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Abstract 

In practice, order acceptance and production planning are often functionally separated. As a result, 

order acceptance decisions are made without considering the actual workload in the production 

system, or by only regarding the aggregate workload. We investigate the importance of a good 

workload based order acceptance method in over-demanded job shop environments, and study 

approaches that integrate order acceptance and resource capacity loading. We present sophisticated 

methods that consider technological restrictions, such as precedence relations, and release and due 

dates of orders. We use a simulation model of a generic job shop to compare these methods with 

straightforward methods, which consider capacity restrictions at an aggregate level and ignore 

precedence relations. We compare the performance of the approaches based on criteria such as 

capacity utilisation. The simulation results show that the sophisticated approaches significantly 

outperform the straightforward approaches in case of tight due dates (little slack). In that case, 

improvements of up to 30% in utilisation rate can be achieved. In case of much slack, a sophisticated 

order acceptance method is less important. 
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1 Introduction 

Order Acceptance (OA) is a tactical managerial activity that deals with accepting and rejecting 

customer orders. It may also deal with related decisions, such as due date quotation and price 

determination. The order acceptance strategy has a large influence on the performance of a company. 

Accepting too many orders leads to an over-loaded production system, in which lead times increase 

and orders are increasingly delivered late. To deal with these problems management may try to find 

additional production capacity, for example by working in overtime, or by outsourcing. This 

additional irregular capacity normally incorporates significantly higher costs, which leads to lower or 

even negative profits. Tardy deliveries may also lead to higher (penalty) costs, and possibly lost 

customers. A good order acceptance strategy might be able to prevent these problems. 

 

In practice, decisions on order acceptance and production planning are often functionally separated, as 

we have experienced in a study at a shipyard. For example, a sales department is responsible for order 

acceptance, while a production department is responsible for the production planning. The sales 

department will tend to accept all orders, regardless of the available capacity, because their goal is 

turnover. The production department tries to maximise utilisation and minimise the number of tardy 

deliveries. Given these conflicting goals of turnover and tardiness, order acceptance decisions are 

often made without involving the production department or with incomplete information on the 

available capacity in the production department. Zijm (2000) also mentions that it is important to 

integrate these decisions. The importance of order acceptance is often underestimated in practice and 

the issue of order acceptance is underexposed in the literature. Order acceptance related research is 

generally confined to single resource or flow shop type production systems. In Section 2 we give an 

overview of the literature on order acceptance. 

 

In this paper we study the order acceptance problem in a make-to-order (MTO) job shop environment. 

The MTO environment is typically characterized by small batches and a large variety of products and 

routings through the shop. Order characteristics such as routings and material and machine 
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requirements are generally not fully known at the stage of order acceptance. As a result, it is 

extremely difficult to measure the impact of accepting new customer orders on the operational 

performance of the production system. Especially in such environments a good finite capacity based 

order acceptance procedure is crucial. Ideally, such an OA method would use the available 

information as good as possible and it would utilise as much of the flexibility as possible, such as 

rescheduling already accepted orders. How to do this is far from trivial. 

 

We investigate the importance of order acceptance and the benefits of cooperation between the sales 

and planning function. Based on recently developed advanced resource loading techniques and based 

on straightforward loading methods we developed several workload based order acceptance methods. 

To test these methods, we developed a simulation model of a generic MTO job shop, which enables 

us to simulate the order arrival and production process. We assume that there is an unlimited storage 

capacity for inventories between the processing steps. In this simulation model, we can easily plug in 

and test various OA methods and resource capacity loading methods in a dynamic setting. By 

changing model parameters we can easily test the OA methods in different types of production 

systems. As performance measures we use the utilisation rate and the service level, i.e. the number of 

accepted orders that is completed before the due date. In this research we want to answer the 

following questions: 

• Can a significant performance increase be obtained by using sophisticated OA methods as 

opposed to a simple method? 

• Which method performs best under which circumstances? 

• Should (and how should) the presented methods be used in practice? 

