

IMPROVING COORDINATION IN SOFTWARE DEVELOPMENT THROUGH

SOCIAL AND TECHNICAL NETWORK ANALYSIS

Chintan Amrit

 ii

PhD Dissertation Committee

Chairman
Prof Dr. Cornelis Hoede

Promoter
 Prof Dr. Jos van Hillegersberg

Members
Prof Dr. Kuldeep Kumar

Prof Dr. Ir. Mehmet Aksit

Prof Dr. Ir. Roel Wieringa

Prof Dr. Ir. Jan van den Ende

CTIT PhD thesis series number 08-134

Centre for Telematics and Information Technology (CTIT)

P.O. Box 217, 7500 CE Enschede – The Netherlands

ISBN: 978-90-365-2776-7

DOI-number: 10.3990/1.9789036527767

URL: http://dx.doi.org/10.3990/1/9789036527767

ISSN: 1381-3617 (CTIT PhD thesis series number 08-134)

Cover Design: Usha Rashmi & Chintan Amrit

Printed by : Wohrmann Print Service, Zutphen, The Netherlands

Copyright © 2008, Chintan Amrit, Enschede, The Netherlands

IMPROVING COORDINATION IN SOFTWARE DEVELOPMENT THROUGH

SOCIAL AND TECHNICAL NETWORK ANALYSIS

DISSERTATION

to obtain

the degree of doctor at the University of Twente,

on the authority of the rector magnificus,

prof.dr. W.H.M. Zijm,

on account of the decision of the graduation committee,

to be publicly defended

on Wednesday the 3rd of December at 16.45

by

Chintan Amrit

born on the 25th of August 1975

in Ranchi, India

 iv

CONTENTS

CONTENTS .. iv

LIST OF TABLES.. viii

LIST OF FIGURES .. ix

ALGORITHMS.. xii

EQUATIONS .. xiii

ACKNOWLEDGMENTS.. xiv

1. Research Overview.. 1

1.1 Introduction .. 1

1.1.1 Research Motivation ... 1

1.1.2 Motivation from Practice .. 2

1.2 Coordination Background ... 3

1.3 Research Questions.. 6

1.4 Research Methodology.. 7

1.5 Case Studies ... 7

1.5.1 Corporate Case Studies ... 8

1.6 Goals and Thesis Outline... 10

2. Research Methodology.. 12

2.1 Design Science Research Methodology ... 13

2.2 Design Science Methodology applied to the development of the TESNA
Prototype... 15

2.2.1 Design as an Artefact .. 15

2.2.2 Problem Relevance.. 16

2.2.3 Research Contributions ... 16

2.2.4 Research Rigour .. 17

2.2.5 Design as a Search Process ... 17

2.2.6 Research Communication ... 18

 v

2.3 Evaluation of the TESNA method and tool.. 18

2.3.1 Evaluation through Case Studies.. 19

2.3.2 Evaluation using Feedback on TESNA ... 21

3. Literature Review and Research Focus .. 22

3.1 Socio-Technical Theory .. 23

3.2 Software Development Process and Patterns ... 24

3.3 Patterns in Software Development.. 25

3.4 Overview of Patterns and Structure Clashes .. 28

3.4.1 Technical Structure Clashes.. 31

3.4.2 Social Structure Clashes.. 32

3.4.3 Socio-Technical Structure Clashes... 35

3.5 Revisiting the Research Questions.. 37

3.6 Identifying Socio/Technical Structure Clashes.. 38

3.7 Patterns and STSCs used in this Research ... 39

3.8 Conway’s Law Pattern... 41

3.9 Code Ownership Pattern.. 42

3.10 Betweenness Centrality Match Pattern... 42

3.11 Modularity Pattern ... 43

3.12 Core-Periphery Shift Pattern ... 45

4. TESNA Tool Design.. 46

4.1 The TESNA Method and Tool.. 46

4.2 Tool Overview ... 48

4.3 The TESNA Visualization... 53

4.4 Tool Functionality.. 54

4.4.1 The Design Structure Matrix (DSM) ... 54

4.4.2 Technical Structure Analysis .. 55

4.4.3 Socio-Technical Structure Analysis ... 59

 vi

4.4.4 Social Structure Analysis .. 63

4.4.5 Metrics ……………………………………………………………….65

4.4.6 Other TOOLS .. 66

5. Mendix Case Study.. 68

5.1 Introduction .. 68

5.2 Conway’s Law and CTO feedback... 70

5.3 Betweenness Centrality Match.. 74

6. eMaxx Case Study ... 77

6.1 Case Study Details ... 77

6.2 STSCs in eMaxx and Feedback .. 78

6.3 Mining Repositories... 79

6.4 Betweenness Centrality STSC .. 80

6.5 Conway’s Law STSC .. 85

6.6 Code Ownership STSC.. 89

6.7 Discussion... 94

6.7.1 Conway’s Law... 95

6.7.2 Betweenness Centrality... 95

6.7.3 Evaluation using Feedback on TESNA ... 97

7. Open Source Case Study ... 99

7.1 Introduction .. 99

7.2 Comparing Open Source and Commercial Development Processes 100

7.2.1 Discussion .. 108

7.3 Open Source Software Development Process.. 110

7.4 Technical Structure Clash (Modularity Pattern) .. 111

7.4.1 Discussion .. 115

7.4.2 OSS Community Structure ... 116

7.4.3 Literature Overview of Core-Periphery in Open Source 119

 vii

7.4.4 Identification of Core-Periphery STSC in Open Source..................... 124

7.4.5 Measuring the Core Periphery Shift metric ... 125

7.4.6 Empirical Data... 126

7.4.7 Conclusion ... 132

8. Discussion of the Case Studies ... 134

8.1 STSCs in the Commercial Software Development Cases............................... 134

8.1.1 Conway’s Law STSC.. 134

8.1.2 Code Ownership STSC ... 135

8.1.3 Betweenness Centrality Match STSC .. 136

8.2 STSCs in the Open Source Software Development Cases.............................. 137

8.2.1 Modularity STSC... 137

8.2.2 Core-Periphery Shift STSC .. 138

9. Conclusions .. 140

9.1 Limitations.. 141

9.2 Threats to Validity ... 142

9.3 Contributions.. 145

9.3.1 Contributions to Research... 145

9.3.2 Contributions to Practice... 146

9.4 Future Work ... 147

References... 149

About the Cover ... 158

Summary in English... 159

Summary in Dutch ... 160

 viii

LIST OF TABLES

Table 1: The basic structure of a pattern (taken from (Gamma, Helm et al. 1995))..... 26

Table 2: Literature Overview .. 30

Table 3: Overview of the papers on Technical Structure Clashes.................................... 32

Table 4: Overview of the papers on the Social Structure Clashes.................................... 34

Table 5: Overview of the papers on Socio-Technical Structure Clashes 37

Table 6: The Socio/Technical Patterns used for the Corporate Case Studies (Chapters 5

and 6), where the Pattern format is taken from Coplien et al. (Coplien and Schmidt

1995; Coplien and Harrison 2004)... 40

Table 7: The Socio/Technical Patterns used in the case of Open Source projects.......... 44

Table 8: Open Source Case studies in relation to Socio/Technical Pattern 101

Table 9: Modularity Technical Pattern for Open Source projects 112

Table 10: Literature Overview for Core Periphery Shifts... 122

Table 11: Core-Periphery Shift Pattern for Open Source projects 124

Table 12: The Core-Periphery trends of the different OSS projects studied 132

 ix

LIST OF FIGURES

Figure 1 The Classic Typology of Task Interdependencies (from Van de Ven et al. (1976)

(Ven, Delbecq et al. 1976)).. 4

Figure 2: Revised typology of Task Interdependencies (taken from Kumar et al. (Kumar,

Fenema et al. Forthcoming))... 5

Figure 3: The Function-Behaviour-Structure (FBS) Design Process (Based on (Gero

1990)) .. 15

Figure 4: The positioning of the Research Problem among Different Research Areas.. 22

Figure 5 : Pattern usage during the Project Planning .. 25

Figure 6: The evolution of the project with time.. 29

Figure 7: Pattern usage at both the Planned and Execution stages can help Project

Management ... 31

Figure 8: The TESNA Method and the Planned Software Process 46

Figure 9: Class diagram for TESNA... 50

Figure 10: Sequence diagram of the Technical Network Module of TESNA................... 51

Figure 11: Sequence diagram of Socio-Technical Network Module of TESNA 52

Figure 12: Sequence diagram of Social Network Module of TESNA 53

Figure 13: Example of a DSM .. 55

Figure 14: Call Graph of JEdit... 56

Figure 15: A clustered DSM in the DSMCluster tool.. 58

Figure 16: Clustered Call Graph of jEdit .. 59

Figure 17: The developer code Socio-Technical Call Graph of JEdit 60

Figure 18: Socio-Technical Clustered Call Graph of jEdit .. 60

Figure 19: The developer dependency graph of jEdit ... 64

Figure 20: The complete developer-developer dependency network of jEdit................. 64

Figure 21: Social Network from the Mendix case ... 65

Figure 22: The Software Architecture along with the task responsibilities 70

Figure 23: The social network mapped onto the Software Architecture for week I 71

Figure 24: The social Network mapped onto the Software Architecture for week II 72

Figure 25: The social Network mapped onto the Software Architecture for week III..... 73

Figure 26: The social Network mapped onto the Software Architecture for week IV 74

 x

Figure 27: The change in the betweenness centrality over the four weeks..................... 75

Figure 28: The Mid Office application Architecture and the task responsibilities 77

Figure 29: The variation of the Betweenness Centrality of the people working on DPT

Project... 82

Figure 30: The variation of Betweeness Centrality for the LPOC project. 83

Figure 31: The variation of Betweenness centrality for the LR project 84

Figure 32: The variation of Betweenness centrality for the TRM project........................ 85

Figure 33: The ratio of the messages between BPEL team FrontOffice, Application

Server teams ... 88

Figure 34: The ratio of messages between Support team FrontOffice, Application Server

and BPEL teams ... 89

Figure 35: The notice the software clusters of MC version 1.7.5 along with the

developers, Thomas and David who modified the classes in the different clusters......... 90

Figure 36: The Core-Periphery Shift of the MC application module............................... 91

Figure 37: The Core-Periphery Shift of the MZM application module from the

Application Server.. 92

Figure 38: The Core-Periphery Shift of the MLRD application module from the

Application Server.. 92

Figure 39: The Core-Periphery Shift of the MGM application module from the

Application Server.. 93

Figure 40: The Core-Periphery Shift of the MDDS application module from the

Application Server.. 94

Figure 41: The variation of Propagation Cost of JBoss over different versions........... 115

Figure 42: The variation of Clustered Cost of JBoss over different versions................ 115

Figure 43: The Onion Model of an OSS Community... 117

Figure 44: Variation of KLOC with Version number of JBoss 117

Figure 45: Variation of the Number of eMail messages with JBoss Version number... 117

Figure 46: The Core-Periphery snapshot of JAIM at the first instance of time 127

Figure 47: Snapshot of JAIM at the second instance, notice that the developer dingercat

has moved to the periphery.. 127

 xi

Figure 48: Snapshot of JAIM at the third instance, notice that dingercat has moved even

further to the periphery.. 128

Figure 49: The steadily decreasing Average CPDM of JAIM plotted over equal time

intervals .. 129

Figure 50: The oscillatory Average CPDM of Megameknet plotted over equal time

intervals .. 129

Figure 51: The steady Average CPDM of jEdit plotted over equal time intervals........ 130

Figure 52: The Average CPDM of JBoss ... 132

Figure 53: Average CPDM of ivy-ssh .. 132

Figure 54: Integration Interdependence versus Reciprocal with Integration

Interdependence causing Conway’s Law STSC ... 134

Figure 55:Non-Sticky Integration Interdependence versus Fully Sticky Integration

Interdependence causing the Code Ownership STSC.. 136

Figure 56: The existing Fully Sticky Integration Interdependence typology versus the

ideal Integration Interdependence typology... 138

ALGORITHMS

Algorithm 1: The algorithm used for clustering the Software Module DSM (adapted

from(MacCormack, Rusnak et al. 2006)) ... 57

Algorithm 2: The Core Periphery Distance Metric (CPDM) algorithm 62

 xiii

EQUATIONS

Equation 1: The betweenness centrality of a Graph (Wasserman and Faust 1994) 42

Equation 2: Calculation of the Dependency Cost (taken from (MacCormack, Rusnak et

al. 2006))... 57

Equation 3: Calculation of Clustered Cost (adapted from (Fernandez 1998) and

(MacCormack, Rusnak et al. 2006)) ... 58

Equation 4: Calculation of the Distance from the Core Cluster....................................... 62

Equation 5: Calculating the Software Developer DSM (SD) (from (Cataldo, Wagstrom

et al. 2006) and (Sosa 2008)) .. 63

 xiv

ACKNOWLEDGMENTS

This PhD work and dissertation would have been impossible without the help and sup-
port of my supervisor Prof Jos van Hillegersberg. I thank him for having faith in me and
in my work and for inviting me to come to University of Twente. Furthermore, I thank
him for the support and friendly encouragement throughout the PhD trajectory.
One of the first hurdles a potential researcher has to face is getting the post as a PhD stu-
dent. I thank Prof Kuldeep Kumar and Prof Jos van Hillegersberg for seeing the potential
in me and recruiting me as a PhD researcher in Rotterdam School of Management. Prof
Kumar also influenced and helped me in my research at many crucial and critical junc-
tions of the trajectory, for which I am very grateful.
During the trajectory of my PhD I have encountered many people who have helped
through their inspiration and support. Due to space constraints I name only some of these
people and events chronologically.
In Twente, I have been helped quite a lot by the colleagues of the IS&CM department.
Discussions with Mehmet Aydin and Daniel Moody were a big help in the development
of the “theoretical underpinnings” of my PhD. Discussions and paper reviews with Jeff
Hicks and Daniel Moody were extremely useful and educational, especially regarding
content and style.
Friends have also played a special part in making the PhD process enjoyable. The lunch
time conversations (lunch papers) with Ulad, Hong and Georgi at RSM along with the
chat sessions in their room were enjoyable. In Twente, I could always (and still do) rely
upon Micheal, Peter, Diederik and Bjorn to enliven the work environment. Lunch dis-
cussions with my roommates and paranymphs: Diederik and Bjorn have never failed to
bring up controversial and interesting topics. Pub sessions and corridor chats with
Daniel, Jeff, Roland, Jos, Maria and the other department colleagues have helped in cre-
ating some great memories and bonhomie. If anyone is reading this and wondering why
their name has been left out, remember, it is the thought that counts!
I thank my extended family (brother and sister-in-law) who were a constant support. My
parents and in particular, my father supported and encouraged me during the PhD and
also during the writing of this thesis.
Lastly (and most importantly), this PhD research process would have been difficult and
boring without the constant support, encouragement and diligent help of my partner Simi
(Usha). I especially thank her for her patience during the period of writing this thesis.

 xv

“Organizations which design systems (in the broad sense used here) are constrained to

produce designs which are copies of the communication structures of these organiza-

tions”

 -Melvin Conway (1968)

 1

1. Research Overview

1.1 Introduction

1.1.1 Research Motivation

There is no single cause for the problems in Software Development. A major factor
though, is the problem of coordinating activities while developing large software sys-
tems (Kraut & Streeter, 1995). Kraut and Streeter (1995) mention scale of software pro-
jects, inherent unpredictability of software specifications and tasks as well as the inter-
dependence of software components as some of the factors that lead to the necessity of
efficient co-ordination between the different work groups involved in the development
process. Curtis et al. (1988) in their case study, describe the coordination requirements
for software engineers to the different levels in a software company, like at the individ-
ual, team, project, company and the business milieu levels. At all the different levels
they describe how traditional coordination mechanisms like documentation do not work
when the number of project members and as a result the coordination requirement in-
crease. At the project level, they propose the formation of boundary spanners between
teams in order to enable the exchange of information (Curtis, Krasner et al. 1988). They
also observe the problem as previously described by Conway (1968), that the social
structure of a project has to reflect the technical architectural structure in order to mini-
mize the dependencies as well as the required amount of communication between the
different people involved in the project (Curtis, Krasner et al. 1988).
The reoccurrence and extent of some of these coordination problems stem from the fact
that the fundamental characteristics of complexity, conformity, changeability and invisi-
bility make software development particularly hard (Brooks 1987). Brooks (1987) de-
scribes software entities as being essentially complex, meaning that complexity is inher-
ently a part of software. This complexity according to Brooks, causes difficulties in
communication among team members that in turn lead to software being buggy, result-
ing in cost overruns and delays in schedule. He goes on to say that this essential com-
plexity not only causes technical difficulties but also managerial problems. The inherent
complexity of software makes the managerial overview as well as the identification and
control of software problems difficult (Brooks 1987). Also, Brooks (1987) says that
software is more susceptible to change compared to other manufactured goods (Brooks
1987). The reason Brooks (1987) provides is twofold, that as the functionality of systems
is implemented as software and functionality generally subject to change and that soft-
ware intrinsically is thought as a easier to change as it basically is “thought stuff” and
composed through logic (Brooks 1987). This fundamentally complex nature of software
makes it difficult to have a managerial overview of the software development process.

