce the following notation. Let x̂, v̂ denote the state
and auxiliary input for ŵ[1,n+1] in (A, B,C, D), and x̂′, v̂′ for ŵ[2,n+2], and consi-
der the difference between the state at t = 2 denoted as x̄(2) := x̂(2) − x̂′(2).
If x̄(2) = 0, then ŵ[1,n+2] corresponds to initial state x̂(1) and auxiliary inputs
{v̂(1), v̂′(2), . . . , v̂′(n + 2)}, so ŵ[1,n+2] ∈ B[1,n+2](A,B,C, D). If x̄(2) 6= 0, we pro-
ceed as follows. Notice that for x̄(2) as initial state and auxiliary inputs {v̂(2) −
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v̂′(2), . . . , v̂(n + 1)− v̂′(n + 1)} the corresponding system trajectory in (A,B,C, D)
is zero. We remark that this indicates that the SR is not minimal, cf. Propo-
sition 3.2.7. It is easily verified that if x̄(2) need not have effect on [2, n + 1],
then it also need not have effect on [2, n + 2]. This means that there exist auxi-
liary inputs {v̄(2), . . . , v̄(n + 1)} such that for initial state x̄(2) the system trajec-
tory is zero. Then ŵ[1,n+2] corresponds to initial state x̂(1) and auxiliary inputs
{v̂(1), v̂′(2) + v̄(2), . . . , v̂′(n + 1) + v̄(n + 2)}, so ŵ ∈ B[1,n+2](A,B, C,D). This con-
cludes the proof of (A.6).
Proof of (3.19). Suppose that the lefthand side in (A.6) holds true. By an obvious
induction argument it follows that then the righthand side is true not only for
[1, n + 2] but also for [1, k] with k ≥ n + 1. From shift-invariance it follows that
BT = BT (A,B,C, D) for all finite intervals on Z. Now the result follows from the
completeness of B , cf. Lemma 2.4.2.
Proof of (3.20). Suppose that B = B(A, B,C, D). Clearly BT ⊂ BT (A, B,C, D) for
all finite T ⊂ Z. To prove the converse inclusion, suppose that ŵ ∈ BT (A,B,C, D).
Now let x̂T , v̂T denote the state and auxiliary input for ŵ on T in (A, B,C, D). As
[A B] has rank n, there exists an extension of x̂T and v̂T to Z for which x̂(t + 1) =
Ax̂(t) + Bv̂(t) keeps valid. This proves that ŵ ∈ BT . ♣
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A.4 Evaluation of the Misfit
Proof of Lemma 4.1.1. This is a well-known result. Clearly ŵ is the orthogonal
projection of w, as ŵ ∈M and 〈ŵ, w − ŵ〉 = 0. Further, ŵ minimizes |w−Gv| over
v ∈ Rk, which can be seen as follows. Let v′ = v − G∗w, then |w − Gv|2 =|w −
GG∗w −Gv′|2 =|w −GG∗w|2 + |Gv′|2, as 〈w −GG∗w,Gv′〉 =〈G∗w −G∗w, v′〉 = 0
where we use that G is isometric so that G∗G = Im. So the minimum is achieved
by taking v′ = 0, and ŵ = GG∗w. ♣

Proof of Proposition 4.1.2. Let (ŵ∗, x̂∗) denote the optimal approximation of w
in BT together with its corresponding end state in the ISR corresponding to G. Then
GG∗(w, x̂N+1) = (ŵ∗, x̂N+1), which can be seen as follows. From Proposition 4.1.2 it
follows that GG∗(w, x̂N+1) is the element (w′, x′) in the image of G that is the closest
to (w, x̂N+1, i.e., with ‖w − w′‖2 + ‖x̂N+1 − x′‖2 minimal. Clearly the minimum is
attained for (ŵ∗, x̂∗N+1), as this corresponds to the optimal approximation of w in
BT and no error in the end state. This proves the result, as the minimum for (4.5)
is attained for x̂N+1 and corresponds to the optimal approximation ŵ∗. ♣

Proof of Proposition 4.2.1. The proof is based on the following result. Let (x̂, ṽ)
and (x̃, ṽ) denote the state and auxiliary input for respectively ŵ ∈ BT (A,B,C, D)
and w̃ ∈ BT (A, B̃, C, D̃), with T = [1, N ]. Then

〈ŵ, w̃〉 = x̂(1)>x̃(1)− x̂(N + 1)>x̃(N + 1) (A.7)

This can be proved as follows. Define ẑ :=




x̂
v̂
0


 and z̃ :=




x̃
0
ṽ


, so that ŵ =

[CDD̃]ẑ and w̃ = [CDD̃]z̃. Then it follows that 〈w̃, ŵ〉 =
〈
[CDD̃]ẑ, [CDD̃]z̃

〉
=〈

[CDD̃]>[CDD̃]ẑ, z̃
〉

=
〈
I − [ABB̃]>[ABB̃]ẑ, z̃

〉
= 〈ẑ, z̃〉 −

〈
[ABB̃]ẑ, [ABB̃]z̃

〉
=

ΣN
t=1x̂(t)>x̃(t)− x̂(t + 1)>x̃(t + 1), from which (A.7) follows.

Now let V denote the space {w̃ : T → Rq; {. . . , 0, 0, w̃, 0, 0, . . .} ∈ B(A, B̃, C, D̃)},
so elements of V correspond to system trajectories in B(A, B̃, C, D̃) with boundary
states x̂(1) = 0 and x̂(N + 1) = 0. From (A.7) it follows that V ⊂ (BT )⊥. Finally,
V = (BT )⊥ follows from dim(BT )⊥ = dim(Rq)>−dim(BT ) = q(N +1)−m(N +1)−
n = (q −m)(N + 1)− n = dim(V). ♣

Proof of Proposition 4.2.2. In Proposition 3.2.7.3. we have characterized mini-
mality of ISR’s with degree n by the following conditions, formulated in terms of

W := [An
...An−1B

... . . .
...B]:

1. W non-singular

2. WW> asymptotically stable.

The first condition is equivalent to ’[A B] of full row rank’, as has already been proved
in Proposition 3.2.7.3. The second condition is equivalent to ’(A, B̃) controllable’,
i.e. such that [B̃ AB̃ . . . An−1B̃] has full row rank n. Namely, for W̃ := W :=

[An−1B̃
... . . .

...B̃] it holds that WW> + W̃W̃> = In, which is easily obtained from
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[A B B̃][A B B̃]> = In. So WW> is asymptotically stable if and only if W̃ is
non-singular, which is equivalent to the controllability of (A, B̃). ♣

Correctness of Algorithm 1. First we describe how to determine the optimal
value for xN+1 in step 2. Let ṽ′ be given by (4.15), now for xN+1 = 0. Let X be the
n-dimensional linear space corresponding to the effect of xN+1 in (4.15) on ṽ , now
for w(t) = 0, so X ={z : T → Rq−m for which there exist an x′(N + 1) ∈ Rn such
that z(t) = B̃>x′(t + 1) for x′(t) = A>x(t + 1)}. Then determine the orthogonal
projection of ṽ′ onto X , and let x∗ denote the corresponding value of x′(N + 1).
Then xN+1 := −x∗ is the optimal value in step 2.
1: ŵ + w̃ = w, 2: ‖w̃‖ = ‖ṽ‖. 3: ŵ is the optimal approximation of w in BT .

1. By premultiplying the equations (4.15) by

[
A B B̃

C D D̃

]
it is easily shown that

x̂ + x̃ = x and ŵ + w̃ = w.
2. This follows from Proposition 3.2.2 and the fact that (A, B̃, C, D̃) is isometric.
3. This follows from Proposition 4.1.2. Namely, in step 2 we determine (x(1), v̂) =
G∗(w, x(N +1)), and in step 3 (ŵ, x̂(N +1)) = G(x(1), v̂), with x(N +1) determined
such that ‖ṽ‖ = ‖w − ŵ‖ is minimal. ♣

Correctness of Algorithm 2. The main part of this proof is devoted to the state
update equation (4.23). Once this has been established, the formula for the past
induced approximation ŵt(t) in (4.24) and the formulas for the misfit follow from
straightforward calculations.
We derive (4.23) by induction. In principle we could start in t = 0, but notice that
x̂0(1) is a meaningless variable, as it denotes the optimal end state of an empty
observation. In fact, it can be shown that the value for x̂0(1) is irrelevant, as it has
no effect on the evolution of x̂t(t+1) in (4.23). However, it might be more clarifying
to start the inductive proof at t = 1.
From Algorithm 1 it follows that x1(2) should minimize ‖ṽ(1)‖2 = ‖B̃>x1(2) +
D̃>w(1)‖2. Taking the derivative at x1(2) gives B̃B̃>x1(2) + B̃D̃>w(1) = 0 =
W̃1x1(2) + F̃1w(1). If W̃2 is invertible, it follows that x1(2) = W̃−1

2 F̃1w(t) is indeed
optimal. For the case that W̃2 is singular, we need the following lemma.

Lemma A.4.1 (Pseudo-inverse) Consider the equation Wx+ z = 0 with W sin-
gular, and z ∈ imW . Let W ] denote a pseudo-inverse of W , i.e., W ]WW ] = W ]

and WW ]W = W . Then x = −W ]z is a solution.

