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Abstract

Wireless ad hoc networks are advancing rapidly, both in research and more and
more into our everyday lives. Wireless sensor networks are a prime example of
a new technology that has gained a lot of attention in the literature, and that
is going to enhance the way we view and interact with the environment. These
ad hoc and sensor networks are modeled by communication graphs which give
the communication links between some devices or nodes equipped with wireless
transceivers or radios.

The nature of wireless transmissions does not lead to an arbitrary network
topology, but creates a network with certain properties. These properties in-
clude the important structure of bounded growth. In this thesis, we look at the
structures and resulting optimization problems of independent and dominating
sets in on graphs that model wireless communication networks.

Independent and dominating sets are prominently used in the efficient orga-
nization of large-scale wireless ad hoc and sensor networks. In a communication
graph, an independent set consists of vertices that cannot communicate with
one another directly. Such a set is commonly used in clustering strategies, e.g.
to obtain a hierarchical view of the network. A dominating set is given by a
set of vertices so that every vertex in the graph is either in this set, or adjacent
to a vertex from this set. Dominating sets of small cardinality are frequently
used for backbone structures in communication networks, e.g. to obtain efficient
multi-hop routing protocols.

For the optimization problems of seeking independent sets of large cardinal-
ity or weight (Maximum Independent Set problem), and seeking dominating sets
of small cardinality (Minimum Dominating Set problem) on graphs of polyno-
mially bounded growth, we present and discuss polynomial-time approximation
schemes (PTAS). The algorithms presented are robust in the sense that they
accept an undirected graph, and return a desired solution or a certificate that
shows that the instance does not satisfy the structural properties of a wireless
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communication graph.
Wireless ad hoc and sensor networks usually lack a central control instance.

Local, distributed algorithms are designed to operate in such a scenario. We
propose a fast local algorithm that constructs a so-called maximal independent
set, which is also dominating. We also extend the ideas behind the centrally
executed PTAS towards a local approach. This gives a distributed approxima-
tion scheme for the Maximum Independent Set and Minimum Dominating Set
problems on wireless communication graphs.

The second part of the thesis is devoted to an application of independent
and dominating sets in a wireless sensor network. We present the design of
an energy-efficient communication strategy for low-resource, large-scale wireless
networks that is based on an integrated approach stemming over various layers
of the communication stack. The transmission of data packets in this scheme is
done in a scheduled manner, thus reducing the number of collisions due to simul-
taneous transmissions. The approach, called EMACs, also includes the creation
and maintenance of a connected backbone in the network that is used for im-
plicit sleep-state scheduling of the nodes to conserve additional energy. Some
results obtained from a practical implementation of this scheme indicate that
the EMACs communication scheme improves the network lifetime compared to
existing schemes for wireless sensor networks.

This thesis answers and contributes to several open questions from the liter-
ature. The characterization of wireless communication graphs by the bounded
growth property includes geometrically defined Unit Disk Graphs. By giving
a PTAS that does not exploit geometric information for the Maximum Inde-
pendent and Minimum Dominating Set problems on these graphs, we give a
positive answer to the open problem of the existence of a PTAS for Unit Disk
Graphs without geometric representation. Local, distributed maximal indepen-
dent set computation has received a lot of attention in the literature, and a fast,
i.e. poly-logarithmic distributed time approach is a longstanding open problem
for communication networks in general. At least for wireless communication
networks, we present the first such fast, local approach.



Samenvatting

Draadloze ad-hoc netwerken ontwikkelen snel, zowel in het wetenschappelijk on-
derzoek als in ons dagelijks leven. Draadloze sensor netwerken zijn een voorbeeld
van een nieuwe technologie die veel aandacht in de literatuur krijgt, en zullen de
manier waarmee wij naar onze omgeving kijken drastisch veranderen. Deze ad-
hoc en sensor netwerken worden door communicatiegrafen gemodelleerd, waar-
bij de punten of knopen van deze graaf de apparaten, en de lijnen tussen de
knopen de (directe) communicatieverbindingen tussen de apparaten weergeven.
De centrale begrippen in dit proefschrift zijn onafhankelijke en dominerende
verzamelingen in communicatiegrafen. Deze structuren zijn bepalend voor de
efficiënte organisatie van draadloze ad-hoc en sensor netwerken. De aard van
draadloze uitzending en ontvangst leidt niet tot een willekeurige topologie van
het netwerk, maar creëert een graaf met bepaalde eigenschappen. Deze eigen-
schappen omvatten de belangrijke eigenschap van beperkte groei. In dit proef-
schrift bestuderen we structuren en resulterende optimaliseringsproblemen van
onafhankelijke en dominerende verzamelingen in grafen van beperkte groei.

In een communicatiegraaf bestaat een onafhankelijke verzameling uit punten
die niet rechtstreeks met elkaar kunnen communiceren. Zo’n verzameling wordt
vaak in clusteringsstrategieën gebruikt; hierbij worden knopen gegroepeerd om
bijvoorbeeld een hiërarchisch overzicht van het netwerk te verkrijgen.

Een dominerende verzameling is een verzameling punten zodat ieder punt
van de communicatiegraaf ofwel tot die verzameling behoort, ofwel rechtstreeks
communiceert met een punt uit die verzameling. Dominerende verzamelingen
van kleine grootte zijn van belang voor ruggengraat structuren in communica-
tienetwerken; zo worden ze bijvoorbeeld gebruikt om efficiënte multi-hop router-
ingsprotocollen te verkrijgen.

Het eerste deel van het proefschrift onderzoekt de optimaliseringsproblemen
Maximum Independent Set probleem (onafhankelijke verzamelingen van grote
cardinaliteit of gewicht) en Minimum Dominating Set probleem (dominerende
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verzamelingen van kleine cardinaliteit) op grafen van polynomiaal beperkte
groei. Voor beide problemen construeren wij een polynomiale tijd approximatie
schema (PTAS). De resulterende algoritmes van het PTAS zijn robuust in de
zin dat zij werken op alle grafen, en ofwel een gewenste oplossing, ofwel een
certificaat teruggeven dat aantoont dat aan de structurele eigenschappen van
een communicatiegraaf niet wordt voldaan.

Gewoonlijk missen draadloze ad-hoc en sensor netwerken een centrale aan-
sturing. Lokale, gedistribueerde algoritmes worden daarom ontworpen, die in
deze situatie de communicatie kunnen verzorgen. Wij behandelen een snel lokaal
algoritme, dat een maximaal onafhankelijk verzameling bepaalt, welke tegelijk
een dominerende verzameling is. Wij breiden het idee achter het centraal uit-
gevoerde PTAS uit naar een lokale benadering. Dit geeft een gedistribueerd
approximatie schema voor het Maximum Independent Set probleem en het Mini-
mum Dominating Set probleem op draadloze communicatiegrafen.

Het tweede deel van het proefschrift is gewijd aan een toepassing van de on-
afhankelijke en dominerende verzamelingen in draadloze sensor netwerken. Voor
functioneel beperkte draadloze netwerken ontwerpen we een energie-efficiënte
communicatiestrategie. Deze is gebaseerd op een gëıntegreerde benadering, die
over verschillende lagen van de communicatiestapel werkt. De verzending van
berichten in deze strategie geschiedt op een gecontroleerde wijze, waardoor het
aantal conflicten tengevolge van gelijktijdige uitzendingen verminderd. Deze
aanpak, EMACs, omvat ook de creatie en het onderhoud van een verbonden
ruggengraat in het netwerk, dat voor impliciete slaap-toestand planning van de
knopen wordt gebruikt. Resultaten die door een praktische uitvoering van deze
aanpak verkregen worden, tonen aan dat EMACs de levenstijd van het netwerk
verbetert, vergeleken met bestaande methodes voor communicatie in draadloze
sensor netwerken.

Dit proefschrift beantwoordt enkele open vragen uit de literatuur. De karak-
terisering van communicatiegrafen door de beperkte groei, omvat de geometrisch
gedefinieerde Eenheidsschijfgrafen (Unit Disk Graphs). Door het geven van een
PTAS dat geen geometrische informatie nodig heeft voor de Maximum Indepen-
dent Set en Minimum Dominating Set problemen op deze grafen, geven wij een
positief antwoord op het open probleem van het bestaan van een PTAS voor
Eenheidsschijfgrafen zonder geometrische voorstelling.

Ook lokaal, verdeelde berekening van maximale onafhankelijke verzamelin-
gen heeft veel aandacht in de literatuur gekregen, en een polylogaritmisch gedis-
tribuëerde tijd constructie algoritme is een oud open probleem voor algemene
communicatienetwerken. Voor draadloze communicatienetwerken geven wij voor
het eerst zo’n snelle, lokale benadering.
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Chapter 1

Introduction

Wireless networks are advancing more and more into our everyday lives. Cel-
lular telephony networks or wireless local area networks are two of many exam-
ples, and there are new networks with new applications coming almost every
day. As the wireless devices get smaller and more embedded, up to a point
where they are no longer directly present to one’s eyes, they precede into the
background of our lives and perform tasks unattended and without much inter-
action of users. Numerous small devices, deeply embedded in the environment,
sense and interact with the environment and form a collaborative network by
means of wireless multi-hop communication. Such a network realizes the vision
of Ubiquitous Computing by creating a smart environment.

This thesis explores basic structures for efficient communication and orga-
nization in large-scale wireless networks. Such large networks usually require a
certain structural organization to operate efficiently, and the most prominent
structures behind many approaches are based on independent and dominating
sets.

An example for efficient use of resources are cluster based control structures.
They allow for a hierarchical view of the network which decreases the complexity
of the underlying network, and can make a highly dynamic network appear more
static. Clustering in wireless networks is usually done by grouping nearby nodes
together, which are then controlled by a designated node called clusterhead. On
the one hand, many clustering schemes work by identifying these control nodes
so that they form an independent set. On the other hand, many cluster based
applications benefit from an independent set based clustering structure.

Dominating sets play an important role, e.g. in global flooding to alleviate
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CHAPTER 1. INTRODUCTION

the so-called broadcast storm problem. A message broadcast only from a small
size dominating set is an efficient way to ensure that all nodes in the network
are reached, both in terms of energy and interference. Many ad-hoc routing
algorithms rely on flooding to find routes in a dynamic wireless network, and
can thus benefit from such a dominating set structure.

In this introduction chapter, we present wireless networks, main components
of these, especially the wireless communication devices or nodes, and applica-
tions and challenges in these.

During the research that lead to this thesis, we were especially interested in
networks composed of small, low-resource nodes, such as given in wireless ad-hoc
and sensor networks. While most of the work presented throughout this thesis
applies equally well to other wireless communication networks, the applications
we present focus on these network settings which are now introduced.

1.1 Wireless Ad-Hoc and Sensor Networks

A wireless ad-hoc network consists of a collection of autonomous devices, called
nodes, that are equipped with processing and wireless communication capabili-
ties. These nodes can communicate with one another by sending and receiving
messages in small data packets.

A broadcast sent by a node can be picked up by all other nodes within radio
coverage (unless it is interfered by other transmissions at the same time). The
communication is either directly when the nodes can receive each other’s trans-
missions, or via intermediate relay nodes that forward messages when sender
and recipient are outside each other’s radio ranges. This creates a multi-hop
communication networking structure referred to as ad-hoc network.

Such an ad-hoc network does not rely on any fixed network structure, that is,
there is no central server or common infrastructure. Thus, the network usually
has to be organized and coordinated by the devices themselves. Furthermore,
the communication network has a dynamic topology. The wireless devices may
be mobile, and the communication protocols thus have to adapt to a changing
topology. Also, contrasted to wireline communication networks, the capacity of
the wireless links is far lower.

Nodes can be of different types, i.e. with different computation, storage,
and communication capabilities, creating a heterogeneous network. Usually,
the nodes run on batteries. Since ad-hoc networks rely on forwarding data
packets sent by other nodes, power consumption becomes a critical issue in
most networks.

2



1.1. WIRELESS AD-HOC AND SENSOR NETWORKS
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Figure 1.1: Evolution of computing.

A particular type of wireless ad-hoc network is given by a wireless sensor
network (WSN). The purpose of such a network is physical environment mon-
itoring. Each node is equipped with one or more sensors, whose readings are
transported through the network towards special nodes called sinks that extract
the data from the network, and make it available to the user.

WSNs are envisioned to consist of many nodes, their number ranging in
the hundreds and thousands. The nodes themselves are very small in every
respect, especially in form and in function. The resource constraints of the
usually battery-operated devices, and the scale of the resulting networks, have
severe implications in almost every aspect involved in designing and operating
such a sensor network. Simple strategies to organize and operate the resulting
network are called for. In this thesis, we also present practical approaches for
efficient organization and operation of a WSN.

Not only in environmental monitoring, wireless sensor networks will enhance
the usability of appliances. They provide condition based maintenance in appli-
cations spanning many areas including home, office, health-care, factory, vehicle,
and metropolitan scenarios. The technology from this research field enables data
collection, transportation, and in-network processing in a variety of situations,
including context-aware personal assistance, home security, medical monitoring,
machine failure diagnosis, traffic surveillance, and many more.

The above mentioned areas are known under many different names, for ex-
ample Ubiquitous Computing, Ambient Intelligence, Smart Surroundings, Per-
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CHAPTER 1. INTRODUCTION

vasive Computing, or simply the Third Paradigm of Computing (Figure 1.1,
adapted from [59]). Efficient communication strategies in wireless ad-hoc and
sensor networks are the enabling technologies for this new era.

1.1.1 Energy-Efficient Sensor Networks (EYES)

Most of the work presented in this thesis stems from research done on wireless
sensor networks as part of the EYES project [17]. EYES is a three year European
research project on self-organizing, and collaborative energy-efficient wireless
sensor networks, running from 2002 till 2005. Its statement, given below, briefly
characterizes the main challenges addressed by the project.

The vision of ubiquitous computing requires the development of de-
vices and technologies, which can be pervasive without being intru-
sive. The basic components of such a smart environment will be
small nodes with sensing, computing, and wireless communications
capabilities, able to organize flexibly into a network for data col-
lection and delivery. Realizing such a network presents very signifi-
cant challenges, especially at the architectural and protocol/software
level. Major steps forward are required in the fields of communica-
tions protocol, data processing, and application support.

Although sensor nodes will be equipped with a power supply (bat-
tery) and an embedded processor that makes them autonomous and
self-aware, their functionality and capabilities will be very limited.
Therefore, collaboration between nodes is essential to deliver smart
services in a ubiquitous setting. In this project we investigate new
algorithms for networking and distributed collaboration, and evalu-
ate their feasibility through experimentation. These algorithms will
be key for building self-organizing and collaborative sensor networks
that show emergent behavior and can operate in a challenging en-
vironment where nodes move, fail, and energy is a scarce resource.
[17]

The EYES project addresses the convergence of distributed information pro-
cessing, wireless communications, and mobile computing.

One of the key approaches taken within the EYES project is to improve the
functional lifetime of the sensor network using energy-efficient network protocols
and routing techniques, and dynamic power management techniques. In this
context, this thesis provides both theoretical background, as well as practical
approaches, for efficient wireless communication structures and strategies.
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1.2. WIRELESS COMMUNICATION

Figure 1.2: Unit Disk Graph model for wireless communication networks.

1.2 Wireless Communication

In the wide area of wireless ad-hoc and sensor networks, in this thesis, we focus
on graphs and networks that are created by wireless communication between
the nodes of an ad hoc network. Taking a closer look at wireless devices, and
the communication between them, we present approaches that take the special
structure of a wireless communication network into account.

Generally speaking, communication in a network is modeled by a graph
G = (V,E). In our case, the set V of vertices represents the wireless nodes, and
the edges represent the possible direct communication between two nodes. In
other words, there is an edge between two vertices if a transmission from one
node can be received by the other. In the following, we will use the term node
for the wireless devices, and the term vertex to denote them in graphs.

The ability to communicate between two nodes and, thus, the presence of an
edge between two vertices depends on the position of the corresponding nodes,
and their transmission power. Generally speaking, in wireless communication,
two nodes that are not too far apart can communicate directly, while far sepa-
rated nodes cannot. This fact is used to argue about the structure of a wireless
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10 5 0 5 10

Figure 1.3: 80% message packet reception with respect to distance [m] (Office
environment, node fixed to concrete pillar).

communication network from a graph-theoretic point of view. The goal is to
represent the network by nodes and the geometric regions where their signal
can be received.

A simple model for this would be a so-called Unit Disk Graph created by
a set of equal-diameter disks representing the transmission areas. A message
can be received by another node which is inside this area. An example of a
Unit Disk Graph is given in Figure 1.2. However, this model is somewhat too
simplistic to represent the real world.

In order to gain some understanding of realistic communication character-
istics, we turn to a real world testbed. The following example from the EYES
project gives some measurements obtained using sensor node prototypes. In
Figure 1.3, the “shape” of a transmission area of a node in an office environ-
ment is presented. A message packet sent by a node placed at the origin will
be received correctly in more than 80% of the cases when the receiving node is
inside the given area. Clearly, the shape does not give a disk. In this thesis,
later on, we present a more general concept of bounded growth that allows us
to capture these effects, and capture the essence of a wireless communication
network graph model.
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1.3. EFFICIENT NETWORK ORGANIZATION

Next to communication in wireless networks, interference during simultane-
ous transmissions is also of great importance. This interference can be modeled
by a conflict graph, and this graph has a similar structure as the wireless com-
munication graph. When presenting the models for wireless communication
networks, we consider both ways to define such a network.

1.3 Efficient Network Organization

With respect to wireless communication networks, in the following, we are inter-
ested in the problems concerning the creation of subsets of nodes in the network.

The approaches we are considering in this thesis are for the creation of
subsets of the nodes with certain properties:

• Independence:

A subset of nodes is called independent if no two nodes in this subset are
connected.

• Domination:

A subset of nodes is called dominating if every node in the network is
contained in this subset, or is connected to a node in it.

Nodes in an independent set do not interfere each other during simultaneous
transmissions, and nodes in a dominating set can be used to efficiently reach
the entire network by broadcasts from only these nodes. Note that a subset of
nodes can satisfy both properties. Such a subset is called maximal independent
set.

There are many different perspectives from which we may look at the men-
tioned structures and their construction by an algorithm. Considering the cardi-
nalities of the respective subsets, we obtain optimization problems. Looking at
the in-network creation of such subsets, it is already challenging to create these
subsets by a locally executed algorithm in each node even when not consider-
ing cardinality explicitely. In the following chapters, we discuss independent
and dominating sets from various angles, and in relation to graphs that model
wireless communication networks.

Besides the above basic versions of the considered problems, there also exist
weighted versions: each node is given a weight, and the goal is then to find
a structure of minimum or maximum weight. A weight may correspondent to
the capabilities of the nodes to perform additional duties. The weights can be
determined taking into consideration aspects like residual energy of a node, its
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memory and processing power, and local figures like number of neighbors or
mobility indicators. Usually, these weights are locally computed in each node,
and they depend on the application the resulting structure is created for.

Independent and dominating sets in wireless networks are used in a variety
of different applications, especially at the lower layers directly involved with
communication strategies, and directly dealing with the topology of the com-
munication network. Some of these applications are presented next.

• Clustering

Clustering is often used in large-scale networks to reduce the complexity.
On a topology level, clustering is done by grouping nodes inside a certain
area, which are then controlled by a designated node called clusterhead.
These clusterheads are chosen so that they satisfy both the independence
and domination property. This results in a well-distributed structure that
covers the entire network.

For example, in [24], the use of independent set based clustering for the
allocation of bandwidth and channels to support multimedia traffic is pro-
posed. The question of cluster sizes, i.e. the number of nodes in each
cluster, and their fair distribution are addressed in [45].

• Routing and Flooding

In a dynamic multi-hop communication network, routing schemes that
adapt to the changing topology are required. Each individual node is
neither able to store the entire topology information, nor to keep up-
dated information about the changes in the network topology. There are
many on-demand routing algorithms designed for mobile ad-hoc networks.
These algorithms create and sometimes maintain routes for data packets
to be sent via relay nodes through the network to reach a destination.
When trying to establish a new route, that is, trying to find the desti-
nation in the network together with a path leading there, these schemes
have to rely on flooding the network to do so. Examples of such ad-hoc
routing schemes are Dynamic Source Routing (DSR, [31]) and Ad-Hoc On-
Demand Distance Vector routing (AODV, [52]), and many improvements
based on these schemes.

Basic, network-wide flooding causes the broadcast storm problem [43], re-
sulting in excessive contention and collisions, i.e. a large communication
protocol overhead. Using a dominating set of small size as a virtual back-
bone to propagate flooding messages overcomes this problem, and greatly
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reduces the number of messages needed, and thus the protocol overhead
as well [2, 13, 55].

• Sleeping Patterns

Wireless sensor networks are expected to be in operation for a long period
of time, running on batteries. For example in event detection applications,
there are long periods of inactivity, which allow the nodes to follow a sleep-
state schedule where the radio hardware can be turned off for certain time
intervals to save energy. However, the network has to remain functional,
and most importantly connected so that a detected event can successfully
be reported to the sink.

An example of a connected dominating set based solution that exploits
the redundancy present in the network is presented in Chapter 6.

Also from a theoretical point of view, independent and dominating sets with
respect to graphs that model wireless communication networks are of outstand-
ing interest. For example, in distributed computing, independent sets capture
the important notion of symmetry breaking in a simple statement. The theo-
retical aspects of these structures are discussed, and introduced in detail in the
following Chapter 2.

1.4 Contributions

In this thesis, we look at independent and dominating sets in wireless com-
munication networks, both from a theoretical background and from practical
implementations.

For wireless ad-hoc and sensor networks, many graphical models are pro-
posed in the literature to represent the communication links in such networks.
We review these mostly geometrically defined models, and relate them to a
unified structural property called bounded growth which is common in all of
these models. Bounded growth is defined without geometric information, which
allows us to work with wireless communication networks based on adjacency
information only.

We consider the optimization problems of creating large independent sets,
and small dominating sets in wireless communication graphs. These problems
are hard to solve to optimality, and we therefore consider approximative solu-
tions. These are given by a polynomial-time approximation scheme (PTAS) that
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creates a near-optimal solutions, that is, solutions with an error of (1+ε), ε > 0,
in efficient run time.

The question whether there exists a PTAS for the Maximum Independent Set
and Minimum Dominating Set problems in Unit Disk Graphs that work without
explicitely exploiting a geometric representation was an open problem. It was
expressed since the first appearance of approximation schemes for these prob-
lems on geometric graphs in [29] (1985). We eventually give a positive answer
to this question by presenting an approach that yields a PTAS for graphs with
the polynomially bounded growth property, which includes Unit Disk Graphs.

Additionally, the approaches that give the approximation schemes for these
problems can be extended towards robust algorithms in the sense that they
accept any graph as input, and either return a (1 + ε)-approximate solution, or
a certificate showing that the input graph does not satisfy the bounded growth
property of a wireless communication graph.

Wireless ad-hoc networks lack central control. Locally executed algorithms
are thus of great importance. In the area of distributed computing, the problem
of fast, i.e. poly-logarithmic time, local construction of maximal independent
sets is a longstanding open problem. For the class of graphs with bounded
growth, we present such a fast approach, again without relying on any geometric
information. So, for bounded growth graphs, there is a positive answer to this
question, as well.

The presented local, distributed algorithm yields a PTAS for the above opti-
mization problems. By extending the ideas behind the centrally executed PTAS,
we obtain the first distributed approximation schemes for the Maximum Inde-
pendent Set and Minimum Dominating Set problems on wireless communication
graphs.

In addition to these contributions on the theoretical background of indepen-
dent and dominating sets in wireless communication graphs, we also discuss a
practical implementation of an efficient communication protocol for wireless sen-
sor networks. We show that a cross-layer approach for communication in WSNs
is a very efficient way to achieve the goal of long network lifetime running on
batteries.

1.5 Structure of the Thesis

In the first part of this thesis, in Chapters 2 – 5, we focus on the theoretical
background of wireless communication graphs, and algorithmic approaches both
from a global and local point of view.

10
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In Chapter 2, the definitions of independent and dominating sets in networks
are given together with basic properties of these structures. There, we focus on
the structures and resulting problems from a graph-theoretic point of view and
present the general models for computation and communication in networks.
In order to make statements about the efficiency of the approaches discussed
in this thesis, we provide a theoretical base for algorithms running in each
wireless device (Section 2.1), and for communication patterns that allow these
devices to collaborate by exchanging messages (Section 2.3). These models
allow to abstract away from actual hardware and communication strategies,
and therefore allow to give results that are independent of these. Chapter 2
is—so to say—the second half of the introduction.

Wireless networks, created by the possible direct communication links be-
tween the radios of several devices, result in specially structured graphs. These
are presented in Chapter 3. Depending on the assumptions on the propagation
of the radio waves being emitted by a wireless device, different graph models
emerge, most of which are geometrically defined. However, all these models
have a common structural property called bounded growth which is defined and
discussed.

In Chapter 4, we consider the optimization problems of constructing inde-
pendent sets of large size or weight, and dominating sets of small cardinality.
For these optimization problems on wireless communication graphs, we present
polynomial-time approximation schemes (PTASs) that are independent of geo-
metric information. Robustness of the approaches is also discussed.

