

SCHEDULING SYNCHROMODAL FREIGHT TRANSPORT USING APPROXIMATE DYNAMIC PROGRAMMING

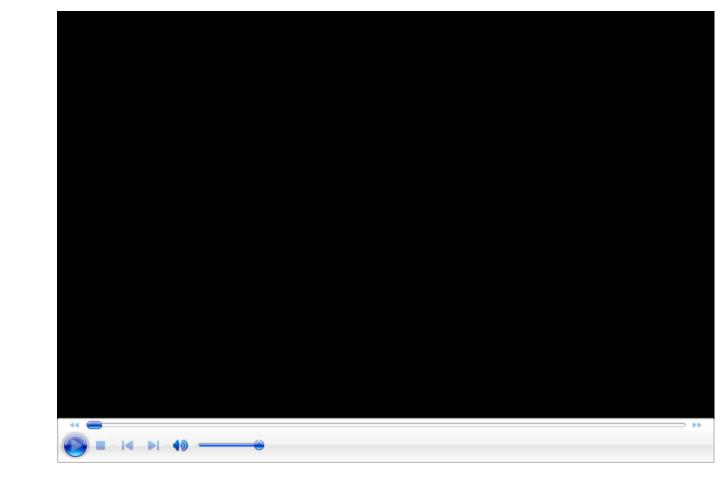
Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

- Synchromodal freight transport
- Multi-period scheduling problem:
 - > Markov Decision Process model
- Heuristic solution:
 - > Approximate Dynamic Programming algorithm
- ••• Numerical results
- What to remember

SYNCHROMODAL FREIGHT TRANSPORT

WHAT IS SYNCHROMODALITY?

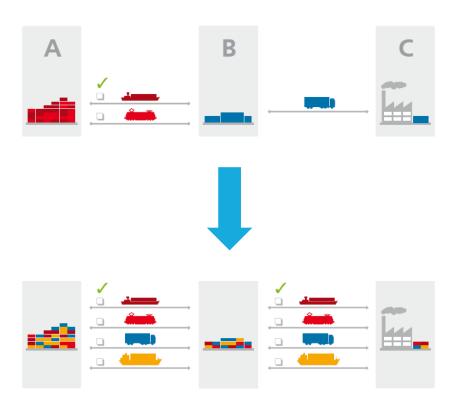


*Source of video: Dutch Institute for Advanced Logistics (DINALOG) www.dinalog.nl UNIVERSITY OF TWENTE.

SYNCHROMODAL FREIGHT TRANSPORT

WHAT ARE ITS CHARACTERISTICS?

- Mode-free booking for all freights.
- Network-wise scheduling at any point in time.
- Real-time information about the state of the network.
- Overall performance in both network and time.



*Source of artwork: European Container Terminals (ECT) – The future of freight transport (2011). UNIVERSITY OF TWENTE.

