Combined Scheduling of Pre-haulage and Long-haul Freight Transportation

Arturo E. Pérez Rivera and Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands. E-mail: {a.e.perezrivera,m.r.k.mes}@utwente.nl

1. Introduction

We study the combined scheduling of pre-haulage and long-haul transportation of freight in an intermodal/synchromodal network. The pre-haulage of freights is performed by trucks that also execute other drayage operations. The long-haul transportation of freights is performed by high-capacity modes that depart from different terminals.

Example trade-off: Consider a Logistics Service Provider (LSP) choosing a terminal to bring a freight for the start of the long-haul. A trade-off occurs when terminal which has the best consolidation for the long-haul (lowest long-haul costs) is not the closest terminal to the origin of the freight (not the lowest pre-haulage costs).

2. Problem Description

We consider a stochastic optimization problem over a finite time horizon $t \in T$ where:

- Random freights F_t with different characteristics arrive.
- Trucks performing drayage operations are routed to terminals for pre-haulage freights are assigned in a drayage schedule x_t^D with costs $c_t^D(x_t^D)$.
- Long-haul freights at each terminal are either consolidated in a high-capacity mode or postponed for future consolidation in a long-haul schedule x_t^L with costs $c_t^L(x_t^L)$.

The goal is to minimize the total expected costs in (1), where x_t^D is a drayage schedule dependent on a long-haul policy $\pi \in \Pi$. f_t^D represents the initial long-haul freights at terminals, P^D describes the stochastic arrival process of freights for drayage (i.e., $P^D \rightarrow F_t$), and Γ is a function that defines the long-haul probabilities P^L_t from the drayage decisions.

$$\min_{\pi \in \Pi, t \in T} \sum_{t \in T} \left[c_t^D(x_t^D) + c_t^L(x_t^L) \right] f_t^D, P^D, \Gamma$$

3. Mathematical Model

- Drayage operations are modeled as a full-truckload pickup-and-delivery problem with time-windows (FTPDPTW).
- There is an assignment cost C_t^D that depends on long-haul freights at each terminal and the assignment decision of freights picked-up.
- Long-haul transportation is modeled as a Markov Decision Process (MDP).
- Arrival probabilities P_t^D of long-haul freight at the terminals (i.e., origins of the high-capacity modes) depend on drayage decisions.

4. Solution Approach

We use a Math-Heuristic (MH) for the FTPDPTW and Approximate Dynamic Programming (ADP) for the MDP.

- The MH algorithm uses various cuts based on the assignment cost C_t^D resulting from the Value Function Approximation (VFA) of ADP.

There are two challenges in our approach:

1. The overall probability distributions P_t^D must be mapped to the long-haul probabilities P_t^L based on drayage scheduling observations.

2. The assessment of when the VFA is good enough involves the analysis of the total costs and the stability of drayage and long-haul scheduling decisions.

5. Preliminary Results

In numerical experiments, we calibrated our combined scheduling approach and compared it against a not-combined benchmark using various instances:

![Graph showing total costs savings compared to the benchmark](image)

<table>
<thead>
<tr>
<th>Instance legend: Location</th>
<th>Drayage freight: random (R) or clustered (C).</th>
<th>Majority of drayage freight: pre-haulage (P) or end-haulage (E).</th>
<th>Destinations of pre-haulage freight: balanced (B) or unbalanced (U).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance</td>
<td>BC-P</td>
<td>RP-P</td>
<td>RC-P</td>
</tr>
<tr>
<td>Drayage Costs</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Pre-haulage/Costs</td>
<td>-25</td>
<td>-20</td>
<td>-15</td>
</tr>
</tbody>
</table>

6. Conclusions

We proposed the integration of a MH for drayage scheduling and an ADP for long-haul scheduling through the inclusion of long-haul assignment costs in drayage decisions and an improved VFA in the long-haul decisions.

- Preliminary results show that our approach performs up to 38% better than a separated scheduling benchmark in terms of total costs.

- Future research on the integration mechanisms of the MH and ADP, and their calibration, is necessary to achieve the most of our approach.

Acknowledgements: This research has been partially funded by the Dutch Institute for Advanced Logistics, DINALOG, under the project SynchromodalIT. The presentation of this poster at the ELAVIO 2018 was sponsored by the IFORS-ELAVIO Scholarship.