The focus in Chapter 5 is on local, distributed algorithms that are required in
wireless ad-hoc networks. We present a fast, local approach for the construction
of a maximal independent set in graphs of bounded growth. This approach,
together with the ideas of the preceding chapter, is extended towards distributed
approximation schemes that compute near-optimal independent and dominating
sets using local information exchange only.

Chapter 6 is concerned with an energy-efficient communication strategy for
wireless sensor networks. There, we focus on a practical application of an in-
dependent and dominating set. After shortly presenting the architecture of
a WSN, we present a cross-layer approach that locally schedules collision-free
communication, and creates a backbone that is used for the communication in
the network. The approach is called EMACs (EYES Medium Access Control
Scheme).

In Chapter 7, we conclude the thesis with a short summary of the key results
and approaches.
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Chapter 2

Definitions and
Preliminaries

This chapter gives a detailed introduction into the problems consid-
ered in this thesis, as well as a description of the underlying models
of computation and communication. Basic definitions are presented,
and an overview of complexity classes and optimization problems in
general is given.
In wireless networks, in-network computation and communication is
crucial. In order to capture the characteristics of this paradigm, the
LOCAL message passing model is introduced as a framework for
distributed algorithms in wireless, ad-hoc networks.
The main structures of this thesis, independent and dominating sets
in a graph, are defined in Section 2.2. Furthermore, basic properties,
resulting problems and relations between these are discussed. Also,
a simple greedy approach creating an independent and dominating
set is presented.
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This chapter provides the theoretical base of the thesis. We start by introducing
a formal description of a “problem”, an algorithm to solve it, a notion of the
quality of a solution to it, and a notion of time it takes an algorithm to compute
such a solution. In short, Section 2.1 sketches the basics of complexity theory
as required for the rest of this thesis.

In Section 2.2, we define the structural properties of independence and dom-
ination for a subset of vertices in an undirected graph. The simple structure
of a maximal independent set, which is both independent and dominating, is
explained. We also introduce and discuss the resulting optimization problems,
i.e. computing a subset with such a property of largest or smallest cardinality
possible. These problems are the Maximum Independent Set and Minimum
Dominating Set problem.

Large scale wireless communication networks like WSNs not only lack central
control, but also each individual node lacks the capacity to store information
about the entire topology of the network. In order to sufficiently describe and
reason about algorithms which run locally in each node of such networks, we
introduce the LOCAL message passing model in Section 2.3. This model cap-
tures these basic properties of wireless networking and in-network processing,
while not being too concerned about the technical and hardware-specific details
of communication.

In the last section of this chapter, a simple greedy strategy to create a
maximal independent set, which is also a dominating set, is presented. This
strategy serves as an important example also used later in this thesis, and we
give both a centralized and local, distributed version of it.

2.1 Complexity and Approximability

In this section, we give some basic notions of problems, their complexity, and
algorithms to solve them. A more complete overview can be found in [23]. In
order to do optimization, and to analyze algorithms and complexity, we need to
define the essence of optimization: a problem.

Definition 2.1. A problem is given by a problem description Π, which is a
pair (I,S) such that

• I denotes the set of instances of Π, and

• for each x ∈ I, S(x) is the set of feasible solutions.
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We consider two types of problems called decision and optimization prob-
lems, which are given by refining the above general problem description.

Definition 2.2. Let Π be a problem description whose set I of instances is
partitioned into two sets Y and N = I \Y, called positive and negative instances
as follows:

x ∈ Y ⇐⇒ S(x) 6= ∅.

Seeking an answer to the question of whether an instance x ∈ I belongs to Y is
called a decision problem.

The aim of a decision problem is to recognize the positive instances, that is,
those instances that have a feasible solution.

For optimization problems, we look at problem descriptions, where addition-
ally each feasible solution is evaluated by an objective function as follows. For an
instance x ∈ I together with a feasible solution y ∈ S(x), there is an objective
function value (or measure) f(x, y) ∈ N of that solution.

For each instance, the objective function may take on different values for
different feasible solutions. We are interested in solutions which minimize or
maximize this value with respect to all feasible solutions for such an instance.

Definition 2.3. In a problem description Π, for each pair of instance x ∈ I
and feasible solution y ∈ S(x), let the objective function f(x, y) assign a positive
integer to this pair. The problem Πmin:

Given an instance x ∈ I, find a solution y∗ ∈ S(x) such that for every
y ∈ S(x),

f(x, y∗) ≤ f(x, y)

holds.

is called a minimization problem, and y∗ is called an optimal solution for
this problem.

Analogously, a maximization problem is defined by finding a solution with
maximum objective value over all feasible solutions. The question of minimiza-
tion or maximization for an optimization problem is called goal of the problem.
Note that in the above definition, the range of an objective function f can easily
be relaxed to rational numbers.

It is easy to see that any optimization problem Π can be transformed in a
straightforward way into a corresponding decision problem. This is done by look-
ing at the following, modified set of feasible solutions in case of minimization.
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Given an instance x ∈ I and a rational number τ , let

Sτ (x) := {y ∈ S(x) | f(x, y) ≤ τ}

denote the set of feasible solutions for the corresponding decision problem.
Clearly, for an instance x, the decision problem based on Sτ (x) is equivalent
to the following problem statement

Given an instance x ∈ I and a rational number τ , is there a solution
y ∈ S(x) so that f(x, y) ≤ τ ?

The maximization case is obtained in a symmetric way.
For all the above problems, we can describe strategies and approaches which

generate answers to the problems by algorithms. Generally speaking, an algo-
rithm A for a problem Π is a finite sequence of instructions or calculations to
be performed whenever an instance x ∈ I is presented to A, and that returns
some solution from S(x) when all these instructions have been performed. The
solution returned is referred to as output of A for the instance, or A(x). For op-
timization problems, an output is usually considered together with its objective
value f(x,A(x)).

The instance x ∈ I is also called input, especially when considered in relation
with an algorithm for the problem at hand, and the value given by the objective
function f(x, y) for a solution y ∈ S(x) is usually called cost.

For a problem Π, we define the length |x| of an instance x ∈ I as the number
of bits used to specify x in some fixed encoding. The time-complexity, i.e. the
number of elementary steps it takes for an algorithm to return a solution, is
measured as a function of the length of an input instance. The computation
time, or run time, of an algorithm is measured by the number of basic opera-
tions it performs, e.g. additions, comparisons, multiplications etc. We suppose
that all algorithms run on the same machine model, the random access ma-
chine (RAM), which is polynomially related to the Turing machine and other
reasonable computational models.

The run time is usually expressed in asymptotic notation. For two functions
f : N → R+ and g : N → R+, we say that “f is in the order of g”, written
f(n) = O(g(n)) for short, if there exist c, n0 ∈ N such that f(n) ≤ c · g(n) for
all n ≥ n0. While this O-notation gives an upper bound, we can analogously
define f(n) = Ω(g(n)) for lower bounds to say that “f is at least in the order
of g”. It is f(n) = Ω(g(n)) ⇐⇒ g(n) = O(f(n)).

If the run time of an algorithm A is bounded by a polynomial p(|x|) for all
possible instances x ∈ I, thus, for any instance x and some fixed k ∈ N, A is an
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algorithm with run time O(|x|k), then we say that A is efficient. A problem that
can be solved by an efficient algorithm is referred to as polynomially solvable.

A problem that can be solved in polynomial time is generally considered
easy. However, in the next chapters, we concentrate on problems which are
hard. The notion of hard problems is formalized based on decision problems.
The resulting complexity hierarchy of problems has been extended ever since
the first appearance of the class NP together with NP-complete problems in the
1970s [11].

2.1.1 Decision Problems and the Class NP

The class NP consists of all decision problems that can be certified in poly-
nomial-time: That is, a decision problem is in NP if there is a (necessarily
polynomial size) “certificate” which shows that an input instance is a positive
instance, and that there is a polynomial time algorithm which can verify this
certificate with respect to the problem.

The class P consists of all those decision problems that can be recognized
in polynomial time, i.e. for which the decision of an instance to be a positive
instance can be reached in polynomial time.

Clearly, P ⊆ NP holds. However, the question whether P = NP or P 6= NP
is open. It is widely believed that P 6= NP, and a good reason for this is given
by the class of NP-complete problems. The class of NP-complete problems has
the following compelling property: if one can prove that a single NP-complete
problem actually is in P, then P = NP. The reason for this comes from the fact
that all NP-complete problems are polynomially reducible to each other.

Let Π1,Π2 ∈ NP. The problem Π1 is polynomially reducible to Π2 if there
exists a polynomial time algorithm that for every instance x1 of Π1 produces
an instance x2 of Π2 so that x1 is a positive instance of Π1 if and only if x2 is
a positive instance of Π2.

Practically, this means that we can use an efficient algorithm for Π2 to solve
Π1 efficiently: simply transform the instance of Π1 into the respective instance
of Π2, and then solve this instance.

With the introduction of a polynomial reduction, we can formally introduce
NP-complete problems [23].

Definition 2.4. A decision problem Π is NP-complete if

• Π is in NP, and

• all other NP problems are polynomially reducible to Π.

17



CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Polynomial reduction is a transitive relation on the class NP. If a problem
Π1 is polynomially reducible to Π2 and Π2 is reducible to Π3, then Π1 is also
reducible to Π3. This fact can be exploited to show that a new problem Π
is NP-complete since it now suffices to show that Π is in NP and that there
is an NP-complete problem which is polynomially reducible to Π. The start,
i.e. the first problem shown to be NP-complete, was made by the satisfiability
problem (SAT) [11], and today there are numerous problems that are known to
be NP-complete.

2.1.2 NP-Optimization Problems

Similar to the class NP for decision problems, we introduce the class NPO for
optimization problems [12]. For this class, we consider optimization problems
for which the length of feasible solutions is polynomially bounded in terms of
the length of an instance, and for which the value of the objective function can
also be computed in polynomial time. More formally, an optimization problem
Π is in the class NPO if

• all solutions are short, that is for every x ∈ I, and every y ∈ S(x), we
have |y| ≤ p(|x|) for some polynomial p,

• for any x and any y with |y| ≤ p(|x|), the question whether y ∈ S(x) can
be decided in polynomial time, and

• given x ∈ I and y ∈ S(x), the objective function f(x, y) is computable in
polynomial time.

The class PO then corresponds to all optimization problems in NPO that can
be solved to optimality in polynomial time. Again, we are interested in the hard
problems, given by the following definition.

Definition 2.5. A problem Π is said to be NP-hard if every problem in NP
can be solved in polynomial time using a polynomial time algorithm that solves
Π as a subroutine.

Note that in the above definition, we no longer restrict Π to be a decision
problem. In particular, this definition includes all optimization problems for
which the corresponding decision problem is NP-complete. Furthermore, it is
easy to see that if P 6= NP holds, then PO 6= NPO has to hold, as well.

In order to show that a problem Π is NP-hard, it suffices to show that an
NP-complete problem Π′ could be solved efficiently by efficiently solving Π. All
other problems in NP are polynomially reducible to Π′.
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From an algorithmic point of view, knowing that an NPO problem is NP-
hard, we also know that we cannot compute an optimal solution in polynomial
time, unless P = NP. In this case, there are two major options.

• On the one hand, we can abandon the idea of polynomial time, and still
require an optimal solution from an algorithm. One way to achieve this
would be complete enumeration, which may lead to exponential run time,
in the worst case with an exponent only bounded by the polynomial bound
on the size of all solutions.

• On the other hand, we can sacrifice optimality and start looking for ap-
proximate solutions which are computed by a polynomial time, i.e. effi-
cient, algorithm.

The latter approach is taken in this thesis.
Let Π be an NPO problem. For any instance x ∈ I, denote by s∗(x) the cost

of an optimal solution. The performance ratio of any feasible solution y ∈ S(x)
is then given by

R(x, y) := max

{
f(x, y)

s∗(x)
,

s∗(x)

f(x, y)

}

.

Note that the performance ratio is always greater than or equal to 1, inde-
pendent of the goal: the first fraction is used for minimization, the second for
maximization problems. Clearly, the closer R(x, y) is to 1, the closer a solution
is to an optimal solution. The performance ratio is also called approximation
ratio.

Definition 2.6. Let Π be an NPO problem, and let A be an algorithm that, for
every instance x ∈ I, returns a feasible solution A(x) ∈ S(x). Given a function
r : N → [1,∞), the algorithm A is an r(n)-approximate algorithm if for
every instance x ∈ I, the inequality

R(x,A(x)) ≤ r(|x|)

holds. If there exists an r(n)-approximate polynomial time algorithm for Π, we
say that Π is approximable within r(n) (in polynomial time).

An algorithm which actually gives a constant performance ratio independent
of the length of the instance is referred to as constant-factor approximation. An
NPO problem Π belongs to the class APX if it is approximable within α (in
polynomial time), for some constant α > 1.
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NPO

PO
PTAS

APX

Figure 2.1: Relationships between some complexity classes for optimization
problems discussed in this thesis.

Definition 2.7. A family {Aε}ε>0 of (1+ε)-approximation algorithms is called
an approximation scheme.

If, for each fixed ε > 0, the (1 + ε)-approximation algorithm Aε of an ap-
proximation scheme {Aε}ε>0 runs in polynomial time in the input size, we call
{Aε}ε>0 a Polynomial-Time Approximation Scheme (PTAS).

An NPO problem that admits a PTAS is also in the class PTAS. We only
demand the run time of a PTAS to be polynomial in the size of the input
instance, and not in the desired performance ratio parameter 1/ε. Computation
times of 21/ε ·p(|x|) or O(|x|1/ε) are allowed, obviously resulting in high run time
when ε is close to 0.

Figure 2.1 gives the relations between the complexity classes for NPO prob-
lems [54]. It is easy to see that the inclusions given are strict if and only if
P 6= NP. Especially to stress the difference between the classes APX and PTAS,
there is also the notion of APX-complete problems. APX-complete problems are
those problems in NPO that are the most difficult ones to approximate. Loosely
speaking, an NPO problem is APX-complete if there exists a bound α > 1 such
that there exists no polynomial time α-approximation for this problem unless
P = NP. Thus, if P 6= NP, for APX-complete problems, there cannot exist a
polynomial-time approximation scheme.

There is a long list of other complexity classes and notions, in fact, a whole
“complexity zoo” [14]. Here, we only presented the major classes that are of
importance for this thesis. For a rigorous introduction to the theory of NP, we
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refer the reader to the classic book by Garey and Johnson [23]. A list of NPO-
complete problems from various application areas is given by [12], including
many further references.

2.2 Structures and Optimization on Graphs

In this section, we define several graph-theoretic structures, which are frequently
used in efficient communication strategies for wireless networks, and the result-
ing optimization problems. These structures are independent and dominating
sets of vertices in a graph. Before the respective definitions, we first introduce
some notation which is used commonly throughout this thesis.

Communication networks are modeled as undirected graphs G = (V,E).
Here, the vertices V represent the communication devices or nodes, and two
nodes are connected by an edge in E ⊆ V ×V if they can communicate directly
with one another. We set n := |V |, and denote by ∆ the largest degree of
a vertex in G. Furthermore, we assume the set of vertices to be ordered, for
instance and simplicity V = {1, . . . , n}. In this thesis, we are interested in
algorithms that identify and create subsets of the vertices which satisfy certain
structural properties. Also, as soon as we consider the cardinality or weight of
such a subset as a measure for the quality of a solution, optimization problems
arise.

Let V ′ ⊆ V be a subset of vertices in G = (V,E). In the following, we use
G[V ′] to denote the subgraph induced by V ′. For a subgraph G′ of G, we use
V (G′) and E(G′) to refer to the vertices and edges of G′ respectively.

In case of a weighted graph, that is, each vertex v ∈ V is additionally given
a weight wv, we define the weight of a subset V ′ ⊆ V by W (V ′) :=

∑

v∈V ′ wv.

For a subset V ′ ⊆ V , let max{V ′} be the vertex u ∈ V ′ with highest number,
or weight in a weighted graph. In the latter case, we use the highest number to
break a possible tie when vertices have the same weight.

Furthermore, we denote by Γ(v) the closed neighborhood of a vertex v ∈ V ,
i.e.

Γ(v) := {u ∈ V | (u, v) ∈ E} ∪ {v}.

Analogously, for V ′ ⊆ V , let Γ(V ′) :=
⋃

w∈V ′ Γ(w) define the neighborhood of
V ′. In this context, we set Γ(∅) := ∅. For r ∈ N, we call Γr(v) := Γ(Γr−1(v))
the recursively defined r-th neighborhood of v ∈ V , where Γ0(v) := {v}. Us-
ing the graph-theoretic distance dG(u, v), denoting the number of edges on a
shortest path in G between vertices u and v, we can equivalently define the r-th
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neighborhood of v as

Γr(v) := {u ∈ V | dG(u, v) ≤ r}.

2.2.1 Independent Sets

Two vertices of a graph G = (V,E) are called independent if they are not
adjacent to one another. As a consequence, the subgraph G[I] induced by an
independent set I contains no edges.

Definition 2.8. A subset I ⊆ V is called independent if for every two vertices
u, v ∈ I, there does not exist an edge (u, v) ∈ E.

An independent set is called maximal if it cannot be extended by the addi-
tion of any other vertices from the graph. Note that maximality of an indepen-
dent set is a purely structural property; we do not require such a set to be of
large cardinality. A maximal independent set in G is further on abbreviated by
MIS. For any graph, a MIS can easily be generated by a greedy approach. In
Section 2.4, we will explain such an approach as an example.

When looking at the cardinality of an independent set, we obtain an opti-
mization problem. The Maximum Independent Set (Max-IS) problem tries to
find an independent set of maximum cardinality. Clearly, a maximum indepen-
dent set is also maximal, but not vice versa.

In general, in an undirected graph, computing a Maximum Independent Set
is NP-hard. Even more, it cannot be efficiently approximated within n1−ε (un-
less P = NP, [27]). There exists a polynomial time O(n/ log2 n)-approximation
using subgraph-removal techniques (see [7]).

2.2.2 Dominating Sets

A broadcast from a communication node is received by all its neighbors. This
is captured in the notion of domination in a graph G = (V,E).

Definition 2.9. A subset D ⊆ V of vertices is called dominating if every
vertex in V is contained in the subset, or adjacent to a vertex in this set D.

A dominating set can also be used for subsets of vertices V ′ ⊆ V , such a set
D′ then dominates V ′ if V ′ ⊆ Γ(D′) holds. There is an important relationship
between maximal independent sets and dominating sets in a graph. Throughout
this thesis, we will often rely on the following theorem.

22



2.2. STRUCTURES AND OPTIMIZATION ON GRAPHS

Theorem 2.10. Given a graph G = (V,E), any maximal independent set I ⊆ V
is also a dominating set.

Proof. Suppose there exists a non-dominated vertex in V \ I. This vertex could
be added to I while keeping the independence property, thus violating maxi-
mality.

The Minimum Dominating Set (Min-DS) problem asks for a dominating set
of minimum cardinality. The problem is NP-hard on undirected graphs, and for
efficient approximations, there is a lower bound of (1− ε) ln n, for ε > 0, on the
approximation ratio (unless every NP problem is solvable in time nO(log log n),
[21]).

There are also further variants of dominating sets in a graph G = (V,E) by
demanding additional properties for a dominating set D ⊆ V :

• Minimum Connected Dominating Set (Min-CDS)
If D consists of a single connected component, it is referred to as Connected
Dominating Set. Of course, if G is not connected, such a structure does
not exist.

• Minimum Independent Dominating Set (Min-IDS)
If we want to find a small subset of vertices that is both dominating and
independent, we call the resulting problem Minimum Independent Domi-
nating Set problem. In light of Theorem 2.10, this problem is sometimes
also called Minimum Maximal Independent Set problem. Note that the
Maximum Independent Dominating Set problem is equivalent to finding
a Maximum Independent Set.

As with the Min-DS problem, the Min-CDS problem cannot be efficiently
approximated within (1 − ε) ln n, ε > 0, unless every problem in NP can be
deterministically solved in time nO(log log n). The Min-IDS problem cannot be
efficiently approximated within a factor of n1−ε for any ε > 0 (unless P = NP,
[26]).

The problems presented can be extended to vertex-weighted problems. While
the constraints for the feasibility of a solution remain the same, the objective
function is altered to include the weights of the vertices instead of the cardinality
of the subsets. Further on, unless stated otherwise, we consider the unweighted
versions of the problem.
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2.3 Distributed and Local Algorithms

In this thesis, we are interested in efficient algorithms that create independent
and dominating sets, both from the structural, e.g. maximal sets, and the
optimization, e.g. maximum cardinality sets, point of view. Also, due to the
wireless structure and resource-poor nature of the underlying communication
network, we are interested in algorithms that account for this fact. We now go
on to present a model for the local communication characteristics of wireless
networks which we use to describe locally executed algorithms.

A prominent characteristic of wireless ad-hoc networks is the lack of cen-
tral control. Even if a central base station is present in the communication
network, the resulting communication and coordination overhead may be pro-
hibitive to centrally organize and optimize such a network. In this part, we
provide a framework, or model, for distributed and local computing that allows
for capturing the effects of communication and coordination overhead, as well
as the non-centralized nature of wireless networks: the LOCAL message passing
model [40, 51].

Consider a simple, undirected graph G = (V,E) which represents the point-
to-point communication network. That is, the vertices are the (wireless) nodes,
and two nodes are connected if and only if they can communicate with one
another directly. Note that we only consider bidirectional communication, e.g.
by ignoring unidirectional links.

For this communication network, we would like to point out that the graph is
used two-fold: it represents both the communication network and the graph for
which we seek solution subsets. In other words, G is the graph we work in and
optimize for. This also follows from the application, as independent and dom-
inating sets in communication networks are used for efficient communication
strategies in the network itself.

A vertex in the graph has—possibly among others—two main parts we focus
on: a processing part including CPU and memory, and a communication part
which allows the vertex to send messages to its direct neighbors in G. We
assume that each vertex v ∈ V is given a unique identifier idv at the hardware
level. For concreteness and simplicity, we assume these identifiers to be ordered,
i.e. idv ∈ N for every v ∈ V , and furthermore, that each identifier is stored in
the node using O(log n) bits. Usually, the explicit distinction between a vertex
v and its identifier idv is neglected, we simultaneously use v to denote both.

We now explain the communication characteristics of the LOCAL model.
The networking on G operates in so-called global communication rounds. Ba-
sically, in one round, each vertex is able to communicate once with each of its
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neighbors by transmission of a message packet, and perform some computation.
To be more precise, a round is divided into two parts. First, a vertex can per-
form some computations, and then communicate with its neighbors in G by
sending and receiving message packets. In one round, a vertex can send at most
one message to, and receive at most one message from each individual neigh-
boring vertex. The order in which messages are sent and received in a round by
the individual vertices is not specified, and assumed to occur simultaneously. A
vertex that wants to reply to a message received from a neighbor can only do
so in succeeding rounds.

As a consequence of this local, round-based communication pattern, for two
vertices u, v ∈ V with d(u, v) = k, it takes at least k rounds for a message sent by
u to reach v via message forwarding of intermediate vertices. This also implies
that a vertex, in a constant number of rounds, can only obtain information
about the topology of its local neighborhood of constant radius.

We assume communication in the network to be synchronized, that is, in the
LOCAL model, each vertex has the same notion of a round. The round-based
synchronization is not to be confused with synchronization of time, a much more
difficult task in distributed systems. In the LOCAL model, we only require the
vertices to be in the same round during the execution of a distributed algorithm.
This limitation is, however, not too severe. At the cost of higher message
complexity, with the introduction of synchronizers [4], algorithms presented for
the synchronous model can be employed in asynchronous settings, as well.

While the complexity of the computations performed locally at each vertex
(within one round) can be explained using the notions described in Section 2.1,
the LOCAL model mainly captures the communication part. In order to quan-
tify this part, there are three complexity measures for local algorithms in this
distributed model:

• The distributed time complexity of a local algorithm is the number of
rounds until all vertices have terminated the algorithm.

Typically, in such synchronous systems, all vertices wake up simultane-
ously, or start an algorithm at the same time. If we assume that a vertex
starts the algorithm upon receiving the first message that belongs to the
distributed algorithm at hand, we obtain an almost equivalent model. In
this case, the time complexity is defined as the maximal time between the
first vertex wake-up and overall termination.

• The number of messages sent during the execution is given by the message
complexity of the algorithm, and it is usually given with respect to a single
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vertex of the network.

• Each message packet used by the algorithm transports information to its
recipient. The amount of information contained in a message packet, that
is, the length of such a packet, is called message size. The largest message
needed to execute a local algorithm defines the maximum message size.
In combination with the message complexity, this figure gives the overall
exchanged amount of information in the network.

Up to now, in the LOCAL model, we allow that each vertex can address each
neighbor directly by a distinct message in each round. Especially in wireless
network settings, this is not very realistic. Sending a message in such networks
is usually done by a broadcast which can be received by all adjacent vertices.
In the following, in order to explicitely stress this broadcast version of the local
model, we denote it by LOCALBC.

