

INTEGRATED SCHEDULING IN SYNCHROMODAL TRANSPORT

Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

- Synchromodal freight transport
- Integrated scheduling of drayage and long-haul transport:
 - MILP and MDP models
- Combination of two heuristic approaches:
 - > A matheuristic and ADP algorithm
- • Preliminary results
- What to remember

SYNCHROMODAL FREIGHT TRANSPORT

WHAT IS SYNCHROMODALITY?

*Source of video: Dutch Institute for Advanced Logistics (DINALOG) www.dinalog.nl UNIVERSITY OF TWENTE.

SYNCHROMODAL FREIGHT TRANSPORT

WHAT ARE ITS CHARACTERISTICS?

- Mode-free booking for all freights.
- Network-wise scheduling at any point in time.
- Real-time information about the state of the network.
- Overall performance in both network and time.

*Source of artwork: European Container Terminals (ECT) – The future of freight transport (2011). UNIVERSITY OF TWENTE.

SYNCHROMODAL FREIGHT TRANSPORT

CASE: TRANSPORTATION OF CONTAINERS IN THE HINTERLAND

 \square

5

INTEGRATED SCHEDULING OF DRAYAGE AND LONG-HAUL TRANSPORT

PROBLEM DESCRIPTION

"In an intermodal transport chain, the initial and final trips represent 40% of total transport costs."

Escudero, A.; Muñuzuri, J.; Guadix, J. & Arango, C. (2013) Dynamic approach to solve the daily drayage problem with transit time uncertainty. *Computers in Industry*

*Source of artwork: Europe Container Terminals "The future of freight transport". www.ect.nl UNIVERSITY OF TWENTE.

INTEGRATED SCHEDULING OF DRAYAGE AND LONG-HAUL TRANSPORT

PROBLEM DESCRIPTION

Input:

- Transport network: services, terminals, schedules, durations, capacity, costs, revenues.
- Freight demand: origin (or location), destination, releaseday, due-day, size, type of container, etc.
- Probability distributions: (1) number of freights, (2) origin,
 (3) destination, (4) release-day, and (5) time-window length.

Output:

- Schedule: which service to use for each freight (if any).
- Performance: drayage costs + long-haul costs.

MIXED INTEGER LINEAR PROGRAMMING (MILP) MODEL

OPTIMIZATION OF DRAYAGE OPERATIONS AND TERMINAL ASSIGNMENT

$$\min z(x) = \underbrace{\sum_{k \in K} \left(C_k^F \cdot \sum_{j \in \delta' + (B_k)} x_{B_k, j, k} \right) + \sum_{k \in K} \sum_{(i, j) \in A'} C_{i, j, k}^V \cdot x_{i, j, k}}_{\text{Trucking costs}} \qquad (1a) \qquad \begin{aligned} E_i \le w_i \le L_i, \ \forall \ i \in V \\ \sum_{k \in K} \left(x_{i, j, k} \cdot \left(w_i + S_i + T_{i, j}^T - w_j \right) \right) \le 0, \ \forall \ i, j \in V \\ \sum_{k \in K} \left(x_{B_k, j, k} \cdot T_{B_k, j}^T \right) \le w_j, \ \forall \ j \in V \end{aligned}$$
(1h)

Important in the drayage scheduling model:

- 1. Additional objective: terminal (long-haul) assignment cost
- Different types of drayage requests: based on truck movements required to fulfill a request
- **3. Decoupling constraints:** different truck may fulfill different movements of a single request

Based on: Pérez Rivera, A.E., Mes, M.R.K. (2017) Scheduling Drayage Operations in Synchromodal Transport. *Lecture Notes in Computer Science (forthcoming) – ICCL 2017*

$$\sum_{\delta'^{+}(i)} x_{i,j,k} - \sum_{j \in \delta'^{-}(i)} x_{j,i,k} = 0, \ \forall \ i \in V^{C} \cup V^{D}, k \in K$$
(18)

MARKOV DECISION PROCESS (MDP) MODEL

OPTIMIZATION OF SEQUENTIAL DECISIONS UNDER UNCERTAINTY

Important in the long-haul scheduling model:

- 1. Schedule for all demand realizations: based on probability distributions on the amount of freights and their characteristics.
- 2. Estimate of downstream costs: expected future costs at each stage per decision (i.e., next-stage state).