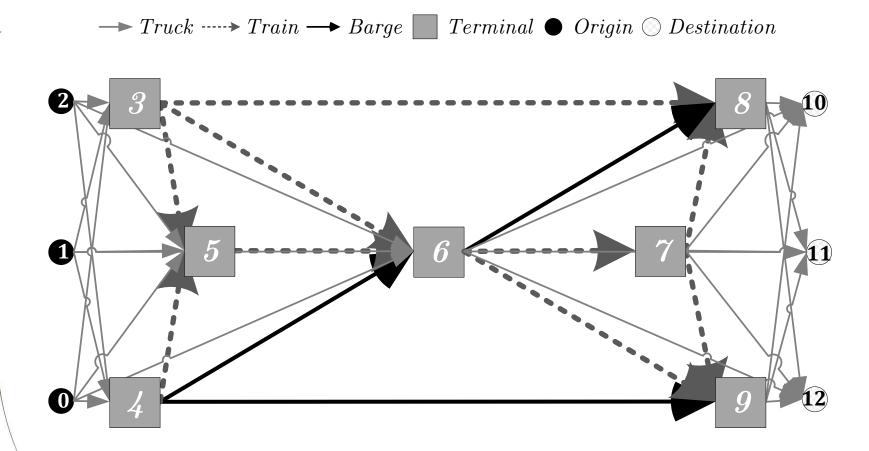
SYNCHROMODAL FREIGHT TRANSPORT

CASE: TRANSPORTATION OF CONTAINERS IN THE HINTERLAND

 \square

5

MULTI-PERIOD SCHEDULING IN SYNCHROMODALITY PROBLEM EXAMPLE



MULTI-PERIOD SCHEDULING IN SYNCHROMODALITY PROBLEM DESCRIPTION

Input:

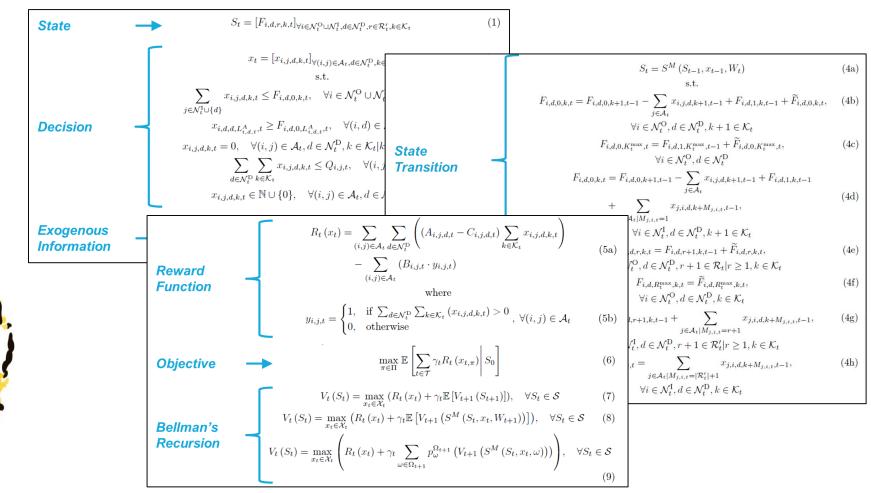
- Transport network: services, terminals, schedules, durations, capacity, costs, revenues.
- Freight demand: origin (or location), destination, releaseday, due-day, size.
- Probability distributions: (1) number of freights, (2) their origin, (3) their destination, (4) release-day, and (5) time-window length.

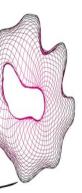
Output:

- Schedule: which service to use for each freight, if any.
- Performance: revenue and costs of the schedule.

MARKOV DECISION PROCESS (MDP) MODEL

OPTIMIZATION OF SEQUENTIAL DECISIONS UNDER UNCERTAINTY





MDP MODEL – NETWORK EVOLUTION

VIRTUAL TIME-WINDOWS FOR FREIGHT

- The *release-day r* is relative to the current day *t*.
- The *time-window length k* is relative to the release-day *r*.
- Consider F_{i,d,r,k,t} freights with k=4 sent from terminal i to terminal j using a service that lasts 2 days:

	t=7	t=8	t=9	t=10	t=11
	Monday	Tuesday	Wednesday	Thursday	Friday
i	F _{i,d,0,4,7}				
j		F _{j,d,1,2,8}	F _{j,d,0,2,9}		
d					F_{d,d,0,0,11}

MDP MODEL – SOLUTION CHALLENGES

 Three-curses of dimensionality restrain the size of networks whose MDP model can be solved to optimality.