 

This paper is organized as follows. In Section 2 we present and categorise the available literature on 

order acceptance. In Section 3 we describe several capacity based order acceptance methods, varying 

from simple to sophisticated methods. In Section 4 we present the simulation model and the 
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experimental setting followed by the results of the simulation experiments in Section 5. Finally, in 

Section 6 we give our conclusions and directions for further research. 

2 Literature 

Order acceptance has received limited attention in literature. Most papers on order acceptance 

consider the single resource case with deterministic processing times. Slotnick and Morton (1996) 

present an exact solution method for the static problem in which all order arrivals are known in 

advance and the problem is to select a subset of orders that maximizes revenues. The authors compare 

an exact branch-and-bound approach with two heuristics and show that the heuristics work well for 

the given setting. Lewis and Slotnick (2002) extend this work to the multi-period case, for which they 

use a dynamic programming approach to find an optimal solution. 

 

The assumption that all order arrivals are known in advance is not very realistic. Therefore, most 

other papers focus on the dynamic case, where orders arrive irregularly over time. In this case, the 

acceptance decision can be made upon arrival of each order, or upon a number of orders that have 

arrived in a specific decision period. Wang et al. (1994) propose a neural network approach in a 

periodic review setting to accept orders according to multiple criteria, such as profit and customer 

credit. Mainegra Hing et al. (2002) and Snoek (2000) also propose neural network based approaches 

to derive order acceptance policies in a single and multi-resource setting, respectively. The difference 

between an order acceptance policy (Wang et al., 1994; Mainegra Hing et al., 2002; Snoek, 2000) as 

opposed to an order acceptance algorithm (cf. Akkan, 1997; Wester et al., 1992; Ten Kate, 1995) is 

that a policy has a given/predetermined accept/reject decision based on the state of the system. In case 

of an order acceptance algorithm, new computations are made every time an order arrives to make the 

acceptance decision, which may require much computation time. 

 

Another approach is order acceptance based on scheduling methods. Most scheduling based order 

acceptance research has focused on single resource production systems, such as: Akkan (1997), 

Wester et al. (1992) and Ten Kate (1995). Akkan (1997) suggests to accept orders only if they can be 
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included in the schedule, such that it is completed before its due date, and without changing the 

schedule for already accepted orders. Wester et al. (1992) investigate three algorithms for order 

acceptance; an algorithm based on detailed scheduling (monolithic approach) and two workload based 

hierarchical approaches. Simulation results show that the monolithic approach performs better than 

the hierarchical approaches if the set-up times are large and the due dates are tight. In other cases they 

perform similarly. Ten Kate (1995) studies a similar setting, an integrated and hierarchical approach 

for a single machine case, and concludes that detailed information about the current production 

schedule is only valuable when lead times are short. 

 

Raaymakers et al. (2000a) study the performance of workload rules for order acceptance in batch 

chemical manufacturing. They consider the total workload and the workload per work centre. It turns 

out that these methods do not perform well in their specific setting. Raaymakers et al. (2000b) 

compare a regression based makespan estimation approach with a workload-based approach for batch 

chemical manufacturing in a setting with deterministic processing times. When the utilisation is high 

and when there is a high variety in the job mix, the regression-based model outperforms the workload-

based model. Ivanescu et al. (2002) build on this work by investigating uncertainty in processing 

times. Their results indicate that the regression approach can compete with the scheduling approach in 

situations with a high variety in the job mix and high uncertainty in the processing times. 

 

We see that very limited attention has been paid to the multi-resource order acceptance problem. We 

will study this multi-resource case, for which we investigate both straightforward workload based 

algorithms, such as in Raaymakers et al. (2000a), as well as a sophisticated resource loading method 

(Hans, 2001). We will also investigate a production system with stochastic processing times. As far as 

we know this has only been done by Ivanescu et al. (2002) for batch process industries with no wait 

restrictions and without precedence relations, which makes their results not directly viable for general 

job shop environments.  
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3 Order acceptance methods 

In this section we describe four order acceptance methods that vary from straightforward to 

sophisticated. Orders arrive at the shop and consist of one or several jobs. These jobs have to be 

processed on a specified resource. The jobs can be regarded as an aggregation of operations. Thus, at 

the scheduling level, the jobs can be further disaggregated into operations. Detailed information on 

these operations is not available at the order acceptance planning level, since micro process planning 

has not been performed yet (cf. Zijm 2000). Instead, through macro process planning only rough 

information on the jobs is available, such as precedence relations between the jobs. On one resource 

several jobs cannot be processed in parallel; the whole resource capacity is claimed by one job. An 

order has a specified release and due date. Jobs have to be assigned to one or more time periods. We 

assume that when a job is finished, the successor can immediately be started.  