Based on: Pérez Rivera, A.E., Mes, M.R.K. (2016) Anticipatory Freight Selection in Intermodal Long-haul Round-trips. *Transportation Research Part E: Logistics and Transportation Review.*

$$F_{t,d,r,k} = F_{t-1,d,r+1,k} + \widetilde{F}_{t,d,r,k}, \quad \left| r \ge 1 \right.$$

$$F_{t,d,r,K^{max}} = \widetilde{F}_{t,d,r,K^{max}}, \qquad (4d)$$

$$\mathbf{\tilde{g}}_{t,d,0,k} = G_{t-1,d,0,k+1} - x_{t-1,d,k+1}^G + G_{t-1,d,1,k} + \widetilde{G}_{t,d,0,k}, \quad \left| k < K^{max} \right|$$

$$\widetilde{\sigma}_{t,d,r,k} = G_{t-1,d,r+1,k} + \widetilde{G}_{t,d,r,k}, \quad \left| r \ge 1 \right.$$

$$(4f)$$

$$G_{t,d,r,K^{max}} = G_{t,d,r,K^{max}}, \tag{4g}$$

$$\forall d \in \mathcal{D}, r \in \mathcal{R}, r+1 \in \mathcal{R}, k \in \mathcal{K}, k+1 \in \mathcal{K}$$

$$= \min_{\boldsymbol{x}_{t}} \left(C\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}\right) + \mathbb{E}\left\{ V_{t+1}\left(S^{M}\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}, \boldsymbol{W}_{t+1}\right)\right)\right\} \right)$$

$$= \min_{\boldsymbol{x}_{t}} \left(C\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}\right) + \sum_{\omega \in \Omega} \left(p_{\omega}^{\Omega} \cdot V_{t+1}\left(S^{M}\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}, \omega\right)\right)\right) \right)$$
(7)

9

COMBINATION OF TWO HEURISTIC APPROACHES

A MATHEURISTIC FOR THE MILP AND ADP ALGORITHM FOR THE MDP

Matheuristic: iteratively solves restricted (or adapted) versions of the MILP.

Approximate Dynamic Programming (ADP) algorithm: iteratively estimates the downstream costs using simulation.

Algorithm 1 Static Matheuristic

- **Require:** Graph \mathcal{G} and associated parameters
- 1: Initialize best solution
- 2: while Stopping criterion not met do
- 3: Get MHOs (7), (8), and (9)
- 4: Build adapted MILP
- 5: Solve adapted MILP
- 6: **if** Current solution \leq Best solution **then**
- 7: Best solution = Current Solution
- 8: end if
- 9: end while
- 10: return Best solution

Pérez Rivera, A.E., Mes, M.R.K. (2017) Scheduling Drayage Operations in Synchromodal Transport. Lecture Notes in Computer Science (forthcoming) – ICCL 2017 UNIVERSITY OF TWENTE. Algorithm 1 ADP Algorithm