 $V_t \left(S_t \right) = \max_{x_t \in \mathcal{X}_t} \left(R_t \left(x_t \right) + \gamma_t \mathbb{E} \left[V_{t+1} \left(S_{t+1} \right) \right] \right)$

 Multi-period revenues and costs can make heuristics flounder and get stuck in local-optima.

$$R_t \left(x_t \right) = \sum_{(i,j) \in \mathcal{A}_t} \sum_{d \in \mathcal{N}_t^{\mathrm{D}}} \left(\left(A_{i,j,d,t} - C_{i,j,d,t} \right) \sum_{k \in \mathcal{K}_t} x_{i,j,d,k,t} \right) \\ - \sum_{(i,j) \in \mathcal{A}_t} \left(B_{i,j,t} \cdot y_{i,j,t} \right)$$

where

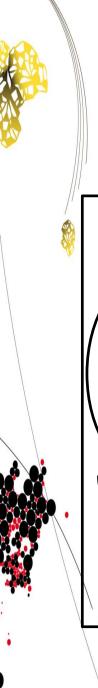
$$y_{i,j,t} = \begin{cases} 1, & \text{if } \sum_{d \in \mathcal{N}_t^{\mathcal{D}}} \sum_{k \in \mathcal{K}_t} (x_{i,j,d,k,t}) > 0\\ 0, & \text{otherwise} \end{cases}, \ \forall (i,j) \in \mathcal{A}_t \end{cases}$$

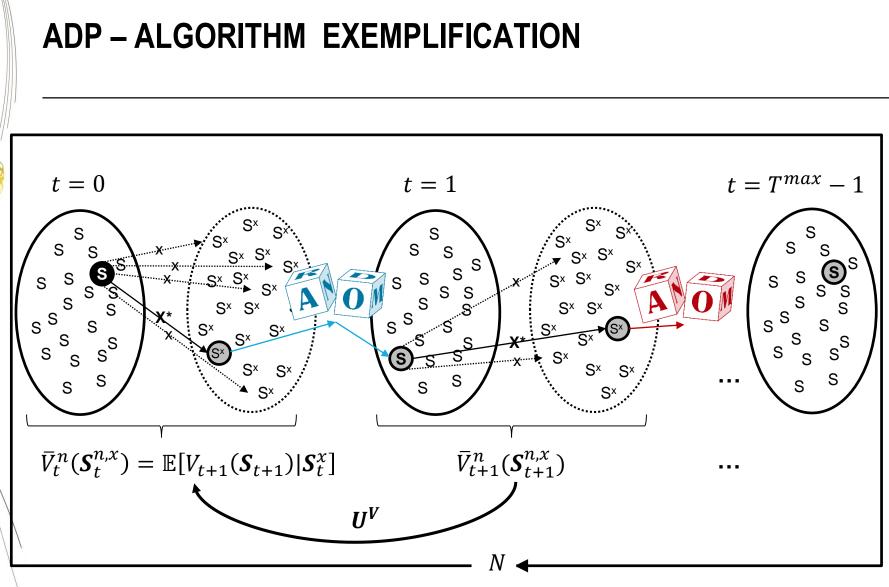
APPROXIMATE DYNAMIC PROGRAMMING (ADP)

HEURISTIC FRAMEWORK FOR SOLVING LARGE MARKOV MODELS.¹

Algorithm 1 ADP Algorithm 1: Initialize $\left[\overline{V}_{t}^{0}\right]_{\forall t \in \mathcal{T}}$ 2: for n = 1 to N do 3: $S_0^n := S_0$ 4: for t = 0 to $T^{max} - 1$ do 5: $x_t^{n*} := \underset{x_t^n \in \mathcal{X}_t^{\mathrm{R}}}{\operatorname{arg\,max}} \left(R_t \left(x_t^n \right) + \gamma_t \overline{V}_t^{n-1} \left(S^{M,x} \left(S_t^n, x_t^n \right) \right) \right)$ 6: $S_t^{n,x*} := S^{M,x} (S_t^n, x_t^{n*})$ 7: $\widehat{v}_t^n := (R_t (x_t^{n*}) + \gamma_t \overline{V}_t^{n-1} (S_t^{n,x*}))$ 8: $W_{t+1}^n := \text{Random}(\Omega)$ $S_{t+1}^{n} := S^{M} \left(S_{t}^{n}, x_{t}^{n*}, W_{t+1}^{n} \right)$ 9: end for 10: $\begin{aligned} & \mathbf{for} \ t = T^{max} - 1 \ \mathbf{to} \ 0 \ \mathbf{do} \\ & \overline{V}_t^n(S_t^{n,x*}) := U_t^n(\overline{V}_t^{n-1}(S_t^{n,x*}), S_t^{n,x*}, [\widehat{v}_t^n]_{\forall t \in \mathcal{T}}) \end{aligned}$ 11: 12:end for 13:14: end for 14: end 15: 15: return $\left[\overline{V}_{t}^{N}\right]_{\forall t \in \mathcal{T}}$

