Chapter V: The available decision models for supplier selection lack differentiation


V
The available decision models for supplier selection lack differentiation



The previous chapter has made clear that supporting supplier selection requires a differentiated collection of decision models. In this chapter, we present the results of an extensive investigation of the literature regarding the available decision models for supplier selection. The position of this chapter in the overall step-wise planning is shown in figure 5.1.
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Figure 5.1: Positioning of chapter V



The purpose is to find out to which extent the required differentiation is present in the collection of available decision models. The results suggest that although a variety of techniques are used, the existing body of literature on decision models for supplier selection suffers from one-sidedness in its focus and assumptions. 

Purchasing and OR researchers have focused on one-dimensional and compensatory choice models 



In this section, we present the results of an extensive literature search on decision models for supplier selection. The search included both textbooks and journals. The vast majority of the models found apply to the choice phase of the supplier selection process. Furthermore, the decision rule used is often such that a low score on one criterion can be compensated by a high score on another criterion.

Categorical models and Neural Networks are choice models with implicit decision rules

Intuitive explanation of categorical models



Basically, categorical models (see Stevens, 1978; Zenz, 1981; Lee and Dobler, 1977) are qualitative models. Based on historical data and experience current suppliers are evaluated on a set of criteria. These evaluations consist of qualifying the performance of suppliers with respect to a criterion either as 'positive', 'negative' or 'neutral'. After the supplier has been rated with respect to all the criteria, the evaluator gives an overall rating, again through ticking one of the three options.

An example of a categorical model



Based upon Dobler and Burt (1996) we present the following typical example of a categorical method (see figure 5.2).

Supplier:                                                                  Date:

Department:

Purchasing

Receiving

Accounting

Engineering

Quality
preferred

..............

..............

..............

..............

..............
neutral

..............

..............

..............

..............

..............
unsatisfactory

..............

..............

..............

..............

..............

Performance factors:




Purchasing:
delivers on schedule

has competitive prices

anticipates our needs

advises us on potential troubles

keeps promises

has good labour relations
..............

..............

..............

..............

..............

..............
..............

..............

..............

..............

..............

..............
..............

..............

..............

..............

..............

..............

Receiving:
delivers per routing instructions

has adequate delivery service

has good packaging
..............

..............

..............
..............

..............

..............
..............

..............

..............

Accounting:

invoices correctly

issues credit memos punctually

does not ask for special financial consideration
..............

..............

..............
..............

..............

..............
..............

..............

..............

Engineering:

has past record on reliability of products

has technical ability for difficult work

furnishes requested data promptly
..............

..............

..............
..............

..............

..............
..............

..............

..............

Quality:

provides high quality material

furnishes certification etc.

replies with corrective action
..............

..............

..............
..............

..............

..............
..............

..............

..............

Figure 5.2:  Example of a categorical method template (Based on Dobler and Burt, 1996)



The representatives of the various departments that participate in the selection process, rate the supplier with respect to the criteria through ticking either ‘preferred’, ‘neutral’ or ‘satisfactory’ for each criterion. After the supplier has been rated with respect to all criteria, each department gives an overall rating.

Categorical models are flexible models but they do not formalise the ultimate choice



Clearly, in a categorical model, both quantitative and qualitative criteria may be used. In addition, the model is easy to use and to understand. The flexibility of the categorical method implies that the method can be used in many situations. However, the ultimate choice between suppliers is not formalised, i.e. the aggregation of the scores on the various criteria into the overall score is not obvious: trade-off’s and decision rules remain implicit. 

Intuitive explanation of a Neural Network model for supplier selection



Albino and Garavelli (1998) propose the use of a Neural Network approach to supplier selection. Neural Networks are systems that can be said to ‘pick up’ or learn the decision rule that implicitly is used in a series of different decision situations which are fed through the Neural Network. Applied to supplier selection, it means that first the scores on the criteria as well as the overall-score (of a sufficiently big number of suppliers and bids) are ‘shown’ to the Neural Network. From these (learning) cases, the Neural Network extracts the underlying decision rule, i.e. it derives a rule for converting criteria scores into an overall rating. In case of a new (yet comparable) supplier selection, the characteristics of the situation (i.e. the scores of the suppliers on the criteria) are fed into the Neural Network model. Next, the model uses the decision rule it has learned to arrive at the overall rating of the new suppliers.

An example of a Neural Network model applied to supplier selection



In their article, Albino and Garavelli discuss the application of a Neural Network model in rating subcontractor bids in the construction business. First, a so-called training set was established, see table 5.2

Criteria
Bid 1
Bid 2
Bid 3
Bid 4
Bid 5
Bid 6
Bid 7
Bid 8
Bid 9
Bid 10

Price reduction (%)
30
5
10
8
7
5
20
17
7
25

Time reduction (%)
30
5
10
27
8
18
10
5
12
5

Technology and quality
Excel-lent
Excel-lent
good
good
Excel-lent
good
Suffi-cient
good
Suffi-cient
Insuffi-cient

Contractual reliability
Excel-lent
good
Excel-lent
insufficient
good
Suffi-cient
insufficient
Excel-lent
good
Good

Manage-ment skills
Excel-lent
Excel-lent
good
Excel-lent
sufficient
good
Suffi-cient
sufficient
insufficient
Suffi-cient

Overall rating by Purchaser
10
4
5
8
4
6
4
4
4
3

Table 5.2: Training set for building a Neural Network supplier selection model (based on Albino and Garavelli, 1998)



A purchaser evaluated the bids by expressing the overall preference for a bid in a number between 1 and 10. Based on the training set, the Neural Network model was constructed. This model was then tested on 5 new bids (see table 5.3).

Criteria
Bid I
Bid II
Bid III
Bid IV
Bid V

Price reduction (%)
10
20
22
14
6

Time reduction (%)
15
10
5
7
20

Technology and quality
Good
Sufficient
Sufficient
Insufficient
excellent

Contractual reliability
Sufficient
Insufficient
good
Excellent
Insufficient

Management skills
Insufficient
Good
good
Sufficient
Sufficient

Overall rating by Purchaser
4
6
7
5
3

Neural Network model
3.8
5.8
7
5
3

Table 5.3: Testing of the Neural Network model to 5 new bids (Albino and Garavelli, 1998)



It is clear that the Neural Network model very closely ‘follows’ the overall ratings by the purchaser. 

Neural Networks capture imprecision but are restricted to repetitive situations



The authors claim that the Neural Network is especially useful in ill-structured situations, which are highly affected by uncertainty and imprecision. Indeed, the approach ‘frees’ the purchaser from having to precisely explicate his mental processes. But similar to the categorical method, the decision rule remains ‘invisible’. The advantage of the Neural Network (compared to the categorical method) is that it assures a consistent execution of the implicit decision rule. Evaluation tableau’s from the categorical method, such as depicted in table 5.1 could be used as input for building Neural Network models. However, just as with the categorical method, not having an explicit decision rule (structure) turns into a disadvantage when it comes to justifying and explaining the supplier selection to others. The argument: “We chose this supplier because it fits best with our previous selection-behaviour” may not be convincing or acceptable for other suppliers or senior management. Furthermore, as the authors indicate, the learning phase of a Neural Network is based on a specific (recurring!) supplier selection situation. When this situation changes, the network has to be trained again. 

Cost-ratio, TCO and Decision Analysis models strictly include quantitative criteria

Intuitive explanation of cost-based models



Cost-ratio models (see Stevens, 1978; Zenz, 1981; Lee and Dobler, 1977) are quantitative, cost-based models in which (procurement) costs are associated with a particular supplier.