 2

Kraut and Streeter (1995) in their survey of intergroup coordination practices of a large
software development company, observed that project managers might have been misled
by the software metric data and reviews to think that they had control over software de-
velopment projects. While the customers as well as the staff members differed in their
judgement of the projects. Furthermore, the software metric data and reviews were used
exclusively by the senior project managers but these had little impact on the software
development process according to staff members (Kraut and Streeter 1995).
Curtis et al. (1988) in their case study of a research consortium, observed how compa-
nies were affected by managerial decisions that were based on relatively outdated tech-
nical knowledge. They describe how, though the managers had developed their technical
progress tracking schemes, they were still less aware of the technical details as compared
to the system engineers and were further frustrated at being left out of technical deci-
sions made by engineers as well as the strategic decisions made by executives (Curtis,
Krasner et al. 1988).
Software development researchers have worked on solutions to these problems by pro-
viding explicit mechanisms for coordination. Planning, defining, following a process,
defining requirements and design specifications, measuring process characteristics, regu-
lar status meetings etc. Further there has been increasing adoption of the Capability Ma-
turity Model for Software (CMM) (Herbsleb, Zubrow et al. 1997) and Capability Matur-
ity Model Integration (CMMI) (Boehm 2000). Such solutions provide a general direction
and shared understanding of the process and the resulting outcomes. However, they are
constrained by the necessity of everyone’s participation in the common process direction
(Herbsleb and Grinter 1999). So the software development process becomes vulnerable
to failure when the employees do not follow the explicit process direction as we shall
discuss in Chapter 2.
The success stories from Open Source, like Linux, Sendmail, Apache etc. are hard to
ignore. Ever since Raymond (1999) published his popular paper comparing the “cathe-
dral” (commercial closed source development) to the “bazaar” (Open Source develop-
ment), there have been many research papers comparing the two (Mockus, Fielding et al.
2002; Dinh-Trong and Bieman 2005). So, it is interesting to see how the various coordi-
nation mechanisms used in the different development processes (Closed and Open
Source) affect the coordination problems that one can identify in these processes.

1.1.2 Motivation from Practice

In my experience as a software developer I faced many difficulties coordinating the de-
velopment activities. The problem generally worsened before a particular release. The
software was a web client-server system and many changes were required on different

 3

parts of the web server code. I was in charge of some parts of the web server code, while
another colleague was in charge of remaining parts. The different parts of the code (that
we were working on) were highly dependent on each other. So each time my colleague
checked in his changed code into the CVS code repository I had to go to his desk and
ask him how the changes that he had made affected the code, for which I was responsi-
ble. The situation was problematic, as my colleague sat down the corridor and hence,
during a particularly crunch period I had to run to his desk and back in order to clarify
the dependencies (we could not be collocated in one room as he was a smoker). More-
over, the project manager was not aware of the problems developers like me faced. This
motivated me to research a tool as well as a method that would help a software manager
to locate problems in coordination.

1.2 Coordination Background

In this section the finer details and concepts behind coordination are dealt with. Malone
and Crowston (1994) in their interdisciplinary study of Coordination Theory, define co-
ordination as “managing dependencies between activities”. They go on to look at differ-
ent kinds of dependencies between activities and the coordination processes required to
manage the dependencies.
Malone and Crowston (1994) describe how different, diverse disciplines deal with coor-
dination problems with similar coordination mechanisms (at a conceptual level). They
state that organizations require some way of dividing activities among actors and some
way of managing the interdependencies among the different activities (Malone and
Crowston 1994). Thomson (1967) describes interdependencies among activities to be of
three basic types (Thompson 1967), namely:

(i) Pooled activity share or produce the same resources and are otherwise inde-
pendent

(ii) Sequential activities as the name suggests depend on the completion of the
previous activity, and work flows in one direction

(iii) Reciprocal where work and activities flow between intermediate actors in a
“back and forth” manner over a period of time.

Malone and Crowston mention coordination mechanisms that previous literature men-
tion, to manage these dependencies such as: standardization, where rules govern the per-
formance of each activity, direct supervision, where one particular actor manages the
interdependencies in each case and mutual adjustment, where each actor manages inter-
dependencies (Malone and Crowston 1994).
Van de Ven, Delbecq & Koenig (1976) build on the typology defined by Thompson
(1967), by adding a fourth type of interdependence namely team or intense interdepend-

 4

ence. In intense interdependence work is undertaken jointly and simultaneously by the
actors at the same point of time and hence “there is no measurable temporal lapse of the
flow of work” (Ven, Delbecq et al. 1976) as is the case in sequential and reciprocal.

Figure 1 The Classic Typology of Task Interdependencies (from Van de Ven et al. (1976) (Ven, Delbecq et

al. 1976))

Figure 1 shows the classic typology as described by Van de Ven (1976), where the rec-
tangles represent work-sites or locations and the circles represent the actors at the differ-
ent locations.
Kumar and van Dissel (1996) describe Coordination as “ the level of specification of
roles, obligations, rights, procedures, information flows, data, and analysis and computa-
tional methods used in the inter-organizational relationships”. They apply Thompson’s
(1967) workflow dependencies (pooled, sequential, reciprocal) to inter-organizational
collaboration and generate a typology in order to discuss coordination mechanisms, po-
tential for conflict and types of Inter Organizational Systems (Kumar and Diesel 1996).
Kumar et al. (Forthcoming) find the existing typology of interdependencies insufficient
to describe work in a globally distributed scenario. They develop on the classic typology
of interdependencies of Van de Ven et al. (1976) and apply it to work in a globally dis-
tributed scenario. They add integration interdependence along with recognizing and add-
ing the concept of information “hand-offs” (indicating the amount of communication
required during a work hand-off (Kumar, van Fenema et al. 2005)) as well as “sticki-
ness” (that explicitly addresses the cost of information transfer (von Hippel 1994)) to the
classic typology. Integration interdependence involves integrating the outcomes of paral-
lel task segments into an integrated whole, and thus differs from pooled interdependence
as pooled interdependence involves parallel activities that are independent of each other
as are the outcomes of the activities (Kumar, Fenema et al. Forthcoming). The resulting
interdependence diagrams can be seen in Figure 2. In Figure 2, the circular arrows repre-
sent the stickiness between the tasks thus implying the cost of information transfer for
each activity. Figure 2 shows the distinction of non-sticky interdependence diagrams,
where the costs of information transfer is close to zero (on the left) and the sticky inter-
dependence diagrams, where the costs of information transfer are significant (on the
right).

 5

Figure 2: Revised typology of Task Interdependencies (taken from Kumar et al. (Kumar, Fenema et al.

Forthcoming))

Crowston (1997) applies van de Ven et al.’s concept of coordination in a software devel-
opment organization. Crowston suggests that when an organization is performing a task,
one way to generate alternative processes is to first identify the particular dependencies
and coordination problems faced by the organization and then consider what alternative
coordination mechanisms could be used to manage them (Crowston 1997). Crowston
builds on the typology of Malone and Crowston (1994) and applies it to an organiza-
tional context. Crowston defines three basic types of dependencies: (i) between task and
resource, (ii) between two resources and (iii) between two tasks. He then describes the
coordination mechanisms to manage the particular dependencies. Thus, the methodology
suggested by Crowston consists of three heuristics (i) determine the dependencies man-
aged by activities by first examining the activities in the current process (ii) listing the
activities and resources and then determining the dependencies managed by them and
(iii) looking for problems with the process that hint at unmanaged coordination problems
(Crowston 1997). Malone et al. (1999) say that “identifying dependencies and coordina-

 6

tion mechanisms offers special leverage for redesigning processes” ((Malone, Crowston
et al. 1999), p429).
Our research builds on the Coordination theory approach discussed in Crowston (1997).
While the Crowston’s (1997) methodology is beneficial, it is unclear as to why a particu-
lar coordination mechanism has to be applied for a particular coordination problem.
Also, it is not clear how the dependencies at the level of the software code, e.g. task-
resource, task-task or resource-resource as well as the associated coordination problems
can be identified, especially in a large software development organization. In order to
address some of these specific coordination problems software engineering literature has
suggested the use of Organization and Process Patterns (Coplien and Harrison 2004).
But Organizational and Process Patterns address a very wide range of problems encoun-
tered in an organization. Moreover, these patterns have not been validated extensively.
So, to summarise, there does exist support from previous literature for the identification
of coordination problems in software development. However, the support is limited in
scope and does not provide a link to the structure of the software product nor does it
provide support in terms of a well defined method and a tool. In this thesis we aim to
provide such a method and tool. Using the concept of STSCs (that we introduce in Chap-
ter 3) related to Socio/Technical patterns we demonstrate how the identification of spe-
cific coordination problems is made easier as the project manager would find it easier to
know what to look for, as we will show in the following Chapters.
The next section provides an overview of the case studies and following that is a discus-
sion on the structure of the thesis.

1.3 Research Questions

Based on the motivation from research as well as practice we come up with the follow-
ing research question:
How can managers identify coordination problems in an ongoing software development
project?

Is it possible for a manager to know the current state of coordination among developers
or teams in an organization that he needs to manage? Furthermore, can the manger iden-
tify emerging coordination problems? Currently a method is lacking to apply the rich
coordination and pattern theory in order to detect coordination problems in software de-
velopment. Moreover, given the size and complexity of data related to coordination what
are needed are a tool as well as a method to deal with the coordination problems.
So, the related problem which is:

 7

Can a tool as well as a related method be developed in order to qualitatively as well as
quantitatively identify coordination problems in a software development organization?

As Open Source software and commercial closed source software are arguably two of
the important streams of software development, we pay attention to both. As there are
many differences in the closed source and Open Source development process, we can
consider if the same coordination problems are found in both process. This motivates the
following research question:

Are the coordination problems in the Open Source software development process differ-
ent from the coordination problems in commercial closed source environment?

The concept of coordination as well as that of a coordination problem encompass many
finer details and concepts and hence are ambiguous. In the next Chapter we will make
this research question more precise along with a better definition and understanding of
the coordination problem (by introducing the concept of a Socio/Technical Structure
Clash).

1.4 Research Methodology

The primary research methodology used in this thesis is the Design Research methodol-
ogy (Hevner, March et al. 2004). The Design Research methodology (Hevner, March et
al. 2004) was used along with the Function-Behaviour-Structure (FBS) design process
(Gero 1990) for the development of the TESNA (short for TEchnical and Social Net-
work Analysis) tool and method that are the backbone of this research. The primary
means of evaluation of the TESNA method and tool were two commercial as well as
multiple Open Source case studies. The case studies were conducted using the Case
Study research methodology as prescribed by Yin (2003). The TESNA tool was used to
gather as well as display data in the different case studies. The data from interviews of
the different employees was used to augment and verify data collected from the different
artefacts. The interview data analysed using the qualitative methods including the data
coding technique by Miles and Huberman (1984). The research methodology is ex-
plained in greater detail in Chapter 2.

1.5 Case Studies

We have tested the TESNA method and tool in a series of case studies in both Corporate
as well as Open Source environments.

 8

1.5.1 Corporate Case Studies

We have conducted case studies in two comparative Software Development companies,
Mendix and eMaxx. While Mendix had 12 managers and developers eMaxx had 22 and
was hence was nearly double in size. The products the two companies develop are com-
parable. While Mendix develops a web-based Service Oriented Application (SOA),
eMaxx develops Mid-office solutions for city administrations in Netherlands. Both com-
panies employ three tier architecture for their products, namely a client (thin client),
server and database.

Mendix Case

We started by studying the dependencies among the software modules at the core of the
middleware application created by Mendix, using TESNA. We then read the log data on
the software modules from the software repositories used in Mendix. We collected data
about the communication structure over a period of three months, through participant
observation, interviews and gathering work related documents from development tools
and communication servers. Among the documents observed were the chat logs, which
were stored in XML format. Logs of chat transcripts over four weeks, each week evenly
distributed in the 3 month period, were mined and analysed with TESNA.

It was ascertained through our interviews that almost all technical communication was
done through online chat. This was because Mendix uses a dedicated Jabber chat server
running for the company (which eliminated wastage of time due to external chats), and
developers at Mendix consider the use of chat more efficient than face to face communi-
cation. The communication links as analysed from the chat logs corresponded with those
that the interviewees had themselves provided.

The developers were assigned to teams based on the part of the system’s architecture
they were working on. So, developers working on the client system belonged to one
team and so on. We analysed the developer dependencies versus the actual communica-
tion of the developers working on each of the different parts of the architecture. We real-
ised that most of the problems related to dependencies in each of the architecture mod-
ules were discussed by the developers in the team meeting and/or through the jabber chat
interface. However, what was striking was that dependencies between developers work-
ing in different teams (the client system and the workflow server for example) were not
discussed and this was the cause of most of the problems in the development. Also, we
determined which employee was in charge of the coordination in different projects over
time. We were able to spot a coordination inconsistency between the assigned role and
the actual roles. Once the data was displayed and analysed through the identification of

 9

coordination inconsistencies, we took the data back for feedback from the CTO of Men-
dix. In this way we could ascertain that our technique was really useful to the CTO.

eMaxx Case

As in the Mendix case above, we started our data collection by studying the core soft-
ware modules as well as modules related to the different parts of the Architecture, using
TESNA. We then read the log data on the software modules from the software reposito-
ries used in eMaxx.

We collected data about the communication structure over a period of six months,
through participant observation, interviews and gathering work related documents from
development tools and communication servers. We mined the Mantis bug tracker using
TESNA and constructed a communication network based on the discussion thread on
each page. We noticed, as in the Mendix case, that problems generated due to dependen-
cies between the developers working in the same team were solved through face-to-face
meetings and team meetings twice a week. But the problems due to dependencies be-
tween developers working on different teams were in most of the cases unsolved. This
was further confirmed by analysing the data from the interviews. Also, as in the Mendix
case, although in a more thorough fashion, we analysed which employee had the chief
coordinating role in different projects. We also determined whether the coordinating role
changed over time. In most of the projects we were able to spot a coordination inconsis-
tency between the assigned role and the actual roles. Unlike in the Mendix case study,
we used the newly developed functionality of the TESNA tool to also identify the
changes in ownership of the code at the level of the software project. We did this
through the use of a clustering algorithm on the data got from the source code.

As in the Mendix case, we took all the data back to the employees and in a series of in-
terviews tried to establish the reason behind some of the coordination problems. We also
brought all the employees together in one room for a joint feedback workshop session. In
this workshop a questionnaire was distributed among the employees for an evaluation of
the TESNA method and tool.