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.





ADP – THE VALUE FUNCTION APPROXIMATION (VFA)

PARAMETRIC APPROXIMATION OF DOWNSTREAM REWARDS

//	VFA	-	$\overline{V}_{t}^{n}\left(S_{t}^{x,n}\right) = \sum_{b \in \mathcal{B}} \theta_{b,t}^{n} \phi_{b,t}\left(S_{t}^{x,n}\right) = \phi_{t}\left(S_{t}^{x,n}\right)^{T} \theta_{t}^{n}$			
		Г	$\phi_{b(i,d)}\left(S_{t}^{x,n}\right) = \sum_{k \in \mathcal{K}_{t} \mid k < \Psi} \sum_{r \in \mathcal{R}_{t}'} F_{i,d,r,k,t}^{x,n}, \forall i \in \mathcal{N}_{t}^{\mathcal{O}} \cup \mathcal{N}_{t}^{\mathcal{I}}, d \in \mathcal{N}_{t}^{\mathcal{D}}$	(12a)		
	Basis		$\phi_{b'(i,d)}\left(S_{t}^{x,n}\right) = \sum_{k \in \mathcal{K}_{t} \mid k \ge \Psi} \sum_{r \in \mathcal{R}_{t}'} F_{i,d,r,k,t}^{x,n}, \forall i \in \mathcal{N}_{t}^{\mathcal{O}} \cup \mathcal{N}_{t}^{\mathcal{I}}, d \in \mathcal{N}_{t}^{\mathcal{D}}$	(12b)		
	functions		$\phi_{b^{\prime\prime}(d)}\left(S_{t}^{x,n}\right) = \sum_{i \in \mathcal{N}_{t}^{\mathcal{O}} \cup \mathcal{N}_{t}^{\mathcal{I}}} \sum_{k \in \mathcal{K}_{t} \mid k \ge \Psi} \sum_{r \in \mathcal{R}_{t}^{\prime}} F_{i,d,r,k,t}^{x,n}, \forall d \in \mathcal{N}_{t}^{\mathcal{D}}$	(12c)		
		L	$\phi_{ \mathcal{B} }\left(S_{t}^{x,n}\right) = 1$	(12d)		
	Recursive le		$\overline{V}_t^n(S_t^{n,x*}) := U_t^n(\overline{V}_t^{n-1}(S_t^{n,x*}), S_t^{n,x*}, [\widehat{v}_t^n]_{\forall t \in \mathcal{T}})$ s.t.	(13a)		
\	square metho for updating	od	$\theta_t^n = \theta_t^{n-1} - (H_t^n)^{-1} \phi_t \left(S_t^{x,n} \right) \left(\overline{V}_{t-1}^{n-1} \left(S_{t-1}^{x,n} \right) - \sum_t^{T^{\max} - 1} \widehat{v}_t^n \right)$	(13b)		
	the VFA		$H_t^n = \lambda^n H_t^{n-1} + \phi_t \left(S_t^{x,n} \right) \phi_t \left(S_t^{x,n} \right)^T$	(13c)		
		L	$\lambda^n = 1 - \frac{\lambda}{n}$	(13d)		
				10		

UNIVERSITY OF TWENTE.