More recently, the cost ratio logic has been extended to what usually is referred to as Total Cost of Ownership (TCO) models (see e.g. Ellram, 1994). Compared to costratio methods, TCO-models usually cover additional costfactors as well as a more sophisticated treatment of data, e.g. TCO- models are often more advanced in terms of computerised support and the use of various analytical techniques such as forecasting and price analysis.

Some examples of costbased models



For a particular supplier, the costs related to inspection, delivery and service are expressed as a percentage of the total value of goods that are purchased from that supplier. These percentages (cost-ratios) are used again when evaluating new bids from these suppliers. The following example (see table 5.4) further illustrates this.

supplier:
Quoted price
supplier’s quality cost ratio


supplier’s delivery cost ratio
adjusted price


($)
(%)
($)
(%)
($)
($)

Supplier A

Supplier B
656,500

667,750
2

0.5
13.130

3338,75
3

1
19.695

6677,75
689,325

677,766.25

Table 5.4: Example of cost-ratio method



A typical example of a TCO-model is presented in Smytka and Clemens (1993):

Costs
factor
feature

External costs
price

discount terms

order costs

transportation costs

supplier visits

tooling

technical support


Quantity discount consistency analysis using a flexible ‘if-then’model programmed in C.

Analysis of discount offered through prediction of time-value of money

Assessing order costs through EDI status supplier

Database containing (international) transportation costs, including shipping rates, duty costs etceteras. Based on this information, the C program estimates the transportation costs.

Database containing historical travelcost information

Calculating different scenario’s, e.g. paying upfront or amortilizing tooling costs over a given number of items 

Estimating costs of inspection, documentation and certification of parts



Internal costs
inventory costs

expediting costs

line down
Calculation of estimated total carrying costs, based on a certain average inventory level and supplier performance information

Calculation of average cost associated with expediting one late shipment

Calculation of average time-loss for each item

Table 5.5: Example of TCO-model (based on Smytka and Clemens, 1993)



Similar to the costratio method, the prices stated in the suppliers’ quotations are the basis for the calculation of what is considered a fair estimate of the total costs of doing business with those suppliers. 



An example showing such calculations is given in table 5.6.

Total cost at 5,000 piece order quantities

Cost factor (all in US$)
Supplier A
Supplier B

Unit price

Set-up charges

Inventory costs

Transportation costs

Expediting costs

Quality costs

Ordering costs

Line-down costs

Tech.support costs

Visiting costs

Tooling costs

Total:
3.450

0.000

0.143

0.253

0.001

0.000

0.000

0.000

0.007

0.030

0.667

4.551
3.381

0.000

0.067

0.071

0.004

0.000

0.000

0.002

0.024

0.000

0.810

4.359

Table 5.6: Example of TCO calculations (based on Smytka and Clemens, 1993)

Costbased models have a practical appeal but may be costly to operate and maintain



Cost-ratio as well as TCO-models ultimately express the performance of suppliers in clear, comparable monetary units. This definitely gives these models a practical appeal. However, it is also clear that practical use of such models requires several conditions to be met. 



First, the cost information concerning suppliers must be collected and stored. Obviously, the benefits of maintaining and operating such an information system must outweigh the costs. 



Secondly, it seems that in case of completely new suppliers and products it may not be possible to obtain the required information. Finally, the costbased models do not facilitate the evaluation of other (qualitative) criteria when selecting suppliers.

An intuitive explanation of Decision Analysis



In Decision Analysis (DA) applications, the costs of choosing a supplier are not assumed fixed and given but variable and dependent on the situation. DA aids the purchaser in choosing the supplier that yields the lowest expected costs.

A formal notation of a Decision Analysis model for supplier selection



In formal terms, a DA model for supplier selection may look as follows:
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Where:



S* = the supplier that yields the lowest expected costs;



S = the set of suppliers considered;



N = the number of possible situations;



Cij = the costs related to supplier j in situation i;



Pi = the probability that situation i will occur.

An example of  a DA- model for supplier selection



Soukup (1987) describes a clear example of DA applied in a supplier selection setting. In this particular example, the uncertainty applies to the demand for the item purchased. Naturally, other relevant factors, e.g. price or delivery performance, may also be uncertain. The data used in the example are summarised in table 5.7.

Monthly demand:
1500 units
2500 units
6000 units


Probability:
0.15
0.60
0.25
Expected costs:

Costs if ordered from supplier A
$ 13,575
$ 16,250
$ 38,100
(0.15*13575)+ (0.60*16250) + (0.25*38100) = $ 21,311

Costs if ordered from supplier B
$ 11,325
$ 18,050
$ 40,625
$ 22,683

Costs if ordered from supplier C
$ 12,125
$ 19,175
$ 25,500
$ 19,849

Table 5.7: Example of DA-model for supplier selection (based on Soukop, 1987)



In this example, supplier C is preferred over the other suppliers even though this supplier quotes the highest prices for smaller order sizes. Intuitively, we might therefore want to order from supplier A and /or supplier B, but the Decision Analysis approach points out the significant cost advantage of supplier C in case of high demand.

Decision analysis covers (quantitative) uncertainty but is restricted to repeating situations



A distinctive advantage of DA is that it explicitly deals with the ever-present uncertainty about the value of such important purchasing variables as price, demand and supply quantities. In that respect, many of the other decision models for supplier selection are deterministic. However, it is also clear that DA does not allow for the simultaneous evaluation of other (qualitative) criteria. In addition, the results of a DA-model require a proper and cautious interpretation. The ‘expected’ costs are the average of costs that occur in a sequence of comparable purchasing situations. In other words: the result has little meaning in one-off, unique purchasing situations.

Linear Weighting and Weighted Product models employ compensatory decision rules

An intuitive explanation of linear weighting models



A large number of models originate from the linear weighting principle (also often referred to as weighted point plans). Examples of the general version (a) can be found in Baily and Farmer (1990), Stevens (1978), Zenz (1981) and Lee and Dobler (1977). The principal idea is to assign numerical scores to a set of quantitative and/or qualitative criteria, express the relative importance of every criterion in numerical terms and subsequently determine the composite performance index by multiplying each score with its numerical weight and adding up all the resulting products. 

A formal notation of a linear weighting model for supplier selection



In more formal terms, the basic linear weighting model for supplier selection can be defined as below:
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Where:



pi = overall preference for supplier i;



n = number of criteria;



sij = score of supplier I on criterion j;



wj = weight of criterion j.



In the following subsections we further elaborate on the elements of this basic model.

An example of a linear weighting model for supplier selection



Pinkerton (1986) provides a typical example of the basic linear weighting model. In this example, it is assumed that we have received three bids for a particular item (see table 5.8).