Open Source Case Studies

Using the large amount of literature on Open Source software development we per-
formed a Secondary Analysis of published case studies (Gallivan 2001). We used this
analysis to establish how some of the patterns applicable to commercial closed source
development are not applicable to Open Source projects.

 10

We have analysed several open source software projects based on java technology. The
projects range from small (1 to 3 developers) to middle (10 to 15 developers) to large
(greater than 15 developers).

As with the corporate case studies, we analysed the dependencies among the software
modules using our tool TESNA. We then read the log data on the software modules from
the software repositories of the software project. We tried to reason how the change in
coupling of the software is related to the change in the communication among the devel-
opers. We tested this in a case study of the JBoss Open Source project.

We also analysed seven different Open Source projects of various sizes and in different
stages of development in order to determine whether the developers were working on the
core or the periphery of the software. In order to carry out this analysis we clustered the
dependency graph of the software based on dependencies of the software modules. Then,
we combined the display of the clusters with the log data we got from the code reposi-
tory. With this analysis we could determine the shifts of the developers between the core
and the periphery of the software. We studied the projects over a period of time and ana-
lysed the people cluster image to see if developers were moving towards or away from
the Core. We then calculated a metric (Core-Periphery metric) to understand the extent
of this shift.

1.6 Goals and Thesis Outline

The primary goal of the research presented in this thesis is to answer the question about
how a manager can detect Coordination Problems in his team, or in the company in gen-
eral. In attempting to answer this question, we realise that we need to utilize software
process patterns (that we call Socio/Technical Patterns). In order to use these patterns,
we need to identify and validate relevant Socio/Technical Patterns taken from different
literature sources. Using these patterns is not an easy task in itself. Hence, the need
arises to develop a tool along with an accompanying method that can be used to detect
specific coordination problems in commercial as well as Open Source software devel-
opment processes. Once such a tool is constructed (using the Design Science Research
Methodology), we need to validate the tool and method in different case studies. Such a
validation of the tool, method and the patterns themselves is the final goal of this re-
search.

 11

The rest of the thesis is structured as follows:

Chapter Summary

Chapter 1 This Introduction

Chapter 2 Describes the research methodology used in this thesis

Chapter 3 Provides an overview of the literature on Software Patterns and then goes on
to describe the conceptual model and focus of this thesis by refining the Re-
search Questions. This chapter also describes the different Socio/Technical
Patterns used in this thesis

Chapter 4 Gives an overview of the TESNA method and functionality of the tool

Chapter 5 Describes the first Case Study conducted in a company called Mendix

Chapter 6 Describes the Case Study conducted in a company called eMaxx

Chapter 7 Starts with a comparison of STSCs found in commercial environments with
those in Open Source environments and then goes on to describe two Case
Studies on Open Source software projects

Chapter 8 Discusses the case studies and the management lessons that can be learned
from the STSCs found

Chapter 9 Concludes the thesis by discussing the various contributions to research and
practice while dealing with the limitations and the threats to validity of the
Case Studies conducted

 12

2. Research Methodology

Research Methodology is the philosophy of a research process that “includes the as-
sumptions and values that serve as a rationale for research and the standards or criteria
the researcher uses for interpreting data and reaching a conclusion” (Basili, Selby et al.
1986). Basically, a research methodology applies a scientific method to solve a research
problem (answer a research question). When trying to decide which research methodol-
ogy to apply we considered the nature of the problem. Hevner et al. (2004) distinguish
between design science and a more routine design or system building approach. While
routine design is the application of existing knowledge to organizational problems, de-
sign science involves finding new solutions to previously unsolved problems or better
and more efficient solutions to previously solved problems. Hevner et al. (2004) state
that a Design Research methodology is appropriate to wicked problems (Brooks, (1987))
like:

i. unstable requirements and constraints based upon ill defined environmental con-
texts

ii. complex interactions among subcomponents of the problem and its solution
iii. inherent flexibility to change the design processes as well as design artefacts (i.e.

malleable process and artefacts)
iv. a critical dependence upon human cognitive abilities (e.g. creativity) to produce

effective solutions
v. a critical dependence upon human social abilities (e.g. teamwork) to produce ef-

fective solutions (Hevner, March et al. 2004)

The research problem in this dissertation is a wicked problem in the sense of what
Brooks (1987) means as it satisfies most if not all the criteria that Hevner et al. (2004)
mention in their article. Let us consider each point in more detail

i. Coordination problems depend on the environmental context and change con-
tinuously and hence is an unstable requirement

ii. We narrow the scope of coordination problems in this thesis and restrict it to the
interaction between the social and the technical networks. Each of these networks
(social and technical) involves complex interactions among the different actors of
the network.

iii. This research is focussed on identifying coordination problems in software de-
velopment, that inherently has a flexible process as well as design artefacts.

iv. Software development relies quite heavily on human cognitive abilities to pro-
duce effective solutions.

 13

v. Again as mentioned above, software development relies on human social abilities
to coordinate and produce effective solutions

Given the above points, as well as the fact that we were looking for an innovative solu-
tion to an essentially unsolved problem in research we decided to pursue a design sci-
ence methodology instead of a routine design or system building approach (Hevner,
March et al. 2004).

2.1 Design Science Research Methodology

In the literature survey done for Design Science methodology it soon became clear that
the Information Systems discipline lags behind many in the Engineering domain like Ar-
tificial Intelligence when it comes to research using design science. This is further evi-
dent from the paper by March et al. (2000) where they extol the need for application
driven technology-intensive research in the IS field. Literature on Design Science from
Artificial Intelligence discipline is much more vast and elaborate as compared to the IS
area. Yoshikawa (1981) came up with a “General Design Theory” (GDT) in 1981. How-
ever, this theory is not so widely used as it is more specific to CAD (Computer Aided
Design) systems. This is partly due to the complexity of its mathematical formulation
and partly due to the fact that the theory is too formal to be relevant to design (Reich
1995). Takeda et al. (1990) build on the GDT and develop a descriptive, cognitive and
computable model of the design process. Again, as their concepts are not too intuitive it
is not widely cited or used. Another paper from the same special issue of AI Magazine
(1990, Winter), namely Gero (1990), “On a Knowledge Representation Framework of
Design Prototypes” is very highly cited and used.
Hevner et al. (2004) describes the following seven guidelines to perform design science
research in Information Systems discipline:

i. Design as an Artefact: an innovative and purposeful artefact of the kind a con-
struct, model, method or an instantiation

ii. Problem Relevance: the technology based solution must be important and rele-
vant to Business

iii. Design Evaluation: the design artefact must be rigorously evaluated
iv. Research Contributions: the contribution in the areas design, foundations and

methodologies must be made clear
v. Research Rigor: rigorous methods in both the development and evaluation of the

solution must be employed

 14

vi. Design as a Search process: the process of creating the artefact as well as the ar-
tefact itself incorporates a search process where a problem space is constructed
and a mechanism constructed to find an solution

vii. Communication of Research: the outcomes of the design science research must
be communicated effectively to technology oriented practitioners and corporate
managers.

Though the design research methodology proposed by Hevener et al. (2004) is a com-
prehensive methodology for the overall design science approach, it does not deal with
the complexity of the process of actually developing a design artefact (the search process
itself). In order to address this, we follow the process framework from Gero (1990) for
the design of the TESNA prototype. However, for the overall design research methodol-
ogy of the TESNA method and tool we follow the design research methodology pro-
posed by Hevner et al. (2004).
 In Gero’s Function-Behaviour-Structure framework three classes of variables for depict
a design object are described: (i) Function (F) describes the various requirements for the
design object (ii) Behaviour (B) describes the attributes that are derived (Bs) or is ex-
pected to be derived (Be) from the Structure (S) of the variables of the object and (iii)
Structure (S) describes the components of the objects and how the components relate to
each other.
The eight processes labelled in Figure 7 are:

(1) Formulation: transforms the requirements expressed in Function (F) to the Ex-
pected Behaviour (Be)

(2) Synthesis: transforms the Expected Behaviour (Be) into a Solution (S)
(3) Analysis: derives the Actual Behaviour (Bs) from the synthesised Solution (S)
(4) Evaluation: compares the Actual Behaviour (Bs) derived from the solution with

the Expected Behaviour (Be) in order to decide if the Solution (S) is acceptable
(5) Documentation: produces the Design Description (D) for constructing the prod-

uct
(6) Reformulation type 1: addresses changes in the Solution (S) (structure variables

or their ranges of values) if the Actual Behaviour (Bs) of the Solution is consid-
ered unsatisfactory

(7) Reformulation type 2: addresses changes in the Expected Behaviour (Be) (be-
haviour variables or their ranges of values) if the Actual Behaviour (Bs) of the
Solution (S) is considered unsatisfactory

(8) Reformulation type 3: addresses changes in the Formulation (F) (function vari-
ables or their ranges of values) if the Actual Behaviour (Bs) of the Solution (S)
is considered unsatisfactory

 15

Figure 3: The Function-Behaviour-Structure (FBS) Design Process (Based on (Gero 1990))

2.2 Design Science Methodology applied to the development of the
TESNA Prototype

In a pilot case study performed on four teams of Master Students (Amrit 2005), we ob-
served how the structure of the social network in a team influences the performance of
the team. The research was conducted in a globally distributed environment (part of each
team was located in The Netherlands and the other part in India), and the team’s task
was a design based project. The exercise revealed how the Centralization and Density of
Advise and Task networks affect the performance of the team. Though the data was only
good for a preliminary academic analysis, we got insights into how the structure of the
social network of a team can affect its performance. As the performance was rated on the
relevance of the solution according to the requirements given, we saw that monitoring
the structure of the social network can help in identifying the coordination problems be-
tween team members. Along with the social network, we decided to look at the technical
artefacts to help in identification of coordination problems based on literature available
on socio-technical congruence (de Souza, Redmiles et al. 2004; Cataldo, Wagstrom et al.
2006; Wagstrom and Herbsleb 2006; Sosa 2008). Thus, a design research project to cre-
ate a tool that identifies coordination problems qualitatively and quantitatively was em-
barked upon.

2.2.1 Design as an Artefact

Simon (1996, p132) states “solving a problem simply means representing it so as to
make the solution transparent”. This is exactly what is followed in this research. The tool
TESNA displays the different social as well as the technical networks in such a way that

 16

identifying a coordination problem (which is the solution to the research question) be-
comes easy and transparent. In Chapter 4, the design and the features of TESNA are de-
scribed in more detail.
March and Smith (1995) describe four different kinds of products that can be a result of
design science research, namely: constructs, models, methods and implementations
(March and Smith 1995). The constructs are the “basic language of concepts” (March
and Smith 1995) or the “vocabulary and symbols used to define the problem and the so-
lutions” (Hevner, March et al. 2004). In the case of TESNA the constructs are Design
Structure Matrices (DSMs) that are widely used in the engineering discipline (Steward
1981; Eppinger, Whitney et al. 1994) as will be described in the next Chapter (Chapter
3). Models are higher order constructions combined from constructs and used to describe
tasks, situations and artefacts (March and Smith 1995). TESNA uses Network Diagrams
and Line Graphs to represent the DSMs as well as the coordination problems over time.
Methods are techniques to build models or “goal directed activities” (March and Smith
1995). The method to detect coordination problems, as described in this Section, is also a
design artefact developed as part of this research. Finally, the implementation is an in-
stantiation or a physical representation to perform certain tasks (March and Smith 1995).
The tool TESNA is developed as an instantiation of the constructs in order to represent
the models that can be used as part of the method to detect specific coordination prob-
lems.

2.2.2 Problem Relevance

Hevner et al. (2004) in their paper on Design Research methodology, describe the nature
of a research problem as “the difference between the goal state and the current state of a
system” ((Hevner, March et al. 2004), p85). As discussed in the Socio Technical Con-
gruence literature (Herbsleb, Cataldo et al. 2008), the research problem in this paper in-
volves the difference in coordination between the project execution phase and the soft-
ware planning phase. The detection of specific coordination problems (STSCs) related to
the software process can reduce this gap. Thus the problem addressed by this research is
clearly relevant and important to IS research as well as practice.

2.2.3 Research Contributions

The TESNA tool and the associated method (described in Chapter 4) are the primary
contributions of this research. As TESNA is the first artefact to address the research
problem of this thesis the development of such an artefact is contribution in itself. The
evaluation, challenges to the improvement of the tool and method as well as a more

 17

comprehensive list of contributions are dealt in the final Chapter (Chapter 9) of the the-
sis.

2.2.4 Research Rigour

The research done as part of the development of TESNA has its theoretical foundations
in the field of IS, CSCW as well as Software Engineering. Prior research done in the
field of Product Design Engineering (Eppinger, Whitney et al. 1994; Sosa, Eppinger et
al. 2004), CSCW (de Souza, Froehlich et al. 2005; Cataldo, Wagstrom et al. 2006) , Co-
ordination Theory (Organizational Theory) (Malone and Crowston 1994; Crowston
1997) as well as Process Patterns (Software Engineering) (Coplien 1994; Coplien and
Harrison 2004) have served as the basis for this work. The tool TESNA has been primar-
ily evaluated using data collected from case studies in commercial as well as Open
Source development environments.

2.2.5 Design as a Search Process

The development and refinement to the tool of TESNA was carried out in a period of
two years that involved evaluation in the different case studies. The development of
TESNA followed the Function-Behaviour-Structure prototype development process
(Figure 7 and based on (Gero 1990)). Initially the Expected Behaviour (Be) was quite
different from the current implementation of TESNA. The Expected Behaviour was to
have an automated recognition of coordination problems. Though this is possible in the
case of a specific coordination problem, it is difficult to implement such a tool for all
kinds of coordination problems. As the research question dealing with the detection of
such a general coordination problem is quite wicked, and it is difficult to determine let
alone explicitly describe the means ends and laws (Vessey and Glass 1998). For such a
research problem with changing requirements a more exploratory approach is called for
and hence it was decided to have human intervention in order to identify coordination
problems. Hence, Reformulation of type 2 (Figure 7) was carried out (change in the Ex-
pected behaviour) and this was followed by a Reformulation of type 3, where a change
in the basic Function (F) of TESNA was carried out (Figure 7). The identification of co-
ordination problems involved extending TESNA with much additional functionality (that
will be described in more detail in Chapter 4) and further, each time the tool had to be
modified for reading a specific resource. The addition of each of these functionalities as
well as the related modifications involved Reformulations of type 1 (Figure 7).

 18

2.2.6 Research Communication

The development of the TESNA tool as well as the results from the case studies has been
communicated to technological as well as management oriented practitioners. The re-
sults were especially communicated to the developers and management staff involved in
the two commercial cases conducted as part of the thesis. The feedback from this audi-
ence was carefully collected, analysed and included in the validation of the tool as part
of this thesis. Furthermore, the tool design and outcomes from the case studies were also
communicated to technological as well as management oriented research audiences in
various workshops and conferences. The feedback from the different audiences was also
used to refine the development of the tool and the associated method.