13

ADP – THE VALUE FUNCTION APPROXIMATION (VFA) PARAMETRIC APPROXIMATION OF DOWNSTREAM REWARDS

$$\overline{V}_{t}^{n}\left(S_{t}^{x,n}\right) = \sum_{b \in \mathcal{B}} \theta_{b,t}^{n} \phi_{b,t}\left(S_{t}^{x,n}\right) = \phi_{t}\left(S_{t}^{x,n}\right)^{T} \theta_{t}^{n}$$
(11)

 $\phi_{b(i,d)}\left(S_{t}^{x,n}\right) = \sum_{k \in \mathcal{K}_{t} \mid k < \Psi} \sum_{r \in \mathcal{R}_{t}'} F_{i,d,r,k,t}^{x,n}, \quad \forall i \in \mathcal{N}_{t}^{\mathcal{O}} \cup \mathcal{N}_{t}^{\mathcal{I}}, d \in \mathcal{N}_{t}^{\mathcal{D}}$ (12a)

The features of a post-decision state:

- 1. Intermodal-path freights per location, per destination.
- 2. Trucking freights per location, per destination.
- 3. Total freights per destination.
- 4. Constant.

VFA

Recursive least square method for updating the VFA

$$\theta_t^n = \theta_t^{n-1} - (H_t^n)^{-1} \phi_t \left(S_t^{x,n} \right) \left(\overline{V}_{t-1}^{n-1} \left(S_{t-1}^{x,n} \right) - \sum_t^{T^{\max} - 1} \widehat{v}_t^n \right)$$
(13b)

s.t.

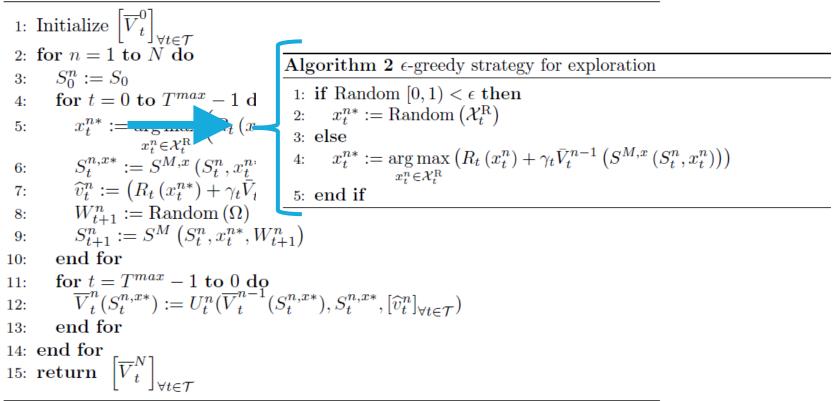
$$H_t^n = \lambda^n H_t^{n-1} + \phi_t \left(S_t^{x,n} \right) \phi_t \left(S_t^{x,n} \right)^T$$
(13c)

$$\lambda^n = 1 - \frac{\lambda}{n} \tag{13d}$$

ADP – EPSILON GREEDY EXPLORATION

ESCAPING LOCAL OPTIMA

Algorithm 1 ADP Algorithm



ADP – VALUE OF PERFECT INFORMATION (VPI)