 

We focus on workload based order acceptance methods to maximise the utilisation rate of the job 

shop. Because we focus on capacity, we use resource loading methods to support the order acceptance 

decision. Therefore, the names of the methods refer to this. First we introduce some notation. 

 

pbjm: the estimated processing time of job b from order j on resource m. 

nj: the number of jobs in order j. 

rj: the release date of order j. 

dj: the target due date of order j. 

M: the number of resources in the job shop. 

Ctm: the maximum available capacity on resource m in time period t. 

Ct: the total maximum available capacity (sum of Ctm) 

Utm: the reserved capacity on resource m in time period t, for example for already accepted orders. 

Ut: the reserved capacity on all resources (sum of Utm) 

α: expected utilisation rate. 
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3.1 Aggregate resource loading (ARL) 

The Aggregate Resource Loading (ARL) method looks at aggregate information: the total (estimated) 

processing time for order j and the (estimated) available capacity between the release and due date of 

order j. Capacity is aggregated over all resources. Similar approaches can be found in for example 

Wester et al. (1992) and Ten Kate (1995). When the required total processing time is smaller than, or 

equal to the available capacity between the release and due date of order j, then order j is accepted, see 

equation (1). 
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Note that this method does not take the jobs of an order and the precedence relations between these 

jobs into account. It also does not distinguish between the various resources. Therefore, this method 

overestimates the utilisation of the shop. To compensate for this we introduce the safety factor α, 

which for this method can be seen as the maximum utilisation rate that can be achieved given the 

order and shop characteristics. A similar parameter is introduced by e.g. Wester et al. (1992), who call 

αCt the critical work content level. The lower the value of α, the smaller the possibility that an order 

will be accepted that can not be produced before its due date. However, when α is low, the maximum 

utilisation rate is also low. Thus, α should be chosen as large as possible, with the constraint that the 

service level must be above a given percentage, for example, the service level must be above 95%. 

Simulation experiments can be used to find the value of that α corresponds with a given service level. 

 

When an order is accepted, resource capacity for this order must be reserved in specific time intervals, 

which we refer to as periods. Several methods can be used to assign capacity to this order, such as 

forward loading and backward loading, as described by Akkan (1997). We use a forward loading 

method. Capacity is reserved starting from the release date of the order, say at the beginning of time 

period t. The remaining capacity in time period t is αCt-Ut. When the processing time of order j is 
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larger than the remaining capacity, Ut becomes equal to αCt and we go to the next time period t+1. 

We repeat this until the reserved capacity for order j is equal to the processing time of order j. 

3.2 Resource loading per resource (RLR) 

Instead of looking at the aggregate capacity over all resources, we can look at the resource level. For 

example, Raaymakers et al. (2000b) looked at the capacity per workcenter. Taking the precedence 

relations between the jobs into account may lead to a better estimation of the capacity utilisation and 

the possibility to complete the order on time. We use internal release and due dates to indicate the 

time window in which the jobs of an order must be processed on a particular resource. The internal 

job release and due dates (rbj and dbj) can be calculated from the order release and due date, the job 

precedence relations. The internal release date is the earliest possible time a job k can start, i.e. the 

earliest possible time all its predecessors can have been finished. The internal due date is the latest 

time a job k can finish such that there is still time for the successors to be processed before the due 

time: 
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The time windows ([rbj,dbj]) overlap when the order has slack. This follows from: 
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An order is accepted when for each job capacity is available on the applicable resource within the 

time window of this job: 
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Distinguishing between the resource groups describes the situation in the shop more accurately than 

the previous method. Therefore, we expect that for this method the value of α will be higher than for 

the previous one, where α still represents the maximum achievable utilization given a specified 
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service level. Time windows of jobs can overlap; a job can claim capacity within the time window of 

its successor. As a result, the precedence relations between the jobs are only partly satisfied. The next 

method does respect the precedence relations entirely, by loading jobs successively with a dispatching 

rule. 