2.3 Evaluation of the TESNA method and tool

Kaplan and Duchon (1988) classify the field of Information Systems under the field of
social systems. They say that such social systems involve many “uncontrolled and uni-
dentified” variables and hence methods used in closed systems are not very appropriate
for such systems. They use a combination of quantitative and qualitative techniques in
their case study. The qualitative methods used in their paper include open-ended inter-
viewing, observation, participant observation, and analysis of responses to open-ended
items on a survey questionnaire, while quantitative methods used include analysing the
data collected from questionnaires (Kaplan and Duchon 1988).
Saracevic (1995) describes six levels of prototype evaluation, namely: (i) Engineering
(ii) Input (iii) Processing (iv) Output (v) Use or user, and (vi) Social level. According to
Saracevic (1995) most of prototype evaluations focus on only one or two of these levels.
Vokurka et al. (1996) discuss a list of quantitative and qualitative methods to validate
prototypes. Zelkowitz and Wallace (1998) describe twelve validation methods that fall
into three categories, namely observational, historical and controlled. An observational
method collects relevant data as the project proceeds and there is little control over the
project development. The historical method collects data from projects that are com-
pleted and for which the data is available. A controlled method provides data from mul-
tiple instances of observations and can thus check statistical validity of the data
(Zelkowitz and Wallace 1998).
Hevner et al. (2004) list five different types of design evaluation methods, namely, ob-
servational, analytical, experimental, testing and descriptive. They classify the different
evaluation methods as follows:

1) Observational:
a. Case Study: Study the artefact in a business environment
b. Field Study: Monitor use of artefact in multiple projects

 19

2) Analytical:
a. Static Analysis: Examine the structure for static qualities (e.g. complex-

ity)
b. Architecture Analysis: Study the fit of the artefact into the IS architecture
c. Optimization: Demonstrate inherent optimal properties of the artefact or

provide optimal bounds on artefact behaviour
d. Dynamic Analysis: Study artefact in use for dynamic qualities (e.g. per-

formance)
3) Experimental:

a. Controlled Experiment: Study artefact in a controlled experiment for dif-
ferent qualities like usability

b. Simulation: execute artefact with artificial data
4) Testing:

a. Functional (Black Box) Testing: Execute artefact to discover failures and
identify defects

b. Structural (White Box) Testing: Perform coverage testing of some metric
in the artefact implementation like execution paths.

5) Descriptive:
a. Informed Argument: Use information from the knowledge base (e.g. rele-

vant research) to build a convincing argument for the artefact’s utility
b. Scenarios: Construct detailed scenarios around the artefact to demonstrate

its utility

As the TESNA tool as well as the method is the first of their kind, we use a soft observa-
tional evaluation method like case study research for evaluation. The tool TESNA was
tested in each iteration of its development using functional (black box) as well as struc-
tural (white box) testing methods. Here we describe the two ways in which the TESNA
method and tool have been evaluated.

2.3.1 Evaluation through Case Studies

The case studies were conducted using the Case Study research methodology as pre-
scribed by Yin (2003). The tool was used to gather as well as display data in the differ-
ent case studies. The data from interviews of the different employees was used to aug-
ment and verify data collected from the different artefacts. The interview data analysed
using the qualitative methods including the data coding scheme by Miles and Huberman
(1984). On the basis of the different network and graph displays, coordination problems
related to the development process were identified. During the second case study (at

 20

eMaxx, Chapter 6) a presentation was held in which seven of eMaxx employees (who
were also involved in the projects studied) participated. After the presentation a feedback
questionnaire on the TESNA method and tool was distributed among the attendees. The
feedback from the questionnaire served as evaluation of the TESNA method and tool
and can be seen in Chapter 6 (section 6.7.3).
No formal comparison with related artefacts was conducted as there are no other tools
that address the specific research problem. Although, there are tools that address sub-
problems like for the identification of specific coordination problems (called the Con-
way’s Law STSC as will be explained in Chapter 3) (de Souza, Froehlich et al. 2005).
We have conducted case studies in two comparative Software Development companies,
Mendix and eMaxx apart from multiple Open Source case studies. Both the companies
(eMaxx and Mendix) adopted an iterative software development process and had devel-
opment teams of similar size (between 15 to 20 developers each). The products the two
companies develop are also comparable. While Mendix develops a web-based Service
Oriented Application (SOA), eMaxx develops Mid-office solutions for city administra-
tions in The Netherlands. Both companies employ three tier architecture for their prod-
ucts, namely a client (thin client), server and database.
In the eMaxx case study the following s methodological steps were followed:

(i) In a meeting with the company’s CTO; the technical architecture, the
task and team allocation of the different employees were discussed

(ii) The different code repositories used by the developers were analysed.
The important core modules relating to different projects were then
determined through interviewing the Managers and select employees.
The call graph structure, the clustering and the coupling metrics of
these modules were then analysed in more detail.

(iii) The different communication and coordination mechanisms used by
the employees were first analysed. Then, the most representative
mode of communication and coordination was determined through
various interviews of the managers and employees. The communica-
tion repositories (e-mail, chat and bug tracker) corresponding to these
modes of communication and coordination were then analysed in
more detail.

(iv) After analysing the data from the code repositories, the data in the
form of graphs was taken back to the developers for their feedback

(v) The same procedure (as (iv)) was repeated with the data analysed
from the communication repositories. This time, the data (especially
the accuracy of the mined social network) was discussed with each of
the employees involved through face-to-face interviews.

 21

(vi) After determining if the data was valid and an accurate representation
of the social and technical structures, the data was analysed to identify
coordination problems.

(vii) After identifying coordination problems, the Managers responsible for
the particular projects in which the coordination problems were iden-
tified, were again interviewed. This was done to obtain their feedback
on the findings.

(viii) A research presentation and feedback session was arranged with the
employees of the company in order to get their feedback on many of
the coordination problems.

(ix) Follow-up interviews of the project members were then held in order
to ascertain the reason for the occurrence of some of the coordination
problems.

In the Mendix case study only steps (i) to (vii) was followed, as it was a first case study
and we thought that the data was not too extensive to warrant a presentation to the com-
pany’s employees.
On the other hand, in the Open Source case studies, only data from the repositories was
considered. This was done, as it was very difficult to obtain a large number of responses
to our online questionnaires from the Open Source developers. Hence, we used the data
from the repositories and verified the presence of coordination problems using additional
data (in the case of the Modularity Pattern) or additional case studies (in the case of the
Core-Periphery Shift Pattern).

2.3.2 Evaluation using Feedback on TESNA

After the presentation (on the analysed data) given to the eMaxx employees, we also dis-
tributed questionnaires for feedback on the method and tool. We later discussed the feed-
back with all the participants of the talk, in order to get more qualitative data on their
feedback. In total eight developers, support personnel and project leaders attended the
presentation and also filled the questionnaires. The summary of the responses can be
seen in the Chapter on the eMaxx case study (Chapter 6).
In the next Chapter (Chapter 3) we describe the theoretical underpinnings of this re-
search.

 22

3. Literature Review and Research Focus

In this chapter we position the research problem in research literature. This chapter also
provides a framework to position the main research problem in a broader context of dif-
ferent literature, while at the same time, refining it to a narrower scope and focus. In or-
der to create such a framework, concepts from literature belonging to various fields were
taken. The research done as part of the development of TESNA has its theoretical foun-
dations in the field of IS, CSCW and Software Engineering. Prior research done in the
field of Product Design Engineering (Eppinger, Whitney et al. 1994; Sosa, Eppinger et
al. 2004), CSCW (de Souza, Froehlich et al. 2005; Cataldo, Wagstrom et al. 2006) , Co-
ordination Theory (Organizational Theory) (Malone and Crowston 1994; Crowston
1997) as well as Process Patterns (Software Engineering) (Coplien 1994; Coplien and
Harrison 2004) have served as the basis for this work.

Figure 4: The positioning of the Research Problem among Different Research Areas.

We have already discussed Coordination in the Research Motivation section in Chapter
1. The rest of this chapter deals with the literature in the other three research areas de-
picted in Figure 3. But, rather than using the structure presented in the Venn diagram
from Figure 3, we group the literature under Social, Technical and Socio-Technical Pat-
terns. We perform such a grouping as then it is easier to focus on the research question.

 23

The Socio-Technical concept used in this thesis differs from the widely used Socio-
Technical notion in the Information Systems literature as we shall explain in the follow-
ing section.

3.1 Socio-Technical Theory

The Tavistock Institute of Human Relations (Institute) is credited with the development
of the concept of Socio-Technical design, beginning in the 1940’s. The institute initially
focused on the work systems in factories and offices, and on traditional non-computing
manufacturing systems (Emery and Trist 1960). In the 1970’s the institute began re-
search in the area of design and introduction of computing systems as Socio Technical
Systems for use in Organizations. The Socio-Technical Design theory was then associ-
ated with terms such as user involvement, participatory design , user satisfaction, human
relations and workplace democracy (Kling and Scacchi 1980). This theory of Socio-
Technical design is prescriptive in nature rather than the descriptive or empirically
grounded studies preferred by scholars in the Computer Supported Cooperative Work
(CSCW) or human computer interaction field (Scacchi 2004). In order to overcome this
limitation, a specific socio-technical network model called Socio-Technical Interaction
Network (STIN) was advanced by Kling, Kim and King (2003). They define a STIN to
be “a network that includes people (including organizations), equipment, data, diverse
resources (money, skill, status), documents and messages, legal arrangements and en-
forcement mechanisms, and resource flows” ((Kling, McKim et al. 2003), p48). The the-
ory behind STINs can be considered to have evolved from the socio-technical system
theory (Emery (1960)) and actor network theory (ANT) (Latour (1987)). Actor network
theory deals with relations between material things as well as semiotic (between con-
cepts). ANT encourages the need for empirical research rather than prescriptive strate-
gies or studies based on the motivation behind why people should participate in system
design. Especially empirical research on what people do in their work, the tools, re-
sources and artefacts they create, use or consume (Latour 1987). STINs thus builds on
the Socio-Technical System as well as the ANT concepts and focuses on “the impor-
tance the character of interactions between people, between people and equipment, and
even between systems of equipment” ((Kling, McKim et al. 2003), p49). Hence STINs
can be used to examine and understand the software development process and in particu-
lar provide a framework in which the Research Question addressed in the Introduction
can be answered.
Recently there has been an emergence of a subfield of CSCW called Socio-Technical
Congruence as evidenced by a workshop on the topic at the International Conference for
Software Engineering (Herbsleb, Cataldo et al. 2008). Socio-Technical Congruence is

 24

typically the difference between the coordination requirements (Wagstrom and Herbsleb
2006) due to the technical dependencies and the actual coordination. Where, congruence
is achieved when the coordination capabilities match or exceed the required coordination
(Herbsleb, Cataldo et al. 2008). The term “Socio-Technical”, as used in this thesis is
based on a similar conceptualisation of STINs.

3.2 Software Development Process and Patterns

A Software Process is a “partially ordered set of activities undertaken to manage, de-
velop and maintain software systems”(Acuna and Juristo 2005). The software process is
hence a representation of the process of construction and not of the end product. A Soft-
ware Process Model on the other hand is an “abstract representation of the software
process” (Acuna and Juristo 2005).
As described briefly in the research motivation section earlier, software development
projects often prove to be both a costly and risky endeavour. Poor software project exe-
cution continues to result, in the best cases, in missed deadlines, and in the worst cases,
in escalations in commitment of additional resources as a cure-all for runaway projects
(Kraut and Streeter 1995). In this section we look at the research problem and scope in
more detail.
Some of these problems stem from the differences between the development process
model and software architecture at the project planning phase to what actually occurs at
the development phase (Curtis, Krasner et al. 1988; Amrit, van Hillegersberg et al.
2004). Curtis et al.(1988) describe the project manager’s predicament when there are
changes in the software application and related technologies due to fluctuating specifica-
tions or requirements. They describe how the tracking schemes most managers had de-
veloped were of no use and they had to rely on system engineers for their managerial
input.

Figure 5 illustrates this problem. On the left hand side of Figure 5 we have the design
phase where the software development process model and the software architecture are
planned and designed, while on the right hand side the actual implementation of the
software development is described. The implemented software often evolves into some-
thing completely different from what was envisioned at the design phase over a period of
time, as shown in Figure 5. In order to develop and maintain quality software in a re-
peatable predictable fashion and to prevent the software process from getting out of hand
the industry has come up with what are called software best practices. These best prac-
tices have been used enough times to be commercially proven approaches to strike at the
root of the software development problems (Kruchten 1998). During software develop-
ment, just knowledge of the best practices is not enough to guarantee successful comple-

 25

tion of software projects. The problem with the usage of best practices as generic solu-
tions is that they are not precisely formalized and hence not easily applicable. What are
needed are generic solutions to specific problems one encounters during the actual prac-
tice of software development. Experienced software designers and developers try to re-
use solutions which have worked in the past rather than solve every problem from first
principles. This practice has led to the collection and use of software patterns, which are
generic solutions to recurrent software development problems. These patterns are ap-
plied in the design stage of the product (Figure 5) and are not applied in the actual im-
plementation part of the software development.

Figure 5 : Pattern usage during the Project Planning

3.3 Patterns in Software Development

While there are many ways to describe patterns, Christopher Alexander, who originated
the notion of patterns in the field of architecture, described patterns as “a recurring solu-
tion to a common problem in a given context and system of forces” (Alexander, Ishi-
kawa et al. 1977). In software engineering patterns are attempts to describe successful
solutions to common software problems (Schmidt, Fayad et al. 1996). Patterns reflect
common conceptual structures of these solutions and can be used repeatedly when ana-
lyzing, designing and producing applications in a particular context. Coplien and Harri-
son (2004) define pattern as “a recurring structural configuration that solves a problem
in a context, contributing to the wholeness of some whole, or system that reflects some
aesthetic or cultural value” ((Coplien and Harrison 2004), p14). Patterns represent the
knowledge and experience that underlie many redesign and re-engineering efforts of de-

 26

velopers who have struggled to achieve greater reuse and flexibility of their software.
The different types of patterns are:

• Design Patterns: Are simple and elegant solutions to specific problems in
software design (Gamma, Helm et al. 1995).

• Analysis Patterns: Capture conceptual models in an application domain in order
to allow reuse across applications (Fowler 1997).

• Organizational Patterns: Describe the structure and practices of human
organizations (Coplien and Harrison 2004).

• Process Patterns: Describe the Software Design Process (Lonchamp 1998;
Coplien and Harrison 2004)

 The basic format of a pattern that we use in this thesis is taken from the Process Pattern
format (Coplien and Harrison 2004) and can be seen in Table 1.

Pattern Format

Problem:
A problem growing from the Forces
Context:
The current structure of the system
giving the context of the problem

Forces:

Forces that require Resolution
Solution:

The solution proposed for the prob-
lem
Resulting Context:

 Discusses the context resulting
from applying the pattern. In par-
ticular, trade-offs should be men-
tioned
Design Rationale/Related
patterns:

The design rationale behind the
proposed solution. Patterns are often
coupled or composed with other
patterns, leading to the concept of
pattern language.

Table 1: The basic structure of a pattern (taken from (Gamma, Helm et al. 1995))

 27

The pattern name should be descriptive in order to communicate the essence of the pat-
tern (Coplien and Harrison 2004). The context gives an indication of the current struc-
ture of the system and hints on other possible patterns that might be applicable. Both the
problem, and the pattern that addresses it, are context dependent. The problem the pat-
tern address lies in this particular context and in general is not context free. The forces
describe the different considerations that need to be balanced in the solution and hence
can be considered a part of the problem. The solution represents the preferred way to
deal with the problem based on knowledge from best practice solutions gathered from
practitioners and researchers. The resulting context discusses the situation after the solu-
tion has been applied and the design rationale describes the reason behind the prescribed
solution. Finally the related patterns list the patterns that can be and are often coupled
with the pattern under consideration to form a pattern language.
As an example we can consider the Core-Periphery Shift Pattern that we describe later in
Table 7. The problem of this pattern describes the loss of interest among the developers
in the particular project. The context describes the context of Open Source where devel-
opers have implicit roles of either working on the Core or the Periphery (including
documentation) of the software. The forces describe the constraints that require resolu-
tion, namely, that core developers lose interest in the project and move to developing the
peripheral parts of the software and later leave the project. The solution describes a reso-
lution of the problem through creating more interest among the core developers for the
Open Source project. The resulting context describes the situation after the solution has
been applied to the problem and in the case of this pattern this results in more number of
developers being interested in the core modules of the software project.
Some of the problems concerning development activities have been collected and de-
scribed by Coplien et al.(2004) including a set of what they call Process Patterns to deal
with these coordination problems. As the term process patterns is also used in business
process management and workflow, we prefer to use the term Socio/Technical Patterns
to refer to those patterns involving problems related to the social, technical and the
socio-technical aspects of the software process. Lonchamp (1998) provides one such ex-
ample of process patterns in the context of process centered systems (workflow man-
agement systems). He uses the concepts of tasks, control flows, data flows (and sharing)
to come up with process patterns that cover some of the most important collaborative
situations(Lonchamp 1998).
As they capture a wide variety of knowledge and experience, Socio/Technical Patterns
are potentially very useful to aid the project manager in planning and monitoring a com-
plex development project. For example, the Conway’s Law Pattern (described later in
this section) describes the problem that occurs when the communication structure of the
company does not match the technical dependencies. A software manger could use this

 28

pattern to identify the members of the project who communicate frequently when there
are no technical dependencies as well the technical dependencies that are not satisfied
through communication (Sosa, Eppinger et al. 2004; Cataldo, Wagstrom et al. 2006;
Sosa 2008). However, these patterns have not been extensively validated empirically and
can be hard to implement. The lack of empirical validation makes it complex for the pro-
ject manager to decide on which Socio/Technical patterns to apply to his project. The
reason why the patterns are hard to implement is that the problems addressed by the pat-
terns are hard to identify, as existing techniques are labour intensive and as both social
as well as technical networks continuously evolve during a project.