EXPLORATION BASED ON A BAYESIAN BELIEF

Exploration $x_t^{n*} = \underset{x_t^n \in \mathcal{X}^{\mathcal{R}}}{\operatorname{arg\,max}} \left(v_t^{E,n}(K_t^n, S_t^n x_t^n) \right)$ (14)decision **Bayesian** $K_t^n = (\overline{V}_t^n, C_t^n) = (\phi_t, \theta_t^n, C_t^n)$ (15)belief $v_t^{E,n}(K_t^n, S_t^n, x_t^n) = \sqrt{\sigma_t^{2,n}(K_t^n, S_t^{x,n})} f\left(-\frac{\delta(S_t^{x,n})}{\sqrt{\sigma_t^{2,n}(K_t^n, S_t^{x,n})}}\right)$ (16a)Value of s.t. exploration $\delta(S_t^{x,n}) = \left| \overline{V}_t^{x,n} \left(S_t^{x,n} \right) - \max_{\substack{u^n \in \mathcal{X}_t^{\mathrm{R}} | u \neq x_t^n}} \overline{V}_t^{x,n} \left(S_t^{y,n} \right) \right|$ (16b) $\sigma_t^{2,n}(K_t^n, S_t^{x,n}) = \phi \left(S_t^{x,n} \right)^T C_t^n \phi \left(S_t^{x,n} \right)$ (16c) $\theta_{t}^{n} = \theta_{t}^{n-1} - \frac{\left(\theta_{t}^{n-1}\right)^{T} \phi\left(S_{t}^{x,n}\right) - \sum_{t=1}^{T} \widehat{v}_{t}^{n}}{\sigma^{2,\mathrm{E}} + \sigma_{t}^{2,n-1}(S_{t}^{x,n})} C_{t}^{n} \phi\left(S_{t}^{x,n}\right)$ Update VFA (17)and belief $C_t^n = C_t^{n-1} - \frac{C_t^{n-1}\phi(S_t^{x,n})\phi(S_t^{x,n})^T C_t^{n-1}}{\sigma^{2}E + \sigma^{2,n}(S^{x,n-1})}$ (18)UNIVERSITY OF TWENTE. 16

ADP – VALUE OF PERFECT INFORMATION (VPI)

EXPLORATION BASED ON A BAYESIAN BELIEF

Exploration decision	-	$x_t^{n*} = \underset{x_t^n \in \mathcal{X}_t^{\mathrm{R}}}{\operatorname{argmax}} \left(v_t^{E,n}(K_t^n, S_t^n x_t^n) \right) $ (14)
Bayesian belief	-	$K_t^n = (\overline{V}_t^n, C_t^n) = (\phi_t, \theta_t^n, C_t^n) $ (15)
Value of exploration		Dearden et al., 1999: the expected improvement n future decision quality arising (through a better /FA) from the information acquired by exploration.
		T^{\max} 1
Update VFA and belief		Rhyzov et al., 2017: update is analogous to the recursive least square method with the addition of the current uncertainty knowledge through covariance matrix.
UNIVERSITY OF TW	ENTE.	17

ADP – VPI MODIFICATIONS BE MORE CONSERVATIVE IN EXPLORATION AND UPDATING

1. Exploration decisions that focus on more than just the value of exploration:

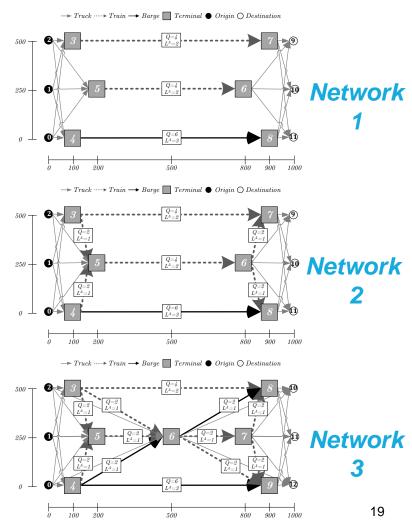
$$x_{t}^{E2} = \arg \max \left(\overline{V}_{t}^{x,n} \left(S_{t}^{x,n} \right) + v_{t}^{E,n} \left(S_{t}^{n}, K_{t}^{n}, x_{t} \right) \right)$$
$$x_{t}^{E3} = \arg \max \left(R_{t} \left(S_{t}^{n}, x_{t} \right) + \overline{V}_{t}^{x,n} \left(S_{t}^{x,n} \right) + v_{t}^{E,n} \left(S_{t}^{x,n}, K_{t}^{n}, x_{t} \right) \right)$$
$$x_{t}^{E4} = \arg \max \left(\left(1 - \alpha^{n} \right) \left(R_{t} \left(S_{t}^{n}, x_{t} \right) + \overline{V}_{t}^{x,n} \left(S_{t}^{x,n} \right) \right) + \alpha^{n} v_{t}^{E,n} \left(S_{t}^{x,n}, K_{t}^{n}, x_{t} \right) \right)$$