3.3 EDD based order acceptance (EDD) 

Another approach is making a new schedule every time an order arrives. Similar approaches for the 

single resource case can be found in Wester et al. (1992), Ten Kate (1995) and Akkan (1997). 

Raaymakers et al. (2000b) and Ivanescu et al. (2002) use a simulated annealing approach to make a 

detailed schedule. We use the Earliest Due Date dispatching rule to construct a detailed schedule. 

When a new order arrives we construct a new plan with this new order included. In case one or more 

orders are tardy we reject the new order, otherwise we accept it. A significant difference with the 

previous methods is that once an order is accepted, the capacity assignment to time periods is not 

fixed, since we reschedule upon order acceptance. In the previous methods capacity is reserved when 

an order is accepted and this assignment is not changed afterwards. Furthermore, EDD does not 

violate precedence relations, as opposed to the previous methods. Note that the plan found by EDD 

may therefore be more consistent with the operational plans at the lower level. 

 

EDD uses the following parallel dispatching procedure. Starting in period t = 0, the decision set holds 

all jobs of all orders that are allowed to be dispatched. A job is allowed to be dispatched when: all its 

predecessors have completed, the current time period is on or past its release date, and the required 

resource is available. The priority of each job is then determined by its internal due date. We select 

the job with the highest priority, and load this job onto the concerning resource by adjusting its 

capacity profile. We then update the decision set. If the decision set is empty, we move to the first 

time period in which there are jobs that are allowed to be dispatched. We continue until all jobs have 

been planned.  
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 This order acceptance method imitates an EDD dispatching procedure, which can be used for the 

operational planning. This only holds when the input data is deterministic. When the input data is 

stochastic, or in case of processing disruptions, the EDD schedule only gives an approximation of the 

operational plan. In this case, we may reserve capacity to deal with these uncertainties by using a 

parameter α in a similar way as in the previous methods. Note that the reason to introduce this 

parameter is different than for the previous methods: uncertainty instead of inaccuracy. 

3.4 Branch-and-Price resource loading (BPRL) 

The branch-and-price resource loading method (BPRL) is an exact approach for solving the pre-

emptive resource loading problem. This problem is concerned with loading a set of orders onto a job 

shop consisting of several resources. For an extensive description of this method we refer to Hans 

(2001). Here we give a brief description of this method. 

 

The BPRL method revolves around an MILP formulation of the pre-emptive resource loading 

problem. The model distinguishes order plans and order schedules. Order plans indicate the periods 

in which each job of an order is allowed to be performed. A corresponding order schedule indicates 

per period the fraction of the job that is performed. The idea of the BPRL approach is that it generates 

order plans implicitly by column generation. The model must select one order plan per order, and 

generate the corresponding order schedule. Since any selected order plan is feasible with respect to 

job release and due dates and precedence relations, the corresponding order schedule is also feasible 

to these restrictions. Also, since the possible order plans are input of the model, this approach prevents 

that precedence relations are modelled explicitly, which would require many integer variables and 

restrictions. 

 

The objective of the model is to generate an order schedule for each order, such that the total costs of 

the required non-regular capacity (working in overtime, hiring staff, and subcontracting) and the order 

tardiness penalties are minimized. The MILP model allows making trade-off analyses between due 

date performance on the one hand, and non-regular capacity levels on the other hand. The model can 
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easily be adjusted to forbid either tardiness, or using non-regular capacity. This makes it very suitable 

for this research. 