Proof of the lemma. As z ∈ imW , there exists a z′ such that z = Wz′. Sustituting
x = −W ]z gives Wx + z = −WW ]Wz′ + Wz′ = 0. 2

This lemma can be applied to the equation W̃1x1(2) + F̃1w(1) = 0, as F̃1w(1) =
B̃D̃>w(1) ⊂ imW̃2, which gives x1(2) = W̃ ]

2 F̃1w(t).
So we proved (4.23) for t = 1. The induction step is proved with the aid of the
following lemma.

Lemma A.4.2 Suppose xt−1(t) minimizes ‖ṽt−1‖ in (4.15) with N = t − 1. Then
xt(t + 1) minimizes ‖ṽt‖ in (4.15) with N = t if and only if

W̃t+1xt(t + 1) = W̃t+1Axt−1(t)− F̃tε(t) (A.8)

.
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Proof of the lemma. Define x̄(t) := xt(t) − xt−1(t), denoting the adaption of x at
time t due to the observation w(t). Similarly, define v̄(t) := ṽt(t)− ṽt−1(t). From the
definition of ṽt−1 and ṽt, cf. (4.15), it follows that v̄(t) equals the backward effect
of x̄(t) in (4.15), i.e.,

v̄(t) := ṽt(t′)− ṽt−1(t′) = B̃>A>
t−t′−1

x̄(t) for 1 ≤ t′ ≤ t− 1, (A.9)

From the definition of W̃t it follows that ‖v̄‖ = (x̄>W̃tx̄(t))1/2. Moreover, v̄ is
orthogonal to ṽt−1, cf. the proof of Algorithm 1, part 3. This gives

‖ṽt‖2 = ‖ṽt−1‖2 + x̄>W̃tx̄(t) + |ṽt(t)|2. (A.10)

So xt(t + 1) minimizes ‖ṽt‖ if and only if it minimizes x̄>W̃tx̄(t) + |ṽt(t)|2. Substi-
tuting ṽt = B̃>xt(t + 1) + D̃>w(t) and x̄(t) = A>xt(t + 1) + C>w(t)− xt−1(t), and
then taking the derivative after xt(t + 1) gives the result. 2

If W̃t+1 is invertible, (4.23) follows immediately. If W̃t+1 is singular, we have to
replace the inverse W̃t+1 by a pseudo-inverse W̃ ]

t+1 . Notice that imF̃t ⊂ imW̃t+1, as
W̃t+1 = [AW̃

1/2
t B̃][AW̃

1/2
t B̃]> and F̃t = [AW̃

1/2
t B̃][CW̃

1/2
t D̃]>. Now the result

follows from applying Lemma A.4.1. This concludes the inductive proof of (4.23).

Next we prove (4.24), by showing that

w̃t(t) = H̃tε(t). (A.11)

Then the result follows from ŵt(t) = w(t) − w̃t(t) = Cx̂t(t) + (I − H̃t)ε(t), where
we used the definition of ε (4.22). By definition, w̃t(t) = Cx̃t(t) + D̃ṽt(t), where
x̃t(t) = Σt

k=1A
t−1B̃ṽt(t−k) = Σt

k=1A
kB̃v̄t(t−k)+Σt

k=1A
kB̃ṽt−1(t−k) = W̃tx̄t−1 +

x̃t− 1(t) = W̃tx̄t−1, where we used (A.9) to obtain the third equation, while x̃t−1(t) =
0 follows from Proposition 4.2.1.2. So w̃(t) = CW̃tx̄t(t) + D̃ṽt(t). Now substitute
x̄(t) = xt(t)− xt−1(t) and

xt(t) = A>xt(t + 1) + C>w(t) (A.12)
vt(t) = B̃>xt(t + 1) + D̃>w(t) (A.13)

gives w̃t(t) = F̃>
t xt(t+1)+G̃tw(t)−CW̃xt−1(t). Using (4.23) gives w̃t(t) = H̃tε(t)+

(F̃tA+ G̃tC−CW̃t)xt−1(t). It is easily derived from (3.7) that the last term cancels,
from which (A.11) follows.

Finally we prove the equations for the misfit. From (A.10) it follows that

m(t)2 = |ṽt(t)|2 + x̄(t)>W̃ x̄(t) (A.14)

Rewrite x̄(t) as

x̄(t) = A>xt(t + 1) + C>w(t)− xt−1(t) (from A.12)
= A>xt(t + 1) + C>ε(t) + C>Cxt−1(t) (from 4.22)
= (A>A + C>C − I)xt(t + 1) + (C> −A>W̃−1

t+1F̃t)ε(t) (from 4.23)

= (C> −A>W̃−1
t+1F̃t)ε(t) (from 3.7).

In a similar way we obtain ṽt(t) = (D̃>− B̃>W̃−1
t+1F̃t)εt. Substituting these formulas

for x̄(t) and ṽt(t) in (A.14) gives the result for m(t).
The formula for m0(t) is directly obtained from (A.11). Finally, the equation for
m−(t) follows from m(t)2 = m−(t)2 + m1(t)2. ♣
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A.5 GTLS Models
Motivation for Conjecture 5.1.1.
1. Concerning the existence of solutions, the example (5.2) indicates that the absence
of solutions is indeed a non-generic case. The set of data for which the optimal
approximation is of the form [0, 0, c] is at most a two-dimensional manifold, hence
non-generic in the neighbourhood of [0, 0, 1]. A further motivation is given in Section
5.5.
Concerning the uniqueness of solutions, we remark the following. Suppose there
exist several GTLS models for data w. Then it requires only an arbitrarily small
change of the data to make one of them the unique solution. Namely, if ŵ is one
of the solutions for w, then it is the only solution for w − δ(w − ŵ) for all δ > 0.
This shows that the set of data for which there is at most one solution is a dense
set in (Rq)>. In order to show that this set is generic in the topological sense, it
remains to prove that this set is also open. This is a weaker condition than ’having
zero measure’, so additional arguments are needed to prove algebraic genericity.
2. It is not hard to prove that the set of data for which the GTLS model is smaller
than the tolerated size is non-generic. Suppose the GTLS model has less auxiliary
inputs than tolerated, with approximation error w̃ = w − ŵ. Then an arbitrary
non-zero component can be absorbed in the approximation ŵ as the effect of an
additional auxiliary input, which would decrease the misfit. Hence w̃ = 0, which
means that the data itself is exact, an of less than tolerated rank. Next suppose that
the GTLS model is of degree less than tolerated. This implies that all components of
the approximation error w̃ = w−ŵ should be orthogonal to the set of all exponentials
z(t) = λt, λ ∈ R. Consequently, w̃(1) = 0, as otherwise there is a correlation with
λt for λ sufficiently close to zero, and by induction it follows that w̃(t) = 0 for all
t ∈ T .
As non-stabilizable systems of rank m and degree n form a non-generic set in Bq,m,n

if m > 0, we conjecture that the GTLS model for generic data is also stabilizable.
3. This is based on the following considerations. Firstly, we conjecture that there
is a finite number of locally optimal approximations, i.e., models that are optimal
in a neighbourhood of the approximation, which will be made precise in Definition
5.1.2. It is likely that for generic data the GTLS criterion, which is polynomial
in the parameters of an SR and ISR, cf. (5.6) and (5.17), has a finite number of
locally optimal approximations that are continuous in the data. Now let ∆ε denote
the minimal difference between the globally optimal misfit and the misfit in the
non-global local optima. Then for all variations of the data of size less than ∆ε the
global optimum is continuous in the data. ♣

Proof of Theorem 5.3.1. It suffices to prove the theorem for a minimal iso-
metric SR. This can be seen as follows. If condition 2 holds for an arbitrary mi-
nimal SR, then it holds for all equivalent minimal SR’s, as in the transformation
(S(A+BF )S−1, SBR, (C+DF )S−1, DR), the auxiliary input and state are linearly
transformed to R−1(v̂ − Fx̂) and Sx̂, see the proof of Proposition 3.1.4.
So let (A,B, C,D) be a minimal ISR of B, and let B̃, D̃ be defined as in Proposition
4.2.1. In the proof we will make use of the following relations holding on T , which
follow from the projection algorithm in Section 4.3.

for v̂: x = A>σx + C>w, v̂ = B>σx + D>w (A.15)
for ṽ: x = A>σx + C>w, ṽ = B̃>σx + D̃>w (A.16)
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for ŵ: σx̂ = Ax̂ + Bv̂, ŵ = Cx̂ + Dv̂ (A.17)
for w̃: σx̃ = Ax̃ + B̃ṽ, w̃ = Cx̃ + D̃ṽ (A.18)

Further, from equation (3.7) we obtain

x̂ = A>σx̂ + C>ŵ, v̂ = B>σx̂ + D>ŵ, 0 = B̃>σx̂ + D̃>ŵ (A.19)
x̃ = A>σx̃ + C>w̃, 0 = B>σx̃ + D>w̃, ṽ = B̃>σx̃ + D̃>w̃ (A.20)

In addition, we know that x̂(1) = x(1), x̂(N+1) = x(N+1) and x̃(1) = x̃(N+1) = 0.
We first describe those optimality conditions that can be derived straightforwardly
from the model improvement constructions in Theorem 5.2.1.