2. Update VFA and belief with stage or post-decision state dependent noise:

$$\sigma_t^{2,\text{E2}} = \frac{T^{\max} - t}{T^{\max}} \eta^{\text{E}}$$
$$\sigma_t^{2,\text{E3}} = \sigma_t^{2,n} (S_t^{x,n})$$
$$\sigma_{t,n}^{2,\text{E4}} = \frac{T^{\max} - t}{T^{\max}} \eta^{\text{E}} + \sigma_t^{2,n} (S_t^{x,n})$$

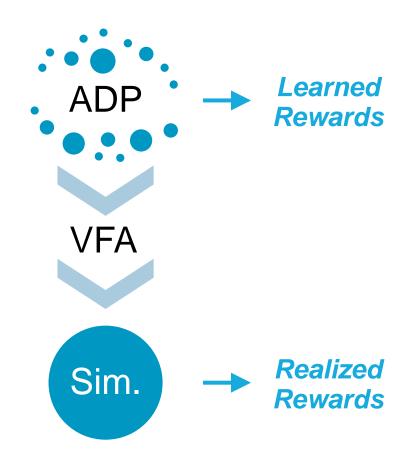
NUMERICAL RESULTS PROBLEM INSTANCE SETTINGS

- Cost differs by vehicle, capacity, and distance (Janic, 2007), revenue received at pick-up.
- 50 day horizon, at least 14 freight intermodal capacity, at most three days traveling time.
- Up to 12 freights per day, different destination probability per origin.
- Freights are immediately released and have a 6 day time-window.



NUMERICAL RESULTS EXPERIMENTAL SETTINGS

- Initial state with six freights.
- Benchmark heuristic: Use a service for a freight if the cost difference between the cheapest and second cheapest intermodal path to a freights destination is more than setup cost of the first.
- Three ADP Designs: basis functions only, epsilon-greedy, VPI, for 50 iterations.
 - Weights (VFA) initialized to 0, except the constant, which is initialized with the benchmark.



NUMERICAL RESULTS

PERFORMANCE OF DIFFERENT ADP DESIGNS

RP 1:

Aggregated time-windows at each terminals.

Aggregated time-windows, destinations, and origins at each origin.

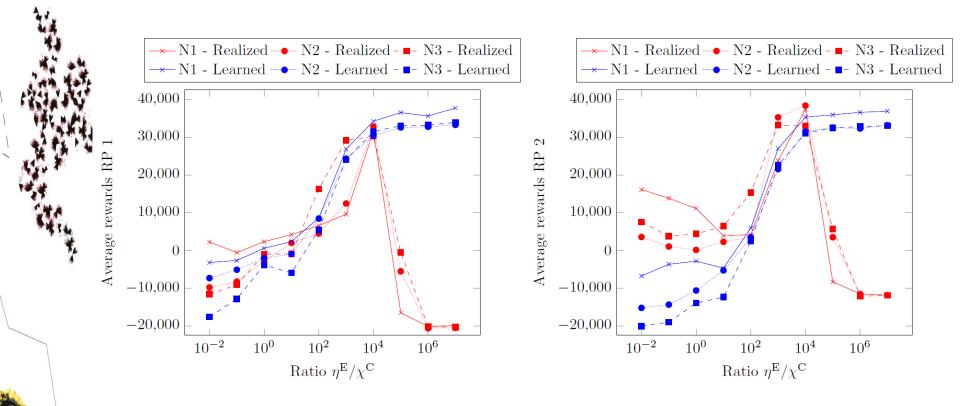
RP 2:

Aggregated time-windows at terminals.