Supplier A
Supplier B
Supplier C

bid price ($)
656,500
706,438
667,750

quality rating (% error free)
85
90
95

delivery rating (% in time)
92
90
80

Table 5.8: Available information on suppliers and their bids



In addition to the available information on the prices, we also have information concerning the suppliers’ performance with respect to quality and delivery. In table 5.8 the quality and delivery ratings are expressed as the percentage of error-free items received in the past from a supplier and the percentage of items delivered in time in the past by a supplier, respectively. As the latter two figures are percentages, their maximum value is 100. In order to make price comparable to delivery and quality, Pinkerton suggests to assign a rating of 100 to the lowest bid, i.e. supplier A, and calculate the ratings of supplier B and supplier C as follows:

rating supplier B = (656500)/(706438) = 93%

rating supplier C = (656500)/(667750) = 98%



Next, a weight is assigned to each criterion. Now the final composite performance of the suppliers can be calculated, as shown in table 5.9

Crite-rion
Weight (a)
Supplier A
Supplier B
Supplier C



rating (b)
weighted rating (a*b)
rating (b)
weighted rating (a*b)
rating (b)
weighted rating (a*b)

price

quality

delivery

Total:
0.65

0.10

0.25
100

85

92
65

8.5

23

96.5
93

90

90
60.5

9.0

22.5

92.0
98

98

80
63.7

9.5

20

93.2

Table 5.9: Example of linear weighting model calculations (Pinkerton, 1986)



In this example, using the linear weighting model, supplier A would be chosen. 

There are several ways of deriving weights for the linear weighting model



In most discussions on linear weighting models, it is assumed that the purchaser is able (or feels comfortable with) directly assigning a point estimate value (between 0 and 1) to each criterion in such a way that together the weights sum up to 1. However, several authors propose more sophisticated techniques.



Williams (1984) proposes the use of conjoint analysis in deriving the weights of the criteria. Basically, there are two ways of doing this. The first approach consists of asking the purchaser to rank various (hypothetical) combinations of scores on all criteria and subsequently infer the best fitting weights from these evaluations, e.g. by means of regression analysis. Alternatively, in a two-at-a-time approach, the purchaser ranks various levels of two criteria at a time. After that again, the best fitting weights are inferred using a regression program. Obviously, using conjoint analysis, the purchaser does not have to directly assign weights to the criteria. In that respect, uncertainty and imprecision are accommodated. However, in some way the problem of directly assigning weights is transported to the problem of directly assigning overall scores to different sets of scores on the criteria. In addition, for many purchasers regression techniques may not be straightforward and for the method to be practical, software should be available to perform the calculations. 



Min (1994) applies the so-called ‘indifference-trade off’’ method in order to derive weights within a Multi-Attribute-Utility Theory (MAUT) framework. MAUT will be discussed in more detail further on. The indifference trade-off method bears much resemblance to the conjoint analysis method. In MAUT, two suppliers which have different scores but in the trade-off are equally preferred, must have the same overall scores. Thus, the purchaser is asked to specify different sets of criteria scores that are all equally preferred. From these sets, together with the constraint that the weights must sum up to 1, the weights can be calculated. As such, this method (also) frees the purchaser from having to directly assign numerical weights to the criteria. However, again one might argue that the problem of direct assignment of numerical scores is not solved but rather shifted to another phase in the process, which in this case concerns the construction of value functions in the MAUT method. These value functions translate the raw scores on the criteria into normalised scores between 0 and 1. 



In order to deal with subjective and imprecise elements of a decision systematically, Narasimhan (1983), Nydick and Hill (1992), Schouten (1993) and Barbarosoglu and Yazgac (1997) propose and demonstrate the use of the Analytic Hierarchy Process (Saaty, 1980) in a supplier selection setting. The relative importance of criteria is established by means of pairwise comparisons. For an in-depth discussion of the underlying and technical details of the method we refer to Saaty (1980). In this section we briefly explain the method and illustrate the method through an example. Suppose we would know the weights w1,...,wn of the alternatives A1,..., An, (which we do not know in practice). Then, we may represent these weights in a matrix A as shown in figure 5.2.


A1            A2    ........................................   An

A1
A2
.

.

.

.

.

.

An

w1/w1     w1/w2 .........................................w1/wn
wn/w1....................................................... wn/wn

Figure 5.2: Matrix representation of weight-ratios



Now if we multiply A by the column vector (w1,...,wn) we would obtain: Aw = nw. Suppose that we did not know w, but we would know A, we could then recover w by solving (A-nI)w = 0. Saaty shows that if A is perfectly consistent, i.e. aijajk = aik, n equals the corresponding (single) positive eigenvalue (max of A. However, in practice this is often not the case and therefore the largest positive eigenvalue of A will often not equal n. Nevertheless, Saaty also shows that ‘..the eigenvector is insensitive to small changes in judgement and is stable, relative to larger changes’. In other words: we may use the eigenvector of A as reasonable estimation of the weights unless the corresponding eigenvalue differs too much from n, i.e. if A is not too inconsistent. Thus, summarised: instead of directly defining the values of the weights, we construct an approximation of A (say A’) by verbally expressing the relative importance of each criterion with respect to each other criterion. The verbal scale is linked with a quantitative scale in order to convert the verbal statements into the approximations of the ratio’s of the weights, i.e. the elements of A’. Next, we calculate the eigenvector of A’. We assume its values constitute a reasonable approximation of the real weights as long as A’s eigenvalue does not deviate too much from n. Inconsistent verbal statements lead to an A’ which eigenvalue differs from n. Saaty provides a way to measure this inconsistency. Thus, inconsistent pairwise comparisons are easily traced and subsequently corrected. For eliciting the ratios that make up A, the following scale is used in AHP:

Intensity of importance
Definition

1

3

5

7

9

2, 4, 6, 8

reciprocals of above nonzero
equal importance

weak importance of one over another

essential or strong importance

demonstrated importance

absolute importance

intermediate values between the two adjacent judgements

if i has one of the above nonzero numbers assigned to it when compared to j, then j has the reciprocal value when compared to i

Table 5.10:  Scale used in AHP (based on Narasimhan, 1983)



We now briefly illustrate the AHP-method through the example provided by Nydick and Hill (1992). In their example, the hierarchy of criteria looks as follows:
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Figure 5.3:  Hierarchy of criteria in AHP (based on Nydick and Hill, 1992)



Next, the matrix with the importance ratios is derived through a series of pairwise comparisons, e.g. if the purchaser in this case considers quality moderately more important than delivery, this is expressed through a14 = 3 and consequently a41 = 1/3. In this way, the total matrix is derived, as shown in table 5.11.


quality          price           service           delivery

Quality

price

service

delivery
1                     2                 4                     3

1/2                  1                 3                     3

1/4                  1/3              1                     2

1/3                  1/3              1/2                  1

Table 5.11: Pairwise comparison matrix for weights (based on Nydick and Hill, 1992)



The matrix is checked for consistency and if no further revisions are necessary, the weight-estimates can be determined by computing the largest eigenvalue and the corresponding eigenvector. In this case, we obtain (after normalisation): w = (0.457, 0.3, 0.138, 0.105). 


Clearly, the method of pairwise comparison is easy to carry out, especially in case of qualitative criteria. The purchaser does not have to assign any number to the criteria. In that respect, uncertainty and imprecision surrounding supplier selection are effectively addressed. In addition, the method prevents the purchaser from using strongly inconsistent preferences. Pairwise comparisons may become too cumbersome when the number of criteria increases and supportive software is not available. At first sight, another advantage of the pairwise comparison approach (especially compared to conjoint analysis) seems that the purchaser does not (technically) need specific information about actual (and/or imaginary) suppliers in order to specify criteria weights. This may also seem useful if a purchasing manager might want to specify criteria weights that are to be used for a certain group of items. In general, Lootsma (1996) argues that for such distributed decision making, the Multiplicative AHP (Lootsma 1993) offers an advantage to the original AHP as suggested in Narasimhan (1983). The multiplicative AHP recognises the observation that the amount of loss a decision maker is prepared to accept on a criterion in return for a gain on another, depends on the actual performance on the criteria in the original situation. In other words: the ratio between a marginal gain and loss (i.e. the impact of the weights) is different for different starting situations. In an additive aggregation structure, this ratio is kept constant though. Lootsma shows that under the geometrical-mean aggregation rule in the Multiplicative AHP, the ratio between the relative gains and losses (i.e. the relative importance of the criteria) is a constant and can thus be specified separately, while the geometrical aggregation rule still assures that the ratio between the marginal gains and losses depends on the specific scores.