 

The (partial) integrality of the model is induced by the binary variables that select one order plan per 

order. Since there are exponentially many order plans, an explicit model of a problem of regular size 

is impossible to formulate and solve. Hans (2001) proposes various exact and heuristic methods, 

which are all based on first solving the linear programming (LP) relaxation of the MILP model by 

column generation. It starts from a restricted LP formulation (RLP), which has at least one order plan 

per order. After each RLP optimisation, order plans with negative reduced costs are added to the RLP, 

which must then be re-optimised. The column generation scheme terminates when no order plans with 

negative reduced costs exist. The optimal solution of the LP relaxation is then found. If the optimal 

LP solution happens to be integral, we have found an optimal solution of the resource loading 

problem. Otherwise, we could apply a branch-and-price algorithm to determine an optimal solution, 

or e.g. use a heuristic to judiciously round the LP solution to obtain a feasible solution. In this paper 

we use the truncated branch-and-price approach. Hans (2001) shows that typically, this method finds 

optimal solutions fast; however, the method requires much computation time to prove optimality. 

Since we aim to use this method in a simulation model, in which it is called many times, solving each 

problem to optimality may require too much computation time. We therefore truncate the branch-and-

price method after a specified time (in seconds). We implemented BPRL in Delphi 7.0, using CPLEX 

8.1.0 to optimise the RLP. 

 

In the simulation model we use BPRL in the following way. The simulation model has information 

about already accepted orders and about the newly arrived order. Furthermore, there may be some 

jobs in process in the shop. These will not be reassigned; they claim part of the available capacity. All 

this information is input for BPRL, which then computes an order schedule. We accept the newly 

arrived order when none of the orders is tardy in the order schedule; the use of non-regular capacity is 

not allowed. Note that the order schedules of a BPRL solution allow job pre-emption. As a result, a 
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job may not be executed in consecutive periods. Unfortunately, the BPRL approach cannot forbid pre-

emption; we use the order schedules also for dispatching the jobs on the resources.  

4 Simulation model and experimental settings 

We build our job shop simulation model in the object-oriented simulation package eM-Plant. Many 

parameters can be varied in this simulation model. In this section we present our experimental 

variables and the experimental setting. We distinguish three categories of experimental variables: 

Order acceptance methods, order characteristics and shop characteristics. 

 

Order acceptance methods 

In Section 3 we presented four order acceptance methods. We want to test the performance of these 

methods for several settings. These settings differ with respect to order and shop characteristics. For 

ARL and RLR we also have to find the value of α that leads to the best performance. When 

processing times are stochastic we introduce a parameter α for all acceptance methods; because of the 

stochasticity in the processing times, some buffer capacity must be reserved for these uncertainties. 

We truncate BPRL after 60 seconds when it has not found the optimal solution or has not yet proven 

optimality. We use the best solution it has found so far to decide whether an order is accepted or 

rejected. 

 

Order characteristics 

Orders arrive according to a Poisson process. For each of the order characteristics we choose a high 

and a low factor level (see Table 1). The number of jobs per order is uniformly (discretely) distributed 

between 1 and 3 at the low factor level and is uniformly distributed between 3 and 5 jobs per order at 

the high level. The variance in the processing time per job (pbjm) can be low, uniformly distributed 

between 10 and 14 hours, or high, uniformly distributed between 6 and 18 hours. These processing 

times can also be deterministic or stochastic, representing the uncertainty in the processing times. 

When the processing time is stochastic, the processing time is perturbed by a factor that is uniformly 

distributed between 0.75 and 1.25. Orders that arrive at the shop always have some slack. This slack 
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can be low, 0.5 times the processing time of the order, or high, 1.5 times the processing time of the 

order. A lot of slack makes it easier to account for uncertainties and leaves flexibility for dispatching 

the orders.  