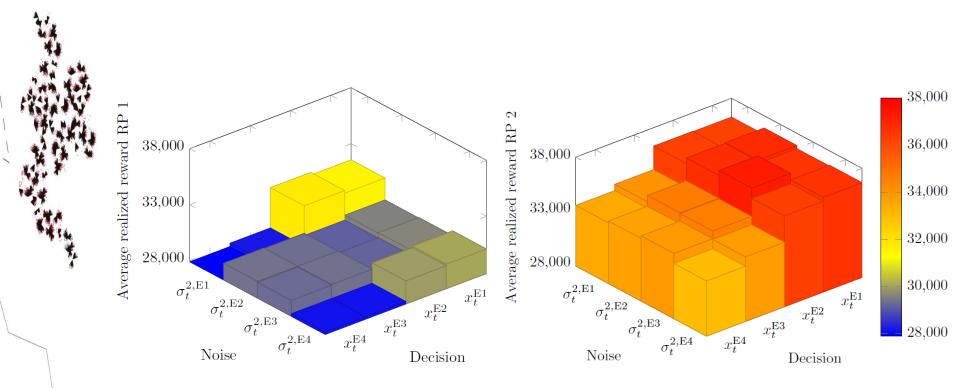
Aggregated time-windows and origins at each origin.

ADP Design	Network 1		Network 2		Network 3	
ADF Design	Realized	Learned	Realized	Learned	Realized	Learned
BF	-7,994	$38,\!219$	-11,247	33,720	-16,548	-17,928
$RP \ 1 BF + \epsilon$ -greedy	-4,628	-6,984	-11,485	$33,\!228$	-18,172	-18,507
BF + VPI	$34,\!044$	$36{,}571$	34,284	$29,\!493$	34,898	$23,\!285$
BF	-4,912	-3,803	-11,734	$34,\!060$	-11,949	$34,\!495$
$RP \ 2 BF + \epsilon$ -greedy	880	$37,\!386$	-11,450	-12,091	-11,949	$33,\!356$
BF + VPI	40,439	$35,\!407$	40,195	$31,\!107$	38,314	30,791
Benchmark	38,036		33,445		33,889	_

NUMERICAL RESULTS NOISE AND UNCERTAINTY IN VPI



NUMERICAL RESULTS THE PROPOSED VPI MODIFICATIONS OVER ALL NETWORKS



NUMERICAL EXPERIMENTS

SENSITIVITY ANALYSIS OF TIME-PARAMETER UNCERTAINTY

New settings:

Release-day : 0, 1, 2 days *Time-window length*: 4, 5, 6 days

Time-window	Release-day					
\mathbf{length}	Short		Medium		Long	
Short	$12,\!339$	-9%	$12,\!160$	-19%	$12,\!062$	-23%
SHOP	$11,\!289$		$9,\!877$		$9,\!281$	
Medium	$18,\!232$	29%	$18,\!052$	27%	$17,\!951$	30%
meann	$23,\!486$		$23,\!015$		$23,\!422$	
Long	$25,\!805$	26%	$25,\!420$	25%	$25,\!401$	28%
Long	$32,\!524$		$31,\!806$		$32,\!462$	
Benchmark, ADP with VPI						

Average realized rewards for Network 2

UNIVERSITY OF TWENTE.

24

- We exemplified how VPI exploration improves ADP in scheduling synchromodal freight transport considering uncertainty in the demand and performance over time.
 - To apply VPI in a finite-horizon ADP with basis functions, exploring and updating should be slightly more conservative than in traditional VPI.
 - For larger networks, further research in the reduction of the decision space and its interaction with the VFA is necessary for ADP to work properly.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

https://www.utwente.nl/bms/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

VeRoLog 2017 - Wednesday, July 12th Amsterdam, The Netherlands