Lemma A.5.1

1. Construction 1 gives no improvement if and only if cov([x̂, v̂], w̃) =
0.

2. Construction 2 gives no improvement if and only if cov(v̂, [σx̃, w̃]) =
0.

3. If Construction 3 gives no improvement, then cov(v̂, ṽ) = 0.

Proof of the lemma. We use the notation of Theorem 5.2.1.
1. As ŵ = Cx̂ + Dv̂, clearly ŵ ∈ E . Construction 1 does not yield an improvement
iff the projection of w̃ onto E is zero, from which the result follows.
2. Construction 2 gives no improvement iff the projection of w̃ onto F is zero, cf.
part 1. This is equivalent to 〈w̃, ŵ′〉 = 0 with ŵ′(t) := D′v̂(t) + Σt−1

k=1CAk−1B′v̂(t−
k)+CAt−1x̂′1 for all B′, D′ and x̂′1. Using 〈a,Mb〉 =

〈
M>a, b

〉
, it follows that this is

true if and only if 〈w̃′, v̂〉 = 0 with w̃′(t) := D′>w̃(t)+ΣN−t
k=1 B′>(A>)k−1C>w̃(t+k) =

B′>σx̃ + D′>w̃, from which the result follows.
3. If cov(v̂, ṽ) 6= 0, then construction 3 decreases ‖ṽ‖ = ‖w̃‖. 2

Returning to Theorem 5.3.1, we first prove part 2. From the lemma it fol-
lows that cov(v̂, ṽ) = 0, and cov(v̂, x̃) = cov(v̂, A>σx̃ + C>w̃) = 0. As D̃
is injective, cov(x̂, ṽ) = 0 if and only if cov(x̂, D̃ṽ) = 0, which is equivalent
to cov(x̂, w̃ − Cx̃) = −cov(x̂, Cx̃) = 0. So in order to prove 2 it remains to
show that cov(x̂, x̃) = 0. By assumption B is controllable, which implies that
(A,B) is a controllable matrix pair (cf. [46, Prop. IX.4]). So the condi-
tion cov(x̂, x̃) = 0 is equivalent to cov(σx̂,B>A>k

σx̃) = 0 for all k ≥ 0. We
prove this by induction. For k = 0, the lemma shows that cov(σx̂,B>σx̃) =
cov(σx̂,−D>w̃) = 0. Now suppose that cov(σx̂,B>A>k

σx̃) = 0 for k ≤ N . Then
cov(σx̂, B>A>N+1

σx̃) = cov(Ax̂ + Bv̂, B>A>N+1
σx̃) = cov(Ax̂,B>A>N+1

σx̃) =
cov(Ax̂,B>A>N (x̃− C>w̃)) = Acov(x̂, B>A>N

x̃) = 0.
Concerning the equivalence of 1, 2 and 3, the implications 3 ⇒ 2 ⇒ 1 are tri-
vial. Further, if 1 holds then cov(x̂, x̃) = cov(σx̂, σx̃) = cov(Ax̂ + Bv̂,Ax̃ + B̃ṽ) =
cov(Ax̂,Ax̃) = Acov(x̂, x̃)A>. As A is asymptotically stable, it follows that cov(x̂, x̃) =
0, so 1 implies 2. Finally, 3 is easily derived from 2 by using equations (A.17) and
(A.18). ♣
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Proof of Theorem 5.3.2. Let w be a given observation and let ŵ be its opti-
mal approximation in B. Further let (A,B, C, D) be a minimal SR of B with A
asymptotically stable, and write the approximation error as w̃(t) := w(t) − ŵ(t) =
w(t)−Dŵ(t)−Σt−1

k=1CAk−1B′v̂(t− k)+CAt−1x̂′1. We have to prove that B satisfies
the optimality conditions if and only if the derivative of ‖w̃‖ with respect to the
parameters in A, B,C, D, v̂ and x̂1 is zero. First we analyse the tangent space of w̃
with respect to these parameters. Let E and F be defined as in Theorem 5.2.1, and
let G := {w̄T → Rq; ∃H ∈ Rn×n such that w̄(t) = Σt−1

k=1CAk−1Hx̂(t − k)} with x̂
the state corresponding to ŵ.

Lemma A.5.2 The tangent space T of w̃ : T → Rq with w̃(t) = w̃(t) := w(t) −
ŵ(t) = w(t)−Dŵ(t)−Σt−1

k=1CAk−1B′v̂(t−k)+CAt−1x̂′1 is given by T = BT +E+F+G.

Proof of the lemma. The tangent space is defined as the linear space that contains
all partial derivatives. Note that w̃ is linear in v̂, in B, in C and in D. A change
of v̂ and x̂1 corresponds to adding w̄ ∈ BT to w̃, a change of C and D to adding
w̄ ∈ E to w̃ and a change of B, D and x̂1 to adding w̄ ∈ F to w̃. It remains to
prove that the derivatives of w̃ with respect to the parameters in A span the space
G. For H ∈ Rn×n let x′ be defined by σx′ = (A−H)x′+Bv̂ and let w′ := Cx′+Dv̂.
The corresponding error is w̃′ := w − w′, so that the change in w̃ is given by and
w̄ =w̃′ − w̃ =ŵ − w′ =C(x̂ − x′) =Cx̄ for x̄ := x̂ − x′. As σx̄ =Ax̂ − (A −H)x′ =
Ax̄ + Hx′ =Ax̄ + Hx̂ −Hx̄, ignoring the second order term Hx̄ for small H gives
the result. 2

We will next prove the theorem by showing that both the optimality conditions and
the stationarity condition are both equivalent to w̃ ⊥ T .
Stationarity is equivalent to the condition that limδ→0 δ−1{‖w̃ + δw̄‖−‖w̃‖} = 0 for
all w̄ ∈ T . It is easily verified that this limit equals 〈w̃, w̄〉 /‖w̃‖, so stationarity is
equivalent to w̃ ⊥ T .
Finally we show that w̃ ⊥ T is equivalent to the optimality conditions. First suppose
that the optimality conditions hold. As ŵ is an optimal approximation within BT

there holds that w̃ ⊥ BT . Further, Theorem 5.3.1.3 states that cov([v̂, x̂], w̃) = 0,
so that w̃ ⊥ E , and cov(v̂, [σx̃, w̃]) = 0, so that the proof of Lemma A.5.1.2 shows
that w̃ ⊥ F . Finally, for w̄ ∈ G given by w̄(t) := Σt−1

k=1CAk−1Hx̂(t − k) we obtain
by using (A.20) that 〈w̄, w̃〉 =

〈
x̂,H>σx̃

〉
= 0, so w̃ ⊥ G. From Lemma A.5.2 it

follows that w̃ ⊥ T .
Second, supposing that w̃ ⊥ T we prove the optimality conditions. The fact that
w̃ ⊥ E + F implies the conditions in Lemma A.5.1.1 and A.5.1.2, cf. the proof of
that lemma. The condition in Lemma A.5.1.3 follows from that in A.5.1.2 by using
(A.20). Further, the optimality conditions were derived from these conditions in the
proof of Theorem 5.3.1. ♣

Proof of Proposition 5.4.2. First we prove that Z is a linear space. Observe that
for every z ∈ (BT )⊥ the optimal approximation of ŵ+z within BT is given by ŵ. Let
(v̂, x̂) be the auxiliary input and state for ŵ in a minimal SR of B , and let (ṽz, x̃z)
be defined analogously for z in (BT )⊥. As (v̂, x̂) is fixed, the condition in Theorem
5.3.1.2 for stationarity of B with respect to ŵ + z consists of linear restrictions on
(ṽz, x̃z). As x̃z is a linear function of ṽz, these conditions can be expressed as linear
restrictions on ṽz alone. This shows that B is a stationary point for ŵ+z if and only
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if the auxiliary input ṽz is restricted to a linear subspace of time series Z → Rq−m,
from which the linearity of Z follows.
Next we show that the minimum in (5.12) is achieved by taking w̄0 = w̃ − w̃′. As
w − w̄0 = ŵ + w̃ − (w̃ − w̃′) = ŵ + w̃′ and w̃′ ∈ Z, it follows that B is stationary
for w − w̄0, by definition of Z. Further, w̄ ∈ (BT )⊥ is such that B is stationary for
w − w̄ = ŵ + w̃ − w̄ if and only if z := w̃ − w̄ ∈ Z. Now the norm of w̄ = w̃ − z is
minimized by taking z = w̃′, the orthogonal projection of w̃ on Z, hence w̄0 = w̃−w̃′.
2 ♣

Proof of Lemma 5.5.1. The space U of unitary (k×k) matrices is a differentiable
manifold in Rk×k of dimension 1

2k(k− 1), so the tangent space TMU of U in a point
M a linear space of this dimension, contained in {MK; K ∈ Rk×k}. Now it is easily
verified that MK ∈ TMU if and only if K + K> = 0, by considering the fact that
(M + MK)>(M + MK) = I + K> + K + K>K. ♣

Correctness of Algorithm 4. We will prove that

1. the formula (5.21) for the derivative of H is correct

2. ‖ṽ + H ′‖ is minimized for the variation (−∆M ,−x̄N+1) with ∆M :=
(∆A, ∆B̃, ∆C , ∆D̃) (hence step 3 is indeed a Gauss-Newton step).

3. if ∆M = 0 in Step 4, then the model is a stationary point

4. different variations of the form (5.19) are not equivalent if (A, B,C, D) is
minimal.

Then the convergence to stationary points follows from the general considerations
underlying Gauss-Newton algorithms. The main issue is to prove that the second
point holds true despite the fact that we have restricted the variations of ISR’s to
the form (5.19). Further, the fourth point implies that generically we cannot further
reduce the number of variations.
1. From straightforward calculations it follows that for ∆M := (∆A, ∆B̃, ∆C , ∆D̃)
the derivative 1 H ′(∆M , x̄N+1) =: v̄ of H is given by

x̄(t) = A>x̄(t + 1) + ∆>
Ax(t + 1) + ∆>

Cw(t); x̄(N + 1) = x̄N+1

v̄(t) = B̃>x̄(t + 1) + ∆>
B̃

x(t + 1) + ∆>
D̃

w(t) (A.21)

Substituting (5.19) and using (4.15) gives the result.

