INTEGRATED SCHEDULING OF DRAYAGE AND LONG-HAUL TRANSPORTATION IN SYNCHROMODALITY

Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems
University of Twente, The Netherlands

Odysseus 2018 - Thursday, June 7th
Cagliari, Italy
CONTENTS

- Background
- Problem and model description
- Heuristic approach
- Numerical experiments
- Conclusions
“In an intermodal transportation chain, the initial and final trips represent 40% of total transport costs.”

SYNCHROMODALITY
WHAT IS SYNCHROMODAL TRANSPORTATION?

*Source of video: Dutch Institute for Advanced Logistics (DINALOG) www.dinalog.nl

UNIVERSITY OF TWENTE.
EXAMPLE TRADE-OFF
TRANSPORTATION OF CONTAINERS FROM TWENTE TO ROTTERDAM

*Source of artwork: Combi Terminal Twente (CTT) www.ctt-twente.nl
UNIVERSITY OF TWENTE.
PROBLEM DESCRIPTION

- **Schedule when (and where) to transport each freight** to achieve minimum costs over the network and over time.
PROBLEM DESCRIPTION

A stochastic optimization problem over a finite horizon where:

- Random freights arrive
- Sequential schedules are made
SCHEDULING DRAYAGE TRANSPORTATION

Full-Truckload Pickup-and-Delivery Problem with Time-Windows (FTPDPTW) to route trucks and assign terminals:

- Assignment of initial terminal for the long-haul of freights

SCHEDULING LONG-HAUL TRANSPORTATION

Markov Decision Process (MDP) to consolidate freights in daily barges or postpone their transport:

- **Arrival of freight is stochastic and dependent on drayage decisions**
INTERMEZZO – SOME PUBLICITY
WWW.TRUCKSANDBARGES.NL
The goal is to minimize the total expected network-wide costs, where the drayage schedule depends on the long-haul policy, and where the long-haul policy depends on the arrivals from the drayage schedule.

$$\min_{\pi \in \Pi} \mathbb{E} \left[\sum_{t \in T} \left(z_t^D(x_{t,\pi}^D) + z_t^L(x_{t,\pi}^D) \right) \right]$$

where

$$x_{t,\pi}^D = \arg\min_{x_t^D \in \mathcal{X}_t^D} \mathbb{Z}_t(x_t^D)$$

and

$$\Gamma\left(\mathcal{P}_t^D, \mathcal{X}_t^D \right) = \mathcal{P}_t^L$$
HEURISTIC APPROACH
HEURISTICS FOR THE DRAYAGE SCHEDULE AND LONG-HAUL POLICY

- We use a Matheuristic (MH) for scheduling drayage transportation, which uses various cuts based on the ‘terminal assignment cost’ resulting from the long-haul policy.

- We use an Approximate Dynamic Programming (ADP) algorithm for learning a long-haul policy, i.e., Value Function Approximation (VFA), based on the observed distributions from a simulation of the MH.
HEURISTIC APPROACH
INTEGRATION OF THE TWO HEURISTICS

Sequential Integration

Overall drayage probabilities P^D

(A) Define long-haul probabilities P^L_{π} using Γ

(B) Run ADP using P^L_{π}

Convert VFA into $C^L_t, \forall t \in T$, to use in the MH

Iterative Integration

VFA for drayage and long-haul scheduling

No

Yes

(D) Stop?

Observed drayage decisions and arrival distribution

(C) Simulate drayage $(x^D_{t,\pi})$ + long-haul $(x^L_{t,\pi})$ scheduling.
NUMERICAL EXPERIMENTS
INSTANCES SETUP

Freight demand: 20 freights per day (≈Poisson dist.)

Drayage location: Random (R) or Clustered (C).

Drayage type: Pre-haulage (P) or End-haulage (E).

Long-haul Destinations: Balanced (B) or Unbalanced (U).
We divide the experiments in two phases:

1. **Calibration phase:**
 - Settings for heuristic parameters.
 - Influence in drayage and long-haul schedules.