 

Factor Low High 

1. Number of jobs per order U(1,3) U(3,5) 

2. Processing time per job U(10,14) U(6,18) 

3. Uncertainty in processing times deterministic U(0.75,1.25)*pbjm 

4. Workload (demand/capacity ratio) 0.75 1.0 

5. Slack per order 0.5*pj 1.5*pj 

Table 1: Levels of the experimental factors 

 

Shop characteristics 

A job shop contains a number of resources. In our experiments there are 5 different resources in the 

shop. The resource on which a job must be processed is selected randomly. We include the constraint 

that 2 consecutive jobs of the same order are not allowed to be processed on the same resource. The 

workload that arrives at the shop is expressed by a demand/capacity ratio. At the low level, the 

average demand requirements are 75% of the total available capacity, whereas the demand 

requirements are 100% at the high level. The utilisation in the job shop is between 40% and 75%, 

depending on the settings of the experimental variables. The settings for demand both represent 

situations where demand is close to or exceeds the maximum achievable utilisation rate. Due to 

precedence relations and routing diversity it is impossible to achieve a utilisation of 100%. Therefore, 

orders have to be rejected in our settings. 

 

For the dispatching of accepted orders in the shop we use two approaches. First, we use a simple EDD 

priority rule per resource for all order acceptance methods. When the resource becomes available the 

job with earliest (internal) due date that is waiting in the buffer for this resource is selected. Second, 

since the BPRL loading method allows pre-emption (see Section 3.4), we use the pre-emptive order 

schedules provided by this method to dispatch the jobs (Section 5.5). The order schedules indicate 
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which part of which jobs has to be processed in a specific time period. These jobs are executed in a 

random order within this time period. 

 

We perform experiments for all combinations of the experimental factors in Table 1 to determine 

which factors have a significant effect on the utilisation rate of the shop by constructing a paired 95% 

confidence interval and determining probability that the two settings do not have the same mean. 

When this probability (p-value) is smaller than 0.05 we assume the difference is significant. The 

utilisation rate is the used capacity divided by the total available resource capacity over the complete 

simulation run length. Each run has a length of 360 days, including a warm-up period of 20 days. For 

each factor level combination we execute 5 runs with different seed values. We vary the factor α for 

the various OA methods, starting at 1 and decreasing in steps of 0.1 until we have found a solution 

that complies with the service level requirements. We select the results of the experiment with the 

highest α, for which the percentage of tardy orders is below 5%. Thus, we demand a service level of 

at least 95%.  

5 Computational results 

5.1 The value of the parameter α 

The parameter α, which accounts for inaccuracy in the methods and uncertainty in processing times, 

has a serious impact on the results of the different methods. An advantage of EDD and BPRL in the 

deterministic case is that we do not need to set the parameter α (α=1). The shop and order 

characteristics, such as precedence relations, are taken into account by these methods. The setting of α 

for ARL and RLR strongly depends on the values of the experimental factors. The service level is 

required to be at least 95%. Accordingly, for ARL α is rather low, between 0.3 and 0.7, which can be 

explained by the fact that this method aggregates all resources and does not take precedence relations 

into account. For RLR α is between 0.7 and 1.0. This indicates that RLR represents the situation in 

the shop better than ARL. In Figure 1 and Figure 2 we show the relation between α and the utilisation 

rate and between α and the service level for the various OA methods. In these experiments there is 
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little slack, while all other experimental factors are set at the high level (cf. Table 1). Since ARL 

aggregates all capacity, the utilisation rate is close to α, as can be seen in Figure 1.  
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Figure 1: Relation between α and the utilisation rate for the various OA methods. 

 

The utilisation rate for RLR, EDD and BPRL is very low with a low α. A reason is that these methods 

construct schedules in which the arrived orders cannot be completed before the due time, because 

with an α equal to 0.5 these methods assume that twice as much time is needed to complete a job. 

Figure 2 shows that for ARL and RLR the service level drops sharply with increasing α, while the 

results of EDD and BPRL are less sensitive to the value of α. For all these experiments α is between 

0.8 and 1. Note that in case of EDD and BPRL the parameter α only accounts for the uncertainty in 

processing times while in case of ARL and RLR it also accounts for the inaccuracy of the methods. 

This explains the difference in sensitiveness. 
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Figure 2: Relation between α and the service level for the various OA methods. 

 

It is difficult to give the best value of α for a particular service level requirement, but there are some 

general observations. When the slack of the orders increases, α can also increase. More slack gives 

more flexibility in dispatching the orders and gives a higher utilisation rate. When the uncertainty 

increases, for example because of processing time stochasticity, the best value of α decreases. In this 

case, capacity has to be reserved for the uncertainties. Figure 3 gives an overview of the feasible 

combinations of utilisation and service level. These values form an efficient frontier for each method. 
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Figure 3: Relation between utilisation and service level 

 

5.2 Effects of the experimental factors 

In Table 2 we see the average effect of the experimental factors on the utilisation rate in the shop. 