2. Define Ṽ := imH, then imH ′ = TṽṼ . Clearly, ‖ṽ + H ′(∆M , x̄N+1)‖ is minimized
iff H ′(∆M , x̄N+1) = −ṽ∗, with ṽ∗ the orthogonal projection of ṽ onto TṽṼ . Notice
that H ′(∆M , x̄N+1) = ṽ′, which is the orthogonal projection of ṽ onto T . We will
prove that

TṽṼ = T +R, with R ⊥ ṽ. (A.22)

Then the orthogonal projection v̄ onto TṽṼ and T coincide, i.e., ṽ′ = ṽ∗, so that
subtracting the variation ∆M corresponding to ṽ′ is indeed optimal. So it remains

1By definition, the derivative of H is given by H ′ : T(M,x)I → Rp×N that assigns to every
direction (∆M , x̄(N + 1)) the directional derivative of H, i.e., H ′

(M,x)(∆M , x̄(N + 1)) :=
∂H(c(t))

∂t |t=0
with c : (−ε, ε) → Un+q × Rn a differentiable curve with c(0) = (M, x) and

c′(0) = (∆M , x̄(N + 1)).
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to prove (A.22). Therefore we compare the definitions of TṽṼ and T . By definition,
TṽṼ = imH ′ = {H ′(∆M , x̄N+1); ∆M ∈ TMI, x̄N+1 ∈ Rn}. According to Lemma
5.5.1, TMI consists of variations (∆A, ∆B̃, ∆C , ∆D̃) of the following form. In order to
preserve the symmetry in the formulas, we also describe the corresponding variations
of B and D.

[
∆A ∆B ∆B̃
∆C ∆D ∆D̃

]
=

[
A B B̃

C D D̃

] 


X L P
−L> Y Q
−P> −Q> R


 , (A.23)

with X, Y and R anti-symmetric, i.e., X = −X> etc. Notice that T is defined
similarly to TṽṼ , but with the variations restricted to (5.19). So it remains to show
that by taking the diagonal blocks in (A.23) equal to zero we only remove some
directions R in TṽṼ that are orthogonal to ṽ. Such directions are irrelevant in the
Gauss-Newton algorithm, as explained before. In fact, we will show that, roughly
speaking, R corresponds to a unitary basis transformation of the auxiliary input ṽ ,
leaving ‖ṽ‖ unchanged, while the effect of X in (A.23) can always be compensated
by an appropriate unitary basis transformation of the state space.
First we analyse the effect of R in (A.23), i.e., we consider variations of the form
∆M = (∆A, ∆B̃, ∆C , ∆D̃) = (0, B̃R, 0, D̃R) with R anti-symmetric. This is nothing
else than a variation corresponding to a unitary basis transformation of the auxiliary
input ṽ, cf. Proposition 3.2.6.2 and Lemma 5.5.1. For this variation (A.21) gives
H ′(∆M , 0) = v̄ with v̄(t) = R>(B̃x(t + 1) + D̃w(t)) = R>ṽ(t). Now define

R := {R>ṽ; R + R> = 0}. (A.24)

Then R ⊥ ṽ, as
〈
R>ṽ, ṽ

〉
= 〈ṽ, Rṽ〉 = −

〈
ṽ, R>ṽ

〉
= 0. This reflects the fact that a

unitary basis transformation of ṽ has no effect on ‖ṽ‖.
Finally we will prove that without loss of generality we can take X = 0 in (A.23),
by showing that all elements in TṽṼ can be generated with X = 0. Notice that
a basis transformation of the state space does not change the value of H, hence
H ′ is a singular mapping as H ′(∆M , x̄N+1) = 0 for ∆M a variation corresponding
to a unitary state space transformation and x̄N+1 the corresponding change in the
end state. The structure of these variations is determined as follows. To preserve
symmetry in the formulas, again we also consider variations of B and D. Define
B̄ := [B B̃] and D̄ := [D D̃], and define ∆B̄ and ∆D̄ accordingly. The linearization
of the mapping

U → (UAU>, UB, CU>, D)

around U = Ip is given by

I + ∆U → (∆UA + A∆>
U , ∆UB, C∆>

U , 0),

so it follows from Lemma 5.5.1 that unitary state space transformations correspond
to variations (∆A, ∆B̄,∆C ,∆D̄) = (∆UA−A∆U ,∆UB,−C∆U , 0) with ∆U +∆>

U =
0. Rewriting this according to (A.23) gives

[
∆A ∆B̄

∆C ∆D̄

]
=

[
A B̄
C D̄

] [
A>∆UA−∆U A>∆U B̃

A>∆U B̃ B̄>∆U B̃

]
. (A.25)

As transformations of the state space do not affect H, it follows that these variations
belong to the kernel of H ′, taking x̄N+1 = ∆Ux(N + 1). This can also be proved



144 APPENDIX A. PROOFS

directly, by substituting (A.25) in (A.21), which gives x̄(t) = ∆Ux(t) and v̄(t) = 0
for t ∈ [1, N ].
Now define for a variation of the form (A.23), ∆u such that

X −A>∆uA−∆u = 0; ∆u + ∆>
u = 0 (A.26)

and subtract the corresponding variation (A.25). This results in an equivalent va-
riation with zero value for the X-block in (A.23). Notice that for minimal ISR’s,
A is asymptotically stable, cf. Proposition 3.2.6.1. Then the solution is given by
∆U := −Σ∞k=1A

kK1A
>k.

So there is only one detail left, concerning the case that A is not asymptotically
stable. Notice that there might be no solution for (A.26) in this case. However,
then (A,B, C,D) is not minimal, and there is an additional source of non-uniqueness
beside the choice of the unitary transformations as described in Proposition 3.2.6.2,
which can be seen as follows. As A is stable, cf. Proposition 3.2.6.1, it must have
some poles on the unit circle if it is not also asymptotically stable. Together with
the isometry property this implies that the matrix in (5.18) can be transformed by
a unitary state space transformation to the form




A0 0 0
0 A− B̃′

0 C ′ D̃′




with A0 unitary and A− asymptotically stable. As the state components correspon-
ding to A0 are completely ineffective, we can replace A0 by an arbitrary unitary
matrix, or, equivalently, we can apply the transformation A0L with L unitary. Con-
sequently, in addition to (A.25), also the variations corresponding to this transfor-
mation are contained in the kernel of H ′. Using this extra freedom, we can to obtain
an equivalent variation with X = 0, even if A is not asymptotically stable. As this
concerns only a non-generic case, we leave the details to the reader.

3. If ∆m = 0, it follows that also x̄N+1 = 0, as xN+1 is optimal for (A, B̃, C, D̃), cf.
Step 1. This implies that ‖ṽ + H ′‖ is minimized for (∆M , x̄N+1) = (0, 0), cf. part 1,
which means that the derivative of ‖H‖ is zero in ṽ , hence ((A, B̃, C, D̃), xN+1) is
a stationary point of H.

4. It is easily verified that the reduction of the number of parameters in the variations
(A.23) by taking the anti-symmetric diagonal blocks X = 0 and R = 0 equals
1
2n(n−1)+ 1

2p(p−1). This is exactly the number of free parameters in the equivalent
transformation of (A, B̃, C, D̃) as described in Proposition 3.2.6.2. As for minimal
ISR’s this is the only source of non-uniqueness, it follows that different variations in
(5.19) can not be equivalent. ♣

Proof of Lemma 5.6.2. A minimal state is both past and future induced, which
follows from [45, 2.4.3]. From the existence of minimal SR’s it is easily verified that
an n-dimensional state it suffices to take k = n.
Another way to obtain the result is to consider the description of systems by means
of difference equations, cf. Section 2.4.2. A construction of the state in terms of
linear functions of past and future is given in the proof of Proposition 3.1.2. This
shows that the state is both a linear function of the finite past and future. ♣
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Correctness of Algorithm 5. First we prove that (z−i , z+
i ) := (U>

i V >− , V >
i V >

+ )
denotes the i-th pair of canonical variables of (H−θ ,H+

θ ) as defined in Section 5.6.3,
Step 1. Notice that V >− and V >

+ form an orthonormal basis for (H−θ and H+
θ )

respectively, hence by definition the canonical variables take the form (z−, z+) =
(u>−V >− , u>+V >

+ ) with u−, u+ vectors of unit norm. Now the result follows from the
properties of the SVD.
Further, it is easily verified that Ei denotes the total energy of the i-th pair of
canonical variables, so that x̄i is defined accordingly to Section 5.6.3, Step 1.
The verification of the second step is an easy exercise.