3.4 Overview of Patterns and Structure Clashes

There are three kinds of structure clashes, those at the social level (where the planned
process model doesn’t match the actual social network, Figure 5), those at the technical
level (where the actual software architecture doesn’t match the planned, Figure 5) and
those at the Socio/Technical level (where the planned module level task allocations 1do
not match the actual, Figure 5).

In this Chapter we focus on specific coordination problems that we call Socio/Technical
Structure Clashes (STSCs) (the set of Social, Technical and Socio-Technical Structure
Clashes). A Socio/Technical Structure Clash occurs if and when a Socio/Technical Pat-
tern exists that indicates that the social network of the software development team does
not match the social/technical dependencies within the software architecture under de-
velopment. Though these clashes are present as patterns in literature (Coplien 1994;
Coplien and Harrison 2004), these patterns are not always applied in the implementation
phase of software development. Over a period of time the designed process model
evolves into a social network of developers with a different task allocation than that
planned at the design phase. The software architecture also evolves over time and usu-
ally becomes very different from what was envisioned at the planning phase (Guo, Atlee
et al. 1999; Murphy, Notkin et al. 2001)(Figure 5). This is a problematic scenario as the
manager responsible has no control over the project anymore. This lack of control could
cause too many connections and errors in the architecture leading to extensions and pro-
ject overruns. In the case of Structure Clashes in the software architecture, one choice is
to ignore the transformation and to proceed with the task based on information from the
source-code. In the case of the gap in the process model, one can continue with the de-
velopment based on tasks assigned locally within the project teams. Though these strate-

1 A module level task allocation specifies which developers need to develop the specific module or group

of modules.

 29

gies may work in small systems and teams, in larger development projects this could
lead to inappropriate choices and delays in development (Murphy, Notkin et al. 2001)
that result in financial losses for the project.

Though there have been research works highlighting the gap between planning and exe-
cution in software architecture (Guo, Atlee et al. 1999; Murphy, Notkin et al. 2001),
there is not much research conducted in identifying and remedying the gap between
planning and execution in the organization and process of implementation of Software
Development. While applying Software Patterns can keep the software architecture un-
der managerial control (Guo, Atlee et al. 1999), the same can also be done by applying
Socio/Technical patterns to the process and the planned task allocation (Figure 6). In this
research we use Socio/Technical patterns in order to spot STSCs. Regular identification
of these STSCs can help the manager to apply Socio/Technical patterns to the software
process model and thereby keep the software process evolution under control (Figure 6).
As seen in Table 2, we approach the literature review of clashes in three separate sec-
tions, the purely technical, purely social and the Socio/Technical.

Figure 6: The evolution of the project with time

 30

Papers Technical
Clashes

Social Clashes Socio/Technical
Clashes in En-
gineering

Socio/Technical
Clashes in
Software Engi-
neering

Murphy, Not-
kin & Sullivan
2001

√

Guo, Yanbing
& Atlee 1999 √

Woods &
Qiang 1995 √

Baldwin, Be-
dell & Johnson
1999

√

Lindvall &
Muthig 2008 √

Faraj &
Sproull,
2000

 √

Stewart & Bar-
rick,
2000

 √

Cummings &
Cross, 2003 √

Yang &Tang
2000 √

Sparrow,
Liden, Wayne
& Kramer 2001

 √

Morelli, Ep-
pinger, IEEE
TEM1995

 √

Sosa & Ep-
pinger
2004

 √

Wagstrom &
Herbsleb, 2006 √

Cataldo, Wag-
strom, Herb-
sleb, 2006

 √

Sosa, 2008 √

Ovaska, Rossi
& Marttiin
2003

 √

MacCormack
& Rusnack,
2004

√ √

Table 2: Literature Overview

 31

Figure 7: Pattern usage at both the Planned and Execution stages can help Project Management

3.4.1 Technical Structure Clashes

A Technical Structure Clash occurs if and when a Technical Pattern exists that indicates
that the technical architecture of the software development project does not match the
actual technical dependencies within the software architecture under development. The
technical architecture of the software system may drift from the documented architecture
if architecture changes are made during software implementation and no effort is made
to maintain the architecture documents.
In the past, reverse engineering methods have been used to prevent the software archi-
tecture from drifting. One of the reverse engineering methods has been to extract the
software’s call-graph and compare it with the expected call-graph ((Woods and Yang
1998); Murphy, Notkin et al. (2001)). Guo et al.(1999) describe a semi-automatic analy-
ses that codifies heuristics (in accordance to Design Patterns) in order to apply existing
reverse-engineering tools. Also, there are a number of reverse engineering tools devel-
oped to automatically extract, manipulate and query source model information. For ex-
ample, Rigi (Wong, Tilley et al. 1995), LSME (Murphy and Notkin 1996) , IAPR
(Kazman 1998), Reflexion Model Tool (Murphy, Notkin et al. 2001) and Deli (Kazman
and Carriere 1998) are some of the reverse engineering tools used in practice. Lindvall
and Muthig (2008)describe a tool and an accompanying process called SAVE to align a
software system with its planned architecture. The SAVE method consists of finding the
original architecture and comparing it with the actual architecture (generated from the

 32

source code) and then determining if the deviations are critical enough to take action
(Lindvall and Muthig 2008).
Though there are many tools for reverse engineering the software architecture we find
very few tools to do that same with the Software Process Model.
Table 3 provides an overview of the papers on Technical Structure Clashes.

Papers Description

Wong, Tilley
et al, 1995

Provide a method of identifying, building and documenting legacy systems through
their software tool called Rigi.

Woods &
Yang 1998

Present a model of program understanding through constraint satisfaction. They
“build mappings” from the legacy code to the program design plans and vice-versa,
in order to assist an expert in reverse engineering, program re-use or translation of
the source to another programming language.

Guo, Yan-
bing & At-
lee 1999

Describe a semi-automatic analyses that codifies heuristics (in accordance to Design
Patterns) in order to apply existing reverse-engineering tools

Murphy,
Notkin &
Sullivan
2001

Provide a software reflexion model technique to bridge the gap between high-level
models and the software artefacts of a software system.

Lindvall &
Muthig 2008

SAVE method consists of finding the original architecture and comparing it with the
actual architecture (generated from the source code) and then determining if the
deviations are critical enough to take action

Table 3: Overview of the papers on Technical Structure Clashes

3.4.2 Social Structure Clashes

A Socio Structure Clash occurs if and when a Social Pattern exists that indicates that the
social network of the software development team does not match the social dependen-
cies within the software development team or organization. In this section we deal with
Social Network based structure clashes or Social Structure Clashes.

A Social Network “consists of a finite set or sets of actors and the relation or relations
defined on them” (Wasserman and Faust 1994). Where actors are discrete individual,
corporate or collective social units and relations are a “collection of ties of a specific
kind among members of a group” (Wasserman and Faust 1994).

Teams are the basic building block for many contemporary business organizations.
Structure clashes are dealt with in organizational literature by focussing on how one can
improve coordination in software development projects using the concepts of coordina-
tion between and among teams keeping task assignment as a moderating variable. Coor-
dination refers to team-situated interactions aimed at managing resources and expertise

 33

dependencies (Faraj and Sproull 2000; Fenema 2002). Research on software develop-
ment teams has found that team performance is linked with the effectiveness of team-
work coordination (Kraut and Streeter 1995).

Faraj and Sproull (2000) take two perspectives on coordination: administrative coordina-
tion and expertise coordination. They claim that administrative coordination (manage-
ment of tangible and economic resource dependencies) is good for simple routine tasks,
while for complex non-routine intellectual tasks, expertise coordination (the manage-
ment of knowledge and skill dependencies) become more important. Through expertise
coordination the team can recognize and access expertise when it’s needed.

Stewart and Barrick (2000) build on organization-level findings and show that differ-
ences in how responsibilities are apportioned and coordinated correspond to variance in
performance at the team level. They also show that the effect of these social elements is
moderated by technical demands (tasks), consistent with socio-technical systems theory.

Sparrowe et al. (2001) hypothesize that centrality in a work group’s advice network will
be positively related to an individual’s job performance. Where centrality in the advice
network reflects an individual’s involvement in exchanging assistance with co-workers
and engaging in mutual problem solving. An individual who is central in the advice net-
work is, over time, able to accumulate knowledge about task-related problems and
workable solutions (Baldwin, Bedell et al. 1997). While the central individual develops
problem solving capability and serves as a valued resource for future exchanges with co-
workers, those individuals who are in peripheral positions in the advice network find it
difficult to develop expertise and competencies for high levels of performance
(Sparrowe, Liden et al. 2001). Hence, Sparrowe et al. (2001) hypothesize that centraliza-
tion in a work group’s advice network is negatively related to group performance.

Cummings and Cross (2003) study how the structure of groups relates to the group’s
performance given that the group performs complex and non-routine tasks. They con-
duct a case study of different work groups in a telecommunications firm and find that the
greater the hierarchical structure of the group the worse is the performance of the
group’s members and manager. They also conclude that the greater is the core-periphery
structure of the group the better is the performance of the group’s members. Further-
more, they find that the greater the structural holes (Burt,(1992)) of the leader the worse
would be performance of the team.

Yang and Tang (2004) analyse the relation between team structure and the performance
of information systems development using a social network approach. They show how
the structural properties of the work groups fluctuate during the various phases of soft-
ware development, and how group cohesion and centrality are related to the final ISD

 34

performance. Though Yang and Tang (2004) do show how social research methods can
be used to tackle “group process” factors, they do not deal with task allocation nor do
they illustrate how one can solve the problem of task allocation among team members.

Robert et al.(2008) study the performance of distributed student teams using a laboratory
experiment. In particular, they analyse the extent to which team members were able to
integrate information they uniquely possessed in order to influence the team decision
making. They find that structural capital (the frequency and decentralization of prior
communication in the group) is associated with better knowledge integration when the
teams communicate using a synchronous text based chat.
Table 4 provides an overview of the papers on Social Structure Clashes.

Papers Description

Baldwin, Be-
dell & Johnson
1999

Determine how individual centrality in the communication and friendship networks affect the
perception of learning and enjoyment among students. They also determine how the relation-
ships within and between teams effect the perceptions of team effectiveness and team per-
formance.

Faraj &
Sproull,
2000

Take two perspectives on coordination: administrative coordination and expertise coordina-
tion. They show that administrative coordination is good for simple routine tasks, while for
complex non-routine intellectual tasks, expertise coordination becomes more important

Stewart &
Barrick,
2000

Build on organization-level findings and show that differences in how responsibilities are ap-
portioned and coordinated correspond to variance in performance at the team level

Sparrow,
Liden, Wayne
& Kramer
2001

Hypothesize that centrality in a work group’s advice network will be positively related to an
individual’s job performance.

Cummings &
Cross, 2003

Study how the structure of groups relates to the group’s performance given that the group per-
forms complex and non-routine tasks. They conduct a case study of different work groups in a
telecommunications firm and find that the greater the hierarchical structure of the group the
worse is the performance of the group’s members and manager

Yang &Tang
2004

Analyse the relation between team structure and the performance of information systems de-
velopment using a social network approach. They show how the structural properties of the
work groups fluctuate during the various phases of software development, and how group co-
hesion and centrality are related to the final ISD performance.

Robert et
al.(2008)

Study the performance of distributed student teams using a laboratory experiment. In particu-
lar, they analyse the extent to which team members were able to integrate information they
uniquely possessed in order to influence the team decision making. They find that structural
capital (the frequency and decentralization of prior communication in the group) is associated
with better knowledge integration when the teams communicated in a chat room.

Table 4: Overview of the papers on the Social Structure Clashes

 35

3.4.3 Socio-Technical Structure Clashes

A Socio-Technical Structure Clash occurs if and when a Socio-Technical Pattern exists
that indicates that the social network of the software development team does not match
the technical dependencies within the software architecture under development. STSCs
are thus indicative of coordination problems in a software development organization.

We find a lot of literature in the organizational, production engineering domain that
deals with task allocation and coordination among the workers. While the use of Design
Structure Matrices (DSM) to locate coordination problems in the field of software engi-
neering is relatively less.

DSMs (also known sometimes as Dependency matrices) have been used in engineering
literature to represent the dependency between people and tasks (Steven, Daniel et al.
1994). Recent empirical work uses DSMs to provide critical insights into the relationship
between product architecture and organizational structure. Morelli et al. (1995) describe
a method to predict and measure coordination-type of communication within a product
development organization. They compare predicted and actual communications in order
to learn, to what extent an organizations communication patterns can be anticipated.

Sosa et al.(2004) find a “strong tendency for design interactions and team interactions to
be aligned,” and show instances of misalignment are more likely to occur across organ-
izational and system boundaries. Sullivan et al. (2001) use DSMs to formally model (and
value) the concept of information hiding, the principle proposed by Parnas to divide de-
signs into modules (Parnas 1972).

In the field of software engineering the application of DSM principles has been less and
infrequent compared to other engineering domains. The following paragraphs give an
overview of the literature in software engineering that deals with problems of coordina-
tion between people and technical tasks using DSM concepts.

de Souza et al. (2004) describe the role played by APIs (Application Program Interfaces)
which limit collaboration between software developers at the recomposition stage
(Grinter 1998).

Cataldo et al.(2006) as well as Wagstrom and Herbsleb (2006) do the same study of pre-
dicted versus actual coordination in a study of a software development project in a large
company project. Their work provides insights about the patterns of communication and
coordination among individuals working on tasks with dynamic sets of interdependen-
cies.

 36

Sosa (2008) builds on the DSM based method of Cataldo et al. (2006) and provides a
structured approach to identify the employees who need to interact and the software
product interfaces they need to interact about.
Ovaska, Rossi and Marttiin (2003) describe the role of software architecture in the coor-
dination of multi-site software development through a case study. They suggest that in
multi-site software development it’s not enough to coordinate activities, but in order to
achieve a common goal, it is important to coordinate interdependencies between the ac-
tivities. The interdependencies between various components are described by the soft-
ware architecture. Therefore, if the coordination is done by using the software architec-
ture, the work allocation is made according to this component structure.

In splitting work along the lines of product structure one must consider the modular de-
sign of the product in order to isolate the effect of changes (Parnas 1972). MacCormack
and colleagues (2006) reiterate Conway’s argument (Conway 1968) when they compare
commercial and open source development . As the software developers, in their study
were collocated in the commercial project, it was easier to build tight connections be-
tween the software components, therefore producing a system more coupled compared
to the similar open source project with distributed developers. While the Conway’s Law
relation between the task and coordination of the developers has been described through
empirical studies (Curtis, Krasner et al. 1988; Morelli, Eppinger et al. 1995; Grinter,
Herbsleb et al. 1999; Herbsleb and Grinter 1999), we use this Conway’s law as a means
to identify a possible STSC in the software development process (as we shall explain in
the section that follows).
Table 5 provides an overview of the papers on Social-Technical Structure Clashes.