2. **Evaluation phase:**
 - Savings with respect to a benchmark approach commonly found in practice.
 - Sensitivity to different cost setups.
NUMERICAL EXPERIMENTS
CALIBRATION PHASE – PARAMETERS FOCUS ON DRAYAGE OR LONG-HAUL

Figure 6.10: Total Costs C-P-U

Figure 6.11: Individual Costs C-P-U
NUMERICAL EXPERIMENTS

EVALUATION PHASE – NORMAL COST SETUP

![Bar chart showing percentage savings in total costs for different instances.]

Table 1: Percentage difference with the benchmark in normal drayage-cost setup

<table>
<thead>
<tr>
<th>Instance</th>
<th>R-P-U</th>
<th>R-P-B</th>
<th>R-E-U</th>
<th>R-E-B</th>
<th>C-P-U</th>
<th>C-P-B</th>
<th>C-E-U</th>
<th>C-E-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-haul Costs</td>
<td>-10%</td>
<td>-14%</td>
<td>-63%</td>
<td>-65%</td>
<td>-14%</td>
<td>-13%</td>
<td>-63%</td>
<td>-65%</td>
</tr>
<tr>
<td>Drayage Costs</td>
<td>17%</td>
<td>18%</td>
<td>33%</td>
<td>32%</td>
<td>16%</td>
<td>12%</td>
<td>21%</td>
<td>22%</td>
</tr>
<tr>
<td>Long-haul Utilization</td>
<td>4%</td>
<td>1%</td>
<td>-55%</td>
<td>-55%</td>
<td>5%</td>
<td>0%</td>
<td>-56%</td>
<td>-55%</td>
</tr>
<tr>
<td>Pre-haulage Closest</td>
<td>-21%</td>
<td>-27%</td>
<td>-82%</td>
<td>-81%</td>
<td>-37%</td>
<td>-35%</td>
<td>-81%</td>
<td>-82%</td>
</tr>
</tbody>
</table>
Table 6.5: Percentage difference with the benchmark in high drayage-cost setup

<table>
<thead>
<tr>
<th>Instance</th>
<th>Costs</th>
<th>Long-haul Utilization</th>
<th>Pre-haulage to closest terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Long-haul</td>
<td>Drayage</td>
</tr>
<tr>
<td>R-P-U</td>
<td>3%</td>
<td>-12%</td>
<td>6%</td>
</tr>
<tr>
<td>R-P-B</td>
<td>5%</td>
<td>-5%</td>
<td>7%</td>
</tr>
<tr>
<td>R-E-U</td>
<td>13%</td>
<td>-62%</td>
<td>29%</td>
</tr>
<tr>
<td>R-E-B</td>
<td>12%</td>
<td>63%</td>
<td>30%</td>
</tr>
<tr>
<td>C-P-U</td>
<td>-9%</td>
<td>50%</td>
<td>-20%</td>
</tr>
<tr>
<td>C-P-B</td>
<td>-12%</td>
<td>38%</td>
<td>-23%</td>
</tr>
<tr>
<td>C-E-U</td>
<td>4%</td>
<td>-64%</td>
<td>19%</td>
</tr>
<tr>
<td>C-E-B</td>
<td>3%</td>
<td>-64%</td>
<td>18%</td>
</tr>
</tbody>
</table>
CONCLUSIONS

We proposed the integration of a MH for drayage scheduling and an ADP for long-haul scheduling through (i) the inclusion of long-haul assignment costs in drayage decisions, and (ii) an improved VFA in the long-haul decisions.

- Numerical experiments show that our integrated scheduling approach performs up to 38% better than separated scheduling in terms of total network costs, with larger drayage costs.

- Further research on the integration mechanisms of the MH and ADP, and their calibration, is necessary to achieve the most of integrated scheduling in synchromodal transport.
THANKS FOR YOUR ATTENTION!

ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

https://www.utwente.nl/bms/iebis/staff/perezrivera/
a.e.perezrivera@utwente.nl

Odysseus 2018 - Thursday, June 7th
Cagliari, Italy