1:	Initialize $\begin{bmatrix} \overline{V}_t^0 \\ \forall t \in \mathcal{T} \end{bmatrix}$
2:	for $n = 1$ to N do
3:	$S_0^n := S_0$
4:	for $t = 0$ to $T^{max} - 1$ do
5:	$x_t^{n*} := \arg\max\left(R_t\left(x_t^n\right) + \gamma_t \overline{V}_t^{n-1}\left(S^{M,x}\left(S_t^n, x_t^n\right)\right)\right)$
	$x_t^n \in \mathcal{X}_t^R$
6:	$S_t^{n,x*} := S^{M,x} \left(S_t^n, x_t^{n*} \right)$
7:	$\widehat{v}_{t}^{n} := \left(R_{t} \left(x_{t}^{n*} \right) + \gamma_{t} \overline{V}_{t}^{n-1} \left(S_{t}^{n,x*} \right) \right)$
8:	$W_{t+1}^n := \text{Random}\left(\Omega\right)$
9:	$S_{t+1}^{n} := S^{M} \left(S_{t}^{n}, x_{t}^{n*}, W_{t+1}^{n} \right)$
10:	end for
11:	for $t = T^{max} - 1$ to 0 do
12:	$\overline{V}_t^n(S_t^{n,x*}) := U_t^n(\overline{V}_t^{n-1}(S_t^{n,x*}), S_t^{n,x*}, [\widehat{v}_t^n]_{\forall t \in \mathcal{T}})$
13:	end for
14:	end for
15:	$\mathbf{return} \left[\overline{V}_t^{\prime v} \right]_{\forall t \in \mathcal{T}}$

Pérez Rivera, A.E., Mes, M.R.K. (2016) **Anticipatory Freight Selection in Intermodal Long-haul Round-trips.** *Transportation Research Part E: Logistics and Transportation Review (in press).*

MATHEURISTIC – ALGORITHM ILLUSTRATION

ADDING INEQUALITIES AND FIXING VARIABLES ITERATIVELY

UNIVERSITY OF TWENTE.

ADP – ALGORITHM ILLUSTRATION

USING SIMULATION AND STATISTICAL TECHNIQUES

COMBINATION OF TWO HEURISTIC APPROACHES

SEQUENTIAL AND ITERATIVE

PRELIMINARY RESULTS EXPERIMENTAL QUESTION

CUST. II

We use the settings of our previous work and a simulation, with common random numbers, for each scheduling approach.

*Source of artwork: Europe Container Terminals "The future of freight transport". www.ect.nl UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS PROBLEM INSTANCE SETTINGS

Network

- 25 drayage trucks
- 3 intermodal terminals and services
- 4 freights per service
- Location based costs UNIVERSITY OF TWENTE.

Freight demand

- 8 freights per day (≈Poisson dist.)
- 10 origins (uniform dist.)
- 12 destinations (uniform dist.)
- 1 to 3 days time-window (.8,.1,.1)

PRELIMINARY RESULTS

DOES INTEGRATED WORK BETTER THAN SEPARATED SCHEDULING?

	Cost Setup 1	High drayage	Low long-haul	≈ 90-10
	Cost Setup 2	High drayage	High long-haul	≈ 40-60
	Cost Setup 3	Low drayage	Low long-haul	≈ 40-60
-	Cost Setup 4	Low drayage	High long-haul	≈ 10-90

Long-haul	Drayage	Cost Setup 1		Cost Setup 2		Cost Setup 3		Cost Setup 4	
heuristic	heuristic	Average	Diff.	Average	Diff.	Average	Diff.	Average	Diff.
Bonchmark	Benchmark	79,413.65	0%	165,668.67	0%	16,566.99	0%	102,822.01	0%
Deficilitatik	Matheuristic	79,438.67	0%	165,672.03	0%	16,572.89	0%	102,829.34	0%
ADD Sequential	Benchmark	78,949.81	1%	161,031.21	3%	16,103.15	3%	98,184.55	5%
	Matheuristic	78,971.41	1%	161,024.50	3%	16,107.81	3%	94,751.58	8%
	Benchmark	78,789.20	1%	159,425.09	4%	15,942.54	4%	96,578.43	6%
ADP iterative	Matheuristic	78,812.80	1%	159,440.94	4%	15,957.57	4%	96,584.96	6%

*Diff.** = Percent difference from using benchmark for both drayage and long-haul

PRELIMINARY RESULTS

WHERE DO THE GAINS COME FROM?