 37

Papers Description

Morelli, Ep-
pinger, IEEE
TEM1995

Describe a method to predict and measure coordination-type of communication within a product
development organization. They compare predicted and actual communications in order to learn to
what extent an organizations communication patterns can be anticipated

Sullivan et al,
2001 Use DSMs to formally model (and value) the concept of information hiding, the principle pro-

posed by Parnas to divide designs into modules (Parnas 1972).

Ovaska, Rossi
& Marttiin
2003

Describe the role of software architecture in the coordination of multi-site software development
through a case study. They suggest that in multi-site software development it’s not enough to co-
ordinate activities, but in order to achieve a common goal, it is important to coordinate interde-
pendencies between the work allocations made according to the software architecture.

Sosa & Ep-
pinger
2004

Find a “strong tendency for design interactions and team interactions to be aligned,” and show
instances of misalignment are more likely to occur across organizational and system boundaries.

deSouza et al,
2004 Describe the role played by APIs (Application Program Interfaces) which limit collaboration be-

tween software developers at the recomposition stag

Cataldo, Wag-
strom, Herb-
sleb, 2006

Study the predicted versus actual coordination in a study of a software development project in a
large company project. Their provide insights on the patterns of communication and coordination
among individuals working on tasks with dynamic sets of interdependencies

Sosa, 2008 Builds on the DSM based method of Cataldo et al. (2006) and provides a structured approach to
identify the employees who need to interact and the software product interfaces they need to in-
teract about

Table 5: Overview of the papers on Socio-Technical Structure Clashes

3.5 Revisiting the Research Questions

Given an understanding of Socio/Technical Patterns as well as the related
Socio/Technical Structure Clashes (STSCs), we can now provide a more precise state-
ment of the research problem, namely:

How can a manager identify STSCs in an ongoing software development project?

The related research question is then:

Can a tool as well as a related method be developed in order to qualitatively as well as
quantitatively identify STSCs in a software development organization?

In the case of Open source software development the STSCs that one can possibly iden-
tify depends on which Socio/Technical patterns are applicable to the Open Source soft-
ware development context. So, first we need to see if the patterns applicable to the com-

 38

mercial closed source development process are also applicable in the Open Source con-
text.

Are the Socio/Technical Patterns applicable to the commercial closed source software
development process also applicable to the Open Source software development process?

If the Socio/Technical Patterns applicable to closed source software development are not
applicable to the Open Source software development process then we can ask the follow-
ing question:

What are the Socio/Technical Patterns applicable for the Open Source development
process and how can we identify STSCs related to the Open Source Socio/Technical Pat-
terns?

Existing work related to identifying STSCs needs further explanation; this is provided in
the next section. While the research methodology used as well as the construction design
and validation of the software tool used to identify STSCs is described in more detail in
the following Chapters.

3.6 Identifying Socio/Technical Structure Clashes

Pentland et al.(1999) suggest that there are two ways of identifying appropriate set of
dependencies in an organization namely the top-down and the bottom-up approach. The
top-down approach proposes a dependency and then tries to find the activities that coor-
dinate the dependency. While the bottom-up approach proposes dependent activities and
then tries to find the dependencies the activities manage or participate in.

Osborn (1993) provides the following three heuristics to identify dependencies and co-
ordination mechanisms: (i) activities in the current process can be examined in order to
identify the dependencies they manage, (ii) the activities and resources in a particular
process can be listed in order to identify the dependencies between them as well as the
coordination mechanisms used to manage the dependencies and finally (iii) process can
be scanned in order to indentify problem in them that indicate unmanaged coordination
problems and then identify the underlying dependencies from of these problems.

Both the papers mentioned above use the concepts from a Coordination Theory perspec-
tive (Malone and Crowston 1994; Crowston 1997; Malone, Crowston et al. 1999). Such
a perspective is broad and a little abstract to apply in an organizational setting. In order
to have a more practical approach researchers in the field of CSCW and Software Engi-
neering have come up with tools that read the software source code and generate visuali-

 39

sations in order to identify Socio/Technical Structure Clashes. While there are many
tools available for dealing with Technical Structure Clashes, there are few tools available
for Socio/Technical Structure Clashes. ‘Augur’ is a visualization tool that supports dis-
tributed software development process by creating visual representations of both the
software artefacts and the software development activities (Froehlich and Dourish 2004).
de Souza et al. (2004) have developed a tool that checks dependency relationships be-
tween software call graphs and developers. Also DSMs are used for forecasting depend-
encies and checking for Conway’s Law STSC between developers (Cataldo, Wagstrom
et al. 2006). These tools check for only one particular STSC and do not provide exten-
sive software process re-engineering guidance.

Identifying the STSCs related to Socio/Technical patterns (Coplien and Harrison 2004)
can prove difficult for medium to large distributed or collocated teams working on large
software projects. These Socio/Technical patterns apply to ambitious, complex endeav-
ours, that may comprise hundreds of thousands or millions of lines of code, while the
size of the organizations range from a handful to a few dozen (Coplien and Schmidt
1995). The Socio/Technical patterns can however be applied to larger organizations, if
they are broken into smaller decoupled parts, where the patterns can be applied to the
smaller parts of the organisation. We contend that this problem related to a lack of con-
trol of the software project can be solved by a periodic assessment of STSCs through
using a proper tool and method.

In the next section we discuss the Socio/Technical Patterns used in this thesis

3.7 Patterns and STSCs used in this Research

In this thesis we have applied and tested Social, Technical and Socio-Technical as ear-
lier. As described earlier we refer to the three Patterns simultaneously with the term
Socio/Technical Pattern.
Table 6 provides an overview of the Socio/Technical Patterns used in the context of
Corporate Case Studies in Chapters 5 and 6. While the Socio/Technical Patterns used for
the Open Source case studies (Chapter 7) are displayed in Table 7. Let us now look at
each of the Patterns in more detail.

 40

Pattern Name

Conway’s Law
(Conway 1968;
Herbsleb and Grinter
1999a)

Code Ownership
Pattern(Coplien 1994;
Nordberg 2003)

Betweenness centrality
match (Freeman,
Roeder et al. 1979;
Mullen, Johnson et al.
1991; Hossain, Wu et
al. 2006)

Problem: A problem
growing from the
Forces.

Aligning Organization
and Architecture

A Developer cannot
keep up with a
constantly changing
base of
implementation code.

Centrality of important
people

Context: The current
structure of the
system giving the
context of the
problem

An architect and
development team are
in place.

A system with
mechanisms to document
and enforce the software
architecture, and
developers to write the
code

Social Network of the
team at different stages
of software development

Forces: Forces that
require resolution

Architecture shapes
communication paths in
the organization. Formal
organization shapes
architecture.

Most design knowledge
lives in the code;
navigating unfamiliar
code to explore design
issues takes time. Not
everyone can know
everything all the time.

People who are not cen-
tral to the software de-
velopment or manage-
ment take a central role
in coordination

Solution: The
solution proposed for
the problem

Make sure organization
is compatible with the
architecture

Each code module in
the system is owned by
a single Developer.
Except in exceptional
and explicit
circumstances, code
may be modified only
by its owner.

Make sure the important
people take a more
central role in
coordination.

Resulting Context:
Discusses the context
resulting from
applying the pattern.
In particular, trade-
offs should be
mentioned

The organization and
product architecture
will be aligned.

The architecture and
organization will better
reflect each other.

Project critical
information will be
conveyed to all team
members.

Design
Rationale/Related
patterns: The design
rationale behind the
proposed solution.
Patterns are often
coupled or composed
with other patterns,
leading to the concept
of pattern language.

Historical Lack of code ownership
is a major contributor to
discovery effort in
large-scale software
development today.

Betweenness centrality is
a key predictor for coor-
dination

Table 6: The Socio/Technical Patterns used for the Corporate Case Studies (Chapters 5 and 6), where the
Pattern format is taken from Coplien et al. (Coplien and Schmidt 1995; Coplien and Harrison 2004)

 41

3.8 Conway’s Law Pattern

The classic paper by Conway (1968) states organizations which design systems are con-
strained to produce designs which are copies of the communication structure of these
organizations. In other words, if the teams involved in software production have short-
comings in their interpersonal relationships, the resulting technical architecture of the
software is likely to be flawed. Also, Parnas (1972) described modularisation as a “re-
sponsibility assignment” rather than a subprogram, thus implying that software modules
must be assigned to different developers as tasks (Parnas 1972). When taken together,
the two papers Conway (1968) and Parnas (1972) imply that the dependencies between
the software modules should reflect the communication structure of the Software Team
in the ideal situation. When this fails to happen then the dependencies between the mod-
ules would not be met with communication between the developers. This concept of
“homomorphism” between the social communication structure and the technical archi-
tectural dependencies has come to be known as Conway’s Law. In this research we call
such a situation a Conway’s Law STSC as described in Table 6. Herbsleb and Grinter
(1999; 1999a) in their case study of a software development company show that unpre-
dicted events that are difficult to manage can occur due to coordination problems in the
particular project. In particular, they refer to coordination problems due to the presence
of Conway’s Law STSC and in their words “ qualitative data from the case study
strongly supports Conway’s and Pranas’ positions that the essence of good design is fa-
cilitating coordination among developers” ((Herbsleb and Grinter 1999a), p69). Morelli
et al. (1995) describe a method to predict and measure coordination-type of communica-
tion within a product development organization. They compare predicted and actual
communications in order to learn to what extent an organizations communication pat-
terns can be anticipated. Sosa et al.(2004) find a “strong tendency for design interactions
and team interactions to be aligned,” and show instances of misalignment are more
likely to occur across organizational and system boundaries. Sullivan et al. (2001) use
DSMs to formally model (and value) the concept of information hiding, the principle
proposed by Parnas to divide designs into modules (Parnas 1972). de Souza et al. (2004)
describe the role played by APIs (Application Program Interfaces) which limit collabora-
tion between software developers at the recomposition stage (Grinter 1998). Cataldo et
al.(2006) as well as Wagstrom and Herbsleb (2006) do the same study of predicted ver-
sus actual coordination in a study of a software development project in a large company
project. Their work provides insights about the patterns of communication and coordina-
tion among individuals working on tasks with dynamic sets of interdependencies. Sosa
(2008) builds on the DSM based method of Cataldo et al. (2006) and provides a structure

 42

approach to identify the employees who need to interact and the software product inter-
faces they need to interact about.

3.9 Code Ownership Pattern

As described in Table 6, the Code Ownership STSC is based on the Code Ownership
pattern (Coplien 1994). The related coordination problem is that a developer would find
it difficult to cope with a changing base of code. The same STSC applies to a situation
where a developer who was not involved in the development of a particular code is all of
a sudden given the responsibility for a particular release of the code. When such a situa-
tion occurs, there is a lot of coordination that needs to be done in order to get the new
developer instructed on the history of the changes that have been done until then. This
situation can create a large coordination requirement, depending on the number of de-
velopers who have made changes to the module and on the kinds of changes made until
then. The Code Ownership STSC is especially a problem when the developers don’t fol-
low an XP methodology with collective ownership guidelines like continuous integra-
tion, 100 percent unit testing and strong coding style guidelines (Nordberg 2003). Code
ownership has been widely cited as a coordination mechanism (Mockus, Fielding et al.
2002; Dinh-Trong and Bieman 2005). However, relatively less has been published on
the lack of code ownership or the coordination requirements caused by faulty code own-
ership practices (Nordberg 2003). LaToza et al. (2006) in a survey conducted on devel-
opers of a software organization describe how developers maintain mental models of the
code. They conclude that personal code ownership is usually tacit and written records
are considered out of date and ignored. On the other hand they describe a stronger notion
of team code ownership among developers (LaToza, Venolia et al. 2006).

3.10 Betweenness Centrality Match Pattern

Centrality index gives us an idea of the potential importance, influence and prominence
of an actor in a network. Betweenness refers to the frequency with which a node falls
between pairs of other nodes in the network. In other words, betweenness centrality is a
measure of, “the degree that each stands between others, passes messages and thereby
gains a sense of importance in contributing to a solution, .. , the greater the between-
ness, the greater his or her sense of participation and potency” (Freeman 1977).
For a graph (,)G V E , with n vertices, the Betweenness Centrality ()BC v is defined as:

()
()

st
B

sts v t V
s t

v
C v


  



 

Equation 1: The betweenness centrality of a Graph (Wasserman and Faust 1994)

 43

Where, st is the number of shortest geodesic paths from s to t, and ()st v is the number
of shortest geodesic paths through a vertex v. This may be normalised by dividing the
number of pairs of vertices not including v.
Freeman et al. (1979) performed an experiment where five people (with no previous his-
tory of interaction) were placed them in different structural positions while enforcing a
strict pattern of communication. They tried to determine which network positions were
most conducive to coordination. In the post experimental interviews it emerged that be-
tweenness was the most useful for coordination (Freeman, Roeder et al. 1979). This re-
sult was further reiterated by Mullen et al. (1991) who state “the individual in the most
centralised position in a network in terms of Betweenness is likely to emerge as the
leader…”. They further go on to state “this indicates that the potential for the control of
communication is a critical contribution to the participation in, and satisfaction with
performance in communication networks.” ((Mullen, Johnson et al. 1991), p13). Hossain
et al. (2006) establish a statistically significant relationship between the values of be-
tweenness centrality and coordination using the Enron corpus mailing list (Hossain, Wu
et al. 2006).

In terms of coordination, betweenness maybe the most appropriate measure of centrality as it
provides a measure of the influential control of each node (employee) on the whole networks.
This is the reason why betweenness centrality was used to analyse potential STSCs. As de-
scribed in Table 6, a Betweenness Centrality Match STSC occurs when people who are
not central to the software development or management take a central role in coordina-
tion. Analysing the change in the betweenness centrality index (Freeman 1977) can give us an
idea of how the most important employee (or the employee who handles most of the communi-
cation) in the network changes depending on the tasks at hand.

3.11 Modularity Pattern

Software Modularity has been considered a very important and critical parameter for
successful Open Source projects. Authors like O’Reilly (1999) have claimed that Open
Source software is inherently more modular than commercial software. While other au-
thors have reasoned that Open Source software needs to be more modular, such that the
development process can be coordinated more easily (Mockus, Fielding et al. 2002). On
the other hand, there exists literature that have analysed Open Source software quantita-
tively and that do not agree that it is indeed more modular. Schah et al. (2002) study
Linux’s kernel modules and count the number of instances of common coupling (cou-
pling between files due to calls to external variables) and find them to have exponential

 44

growth in common coupling for successive Linux version, thus leading to high failure
proneness.

Pattern Format Modularity Pattern Core-Periphery Shifts Pattern
(de Souza, Froehlich et al. 2005)

Problem: A problem growing from
 the Forces

Making sure Open Source soft-
ware has few interdependencies
(low coupling)

Developers have sustained interest
in working on the Core Modules of
the software.

Context: The current structure of
the system giving the context of
the problem

The Open Source software project
has software code in place

Developers working on the differ-
ent areas (Core/Periphery) of the
Software.

Forces: Forces that require
Resolution

When the modularity of the soft-
ware under development has a
sharp decrease in modularity (in-
crease in the interdependence of
the modules).

When core developers move on to
developing peripheral parts of the
software.

Solution: The solution proposed
for the problem

Make sure that the modularity of
the software is kept high, by refac-
toring the code if necessary

Get more developers interested in
the core part of the software

Resulting Context: Discusses the
context resulting from applying the
pattern. In particular, trade-offs
 should be mentioned

The software code will increase its
modularity

Make sure that more people are
interested in the core part of the
software project.

Design Rationale/Related
patterns: The design rationale
behind the proposed solution.
Patterns are often coupled or
composed with other patterns,
leading to the concept of pattern
language.

Open Source software needs to be
very modular (have low coupling)
in order to make coordination
easier

The core of the FLOSS project is
vital to its performance and hence
needs more work in order to reach
stability.