Thompson (1991) proposes the use of the so-called Thurstone Case V scaling technique. Using this model, it is not necessary for the purchaser to formulate point estimates of weighting factors and scores. Thompson assumes that the purchaser is uncertain about the relative importance of each criterion. In other words: he assumes that with a certain (normally distributed) probability each criterion has a certain weight and consequently with a certain probability is considered more important than each other criterion. Through repeated (order) ranking of all pairs of criteria by the purchaser (or a group of purchasers) the proportion of time a criterion was judged more important than another criterion can be derived. Thompson states that preferably a group of at least 5 individuals should perform the evaluations. Furthermore, at least 20 replications of each comparison should be collected to ensure adequate results. This might imply that a decision maker has to make several evaluations of the same pair. Thompson suggests that this can be handled by scrambling the order of presentation of the pairs and/or wait for some time before evaluating a pair again. For each criterion, assuming a normal distribution, the time-proportions can be converted into the relative distances between this criterion and the other criteria. By taking the average distance for each criterion and rescaling this average, the weights for the criteria are determined. Similar to AHP, the Thurston technique effectively deals with uncertainty and imprecision in supplier selection. The purchaser only has to express verbally if one criterion is more important or less important than another criterion. Furthermore, unlike most other models, this model offers a way of involving a buying team rather than one single purchaser. Strong conflicts within the buying team however, cannot be accommodated properly. Finally, for the Thurston technique to be practical, appropriate decision support software should be available.

There are several ways of deriving and normalising criteria scores



Most linear weighting models require the scores of the suppliers (or bids) on the different criteria to be expressed in a number between 0 and 100. In case of qualitative criteria it is clearly not obvious how to do this. It is left to the purchaser to find the assignment of  numbers that expresses his preferences correctly. However, also in case of quantitative criteria, the conversion of raw, numerical scores (e.g. price, quality rating etceteras) into normalised scores is not as straightforward as it may seem. Massam (1988) discusses four ways of doing this. First, we may assign the value 1 to the ‘best’ score (Smax) and the value 0 to the ‘worst’ score (Smin) and intermediate values to the other scores (S). Formally, the normalised score Snorm (for criteria that are to be minimised) can then be defined as:

 



In case of criteria that are to be maximised, Snorm is defined as:




Another way of normalising (for criteria that are to be maximised) is to define Snorm as follows:




For criteria that are to be minimised, we first apply the above definition, then subtract the result from 1 and finally divide this by 2.



A third way of normalising raw scores is to define Snorm as follows:




For criteria that are to be minimised, we first apply the above definition and then subtract the result from 1. Finally, a fourth way of normalising raw scores is to define Snorm as follows:
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For criteria that must be minimised, we first apply IV and then subtract the outcome from 1. In table 5.12 the three ways of normalising raw scores are applied to the criterion price in Pinkerton’s example (see table 5.8).

Supplier
Price (raw score)
Method (I)
Method (II)
Method (III)
Method

(IV)

A
$ 656500
1 
0.339 
0.071
0.44

B
$ 706438
0 
0.326
0
0.398

C
$ 667750
0.77 
0.336
0.055
0.43

Table 5.12: Results of four ways of normalising raw scores


A number of comments can be made regarding the four ways of normalising the raw scores.



First of all, the results of the third and fourth method still seem unsatisfactory if criteria are to be minimised and a further normalisation is necessary to make sure that either the scores add up to 1 (as in method II) or the highest score is 1 and the lowest is 0 (as in method 1). 



Secondly, by assigning the value 1 to the highest raw score and 0 to the lowest raw score, we may run into problems if the scores change or if new suppliers (with higher or lower scores) are added. 



Thirdly, Massam points out that although the order of the alternatives (in our case suppliers) does not change when using another normalisation method, the numerical differences between them does indeed change. Consequently, if the aggregation procedure depends on this, the final outcome of the procedure also depends on the normalisation procedure chosen. 



Fourthly, what is still lacking is what Lootsma (1998) calls ‘framing’. The performance (the raw scores) of a supplier has to be considered in a particular context. For example, a certain price quoted by a supplier, or a certain level of delivery measured, may not mean that much as such. The numbers become meaningful if they are placed in the appropriate purchasing context, e.g. by comparing the quoted price to prices paid previously for similar products or considering the importance of the items supplied. First, the range of possible performances should be considered, i.e. an understanding of the minimum and maximum attainable (or acceptable) level should be established. Only when the raw scores are placed in such a frame of reference, a meaningful conversion can be carried out. Thus in terms of the methods discussed above, Smin and Smax should be set (arbitrarily yet based on experience and insight) by the purchaser. 



After a frame of reference has been defined, the question still remains whether the conversion should follow a linear pattern. The first three methods are strictly linear and the result of one method can be transformed into the results of the other methods. A linear transformation of raw scores into normalised scores may not be appropriate, i.e. in accordance with the way human beings perceive and interpret the (relative) differences between scores.



Min (1994) suggests the MAUT-method to derive and normalise criteria scores for supplier selection. This method is based on so-called value functions which transform raw scores into normalised scores, however not necessarily in a linear fashion. The normalised score ui(x) of a raw score on criterion i is in Min’s model given by:




Where ai, bi, and ci are scaling constants for criterion i. If ci > 0, ui(x) is a non-linear function. The scaling constants can be calculated by first specifying the (possibly imaginary) minimal and maximal raw scores. These scores are respectively assigned values 0 and 1. Next, the purchaser specifies the raw score that according to him equals the normalised score 0.5. With these three points given, the scaling constants can be computed and the value function can be used to transform raw scores into normalised scores. Obviously, the MAUT-model offers a procedure for normalising raw scores of suppliers and if necessary in a non-linear way. However, in case of a qualitative criterion, it is still necessary to first assign a numerical rating to each supplier for this criterion and then construct a value-function for this criterion. In addition, the calculation of the scaling constants requires the availability of appropriate software for the model to be practical.



In the previous section we discussed the AHP-model (see Narasimhan, 1983; Nydick and Hill, 1992; Barbarosoglu and Yazgac, 1997) and the Thurston Case V scaling technique (see Thompson 1991) and showed how these models can be used to derive weights without the purchaser having to directly assign numerical scores.  Similarly, these models can also be used to derive a supplier’s scores on (quantitative as well as qualitative) criteria without the necessity for the purchaser to specify direct numerical ratings. Thus, in AHP, pairwise comparisons are used to derive the scores of the suppliers on the criteria. 



An example of a possible pairwise-matrix for the criterion price is given in table 5.13.

Criterion price
supplier 1     supplier 2     supplier 3     supplier 4

supplier 1

supplier 2

supplier 3

supplier 4
1                     2                    4                     3

1/2                  1                    3                     3

1/4                  1/3                 1                     2

1/3                  1/3                 1/2                  1

Table 5.13: Pairwise comparison matrix for criterion price (based on Nydick and Hill, 1992)



When all the scores have been derived, the final rating equals the summation of the weighted scores on the criteria. 