♣
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A.6 Applications and Extensions
Proof of Proposition 6.2.3. 1. This follows from the fact that the misfit of a
model for w − c is given by ‖ṽ‖ with ṽ defined as the effect of w − c in (4.15).
2. Trivial
3. Redefine H, defined in (5.16), as a function from ISR’s, final states and constant
time series c to ṽ, with ṽ the effect of w− c in (4.15), so that ‖ṽ‖ denotes the misfit
of w− c. Now the extension of T corresponds to the effect of varying the constants,
from which the result follows. ♣

Correctness of Definition 6.3.2. Consider the sequence dt := dim(B[t0,t]) for
t0 ∈ Z and t ≥ t0, and its difference ∆dt := dt − dt−1 denoting the increase of
dimension at time t for initial time t0. We first show that ∆dt ≤ ∆dt−p, analogous
to the proof of correctness of Definition 2.1.6. As ∆dt−p corresponds to the degree
of freedom in w(t− p) given {w(t0), . . . , w(t− p− 1)}, or equivalently of w(t) given
{w(t0+p), . . . , w(t−1)}, it is larger than ∆dt, which is the degree of freedom of w(t)
given {w(t0), . . . , w(t−1)}. Clearly 0 ≤ ∆dt ≤ q, so the p sequences {∆dk+pj}j∈N for
k = 1, . . . , p must reach their limit values mk within finite time. These limit values
do not depend on the initial time t0. Namely, let Tlim denote the smallest time
instant for which ∆dt has reached its limit value for each period, so ∆dk+jp = mk.
Then for t ≥ Tlim, dim(B[1,t]) − dim(B[1,t−1]) = dim(B[−`,t]) − dim(B[−`,t−1]) for all
` ∈ N. Now the correctness of the definition follows in the same way as for Definition
2.1.6. ♣

Proof of Proposition 6.3.3.
1. Define the period behaviour of P as

BP := {ŵp : Z → Rπq;
wp(t) = col(w(πt + 1), . . . , w(πt + π)) for some ŵ ∈ P. (A.27)

BP is a linear, shift-invariant system, so it can be described by a set of linear, time-
invariant difference equations of finite lag, cf. Proposition 2.4.4. These equations
translate to a set of periodic difference equations for P, i.e.,

P = {w : Z → Rq; Rk
dw(t) + . . . + Rk

0w(t− d) = 0, for t = k + jp for all j ∈ Z},
(A.28)

with Rk
l ∈ Rpk×q the l-th matrix coefficient of the difference equation that applies

at period k, and pk ∈ N.
2. An obvious extension of the construction of SR’s from difference equations in
the proof of Proposition 3.1.2 to the periodic case gives the result. We remark that
the SR in period k does not only depend on the difference equations that apply
at that period, so the translation can not be performed period-wise. Further, the
class of systems described by an PSR with mk auxiliary inputs and nk states in
period k coincides with the class of periodic systems with rank and degree in period
k at most mk and nk (This can be derived analogously to Proposition 3.1.2.3, but a
precise proof falls outside the scope of this monograph). Hence in a minimal PSR,
the number of auxiliary inputs and states in each period are equal to the period
rank and degree respectively.
3. A precise proof falls outside our scope, we only sketch the idea. First we remark
that stabilizability is defined exactly as for the time-invariant case, see Definition
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3.2.3. Let (At, Bt, Ct, Dt) denote a minimal PSR of a periodic system P of period
π, so At = At+π etc. Similar to the time-invariant case, equivalent PSR’s are given
by the transformations

[
At Bt

Ct Dt

]
→

[
St+1 0
0 I

] [
At Bt

Ct Dt

] [
S−1

t 0
FtS

−1
t Ri

]
, (A.29)

with St = St+π a basis transformation of the state, Rt = Rt+π a basis transformation
of the auxiliary inputs, and Ft = Ft+π a feedback transformation as in the time-
invariant case.
An PISR is obtained by determining a transformation such that (3.7) holds in each
period. This leads to following the periodic algebraic Riccati equation for Kt :=
S>t St:

Kt = A>t Kt+1At

−(B>
t Kt+1At + D>

t Ct)>(B>
t Kt+1Bt + D>

t Dt)−1(B>
t Kt+1At + D>

t Ct) + C>
t Ct.
(A.30)

This is the dual form of the periodic Riccati equation discussed in [6]. This paper
contains some results that might be helpful in proving the solution method given
below, but we leave this as a topic for further research. We obtain a positive definite
periodic solution for K as follows. Define K ′

0 := In, and determine K ′
t for t < 0

according to (A.30). Then K ′
t converges to a periodic sequence, which give the

periodic values for K. The equations for St, Rt, Ft are given by

S>t St = Kt (A.31)
RtR

>
t = (B>

t Kt+1Bt + D>
t Dt)−1 (A.32)

Ft = −(B>
t Kt+1Bt + D>

t Dt)−1(B>
t Kt+1At + D>

t Ct). (A.33)

Applying the periodic transformations corresponding to St, Rt and Ft yields an
PISR. ♣
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Appendix B

Matlab Programs

This appendix contains an implementation of Algorithms 1–5 in Matlab1. In the
programs we follow the following conventions:

• Time series are represented by tall matrices, which is standard in Matlab. So
the data w is an N × q matrix, etc.

• Systems are represented by one square unitary matrix

M :=

[
A B B̃

C D D̃

]
, (B.1)

with (A,B,C, D) representing the system B(A,B, C, D), and with B̃ and D̃
corresponding to its orthogonal complement, cf. Proposition 4.2.1.

• Suffixes -s and -e are used instead of hats and tildes, so D̃ is in the programs
De, and so on. Further, v̂ and ṽ are combined into one time series dv = [vs, ve].

This appendix is organized as follows. First we give some routines for the transfor-
mations between SR’s, ISR’s and i/s/o-representations, and between ISR’s and M in
(B.1) (we remark that transformations between i/s/o-representations and descripti-
ons in terms of difference equations can be carried out by using the standard Matlab
programs ss2tf and tf2ss). Then we give the implementation of Algorithms 1–5.
Algorithms 4 and 5 are combined into one GTLS algorithm, followed by subroutines
for the model improvement constructions and a Gauss-Newton step. We conclude
by a list of small subroutines that are not standard in Matlab or in the Matlab
Control Toolbox, in alphabetical order.

B.1 Representation Transformations
SR2ISR: transforms an SR to an equivalent ISR, cf. Proposition 3.2.5.
function [A,B,C,D,Be,De]=SR2ISR(A,B,C,D)
%partly derived from programs of C. Heij, 1989
H=-(D’*D)\(D’*C); A=A+B*H; C=C+D*H;
[F,K]=dlqr(A,B,C’*C+10*eps*eye(length(A)),D’*D);
R=sqrtm(inv(B’*K*B+D’*D)); S=sqrtm(K); iS=inv(S);

1Matlab is a program from The Mathworks, Inc., USA

149
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A=real(S*(A-B*F)*iS); B=real(S*B*R);
C=real((C-D*F)*iS); D=real(D*R);
F=F-H; F=real(F); K=real(K); R=real(R); S=real(S);
if nargout>4, [u,s,v]=svd([A,B;C D]);
[q,n]=size(C); [n,m]=size(B);
Be=u(1:n,n+m+1:n+q); De=u(n+1:n+q,n+m+1:n+q); end

ISO2SR: transforms an i/s/o-representation to an SR, cf. Proposition 3.4.2.
function [A,B,C,D]=ISO2SR(a,b,c,d)
[n,m]=size(b); A=a; B=b; C=[zeros(m,n);c]; D=[eye(m);d];

SR2ISO: transforms an SR to an i/s/o-representation, cf. Proposition 3.4.3.
function [a,b,c,d]=SR2ISO(A,B,C,D)
[n,m]=size(B); [q,m]=size(D); p=q-m;
Cu=C(1:m,:); Du=D(1:m,:); invDu=inv(Du);
Cy=C(m+1:q,:); Dy=D(m+1:q,:);
a=A-B*invDu*Cu; b=B*invDu; c=Cy-Dy*invDu*Cu; d=Dy*invDu;

Join: determines M in (B.1) for a given ISR (A,B, C, D).
function M=join(A,B,C,D);
[q,n]=size(C); [n,m]=size(B);
M=[A B;C D]; [U,S,V]=svd(M); M=[M U(:,n+m+1:n+q)];

Split: splits M in (B.1) into system matrices.
function [A,B,C,D,Be,De]=split(M,q,m);
[k,z]=size(M); n=k-q;
A=M(1:n,1:n); B=M(1:n,n+1:n+m); Be=M(1:n,n+m+1:n+q);
C=M(n+1:n+q,1:n); D=M(n+1:n+q,n+1:n+m); De=M(n+1:n+q,n+m+1:n+q);

B.2 Algorithms 1–5 in Matlab
Alg1: Optimal Approximation in Given System, Section 4.3.
function [misfit,ws,we,dv,xs,xe,xf]=Alg1(w,M,m)
%initialization
[N,q]=size(w); [A,B,C,D,Be,De]=split(M,q,m); [n,n]=size(A);

%Step 1: use ’join’ to obtain parameter M as in (B.1)
%Step 2
%determine optimal final state xf:=x(N+1)
dv=dlsim(A’,C’,Be’,De’,rev(w));
M=obsmat(A’,Be’,N); [h,h,xf]=orthproj(M,dv(:)); xf=-xf;

%evaluate (4.15) (dv=:[vs ve])
[dv,x]=dlsim(A’,C’,[B Be]’,[D De]’,rev(w),xf);
dv=rev(dv); x=rev(x);
xi=A’*x(1,:)’+C’*w(1,:)’; x=[xi’;x(1:N-1,:)];

%Step 3
[ws,xs]=dlsim(A,B,C,D,dv(:,1:m),xi);
we=w-ws; xe=x-xs; misfit=eucln(we);
%then [we,xe]=dlsim(A,Be,C,De,dv(:,m+1:q));

Alg2: Recursive Approximation within a Given System, Section 4.4.
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function [x,ws,recm,recm0]=Alg2(w,M,m)
%x is the end state of the optimal approximation, x^_t+1(t)
%ws is the past induced optimal approximation, w^_t(t)
%recm is the increase of misfit, m(t), and recm0 is m_0(t)
%initialization
[N,q]=size(w); [A,B,C,D,Be,De]=split(M,q,m); [n,n]=size(A); w=w’;
%Step 1
We=0; x(:,1)=zeros(n,1); %We=W~0, x(:,1)=x^ 0|-1

%Step 2
for k=1:N,
Wn=A*We*A’+Be*Be’; %W~k (where We denotes W(k-1))
Fe=A*We*C’+Be*De’; %F~(k-1)
Ge=C*We*C’+De*De’; %G~(k-1)
He=Ge-Fe’*pinv(Wn)*Fe; %Hek

%Step 3
epsil=w(:,k)-C*x(:,k);
x(:,k+1)=A*x(:,k)-pinv(Wn)*Fe*epsil; %x^(k+1)|k
ws(:,k)=C*x(:,k)+(eye(q)-He)*epsil; %w^k|k
recm(:,k)=eucln(sqrtm(He)*epsil);
recm0(:,k)=eucln(He*epsil); We=Wn;

end
w=w’; ws=ws’; x=x’; x(1,:)=[]; %then x starts at $t=1$.