In applications, the size of message packets is limited, and thus this fact
should be taken into account. The latter is especially interesting in the broad-
cast model, as a limited packet size may not allow distinct information for all
neighboring vertices, e.g. when the neighborhood is larger than the packet size.
When not considering the message size, and thus allowing message packets of
arbitrary length, the LOCAL and LOCALBC models are clearly equivalent: in
this case, all messages to distinct neighboring vertices are combined into one
larger message. This larger message is then broadcast in the respective round,
and each neighboring vertex filters out the part concerning itself.

In the following, we assume that the message size is at least Ω(log n), other-
wise a vertex cannot even inform its neighbors about its identifier, and adjacent
vertices would become almost indistinguishable, giving an anonymous network.
We also suppose that each node has knowledge of the identifiers given to its
neighbors. This can easily be achieved by a single broadcast of each node con-
taining its identifier at the beginning of operation.

The synchronous, local message passing model seems to be a reasonable
abstraction for communication-based algorithms in wireless ad-hoc networks,
both from a theoretical and practical point of view.

• For the theory of local, distributed computing, it is the simplest model to
describe algorithms for, and to reason about. Also, the focus is put only
on the additional overhead that stems from locality and communication,
independent of characteristics thereof.

• In practice, round-based communication can easily be achieved or is ex-
plicitely done. For example, TDMA-based medium access control imme-
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diately maps to the synchronous message passing model. This can be seen
in Chapter 6 when dealing with the EMACs protocol.
Also, in contrast to communication, computation is cheap in wireless com-
munication, both with respect to time and energy consumption.

The main questions in local computing deal with the relation between a so-
lution composed of local, partial solutions with respect to an optimal (global)
solution for optimization, and how to compute these by local, distributed algo-
rithms. The characteristics of the LOCAL model, the lack of central control and
global information, limit the possibilities in computing. In this model, already
the fast creation of a structure like a maximal independent set is a non-trivial
task.

In this context, maximal independent sets play an important role since the
creation of this structure captures the notion of symmetry breaking in a simple
problem formulation. Being this prototypical, fast MIS creation has received
particular attention in the literature.

The fastest known deterministic distributed algorithm is based on the notion
of network decompositions introduced in [5], and is given in [50]. The authors

obtain a deterministic O(n(
√

1/ log n)
d

) algorithm, where d is a constant.

Furthermore, there is also an elegant randomized algorithm for MIS creation
with expected time complexity of O(log n) presented in [39].

An important function, which is used quite often in the area of local algo-
rithms is the “logstar”-function. This function is defined as

log∗n := min{i ∈ N | log log . . . log
︸ ︷︷ ︸

i

n ≤ c}

for some constant c.

A lower bound of Ω(log∗n) for the distributed computation of maximal in-
dependent sets is given in [38]. This lower bound states that even on a ring Cn,
at least time Ω(log∗n) is required to construct a MIS.

For general graphs of bounded maximal degree ∆, a maximal independent
set I can be computed locally in O(log∗n) communication rounds using messages
of size O(log n) [38, 51]. Thus, in case ∆ is bounded by a constant, there exists
an asymptotically time optimal approach.

However, a deterministic, poly-logarithmic time distributed algorithm for
MIS construction is a longstanding open problem.
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Algorithm 1 Central-Greedy Maximal Independent Set.

Input: Undirected graph G = (V,E)
Output: Maximal independent set I
1: I := ∅;
2: while V 6= ∅ do
3: Choose v ∈ V ;
4: I := I ∪ {v};
5: V := V \ Γ(v);
6: end while

2.4 Greedy MIS Construction

A maximal independent set is maximal with respect to the addition of vertices in
a graph G. This characterization immediately suggests a simple greedy strategy
to create such a set: add independent vertices to a partial solution until this is
no longer possible. In this part, we explore this strategy both from a central
and from a local perspective, and use the resulting algorithms as examples to
explain the important complexity measures of the preceding parts.

We begin with a centralized, straightforward algorithm: pick a vertex, erase
its neighborhood, and continue with the remaining graph. This approach is also
presented by Algorithm 1.

During the execution of the algorithm, the set of not yet considered vertices
gives the set of all vertices that could be added to I without violating the
independence property of I. Algorithm 1 constructs a maximal independent
set, since we always remove all conflicting vertices. Clearly, the approach yields
an efficient algorithm.

Note that the greedy choice of the vertex v ∈ V to be added next can be an
arbitrary vertex from the candidate set V . This gives rise to several different
strategies by basing the choice on, e.g., degree or weight of a vertex.

As an example of a local, distributed algorithm, we show how to run the
greedy algorithm locally in each node of a communication network to create
a maximal independent set. Many local algorithms encode roles of vertices
using colors. In our approach, we have three roles (colors): undecided (grey),
independent (black), and dominated (white) vertices.

Initially, all vertices are grey, and grey vertices have not yet taken a decision
whether to join the partial solution. Eventually, all vertices should decide on
their role in the solution, and either have joined the solution set given by the
black colored vertices, or not (white color). The decision is done in an ordered
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Algorithm 2 Local-Greedy Maximal Independent Set (code for vertex v).

Input: Undirected graph G = (V,E)
Output: Maximal independent set {v ∈ V | c(v) = black}.
1: c(v) := grey;
2: while c(v) = grey do
3: if ∃u ∈ Γ(v) | c(u) = black then
4: c(v) := white;
5: else if v = max{u ∈ Γ(v) | c(u) = grey } then
6: c(v) := black;
7: end if
8: end while

fashion, vertices with higher identifiers are allowed to decide first. A vertex
waits with its decision until all vertices with higher identifier have decided.

The algorithm works as follows: every grey vertex joins the partial solution
(black vertices) when it has the highest identifier among its grey neighbors and
if none of its neighbors has already joined. Vertices adjacent to a black vertex
immediately turn white. A change of color always results in a local broadcast
that informs all neighbors about the new color. The local algorithm describing
the decision process is also given by Algorithm 2.

Clearly, the algorithm terminates, as the grey vertex with highest identifier
always changes its color and each black or white vertex never changes its color
again. In order to obtain a MIS, after completion of the algorithm, the set of
black vertices should be independent, and each white vertex should be neighbor
to at least one black vertex.

Lemma 2.11. The set of black vertices, as created by Algorithm 2, is a MIS

on G.

Proof. For the sake of contradiction, assume that there are two adjacent black
vertices, say u and v. W.l.o.g. let u < v, then at the same time as v decided to
turn black, u could not have taken this decision due to line 5 not holding for u.
After this decision, u has to change its color to white due to line 3.

To see that the solution is maximal, observe that as long as there are non-
dominated vertices (grey), there is also a vertex with the highest identifier among
these which will turn to black. White vertices are adjacent to a black vertex.

Let us now look at the complexity of this approach in the LOCAL message
passing model. One round is given by a single execution of the while loop. In
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each round, at least the grey vertex with highest identifier changes its color and
thus sends a message in this round.

There are exactly n color changes, therefore after at most Ω(n) communi-
cation rounds, there are no grey vertices left and the algorithm has thus termi-
nated. However, in each round, more than just a single vertex or few vertices
may change its color, possibly resulting in a faster distributed time complexity.

Unfortunately, for example by considering vertices along a line with increas-
ing identifiers, there may actually be only a single point of activity during
the execution, resulting in sequential time complexity of O(n) communication
rounds.

The message complexity (per vertex) is constant as a vertex only changes
its color once, and therefore only has to broadcast this information once to all
neighbors, which takes a single round.

A message containing information about a new color of the sender is of
constant size. However, the algorithm assumes knowledge of the vertices’ iden-
tifiers which requires messages of size Ω(log n). All messages are broadcasts,
the algorithm therefore is also suited without change for the LOCALBC model.
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Chapter 3

Wireless Communication
Graphs

Wireless networks are created by the communication links between a
collection of radio transceivers. The nature of wireless transmissions
does not lead to an arbitrary, undirected graph, but to a structured
graph which we discuss in this chapter. We introduce geometri-
cally inspired graph models which are commonly used to represent
wireless ad-hoc networks. All of these models share the property of
(polynomially) bounded growth. This important property, which no
longer depends on the geometry, is defined and discussed.
Bounded growth already allows for a constant bound on the approx-
imation ratio of a solution given by a maximal independent set for
the Max-IS and Min-DS problems. Such a solution can easily be
created by the greedy strategies of the previous chapter.
Implications of the geometry behind the wireless graph models, for
example recognition and geometric construction issues, are pointed
out here. In this context, robust algorithms are also introduced.
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A wireless, ad-hoc network is created by the communication links between a
collection of radio transceivers. The nature of wireless transmissions does not
lead to an arbitrary, undirected graph, but to a structured graph. This structure,
called bounded growth, is introduced and discussed in this chapter.

We propose several geometrically inspired graph models for wireless commu-
nication graphs. These range from very simple Disk Graphs to more realistic
Bounded Coverage Area Graphs, and most of these models are geometrically
defined [46]. They follow the general intuition that vertices which are close to
one another can communicate directly, while far separated ones cannot reach
each other.

The bounded growth property of these models can be exploited to obtain ef-
ficient optimization strategies: Maximal independent sets are already constant-
factor approximations to the Max-IS and Min-DS problems. In terms of en-
coding of the graphs, i.e. how the graph is presented as input to the algorithms,
there are several possibilities. These go from giving the adjacency of each ver-
tex to describing the geometric shapes and positions of the vertices, and by
then looking at the intersection graph of the geometric objects. The latter is
called geometric representation, and in practice requires a localization scheme
that gives each wireless node its position. We will discuss the implications and
advantages of these different input encodings.

In Section 3.1, we define bounded growth graphs. After that, we introduce
prominent graph models that are used to model the communication in wire-
less ad-hoc and sensor networks, and give their relation to bounded growth. In
Section 3.3, a constant-factor ratio for the cardinality between a maximal in-
dependent set and Maximum Independent and Minimum Dominating Sets are
established for these particular graph classes. Before concluding this chapter,
different representations of a graph, and various issues arising from these are
discussed. Robust algorithms, which are described in Section 3.5, are a possibil-
ity to work around some problems with different representations of structured
graphs.

3.1 Bounded Growth Graphs

Throughout this thesis, we are mostly interested in graph classes that model
wireless communication networks. However, characteristics of such networks
highly depend on the environment in which they operate, and we would like to
abstract away from this environment. The smallest common structure of most
wireless graph models is bounded growth as given by the following definition.
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Definition 3.1. Let G = (V,E) be a graph. If there exists a function f(.) such
that every r-neighborhood in G contains at most f(r) independent vertices, then
G is f-growth-bounded. In this case, we call f the growth function.

Furthermore, we say that G has polynomially bounded growth if for some
constant c ≥ 1, f(r) = O(rc) is bounded by a polynomial of maximal degree c.

Graphs of bounded growth are sometimes also called graphs of bounded
(local) independence. Note that the growth function f(.) only depends on the
radius of the neighborhood, and not on the number of vertices in G. Thus,
for constant r, the number of independent vertices in Γr(v) is bounded by a
constant for any v ∈ V .

Especially when considering subsets of vertices, like independent or domi-
nating sets, the following lemma shows that the bounded growth property of a
graph is closed under taking induced subgraphs.

Lemma 3.2. Let G = (V,E) be an f-bounded growth graph. Then, for any
V ′ ⊂ V , the induced subgraph G[V ′] is also of f-bounded growth.

Proof. We prove the claim by contradiction. Suppose that there is a subset
V ′ ⊂ V such that the bound on the growth is violated for V ′. That is, for some
r ∈ N, there exists a vertex u ∈ V ′, and a neighborhood Γr(u) in G[V ′] such
that there is an independent set I ⊂ Γr(u) with cardinality |I| > f(r).

Consider the addition of any v ∈ V \V ′ to V ′, and and the resulting induced
graph G[V ′ ∪ {v}]. It is easy to see that the independence property of I is still
satisfied in G[V ′ ∪ {v}].

Furthermore, for every u′ ∈ Γr(u), it is dG(u, u′) ≤ dG[V ′](u, u′) ≤ r.
Therefore, I is also an independent set with |I| > f(r) in the r-th neighbor-

hood of u when considering the original graph G.

It is easy to see that an f -bounded-growth graph does not contain a vertex-
induced subgraph isomorphic to a K1,f(1)+1. Such a subgraph would immedi-
ately violate the growth function f .

3.2 Geometric Intersection Graph Models

In the following, we propose several geometrically defined graph models that
represent wireless networks in various degrees of granularity with respect to
reality. We also apply and check Definition 3.1 on the geometric graphs to
establish bounded growth for these models.
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A wireless ad-hoc network is created by nodes that are equipped with a
transceiver, and that are placed in the real world. The environment, especially
the positions of the nodes, has to be accounted for, and it does not surprise that
most wireless graph models are therefore defined for the Euclidean space. In
the following, we use ‖.‖ to denote the Euclidean distance in R

2.
Usually, the models result from geometric intersection or containment graphs

which give the general idea behind these models. Next, we therefore introduce
these graph models in general, and then specify additional characteristics in
order to justify them for the purpose of modeling wireless communication net-
works.

We assume that the vertices of the graph, i.e. in our case the wireless nodes,
are placed in the 2-dimensional Euclidean plane. In other words, there exists
a mapping p : V → R

2 which gives each vertex v ∈ V its location pv ∈ R
2.

Furthermore, each wireless node has a certain area which is covered by its radio.
For every v ∈ V , let this area be represented by Av ⊂ R

2. As a consequence,
another vertex u ∈ V can receive a transmission, and thus a message from v, if
and only if pu ∈ Av holds.

There are two ways of defining the edges of a wireless graph, representing
the possible communication or interference between wireless nodes. The first
way is the containment model, where the set of edges is characterized by

(u, v) ∈ E ⇐⇒ pu ∈ Av.

This model gives the possible direct communication between nodes, and results
in a directed graph model.

If we only look at the coverage areas of the models, we can also define the
intersection model as follows:

(u, v) ∈ E ⇐⇒ Av ∩ Au 6= ∅.

With this symmetric model, interference during simultaneous transmissions can
be explored. If two nodes transmit at the same time, a third node in the non-
empty intersection receives both transmissions simultaneously, and may thus
not be able to reconstruct the messages.

We now define the resulting graph models as follows:

Definition 3.3. Consider a set V of vertices, and for each v ∈ V its location
pv ∈ R

2 and coverage area Av ⊂ R
2. Then, the resulting intersection graph

is called intersection Coverage Area Graph, and the resulting containment
graph is called containment Coverage Area Graph.
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We abbreviate Coverage Area Graph by CAG. The intersection graph is
undirected. If we consider each undirected edge to be a two-way edge between
the respective vertices, it is easy to see that the containment graph is completely
contained in the intersection graph for the same set of vertices and coverage
areas. In the following, we refer to a set of positions and corresponding coverage
areas as geometric representation of an intersection or containment graph. It is
easy to see that such a representation results in a well-defined graph.

Throughout the following, we do not differentiate strictly between the con-
tainment and intersection graph models, and consider all edges to be undirected.
This assumption also follows from the applications, as bidirectionality is usu-
ally assumed for wireless communications due to the interpretation of the edges.
The manner in which the edges are interpreted depend on the application, e.g.

• if communication is considered, bidirectional communication is usually
assumed, as this allows for direct acknowledgments of successful transmis-
sions of message packets. In this case, we simply remove uni-directional
links from the graph. This is gives the following characterization of an
edge:

(u, v) ∈ E ⇐⇒ (pu ∈ Av) ∧ (pv ∈ Au).

• if interference is considered, all edges incident to a vertex v ∈ V represent
links to vertices which can receive a message sent by v. Assuming each
edge as being undirected models this case.

The results presented in the following chapters hold for both interpretations and
restrictions of the edge set resulting from the wireless graph models.

3.2.1 Unit Disk Graphs

In practice and real world settings, the coverage areas do not take on arbitrary
shapes, but follow the laws of physics, especially the laws of radio wave propaga-
tion with respect to the environment the network operates in. In the following,
we investigate the coverage areas further, and depending on the assumptions on
the environment, we obtain several specific graph models for wireless communi-
cation networks.

The most basic model used for wireless communication is a Unit Disk Graph:
Suppose that all wireless nodes are equal, and are placed in an ideal environ-
ment. That is, all nodes send with the same transmission radius, and have the
same circular coverage area. A graph G = (V,E) is a Unit Disk Graph (UDG)
if is the intersection graph of disks of equal diameter in the Euclidean plane. In
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Figure 3.1: Proof of Lemma 3.5.

the following, by proper scaling, we assume the diameter of the disks to be of
unit length. In other words:

Definition 3.4. A graph G = (V,E) is a Unit Disk Graph if there exists a
map p : V → R

2 satisfying

(u, v) ∈ E ⇐⇒ ‖pu − pv‖ ≤ 1.

The above definition actually characterizes both intersection and contain-
ment graph. Scaling the diameters of the disks by a factor of 2 turns a Unit
Disk Intersection Graph into an equivalent equal-diameter Disk Containment
Graph, and vice versa. For such a UDG, containment and intersection graph
are basically the same, and all edges are bidirectional. Unit Disk Graphs have
polynomially bounded growth, which follows from a simple geometric packing
argument also given in Figure 3.1.

Lemma 3.5. Let G = (V,E) be a Unit Disk Graph. Then, G is of (polynomi-
ally) (2r + 1)2 bounded growth.

Proof. From the above definition of a UDG, we conclude that any w ∈ Γr(v),
v ∈ V, satisfies

‖pw − pv‖ ≤ r.

Let I ⊂ Γr(v) denote an independent set in the r-neighborhood of v. The unit
disks corresponding to vertices in I are pairwise disjoint, and are all contained
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in a disk of larger radius R with R = (r + 1/2) around f(v). This implies

|I| ≤ πR2

π(1/2)2
= (2r + 1)2

as claimed.

3.2.2 Bounded and Quasi Disk Graphs

If the wireless nodes are able to adjust their transmission power, still in ideal
settings, then different circular coverage areas emerge.

Suppose that the maximum transmission range of a vertex is given by c+ > 0.
Furthermore, in order to achieve any communication, a minimum signal strength
is needed, which we assume to create a circular coverage area of radius c− > 0
around the position of each vertex. This yields a set of disks of different radii,
and the resulting intersection graph is referred to as Disk Graph. The parameter
b := c+/c− gives gives the ratio between maximum and minimum range of the
wireless nodes.

Definition 3.6. A graph G = (V,E) is a Disk Graph if there exist a map
p : V → R

2 and a map r : V → R
+ satisfying

(u, v) ∈ E ⇐⇒ ‖pu − pv‖ ≤ rv + ru.

In this case, by setting b := maxv∈V {rv}
minv∈V {rv}

, we also call G a b-Bounded Disk

Graph (BDG).

Clearly, if the parameter b is constant, we again obtain a graph of poly-
nomially bounded growth. This can easily be seen by adapting the geometric
packing argumentation used in the proof of Lemma 3.5. The polynomial growth
function is larger than that of a Unit Disk Graph by a factor of O(b2).

While Unit and Bounded Disk Graphs are widely used to obtain strong
theoretic results for graph algorithms, one might argue that they are not very
realistic since ideal assumptions are made for the radio propagation.

Refining the idea behind Bounded Disk Graphs by no longer limiting the
reasons for different radii to the transmission power, but also to environmental
reasons like objects, we can define a Quasi Disk Graph (QDG, [37]) as follows.

Definition 3.7. A graph G = (V,E) is a Quasi Disk Graph if there exist
two values 0 < c− ≤ c+ and a map p : V → R

2 satisfying

(u, v) ∈ E if ‖pu − pv‖ ≤ c− and (u, v) 6∈ E if ‖pu − pv‖ > c+.
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In such a Quasi Disk Graph, there are two disks D+ and D− of radius c+

and c− respectively that can placed around each vertex position pv, v ∈ V, such
that

D− ⊆ Av ⊆ D+

holds for the coverage area Av of each vertex. Then, a more intuitive charac-
terization of a Quasi Disk Graph based on transmissions is as follows.

• Two vertices u, v ∈ V which are sufficiently close to each other, that is
‖pu − pv‖ ≤ c− holds, always receive each other’s messages.

• Two vertices ū, v̄ ∈ V that are too far apart, i.e. ‖pū − pv̄‖ > c+, cannot
communicate directly.

If c− < ‖pu − pv‖ ≤ c+ holds for two vertices u, v ∈ V , the existence of
an edge is not explicitely defined, but depends on the concrete shapes of Av

and Au. The coverage areas may take any shape within the bounding disks
D+

v and D−
v , and may be limited, e.g. due to objects in the vicinity of a vertex

v ∈ V . Furthermore, effects like fading and the resulting unreliable transmission
characteristics can be incorporated into this model.

Again, by slightly adjusting the geometric packing argumentation in the
proof of Lemma 3.5, it is clear that a QDG (with parameter b := c+/c−) also
has polynomially bounded growth, again with an additional factor of O(b2) for
the Unit Disk Graph growth polynomial.

3.2.3 Bounded Coverage Area Graphs

In practice, it may not be possible to give a radius on the transmission range
where coverage can be guaranteed for all wireless nodes, e.g. when these are
mounted on concrete walls. Leaving the idea of circles that reflect the coverage
area, we only consider the area itself: We assume that the size (or volume) of
the coverage area of each vertex is bounded from below, and that it does not
stretch too far from each vertex position.

Let G = (V,E) be a Coverage Area Graph, and for each vertex v ∈ V , let
pv ∈ R

2 be the vertex position, and let Av ⊂ R
2 be the coverage area. For

each vertex v ∈ V , let rv > 0 denote the minimum radius of a disk Dv that is
centered at pv and that completely covers Av.

We then define c+ := maxv∈V {rv} to be radius of the largest such disk,
and we define a := minv∈V {vol(Av)} to be the minimum size (or volume) of
a coverage area. A parameter b2 := (c+)2/a then describes a bound on the
relation between maximum and minimum coverage area.
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We can again use a geometric packing argumentation to see that the in-
tersection or containment Coverage Area Graph G has polynomially bounded
growth with a growth function of O(b2 · r2).

As with the QDG, the Bounded Coverage Area Graph model also allows for
modeling the influence of objects on the radio propagation, as well as fading
and unreliable transmissions. The main characteristic of this model is an area
Av of strong signal, where a transmission is certainly received, and the fact that
vertices which are far apart cannot communicate. Note that this model includes
the measured transmission characteristics of the real world testbed presented in
Section 1.2. There, in Figure 1.3 on page 6, the coverage area Av of a particular
wireless sensor node is shown.

It is easy to see the following relationship between these geometrically defined
graph models.

Lemma 3.8. By slightly abusing notation to denote the respective classes of
graphs, it is

UDG ⊂ BDG ⊂ QDG ⊂ CAG.

With respect to the optimization problems of seeking independent sets of
large cardinality, and seeking dominating sets of small cardinality, in [10], it is
shown that both the Max-IS and Min-DS problems remain NP-hard even on
Unit Disk Graphs.

3.2.4 Graphs Based on Metric Spaces

While wireless networks operate in the Euclidean space, we can extend the previ-
ous graph models to intersection graphs induced by other metrics. Analogously
to Unit Disk Graphs, we immediately obtain the following characterization of
Unit Ball Graphs.

Definition 3.9. Let M = (X, d) be a metric space with a distance function
d : X2 → R. A graph G = (V,E) is a Unit Ball Graph (UBG) if there exists
a mapping p : V → X such that

(u, v) ∈ E ⇐⇒ d(pu, pv) ≤ 1

holds. The pair (M,p) is called representation of G.

However, in this context, note that any undirected graph is such a Unit Ball
Graph by taking the shortest path distance as metric on V = X. So, a UBG is
not necessarily growth bounded.
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Nevertheless, further restricting the metric space, we can identify a large
class of metric Unit Ball Graphs with polynomially bounded growth. Such a
restriction uses a bound on the “growth” of the metric space M , which is defined
as follows [3, 25].

Definition 3.10. Let M = (X, d) be a metric space. The doubling dimension
ρ of M is the smallest ρ such that every ball of radius r can be completely covered
by at most 2ρ balls of radius r/2. If ρ is bounded by a constant, we say that M
is doubling.

Analogously, we refer to a Unit Ball Graph as doubling if there exists a
representation where the underlying metric space is doubling. The following
lemma now shows that doubling UBGs are growth-bounded.

Lemma 3.11. Let G = (V,E) be a Unit Ball Graph with a representation
(M,p) such that the metric space M = (X, d) has doubling dimension ρ. Then,
G has f-bounded growth with f(r) = O(rρ).

Proof. For a vertex v ∈ V , and a radius r ≥ 0, consider the neighborhood Γr(v),
and let I ⊂ Γr(v) denote an independent set therein.

Both Γr(v) and I are contained in a ball {v′ ∈ V | d(pv, pv′) ≤ r} of radius r
around pv. Also, for every u ∈ I, the ball with radius 1/2 around pu, given by
{v′ ∈ V | d(pu, pv′) ≤ 1/2}, does not contain another vertex from I. In other
words, for all u ∈ I, these balls are mutually disjoint.

The number of balls of radius 1/2 needed to cover the ball of radius r around
pv, and thus Γr(v), is at most 2ρ log(2r) = O(rρ), and the claim follows.