	Long-haul	Drayage	Cost Setup 1		Cost Setup 2		Cost Setup 3		Cost Setup 4	
	heuristic	heuristic	Average	Diff.	Average	Diff.	Average	Diff.	Average	Diff.
	Bonchmark	Benchmark	79,413.65	0%	165,668.67	0%	16,566.99	0%	102,822.01	0%
.*	Deficilitatik	Matheuristic	79,438.67	0%	165,672.03	0%	16,572.89	0%	102,829.34	0%
	ADP Sequential	Benchmark	78,949.81	1%	161,031.21	3%	16,103.15	3%	98,184.55	5%
		Matheuristic	78,971.41	1%	161,024.50	3%	16,107.81	3%	94,751.58	8%
		Benchmark	78,789.20	1%	159,425.09	4%	15,942.54	4%	96,578.43	6%
	ADP Iterative	Matheuristic	78,812.80	1%	159,440.94	4%	15,957.57	4%	96,584.96	6%

*Diff.** = Percent difference from using benchmark for both drayage and long-haul

Percentage of total cost:

Cost Setup 2

Cost Setup 4

UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS

WHAT IF THE SEQUENTIAL HAD OTHER INITIAL PROBABILITY DISTRIBUTIONS?

"Reasonable" initial distributions:

	Long-haul Drayage		Cost Setup 1		Cost Setup 2		Cost Setup 3		Cost Setup 4	
	heuristic	heuristic	Average	Diff.	Average	Diff.	Average	Diff.	Average	Diff.
	Benchmark	Benchmark	79,413.65	0%	165,668.67	0%	16,566.99	0%	102,822.01	0%
		Matheuristic	79,438.67	0%	165,672.03	0%	16,572.89	0%	102,829.34	0%
	ADP Sequential	Benchmark	78,949.81	1%	161,031.21	3%	16,103.15	3%	98,184.55	5%
		Matheuristic	78,971.41	1%	161,024.50	3%	16,107.81	3%	94,751.58	8%
× _	ADP Iterative	Benchmark	78,789.20	1%	159,425.09	4%	15,942.54	4%	96,578.43	6%
A		Matheuristic	78,812.80	1%	159,440.94	4%	15,957.57	4%	96,584.96	6%

*Diff.** = Percent difference from using benchmark for both drayage and long-haul

"Less-reasonable" initial distributions:

Long-haul	Drayage	Cost Setu	Cost Setup 1		Cost Setup 2		Cost Setup 3		Cost Setup 4	
heuristic	heuristic	Average	Diff.	Average	Diff.	Average	Diff.	Average	Diff.	
Ponchmark	Benchmark	79,413.65	0%	165,668.67	0%	16,566.99	0%	102,822.01	0%	
Deficilitatik	Matheuristic	79,428.84	0%	165,669.26	0%	16,581.33	0%	102,828.07	0%	
ADD Soquential	Benchmark	79,704.33	0%	168,590.37	-2%	16,857.67	-2%	105,743.71	-3%	
	Matheuristic	79,732.35	0%	168,592.23	-2%	16,863.57	-2%	103,521.55	-1%	
ADD Itorativo	Benchmark	78,789.20	1%	159,425.09	4%	15,942.54	4%	96,578.43	6%	
	Matheuristic	78,812.80	1%	159,439.44	4%	15,951.94	4%	96,677.02	6%	

Diff.* = Percent difference from using benchmark for both drayage and long-haul UNIVERSITY OF TWENTE.

We exemplified how drayage and long-haul decisions can be integrated through (i) inclusion of long-haul assignment cost in the drayage, and (ii) improved downstream cost approximations in the long-haul decisions.

- Preliminary results show that *integrated scheduling performs better than separated scheduling* in terms of overall costs, sometimes with larger drayage costs.
- Further research is needed in drayage scheduling considering long-haul transport and long-haul scheduling considering drayage operations for integrated scheduling in synchromodal transport.

UNIVERSITY OF TWENTE.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

https://www.utwente.nl/bms/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

LOGMS 2017 - Thursday, August 24th Bergen, Norway