Other ways of aggregating weighted scores



A few authors have proposed other versions of the basic linear weighting model. Willets (1973) suggests a linear weighted model that allows for the inclusion of non-compensatory decision rules by introducing minimum scores on one or more criteria. Willets version can be illustrated in Pinkerton’s example: suppose that a minimum required (weighted) score equal to 9 had been defined for quality. In that case, supplier A would have been removed from further consideration as its weighted quality rating is below 9. Instead, supplier C would have been chosen. Although Willets’model as such is no different from the basic (fully compensatory) linear weighting model, the purchaser is now urged to consider (non-compensatory) lower bounds for the criteria. In that respect, this model contributes to the required differentiation in the decision models for supplier selection.



Thompson (1990) argues that the precise character of the general linear weighting model constitutes a major limitation for the practical use of this model. Thompson's version, the Vendor Profile Analysis, enables the decision maker to express the uncertainty concerning the supplier's performance by means of the Monte Carlo simulation technique. The idea boils down to repeating the basic linear weighting model many times, however each time using (slightly) different scores for the supplier’s bids. In this way the uncertainty about which exact numerical value to assign is accommodated. Thus, a performance range instead of one precise value is calculated for each supplier. The structure of Thompson’s model is formally defined as:




where Aijk is the summated score for supplier j on (sample) iteration k of the simulation, ai is the importance weight attached to criterion i, bijk is the randomly generated performance rating on criterion I for supplier j during iteration k and n is the number of criteria. For each criterion, the decision maker specifies a range in which a supplier's performance is expected to fall, instead of a point estimate, i.e. the decision maker specifies the range in which bijk is expected to fall, e.g. in our example, for supplier A these ranges may be defined as shown in table 5.14.

Criterion
Weight (ai)
high end of range
random value (bijk)
low end of range
weighted value (aibijk)

price

quality

delivery
0.65

0.10

0.25
100

95

97
...95...

...92...

...89...
90

80

88
61.75

8.00

22.25

Summated score Ajk




92.00

Table 5.14: Example of ranges of estimated performance of supplier A



It should be noted that the performance ratings of the suppliers are randomly generated (through many computer-generated random samples of bijk) rather than specifically estimated by the purchaser. Clearly, the latter would be too cumbersome as up to several thousand iterations may be necessary. The value of Ajk in table 5.14, i.e. Ajk = 92, is the result of one out of the many samples of the bij’s. Usually, several thousand of sample-iterations are run on a computer. In this way, we obtain several thousand values of Aj, as shown in table 5.15.

Iteration (k)
Summated score (Ajk)

1

2

3

.

.

.

2000
92.0

93.8

89.7

.

.

.

95.7

Table 5.15:  Final result of simulation with 2000 iterations



Next, the information in table 5.15 is transformed into frequency distributions. These distributions provide the purchaser with indications concerning the ‘most likely’ or ‘expected’ level of the supplier’s performance, and the possible deviation from that level. 



In figure 5.4, a graphical presentation of these indications is given.


Figure 5.4: Graphical presentation of results of Thompson’s method



The vertical dotted lines in figure 5.3 indicate the most likely level of the supplier’s performance. If we now compare supplier A and supplier B, it seems that not only the expected performance of supplier A is higher than the expected performance of supplier B but that the latter’s potential for deviation of the expected level is higher. In this case, supplier A would be preferred over supplier B.



Again, as with Willets model, the principle of the linear weighting model is not violated. Thompson’s approach can be seen as an extensive and automated sensitivity analysis of a basic linear weighting model. More than the basic model, Thompson’s approach takes into account the uncertainty with respect to the exact scores of a supplier. Consequently, the approach obviously requires more model building effort. In addition, a final decision in terms of ‘one best supplier’ is not guaranteed if the supplier’s preference ranges largely overlap.



Similar to Narasimhan (1983), Nydick & Hill (1992) and Barbarosoglu and Yazgac (1997), Yoon and Naadimuthu (1993) propose a model that covers the need for dealing with imprecision. In the weighted product method, contrary to the linear weighting model, attribute ratings for each supplier are multiplied and attribute weights become exponents. A positive power is used for benefit attributes and a negative power is employed for cost attributes. The reason for this multiplicative structure is that it eliminates the need to normalise the raw scores. Furthermore, in order to accommodate imprecise data, ratings are expressed in ranges instead of only a point estimate. As in Thompson’s model, the overall preference of a supplier is expressed in a range. In the weighted product model, a supplier is said to be preferable to another supplier if the two ranges do not overlap at all (i.e. the low end of one supplier’s range is higher than the high end of the other supplier’s range). Formally, the overall preference of supplier i, Si , is defined:




where xij is the rating of supplier I on criterion j and wj is the weight assigned to the jth criterion.



In addition, if a supplier ‘s performance range on criterion j is described by xij +- (xij, the interval of value for supplier Si is defined Si +-( Si where






A supplier i is preferable to a supplier j if and only if (Si -( Si) ( (Sj  +( Sj). This implies that in case of overlap, it is not possible to determine whether the one supplier is preferable to the other. Suppose the data in Pinkerton’s example had been extended as shown in table 5.16.

Criterion
Weight (a)
Supplier A
Supplier B
Supplier C



rating 
 rating 
rating 

price

quality

delivery
0.65

0.10

0.25
100(10

85(5

92(7
93(10

90(5

90(7
98(10

98(5

80(7

Table 5.16: Extended data from example by Pinkerton (1986)



The results of applying the weighted product method to this problem are presented in the table below.


Supplier A
Supplier B
Supplier C

Si
24.61
23.68
24.26

( Si
1.67
1.73
1.70






(Si - ( Si)
22.94
21.95
22.56

(Si + ( Si)
26.28
25.41
25.96

Table 5.17: Results of weighted product method applied to the example by Pinkerton (1986)



From table 5.17 it becomes clear that in this example, using the weighted product method, none of the suppliers is preferred over the others. As with Thompson’s model, the weighted product method takes into account the imprecision that is usually present when determining scores on criteria. The weighted product method also defines an exact condition for one supplier to be preferred to another supplier (unlike Thompson’s model). In addition, by using a multiplicative aggregation structure, the purchaser does not have to normalise raw scores. This obviously is an advantage, although it may also result in the purchaser not placing the raw scores in a frame of reference. Using such a multiplicative structure also implies a non-linear (exponential) overall value function. For each criterion, it is assumed that an increase in performance Xi leads to a more than proportional increase in perceived utility. Although this might be appropriate in many cases, the purchaser does not have the freedom to construct other (criterion-specific) value functions, which is possible in for example MAUT.
Mathematical Programming use quantitative criteria and relate supplier selection to order-volume decisions



Mathematical programming techniques such as Linear Programming, Dynamic Programming, Goal Programming, Multiple Objective Linear Programming have all been applied to supplier selection problems.

An intuitive explanation of mathematical programming models for supplier selection



Buffa & Jackson (1983) present a Goal Programming model that can be used to schedule purchases from a mix of vendors over a defined planning horizon. The model combines two sets of factors: (1) criteria such as price, quality, service and delivery which are often used in weighted point models and (2) specific buying firm characteristics such as materials requirements and safety stock levels. The model allocates orders to suppliers in such a way that various goals (e.g. with respect to quality performance and holding costs) are attained as much as possible.



Narasimhan & Stoynoff (1986) describe a mixed integer programming model which can be used to determine the optimal set of suppliers and order volumina, given certain characteristics of the supply structure. The model tries to allocate orders to suppliers in such a way that shipment and inefficient use of vendor production facilities is minimised.