Clearly, if the metric space M is doubling, i.e. ρ = O(1), then the induced
doubling Unit Ball Graph has polynomially bounded growth p(r) = O(rρ).

Also, the other types of geometric graph models of Section 3.2 can be gen-
eralized to a doubling metric space. This more general characterization allows
us to use a distance function not only based on geometric distance, but also on
characteristics of wave propagation of the wireless medium. We can thus relate
signal strength, distance, and transmission characteristics to obtain a suitable
metric intersection graph model for the wireless communication network.

Constant doubling dimensions are common not only in wireless networking,
but also in communication networks, e.g. concerning latency in peer-to-peer
networks or the Internet (see c.f. [25, 32, 33]). However, the communication
links in such networks usually do not respect the Unit Ball Graph definition,
and are characterized differently.
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3.3 Simple Approximation Guarantees

In this section we deal with the construction of independent and dominating
sets in graphs of bounded growth. As we show in this section, the simple,
efficient approach of (greedily) computing a maximal independent set in such a
structured graph turns out to be quite effective. Recall that a MIS in a graph
is a feasible solution to both the Max-IS and Min-DS problems.

From the definition of bounded growth, it immediately follows that every
f -bounded growth graph cannot contain more than f(1) independent vertices
in each first order neighborhood. This property can be exploited to obtain the
following two lemmas, and the resulting constant-factor approximations given
by a MIS [28].

Lemma 3.12. Let G = (V,E) be an f-growth-bounded graph, and let I ⊂ V be a
maximal independent set in G. Furthermore, let I∗ be a Maximum Independent
Set in G. Then,

|I∗| ≥ |I| ≥ |I∗|
f(1)

holds.

Proof. We prove the lemma by comparing I with the optimal solution I∗ using
a charging argumentation. Each vertex i ∈ I∗ is charged to a vertex from I as
follows:

• If i ∈ I, then i is charged to itself.

• If i 6∈ I, then i is charged to an adjacent vertex from I. Note that such a
vertex exists due to the domination property of I.

It is easy to see that each vertex v ∈ I is charged at most f(1) times by vertices
from the optimal solution I∗. The claim follows immediately.

Lemma 3.13. Let G = (V,E) be an f-growth-bounded graph, and let I ⊂ V be a
maximal independent set in G. Furthermore, let D∗ be a Minimum Dominating
Set in G. Then,

f(1) · |D∗| ≥ |I| ≥ |D∗|
holds.

Proof. For the dominating set D∗, every vertex in D∗ cannot dominate more
than f(1) vertices from I. Hence, |D∗| ≥ |I|/f(1) by a charging argumentation
similar to the one used in the proof of Lemma 3.12, and the claim follows.
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A maximal independent set is thus a constant-factor approximation for the
Max-IS and Min-DS problems on graphs of bounded growth. We point out
that any Maximum Independent Set is also maximal. As an interesting remark,
note that the cardinalities of optimal solutions to the Max-IS and Min-DS

problems are therefore only a factor of f(1) apart from each other in graphs
with f -bounded growth.

A maximal independent set can be created by a greedy strategy as presented
in Section 2.4. When considering a greedy strategy, the choice of the next vertex
to be added to a partial solution can be arbitrary. However, for certain classes
of graphs, a more sophisticated choice improves the approximation guarantee
below the value of f(1) for the Max-IS problem.

An example for such an improved choice can be found in Unit Disk Graphs.
For a UDG G = (V,E), let pv = (xv, yv) ∈ R

2 denote the position of each vertex
v ∈ V in a geometric representation. A possible ordered choice of vertices to be
added to a partial solution I is given by the following criterion:

Choose v̄ ∈ V such that xv̄ = min{xu | u ∈ V \ Γ(I)}.
In other words, we always choose a leftmost vertex which is neither in the
partial solution, nor dominated by it. Further on we refer to this approach as
Leftmost-Greedy for Unit Disk Graphs.

For the chosen vertex, we now have the following geometric observation,
which is also presented in Figure 3.2 [41].

Lemma 3.14. Let G = (V,E) be a UDG with representation pv = (xv, yv)
for every v ∈ V , and be v̄ ∈ V such that xv̄ = min{xu | u ∈ V }. Then, the
cardinality of an independent set in Γ(v̄) is at most 3.

Proof. Let v1, v2 ∈ Γ(v̄) be two vertices such that (v1, v2) 6∈ E, that is, both
‖pv̄ − pvi

‖ ≤ 1, i = 1, 2, and ‖pv1
− pv2

‖ > 1 hold. Looking at the two rays ema-
nating from pv̄ to pv1

and pv2
, a straightforward geometric argumentation shows

that the angle between these two rays has to be larger than π/3. Otherwise,
two circles of unit diameter centered at pv1

and pv2
intersect.

With this observation, suppose there are 4 independent vertices in the neigh-
borhood of v̄, say v1, . . . , v4 ∈ Γ(v̄). W.l.o.g. let the vertices be ordered as seen
from pv̄. All angles between rays to the positions pv1

, . . . , pv4
have to be larger

than π/3. Thus, the overall angle at pv̄ between pv1
and pv4

is larger than π,
and this contradicts xv̄ being the smallest x-coordinate.

By a small modification to the analysis of Lemma 3.12, that is, charging each
vertex from the partial solution at the time it is chosen by the Leftmost-Greedy,

42



3.3. SIMPLE APPROXIMATION GUARANTEES

v̄

v1

v2

v3

v4

π/3

π/3

π/3

v1

v2

v3

v̄

v4

Figure 3.2: Leftmost-Greedy : the vertex v̄ with smallest x-coordinate cannot
have more than 3 independent neighbors.

each vertex is charged at most by three independent vertices from an optimal
solution in its neighborhood. Overall, we obtain a 3-approximation with this
approach.

Another example of a better approximation guarantee by a more sophisti-
cated greedy choice can be found in Disk Graphs of arbitrary radius. Let rv

denote the radius of the respective disk centered at the position pv of each ver-
tex v ∈ V . A possible ordered choice of vertices to be added next to a partial
solution I during a greedy approach is given by:

Choose v̄ ∈ V such that rv̄ = min{ru | u ∈ V \ Γ(I)}.

Similar to the proof of Lemma 3.14, we can geometrically motivate that a cen-
ter disk cannot be surrounded by more than 5 disks of equal or larger radius
which on one hand intersect with this central disks, but on the other hand do
not intersect with each other (see Figure 3.3). Therefore, we can adjust the
argumentation so that a disk chosen in this ordered greedy approach is charged
by at most 5 disks with larger radius. This Smallest-Radius-Greedy approach
then gives a 5-approximation for the Max-IS problem on Disk Graphs, and it
does so for every bound on the ratio between largest and smallest disks in the
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π/3

v̄
v̄

Figure 3.3: Smallest-Radius-Greedy : the vertex v̄ with smallest radius cannot
have more than 5 independent neighbors.

representation. Note that this bound is reflected in the approximation guaran-
tee of an arbitrary maximal independent set with respect to an optimal solution
(Section 3.2.2). With the Smallest-Radius-Greedy we thus reduce the approxi-
mation guarantee from f(1) = O(b2) to 5, independent of the value for b.

In both of the above examples, we have explicitely exploited geometric in-
formation, either the positions or radii of the disks corresponding to the vertices
in a geometric representation. This raises a natural question

• whether the approaches inherently depend on this information, and

• how to make this information available to a (greedy) algorithm in case
we are just given adjacency information of the graph, and the general
knowledge that the (Unit) Disk Graph structure is satisfied.

While the latter question is discussed in the following part, we briefly explain
how to achieve the above approximation ratio without the geometric knowledge.
Taking a closer look at the geometric proof of Lemma 3.14, for a Unit Disk
Graph, we may assume that a geometric representation exists without being
given as part of the input to the greedy algorithm. For the approach, we there-
fore only need to find a vertex that does not have more than three independent
vertices in its first order neighborhood. This can be done in time O(n5) by
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a complete search over all vertices, together with all choices of 4 neighboring
vertices which may then not be mutually independent.

For the general Disk Graph case, we can find a vertex with no more than 5
independent neighbors to be added in time O(n7). The complexities of O(n5)
and O(n7) can be improved by matrix multiplication techniques as proposed
in [15].

The above approaches without representation take significantly longer than
explicitly exploiting a representation. When the geometric information for the
ordered greedy strategies is available, we can preprocess the input graph and
sort the vertices accordingly to obtain the required order. We therefore explore
the idea of constructing a geometric representation from adjacency information
in the following part.

3.4 Graph Representations and Localization

Important problems in the area of geometrically defined graphs are the ques-
tions concerning recognition and reconstruction, both from a theoretical and a
practical point of view. Generally speaking, these problems start with an undi-
rected graph, where only adjacency information of the edges is given, and then
seek for geometric information, e.g. possible positions of the vertices.

Consider the case of Unit Disk Graphs, where the edges can be encoded by
giving each vertex a position in the Euclidean space, and edges are present be-
tween vertices if and only if the unit diameter disks at these positions intersect.
Note that in the Leftmost-Greedy algorithm of the previous section, we assumed
that such a representation exists. However, we do not need to exploit any infor-
mation of such a representation in the algorithm to obtain the approximation
guarantee of 3.

This scenario gives rise to one of the most fundamental problems for geo-
metrically defined graphs (and structured subclasses of graphs in general), the
recognition problem: given a graph, verify if this graph satisfies the geometric
properties that define the structure.

When only adjacency information is available from a Unit Disk Graph G,
it becomes hard to distinguish G from an undirected graph without underlying
structure. In fact, an efficient algorithm to recognize Unit Disk Graphs can be
used to efficiently solve NP-complete problems.

Theorem 3.15. The problem of deciding whether a given graph G = (V,E) is
a Unit Disk Graph is NP-hard.
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The above theorem is proven in [8]: Given an instance C of SAT, a cor-
responding graph GC is constructed in polynomial time such that GC has a
feasible representation if and only if C is satisfiable, i.e. C is a positive instance.
However, even though UDG recognition is a decision problem, the question of
a polynomial size certificate is still open, so that the claim of UDG recognition
being NP-complete cannot be justified.

Any polynomial time algorithm computing a representation for a UDG could
be used in a straightforward way to solve the recognition problem. Thus, we
immediately get the following corollary to Theorem 3.15.

Corollary 3.16. For a UDG G = (V,E), if computing a feasible representation
p : V → R

2 can be done in polynomial time, then P = NP holds.

Due to this fact, approximations to the problem of computing a represen-
tation, which are usually referred to as embedding of a graph come into the
picture. Consider a general, undirected graph G = (V,E) together with some
mapping p : V → R

2 which gives each vertex a position in the Euclidean space.
We define the quality qp of the embedding p as

qp(G) :=
max(u,v)∈E ‖pu − pv‖
min(ū,v̄) 6∈E ‖pū − pv̄‖

.

In case of the geometrically defined wireless communication graphs of the pre-
ceding section, this measure captures the essence of wireless communications:
the smaller qp, the closer we get to the characteristic that vertices which are
close to one another can communicate directly, and vertices far apart cannot.

It is easy to see that an embedding p with quality qp(G) ≥ 1 defines a Quasi
Disk Graph with parameter b = qp as defined in Section 3.2.2. For a Unit
Disk Graph G = (V,E), it is also easy to verify that an embedding p∗ is a
representation of G if and only if qp∗(G) < 1 holds.

A more detailed look at the construction of the graph GC used in the proof
of Theorem 3.15, this time in light of the above measure, gives the following
result [34].

Theorem 3.17. Let G = (V,E) be a Unit Disk Graph. If P 6= NP, then there
is no efficient algorithm that computes an embedding p : V → R

2 with quality
qp(G) ≤

√

3/2 − ε, where ε tends to 0 as |V | → ∞.

On the other hand, in [42], an O(log2.5 n
√

log log n)-approximation algorithm
for the embedding of a Unit Disk Graph is proposed.
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Despite being challenging from a theoretical point of view, also in practice,
these questions play an important role in wireless networks. In this area, giv-
ing each wireless device its position in the physical environment is known as
localization. However, practicable, reliable localization in wireless networks is
a non-trivial task [56], and there are numerous in-network approaches to this
problem proposed in the literature. These are then usually evaluated numeri-
cally in ideal settings. Furthermore, for example after the initial employment
of a wireless sensor network, positional information may not yet be available.
Nevertheless, in this setting, efficient communication structures—including in-
dependent and dominating sets—need to be set up as well. Of course, a rather
quick—yet expensive—solution is to equip each device with a GPS or Galileo
receiver.

3.5 Robust Algorithms

From the above discussion, it becomes clear that in wireless communication
graphs, the question of geometric representation or localization is an important
one. The information how a graph is presented as input to an algorithm, e.g.
by its adjacency information only, or by its complete geometric representation,
determine significant differences in the design of optimization algorithms.

In this context, when a geometric representation is not available, the notion
of robustness comes into play. Generally speaking, a robust algorithm must
produce correct output regardless of the input [53]. More precisely, robust
algorithms on a subset of instances of a problem are defined as follows.

Definition 3.18. Let A be an algorithm defined on a set I of instances, and
let f be a function defined on I. Furthermore, let U ⊆ I.

Then, we say that A computes f robustly (on U ⊆ I) if

• for all instances x ∈ U , the algorithm A returns f(x), and

• for all instance x ∈ I \ U , the algorithm A returns either f(x), or a
certificate showing that x 6∈ U .

Of course, the notion of a robust algorithm is especially interesting when
A has polynomial running time with respect to the size of the input, and the
decision whether an instance belongs to the subclass U ⊆ I is not easy to decide.

For example, keeping Theorem 3.15 in mind, an algorithm A may robustly
compute some function f on Unit Disk Graphs, and accept any undirected graph
as input. An output then either gives a value for f , or a certificate that the
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input is not a Unit Disk Graph. Note that, in case a value for f is returned, we
may not conclude that the input is a Unit Disk Graph. However, A computed
the correct value for f .

Furthermore, robust algorithms can be combined in sequence, where the
computed solution is used as input for further algorithms, that is, as building
blocks of more general algorithms. In other words, robustness is preserved by
composition. This is to be contrasted to the non-robust case where an algorithm
need not produce an output or even terminate if the input does not satisfy the
additional structural properties, and some produced output may not even be a
feasible solution to the problem at hand.

3.6 Conclusions

In this chapter, we have reviewed and proposed geometrically inspired con-
tainment and intersection graph models for communication in wireless, ad-hoc
networks. These range from ideal assumptions, resulting in a Unit Disk Graph,
to more realistic approaches, resulting in Bounded Area Graphs. All these graph
models have in common the structure of polynomially bounded growth if the
respective parameters are bounded.

The bounded growth property allows for a constant-factor bound on the ra-
tio between the cardinalities of maximal independent sets and optimal solutions
to the Max-IS and Min-DS problems respectively. Furthermore, since a Max-
imum Independent Set is also maximal, this ratio also holds between optimal
solutions to these two problems on the same instance.

For the geometric intersection graphs, possibly exploiting geometric infor-
mation, we can further improve the approximation ratio given by a maximal
independent set for some classes of graphs. We have seen that having a geo-
metric representation available differs greatly from the case that we only have
adjacency information. The questions of embedding, or localization, were dis-
cussed. We also introduced the notion of robust algorithms. These type of
algorithms present a way to deal with optimization on the presented subclasses
of undirected graphs.

In the following, since bounded growth is a structural property of a graph,
we assume the growth function or polynomial to be known, and not part of the
input. This is reasonable as the actual graph is an instance of the optimization
problems we are considering, whereas the growth function is defined for possible
instances reflecting wireless communication graphs.
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Chapter 4

Polynomial-Time
Approximation Schemes

This chapter presents polynomial-time approximation schemes for
Maximum Independent Set and Minimum Dominating Set problems
on polynomially Bounded Growth Graphs.
We briefly introduce the algorithms for Unit Disk Graphs which rely
on a given geometric representation. The main focus, however, lies
on an approach called local neighborhood-expansion scheme, that no
longer relies on a geometric representation but only requires poly-
nomially bounded growth.
The presented approach can be extended towards a robust algorithm
that works on any undirected graph and either returns a subset of de-
sired quality, or gives a polynomial time certificate showing that the
instance does not reflect a graph of polynomially bounded growth.
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In this chapter, we present polynomial-time approximation schemes for the
Max-IS and Min-DS problems on graphs of polynomially bounded growth.
Recall that a PTAS is a family of algorithms which in addition to an instance
yield a desired approximation guarantee (1 + ε), given by a parameter ε > 0 as
part of the input. The run time, for fixed ε, has to be polynomial.

We start by introducing main concepts that yield existing PTASs on ge-
ometrically defined graphs such as Unit Disk Graphs, and that explicitely re-
quire geometric information. While these approaches have been known for some
time, the question whether there is also an approach for the case that a geo-
metric representation is not available, was an open problem. As we have seen
in Section 3.4, this non-geometric case is significantly more difficult due to the
hardness of computing a feasible representation. We thus abandon the geome-
try thereafter and focus on graphs of polynomially bounded growth, which also
includes an answer to this question.

For these polynomial BGGs, we present an approach based on adjacency
information only that yields PTASs for the Max-IS and Min-DS problems.
The resulting algorithms work free of any geometric information, and thus give
a positive answer to the above question of a PTAS without representation.
The approach for both problems constructs optimal, partial solutions for locally
bounded neighborhoods, and combines these to create a globally feasible solu-
tion which satisfies the desired approximation guarantee. The algorithms, also
for the weighted version of the Max-IS problem, are explained in Section 4.2,
and follow the ideas of [48] and [47].

Besides the independence from a geometric representation, an additional ad-
vantage of the PTAS lies in the fact that we can extend the algorithm towards
a robust approach. We have a polynomial time algorithm which either approxi-
mates the problem, or solves the recognition problem. Note that the algorithm
does not solve the recognition problem in general. If the graph is not geomet-
rically defined, it may also return a desired, (1 + ε)-approximate solution. This
is further discussed in Section 4.3.

4.1 Schemes Based on Geometric Separation

Most of the existing work on approximation schemes for wireless communication
graphs is reported for (Unit) Disk Graphs, and assume the graph given by its
geometric representation. We would like to point out again that both Max-IS

and Min-DS problems are NP-hard even when the input is restricted to Unit
Disk Graphs with a given representation [10]. However, when the representation

50



4.1. SCHEMES BASED ON GEOMETRIC SEPARATION

of a UDG is given as part of the input, we can use geometric separation to obtain
a PTAS for many problems on a UDG. This is done by dividing the graph
into smaller subgraphs, for which an optimal partial solution can be obtained
efficiently.

Consider a problem on a geometrically defined graph that can be solved by
partitioning the graph for a divide-and-conquer approach. Such an approach
first partitions the graph depending on some parameter. The parameter is
usually chosen so that the range of this parameter is bounded, giving a bounded
number of possible ways to partition the graph. Then, for each choice of the
parameter, the respective (sub-) problem is solved giving a feasible candidate
solution to the global problem. The overall solution is then given by taking the
best of the candidate solutions, which then gives a good approximation.

A special separation strategy called shifting allows for a bound on the per-
formance ratio of a simple divide-and-conquer approach. This strategy is, for
example, used to obtain approximation schemes for problems restricted to pla-
nar graphs [6], or for certain geometric packing and covering problems [29].

Due to its simplicity, we present the basic shifting strategy for the Maximum
Independent Set problem [30], and then discuss how to modify this approach for
the Minimum Dominating Set problem. Several improvements and extensions
are also discussed.

4.1.1 Maximum Independent Set

Let the Unit Disk Graph G = (V,E) be given by its geometric representation,
i.e. the set of center points {pv ∈ R

2 | v ∈ V } of the unit disks that create
the intersection graph, and let AG ⊆ R

2 denote the total rectangular area
needed to draw the graph. Given ε > 0, let k be the smallest integer such that
( k

k+1 )2 ≥ 1
1+ε holds. For each 0 ≤ i ≤ k and 0 ≤ j ≤ k, consider the following

separation of G.
We divide AG into vertical and horizontal strips according to left-open unit

intervals ]l, l + 1], l ∈ N. We assume these intervals to be enumerated according
to the distance l from the origin. Let Gi,j then denote the subgraphs obtained by
removing all vertices whose center-points fall into the vertical intervals congruent
to i modulo (k + 1) and into the horizontal intervals congruent to j modulo
(k + 1). The graph Gi,j thus consists of independent subgraphs, where the
respective vertices’ center points are all drawn inside k×k sized boxes. Figure 4.1
gives an example of such a separated Unit Disk Graph, the removed disks are
dashed.

A candidate independent set Ii,j in Gi,j can now be obtained by calculating
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Figure 4.1: Separated representation of a UDG (k = 3, i = 3, j = 0), Max-IS

case.

a Maximum Independent Set in all boxes separately. For each box, the size of
any independent set therein is bounded by the area O(k2) by a simple pack-
ing argument of non-overlapping disks similar to Theorem 3.5. Therefore, an
optimal solution Ii,j can be computed in nO(k2), e.g. by complete enumeration.

Each of the solutions Ii,j forms a candidate for an approximation of the
Maximum Independent Set in G. Let I be the largest set among these can-
didate sets, i.e. |I| := maxi,j |Ii,j |, which is returned as overall solution. A
detailed summary of the approach to compute I is given by Algorithm 3, and
the following theorem establishes the (1 + ε) approximation guarantee.

Theorem 4.1. Let I∗ be a Maximum Independent Set in a UDG G = (V,E).
The set I computed by Algorithm 3 is independent and satisfies

(1 + ε) · |I| ≥ |I∗|.

Proof. Clearly, by the separation of the boxes, each Ii,j consists of separated
independent sets inside the boxes, and the solution I is thus an independent
set.

Consider the vertical separation, and let Gi be the resulting graph For each
i = 0, . . . , k, let Si denote the set of removed vertices, i.e. Si := V (G \ Gi).

Observe that, for 0 ≤ i1 < i2 ≤ k, we have Si1 ∩ Si2 = ∅, and
⋃k

i=0 Si = V .
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Algorithm 3 PTAS Maximum Independent Set (with representation).

Input: Representation {pv = (xv, yv) | v ∈ V } of a UDG G = (V,E), ε > 0
Output: (1 + ε)-approx. Maximum Independent Set I
1: Compute minimum k ∈ N such that ( k

k+1 )2 ≥ 1
1+ε ;

2: I := ∅;
3: for i := 0 to k do
4: Construct Gi by removing all vertices with xv ∈ ]l, l + 1] from G,

l ≡ i mod (k + 1);
5: for j := 0 to k do
6: Construct Gi,j by removing all vertices with yv ∈ ]l, l + 1] from Gi,

l ≡ j mod (k + 1);
7: Compute Maximum Independent Set Ii,j in Gi,j ;
8: if |I| < |Ii,j | then I := Ii,j ;
9: end for

10: end for

With respect to an optimal solution I∗, we then obtain

|S0 ∩ I∗| + |S1 ∩ I∗| + · · · + |Sk ∩ I∗| = |I∗|.

Therefore, looking at the average value over the k + 1 summands, it is

min
0≤i≤k

|Si ∩ I∗| ≤ |I∗|
k + 1

,

and

max
0≤i≤k

|V (Gi) ∩ I∗| = |I∗| − min
0≤i≤k

|Si ∩ I∗| ≥ k

k + 1
|I∗|.

By the same argumentation, this time for fixed Gi and the horizontal separation
Gi,j , j = 0, . . . , k, we have

max
0≤j≤k

|V (Gi,j) ∩ I∗| ≥ k

k + 1
|V (Gi) ∩ I∗|.

Combining these inequations gives

max
0≤i,j≤k

|V (Gi,j) ∩ I∗| ≥
(

k

k + 1

)2

|I∗|.

Since the candidate solutions Ii,j are optimal, we have |Ii,j | ≥ |V (Gi,j) ∩ I∗|,
and the claim follows.
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Figure 4.2: Separated representation of a UDG (k = 3, i = 1, j = 0), Min-DS

case.

Clearly, Algorithm 3 has polynomial run time, which is dominated by the
computation of the (k+1)2 different candidate solutions Ii,j in time nO(k2). Note
that k is bounded depending on ε. Also, an extension to higher dimensions is
straightforward. Furthermore, it is easy to adapt the algorithm and the above
proof to the weighted version of the problem, by replacing the cardinality of the
subsets with their respective weight.

There are several improvements to the above generic separation approach.
By applying dynamic programming techniques along one of the separating di-
mensions, the time bound can be reduced to nO(k) by giving an optimal solution
in Gi for each i = 0, . . . , k. This idea can be extended to geometric objects in
R

d, d ≥ 2, whose projection to the first d−1 coordinates have roughly the same
size, e.g. for map labeling problems treated in [1]. Combined with a dynamic
programming approach which simultaneously considers disks of different size,
the shifting strategy also yields a PTAS for General Disk Graphs [16], thus no
longer requiring the disks to have roughly the same radii.

4.1.2 Minimum Dominating Set

The geometric separation approach can also be used to obtain a PTAS for the
Minimum Dominating Set problem on UDGs. We now present a basic (k+2

k )2-
approximation algorithm also using the shifting strategy. The parameter k ∈ N
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Figure 4.3: Using v 6∈ B as dominating vertex for u1, u2 ∈ B.

is then chosen so that (k+2
k )2 ≤ (1 + ε) holds.