Each number in Table 2 shows the absolute change in the utilisation rate as a consequence of 

increasing the factor level from low to high. The results in Table 2 give some idea about the effects, 

but to draw conclusions we also have to look in more detail at the results for specific settings. 

 

OA method #jobs/order Processing time Uncertainty Workload Slack 

ARL 0.01 n.s -0.01 n.s. -0.02 * 0.02 * 0.24 ** 

RLR -0.04 ** -0.02 ** -0.03 ** 0.05 ** 0.23 ** 
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EDD 0 n.s. -0.01 * -0.03 ** 0.06 ** 0.15 ** 

BPRL -0.03 ** -0.01 ** -0.02 ** 0.07 ** 0.12 ** 

Table 2: Average effect of the experimental factors on the utilisation (absolute difference, n.s. = not 

significant, * p < 0.05 and ** p < 0.01) 

 

The number of jobs per order has moderate impact on the utilisation rate; it is not significant for ARL 

and EDD. The RLR and BPRL method accept less work in case of a high number of jobs per order. 

The OA methods are only slightly sensitive to the variance in processing times, where this effect is 

not significant for ARL. When we look at the results in more detail it turns out that in case of little 

slack the utilisation is moderately lower in case of a high variance in processing times. The results 

show that increasing processing time stochasticity results in slightly lower utilisation rates. In the 

stochastic case some capacity must be reserved for the uncertainty in processing times. All four 

methods show nearly the same effect (see also Figure 4). With respect to the workload, the more 

orders arrive at the job shop, the higher the probability that one of the orders fits in the existing 

schedule. EDD and BPRL take most advantage of the higher number of arrivals. A reason is that these 

rules compute a new schedule every time an order arrives. They have the flexibility to move already 

accepted orders in time. This may not always be allowed in practice, but it is beneficial to do so. The 

slack of an order has the largest impact on the utilisation rate. Little slack makes it more difficult to fit 

a new order in the existing schedule. EDD and BPRL reoptimise every time, and can deal better with 

little slack. As a consequence, as slack increases, the simple methods show a larger increase in their 

utilisation rate. These methods can accept a lot of orders without worrying about the dispatching in 

the shop.  
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Figure 4: Relation between “number of jobs per order / processing time uncertainty” (LH=Low/High) 

and the utilisation rate, given a high variance in processing times, high workload and little slack. 

 

5.3 Comparison of the order acceptance methods 

We looked at the effect of several factors on the performance of the OA methods, and we are 

especially interested in the performance differences between the methods. We compare the various 

methods for all factor level combinations, using a paired t-test to construct a 95% confidence interval. 

Table 3 shows the average utilisation for the various order acceptance methods. Only the pairwise 

comparison between EDD and BPRL over all experiments does not show a significant difference 

(p=0,06). All other differences are significant; p < 0.05.  

 

OA method Average utilisation rate 
over all experiments 

Average utilisation rate for low 
slack and high demand experiments 

ARL 0.56 0.46 

RLR 0.62 0.53 

EDD 0.64 0.60 

BPRL 0.65 0.62 

Table 3: Average utilisation for the various order acceptance methods. 

 

RLR has a better performance than ARL, because RLR considers the capacity of the individual 

resources instead of the total capacity. EDD also shows significantly better results than ARL. On 
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average, EDD achieves an additional 0.08 utilisation rate, which is an increase of 14% (see Table 3). 

Note that the methods perform similarly in cases with a lot of slack (see Figure 5). The advantages of 

EDD emerge when the workload is high and there is little slack (last column Table 3). In that case, 

EDD achieves a utilisation rate of up to 0.14 higher than that of ARL, which is an improvement of 

30% (Figure 5). Compared with RLR, EDD shows an improvement of up to 15%. EDD performs 

better because it considers the capacity of the individual resources, accounts for all precedence 

relations, and reschedules upon order arrival. In case of high slack, RLR and EDD perform alike. In 

Figure 5 it appears that BPRL performs slightly better than EDD in case of little slack, but in case of 

high slack BPRL shows slightly worse results, possibly because of the restricted computation time. 