Pan (1989) presents a linear programming model which selects the optimal combinations of suppliers and purchase quantities. The model does so, while minimising the total purchasing costs, given minimum levels concerning quality, lead time and service. Similar models that only differ in terms of the specific programming and solution finding technique can be found in Turner (1988), Chaudry et al. (1993), Sharma et al. (1989), Weber and Current (1993, 1994), Weber and Ellram (1992), Bender et al. (1985), Gaballa (1974) and Degraeve et al. (1998). 

A formal notation of a mathematical programming model



For illustrative purposes, we present the multi-objective programming model suggested by Weber and Ellram (1992) below.
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and further:

n = number of suppliers

xj = quantity purchased from supplier j

vj = 1 if supplier j is selected, 0 otherwise

(j = per unit net purchase cost from supplier j

(j = percentage of items late from supplier j

(j = percentage of rejected units from supplier j

D = aggregate demand for item over planning period

uju = maximum amount of business for item to be given to supplier j

ujl = minimum amount of business for item to be given to supplier j

wju = maximum order quantity from supplier j

wjl = minimum order quantity from supplier j



This model simultaneously minimises the purchase cost (Z1), percentage of items delivered late (Z2) and percentage of items rejected (Z3), while meeting various constraints e.g. with respect to minimum and maximum order quantities. We note that it is not obvious how to treat the various goals (Steuer, 1986). For example, the goals might be minimised sequentially or weights might be introduced making it a single criterion search problem.

An example of a mathematical programming model for supplier selection



In Weber and Ellram (1992) the results of a practical application of the mathematical programming model just described are given, see table 5.18.

Solution no.
Objective
Weight
Value
Supplier no. Order quantity

1
Price

Delivery

Quality
1.0

0.0001

0.0001
$2,230,322

306,700

188,270
V1- 2,400,000

V2- 0

V3- 0

V4- 3,000,000

V5- 2,890,000

V6- 2,500,000

2
Price

Delivery

Quality
0.0001

1.0

0.0001
$2,292,655

175,210

150,661
V1- 0

V2- 0

V3- 2,783,000

V4- 3,000,000

V5- 2,507,000

V6- 2,500,000

3
Price

Delivery

Quality
0.075

1.0

1.0
$2,265,499

191,030

155,710
V1- 2,401,000

V2- 0

V3- 2,783,000

V4- 3,000,000

V5- 2,966,000

V6- 0

4
Price

Delivery

Quality
1.0

1.0

1.0
$2,259,755

198,210

151,761
V1- 2,400,000

V2- 0

V3- 2,783,000

V4- 3,000,000

V5- 2,607,000

V6- 0

5
Price

Delivery

Quality
1.0

0.0

0.0
$2,256,668

208,980

160,018
V1- 2,400,000

V2- 0

V3- 2,424,000

V4- 3,000,000

V5- 2,966,000

V6- 0

6
Price

Delivery

Quality
1.0

0.0

0.0
$2,291,282

180,000

154,333
V1- 0

V2- 0

V3- 2,623,333

V4- 3,000,000

V5- 2,666,667

V6- 2,500,000

7
Price

Delivery

Quality
1.0

0.0

0.0
$2,289,163

187,391

160,000
V1- 0

V2- 0

V3- 2,376,956

V4- 3,000,000

V5- 2,913,044

V6- 2,500,000

8
Price

Delivery

Quality
1.0

0.0

0.0
$2,288,708

188,980

161,218
V1- 0

V2- 0

V3- 2,324,000

V4- 3,000,000

V5- 2,966,000

V6- 2,500,000

Table 5.18: Solutions from a mathematical programming model (Weber and Ellram, 1992)



Table 5.18 shows a number of so-called efficient solutions for a situation where orders have to be placed with at least four (out of six acceptable) suppliers. An efficient solution is a solution such that no other feasible solution will yield an improvement on one criterion without degrading the value of at least one other criterion. 



The purchaser has to choose one solution from these best-compromise solutions.

Mathematical Programming models are most useful in repetitive, high volume-supply situations



Although the various mathematical programming contributions differ in many (technical) ways, there are some distinctive commonalities. First of all, even though many models cover several criteria (goals), these criteria are always quantitative: qualitative criteria cannot be accommodated. Secondly, all models directly relate the selection of suppliers to the decision how to allocate the ordervolume among these suppliers. This ofcourse implies, contrary to what some of the authors suggest, that these models are only relevant where (standard) products are (or can be) purchased regularly and in high volumes from several suppliers. Finally, it is clear that mathematical programming models require the collection and maintenance of information on historical performance of suppliers and forecasts about the demand for the particular product. The cost and efforts of this as well as the cost of building the model itself may further limit the scope of the application. Gregory (1986) and Heinritz et al. (1991) link the results of a linear weighting model with the question how to allocate the purchase volume. This extension can be illustrated again by using Pinkerton’s example. Suppose, we would want to split the order among the two highest rated suppliers, i.e. supplier A and supplier B. Gregory then suggests the following allocation formula:

share supplier A = 50 + (rating supplier A - rating supplier B) = 53.3%;

share supplier B = 100 - share supplier A = 100 - 53.3 = 46.7%.



Obviously, the closer the ratings of the suppliers are, the closer the order shares for the suppliers are. Clearly, the costs and efforts involved in this approach are far less than the much more sophisticated multi-objective models.

Cluster Analysis and Data Envelopment Analysis use quantitative criteria to sort suppliers



Hinkle et al. (1969) and Holt (1998) propose the use of Cluster Analysis (CA) in supplier selection. Papagapiou et al. (1996) and Weber (1991) suggest Data Envelopment Analysis (DEA) as a useful method for supplier selection. Both methods narrow down a (large) set of suppliers and/or bids into useful smaller sets.

An intuitive explanation of a Cluster Analysis model for supplier selection



Following Holt (1998) we may explain CA as follows: “The method takes a given number of contractors (suppliers, De Boer) each being described by a set of numerical attribute scores (criteria scores, De Boer) and uses a classification algorithm to group the contractors into a number of clusters such that contractors within classes are similar and unlike those from other clusters”.

A formal notation of CA-model for supplier selection



Both Hinkle et al. and Holt suggest the use of the Euclidean distance Dij to measure the degree of difference and similarity between suppliers.


Where:



n = number of criteria;



xij = score of jth supplier on ith criterion;



xik = score of kth supplier on ith criterion;



Next, there are basically two ways to proceed after all distances have been calculated: so-called jointing tree clustering and k-means clustering. The former approach first treats each supplier as a separate cluster and then gradually relaxes the threshold regarding when to declare two suppliers as being similar. The latter approach starts with k randomly chosen suppliers and subsequently assigns the other suppliers in such a way that variability within clusters is minimised and variability between clusters is maximised.

An example of CA applied to supplier selection



For the purpose of illustration, we apply the jointing-tree approach to the data in table 5.3. The Euclidean distances between the bids I, II, III, IV and V are shown in table 5.19. 


Bid I
Bid II
Bid III
Bid IV
Bid V

Bid I
0
11,4
15,8
9,4
6,6

Bid II
11,4
0
5,7
7,4
17,3

Bid III
15,8
5,7
0
8,4
22,1

Bid IV
9,4
7,4
8,4
0
15,8

Bid V
6,6
17,3
22,1
15,8
0

Table 5.19: Euclidean distances between supplier bids from table 5.3



The distance between bid II and bid III is the smallest. Therefore, these two bids are placed in one cluster. Next, bid I and bid V are closest, thus forming another cluster. Finally, as bid IV is closer to bid II then to bid I, bid IV is added to the first cluster (i.e. bid II and III).