Table 7: The Socio/Technical Patterns used in the case of Open Source projects

Yu et al. (2006) compare the common coupling of Linux kernel to the kernels of differ-
ent software for Open Source projects (FreeBSD, NetBSD and OpenBSD) and find that
the amount of common coupling for Linux is much greater than the other Open Source
software projects. Paulson et al. (2004) compare the coupling of Open Source projects
(Apache, Linux and GCC) with three closed source projects by comparing the growing
versus the changing rate for software (as a tighter coupling will require more changes
with each additional feature). Their results indicate that Open Source projects need more
changes when new features are added, suggesting tighter coupling in Open Source pro-
jects than previously understood. MacCormack et al. (2006) compare the architectures of
Linux and Mozilla by comparing the pattern of distribution of their software coupling.
They find that while Linux had a more modular structure than the first version of
Mozilla, after a redesign the resultant architecture of Mozilla was more modular than the

 45

previous versions and even more modular than Linux. As Mozilla was redesigned in an
effort to make it an Open Source project, this result is in line with the view that in order
to have a successfully coordinated Open Source project one needs to have a loosely cou-
pled and modular software (MacCormack, Rusnak et al. 2006).
So, in view of this literature background, we claim that a Modularity Technical Structure
Clash occurs when the interdependence or coupling of the software under development
has a sharp increase (Table 7).

3.12 Core-Periphery Shift Pattern

de Souza et al. (2005) identify changes in developer positions in different Open Source
projects by studying the Socio-Technical network of developers. They notice a core pe-
riphery shift by mining software repositories. The core-periphery shift in a healthy Open
Source project is when the peripheral developers move from the periphery of the project
to the core, as their interest and contribution in the project increases (de Souza, Froehlich
et al. 2005).
The notion of Core-Periphery used in this research is not from the perspective of the so-
cial structure of the developers as described by Crowston et al. (2006). It is from the
Socio-Technical perspective similar to the Core-Periphery definition from de Souza et
al.(2005) and Lopez-Fernandez et al.(2006). At the same time it is different, as we clus-
ter the software and then determine the core and periphery of the clustered graph. So, in
this research we build on the definition of Core-Periphery by de Souza et al. (2005).
They define Core and Periphery in terms of the dependencies between developers, i.e.
from the developer to developer dependency network. The notion of Core-Periphery de-
veloped in this research is Socio-Technical in nature and different from the notion of
Core-Periphery in Socio Network literature (Borgatti and Everett 2000).
We propose that a Core-Periphery Shift STSC occurs if and when the developers work-
ing on the core of the project move towards working on the periphery of the project and
at the same time developers working on the periphery don’t move to the core. This is
especially true if the core of the software is not stable, but on studying different Open
Source projects with stable software cores we think one can safely say that its true for
most if not all Open Source projects. This Open Source STSC is illustrated in Table 7.
In order to better understand the notion of Core-Periphery Shift a longer more exhaustive
literature review is presented in Chapter 7 where the Core-Periphery Shift Pattern is also
validated using case studies on eight Open Source software projects.

In the next Chapter (Chapter 4) we shall the TESNA method and tool in more detail.

 46

4. TESNA Tool Design

4.1 The TESNA Method and Tool

The overall Method consists of several steps. First, we assume that the Project Manager
has a fairly good idea about the different Socio/Technical Patterns and about which spe-
cific pattern or groups of Patterns have to be applied in the current project situation.
Next, TESNA accepts input for the Social Network as well as the Software Architecture
(and the software code), and the tool provides a visual description of the networks and
metrics, based on the Socio/Technical Patterns selected. If the Project Manager identifies
an STSC, he can decide whether his planned software process model is good or needs to
be changed. The Project Manager can also decide to alter the social network as well as
the software architecture and then carry out this process iteratively until he is satisfied.
Figure 8 indicates two labelled loops, namely loop SN (the Social Network loop) and
loop ST (the Socio/Technical loop). The SN loop corresponds to the Social Network
Module of TESNA. The Social Network Module reads input on the Social Network, by
mining Chat/Mail/Bug tracker Repositories. The Social Network data can later be con-
firmed through more qualitative interviews and questionnaires.

Figure 8: The TESNA Method and the Planned Software Process

 47

The tool then creates social network images and calculates metrics to show the changes
of the networks over time. The application of the method involving the SN loop can be
seen in Chapters 5 and 6. The ST loop corresponds to the Socio/Technical Module of
TESNA. The Socio/Technical module reads input on the Socio/Technical aspects of the
software development process. In order to read the technical network the tool reads the
source code (currently TESNA can handle java source code) and in order to find out the
Socio-Technical links the tool mines Software Configuration Management Systems like
CVS (Concurrent Versioning System) and SVN (SubVersion). TESNA uses different
displays to help identify the existence of STSCs related to the social network or the
software call graph. The tool uses both qualitative as well as quantitative data to help in
the identification of STSCs. The qualitative data is represented in the form of different
kinds of visualizations of the social as well as the technical networks, while the quantita-
tive data consists of various metrics that the tool calculates to augment the qualitative
data. The display requires the manager to decide if a particular STSC is problematic and
needs to be worked on while the metric related to the STSC shows the manager the ex-
tent of the problem. The reason we adopted this approach was that for the purposes of
this research a “software archaeology” (Hunt and Thomas 2002) approach sufficed and a
“real time” STSC identification system was not required. In Chapter 5 the case study in a
company called Mendix is discussed (Amrit and Van Hillegersberg 2007), where only
the SN loop is applied. While, in Chapter 6, in a case study of a company called eMaxx
both the SN and ST loops are applied. The primary reason behind this is that as an itera-
tive Design Research methodology was used in the design of the TESNA method and
tool, the tool did not have the requisite functionality (for the ST loop) during the first
Mendix case study. This functionality was developed after the data collection in the
Mendix case (Chapter 6). The complete TESNA method (as described in Section 2.3.1)
is described in the Mendix case study and follows the following steps:

i. In a meeting with the company’s CTO; the technical architecture, the task and
team allocation of the different employees is discussed

ii. The different code repositories used by the developers are analysed. The impor-
tant core modules relating to different projects are then determined through inter-
viewing the Managers and select employees. The call graph structure, the cluster-
ing and the coupling metrics of these modules are analysed in more detail.

iii. The different communication and coordination mechanisms used by the employ-
ees are first analysed. Then, the most representative mode of communication and
coordination are determined through various interviews of the Managers and em-

 48

ployees. The corresponding communication repositories (e-mail, chat and bug
tracker) are then analysed in more detail.

iv. After analysing the data from the code repositories, the data in the form of graphs
is taken back to the developers for their feedback

v. The same procedure (as (iv)) is repeated with the data analysed from the commu-
nication repositories. This time, the data (especially the accuracy of the mined
social network) is discussed with each of the employees involved through face-
to-face interviews.

vi. After determining if the data is valid and is an accurate representation of the so-
cial and technical structures, the data is analysed to identify STSCs.

vii. After identifying STSCs, the Managers responsible for the particular projects in
which the STSCs were identified are again interviewed in order to obtain their
feedback on the findings.

viii. A research presentation and feedback session is arranged with the employees of
the company in order to get their feedback on many of the STSCs.

ix. Follow-up interviews of the project members are then held in order to ascertain
the reason for the occurrence of some of the STSCs.

In the next section an overview of the TESNA tool functionality is presented.

4.2 Tool Overview

TESNA mines the code repository in order to gather the software call graph, as well as
the e-Mail, Chat, Bug tracker (depending on the availability) archive in order gather the
communication network of the development and management teams. A manager, with
the help of TESNA can see a snapshot of the social network of the development team,
call graph of the software, as well as who is modifying which part of the software.
TESNA uses different displays to help identify the existence of different
Socio/Technical Structure Clashes (STSCs) related to the social network or the software
call graph. TESNA also displays who is currently working/modifying the different
classes in the call graph, in order to identify STSCs associated with the software process.
The tool uses both qualitative as well as quantitative data to help in the identification of
STSCs. The qualitative data is represented in the form of different kinds of visualiza-
tions of the social as well as the technical networks, while the quantitative data consists
of various metrics that the tool calculates to augment the qualitative data. While the dis-
play requires the manager to decide if a particular STSC is problematic and needs to be
worked upon, the metric related to the STSC shows the manager the extent of the prob-
lem. Figure 9 represents the complete UML diagram of the TESNA tool. The UML dia-
gram shows the central control centre the TesnaToolGUI, which displays the networks

 49

generated as a result of possessing one of the three modules, namely the Technical,
Socio-Technical and the Social Network Module. Unless mentioned specifically, all the
components were developed by the author of this thesis. The different Open Source
module libraries used in TESNA are described in the TESNA functionality section that
follows. The visualization of the network is in the form of a graph that can either be a
one mode or a two mode network (bipartite graph). The graph consists of vertices and
edges and the vertices can be clustered to improve understanding. We now represent the
functioning of the tool.
To begin with, one must shortlist the Socio/Technical patterns applicable to the case
study in concern. The TESNA tool process starts when the input is selected and fed into
the tool. Once the data is fed into the tool, one must decide on which STSCs one is inter-
ested in identifying. Depending on the choice of the STSCs, TESNA displays different
graphical visualizations as well as metrics that can help in the identification of the par-
ticular STSCs. The tool then displays the visualization as well as the metrics. The man-
ager can then see the social and technical structures and decide if an STSC exists (with
the help of the display) and if the STSC is serious enough (with the help of the metric) to
take action upon. The user then has a choice to continue or exit the tool. As all the three
modules can analyse longitudinal data, the user has to start by selecting a time slice for
the data.

 50

Figure 9: Class diagram for TESNA

Then the different data in the time slice can be taken as input in order to generate the
longitudinal metrics and graphs. The sequence diagram of the Technical Network Mod-
ule of TESNA is displayed in Figure 10. The Technical Network Module starts by read-
ing the Source Code and constructing and displaying the call graph of the Source Code
file (jar file for Java source). The call graph of the software is computed with the help of
libraries from the Open Source project called Dependency Finder (Tessier). The user
then can choose to cluster the call graph. The clustering is done by the DSM Clusterer

 51

(developed as part of this research with the help of Erik Hegeman (Hegeman 2007)) that
also calculates metrics related to the Design Structure Matrix (DSM) of the source code,
namely Propagation Cost and Clustered Cost (explained later in Section 4.4.2). These
metrics are then displayed along with the Clustered Call Graph (Figure 16).

Figure 10: Sequence diagram of the Technical Network Module of TESNA

In Figure 11, the sequence diagram of the Socio-Technical Network Module of TESNA
is represented. The Socio-Technical Network Module starts by mining the software re-
pository for the developer code information (who has worked/modified which of the
software modules). TESNA can then access the Technical Network Module that reads
the Source Code of the software and creates the call graph of the software (as described
above). On user input TESNA can then calculate and display who has modified which
part of the call graph. This information is displayed as a Socio-Technical Call Graph (a
slightly modified two mode or bipartite network, Figure 17). On user input TESNA can
also cluster the call graph of the source code by invoking the DSM Clusterer module.
The DSM Clusterer also calculates the Propagation as well as the Clustered Cost, while
the Socio-Technical Network Module calculates the Core-Periphery Metric. The Socio-
Technical Clustered Call Graph (a two mode or bipartite network with the call graph
Clustered, Figure 18) is then returned to the TESNA Tool GUI for display.

 52

Figure 11: Sequence diagram of Socio-Technical Network Module of TESNA

The sequence diagram of Social Network Module is represented in Figure 12. The Social
Network Module first connects and then mines the communication repository (Mail
Server, Chat server or Bug tracking software according to the availability in the particu-
lar case) for data relating to who has spoken to whom and when. We then check if the
communicated information is work related. The Social Network Module then creates a
graph related to the work related Social Network. On user input the Social Network
Module also calculates the Betweenness and the Degree centrality of the networks and
displays the trend of the change of betweenness centrality as a graph. Depending on the
particular case study the user can decide which metrics should be collected.

 53

Figure 12: Sequence diagram of Social Network Module of TESNA

4.3 The TESNA Visualization

Novick et al. (2001) consider three spatial diagrams for describing graphs namely the
matrix, network and the hierarchy. In an empirical study on college students, they ask
the students to determine which spatial diagram is better for a specific scenario. They
conclude that a Matrix representation is better for the representation of absent links
while a hierarchy or a network is better suited for the representation of a node link dia-
grams. Hence, we use the node-link representation in TESNA for the visualization of the
DSMs in TESNA. Affiliation networks (networks that include both social actors and
events) has been represented by affiliation matrices (or incidence matrices), bipartite
graphs and hypergraphs (Seidman 1981). TESNA uses the Java Universal Network
Graphics (JUNG; Madadhain, Fisher et al. 2005) package to display the node-link dia-
grams and in particular bipartite graphs to represent affiliation networks (consisting of
both software developers and the software modules they are developing). In order to dif-
ferentiate the software class modules and the developers the software class nodes are
coloured red while the developers are coloured blue. The developer’s names are dis-
played while the names of the software class modules appear only as a tool tip (in order
to not complicate the graph further). Large graphs can cause problems of usability and
discern-ability. Though, large graphs can give an indication of the overall structure or
that of some location within it, in general, the display of large graphs makes them diffi-
cult to comprehend. It follows that it is easier to comprehend and perform a detailed

 54

analysis of graph structures when the size of the graph is small (Moody and Flitman
1999). Moody (2007) describe the possibility of cognitive overload in Information Sys-
tems diagrams when the number of elements is more than nine (using the famous seven
plus or minus two rule) which build on the work by Miller (1956). For this reason
TESNA clusters the call graph in nine clusters (Algorithm 1). Though, the number of
clusters can be changed quite easily, as it is a parameter for the program.

4.4 Tool Functionality

The TESNA tool contains functionality to identify STSCs both qualitatively (with the
different visualizations and quantitatively (with the help of metrics). In both cases
TESNA uses the Design Structure Matrix in order to store and process the network data.
This Design Structure Matrix data structure is explained in more detail in the next sec-
tion.

4.4.1 The Design Structure Matrix (DSM)

TESNA uses the Dependency Structure Matrix as the basic data structure for the tool.
Since the concept of the Design Structure Matrix was first proposed by Steward (1965;
1981), Dependency Structure Matrices have been used in engineering literature to repre-
sent the dependency between tasks. A DSM highlights the inherent structure of a design
by examining the dependencies between its component elements in a square matrix
(Steward 1981; Eppinger, Whitney et al. 1994; Amrit and van Hillegersberg 2007).

Morelli and Eppinger (1995) describe a way to compare the predicted and actual com-
munication in an organization (Morelli, Eppinger et al. 1995). Sosa, Eppinger et
al.(2002) describe factors that influence the frequency of communication and choice of
media in a geographically distributed development organization (Sosa, Eppinger et al.
2002). In another study Sosa, Eppinger and Rowles (2003) compare the DSM formed
through the interaction of system components with the DSM of the technical interactions
among team members (Sosa, Eppinger et al. 2003). Sosa, Eppinger and Rowles (2004)
highlight the factors that impact the misalignment of the product and the organizational
structures (Sosa, Eppinger et al. 2004).

Figure 13 shows an example of a simple DSM. The letters A-E, on both axis of the
matrix, represent tasks. An ‘x’ in location (a,b) of the matrix means that the task of row a
depends on the task in column b. Dependencies below the gray diagonal represent ‘feed
forward information’, while tasks above the diagonal represent feedback, for example,
task E gives feedback on task C. In this example, tasks A and B depend on each other.