GTLS: GTLS algorithm, by Gauss-Newton (Algorithm 4, Section 5.5) or by the
model improvement constructions (Algorithm 3,Section 5.3).
function [M,misfits]=GTLS(w,M0,m,tol,maxstep,option);
%tol: stop criterion; maxstep: bound on number of iterations
%option: if zero: Gauss Newton (default), else Model Improvement
%initialization
[N,q]=size(w); [h,h]=size(M0); n=h-q; M=M0;
if nargin==5, option=0; end, impr=tol+1;cntr=1; %counter
[misfit,ws,we,dv,xs]=Alg1(w,M0,m); misfits=misfit;

%Iterations
while impr>tol,
if option==0, [M,misfit]=GNstep(w,M,m); %Algorithm 4
else M=mic1(w,M,m); %Algorithm 3, Step 2

M=mic2(w,M,m); %Algorithm 3, Step 3
M=mic3(w,M,m); %Algorithm 3, Step 4
misfit=Alg1(w,M,m); end

misfits=[misfits;misfit];%store sequence of misfits
impr=misfits(cntr)-misfit %decrease of misfit
cntr=cntr+1, if cntr>maxstep, ’maxstep reached’, return; end

end % of loop

mic1: Model Improvement Construction 1, Theorem 5.2.1.1.
function M=mic1(w,M,m);
[misfit,ws,we,dv,xs]=Alg1(w,M,m); [N,q]=size(w); [N,n]=size(xs);
[A,B,C,D]=split(M,q,m);
[we,ws,Q]=orthproj([xs dv(:,1:m)],w); C=Q(1:n,:)’; D=Q(n+1:n+m,:)’;
[A,B,C,D]=SR2ISR(A,B,C,D); M=join(A,B,C,D);
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mic2: Model Improvement Construction 2, Theorem 5.2.1.2.
function M=mic2(w,M,m);
[misfit,ws,we,dv,xs]=Alg1(w,M,m); [N,q]=size(w); [N,n]=size(xs);
[A,B,C,D,Be,De]=split(M,q,m); RB=[]; RD=[];
for i=1:m
for k=1:n
ek=[zeros(k-1,1);1;zeros(n-k,1)];
rb=dlsim(A,ek,C,zeros(q,1),dv(:,i)); RB=[RB rb(:)];

end
for k=1:q
rd=[zeros(N,k-1) dv(:,i) zeros(N,q-k)]; RD=[RD rd(:)];

end
end
RX0=obsmat(A,C,N); [wel,ws,coef]=orthproj([RB RD RX0],w(:));
we=zeros(w); we(:)=wel;
B=zeros(n,m); B(:)=coef(1:n*m);
D=zeros(q,m); D(:)=coef(n*m+1:n*m+m*q);
[A,B,C,D,Be,De]=SR2ISR(A,B,C,D); M=join(A,B,C,D);

mic3: Model Improvement Construction 3, Theorem 5.2.1.3.
function M=mic3(w,M,m);
[misfit,ws,we,dv]=Alg1(w,M,m); [N,q]=size(w); [h,h]=size(M);
n=h-q; [A,B,C,D,Be,De]=split(M,q,m);
[U,S,V]=svd(dv,0); M=M*[eye(n) zeros(n,q);zeros(q,n) V];

GNstep: Gauss-Newton step, one iteration of Algorithm 4.
function [M,misfit,RR]=gnstep(w,M,m);
%Initialization
[N,q]=size(w);[A,B,C,D,Be,De]=split(M,q,m);
p=q-m; [n,n]=size(A); Mold=M; RL=[]; RP=[]; RQ=[];
%Step1
[oldmf,ws,we,dv,xs,xe]=Alg1(w,M,m); x=xs+xe; %dv=[vs ve]

%Step 2
%regressors for L coefficient (p columns are put below each other)
for j=1:m, for k=1:n,
ek=[zeros(k-1,1);1;zeros(n-k,1)];
r=dlsim(A’,ek,Be’,zeros(p,1),rev(dv(:,j))); r=rev(r);
RL=[RL r(:)];

end, end
%regressors for P coefficient
for j=m+1:q, for k=1:n,
ek=[zeros(k-1,1);1;zeros(n-k,1)];
r=dlsim(A’,ek,Be’,zeros(p,1),rev(dv(:,j))); r=rev(r);
ej=[zeros(j-m-1,1);1;zeros(q-j,1)];r=r-x(:,k)*ej’;RP=[RP r(:)];

end, end
%regressors for Q coefficient
for j=1:m, for k=1:p,
r=[zeros(N,k-1) -dv(:,j) zeros(N,p-k)]; RQ=[RQ r(:)];

end, end
%regressors corresponding to varying the end state x(N+1)
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RX0=obsmat(A’,Be’,N,0);
RR=[RL RP RQ RX0]; %spans the relevant part of the tangent space

%Step 3 and 4
ve=dv(:,m+1:q); [dvo,dvp,R]=orthproj(RR,ve(:));
L=zeros(n,m); L(:)=-R(1:n*m); P=zeros(n,p); P(:)=-R(n*m+1:n*q);
Q=zeros(m,p); Q(:)=-R(n*q+1:n*q+m*p);
DeltaA=-B*L’-Be*P’; DeltaB=A*L-Be*Q’;
DeltaC=-D*L’-De*P’; DeltaD=C*L-De*Q’;
f=2; misfit=oldmf+1; %initialization for loop
while (misfit>oldmf) & f>2^(-10), %min. step length
f=f/2; %first value is 1;
Ai=A-f*DeltaA; Bi=B-f*DeltaB; Ci=C-f*DeltaC; Di=D-f*DeltaD;
[Ai,Bi,Ci,Di]=SR2ISR(Ai,Bi,Ci,Di); M=join(Ai,Bi,Ci,Di);
misfit=Alg1(w,M,m)

end
if misfit>oldmf, ’NO IMPROVEMENT!’, M=Mold; misfit=oldmf; end

Alg5: Initial models by canonical correlation analysis, Section 5.6.
function [A,B,C,D,cc]=Alg5(w,m,n,k,theta)
%initialization
[N,q]=size(w);

%Step 1
%construction of Hmin and Hplus defined by (5.30)
Hmin=w(1:N-2*k+1,:)’; Hplus=w(k+1:N-k+1,:)’;
for i=2:k, Hmin=[Hmin;w(i:N-2*k+i,:)’];

Hplus=[Hplus;w(k+i:N-k+i,:)’]; end
%computation of SVD
[Vmin,Smin,Umin]=svd(Hmin’,0); %then Hmin=Umin*Smin*Vmin
[Vplus,Splus,Uplus]=svd(Hplus’,0); %then Hplus=Uplus*Splus*Vplus

%removal of small energy directions
passmin=[diag(Smin)>sqrt(theta)];
passplus=[diag(Splus)>sqrt(theta)];
Vmin=Vmin(:,passmin); Vplus=Vplus(:,passplus);
Umin=Umin(:,passmin); Uplus=Uplus(:,passplus);
Smin=Smin(passmin,passmin), Splus=Splus(passplus,passplus)

%canonical variables and energies
[U,S,V]=svd(Vmin’*Vplus); cc=diag(S);

%rows of U’*Vmin’ and V’*Vplus’ are canonical variables
%with canonical correlations given by diagonal of S
iSmin=inv(Smin); iSplus=inv(Splus); xbar=[];

alpha=U’*iSmin*Umin’; beta=V’*iSplus*Uplus’;
for i=1:n,
Ei=1/(eucln(U(:,i)’*iSmin)^2+eucln(V(:,i)’*iSplus)^2);
xbar=[xbar (Vmin*U(:,i)+Vplus*V(:,i))*sqrt(Ei)];

end
%then xbar(:,i) is appr. state at t=k+i for t=k+1,...,N-k+1

%Step 2
%Construction of M defined by (5.31)
M=[xbar(1:N-2*k,:) xbar(2:N-2*k+1,:) w(k+1:N-k,:)]’;
%Approximation by rank n+m matrix
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[V,S,U]=svd(M’,0); %then M=U*S*V^T
Ur=U(:,1:n+m); Vr=V(:,1:n+m); Sr=S(1:n+m,1:n+m);
%Computation of SR
K=Ur(1:n,:); [Ubar,Sbar,Vbar]=svd(K); Sbar=Sbar(:,1:n);
Z=Vbar*[inv(Sbar)*Ubar’ zeros(n,m);zeros(m,n) eye(m)]
UrZ=Ur*Z; A=UrZ(n+1:2*n,1:n); B=UrZ(n+1:2*n,n+1:n+m);

C=UrZ(2*n+1:2*n+q,1:n); D=UrZ(2*n+1:2*n+q,n+1:n+m);