For the dominating set approach, there are some subtle differences to a PTAS
for maximum independent sets:

• Geometric separation cannot be done by removing vertices from horizontal
and vertical strips. A subset of a dominating set no longer needs to be
dominating. Therefore, we separate along horizontal lines at l ≡ i mod k
and vertical lines at t ≡ j mod k (Figure 4.2). This yields boxes of the
form ]l, l + k]×]t, t + k], and for fixed i, j, the boxes form a partition of G.
This way, it is ensured that each vertex in G is dominated.

• A minimum cardinality set dominating the vertices of a box B, say e.g.
B = ]l, l+k]×]t, t+k] for some l and t, may contain vertices from adjacent
strips: A vertex v ∈ V , with pv 6∈ B, but whose unit disk intersects
with disks centered inside B can be used to dominate these vertices, see
Figure 4.3.

So, for the computation of an optimal dominating set for a k × k sized box,
we have to consider adjacent vertices, as well. For the construction of a partial
solution, we expand each box by one unit in each direction, that is, we may use
vertices from this expanded (k + 2) × (k + 2) sized box to dominate vertices
inside the k × k sized box.

The construction of the candidate solution Di,j for a set of boxes Bi,j can
still be done efficiently. Any maximal independent set in a k × k sized box
is of cardinality O(k2), and by Theorem 2.10, such a set is also dominating.
Thus, even considering an enlarged box for an optimal dominating set, the
cardinality of such a set remains O(k2), and can be constructed, e.g. by complete

enumeration in nO(k2). Due to k being bounded depending on ε, the overall run
time of the algorithm is thus polynomial.

Algorithm 4 presents the modified PTAS for the Min-DS problem on UDGs
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Algorithm 4 PTAS Minimum Dominating Set (with representation).

Input: Representation {pv = (xv, yv) | v ∈ V } of a UDG G = (V,E), ε > 0
Output: (1 + ε)-approx. Minimum Dominating Set D
1: Compute minimum k ∈ N such that (k+2

k )2 ≤ 1 + ε;
2: D := ∅;
3: for i := 0 to k − 1 do
4: for j := 0 to k − 1 do
5: Partition V along the k × k sized boxes yielding sets Bi,j :=

{v ∈ V | pv ∈ ]l, l + k]×]t, t + k], l ≡ i mod k, t ≡ j mod k};
6: For each B ∈ Bi,j , compute a Minimum Dominating Set for B in G,

and combine these to Di,j ;
7: if |D| > |Di,j | then D := Di,j ;
8: end for
9: end for

with representation. For the quality of the solution, we have the following
theorem.

Theorem 4.2. For a UDG G = (V,E), let D∗ denote a Minimum Dominating
Set of G. Then, Algorithm 4 constructs a dominating set D of cardinality

|D| < (1 + ε) · |D∗|.

Proof. It is easy to see that D dominates V since the k× k sized boxes for each
choice of i and j are cover the entire graph.

Consider the vertical separation only. Then, for some iteration 0 ≤ i′ < k,
at most 2

k · |D∗| vertices fall into the additional unit intervals left and right of
the lines that partition the graph. This is due to the fact that each vertical unit
interval, over all k iterations, is considered at most once left of each strip, and
at most once right of each vertical strip of width k.

The cardinality of the dominating set for all these strips, given by the union
of the optimal dominating sets for each extended strip ]l − 1, l + k + 1] with
l ≡ i′ mod k, is then no more than |D∗| + 2

k · |D∗| = k+2
k · |D∗|.

By the same argumentation, we can obtain a (k+2
k )-approximate dominating

set inside each of the above horizontal strips, and sequential application yields
the claim.

Again, from the proof, an extension to higher dimensions is straightforward.
A slightly modified algorithm with adjacent k × k sized boxes gives a PTAS
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for the Minimum Vertex Cover problem [30]. For the weighted dominating set,
this approach is no longer applicable due to the fact that the cardinality of a
weighted dominating set inside a box can no longer be bounded. In [9], the
above approach is extended towards the Minimum Connected Dominating Set
problem.

4.2 Local Neighborhood Based Schemes

As seen in Section 3.4, the case when no geometric representation is available is
significantly different already for UDGs. We cannot easily make this information
available to an algorithm. Next, we go on to present an approach that no longer
relies on positional information of the vertices, but assumes only knowledge of
the adjacency of each vertex in the graph. Additionally, we no longer restrict
the discussion to UDGs, but assume the graph G = (V,E) to be of polyno-
mially bounded growth, thus completely abandoning any underlying geometric
structure.

The following discussion follows [48] and [47], where robust PTASs for the
Max-IS and Min-DS problems respectively are presented for UDGs without
geometric representation. In order to simplify the presentation of the approxi-
mation schemes, we introduce some definitions and notation, including the basic
definition of collections of d-separated neighborhoods in G.

Definition 4.3. For a graph G = (V,E), let S = {S1, . . . , Sk} be a collection
of subsets of vertices Si ⊆ V, i = 1, . . . , k, with the following property:

for any two vertices s ∈ Si and s̄ ∈ Sj , i 6= j, dG(s, s̄) > d.

We refer to S as a d-separated collection of subsets.

It is easy to see that the subsets of any d-separated collection, d ≥ 0, are
mutually disjoint. We call a d-separated collection S = {S1, . . . , Sk} exhaustive
if for every vertex v ∈ V , there exists a vertex s ∈ ⋃

Si such that dG(v, s) ≤ d.
An example of an exhaustive 2-separated collection is given in Figure 4.4. The
grey areas mark the different subsets that make up the collection; vertices which
are not part of it, and thus separate the subsets, are white.

Denote by P(V ) the set of all subsets of vertices. We then define two func-
tions I : P(V ) → P(V ) and D : P(V ) → P(V ) which return an independent
set of maximum cardinality and a dominating set of minimum cardinality re-
spectively for the subset given as argument. For a subset V ′ ⊆ V , the set
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Figure 4.4: Example of a 2-separated collection S = {S1, . . . , S6}

I(V ′) is independent in V ′, and D(V ′) dominates V ′. For D(V ′), the inclusion
D(V ′) ⊆ V ′ needs not to hold. Therefore, in the following, the function D(.) is
always computed with respect to the entire underlying graph G. However, it is
easy to see that V ′ ⊆ Γ(D(V ′)) and that D(V ′) ⊆ Γ(V ′) hold.

Using the above definitions, we are thus interested in a polynomial time
approximation of I(V ) and D(V ) within a factor of 1+ε for any given ε > 0. Due
to the intractability of the corresponding optimization problems, we resort to
an implicit divide-and-conquer approach using local neighborhoods and partial
solutions therein.

For some vertex v ∈ V , and its r-th neighborhood Γr(v), we use Ir(v) and
Dr(v) to denote the independent set I(Γr(v)) and the dominating set D(Γr(v))
for Γr(v). Further on, in case the vertex v is unambiguous, we omit indexing
the respective neighborhoods and subsets with this central vertex.

Suppose the radius r of a neighborhood Γr is bounded. Then by the definition
of Bounded Growth Graphs, and the fact that any maximal independent set is
also dominating (Theorem 2.10),

|Dr| ≤ |Ir| ≤ p(r)

holds. With this bound on the cardinality of the locally optimal solutions, it

58



4.2. LOCAL NEIGHBORHOOD BASED SCHEMES

becomes clear that we can obtain both optimal solutions Ir and Dr in time
nO(p(r)) for this neighborhood Γr.

4.2.1 Maximum Independent Set

We now present an approach that gives the PTAS for the Maximum Independent
Set problem on a polynomial BGG G = (V,E). The basic idea of is simple. We
start with an arbitrary vertex v ∈ V , and consider for r = 0, 1, 2, . . . , the r-th
neighborhoods Γr(v) = Γr and optimal independent sets Ir(v) = Ir ⊆ Γr therein.

We keep expanding the neighborhoods as long as

|Ir+1| > (1 + ε) · |Ir|

holds. Let r̄ denote the smallest r ≥ 0 for which this condition is violated. Such
an r̄ indeed exists, and it is bounded by a constant that only depends on ε.

Lemma 4.4. Let G = (V,E) be a graph of polynomially p-bounded growth.
There exists a constant c = c(ε) such that r̄ ≤ c.

Proof. Let r < r̄. By definition of r̄, we then have for r

|Ir| > (1 + ε)|Ir−1| > · · · > (1 + ε)r|I0| = (1 + ε)r.

Since the graph G is of polynomial bounded growth, we also have |Ir| ≤ p(r).
By comparison, i.e.

p(r) ≥ |Ir| > (1 + ε)r,

the claim follows.

To achieve an independent set for the graph G, we iteratively apply the above
scheme. Each time the expansion is stopped, we remove the neighborhood
Γ̄r+1 from G, and combine Ir̄ with the partial solution I obtained thus far.
Since Ir̄ ⊆ Γr, while we remove Γ̄r+1, the set Γ̄r is 1-separated to all sets to
be calculated in the remaining process. This implies that the created sets Γ̄r

during the complete algorithm form a 1-separated collection. This collection of
subsets is also exhaustive since we continue creating partial solutions until the
remaining graph is empty.

A detailed summary of the above approach is given by Algorithm 5, and we
now prove its correctness and polynomial complexity starting with the indepen-
dence property of the returned solution.
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Algorithm 5 PTAS Maximum Independent Set.

Input: G = (V,E) polynomial BGG, ε > 0
Output: (1 + ε)-approx. Maximum Independent Set I
1: I := ∅;
2: while V 6= ∅ do
3: Pick v ∈ V ;
4: r := 0;
5: while |Ir+1(v)| > (1 + ε) · |Ir(v)| do
6: r := r + 1;
7: end while
8: I := I ∪ Ir(v);
9: V := V \ Γr+1(v);

10: end while

Lemma 4.5. The solution I created by Algorithm 5 forms an independent set
in the graph G.

Proof. This follows directly from the separation of the neighborhoods consid-
ered: each v ∈ V \ Γ̄r+1 has no neighbor in Γ̄r, and thus not in Ir̄ ⊆ Γ̄r.

In order to motivate that all operations can be completed in polynomial run
time, note that we only need to consider a single iteration, as the number of new
central vertices picked in the algorithm is limited by n. Due to the definition of
a polynomial BGG, and the constant established by Lemma 4.4, every operation
can be completed in polynomial time, with the degree only depending on ε > 0,
but not on the size of the graph. It remains to show that the cardinality of the
independent set I meets the desired approximation guarantee of (1 + ε).

Theorem 4.6. Let I∗ := I(V ) be a Maximum Independent Set in a polynomial
BGG G = (V,E). The independent set I computed by Algorithm 5 satisfies

(1 + ε) · |I| ≥ |I∗|.

Proof. Suppose inductively that Algorithm 5 computes a (1 + ε)-approximate
independent set I ′ ⊆ V \ Γ̄r+1 for G′ = G[V \ Γ̄r+1].

By definition of r̄, we have

|Ir̄+1| ≤ (1 + ε) · |Ir̄|.
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Since the cardinality of the part of the optimal set I∗ which lies in G[Γ̄r+1] is
bounded by the cardinality of Ir̄+1, we get

|Γ̄r+1 ∩ I∗| ≤ |Ir̄+1| ≤ (1 + ε) · |Ir̄|.

Further, by inductive assumption, I ′ is (1 + ε)-approximately optimal for G′.
Therefore,

|V (G′) ∩ I∗| ≤ |I(V (G′))| ≤ (1 + ε) · |I ′|.
Adding the two inequalities, we obtain

|I∗| ≤ (1 + ε) · (|Ir̄| + |I ′|) = (1 + ε) · |I|.

Note that the Algorithm 3 actually returns a (1 + ε)-approximate indepen-
dent set for any undirected graph given as input. We have only used the specific
structure of polynomial BGGs in Lemma 4.4 in order to bound the radius of
the largest neighborhood we need to consider during execution. The criterion
to stop expanding a neighborhood is met eventually in any undirected graph,
however, possibly while considering an O(n)-neighborhood or eventually G it-
self.

Coming back to the run time of Algorithm 5, we see that the time needed for
completion of the algorithm is dominated by the constant c = c(ε) of Lemma 4.4.
To be more precise, the run time dominated by the time needed to construct an
optimal solution for Γ̄r+1(v), r̄ ≤ c.

Using the inequality log(1+ε) > 1/2 ·ε for sufficiently small ε, we can bound
the constant c by O(1/ε log 1/ε). The overall run time of the approach is thus
nO(1/ε log 1/ε).

4.2.1.1 Maximum Weight Independent Set

The previous approximation scheme can easily be adapted for the case that each
vertex v ∈ V is given a weight wv. Without loss of generality, we assume wv > 0
for every v ∈ V . Recall that in this case, we are interested in an independent set
I ⊆ V of high total weight W (I) :=

∑

i∈I wi in G. We now present the necessary
modifications to the previous algorithm in order to obtain an independent set
of weight at least (1 + ε)−1 the maximum total weight of any independent set
in the polynomial BGG.

The algorithm again follows the idea of expanding the local neighborhood
of a central vertex v. This time, however, the central vertex v is chosen to be
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a vertex with maximum weight wv = max{wi | i ∈ V } in the remaining graph
G. Then, we compute an independent set Ir ⊆ Γr(v) of maximum weight for
increasing radii r until the criterion

W (Ir+1) > (1 + ε) · W (Ir)

is violated. Let r̄ denote the smallest r ≥ 0 for which this is the case.

Lemma 4.7. Let G = (V,E) be a p-BGG. There exists a constant c = c(ε)
such that r̄ ≤ c.

Proof. Adapting the proof of Lemma 4.4, for r < r̄ we get

W (Ir) =
∑

i∈Ir

wi ≤
∑

i∈Ir

wmax = |Ir| · wmax,

and

W (Ir) > (1 + ε) · W (Ir−1) > . . . > (1 + ε)r · W (I0) = (1 + ε)r · wmax

respectively. Since |Ir| ≤ p(r), combining the above two inequalities again yields
the claim.

As a consequence, the running time of this algorithm remains polynomial in
the weighted case. Furthermore, the approximation ratio can be guaranteed by
the following theorem.

Theorem 4.8. The adapted algorithm, i.e. choosing a central vertex of maxi-
mum weight in G in each round, creates an independent set I of weight

(1 + ε) · W (I) ≥ W (I∗),

where I∗ denotes an optimal solution to the Maximum Weight Independent Set
problem on G.

Proof. Let V ′ := V \ Γ̄r+1(v), and assume inductively that I ′ ⊆ V ′ is a (1 + ε)-
approximate weighted independent set in G[V ′]. Clearly, Ir̄ ∪ I ′ is an indepen-
dent set in G.

For the weighted independent set in the neighborhood Γ̄r+1(v), we have

W (I∗ ∩ Γ̄r+1(v)) ≤ W (Ir̄+1) ≤ (1 + ε) · W (Ir̄)

from the criterion to stop expanding the neighborhoods.
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For the weight W (I) = W (Ir̄ ∪ I ′) of the overall solution set I returned by
the algorithm we then get

W (I∗) = W ((I∗ ∩ Γ̄r+1(v) ∪ (I∗ ∩ V ′))

= W (I∗ ∩ Γ̄r+1(v)) + W (I∗ ∩ V ′)

≤ (1 + ε) · W (Ir̄) + (1 + ε) · W (I ′)

= (1 + ε) · W (Ir̄ ∪ I ′)

= (1 + ε) · W (I).

Summarizing, we have the following corollary for independent sets on graphs
of polynomially bounded growth.

Corollary 4.9. There exists a PTAS for the Maximum (Weight) Independent
Set problem on graphs of polynomially bounded growth. In addition to the desired
approximation guarantee, this PTAS requires only adjacency information of the
input graph.

4.2.2 Minimum Dominating Set

In this part, we present a polynomial-time approximation scheme for the Min-
imum Dominating Set problem on graphs of polynomially p-bounded growth.
The approach follows the implicit separation idea of the PTAS for the Max-IS

problem on this class of graphs presented in Section 4.2.1. However, while in the
previous section, the separation strategy and the overall approximation followed
by rather simple arguments, for the Min-DS problem, some attention has to be
paid to the manner the local neighborhoods are created and put together.

Again, we use local neighborhoods of bounded radius, and optimal partial
solutions therein, to obtain a PTAS. Recall that for neighborhoods Γr(v), v ∈ V,
in graphs of polynomially p-bounded growth, we can obtain a dominating set
Dr(v) = D(Γr(v)) of minimum cardinality in time nO(p(r)).

The main part of the algorithm now consists of iteratively constructing dom-
inating sets for the local neighborhoods Γr, and to stop if the cardinality of these
dominating sets does not grow too much any more. To be more precise, we stop
expanding the radius r of the neighborhoods if

|Dr+2(v)| > (1 + ε) · |Dr(v)|

is violated.
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Algorithm 6 PTAS Minimum Dominating Set.

Input: G = (V,E) polynomial BGG, ε > 0
Output: (1 + ε)-approx. Minimum Dominating Set D
1: D := ∅;
2: while V 6= ∅ do
3: Pick v ∈ V ;
4: r := 0;
5: while |Dr+2(v)| > (1 + ε) · |Dr(v)| do
6: r := r + 1;
7: end while
8: D := D ∪ Dr+2(v);
9: V := V \ Γr+2(v);

10: end while

Recall the possibility of vertices outside a subset being able to dominate
vertices inside this subset. The local dominating sets are always created with
respect to G, for neighborhoods Γr, we have Dr ⊆ Γr+1. Therefore, in order to
have sufficient separation, we need to consider a 2-separated structure given by
the neighborhoods.

The approach constructs a 2-separated collection of neighborhoods given by
the Γ̄r(v), where r̄ denotes the radius upon stopping to expand the neighbor-
hoods. At this point, we remove Γ̄r+2 from G and keep Dr̄+2 as part of the
solution. The overall separation can then easily be seen by inductive argumen-
tation: each neighborhood removed from the remaining set V of vertices satisfies
the separation property with respect to previously removed neighborhoods and
the resulting reduced set V for the following iteration. The resulting algorithm
from the above approach is given by Algorithm 6.

The following lemma then gives a lower bound for partial dominating sets
of 2-separated collections with respect to an optimal dominating set for a graph
G.

Lemma 4.10. Let D∗ := D(V ) be a Minimum Dominating Set in a graph
G = (V,E). For a 2-separated collection S = {S1, . . . , Sk} in G, it is

|D∗| ≥
k∑

i=1

|D(Si)|.

Proof. For each subset Si ∈ S, consider the neighborhood Γ(Si). As a direct
consequence of the definition of 2-separated subsets, these neighborhoods are
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pairwise disjoint. Furthermore, any vertex outside Γ(Si) has distance more than
one to all vertices in Si. Therefore, D∗ ∩ Γ(Si) dominates Si.

On the other hand, also D(Si) ⊆ Γ(Si) dominates Si using a minimum
number of vertices. Therefore, we obtain

|D∗ ∩ Γ(Si)| ≥ |D(Si)|.

Combining this observation for all subsets of S, we get

|D∗| ≥
k∑

i=1

|D∗ ∩ Γ(Si)| ≥
k∑

i=1

|D(Si)|,

as claimed.

Looking at such a 2-separated collection, together with related subsets and
bounded cardinality dominating sets for these, we extend the above Lemma 4.10
to receive an upper bound.

Corollary 4.11. Let S = {S1, . . . , Sk} be a 2-separated collection in G =
(V,E), and let T1, . . . , Tk be subsets of V with Si ⊆ Ti for all i = 1, . . . , k.
If there exists a bound ρ ≥ 1 such that

|D(Ti)| ≤ ρ · |D(Si)|

holds for all i = 1, . . . , k, then the set T :=
⋃k

i=1 D(Ti) satisfies

|T | ≤ ρ · |D∗|,

where D∗ denotes a Minimum Dominating Set in G.

Proof. |⋃k
i=1 D(Ti)| ≤

∑k
i=1 |D(Ti)| ≤ ρ · ∑k

i=1 |D(Si)| ≤ ρ · |D∗|.

The partial solutions taken from the respective (r̄+2)-neighborhoods Γ̄r+2 in
each iteration thus satisfy the desired approximation guarantee. Furthermore,
the following lemma establishes the overall domination property for the partial
solutions D(Γ̄r+2).

Lemma 4.12. The set D returned by Algorithm 6 dominates G = (V,E).

Proof. Let Ni denote the neighborhoods Γ̄r+2(v) removed from V in each iter-
ation i = 1, . . . , k of the algorithm. Then, since we stop the algorithm when
V = ∅ is reached, it is

⋃k
i=1 Ni = V , and each of these neighborhoods Ni is

dominated by D(Ni). Therefore,
⋃k

i=1 D(Ni) dominates G.
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So far, we see that the solution set D returned by Algorithm 6 is a global
(1 + ε)-approximate dominating set for the input graph G. At this point, it
is noteworthy to remind that this approximation guarantee is valid for any
undirected graph G, even if it does not satisfy the bounded growth condition.

It remains to show that the approximation algorithm has polynomial run
time. Clearly, the number of times we have to pick a new central vertex, and
construct local neighborhoods and dominating sets for these is bounded by
n = |V |. We may thus limit the further discussion to one iteration only. Since
a vertex-induced subgraph of a BGG again is a BGG, we focus w.l.o.g. on
the polynomial BGG G = (V,E) in the first iteration, and again show that the
radius of the largest neighborhood we need to consider is bounded by a constant.

Lemma 4.13. Let G = (V,E) be a graph of polynomially p-bounded growth
graph. There exists a constant c = c(ε) such that the radius r of any neighbor-
hood Γr(v) considered in the algorithm is bounded by c, i.e. r ≤ c.

Proof. It is |D(Γ0(v))| = |D(Γ1(v))| = 1, as the central vertex v dominates itself
and all its neighbors.

Consider the criterion for stopping to expand the neighborhoods in Algo-
rithm 6, and consider the inequality |D(Γr+2)| > (1 + ε) · |D(Γr)| for all r ≤ r̄.

First, if r is an even number, we have

p(r + 2) ≥ |D(Γr+2)| > (1 + ε) · |D(Γr)|
> · · · > (1 + ε)r/2 · |D(Γ0)| = (

√
1 + ε)r.

Second, if r is odd, we get

p(r + 2) ≥ |D(Γr+2)| > (1 + ε) · |D(Γr)|
> · · · > (1 + ε)r/2 · |D(Γ1)| = (

√
1 + ε)r.

Since ε > 0, and thus
√

1 + ε > 1, in both cases, the inequalities have to be vio-
lated eventually. Thus, the bound c on the largest radius of the neighborhoods
depends only on the approximation guarantee ε.

If the input graph of Algorithm 6 is of polynomially bounded growth, each
iteration has polynomial running time. The complexity of the computation of
D(Γr(v)) dictates the overall run time of the algorithm. This can be achieved
in nO(p(c)).

We close this part with the following summary.
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Corollary 4.14. There exists a PTAS for the Min-DS problem on graphs of
polynomially bounded growth. In addition to the desired approximation guaran-
tee, the respective approximation schemes require only adjacency information of
the input graph.

4.3 Robustness

We now present a simple way to make the above approximation schemes robust.
In this case, the robust algorithm accepts any undirected graph as valid input,
and either returns a desired approximate solution, or outputs a polynomial cer-
tificate showing that the input graph does not satisfy the structural assumption
of p-bounded growth.

Recall that an algorithm A computes a function f robustly on U ⊆ I if,
for any instance x ∈ I, it either returns f(x) or a certificate showing that
x 6∈ U . In our situation, I is the set of all undirected graphs, and U are all those
graphs that have polynomially bounded growth. The function f computes a
(1 + ε)-approximate subset of the vertices, depending on the problem.

In the previous section, we have seen that the introduced approximation
algorithms actually yield a PTAS when the instance reflects a graph of polyno-
mially p-bounded growth. We thus continue the discussion only for the case that
the undirected graph G = (V,E) presented to the algorithm does not satisfy
the characterization of a polynomially BGG.

Observe that both approximation algorithms return an independent or dom-
inating subset, I or D respectively, for G also in the case that G is not a BGG.
We only use specific properties of BGGs to derive the polynomial run time of the
algorithms. In both problems, the polynomial run time of the approximation
algorithms results from the bound p(r) on the size of any independent set, and
an optimal dominating set in the r-th neighborhood, i.e. |Dr| ≤ |Ir| ≤ p(r).
If, during execution of the algorithm, a neighborhood Γr contains an indepen-
dent set of size larger than p(r), we can use this neighborhood as a polynomial
certificate showing non-membership in the class of p-Bounded Growth Graphs.

By definition of polynomial BGGs, any independent set in Γr has to satisfy
the given bound on the cardinality. For dominating sets, this bound obviously
does not hold. However, before considering dominating sets for a neighborhood
Γr, we can use the greedy approach of Section 2.4 to quickly compute a maxi-
mal independent set as a starting point. This independent set is then used to
guarantee the polynomial run time of the algorithm, making the approach for
the Min-DS approximation scheme robust in the above sense, as well.
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We can thus apply the approximation schemes to any undirected graph which
is believed to be of polynomially bounded growth, without risk of failure, i.e. ex-
ponential running time, if this assumption is wrong. In wireless ad-hoc networks,
this gives the advantage that we can indirectly account for all the uncertainties
and the dynamic behavior which govern the resulting applications: there may
exist wireless communication graphs in very harsh environments for which the
polynomial BGG assumption does not hold. In this case, we at least receive
according feedback.