CA is a sorting rather than a ranking model



Although CA obviously is not the only decision model that takes into account several criteria, it differs fundamentally from the approaches discussed so far in that it does not produce one best supplier through a fully compensatory decision rule. Instead, as Hinkle et al and Holt emphasise, CA facilitates a sorting of suppliers that prevents ‘overlooking’ or rejecting a good (type of) supplier, especially in case of a large number of suppliers. The richness and diversity in the scores of each supplier are included in the analysis, unlike the compensatory approach of linear weighting models where suppliers are evaluated on their ‘average’ performance. After performing CA to an initial, large set of suppliers a subset of each resulting cluster may be considered for further (final) selection. In that way, the purchaser is rather confident that all types of suppliers present in the initial set have been considered in an efficient way. In addition, application of CA does not require further processing or normalisation of supplier selection scores. However, CA does not accommodate uncertainty and imprecision regarding the suppliers’ performance. CA may be most useful in situations where there is a large and diverse set of suppliers that needs to be reduced to a smaller set of suppliers.

An intuitive explanation of a DEA model for supplier selection



DEA (see Charnes et al., 1978) is built around the concept of decision making units (DMU’s) and their efficiency. The efficiency of a DMU (e.g. a supplier) is defined as the ratio of the weighted sum of its outputs (i.e. the supplier’s performance) to the weighted sum of its inputs (e.g. price, investments in tooling). For each supplier, the DEA model finds the set of weights that maximises its own efficiency rating without making its own or any other supplier’s efficiency rating greater than one. The DEA model identifies the most efficient suppliers which together constitute a so-called efficiency frontier. All other suppliers can be compared in terms of their distance to this frontier. Thus, DEA identifies the ‘good’, competing suppliers in an initial, large set of suppliers.

A formal notation of a DEA-model for supplier selection



For each supplier i the following Linear Program is solved:


Subject to:




Where:



C = set of criteria = J ( K; J = output criteria; K = input criteria;



K = number of input criteria;



wj = weight of output criterion j;



sij = score of supplier i on criterion j;



wk = weight of input criterion k;



sik = score of supplier i on criterion k.

An example of a DEA-model for supplier selection



In their article, Papagapiou et al. discuss the application of DEA in buying cars. The cars are evaluated with respect to three criteria:  price, the expected (remaining) lifetime of the car and similarly the expected (remaining) mileage. The scores of 14 cars are shown in table 5.20.

Car
Input  (price)
Outputs
Efficiency (DEA ratio)



Years left
Miles left


Car1

Car2

Car3

Car4

Car5

Car6

Car7

Car8

Car9

Car10

Car11

Car12

Car13

Car14
4,995

3,695

4,999

6,995

6,995

5,995

4,995

4,495

6,995

4,995

5,995

5,995

6,000

5,000
16.5

16

17.5

15.5

17.5

15

15.5

14.5

17.5

15

18

16

17.5

15.5
85

52

92

115

93

67

60

67

98

80

66

84

85

60
95.51

100.00

100.00

100.00

76.22

69.79

79.20

93.08

100.00

92.25

100.00

79.04

83.32

79.12

Table 5.20: Example of a DEA-application (Papagapiou et al., 1996)



In terms of the raw scores (i.e. price, years and mileage) most cars are efficient in the sense that they are not outperformed on all criteria by any other car. This efficiency concept is identical to the concept discussed regarding efficient solutions in mathematical programming models. From these cars however, the DEA-model finds the cars that perform best if output criteria and input criteria are related. In this example, the efficiency rating expresses the proportion of the purchase price that can be justified in terms of the mileage and years left using the most favourable sets of weights for this car. Already in 1991, Weber demonstrated how DEA could be used in this way to further investigate the efficient solutions found with a multi-objective programming model (such as shown in table 5.18).

DEA also constitutes a useful complement to the available decision models for supplier selection



Many of the comments regarding CA also apply to DEA. Just as CA, DEA does not specifically aim at producing ‘one best’ supplier. Instead, the available suppliers are scanned in order to identify the strongest subset of suppliers. Similar to CA, in case of many suppliers, a DEA model may serve as a ‘filter’ before a final selection of suppliers takes place. An important difference between CA and DEA is that DEA employs a compensatory structure: the efficiency rating equals the ratio of the weighted outputs and the weighted inputs. Besides, it is clear that (especially because of the high number of suppliers) both CA and DEA require the support of software to handle the calculations.

Interpretive Structural Modelling analyses supplier selection criteria



Mandal and Deskmukh (1994) discuss the Interpretive Structural Modelling (ISM) technique and its use in supplier selection.

An intuitive explanation of ISM



ISM is basically a method for identifying and analysing relationships between factors that determine a certain problem or issue. In supplier selection it can be used to analyse if and how selection criteria influence each other (i.e. one-way, both way, not at all). The supplier selection criteria can then be classified depending on both their driving power (i.e. the number of criteria a criterion leads to) and their dependence (i.e. the number of criteria that lead to a criterion). The result is of importance for the further steps in the selection and management of suppliers. Dependent criteria are important for the selection of suppliers whereas independent criteria are important for supplier development. Consequently, when choosing criteria in a supplier selection model, dependent criteria should not be included together with their drivers.

An example of an ISM model for supplier selection



In their article, Mandal and Deskmukh discuss the application of ISM to the set of criteria shown in table 5.21.

Criteria

1. Quality

2. Delivery

3. Production facilities

4. Price

5. Financial position

6. Technical capability

7. Management and organisation

8. Transport and communications convenience

9. After-sales service

10. Attitude and willingness

11. Labour relations

Table 5.21: Criteria used in the ISM-example (based on Dickson, 1966)



The main analysis in the ISM-process is the construction of the so-called reachability-matrix (see table 5.22).

Crite-rion
1
2
3
4
5
6
7
8
9
10
11
Dri-ver po-wer
Rank

1
1
0
0
1
0
0
0
0
0
0
0
2
6

2
0
1
0
0
0
0
0
0
0
0
0
1
7

3
1
1
1
1
0
0
0
0
1
1
0
6
2

4
0
0
0
1
0
0
0
0
0
0
0
1
7

5
0
1
0
1
1
0
0
0
1
1
0
5
4

6
1
1
0
1
0
1
0
0
1
1
0
6
2

7
1
1
0
1
0
0
1
0
1
1
1
7
1

8
0
1
0
1
0
0
0
1
1
1
0
5
4

9
0
0
0
0
0
0
0
0
1
0
0
1
7

10
0
1
0
1
0
0
0
0
1
1
0
4
5

11
1
1
0
1
0
0
0
0
1
1
1
6
2
















De-pen-dence
5
8
1
9
1
1
1
1
8
7
2



Rank
4
2
6
1
6
6
6
6
2
3
5



Table 5.22: Reachability matrix (Mandal and Deshmukh, 1994)



If a row-criterion ‘leads to’ a column-criterion, a ‘1’ is placed in the appropriate position in table 5.22. Similarly, if there is no relationship (or the relationship applies in the opposite direction) a ‘0’ is placed. Next, for each criterion both the driver power (i.e. the number of other criteria it leads to) as well as its dependence (i.e. the number of other criteria that lead to it) can be determined. In addition, the criteria can be ranked and classified in terms of driver power and dependence, see table 5.23.