B.3 Auxiliary Programs
eucln: Euclidian norm.
function n=eucln(w)
n=sqrt(sum(diag(w’*w)));

orthproj: Orthogonal projection.
function [yo,yp,alpha]=orthproj(x,y)
%yp=x*alpha is the orthogonal projection of y onto x, yo=y-yp;
%It is assumed that x is tall.
[rx,cx]=size(x); [u,s,v]=svd(x,0); alpha=v*inv(s)*u’*y;
yp=u*(u’*y); yo=y-yp;

rev: Time reversion.
function wr=rev(w)
[N,q]=size(w); wr=w(N:-1:1,:);

obsmat: Observability matrix.
function M=obsmat(A,C,t,bw)
%effect of initial state on system trajectories (bw:backwards)
%i-th column of M contains the effect of x(0)=e_i,
%in a ’long vector’ (with components below each other)
[q,n]=size(C);
for i=1:n,
xinit=[zeros(i-1,1);1;zeros(n-i,1)];
h=dlsim(A,zeros(n,1),C,zeros(q,1),zeros(t,1),xinit);
if nargin==4, h=rev(h); end, M(:,i)=h(:);

end



Samenvatting (Summary in
Dutch)

Dit boek handelt over het modelleren van de dynamica van verschijnselen op
grond van meetgegevens. We veronderstellen dat de waarnemingen het gedrag
weergeven op een reeks tijdstippen met regelmatige tussenpozen. Dit is weer
te geven door middel van een tijdreeks

w =




w1(1) w1(2) . . . w1(N)
...

...
...

...
wq(1) wq(2) . . . wq(N)


 . (1)

Elk van de q rijen geeft het gedrag van één kwantitatief aspect van het te
modelleren verschijsel weer, waarbij de tijdstippen voor het gemak genummerd
zijn van 1 tot N . Een typisch voorbeeld is de tijdreeks van rentestanden,
uitgebeeld in Figuur 6.1. Het betreft twee variabelen (q = 2), de lange en
korte termijn rente in de Verenigde Staten, in de maanden Januari 1957 tot
en met April 1984 (N=388).
Het thema van dit boek is het beschrijven van het modelleringsproces in ter-
men van (uitwendig) gedrag, in scherp onderscheid met eventuele vermoedens
over de inwendige struktuur van verschijnselen. In de inleiding werken we dit
principe uit op een algemeen niveau, waarna we het toespitsen op het analy-
seren van tijdreeksen. Dit mondt uit in de volgende beschrijving van het doel
van het modelleren, de definitie van modellen en hun kwaliteit ten op zichte
van waarnemingen:
We stellen ons ten doel op grond van waargenomen gedrag, weergegeven door
de tijdreeks, het realistisch gehalte in te schatten van denkbaar gedrag, zoals
b.v. het toekomstig verloop. Omdat denkbaar gedrag ook tijdstippen betreft
buiten het waarnemingsinterval, geven we dit weer met (tweezijdig) oneindige
tijdreeksen. Modellen kunnen nu gedefinieerd worden als een verzameling B
van zulke tijdreeksen, met de interpretatie dat realistisch gedrag (grotendeels)
bevat is in deze verzameling, en de rest dus als onrealistisch (of als minder
waarschijnlijk of dominant) beschouwd kan worden.
Bij de in dit boek beschreven methode, Globale Totale Kleinste Kwadraten
(GTLS), leggen we de volgende beperkingen op aan het type modellen dat we
in ogenschouw nemen.

1. Tijdsinvariantie: met een tijdreeks moeten ook al haar verschuivingen
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bevat zijn in een model. Modelwetten mogen dus niet expliciet van de
tijd afhangen.

2. Lineariteit: van twee tijdreeksen in een model moeten ook alle lineaire
combinaties bevat zijn in dat model.

Dit betekent dat we als modelklasse alle lineaire, verschuivingsinvariante ver-
zamelingen van tijdreeksen nemen. Deze modellen kunnen beschreven worden
door middel van lineaire differentie vergelijkingen met constante coëfficiënten.
De kwaliteit van een model hangt af van twee factoren: grootte en nauwkeu-
righeid. De grootte van een model wordt gedefinieerd in termen van dimensies:
de rang m (het aantal vrijheidsgraden op elk tijdstip) en de graad n (het aantal
begincondities), vgl. Definitie 2.1.6. Modellen met grootte (m,n) komen over-
een met lineaire tijdsinvariante input/output systemen met m inputs, q −m
outputs en McMillan graad n. Ze kunnen beschreven worden door q − m
vergelijkingen waarvan de som van de ordes gelijk is aan n.
Als maat voor de nauwkeurigheid wordt de misfit genomen. Dit is de (Eucli-
dische) afstand van een model B tot een waargenomen tijdreeks w,

d(w,B) := min
ŵ∈B

‖w − ŵ‖. (2)

Dit is equivalent met het minimaliseren van de som van de kwadraten van de
residuen w̃ := w− ŵ, hetgeen de laatste twee letters in GTLS verklaart (Least
Squares).
In een definitie van de kwaliteit moeten deze aspekten tegen elkaar afgewogen
worden. In de GTLS methode kiezen we voor het optimaliseren van de nauw-
keurigheid onder een beperking op de grootte van een model. Dit leidt tot de
volgende definitie van het GTLS probleem:

Gegeven: een tijdreeks als in (1), en twee getallen m en n.
Bepaal: een model met ten hoogste rang m en ten hoogste graad
n dat minimale misfit (2) heeft.

Bijvoorbeeld, het GTLS model van tweede orde (en rang één) voor de reeds
genoemde rentestanden komt overeen met een tweede orde differentie verge-
lijking, weergegeven in (6.2). Deze vergelijking is optimaal in de zin dat de
vereiste aanpassing van de data om de vergelijking precies kloppend te maken
minimaal is.
In hoofdstuk 2 gaan we uitgebreid in op het motiveren van de algemene pro-
bleemstelling. Het verschil met andere ’kleinste kwadraten’ methoden is ge-
legen in de combinatie van twee eigenschappen van het misfit criterium (2).
Ten eerste laat dit aanpassing toe in alle componenten van de data. Voor het
statische geval (graad 0) betekent dit dat GTLS samenvalt met de bekende
’totale kleinste kwadraten’ methode, hetgeen het ’totale’ in GTLS verklaart.
Ten tweede wordt de data w benaderd door een tijdreeks ŵ die als geheel aan
de modelwetten voldoet, dus ook aan alle globale implicaties van deze wetten
over grote tijdsintervallen.
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Voor het daadwerkelijk bepalen van modellen splitsen we het GTLS probleem
in twee stappen:

(a) Het bepalen van de optimale benadering van de data w binnen een ge-
geven model, d.w.z. het bepalen van een oplossing ŵ in (2).

(b) Het bepalen van modellen met minimale misfit.

Ter voorbereiding van het oplossen van deze problemen introduceren we in
Hoofdstuk 3 isometrische toestandsrepresentaties (ISR’s). Deze spelen een
cruciale rol in de oplossingsmethode, vanwege hun bijzondere eigenschappen.
Ze brengen een belangrijk verband aan het licht tussen een systeem en zijn
orthogonaal complement, weergegeven in Propositie 4.2.1. Het orthogonaal
complement van een model komt overeen met dynamische vergelijkingen voor
de benaderingsfout w̃. Dit feit legt de basis voor Algoritme 1 in Hoofdstuk 4,
dat een oplossing berekent van het deelprobleem (a). Als een alternatief geven
we ook een recursieve versie, hetgeen vergelijkbaar is met Kalman filteren,
maar geheel gebaseerd op het (niet stochastische) GTLS criterium (2).

In hoofdstuk 5 wordt het tweede gedeelte (b) behandeld. Eerst worden enkele
simpele voorbeelden genoemd waaruit blijkt dat er soms geen en soms meer
dan één oplossing kan bestaan voor dit niet-lineaire optimaliseringsprobleem.
Daarna beschrijven we twee algoritmen voor het bepalen van stationaire punten
(lokaal optimale oplossingen). Algoritme 3 berekent iteratief de oplossingen
van eenvoudige deeloptimalisaties, deels door orthogonale projectie en deels
met behulp van de ’singuliere waarden decompositie’ (SVD). Op grond van
deze constructies wordt een karakterisering van (lokale) optimaliteit afgeleid.
Een model is dan en slechts dan een stationair punt wanneer er geen correlatie
is tussen enerzijds de benadering ŵ met bijbehorende toestandsvariabele x̂, en
anderzijds de benaderingsfout w̃ en toestand x̃. Deze karakterisering kan weer
gebruikt worden voor het bepalen van de optimaliteitsmarge van een model,
die de vereiste aanpassing van de data weergeeft om een gegeven model tot een
stationair punt te maken. Het tweede, aanzienlijk snellere GTLS algoritme is
gebaseerd op de methode van Gauss-Newton. Hierin spelen de ISR’s wederom
een essentiële rol.

Algoritme 5 bepaalt modellen op grond van canonieke correlatie analyse van
verleden en toekomst van de waargenomen tijdreeks. Deze modellen kunnen
gebruikt worden als startwaarde voor de iteratieve GTLS algoritmen. Van de
genoemde algoritmen zijn implementaties in Matlab beschreven, in Appendix
B.