4.4 Conclusions

In this chapter, we presented polynomial-time approximation schemes for the
Max-IS and Min-DS problems on wireless communication graphs. For geo-
metrically defined intersection graphs, existing algorithms exploit the geometric
information and use a separation strategy to construct several, global candidate
solutions. Among these, a solution which satisfies the desired approximation
guarantee is found and returned. The problem of computing such a solution
without relying on geometric data, but on adjacency information only, used to
be an open problem.

With the direct approach of computing locally optimal, partial solutions in
bounded neighborhoods, we obtain approximation schemes that are independent
of the geometry, and that work for graphs of polynomially bounded growth.
The idea behind this new strategy is to create a global solution based on local
solutions for expanding neighborhoods until a desired quality is met. These
local solutions are then combined in such a way that preserves feasibility and
so that the desired approximation ratio of (1 + ε) is satisfied. We showed that
the diameters of the neighborhoods we need to consider for this approach are
bounded by some constant that only depends on the parameter ε, and not on
the size of the graph.

The approach results in PTASs for the Maximum (Weight) Independent Set
and Minimum Dominating Set problems on these graphs. The overall run time
of the resulting (1 + ε)-approximation algorithms is nO(1/ε log 1/ε).

In light of the intractability to verify whether a given undirected graph
is, e.g., a Unit Disk Graph, we also showed how to make the approximation
algorithms robust. A robust algorithm must always terminate and produce
meaningful output. In our case, the algorithm accepts any undirected graph,
and returns a solution set that satisfies the desired approximation guarantee, or
a certificate that allows the polynomial time verification of non-membership in
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the class of polynomially bounded growth graphs.
For the practical use of these approximation schemes in wireless communi-

cation networks, in addition to not relying on localization of the wireless nodes,
robustness ensures the desired operation by always giving a useful output in
polynomial time.
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Chapter 5

Distributed and Local
Algorithms

In this chapter, we turn our attention towards local, distributed al-
gorithms for independent and dominating sets on graphs of bounded
growth.
In particular, we present a deterministic approach for the LOCAL
model to construct a maximal independent set in O(log ∆ log∗n)
communication rounds for bounded growth graphs.
The result is exploited to transform the approximation schemes of
the previous chapter into local, distributed algorithms for graphs
whose growth is polynomially bounded. The communication com-
plexity of this local approach is also dominated by the above MIS

construction.
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In this chapter, we focus on global structures that are constructed based on
local information and using local message exchange. We present and discuss
approaches in the LOCAL message passing model, where each vertex in the
graph can perform some computations, and communicate only to its direct
neighbors by exchanging messages based on rounds.

The first part of this chapter deals with the local construction of maximal
independent sets in graphs of bounded growth. While from a central perspec-
tive, this is a rather easy task, e.g. by the greedy approach of Section 2.4,
an efficient distributed approach is somewhat harder. Of course, the localized
greedy version constructs a MIS in up to O(n) communication rounds. Espe-
cially in large-scale wireless networks, this time bound is rather large. We show
an approach that works significantly faster. In case of a Unit Disk Graph with
geometric representation, we can exploit this geometric information to create a
MIS in a constant number of rounds. For Bounded Growth Graphs, without
representation, we present an approach that only requires O(log ∆ log∗n) rounds
of communications. This approach then depends only slightly on the size of the
network. The description of the local algorithm to construct a MIS follows [35].

In the second part, localized versions of the approximation algorithms of
the previous chapter are presented. These approximation schemes seem to be
perfectly suited for a distributed algorithm: the global solution is composed of
small, local solutions for neighborhoods of bounded diameter. However, these
local solutions have to be computed such that they do not interfere too much
with each other. In Section 5.2, we show a distributed approach that allows for
the local, non-interfering construction of local, neighborhood based solutions.
Section 5.2 follows [36].

Throughout this chapter, we characterize a subset of vertices by its density
in the graph. This notion of density is defined as follows.

Definition 5.1. Let S ⊆ V be a subset of the vertices of a graph G = (V,E)
such that

⋃

s∈S

Γr(s) = V.

Such a set S is then called r-ruling.

In other words, in an r-ruling set S in G = (V,E), for each vertex u ∈ V \S,
there is a vertex v ∈ S with dG(u, v) ≤ r. If the set S in the above definition
is also independent, we refer to it as an independent r-ruling set. Note in this
context that a maximal independent set is a 1-ruling independent set.
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Figure 5.1: Coloring for the MIS-construction on a UDG.

5.1 Local Construction of Maximal Independent
Sets

Local MIS construction is an important problem, which we discuss in this part
for graphs of bounded growth. We begin by looking at the geometrically defined
intersection graphs. As we have already seen in Chapter 4, the case when
the geometric information of such a graph is available, separation into smaller
subproblems can be used to obtain efficient approaches.

With a geometric representation given, a fast, local MIS-construction is
straightforward as follows. For simplicity, consider a Unit Disk Graph, and
suppose that each vertex knows its position. We then divide the area needed
to draw the graph into squares of side length 1/

√
2. These left-open squares

are enumerated, and each square is then colored with 8 colors according to
the scheme given in Figure 5.1. Note that each vertex can determine its color
without involving its neighbors based on position.

Looking at the respective vertices inside a single square, it is easy to see that
each square induces a clique, and that vertices in two different squares of the
same color are not connected.

We now locally choose, in sequence given by the colors, in each square at
most one non-dominated vertex to be added to a partial solution. Vertices
adjacent to the partial solution are considered dominated. Initially, all vertices
are non-dominated, and once a vertex is dominated, it no longer participates in
the process. Just like in the greedy MIS creation (Section 2.4), a vertex that
becomes dominated informs all neighbors about this change by a respective

73



CHAPTER 5. DISTRIBUTED AND LOCAL ALGORITHMS

message.
Starting with all vertices of color i = 1, each non-dominated vertex of color i

locally determines whether it has the highest identifier among its non-dominated
neighbors of the same color. If this is the case, it joins the partial solution, and
informs all its neighbors about this decision. Since vertices of equal color form
local cliques, this entire process can be done in a single round based on infor-
mation already present at each vertex. Also, after this round and an additional
round for now newly dominated vertices to inform their neighbors, all vertices
of color i are either in the partial solution, or dominated by it.

Clearly, this approach results in a global, maximal independent set. In case
of other geometrically defined intersection graphs, we may have to adjust the
coloring accordingly, and it is easy to see that the number of colors determines
the overall number of rounds: each color results in two rounds of communication,
one round to announce the locally added vertex to the partial solution, and
one round for the other vertices to inform their neighborhood about becoming
dominated.

Coming back to the non-geometric case, we now describe and analyze a dis-
tributed maximal independent set construction for graphs of f -bounded growth.
This algorithm works in three subsequent phases by

• constructing an O(log ∆)-ruling independent set (Section 5.1.1),

• turning this set into a 3-ruling independent set (Section 5.1.2), and

• constructing a MIS from the 3-ruling independent set of the previous stage
(Section 5.1.3).

In the following, we also establish that the overall algorithm terminates af-
ter O(log ∆ log∗n) rounds for BGGs, and requires only short messages of size
O(log n).

5.1.1 Constructing a Sparse Independent Set

The first phase of our MIS construction is a distributed algorithm which
locally computes an O(log ∆)-ruling independent set S. A detailed description
of the first phase is given by Algorithm 7. Before analyzing the algorithm, we
give an informal description of the code.

At the beginning, S is empty and all vertices actively participate in the
construction (denoted by the black color b(v) for v ∈ V ). Vertices are colored
black as long as they have not decided whether to join the independent set S.
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Algorithm 7 Sparse Independent Set (code for vertex v).

Input: G = (V,E).
Output: Sparse independent set S.
1: S := ∅, b(v) := black;
2: while b(v) = black do
3: if ∃u ∈ Γ(v) \ {v} | b(u) = black then
4: d(v) := min{u ∈ Γ(v) \ {v} | b(u) = black};
5: Inform neighbor d(v);
6: Av := {u ∈ Γ(v) | d(u) = v};
7: if Av 6= ∅ then
8: p(v) := min Av;
9: Inform neighbor p(v);

10: end if
11: Bv := {u ∈ Γ(v) | p(u) = v};
12: if (Av = ∅) ∧ (Bv = ∅) then
13: b(v) := white;
14: else
15: Construct maximal independent set I on G = (V ,E)

with V := {u ∈ V | b(u) = black}
and E := {(u, p(u)) | u ∈ V ∧ Au 6= ∅};

16: if v 6∈ I then b(v) := white end if
17: end if
18: else
19: S := S ∪ {v}, b(v) := white;
20: end if
21: end while

As soon as a vertex turns white, it has either joined S, or it has decided not to
join S.

From a general perspective, the aim is to repeatedly eliminate black vertices
from the network until single, locally independent vertices are left. We do so
with the help of an edge-induced subgraph G of bounded degree. The edges of G,
connecting some black vertices in G are chosen as follows (see also Figure 5.2).
First, each black vertex v chooses another black neighbor which we denote by
d(v). Then, each u which has been chosen by at least one neighbor v, selects a
neighbor p(u) for which d(p(u)) = u holds. The edge set of G then consists of all
edges of the form (u, p(u)). In G, each vertex has degree ≤ 2 (see Lemma 5.2).
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All black vertices that have no edge in G incident to them become white, and
thus no longer participate in the process.

On G, we can efficiently construct a maximal independent set I (explanation
follows below). The set I is now used to change the color of vertices: all vertices
from G that are not in the independent set I change their color to white. This
way, the number of black vertices is reduced by at least a constant factor every
time we execute this process (see Lemma 5.4 and Lemma 5.5). As soon as a
black vertex has no more black neighbors, it joins the independent set S, and
also changes its color to white. The basic steps are also explained by the example
in Figure 5.2.

We now consider a single execution of the while loop (lines 3–21) which en-
codes the above approach. Further on, we call such a single while loop execution
a single iteration of Algorithm 7.

Lemma 5.2. In the graph G = (V ,E), every vertex has degree at most 2.

Proof. Consider v ∈ V , then there are at most two vertices adjacent to v by an
edge in E, namely d(v) if p(d(v)) = v, and p(v).

The bounded degree of G allows for the local construction of the MIS I on
G in O(log∗n) rounds using methods described in, e.g., [38, 51]. Each iteration
of the while loop can therefore be achieved in O(log∗n) communication rounds,
and this construction uses only messages of size O(log n).

The remaining black vertices now satisfy the following property.

Lemma 5.3. Let VB := {v ∈ V | b(v) = black}. After k iterations of Algo-
rithm 7, S ∪ VB is a 2k-ruling set in G.

Proof. We prove the lemma by induction over the number k of while loop iter-
ations. Initially all vertices are black, thus the lemma is satisfied for k = 0.

For the induction step, we show that if a vertex v becomes white in an
iteration of the while loop, either v joins S or there is an black vertex at distance
at most 2 from v which remains black at least until the next while loop iteration.
A black vertex v can turn white at three points corresponding to the following
three situation.

• The vertex v joins the set S (line 20), and the condition of the lemma is
met.

• If the vertex v is not in the independent set I, but incident with another
black vertex in G (line 16), v has a neighbor u that belongs to I due to the
domination property of I. This vertex u remains black, with dG(u, v) = 1.
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(a) The links d(v). (b) The links p(v).

(c) G and independent set I. (d) Remaining black vertices.

Figure 5.2: One iteration of Algorithm 7. The white, dashed vertices do not
participate in the execution.

• The last remaining case is that the vertex v has some black neighbor in G,
but in G, the vertex v is isolated (line 13). Since v has a black neighbor,
it has chosen a vertex u = d(v) (line 4). This vertex u, with Au 6= ∅, has
chosen a vertex p(u), and therefore is a vertex of G. Because all vertices
of the MIS I in G remain black, either u or a neighbor w of u is still black
after completing the iteration.

We see that there is a black vertex at distance at most two from v, and by
induction the stated property is valid.

Clearly, Algorithm 7 terminates once there are no black vertices left in G.
The following two lemmas give bounds on the number of rounds needed to
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complete, and to explain the resulting structure in G for general and f -growth
bounded graphs, respectively.

Lemma 5.4. On an undirected graph G = (V,E), Algorithm 7 terminates after
O(log n) iterations with an O(log n)-ruling independent set S.

Proof. Let nB be the number of black vertices at the beginning of an iteration.
We prove that in one iteration, at least nB/3 vertices turn white which proves
the bound on the number of iterations. The second part of the claim then
follows by Lemma 5.3.

Let n ≤ nB be the number of vertices of G in the considered iteration. All
vertices which are not part of G become white. It therefore suffices to prove
that at least one third of the vertices of G change color.

Since G is an edge-induced subgraph of G, all vertices of G have at least
degree 1, that is, G does not contain isolated vertices. Because the maximum
degree of a vertex in G is 2 (Lemma 5.2), the MIS I c consists of at most 2n/3
vertices. Hence, at least n/3 vertices become white because they are not in the
independent set I.

We now turn our attention to f -growth bounded graphs, and show that in
this case, the run time can even be reduced to O(log ∆) iterations, where ∆
denotes the maximal vertex degree in G.

Lemma 5.5. Let G be f-growth-bounded. Algorithm 7 terminates after O(log ∆)
iterations with an O(log ∆)-ruling independent set S.

Proof. Let M be a maximal independent set in G, which we use to create the
following cluster graph. We associate a cluster Cu with each vertex u ∈ M , and
each vertex v 6∈ M is assigned to the cluster Cu of an adjacent vertex u ∈ M .
Each cluster then contains at most ∆ + 1 members. The cluster graph GC is
then given by the vertex set {Cu | u ∈ M}, and two clusters are connected if
and only if there is an edge in G connecting two vertices of the two clusters.

Clearly, if two clusters Cu and Cv are connected in GC , then there exists a
path of length less than or equal to 3 in G between u and v. Since G is f -growth
bounded, there are no more than f(3) = O(1) independent vertices at distance
at most 3 from any vertex v ∈ V . Therefore, the maximum degree of GC is
bounded by ∆GC

≤ f(3).
We now show that the maximum number of black vertices per cluster is

reduced by a factor of 2 in a constant number of iterations of Algorithm 7. To
be more precise, let α be the maximum number of black vertices of a cluster at
iteration t. We show that there is a constant k so that at iteration t + k, each
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Figure 5.3: Cluster Cu with the edges in G.

cluster only contains at most α/2 black vertices. Since α ≤ ∆ + 1 at t = 0, this
immediately yields the claim of the lemma.

Now, we consider to a single iteration, and a single cluster Cu with c black
vertices. Since we are only interested in the black vertices, we omit all white
vertices for now. We partition the c vertices of Cu into 3 groups Cin, Cout, and
Ciso according to their neighbors in G. All vertices in Cu that are not in G,
i.e. that are isolated, are in Ciso, all vertices which are in G adjacent to another
vertex from Cu are in the set Cin, and the remaining vertices which are only
connected to other vertices outside Cu in G are grouped together in Cout. The
three groups are also explained in the example in Figure 5.3. Here, we have
Ciso = {v1}, Cin = {v2, . . . , v7}, and Cout = {v8, v9, v10}; adjacent black vertices
not in Cu are dashed.

Looking at a MIS I on G, we further divide the vertices in Cout into the
vertices which remain black, i.e. that belong to the independent set I, denoted
by C+

out, and those who turn white, denoted by C−
out. With the above sets, let

cin := |Ciso| + |Cin| + |C−
out| and cout := |C+

out|. Then, we see that c = cin + cout

clearly holds.

Due to ∆G ≤ 2, during the construction of the MIS I on G, at least a
third of the vertices in Cin turn white. All vertices in Ciso and C−

out become
white. Therefore, in one iteration, at least cin/3 vertices in Cu turn their color
to white.

The vertices in C+
out belong to the MIS I, and therefore all vertices outside

the cluster Cu that are adjacent to a vertex in C+
out become white. Since in G,

each vertex of C+
out is adjacent to at least one vertex outside Cu, and each vertex
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outside Cu is adjacent to at most 2 vertices in C+
out, at least cout/2 vertices of

clusters outside Cu which are connected to Cu become white.
Coming back to a sequence of consecutive iterations, assume that after k

iterations, there are still α/2 black vertices in Cu. Let c(j), c
(j)
in , and c

(j)
out denote

the respective values of c, cin, and cout for the j-th iteration. Since there are at
most α black vertices at the beginning, we have

1

3
·

k∑

j=1

c
(j)
in ≤ α

2

because otherwise at least α/2 vertices would have changed their color to white.
The number of vertices in the adjacent clusters of Cu in GC that have become
white then is at least

1

2
·

k∑

j=1

c
(j)
out =

1

2
·

k∑

j=1

(

c(j) − c
(j)
in

)

≥ 1

2
·

k∑

j=1

α

2
− 1

2
·

k∑

j=1

c
(j)
in

≥ k · α

4
− 1

2
· 3α

2

=
k − 3

4
· α.

At the beginning of iteration t, there are no more than ∆GC
· α black vertices

all the adjacent clusters to Cu. Combining this with the above inequality, we
get that after O(∆GC

) = O(f(3)) = O(1) iterations, there are no black vertices
left in the neighboring clusters. From that point on, at least a third of the black
vertices in Cu turn white in each further iteration.

Overall, this leads to at most O(log α) = O(log ∆) iterations of the while
loop.

Summarizing the above properties, we obtain the following theorem that
concludes the first phase of the overall local MIS construction. Note that the
information sent during the execution of the algorithm consists of vertex iden-
tifiers and color changes only. The construction of a maximal independent set
on G in each iteration requires O(log∗n) time and messages of size O(log n),
and this dominates the overall time for a single iteration of the while loop of
Algorithm 7.
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Algorithm 8 Dense Independent Set.

Input: t-ruling independent set S on G = (V,E) (t > 3).
Output: 3-ruling independent set S.
1: while S is not 3-ruling do
2: for each u ∈ S do
3: Compute Ŝu ⊆ Γ4(u) such that S ∪ Ŝu is an independent set

and such that S ∪ Ŝu dominates Γ3(u);
4: Construct MIS I on G[

⋃

u∈S Ŝu];
5: S := S ∪ I;
6: end for
7: end while

Theorem 5.6. Algorithm 7 is a local, distributed algorithm which computes an
independent set S in G.

• On an f-bounded growth graph, S is an O(log ∆)-ruling set, and the algo-
rithm terminates after O(log ∆ log∗n) communication rounds.

• For general graphs, the algorithm terminates in O(log n log∗n) rounds with
an O(log n)-ruling set S.

Furthermore, all messages are of size O(log n).

5.1.2 Making a 3-ruling Independent Set

In this second phase of the local MIS computation, we show how to turn the
relatively sparse, O(log ∆)-ruling independent set S into a 3-ruling independent
set. More precisely, for a BGG G = (V,E), we show for a t-ruling independent
set S (t > 3) how to transform S into a 3-ruling independent set in O(t · log∗n)
communication rounds. This is done using small messages of size O(log n).
Algorithm 8 describes the method to achieve this.

The basic idea behind the algorithm is to enlarge the independent set around
already existing vertices to make it denser in each step. Each vertex in the
existing independent set S adds a set of independent vertices Ŝu to the set
so that the 3-rd neighborhood is dominated by S ∪ Ŝu. However, since the
addition of vertices is not globally controlled, it is not guaranteed that the
overall resulting set S ∪⋃

u∈S Ŝu is again independent. Therefore, before going
on, the independence property of S needs to be restored by computing a maximal
independent set I on the newly added vertices, and adding I to S.
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y ∈ Ŝu

z ∈ I

vxu ∈ S

Figure 5.4: Proof of Lemma 5.7. It is dG(u, v) = t. Note that x = y or y = z
may be, but dG(v, z) ≤ t − 1 then holds, as well.

The following lemma shows that in each iteration, the maximum distance of
any vertex to a vertex in S is reduced by at least 1.

Lemma 5.7. Let S be a t-ruling independent set (t > 3) on a BGG. After one
iteration of Algorithm 8 (lines 2–6), S is a (t − 1)-ruling independent set.

Proof. The sets Ŝu are constructed such that vertices in S and Ŝu are non-
adjacent. Furthermore, the set I ⊆ ⋃

u∈S Ŝu is independent. This shows that
the set S remains an independent set throughout the execution of the algorithm.

In order to prove that the maximum distance from a vertex to another vertex
in S decreases, consider a vertex v ∈ V for which the distance to the closest
vertex u ∈ S is t > 3. We show that after one iteration of the while loop, the
distance from v to another vertex in the expanded set S ∪ I is at most t − 1.

The set Ŝu is explicitely constructed to ensure that every vertex w ∈ Γ3(u)
has a neighbor in S ∪ Ŝu. On a shortest path from v to u, which has length
t, let x be the vertex at distance exactly 3 from u, i.e. that has a distance of
t−3 from v (see also Figure 5.4). By construction of Ŝu, there must be a vertex
y ∈ Ŝu with (x, y) ∈ E (or x = y). This vertex y has distance at most t−2 from
v. Note that y cannot be in S since this would contradict v being of distance
t from a vertex in S. For the same reason, no neighboring vertex from y can
be contained in S. During the construction of the maximal independent set I,
either y or a neighboring vertex z (with (y, z) ∈ E) are added to I. This vertex
z has at most a distance of t− 1 from v. Therefore, the distance between v and
S ∪ I is at most t − 1. The claim follows.

Now, we go on to show that Algorithm 8 can indeed be implemented effi-
ciently by a distributed approach for graphs of bounded growth. The following
lemma also shows that this can be achieved using only small messages.
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Lemma 5.8. Let G be a growth bounded graph. On G, Algorithm 8 can be
executed by a distributed approach within O(t log∗n) rounds of communication,
and using messages of size O(log n).

Proof. By Lemma 5.7, the algorithm terminates after less than t iterations of
the while loop. It thus remains to show that each iteration can be achieved in
O(log∗n) rounds using small messages.

First, we consider the local construction of Ŝu for some vertex u ∈ S. This
is done by a greedy approach that successively adds candidate vertices to Ŝu

as follows. A vertex v ∈ Γ4(u) can potentially join Ŝu if it has no neighbor
in S ∪ Ŝu and if it has an uncovered neighbor w ∈ Γ3(u), that is, w is not
adjacent to any vertex from S ∪ Ŝu. We call such a vertex candidate. For the
addition of candidates to Ŝu, we then follow a simple greedy strategy based on
the identifier to break ties: we add a candidate v if it has a lower identifier than
all its adjacent candidates.

Now, for a vertex v to figure out if it is a candidate and whether it has locally
the lowest identifier can be done in 3 rounds:

1. All vertices in S ∪ Ŝu inform their neighbors about their membership.

2. All dominated vertices in Γ3(u) repeat this notification, however this time
stating that they are adjacent to a vertex in S ∪ Ŝu.

3. A vertex can now decide on becoming a candidate. All candidates inform
their neighborhood about their identifier.

We call these three rounds a step. In each step, at least the candidate with
overall lowest identifier joins the set S̄u. Due to G being growth bounded, there
are at most f(4) = O(1) independent vertices in Γ4(u). Hence, the cardinality of
Ŝu is bounded by a constant, and therefore also the number of steps to complete
the greedy creation of it.

Note that if we allow the messages exchanged to be of arbitrary size, 8
communication rounds would suffice to construct Ŝu: the central vertex u ∈ S
collects all information about its 4-th neighborhood, centrally computes Ŝu, and
informs all respective vertices.

Now, it remains to show that the construction of the MIS I (line 4) can
be done using O(log∗n) rounds on the graph G′ := G[

⋃

u∈S Ŝu]. Consider a

vertex v from G′, i.e., v ∈ Ŝu for some u ∈ S. Further, let w be a neighbor
of v in G′. Then, w ∈ Ŝū for some ū ∈ S \ {u}. Since Ŝū ⊆ Γ4(ū), we have
dG(v, ū) ≤ 5. Because G is f -growth bounded, there are at most f(5) possible
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vertices ū ∈ S which can be the cause for a neighbor w of v. Furthermore, the
number of possible neighbors of v in each Ŝū is bounded by f(1). Therefore,
the maximum degree of G′ can be bounded by f(5) · f(1) = O(1). For graphs
of bounded degree, a maximal independent set I can be computed locally in
O(log∗n) communication rounds using messages of size O(log n) [38, 51].

To conclude this phase of the local MIS construction, we summarize Algo-
rithm 8 as follows.

Theorem 5.9. Let G = (V,E) be of bounded growth. Then, a t-ruling inde-
pendent set can be transformed into a 3-ruling independent set in O(t log∗n)
communication rounds using messages of size O(log n).

5.1.3 Turning the 3-ruling Independent Set Into a MIS

In order to turn a 3-ruling independent set S into a maximal independent set,
we locally construct a cluster graph G induced by S as follows. For each u ∈ S,
the corresponding cluster Cu is defined as the set of vertices v ∈ V for which
u is the nearest vertex in S; ties are broken arbitrarily. The cluster graph G
is then given by the vertex set {Cu | u ∈ S} of the clusters, and two clusters
are connected if and only if there is an edge in G connecting vertices of the two
clusters.