Low dependence
High dependence

Low driver power
Financial position

Transport and communication
Quality

Delivery

Price

After-sales

Attitude and willingness

High driver power
Production facilities

Technical capability

Management and organisation


Table 5.23: Classification of supplier selection criteria



Thus, the criteria under ‘high dependence’ should not be evaluated together with the criteria under ‘high driver power’.

More than the other decision models, ISM supports problem definition in supplier selection



Most decision models for supplier selection discussed so far assume that the criteria for selecting suppliers are given. Apart from the AHP-model (see e.g. Barbarosoglu and Yazgac, 1997) which involves the breakdown (if desired) of a top-criterion in several levels of sub-criteria, ISM is the only decision model that exclusively focuses on the aspect of supplier selection criteria. In that respect, ISM constitutes a useful and distinctive element in the range of available decision models for supplier selection. Especially, in the case of a long list of criteria, applying ISM can be helpful in distinguishing between dependent and independent criteria and thus identifying more specifically which criteria to use in the selection process. Furthermore, ISM is a relatively simple technique which does not seem to require software to be practical.

Problem structuring, screening and multi-dimensional criteria are  underexposed features in the existing models



The various models described in the previous section can be evaluated in terms of the properties of the framework from chapter III. Furthermore, the existing models can be grouped according to the underlying general Operations Research technique. The results of these analyses are presented in table 5.24.

Category
Problem formulation
Criteria
Decision structure
Decision rule
Decision maker
Concept of uncertainty

Cost ratio / Financial Analysis
not addressed
one (dimensional)
isolated
optimising
single
deterministic

Neural Networks
Not addressed
Multi-criteria

Multi-dimensional
isolated
implicit
single
imprecision

Categorical model
not addressed
multi-criteria multi-dimensional
isolated
choice not formalised
single
deterministic

Linear weighting 
not addressed
multi-criteria

one-dimensional
isolated
compensatory
single
deterministic

Linear weighting

(Willets) 
not addressed
multi-criteria

one-dimensional
isolated
compensatory and non-compensatory
single
deterministic

Linear weighting 

(Gregory)
not addressed
multi-criteria

one-dimensional
selection interrelated with order allocation
compensatory
single
deterministic

Linear weighting (Thompson)
not addressed
multi-criteria

multi-dimensional
isolated
compensatory
Single and groups
imprecision

Analytic Hierarchy Process
hierarchy of goal, criteria, subcriteria and alternatives
multi-criteria multi-dimensional
isolated
compensatory
extensions to group decision making
imprecision

Weighted product method
hierarchy of goal, criteria, subcriteria and alternatives
multi-criteria 

one--dimensional
isolated
compensatory
Single
imprecision

Mathematical programming
not addressed
multi-criteria 

one--dimensional
selection interrelated with order allocation
optimising 
Single
deterministic

Decision Analysis
not addressed
one dimensional
isolated
optimising
Single
stochastic

Interpretive Structural Modelling
Systematic approach to building set of criteria
multi-criteria 

multi-dimensional
isolated
n.a.
Group
n.a.

Data Envelopment Analysis
not addressed
multi-criteria 

one--dimensional
isolated
compensatory
single
deterministic

Multi-Attribute Utility Theory
 slightly addressed
multi-criteria 

one--dimensional
isolated
compensatory
single 
deterministic/ stochastic

Cluster Analysis
not addressed
multi-dimensional

multi-criteria
Isolated
n.a.
single
deterministic

Table 5.24: Overview of existing models for supplier selection


Put together, the models capture some of the properties of initial purchasing decision making as identified in the framework in chapter III. Especially the need to incorporate several multidimensional criteria is well recognised, be it to various degrees: many models only use quantitative criteria. Other properties, e.g. imprecision are not widely present. Most models rely heavily on the basic model of a decision. None of the models found incorporates all of the properties of the extended model of a decision as characterised in table 4.3. As pointed out in chapter III, not all supplier selection decisions will be perceived as forms of the extended model of a decision and not all of the properties of such an extended model will necessarily manifest themselves simultaneously. Nevertheless, considering the increasing importance as well as the increasing complexity of many contemporary supplier selection decisions, it is somewhat surprising that the following properties have gained so little attention as they appear to be so typical for many supplier selection decisions:


-
the problem definition phase: e.g. analysing and checking the need for supplier selection, defining criteria, dealing with the interrelatedness of supplier selection decisions;

-
non-compensatory decision rules;


-
several decision makers with possibly varying opinions.



These properties are discussed in more detail in the following sections.

Few decision models support problem definition 



In addition, the support in the phase of problem definition clearly is an underdeveloped area in the case of purchasing and supplier selection. Only a few decision models pay attention to this important issue: both the AHP based models and the weighted product method start the decision process with systematically structuring the problem by explicitly formulating a hierarchy of goals and criteria. Clearly, the ISM-model most explicitly addresses the phase of problem definition in supplier selection, albeit only with regard to analysing given criteria. 


Choice phase 
Phase of problem definition

One decision maker
Cost-ratio, Categorical, Linear Weighting, Weighted product, AHP, Mathematical Programming, Decision Analysis, DEA, Cluster Analysis, Neural Networks 
Weighted product, AHP, ISM

Group decision making
Linear Weighting (Thompson)




            Table 5.25: Assessment of available decision models for supplier selection



Other aspects of problem definition, e.g. checking the need for supplier selection and generating criteria are not supported. Table 5.25 gives a classification of the available decision models for supplier selection in terms of the number of decision makers that can be involved  as well as the phase in the decision process that is supported.

Few decision models employ non- or quasi-compensatory decision rules



Almost all available decision models for supplier selection that cover multiple criteria employ compensatory decision rules for aggregating the scores on the criteria, see table 5.26.


Compensatory  
Non-compensatory

One dimensional
Linear Weighting, Mathematical Programming, DEA, Weighted product 


Linear Weighting (Willets), 

Multi-dimensional
Categorical, Linear Weighting (Thompson), AHP


Categorical

             Table 5.26: Assessment of available decision models for supplier selection



It should be noted that Neural Networks may involve compensatory as well as non-compensatory decision rules. However, these rules stay implicit within the model. The same applies to the categorical method. In addition, although many decision models for supplier selection accommodate multiple criteria, most of them require from the purchaser a numerical rating of the supplier’s performance on qualitative criteria. These decision models thus require one-dimensional (quantitative) input from the purchaser. Only the categorical method, AHP and Thompson’s Thurston model accommodate quantitative as well as qualitative (multi-dimensional) input information.

Summary



In this chapter we analysed the literature regarding the available decision models for supplier selection. 



Our main conclusion is that Purchasing as well as Operations Research researchers have so far focused on one-dimensional and compensatory decision models for the choice phase in the supplier selection process. From the available models in the literature we briefly mention the main categories. Categorical models and Neural Network applications for supplier selection are choice models in which the decision rules remain implicit. Cost-ratio, Total Cost of Ownership and Decision Analysis applications strictly include quantitative (financial) criteria. Linear Weighting models employ compensatory decision rules. Finally, Mathematical Programming, Cluster Analysis and DEA all use quantitative criteria as well.



Very few decision models present in the literature support the problem definition phase in supplier selection or employ non-compensatory (screening) decision rules. However, in chapter IV we concluded that these aspects are (also) very relevant when it comes to supporting supplier selection decisions.
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