In hoofdstuk 6 illustreren we de GTLS methode met verscheidene toepassin-
gen op zowel econometrisch als systeemtheoretisch gebied. Aan de hand van de
reeds genoemde rentestanden behandelen we onderwerpen als modelvalidatie,
sterk afwijkende waarnemingen (outliers), het opnemen van trends en constan-
ten en (co-)integratie. Als een uitbreiding op de GTLS methode bepalen we
periodieke modellen voor de kwartaalcijfers van consumptie en inkomen in West
Duitsland. Ook laten we zien hoe ’simultane vergelijkingen’ geschat kunnen
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worden. De systeemtheoretische toepassingen betreffen (frequentie gewogen)
optimale modelreductie en het modelleren van in- en uitgangs gegevens.
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Basic Notions

Time Series (Section 2.1.1)
Sequence of real valued vectors w : T → Rq, with T a finite or infinite interval
in Z, and q the number of components. Most often they are multivariable, i.e.,
with q > 1. Time series on [1, N ] are identified with matrices with q rows and
N columns.

Data, Observation, Measurements (Section 2.1.1)
An observed time series over a finite time-interval.

Shift-invariance (Definition 2.1.2)
Time-invariant, not changing under shifting time.

Model, System (Definition 2.1.4)
A set of time series on Z that is linear and shift-invariant. Corresponds to
(simultaneous) linear difference equations with constant coefficients. The term
system is used if the relation with data is not relevant.

Misfit (Definition 2.1.5)
Euclidian distance between data and system. The squared misfit is comparable
to the ’sum of squared residuals’.

Rank, Degree, Size (Definition 2.1.6)
The rank denotes the number of degrees of freedom in a system at each time
instant. Corresponds to the difference between the number of components in
time series and the number of imposed independent equations. The degree of
a system denotes the number of degrees of freedom due to unspecified initial
conditions, or briefly ’the number of initial conditions’. Corresponds to the
sum of the orders of difference equations, and to state dimension in a state
representation. The size of a system is simply the pair of rank and degree.
The size of a system determines the minimal number of model parameters in
a representation.

Auxiliary Input (Section 3.1, 2.4.3)
A time series that represents the effect of the unobserved, unmodelled envi-
ronment, with number of components equal to the rank of a system. On the
one hand it is comparable to exogenous variables or inputs, as its value is not
prescribed by the model. On the other hand it is not part of the data (as
inputs and exogenous variables), but has to be reconstructed in the identifica-
tion procedure. So it is also comparable to disturbances or noise, but without
stochastic specification.
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State Representation (SR) (Section 3.1)
Description of models by first order equations in terms of state variables, which
represent the memory of a system. We reserve the term SR for representations
that use both state variables and auxiliary inputs. SR’s are easily translated to
the better-known input/state/output representations, as is described in Sec-
tion 3.4.

Isometric State Representation (ISR) (Section 3.2)
State representations in which both states and auxiliary inputs have a normali-
zed effect on the system behaviour. They induce an isometry from initial states
and auxiliary inputs, to system trajectories and corresponding final states.

Stable, Asymptotically Stable (used in Proposition 3.2.7)
A matrix is called stable if all its eigenvalues have absolute value at most one,
and it is called asymptotically stable if the eigenvalues have absolute value less
than one. An input/output mapping is called stable if bounded inputs cor-
respond to bounded outputs. State representations (and input/state/output
representations) (A,B,C,D) are called (asymptotically) stable if A is.

Stabilizable, Controllable (Definition 3.2.3, in Theorem 5.3.1)
A system is called stabilizable if all trajectories on finite time admit a propa-
gation within the system that converges to zero, and it is called controllable if
they all admit a propagation that becomes zero in finite time.
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Mathematical symbols
⊥ is orthogonal to
|.| the Euclidian norm of vectors
‖.‖ the Euclidian (or Frobenius) norm of matrices
〈., .〉 inner product

{z ∈ V ; C} the set of elements in V that satisfy condition C
Z the set of integers {. . . ,−1, 0, 1, . . .}
R the set of real numbers
Rq the set of q-dimensional real vectors
Rq×N the set of real matrices with q rows and N columns

(Rq)Z the set of time series on Z with q components, {w : Z → Rq}

σ the shift operator defined by (σf)(t) = f(t + 1)
σx sometimes used to denote x(2), . . . , x(N + 1)
dimV the dimension of a linear space V
imM image of a mapping M
M> the transpose of matrix M
G∗ the adjoint of an operator G
[t0, t1] the discrete time interval {t0, . . . , t1} in Z
BT the restriction of a system to time interval T
B⊥ the orthogonal complement of system B
d(w,B) the misfit of system B with respect to time series w
col(a1, . . . , ak) the column consisting of a1, . . . , ak

cov covariance
arccos the inverse of the cosine on [0, π]
df
dx
|x0 the Jacobian of f in the point x0
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Abbreviations
ARX Auto Regressive with eXogenous variables
GFR German Federal Republic
GTLS Global Total Least Squares
ISR Isometric State Representation
LTLS Local Total Least Squares
OE Output Error
PISR Periodic Isometric State Representation
PSR Periodic State Representation
SR State Representation
SVD Singular Value Decomposition
US United States

Special symbols
q number of components of time series
m rank of a system, or number of auxiliary inputs in an SR
n degree of a system, or number of state components in an SR
p number of independent restrictions, equal to q −m
N number of data points
T observation interval [1, N ]
w the data, or an arbitrary (multivariable) time series
ŵ an approximation of the data, or a system trajectory
w̃ the approximation error, w̃ = w − ŵ
ŵ∗,w̃∗ optimal approximation of w and corresponding error
x̂ a state trajectory of an approximation ŵ
v̂ an auxiliary input of an approximation ŵ
x̃,ṽ as x̂, v̂, but now for the approximation error
B, (B̄) the class of linear, shift-invariant (complete) systems
Bq the class of systems in B with q components
Bq,m,n the class of systems in Bq with rank m and degree n
B a system (a linear, shift-invariant set of time series on Z)
Bq the set of time series that belong to a system in Bq

Bq,m,n the set of time series that belong to a system in Bq,m,n

A,B,C,D system matrices in a state representation of a system
B(A,B, C, D) the system corresponding to SR (A,B,C, D)

A, B̃, C, D̃ system matrices in an SR of the orthogonal complement of a system
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l2-optimal impulse response approxi-
mation, 119

adjoint, 53, 58
algorithm

by model improvement, 75
for initial models, 89
Gauss-Newton, 82
optimal approximation in given

system, 59
recursive approximation within

a given system, 62
approximate modelling, 6–8, 19
ARX, see regression (ARX)
asymptotically stable, 47, 168
auxiliary input, 30–32, 41, 167

behavioural approach, see external
modelling

canonical correlation, 86
causal, 120
cointegration analysis, 99
completeness, 28
controllable, 74, 140, 168
controllable matrix pair, 58, 136, 140

degree, 16, 167
periodic, 108

deterministic modelling, 6, 7, 19
differencing, 96–97
directional energy, 87, 88

empirical covariance, 74
energy in a direction, see directional

energy
error in variables, 37
external modelling, 5–6, 19

factor analysis, 37
Frisch scheme, 37

further research, 70, 76, 97, 114, 127,
147

generic, 67
Global Total Least Squares, see GTLS
global vs. local, 22, 34–36, 56, 96
GTLS, 17

as decomposition, 18
existence of solution, 68–70
in terms of auxiliary inputs, 31
in terms of difference equations,

30
in terms of inputs and outputs,

33
in terms of ISR’s, 79
in terms of SR’s, 71, 75
local optimal solution, 70
stationary point, 75
uniqueness of solutions, 68–70
with constants, 105
with trends, 106

Hankel matrix, 85

impulse response approximation, 116
indeterminism, 3, 7, 16, 30
input/output decomposition, 34, 49–

51
input/state/output representation, 49

relation with SR, 50
interest rates (US), 93–104, 106–107
isometric function, 54
isometric matrix, 44
isometric state representation, 44–

48, 168
construction, 46
equivalent, 46
existence, 45
induced isometry, 45
minimal, 47, 58
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ISR, see isometric state representa-
tion

Kalman filter, 63

linearity, 14
Local Total Least Squares, 35, 103–

104
LTLS, see Local Total Least Squares

Mexican hat, 120
misfit, 15, 167

evaluation of, 59
recursive evaluation of, 62, 102–

103, 114–116
model, 14, 28, 167
model class, 14, 28
model reduction, 116

frequency weighted, 117–120

observable matrix pair, 43, 132
OE, see output error method
open modelling, 8–9, 19
optimality conditions, 74
optimality margin, 77
orthogonal complement of a system,

57–58
orthogonal projection, 54

onto systems, 53–56
outliers, 102
output error method, 35

periodic system, 107
PISR, see isometric state represen-

tation, periodic
PSR, see state representation, peri-

odic

rank, 16, 167
periodic, 108

regression (ARX), 35, 103–104
relative misfit, 60, 73
Riccati equation, 46

periodic, 147

shift operator (σ), 14, 72
shift-invariance, 14, 167
simultaneous equations, 113

singular value decomposition, 26, 72
size, 16, 167

periodic, 108
SR, see state representation
stabilizable, 45, 168
stable, 47, 168
state, 41, 85
state representation, 41–44, 168

equivalent, 42
minimal, 42, 43
on finite interval, 48
relation with i/s/o representa-

tion, 50
Static Total Least Squares, 25
STLS, see Static Total Least Squares
stochastic modelling, 6, 7, 19
SVD, see singular value decomposi-

tion
system, 14, 167

time series, 13, 167
time-invariance, see shift-invariance
Total Least Squares, see Static To-

tal Least Squares

unit root, 96–97, 107
unitary matrix, 46, 80, 81
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