Since S is a 3-ruling set, the distance in G between the centers of two adjacent
clusters in G is at most 7. The maximal degree of G is therefore bounded by f(7)
if G is f -growth bounded. Using, e.g., local algorithms presented in [38, 51],
we can color the cluster graph G using at most f(7) + 1 colors. This can be
achieved with small messages of size O(log n).

Each vertex v ∈ V is now colored with the color χv = χu of the cluster Cu it
belongs to. Using this color, v is now given a weight composed of its color and
its identifier, denoted by wv :=< χv, idv >. This weight induces a lexicographic
order on V where a vertex v ∈ V is placed before another u ∈ V if it has a lower
color, or, in case of equal color, has a lower identifier.

Starting from S as an initial solution, we run the Local-Greedy Algorithm
of Section 2.4 with these weights to obtain a Maximal Independent Set in G.
Generally speaking, vertices of each color sequentially add their contribution
to the MIS. The run time for this weighted graph is given by the following
theorem.

Lemma 5.10. Let G = (V,E) be an f-growth bounded graph, S be a 3-ruling
independent set in G, and assume that every vertex v ∈ V is given a weight wv
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composed of its color in the cluster graph G and its identifier.
Then, the local-greedy approach given by Algorithm 2 (Section 2.4) locally adds
independent vertices up to a maximal independent set in O(f(7) · f(3)) commu-
nication rounds.

Proof. Each cluster Cu, u ∈ S, is a subset of Γ3(u), thus there can be at most
f(3) independent vertices per cluster. Considering all clusters with the overall
lowest color, these are non-adjacent. Due to the order induced by the weights,
the uncovered vertex with lowest identifier in each Cu of this color can join the
partial solution. Thus, after O(f(3)) communication rounds, all vertices of this
color are either in the MIS or adjacent to it.

Subsequently, as soon as there are no uncovered vertices left with color i,
the above argument holds for color i+1. Therefore, after O(f(3) · f(7)) = O(1)
rounds, all vertices are either in the MIS or covered by a vertex from it.

Combining all the three phases of the preceding parts, we obtain the main
theorem of this section on the distributed MIS construction on bounded growth
graphs.

Theorem 5.11. Let G be a graph of f-bounded growth. There is a determin-
istic, distributed algorithm which constructs a maximal independent set on G.
In the LOCAL message passing model, this algorithm requires O(log ∆ log∗n)
communication rounds to terminate, and all messages are of size O(log n).

5.2 Local Approximation Schemes

In this part, we present algorithms that yield efficient, local approaches for
the construction of (1 + ε)-approximate solutions to the Max-IS and Min-DS

problems on a polynomially bounded growth graph G = (V,E) with growth
polynomial p.

These algorithms are based on the approximation schemes presented in the
previous chapter. Of course, the approach taken in Chapter 4 already exhibits
several local properties by only considering the bounded neighborhood of a ver-
tex during the construction of partial solutions. This property can be exploited
and extended towards a distributed, in-network approach in a rather straight-
forward way: always let the vertex with overall lowest identifier gain knowledge
about its neighborhood, and construct a solution as given by the PTAS; then
go on with the remaining vertices. However, while this approach certainly can
be achieved by local message exchange, it is not very efficient. We therefore
consider a more parallelized, local algorithm.
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The main idea behind the local approach is to quickly identify vertices which
are separated far enough so that their neighborhoods do not overlap during the
construction of partial solutions. These vertices then construct local solutions
in parallel. In order to eventually cover the whole graph with partial solutions,
we first identify potential central vertices by a maximal independent set in the
graph, then label these vertices so that two vertices of the same label can perform
in parallel. Such a labeling also gives an order in which additional local solutions
are created in a non-overlapping way if needed to cover the entire graph.

Before presenting the algorithm, we explain the above structure which we
call a colored interference graph, and which forms the core of the algorithm
that gives the local approximation schemes. The vertices of this interference
graph are the potential central vertices, and their colors exactly represent their
respective labels.

From Lemmas 4.4 and 4.13 for the central approximation schemes, we know
that each partial solution Ir̄(v) and Dr̄(v) respectively is inside a bounded
neighborhood around the central vertex v ∈ V if the graph is of polynomially
bounded growth. The radius c of the largest neighborhood can be bounded by
a constant that only depends on the desired approximation factor ε. In the
following, we assume this constant c to be known.

Clearly, for the independent set PTAS, two partial solutions Ir̄1
(v1) and

Ir̄2
(v2) do not interfere if dG(v1, v2) ≥ r̄1 + r̄2 + 1 holds in the original graph

G. For the Min-DS case, two partial solutions Dr̄1+2(v1) and Dr̄2+2(v2) do
not interfere if dG(v1, v2) ≥ r̄1 + r̄2 + 7 holds in G. For simplicity, we go on
considering two neighborhoods to be non-interfering if their central vertices u
and v are at least of distance dG(u, v) ≥ 2c + 7. Such two vertices can compute
partial solutions in parallel, and since these solutions are non-interfering, they
can be added to a global solution without violating feasibility.

On the other hand, identifying such a mutually non-interfering subset of
vertices, and then computing a partial solution does not give a complete global
solution. We need to add partial solutions until the entire graph is consid-
ered. This process can be incorporated in the parallel computing scheme by the
already existing information on interference.

Both non-interference, and the sequence in which vertices add partial so-
lutions is encoded by a coloring of the vertices. This is done such that two
vertices of the same color do not interfere, and the coloring itself gives an order
for the addition of partial solutions. This coloring is locally constructed with
the help of a maximal independent set I and for a resulting interference graph
G = {I, E2c+7} as follows.

A vertex of G is given by a vertex from the independent set I, and two
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vertices are connected if their distance in the original graph G is less than or
equal to 2c + 7. In other words, for u, v ∈ I,

(u, v) ∈ E2c+7 ⇐⇒ dG(u, v) ≤ 2c + 7.

Note that the maximum degree ∆G in G is bounded by p(2c + 7) = O(1) due to
the vertex set I being independent in G. Additionally, two adjacent vertices in G
can exchange messages with one another in a constant number of communication
rounds. We can thus obtain a feasible coloring with no more than ∆G +1 colors
in O(log∗n) rounds [38, 51].

The above structure and ideas are schematically presented in Figure 5.5.
There are four vertices vi, vj , vk, and vl highlighted as vertices of the maximal
independent set I. The radii of their (c + 3)-neighborhoods in G, and the
neighborhoods for which respective partial solutions have been computed are
sketched. It can be seen that the vertex pairs vi, vj and vk, vl of are non-
interfering. Therefore, vi(vk) and vj(vl) may have the same color. Furthermore,
if the color of vi and vj is lower than that of vk and vl, the neighborhoods Γi

and Γj are removed from G before considering Γk and Γl. In this respect, non-
interference remains.

On a more technical side, note that thus far, we have only considered vertices
from the MIS I as possible center vertices of partial solutions. However, for each
vertex in G, we need to ensure that it is also considered when not participating in
a partial solution stemming from an independent vertex. Due to the maximality
of I, each such vertex is adjacent to an independent vertex. We therefore
consider not only v ∈ I during the approach, but the entire neighborhood Γ(v)
in G. Coordinated by v ∈ I, more local solutions are created in sequence with
central vertices in this neighborhood if needed.

There are at most p(1) = O(1) independent vertices in a neighborhood of
a vertex v ∈ I. Looking at the approach for the Max-IS problem, we always
remove the (r̄ + 1)-neighborhood, r̄ ≥ 0, from the set of vertices, thus after at
most f(1) subsequent partial solutions, Γ(v) is considered completely. In case
of a dominating set, since the (r̄ + 2)-neighborhood is removed for a partial
solution, starting the local neighborhood expansion process at any u ∈ Γ(v)
results in all vertices from Γ(v) being considered.

Algorithm 9 more formally gives the above approach for both the Max-IS

and Min-DS problems. From the preceding discussion, and the local construc-
tion of a maximal independent set in a graph of bounded growth of Section 5.1,
we see that the colored interference graph can be computed in O(log∗n log ∆)
communication rounds for polynomial BGGs.
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Figure 5.5: Schematic overview of the local approximation schemes.

Note that the central vertices of each partial solution are able to commu-
nicate with all other vertices in the O(c)-neighborhood in O(c) communication
rounds. The construction of the partial solutions in the second part of the al-
gorithm can be achieved in O(c · p(1) · ∆G) = O(1) rounds due to the parallel
computations of vertices with equal color. The overall communication complex-
ity of Algorithm 9 is thus dominated by the local MIS construction.

Explicitely taking the parameter ε into account, we see that p(c) = 1/εO(1),
and therefore ∆G = 1/εO(1) holds. The overall message time complexity is then
given by O(log∗n log ∆ + log∗n/εO(1)).

We summarize this section by the following theorem.

Theorem 5.12. Let G = (V,E) be a graph of polynomially bounded growth.
There exists a distributed (1+ε)-approximation algorithm in then LOCAL mes-
sage passing model for the Max-IS and Min-DS problems on G. The number
of communication rounds required is O(log∗n log ∆ + log∗n/εO(1)).

As a final remark, we point out that all computations to be performed locally
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Algorithm 9 Local Approximation Scheme.

Input: G = (V,E) polynomial BGG, ε > 0.
Output: (1 + ε)-approx. solution set S.
1: S := ∅;
2: Compute maximal independent set I on G;
3: Construct interference graph G = {I, E2c+7};
4: Color G using ∆G + 1 colors;
5: for k = 1 to ∆G + 1 do
6: for every v ∈ I with color k do
7: while Γ(v) ∩ V 6= ∅ do
8: For some u ∈ Γ(v) ∩ V , compute solution Sr̄ for the neighborhood

Γr̄(u) ∩ V according to the PTAS in Section 4.2;
9: Inform vertices in Γc+3(v) about r̄ and Sr̄, respective vertices are

removed from V ;
10: S := S ∪ Sr̄(u);
11: end while
12: end for
13: end for

at each vertex are also polynomially bounded. (see c.f. Chapter 4).

5.3 Conclusions

In this chapter, we have studied local, distributed approaches for the construc-
tion of independent, and dominating sets in graphs of bounded growth. The
approaches presented do not rely on positional information.

The local construction of a maximal independent set for growth bounded
graphs is discussed. By first computing a sparse, independent set, and then
adding vertices to make this set denser and eventually maximal, we obtain local
approach that completes in O(log∗n log ∆) communication rounds.

Using a MIS as a starting point, we also presented two approaches that
create a (1 + ε)-approximate independent, and dominating set in graphs of
polynomially bounded growth, respectively (ε > 0). The idea behind the ap-
proaches follows the approach presented in Chapter 4, i.e. creating partial so-
lutions in neighborhoods of bounded radius. The respective algorithms require
O(log∗n log ∆ + log∗n/εO(1)) communication rounds.

89



CHAPTER 5. DISTRIBUTED AND LOCAL ALGORITHMS

90



Chapter 6

A Communication Strategy
for Wireless Sensor
Networks

In this chapter, we present EMACs, an integrated approach for a
communication strategy designed for wireless sensor networks. The
resource limitations of such networks, especially in terms of en-
ergy, require a collaborative approach spanning over various layers
of the classical communication stack to be efficient. We combine
a scheduled medium access control mechanism that allows collision
free transmissions of neighboring wireless devices together with an
implicit backbone creation that identifies redundant sensor nodes.
These redundant nodes can then save additional energy by following
a sleeping pattern.
The protocol is completely local, and based on time division multiple
access, where nodes periodically broadcast short messages contain-
ing network and synchronization information. During other times,
nodes can turn off their communication part to save energy.
The EMACs protocol is developed as part of the EYES project on
energy-efficient sensor networks. We also present results obtained
for the approach taken, both in simulation and in a testbed imple-
mentation on wireless node prototypes.
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This chapter presents a cross-layered approach for networking in wireless sensor
networks called EMACs (EYES Medium Access Control Scheme). We show
how a tightly integrated set of networking protocols forms a good solution to
reach the target of an energy-efficient WSN. We combine medium access control
organization with an implicit sleep-state scheduling based on independent and
dominating sets.

We begin the next section with a short introduction to the architecture of
wireless sensor networks as envisioned in the EYES project. Especially, medium
access control schemes are introduced that form the core of the communication
approach. Then, the actual EMACs approach is presented in detail by taking
the local viewpoint of a single sensor node.

Basically, a wireless node has three modes of operation: active, passive, and
sleeping. When a node is active, it contributes to the network by taking part in
forwarding message packets, in accepting packets from other active and passive
nodes, and in keeping the network synchronized in time. Passive nodes on the
other hand conserve energy by only keeping track of a single, neighboring active
node; at other times, they turn off their radio to save energy. A sleeping node
drops out of the communication network for an agreed amount of time, and
upon waking up again has to re-synchronize before participating in the network
again.

The set of active nodes creates a connected, mesh-like structure that domi-
nates the entire communication network. This way, a message sent by any node
can be routed successfully to the respective destination. Transmissions between
active nodes are scheduled in time. In this approach, called time-division mul-
tiple access (TDMA), time is divided into intervals called time slots, and these
time slots are distributed among the nodes. At any point in time, only one node
is locally allowed to transmit or receive a message packet, collisions and result-
ing retransmissions are thus avoided. The distribution of time slots is done so
that simultaneous transmissions are possible if the nodes transmitting in them
are separated far enough not to cause interference. This reuse of time slots is
explained later on in more detail.

In succeeding sections, we present the local algorithms that let a node decide
locally on its role, i.e. being active or not, and that let a node choose a non-
conflicting time slot. We explain in detail how a time slot is organized to
maintain a synchronized, but dynamic network. In the following, we assume the
communication graph of the wireless sensor network to be of bounded growth.

We close the chapter with a short discussion on results on the energy con-
sumption of the proposed protocol by a comparative simulation, and report on
some lessons learned from a practical implementation on actual hardware, the
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Figure 6.1: Wireless sensor network architecture.

EYES prototype sensor nodes. However, since the focus of this chapter is on the
structure itself, and how to create and maintain it, we do not present the entire
simulation set, but only an excerpt. For a complete overview of results of the
scheme, also taking improved routing protocols into account, see [58, 57, 44].

6.1 Wireless Sensor Network Architecture

Ongoing advances in sensor technology, low power analog and digital electron-
ics, and low-power radio design have enabled the development of cheap, small,
low-power sensor nodes that integrate sensing, processing, and wireless commu-
nication capabilities.

From collaboration between large groups of such sensor nodes, intelligent
behavior can emerge, and ultimately the limited capabilities of single sensor
nodes can be surpassed. Sensor nodes are then able to spontaneously create an
ad-hoc network, as well as dynamically adapt to device mobility and failure,
and react to changes in task and network requirements.

For a wireless sensor network, from a very broad perspective, we look at
the following architecture where applications rely on a two-layer structure, with
specific, well-separated tasks (see Figure 6.1, [18]).
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• The lower layer, called Sensors and Networking Layer, provides interfaces
of each node to the environment both for in-network communication and
sensing. It contains basic communication protocols regulating access to
the wireless medium, transportation of message packets to neighboring
nodes, and ad-hoc routing protocols. All these protocols must be able
to adapt to the dynamic behavior of the network, and account for the
limited resources of each individual node as well as the resulting network
in general. In this layer, energy-efficiency is crucial. This layer works on
and with the communication graph created by the wireless sensor nodes.

• The upper layer, called Distributed Services Layer, provides general ser-
vices that support sensor network applications. These services are usually
independent of specific sensor nodes, and provide a less dynamic view of
the network as a whole. Specifically, there are two major services to be
identified at this layer, a lookup and an information service. The lookup
service identifies nodes based on their roles, capabilities, and produced
data. It supports mobility, instantiation, and reconfiguration issues of the
network. The information service deals with all aspects of the actual data,
including access, manipulation, dissemination, and most importantly ag-
gregation of possibly vast quantities of low-level information from the indi-
vidual sensors. This layer abstracts away from the wireless communication
graph, towards graph structures based on logical data structures.

On top of this architecture, applications can be created, usually from a global
network perspective and without consideration of actual communication issues.

Sensor networks are expected to be left unattended for long periods of time.
Each sensor running on batteries, this requires highly energy efficient approaches
at all layers. In the following, we are interested in the Sensors and Networking
Layer, and there mainly in the parts that deal with inter-node communication.
In contrast to traditional communication protocol stacks that assume an excess
of resources, and that can spare the energy and memory to send many messages,
we consider an integrated approach that mitigates this overhead in energy usage.

6.1.1 Medium Access Control

The center of the following discussion is medium access control (MAC) and the
resulting scheduled transmissions of data packets to and from a wireless node.
Generally speaking, medium access protocols are used to control transmission
requests, authentication and other overheads in a communication network. In
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Operation Energy

Transmit 21mW
Receive 14.4mW
Standby 15µW

Table 6.1: Transceiver data (RFM TR 1001).

other words, the task of such a protocol is to ensure that no collisions occur so
that message packages can be successfully sent by all nodes in a wireless network.
A MAC protocol deals with communication between nodes that are within radio
range of each other, multihop communication between nodes further separated
in the network is taken care of by routing protocols.

Seen from a local perspective, a MAC scheme controls the use of the radio
within a node. During the design of the networking protocol, we assume a
single channel transceiver, that is, all nodes transmit at the same frequency.
Such a transceiver basically has three general states of operation: transmit,
receive, and standby. Considering the actual hardware used for wireless sensor
nodes, transmitting consumes more power than receiving and the standby power
consumption is lower than the other two by a large factor. As an example we
give the specifications of the RFM TR 1001 radio transceiver used in the EYES
wireless sensor node prototypes. The respective values are given in Table 6.1.

Current MAC protocols for wireless sensor network settings can broadly
be divided into contention based and scheduled approaches, which we briefly
characterize next.

6.1.1.1 Carrier Sense Multiple Access (CSMA)

Contention based MAC schemes are reactive schemes, nodes that do not trans-
mit are constantly listening to the channel. A node that wants to transmit a
packet first listens whether there is already a transmission going on, i.e. it senses
the carrier or wireless medium, and then addresses the recipient to initiate some
handshake mechanism that results in the actual broadcast of the packet. Suc-
cessful reception is also acknowledged by the recipient. Collisions during this
process usually result in a random back-off time that is waited until another
try. For WSNs, a prominent scheme that falls into this category is the so-called
SMAC (Sensor-MAC) protocol first introduced in [60]. The protocol is carrier
sense multiple access with collision detection (CSMA/cd) based, and these type
of MAC schemes do not require tight time synchronization of the nodes. On
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the other hand, constant listening to the channel requires the transceiver of the
nodes to be active most of the times. To overcome this problem, the SMAC
protocol also incorporates sleeping-patterns for the nodes to reduce energy us-
age. We briefly describe this protocol next since we use it for comparison later
on.

Basically, in SMAC, nodes locally choose periods of time in which they are
not listening for incoming messages. After such a sleep period, the nodes wake
up and listen for communication addressed to them, or initiate communication
themselves. This requires local synchronization of the sleep and listen periods.
Therefore, each node maintains a list with the schedules of its neighbors. A
node that has locally fixed its sleeping schedule exchanges this with its neighbors
periodically in the listen periods as follows.

• A node, upon entering the network, listens for a defined amount of time
to learn about the schedules of its neighbors. If no such information is
received, it chooses a random point in time to enter the sleep phase and
broadcasts this information in a so-called synchronization packet. This
node is then called synchronizer, and defines a schedule in the network.

• If a node receives a synchronization message during this initial time, it
adjusts the starting time of its sleep periods accordingly, and follows the
schedule of the synchronizer node. Such a node is called a follower. A
random time interval is waited before such a follower broadcasts its syn-
chronization message in order to prevent collisions from other followers
that are triggered by the same synchronizer.

• If a node that already follows a certain schedule learns of neighbors that
follow a different schedule, it keeps its own schedule, but additionally
wakes up according to the new schedule. However, it does not include this
information in its own synchronization packet to prevent propagation, and
rescheduling of the entire network.

Clearly, nodes between different regions with different sleep/listen periods have
less sleep time compared to others, and their energy consumption is therefore
higher. The protocol gives no guarantees for overall connectivity of the network,
this property highly depends on the parameter settings like sleep interval length
and on characteristics of the wireless network topology like node density.
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6.1.1.2 Time Division Multiple Access (TDMA)

Another approach to allow multiple wireless sensor nodes to share the same
frequency is to divide it into different time slots, i.e. by giving each node a
reserved time interval in which this node is allowed to send while neighboring
nodes are listening. This medium access scheme approach is called time division
multiple access (TDMA).

Due to the scheduled nature of such an approach, a node can turn its
transceiver to standby at all times it is not allowed to send, or is not required
to listen. During the time slots, interference due to several nodes transmit-
ting at the same time does not occur. However, in wireless networks, such an
approach requires tight synchronization of time for the nodes, and the transmis-
sion schedule has to be agreed on beforehand, or is centrally assigned. Also, the
assignment of the time slots is not an easy task. Generally speaking, scalability
of TDMA based approaches is not as good as that of contention based schemes.

In the following we discuss the TDMA based MAC scheme designed for the
EYES wireless sensor network.

6.2 EYES Medium Access Protocol

In this section we introduce the EYES Medium Access Protocol (EMACs,
[57, 58]), a cyclic TDMA based protocol with completely distributed and local
operation. The scheme, together with an implicit backbone structure presented
thereafter in Section 6.3, gives an energy-efficient and scalable solution which is
specifically designed for wireless sensor networks.

In the EMACs approach, the set of wireless nodes is divided into active and
passive nodes. The active nodes form a backbone of the communication network,
that is, they are a connected dominating set. Passive nodes are adjacent to at
least one active node in order to make use of the backbone structure. After
presenting the MAC scheme, we discuss the local decision algorithm that creates
this structure, and discuss implications and advantages of this backbone based
approach. For now, we assume the active nodes to form a connected dominating
set, and that each node knows its status. At the start of the network, and also
when new nodes are added to the network, nodes are active, and may later on
decide to become passive.

The EMACs scheme operates on a cyclic schedule (see Figure 6.2). Time is
divided into frames, and each frame is further divided into time slots. Nodes can
use the time slots to transfer data without having to content for the medium, or
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Figure 6.2: TDMA organization in EMACs.

having to waste energy due to collisions of transmissions. Locally, this requires
that each time slot is only controlled by one node, the so-called time slot owner.
In each frame, each active node should own at least one time slot. The number
of time slots per frame is fixed, and each frame basically has the same schedule
which is repeated giving a cyclic schedule.

Only active nodes own and control a time slot. A passive node does not
own a time slot, but communicates via an active neighboring node. It chooses
one active neighbor to which it synchronizes, and with which it handles its
communications. This allows for a significant energy conservation, as the rest
of the time, this node can switch its transceiver to standby.

6.2.1 Time Slot Structure

A node which owns a time slot performs three tasks in the time alloted for the
slot. For these tasks, each time slot is divided into three sections, a Communica-
tion Request (CR), a Traffic Control (TC), and a DATA section (see Figure 6.2).
These are now described in detail.

• Communication Request Section (CR)

For a short fraction of the time, a time slot owner listens to incoming
requests from nodes in its neighborhood that want to communicate with
it. This is especially important for communication with passive neighbors.
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Passive nodes do not own and control their own time slot, and therefore
are also unable to receive any requests for communication. However, these
nodes can still transmit data via neighboring active nodes by placing a
request in the CR section of such a node.

Collisions of requests may occur, but this is detected by the time slot
owner, that informs its neighborhood about this fact in the TC section.
These collisions can then be resolved by contention based approaches, e.g.
by random back-off times for the next request. Since the data rate in
wireless sensor networks is low, collisions in the CR section are expected
to occur seldom.

A special type of communication request, which is transmitted by a node
that wants to join the network and become active is the node announce-
ment. With such a message, the new node informs all active neighbors of
its existence and chosen time slot within a frame.

• Traffic Control Section (TC)

The most important part of each time slot is the Traffic Control section.
Here, a short, timed broadcast is sent by the time slot owner in every
frame. Since the beginning of each TC section is timed precisely, this
section is—so to say—the distributed heartbeat of the network.

In more detail, the broadcast message in the TC section contains the iden-
tifier of the time slot owner, a possible acknowledgment to a preceding
request, as well as control and synchronization information. Most impor-
tantly, the TC message gives the so-called slot schedule table of the time
slot owner, that is a list of all time slots that are occupied by other active
neighbors. Nodes have to listen to the TC section of all neighboring active
nodes, and thereby have good knowledge about their local neighborhood.
It is straightforward to see that a node listening to all slot schedules of its
active neighbors knows all occupied time slots within its 2-neighborhood.
This information is needed to choose a non-conflicting time slot, which we
describe in the next section.

The TC section also informs neighbors on how the directly following DATA
section is to be used.

• Data Section (DATA)

The remainder of the time slot, the DATA section, is reserved for the actual
transfer of message packets. The format and length (which is bounded by
the CR-section of the following time slot) is free and is decided by the
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actual data that needs to be sent, as given by higher layers. This section
is rather long compared to the first two sections.