The reason that there is no significant difference might be explained by the fact that an EDD priority 

rule is used for dispatching the orders. A larger improvement might be expected when BPRL is used 

for both order acceptance and dispatching in the shop. We come back to this later. 
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Figure 5: Relation between “slack/workload” (LH=Low/High) and the utilisation rate, given that the 

other factors are at the high level. 

 

5.4 Computation times 

The computation times for ARL, RLR and EDD are negligible. BPRL requires a much longer 

computation time, and even longer when slack increases. The reason for this is that the number of 
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feasible solutions grows exponentially. We see that in cases with little slack and a low workload a 

good solution is found within 10 seconds on a Pentium 800MHz. When there is much slack, more 

than 60 seconds is required to find a good solution. In Figure 5 we see that with much slack BPRL 

achieves a lower utilisation than EDD, because BPRL is truncated after 60 seconds. However, in these 

cases the straightforward order acceptance methods also perform satisfactorily. BPRL is especially 

useful in the more difficult cases with little slack, high demand and several jobs per order. 

 

5.5 Using BPRL for dispatching 

We can also use BPRL instead of EDD for dispatching. The order schedules produced by BPRL are 

used for the dispatching in the shop. We performed experiments with little slack, the difficult cases 

for which the BPRL order acceptance method showed the best results. For these cases there is only a 

slight improvement (0.01 with p=0.03) in utilisation rate by using BPRL for dispatching. As may be 

expected, since it is designed to operate at a higher planning level, BPRL is perhaps not suitable as a 

scheduling / dispatching method. 

6 Conclusions and recommendations 

In job shop order acceptance it is important to control the workload. Accepting too much work leads 

to a low service level, whereas accepting too few orders leads to a low utilisation rate. We compared 

different workload based rules for order acceptance, varying from rules based on aggregate 

information to a detailed scheduling method. Where most previous work has focused on the 

deterministic single resource case, we investigated a job shop with stochastic processing times. We 

found that in cases with little slack and a high workload it is worthwhile to construct a detailed 

schedule. This is in line with the existing literature (cf. Wester et al., 1992; Ivanescu et al., 2002), in 

which the scheduling approach for tight settings also shows better results than rules based on 

aggregate information. In our experiments we find an increase in the utilisation rate of up to 0.14 

(30% improvement) can be realized in cases with little slack and high workload, given a required 

service level of 95%. Constructing a detailed schedule in cases with a lot of slack only leads to a 
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slight increase in utilization rate. Overall, the EDD rule might be preferred when looking at 

performance, the setting of α, and the computation times. 

 

From the two detailed scheduling methods the Branch&Price approach did not outperform the Earliest 

Due Date dispatching rule. One reason may be that we gave the Branch&Price method a limited 

computation time to have acceptable experiment duration. In practice, perhaps more computation time 

is available. Another reason might be that we did not use all aspects of the Branch&Price method, 

such as the possibility to make a trade-off between due date performance and the use of non-regular 

capacity. The other methods cannot make such a trade-off. Therefore, it might be interesting to 

investigate the problem from a revenue-based perspective, considering non-regular capacity and the 

profits of the various orders. 

 

The job shop simulation model reflects the situation of a make-to-order manufacturer in practice quite 

well. It is hard to compare the tested OA methods with the OA performance of a planner in practice, 

since a planner probably makes his decisions based on experience. Such an approach is hard to 

simulate. Computationally, we did show the importance of integrating order acceptance with the 

resource capacity loading function (i.e. finite capacity order acceptance). It would be interesting to 

support our conclusions in a case study. The simulation model offers many possibilities for studying 

variants of the job shop OA problem, such as revenue based order acceptance, periodical order 

acceptance, learning methods for OA, order tardiness penalties, and planning irregular capacity.  
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