Seen from the time slot owner, the DATA section can be used for direct
transmissions to a specific neighbor, for a broadcast to be received by
all neighbors, and also for incoming message packets, e.g. from passive
neighbors. The concrete use is specified in the TC section.

Due to the scheduled nature of the approach, nodes can switch their wireless
transceivers to standby during all times that they are not involved in the com-
munication. That is, during CR sections when they have no request and do not
own the respective time slot, and during the DATA sections they do not par-
ticipate in. In this context, note that the TC sections that nodes have to listen
in are rather short. Passive nodes only need to listen to one TC section per
frame, since they only need to synchronize with their chosen active neighbor.
This allows them to save even more energy.

6.2.2 Distributed Time Slot Allocation

Wireless sensor networks lack central control. The allocation of time slots to
individual nodes therefore cannot be centrally assigned. A node has to choose
a time slot locally based on local information. This decision process for a node
that needs to allocate its time slot is described next.

As explained above, each active node transmits a slot schedule table in its TC
section. This list contains all occupied time slots of its one-hop active neighbors,
and its own slot. Note that this information can be efficiently encoded by a bit-
string of length equal to the number of time slots in a frame.

New nodes entering the active state, after listening to a complete frame, have
all information needed to choose a non-conflicting time slot, that is, a time slot
which is not used by another active node within two hops from this node. After
three hops, a time slot can be reused, as this does not result in interference.

The new node then chooses the first non-conflicting time slot. A closer look
at this process reveals its likeness to an online-approach to graph coloring in
G2 = (V,E2) (see e.g. [22]). The second power G2 of the communication graph
is defined on the same set of vertices, while there is an edge between two vertices
if their distance in the original graph G is less than or equal to 2. This online
approach basically models a greedy, first-fit coloring.

However, when two or more nodes choose the same time slot in the same
frame, conflicts may occur. Such an interference is noticed by neighboring active
nodes, who can then use their own time slot, and the TC section in particular,
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Figure 6.3: Time slot allocation example.

to force these new nodes to drop their time slot again, and after some random
back-off time to re-allocate a time slot. Also, it may happen that a newly woken
node has two neighbors with the same time slot, e.g. when this node connects
two components. In this case, the CR section of these conflicting neighbors is
used to report this fact to them, and new time slots are also chosen in these
neighbors.

The process of deciding on a time slot is also described by an example given
in Figure 6.3. The numbers at the nodes denote the respective time slots, and
the time slot schedules are also given. Note that this schedule always includes
a node’s own slot. Suppose that the black node enters the network, and learns
about the slots and schedules of the neighbors. After combining the time slot
schedules by an or-operation over the bit-strings yielding ’1111101...’, the node
can choose time slot 6 without causing collisions locally. This choice then also
affects the time slot schedules of the neighboring nodes, which adjust accordingly
by setting time slot 6 to occupied.

The number of time slots is given by the frame length, i.e. the number of
slots per frame. This frame length is globally fixed, and it may thus happen in
dense networks that a new node cannot choose a non-conflicting time slot. In
this case, the node postpones the decision until a time slot becomes available,
or it becomes passive and needs not to own a time slot. As we show in the next
section, for wireless communication graphs, with a bounded number of slots per
frame, we can achieve a globally connected backbone for the communication
network by the active nodes. This also implies that the above problem of a
node having to postpone its time slot decision can be resolved.
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6.3 Active and Passive Nodes

In the EMACs protocol, we partition the set of wireless nodes into active and
passive nodes. In this section, we now explain how this separation is actually
done by a local decision process in each node. Recall that we assumed the set
of active nodes to be a connected dominating set in the wireless communication
network.

The main idea behind the structure, and the algorithm follows the argumen-
tation of wireless communication graphs, and the models presented in Chapter 3:
when many nodes are placed close to each other, we obtain a highly connected
graph, and vice versa. This also implies that in highly connected areas of the
graph, there is a lot of redundancy. Therefore many nodes can become passive
to save energy in this case, while the connected structure given by the graph
induced by the active nodes suffices for a functional wireless sensor network.

Each node that enters the network, e.g. by waking up or being deployed,
has to decide whether it is needed as part of the backbone, which we refer
to as connected active set further on. In this set, the active nodes may take
on several, different roles presented next before explaining the actual decision
algorithm that relies on these roles.

6.3.1 Roles of Active Nodes

The connected active set is divided into groups of nodes with different roles.
These roles are

• anchor nodes which form the base of the set,

• bridge nodes which are needed for connectivity,

• undecided active nodes which have not taken a decision, and

• nonmember active nodes which are active stemming from a decision at
higher layers of the wireless sensor applications.

In more detail, the set of anchors is created to form a maximal independent set
in the communication network. Thus, the set of anchors is a dominating set
covering the network, and no two anchors are neighbors.

The bridges are then connections between nearby anchors. In this context,
we call two anchors nearby if they are within a distance of three hops of one
another. Due to the maximality of the independent set given by the anchor
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nodes in the communication network G, we have the following lemma estab-
lishing overall connectivity of the active set using anchor and bridge nodes as
described.

Lemma 6.1. Let G = (V,E) be connected, and let I ⊆ V be a maximal inde-
pendent set in G. Furthermore, let B ⊆ V be a set of vertices such that every
two vertices u, v ∈ I from the independent set with dG(u, v) ≤ 3 are connected
in G[I ∪B], the graph induced by I ∪B. Then, I ∪B is a connected dominating
set in G.

Proof. The domination property is already satisfied by the MIS I. Consider
two vertices i, j ∈ I ∪ B, and let P = (i0, i1, . . . , ik) denote a path from i = i0
to j = ik in G. For each it ∈ P, t = 0, . . . , k choose a vertex īt ∈ I from the
maximal independent set I such that (it, īt) ∈ E or it = īt ∈ I holds.

Since (̄it−1, it−1, it, īt) is a path in G, we have dG(̄it−1, īt) ≤ 3, i = 1, . . . , k.
Thus, īt−1 and īt are connected in G[I ∪ B], and also a path between i and j
exists in G[I ∪ B].

There are two types of bridges. Recall that active nodes own a time slot
and periodically transmit a TC section including synchronization information
and the role of the node. A node that receives the TC sections of two or more
anchor nodes is called direct bridge if it is active. When two nodes are needed
to connect two nearby anchors of distance 3, these two nodes form a distributed
bridging pair. A bridge node always informs its neighborhood about the anchor
nodes it connects. This way, redundant, local bridges need not to be set up.

A special role is given to undecided active nodes, this role is mainly used
when a node enters the network and has not found a neighboring anchor.

Furthermore, we allow nodes that are not needed in the above structure
to be active as well. For example, this may be the case for special sensor
nodes that perform important tasks for higher layers or are explicitely needed
in applications. These nodes are called nonmember active.

6.3.2 Local Decision Algorithm

Each node that enters the network, e.g. by waking up or being deployed has to
decide whether it is needed as part of the connected active set. This is achieved
by a local algorithm described in this part. Additionally, the decision process is
performed when a change in the local topology given by the active nodes occurs.
This is detected from the TC sections transmitted by all active neighbors in each
frame.
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For a node v ∈ V , the decision process is as follows (an overview of the
process is also given in Figure 6.4):

1. Anchor node decision

When there are neighboring anchor nodes, v cannot become an anchor
itself. However, when there is no anchor identified in Γ(v), the identifiers
of the nodes are used in an approach identical to the local greedy strategy
of Section 2.4. The node v determines whether it is the node with the
lowest identifier in its neighborhood, and if this is the case, it becomes an
anchor. Otherwise, it waits for undecided nodes with lower identifier to
decide first.

2. Direct bridge decision

When there are two or more anchors in Γ(v), the node v identifies all
adjacent bridges based on the control information in the TC message.
In case a pair of anchors is not yet connected, it performs this part by
becoming a respective direct bridge.

3. Distributed bridge decision

If v does not change to an anchor or a direct bridge, it may still become
a distributed bridge. This decision cannot be taken according to local
neighborhood information only. The node v transmits the identifier of the
neighboring anchor node with lowest identifier in its TC section of the fol-
lowing frame. This way, a distributed bridging detection becomes possible,
and another node that can complete a distributed bridging pair answers
accordingly such that this connection of the anchors can be formed.

4. Becoming passive

At last, if v is neither needed as anchor, nor bridge, it may become passive,
and no longer claim a time slot. It may also remain active as nonmember
active node in the communication network.

Especially during the first decision on becoming an anchor node, we see that the
node with lowest identifier can always take a decision that results in a role other
than undecided active. The undecided active role is thus only a temporary one.

6.3.3 Connected Active Set Structure

In this part, we explain the structure and the resulting properties given by
the connected active set in the wireless communication network. Recall that a
wireless communication network is modeled by a graph of f -bounded growth.
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Figure 6.4: Overview of the local decision algorithm.

A closer look at the construction of the connected active set in the com-
munication network shows that by connecting all nearby anchor nodes, we cre-
ate a mesh-like structured backbone. This structure does therefore not hinder
backbone based routing protocols by introducing long, unnecessary detours.
Additionally, the maximal independent set given by the anchor nodes can be
exploited in cluster-based routing strategies such as proposed e.g. in [44].

Another important advantage of the structure created implicitly is with re-
spect to the local time slot allocation in the TDMA based MAC scheme. Recall
that the frame length is globally fixed, and the time slots in a frame together
with the allocation to the respective owner are repeated in a cyclic way. Not
considering nonmember active, but anchor and bridge nodes only, we only re-
quire a constant number of time slots per frame so that the allocation scheme
presented in Section 6.2.2 results in an operational network. We call a network
operational if every active node has chosen a non-conflicting time slot. Looking
at the 2-neighborhood of an active node, it is easy to see that there are only a
constant number of active nodes in this neighborhood as follows.

In the 2-neighborhood, there are at most f(2) anchor nodes, however, con-
sidering an anchor node, there are bridges introduced to connect with all anchor
nodes within distance 3. There are at most f(3) such anchor nodes, and in or-
der to connect a pair of anchor nodes, at most f(1) bridges are introduced. It
cannot happen that more bridges are present as these would know about one
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another and redundant bridges are not created. A bridge consists of at most 2
nodes. Overall, there are thus no more than a constant number of nodes active
within distance 2 of a node. The allocation of time slots follows an online greedy
approach which then also requires a constant number of time slots.

At the initial employment of the network, the connected active set is not
created yet, and all nodes try to own a time slot. In this case, more time slots
may be needed. As explained earlier, this is not possible and nodes then wait
until they can choose a free time slot. It is straightforward to see that a node
can eventually choose a time slot: if there are locally too many nodes that own a
time slot, some of them are redundant for the connected active set. These nodes
become passive, and therefore their time slot is released and can be chosen by
another node.

6.4 Implementation and Results

The EMACs protocol, together with the implicit construction of the connected
active set, was implement both in a simulator and in a testbed consisting of
EYES wireless sensor node prototypes. In this section, we present some com-
parison based results from the simulations. We only present an excerpt of the
simulations performed in the line of research of the EYES project. For more re-
sults, we refer to [58, 57, 44]. Nevertheless, the results presented in the following
stand exemplary for many other scenarios simulated.

Before presenting the results, we would like to point out a technical detail
concerning the encoding of the roles of active nodes that is used in our im-
plementation. The approach taken has the advantage of using only a limited
number of bits to be added to the TC section of an active node, and also suffices
in practice to create and maintain the connected active set without additional
control message.

In order to efficiently encode the roles of active nodes, the synchronization
information of the TC section of a node includes an additional field, called active
identifier (AID) of the same length as a node identifier. The encoding of this
fields, and its meanings, are given in Table 6.2. For the AID, an additional first
bit when using node identifiers is used to encode whether or not the node is a
bridge. In case it is a bridge, this bit is set to ’1’, in all other cases to ’0’.

Nodes that are active, but not needed in the connected active set (non-
member active nodes), are identified by the neighboring anchor with the lowest
identifier which also helps identifying distributed bridges. A node that wants to
become passive first becomes a nonmember active node to determine its possible
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Description Encoding

Anchor Node AIDv = idv

Bridge AIDv = (idu1
XOR idu2

), u1, u2 Anchors
Undecided Active AIDv = 0
Nonmember Active AIDv = min{idu}, u Anchor

Table 6.2: Roles encoded by the AID of an active node v ∈ V .

distributed bridge status, and then can release its time slot in a later frame.

The AID field of an anchor contains twice the same identifier. In this case,
a single bit would have sufficed. However, the length of a TC section is always
fixed to be the same length. Therefore, this approach actually saves this extra
bit in the TC section.

When setting up and maintaining a structure like the connected active set,
control messages would be needed for coordination. However, from a change in
the AID of a neighboring node, all control messages otherwise needed can be
inferred sufficiently. Thus, the connected active set is created and maintained
without additional messages leaving the DATA section free for the data transfer
of the higher layers.

6.4.1 Simulational Results

For a simulational study of the EMACs protocol, the OMNeT++ discrete event
simulator [49], together with a framework for mobile, wireless networks is used.
In the simulator, a physical layer with an energy model is implemented to record
the send and receive energy consumption of the transceiver. Switching between
the sending, receiving, and standby states of the transceiver takes time and
consumes energy; this is also considered in the energy model. The data is taken
from the RFM TR 1001 wireless transceiver which is also present in the actual
sensor node prototypes. The values are given in Table 6.1 on page 95.

6.4.1.1 Simulation Scenarios

The simulation setup consists of randomly placing 46 nodes in a square area,
and each node is given a transmission power setting that corresponds to a trans-
mission range of 1/5 the side length. Of the 46 nodes, one node is chosen ex-
plicitely to be a sink node that collects data from the sensor network. This data
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is produced by 5 specific source nodes periodically, at varying data rates. The
remaining 40 nodes are used for relaying the data to the sink.

The multi-hop transport of message packets is done with the help of Dynamic
Source Routing (DSR, [31]), a reactive routing protocol designed for dynamic
wireless networks. There are then two main types of messages that have to be
delivered by the MAC scheme in the network: sensor data and control messages
for the routing protocol.

The nodes are mobile according to an adjusted random way-point model
with bounded random speed and waiting time as follows. After waiting for a
certain time, a node determines a new way-point within the simulation area,
together with a speed from a fixed interval at random. Then it moves towards
this point on a straight line. When this way-point is reached, the process starts
anew. This approach gives a good mix of static and mobile nodes.

For the following simulational results with respect to energy efficiency, we
use the network lifetime as metric to evaluate the performance. This metric
measures the total operational time of the entire network, that is, the amount
of time until the network is no longer able to report sensed data sufficiently to
the sink. In our setup, the network is no longer operational when 30% of the
relay nodes have used up their energy. The 5 nodes that produce the data, and
the sink node are given an unlimited energy supply.

In a simulational study of wireless, ad-hoc networks it is not very meaningful
to give absolute results. Therefore, we resort to a comparative study, and use
the SMAC protocol presented in Section 6.1.1 as a reference point. This protocol
was also implemented and run on the same network topologies. Here as well,
DSR is used to route the sensed data to the sink.

The EMACs protocol implemented in the simulation uses 16 time slots per
frame, and a frame has a length of 1s. Data packets containing sensor readings
of 5 bytes are created at the 5 source nodes, and in the DATA section of each
node only one data packet can be sent.

6.4.1.2 Results and Discussion

There are two basic scenarios which were simulated, a static and a mobile net-
work. The results for various rates with which the sensor data is injected into
the network are given in Figure 6.5 for the static case, and in Figure 6.6 for the
dynamic case. All data is normalized to the network lifetime when using SMAC
as Medium Access Control Scheme in static network topologies.

From the figures, we can see that the EMACs protocol prolongs the lifetime
of the network by 30% to 55% in the static network topologies compared to
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Figure 6.5: Network lifetime in static topologies (Normalized to SMAC).
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Figure 6.6: Network lifetime in mobile topologies (Normalized to SMAC in static
topologies).

SMAC. The EMACs protocol clearly benefits from mobility, and it is able to
extend the lifetime by a factor of more than 2 compared to SMAC in the static
case.

Comparing static and mobile case against one another, the performance of
SMAC degrades to 75% compared to the static case. This is due to the larger
number of control messages needed to reestablish paths broken due to mobil-
ity. Additionally, nodes more frequently have to adopt to different sleep/listen
periods, and these overlapping sleep schedules result in longer listening time.

Especially interesting is the fact that EMACs performs better in dynamic
scenarios than in static topologies. This results mainly from the creation and
maintenance of the connected active set: a node that decided to be active re-
mains active until it runs out of energy in a static network. On the other hand,
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also a passive node only becomes active after an active neighbor no longer partic-
ipates in the backbone. This obviously leads to unbalanced energy consumption
in the network, and shows the need for the concept of role rotation where the
burden of being active is distributed better among the nodes. Role rotation is—
so to say—the introduction of some dynamic behavior into the connected active
set structure in rather static topologies. In the mobile scenarios, the changes in
the topology already force this role rotation.

6.5 Conclusions

In this chapter, we proposed a TDMA-based communication scheme for wireless
sensor networks called EMACs. The operation of the scheme is completely based
on local information, except for time-synchronization, which is done by timed,
periodically transmitted control messages. The EMACs integrates medium ac-
cess control and a backbone creation given by the active nodes, the Connected
Active Set. This structure is used manyfold, by enabling network-wide, collision-
free communication, by ensuring a feasible time slot allocation in a frame of fixed
length, and by allowing passive nodes to follow a more rigorous sleeping pattern.

EMACs has good energy-efficiency due to the scheduled operations which
allows for long periods with a node’s radio being turned off. These periods are
present in both active, and passive nodes. Due to the stringent TDMA structure
in which a node is assigned a slot that cannot be used by other, neighboring
nodes, bandwidth utilization and latency are not optimal. However, this is not
a crucial factor in WSNs, as the envisioned applications require only a low data
rate.

Taking a closer look at the Connected Active Set structure, which is a mesh-
like dominating set in the communication graphs, we also see that the set of
anchor nodes forms a maximal independent set in the network. This can be
immediately exploited in higher layers of the network by independent set based
clustering schemes.

In a simulational, comparative study, the potential of the approach with
respect to energy consumption has been shown. There, the EMACs scheme
significantly increases the network lifetime compared to SMAC, especially in
dynamic network topologies.
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6.5.1 Testbed Implementation

A testbed running EMACs was implemented on sensor node prototypes and
evaluated in the EYES project.

The EYES sensor node prototype is based on the RFM TR 1001 RF trans-
ceiver and the Texas Instruments MSP430F149 microprocessor. Apart from
these two devices, a 4 MBit Serial Flash memory, an RS 232 interface, and a
digital potentiometer to adjust the RF output power is present [19].

On the prototype, the protocol only requires a small amount of memory.
Including basic on-demand routing functionality, less than 200 bytes data mem-
ory, and 5 kbytes of program memory are used in the implementation [20]. A
frame consists of 32 slots, each of 100ms length. A frame is then 3.2s long. This
may seem long, but as the data rates in wireless sensor networks are expected
to be low, such a long frame allows for long periods in which the radio hardware
can save energy.

We close this chapter with the following statement from the EYES project
documentation on the evaluation of the EMACs protocol in the testbed imple-
mentation:

[In practice, EMACs] proves to be fault resistant and assures a very
small number of collisions. [20]
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Chapter 7

Conclusions

In this thesis, we discussed independent and dominating sets in graphs that
model wireless communication networks. The discussion was done both from
a graph-theoretic and practical angle, and also both from a central and local
perspective. The research was motivated by the settings given in wireless ad
hoc and sensor networks, and both theoretical results and practical approaches
are obtained and presented.

First, we have discussed the possibilities of modeling wireless communication
networks by Bounded Area Graphs and considered the (polynomially) bounded
growth property. One of the advantages of describing a wireless communication
network topology via bounded growth is the fact that we leave the geometry of
the models behind. Having a geometric representation available differs greatly
from the case that only adjacency information of a graph is present. The ques-
tions of recognition, reconstruction, and embedding of geometric graphs were
discussed.

On polynomially bounded growth graphs, we presented a novel polynomial-
time approximation schemes for the Maximum (Weight) Independent Set and
Minimum Dominating Set problems based on local neighborhoods. Directly ex-
ploiting the bound on the cardinality of independent sets in neighborhoods of
bounded radii, we obtain approximation schemes that require no geometric in-
formation. The algorithms of the schemes work expanding local neighborhoods
of a chosen central vertex until the cardinality of an optimal solution in these
neighborhoods no longer increases too much. All approximation algorithms
have a runtime of nO(1/ε log 1/ε), when the desired approximation guarantee is
(1 + ε) > 1.
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Furthermore, we developed robust approaches, which thus always terminate
and produce meaningful output, independent of the input presented to the re-
spective algorithm. In light of the intractability of the recognition problem, this
means that we can run the algorithm even without being certain of its bounded
growth, and we receive either a desired solution or a certificate disproving the
bounded growth property of the input graph. This feature of the algorithm is
especially useful for real-world wireless communication graphs, where the clearly
defined theoretical properties of such graphs may not be given due to unforseen
circumstances.

Additionally to the advantage of being independent of geometric informa-
tion, our local neighborhood based approach is more direct and much simpler
to implement compared to existing schemes based on geometric separation. In
separation based approaches, the shifting strategy requires the construction of
several candidate solutions, one for each possible combination of separation pa-
rameters, and then the best one is returned. In contrast, in our approach, a
partial solution inside a neighborhood is kept and we can neglect this part of
the graph upon going on.

Low-resource wireless ad hoc and sensor networks are inherently local. The
nodes usually lack sufficient memory and computational power to obtain and
maintain a global view of the network topology. In the resulting scenario, rep-
resented by the LOCAL message passing model, we discussed distributed, in-
network algorithms to create independent and dominating sets. In this area,
maximal independent sets play an important role, both in theory and in practice.
Having only local topology information, fast symmetry breaking is a non-trivial
task, and a MIS captures this task in a very simple statement. In Chapter 5,
we introduced a fast and deterministic algorithm that constructs a maximal in-
dependent set in graphs of bounded growth. The approach works in subsequent
phases by first constructing a sparse, O(log ∆)-ruling independent set, and then
making this set dense up to the point where maximality is reached. The algo-
rithm terminates after O(log ∆ log∗n) communication rounds and requires only
messages of small, i.e. O(log n), size.

Combining the ideas of the neighborhood based PTAS for the Max-IS and
Min-DS problems on polynomially bounded growth graphs with the fast MIS

construction, we obtained distributed approximation schemes for these opti-
mization problems. The approach allows us to construct (1 + ε)-approximate
solutions distributed within the network, and without requiring information
about the global topology in the nodes.

On the practical side, we presented EMACs, a communication approach for
wireless sensor networks with TDMA based, scheduled transmissions. The ap-
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proach implicitly creates a backbone that is based on a maximal independent
set given by the anchor nodes. This backbone allows for relatively long sleeping
periods of nodes, while at the same time maintaining a connected and dominat-
ing structure that keeps the overall network operational. The communication
protocol is implemented and evaluated both in a simulation environment and
in a real-world testbed. It significantly increases the network lifetime compared
to an existing communication approach.

Though this thesis gives positive answers to the previously open problems of
a PTAS for the Maximum (Weight) Independent Set and Minimum Dominat-
ing Set problems on Unit Disk Graphs without geometric representation, and
a poly-logarithmic local, distributed maximal independent set construction for
bounded growth graphs, there are still interesting open questions in this area.
Further research in the area of graph-theoretic concepts in wireless communica-
tion networks may, e.g. , go into the following directions:

• Wireless Communication Graphs

Concerning graph models for wireless communication networks, there are
still many open questions on recognition and embedding. For example, it
is not known whether Unit Disk Graph Recognition is in the class NP. An
embedding of Unit or Quasi Disk Graphs with good quality is an important
problem, for which little is known. Also from a practical point of view,
provably good algorithms giving each node its position will improve many
applications.

• Approximation Algorithms

For algorithms to compute approximative solutions to optimization prob-
lems, a next step would be to look into the various variants of independent
and dominating sets. For example, considering connected dominating or
independent dominating sets, and trying to devise approximation schemes
for these problems that do not depend on geometric information is an in-
teresting research direction.

Another open problem for graphs without geometric representation is the
Minimum Vertex Cover problem (this problem is already solved for (Unit)
Disk Graphs with a given representation). Since the Minimum Vertex
Cover problem is the dual to the Max-IS problem, for neighborhoods
of bounded radius we can obtain a locally optimal partial solution to the
problem. However, combining several of such local, partial solutions seems
to be not that easy.
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CHAPTER 7. CONCLUSIONS

• Distributed and Local Algorithms

Especially in wireless sensor networks, local algorithms are called for. On
a higher level, the question of how global solutions can be approximated
by a collection of local, partial solutions offers many challenges. Even
for problems which are considered solved from a central perspective, the
question of locality still leaves room for major improvements, and further
understanding.

In this context, a fast, i.e. poly-logarithmic, maximal independent set
construction by a local algorithm is still a famous open problem on a
general graph.

Generally speaking, while it is important to study graph-theoretic problems on
general graphs, it is also fundamental to study these problems on graph classes
that model topologies that occur in practice. In this thesis, we contributed
to the study of independent and dominating sets in wireless communication
networks.
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