 55

Figure 13: Example of a DSM

MacCormack et al. (2006) compare the DSMs of a commercial and a pure open source
project and show how the structure of the code in the project reflects the organizational
structure that created it (MacCormack, Rusnak et al. 2006). This is similar to what Con-
way said in his paper (Conway 1968). More recently Li et al. use dependency matrices to
analyse dependencies between components in a Component Based System (Li, Zhou et
al. 2005). While Cataldo et al. show how DSMs can be used to predict coordination in a
software development organization and then they compare the predicted coordination
DSM with the actual communication DSM (Cataldo, Wagstrom et al. 2006).
Dependency Structure matrices have been used in engineering literature to represent the
dependency between people and tasks (MacCormack, Rusnak et al. 2006). Cataldo et al.
define what they call Task Dependency Matrix and Task Assignment Matrix that repre-
sents the task dependencies and the people working on specific tasks respectively
(Cataldo, Wagstrom et al. 2006). In this research we define a Software Module DSM
(SM) to represent the dependencies between the software classes (We take the software
class to be the smallest unit of measurement as in MacCormack et al. (2006))
We now discuss the functionalities of TESNA based on the different DSMs. We con-
sider the following DSMs for each of the different functionalities:

1) Technical Structure Analysis: Software Module DSM (SM) & Cluster Depend-
ency Matrix

2) Social-Technical Structure Analysis: Software Module Affiliation DSM (SMA) &
People Cluster Matrix

3) Social Structure Analysis: Software Developer DSM (SD) & Social Network
DSM (SN)

4.4.2 Technical Structure Analysis

To perform the Technical Structures Analysis TESNA first captures the dependencies
between the software modules and stores it in a Software Module DSM (SM). In the cur-
rent implementation SM represents function call dependencies. In order to calculate the
call graph (technical dependencies) between the software components TESNA uses the

 56

libraries of an open source project called Dependency Finder (Tessier). We could also
add other kinds of dependencies like logical coupling (Gall, Hajek et al. 1998).

TESNA can read the source code file and construct the call graph of the software. At
present, the tool supports reading java code files (jar files) to determine the technical de-
pendencies between the different components or modules of the software. TESNA uses
JUNG (O’Madadhain, Fisher et al. 2003) to display the SM as shown in Figure 14.

.
Figure 14: Call Graph of JEdit

Figure 14 represents the Call Graph or the dependency graph of an open source project
called JEdit. Each red node represents one java class object of JEdit. As this Call Graph
is already quite complex, we don’t display the names of the class objects and instead use
the tool tip if the user hovers above interesting areas of the Call Graph. We will show
later how we reduce this complexity further by clustering the Call Graph.

4.4.2.1 The Clustering of Class Objects

To represent the people and the software in an understandable way we cluster the soft-
ware into clusters according to the class level dependencies (Fernandez 1998) and dis-
play who is working at which cluster for the particular time period of the data.
The algorithm we use is as follows:

 57

Algorithm 1: The algorithm used for clustering the Software Module DSM (adapted from(MacCormack,

Rusnak et al. 2006))

In the above algorithm the vertical buses are those elements in the SM whose “vertical
dependencies” (ones in the vertical columns of the SM matrix) to other elements is more
than a specific threshold (MacCormack, Rusnak et al. 2006). These elements are impor-
tant, as they are common functions called by other modules (MacCormack, Rusnak et al.
2006). Once these vertical buses are identified a DependencyCost is assigned to each
module, element of SM. This DependencyCost is assigned as follows:

is a vertical bus
is a vertical bus
is a vertical bus

(|)

(|)

(|)

ij

ij

ij

DependencyCost i j j d

DependencyCost i j j d n

DependencyCost i j j d N





 

  

  

Equation 2: Calculation of the Dependency Cost (taken from (MacCormack, Rusnak et al. 2006))

Where
ij

d is a binary variable indicating dependency between i and j (so in our case it is

(,) (,)SM i j SM j i) , n is the size of the cluster when i and j located within the cluster
and N is the size of the SM matrix (when i and j are not located in the same cluster).  is
a user defined parameter and is found by trial and error (depending on the variation of
the results) to be optimum at 2. Adding an element to a cluster increases the cost of other
dependencies in the cluster (as the size of the cluster increases), hence an element is only
added to a cluster when the reduction in the sum of DependencyCosts with the element
exceeds the added costs borne by other dependencies(MacCormack, Rusnak et al. 2006).
Now the summation of the DependencyCosts of all the elements of SM gives us the
ClusteredCost of the matrix for the particular iteration. Hence the ClusteredCost can be
expressed as:

 58

2

1

() ((,) (,)) (,)
n

j

CC i SM i j SM j i size i j


  

Equation 3: Calculation of Clustered Cost (adapted from (Fernandez 1998) and (MacCormack, Rusnak et

al. 2006))

In Equation 2 CC(i) represents the Clustered Cost for the element (,)SM i j
In order to cluster the SM DSM we searched for available DSM based tools that could be
used as well as integrated into TESNA. On not finding such a tool we went ahead and
developed a tool that we call DSM Clusterer (Hegeman 2007). The DSM Clusterer tool
takes the SM DSM as input and outputs the Cluster Dependency Matrix according to Al-
gorithm 1 and is shown Figure 15.

Figure 15: A clustered DSM in the DSMCluster tool

The black squares in Figure 15 represent a 1 (or the presence of a dependency) and non-
black square represents a 0 (or the absence of a dependency). The 9 clusters of the Clus-
ter Dependency Matrix can be displayed as a graph where the size of the node represents
the number of modules in it as shown in Figure 16.

 59

Figure 16: Clustered Call Graph of jEdit

4.4.3 Socio-Technical Structure Analysis

TESNA also uses a matrix similar to Task Assignment Matrix (Cataldo, Wagstrom et al.
2006) we call this matrix Software Module Affiliation DSM (SMA). SMA represents the
particular software modules the developers are working on. The developers are repre-
sented by the rows of the matrix while the columns represent the software modules the
developers are working on.

TESNA can mine version control systems like CVS and SVN and find out the Socio-
Technical Dependencies (the people working on the different parts of the software). For
mining CVS (Concurrent Versioning System) repository, TESNA uses the libraries of
the open source project jCVS. In order to mine SVN (SubVersion), TESNA uses the li-
braries of another open source project called JavaSVN(JavaSVN Retrieved 1st August
2008). In order to display which developer has modified which source code file (class
file in this case), TESNA reads the log files from the software repository and produces a
SMA. From the SMA a Socio-Technical Call Graph (a bipartite or two mode graph) is
constructed and displayed as in Figure 17.

 60

Figure 17: The developer code Socio-Technical Call Graph of JEdit

The red nodes in Figure 17 represent the software class objects that the developers, rep-
resented by the blue nodes, have last modified. The names of the developers are dis-
played by the labels next the nodes. This graphic representation uses the normal bipartite
graph functionality of JUNG. So, the links between the class objects are not displayed.
Such a complex graph can provide us with limited information, for example, which de-
veloper modified how many files. Using the tool tips of the red class objects one can find
out the names of the class objects and in-turn find out which developer modified which
class object.

Figure 18: Socio-Technical Clustered Call Graph of jEdit

 61

As described in the Technical Structure Analysis section the call graph of the software
can be clustered with the help of TESNA. Now, in order to find out which developers
have modified which clusters TESNA combines the DSMs of Figures 16 and 17 to pro-
duce a People Cluster Matrix that is represented as a Socio-Technical Clustered Call
Graph of the software as shown in Figure 18.

The Core Periphery Distance Metric

As described in Chapter 3 (Table 6), the Code Ownership STSC is based on the Code
Ownership pattern (Coplien 1994). This, in turn, is related to the problem that a devel-
oper faces with a changing base of code. The same STSC applies to a situation, where a
developer, who was not involved in the development of a particular code, is all of a
sudden given the responsibility for a particular release of the code. When such a situa-
tion occurs, there is a lot of coordination that needs to be done. As, the new developer,
needs to be instructed on the history of the changes that have been made until then. This
situation can create a large coordination requirement, depending on the number of de-
velopers who have made changes to the module. The coordination requirement also de-
pends on the kinds of changes made until then. The Code Ownership STSC is espe-
cially a problem when the developers don’t follow an XP methodology with collective
ownership guidelines like continuous integration, 100 percent unit testing and strong
coding style guidelines (Nordberg 2003).
In order to identify this STSC we mined the CVS server of eMaxx. After mining the
log history and source files, we calculated the call graph of the software package from
the source file and then clustered it using the dependency based clustering algorithm
(Algorithm 1). Clustering the call graph makes the identification of Code Ownership
STSC easier, as otherwise the call graph can be very large and as a result the bipartite
graph of the developers modifying the source code files can get very complex
(Fernandez 1998; MacCormack, Rusnak et al. 2006). We use this DSM clustering algo-
rithm over other clustering algorithms as it clusters based on the number of dependen-
cies between source code files. So, when a developer modifies a file in a particular clus-
ter, depending on the kind of modification, all the dependent files that need to be al-
tered as a result of the modification (Cataldo, Wagstrom et al. 2006) would lie in the
same cluster. The clustering together with the calculation of the Core Periphery Dis-
tance Metric (CPDM) simplifies the identification of the Code Ownership STSC as we
shall show in the case study that follows.

 62

Algorithm 2: The Core Periphery Distance Metric (CPDM) algorithm

In the above algorithm, in order to identify the core and the periphery of the Cluster
Dependency Matrix we realize that the core-ness of a particular cluster depends not
only on the size of the cluster but also the dependencies of the particular cluster with
other clusters. We hence multiply the Cluster Dependency Matrix with the Cluster Size
Matrix (the matrix with the sizes of the corresponding clusters). The resulting matrix
gives us an indication of the core and the periphery clusters with the larger entries being
more core than the smaller entries. So if we arrange the columns of this matrix in the
descending order we would have the clusters in the descending order of core-ness.
Also in Algorithm 2, the Distance from the Core Cluster is given by Equation 5.

1

()
k

ij
j

d j

DCC
k







Equation 4: Calculation of the Distance from the Core Cluster

In the above Equation 5
ij

d represents the (i,j) element of the People Cluster Matrix,

while k are the number of columns (9 in our case). So the closer the CPDM is to k the
more number of clusters in the core the developer has modified. Once the manager
finds a Code Ownership STSC at the level of the clusters the manager can then zoom
into the clusters to see the Code Ownership at the level of the source code files and de-
cide if the problem is indeed severe enough to justify action.

 63

4.4.4 Social Structure Analysis

In order to see how the developers working on the different source code files are de-
pendent on each other we consider two types of graphs namely: (i) the source code de-
veloper-developer dependency graph and (ii) the complete developer-developer depend-
ency graph (that includes documentation and other non source code files).
In the case of the source code developer-developer dependency graph, we calculate the
Software Developer DSM (SD) using the same method as (Cataldo, Wagstrom et al.
2006) and (Sosa 2008).

TSD SMA SM SMA  

Equation 5: Calculating the Software Developer DSM (SD) (from (Cataldo, Wagstrom et al. 2006) and

(Sosa 2008))

Where SMA is the Software Module Affiliation DSM that describes the developers work-
ing on the different software modules and SM is the Software Module DSM (as explained
earlier) that describes the dependencies between the software modules.
From SD we can create the graph of the developer dependencies as shown in Figure 19.
Figure 19 shows the source code developer dependencies of the jEdit project, while Fig-
ure 20 shows the complete developer-developer dependency graph for jEdit. The reason
why we need two visualisations of the developer-developer dependency is that one can
find out the different kinds of dependencies between developers and act accordingly. An
analysis of the call graph dependencies while providing a code level understanding of
the developer-developer dependencies does not cover all the dependencies related to the
artefacts. A more thorough analysis of dependencies needs to cover dependencies due to
working on the same file (source code or documentation) as well as dependencies due to
separation of concerns (Gall, Hajek et al. 1998).
The blue nodes represent the developers working on the different modules of jEdit and
the directed links represent the dependency, for example karianna is dependent on pjdb
and vice versa. The use of this developer dependency network is that such a graph can be
compared with the Social Network of the same developers in order to find the dependen-
cies between developers that are not met with communication and vice-versa, as done by
(Cataldo, Wagstrom et al. 2006) and (Sosa 2008).

 64

Figure 19: The developer dependency graph of jEdit

Figure 20: The complete developer-developer dependency network of jEdit

To analyse the Social Structures, TESNA can construct and analyse metrics from logs of
chat messages (from a chat server like Jabber). Using the data from logs we construct a
Social Network DSM (SN) that also represents the number of messages between the ac-
tors.

In order to display the social network (from SN) got through mining these repositories,
TESNA uses libraries from the Java Universal Network/Graph Framework (JUNG), an
open source library widely used by Network researchers. The display of the social net-

 65

work from the Mendix case is shown in Figure 21. Here, each of the nodes represents a
member of the social network (whose name is indicated by the label next to the node)
and the thickness of the line as well as the number on the line between the nodes repre-
sents the number of messages exchanged between the people represented by the nodes.
The more the number of messages, the thicker the line gets. TESNA can also mine bug
tracking websites (like Mantis) to gather data on the social thread of responses for each
bug posted. We have used this feature in the eMaxx case discussed in the sixth Chapter.

Figure 21: Social Network from the Mendix case

While the people dependencies graph (Figure 19) based on whether people are working
on the same or dependent modules provides the Coordination Requirement (Wagstrom
and Herbsleb 2006) we can compare this with the actual social network of the develop-
ers in order to identify Conway’s Law STSC (Cataldo, Wagstrom et al. 2006; Sosa
2008). TESNA also displays the different metrics of the social network (Chapter 5, 6)
over a period of time. We have used this option to identify the Betweenness centrality
match pattern (in the Mendix case study) by calculating the betweenness centrality of the
social networks (Freeman 1977) over the period under study.

4.4.5 Metrics

TESNA calculates different metrics like ClusteredCost and PropagationCost
(MacCormack, Rusnak et al. 2006) for the Technical Network Module. ClusteredCost is
the final value obtained from Equation 2 when using the algorithm presented in Algo-

 66

rithm 1. PropagationCost is a measure of the transitive dependencies present in the
DSM. Warshall’s Theorem states that the successive powers of a matrix yield the transi-
tive dependencies of the matrix (Warshall 1962). Hence the PropagationCost is ob-
tained by taking the successive powers of the Software Module DSM (SM) until a null
matrix is obtained and then adding all the intermediate matrices generated (the matrix
with power zero, one, two,… etc.). Now, the summation of all the rows or the columns
provides the fan-in or the fan-out dependency metric (MacCormack, Rusnak et al. 2006).

In the case of the Socio-Technical module, TESNA calculates the core-periphery metric
(Algorithm 2, Chapter 3) and in the case of the Social Network module, TESNA calcu-
lates the betweenness centrality (Chapter 5, 6) of the social networks. In the following
Chapters we provide further explanation and demonstrate the empirical usage of the met-
rics.

4.4.6 Other TOOLS

There are a few tools available to display the social network as well as the social call
graph. Augur is a visualization tool that supports distributed software development proc-
ess by creating visual representations of both the software artefacts and the software de-
velopment activities (Froehlich and Dourish 2004). Ducheneaut (Ducheneaut 2005) ex-
tends the functionality of the Conversations Map system (Sack 2000) (a software that
can visualise semantic information in social networks) to incorporate information on the
software modules. Their software called OSS Project Browser is built on the following
requirements, “(i) The software must make the hybrid nature of a project visible by
showing the connections not only between people, but also between people and material
artefacts (ii) The software must offer a dynamic perspective on activities and allow ob-
servations over time” ((Ducheneaut 2005), p 331). The OSS Project Browser is also
based on the requirement of facilitating ethnographic data on the project (so the user has
the possibility of accessing the raw data) as well as the requirement of being able to
track the progress of an OSS developer over the course of time (Ducheneaut 2005).
Though the OSS Browser is not meant for identification of STSCs per say, it can be used
for a qualitative understanding of STSCs.
Though there are no tools to identify all the different kinds of STSCs, there are tools and
methods to identify Conway’s Law STSC. Cataldo et al. (Cataldo, Wagstrom et al. 2006)
and Sosa (Sosa 2008) provide a quantitative method using DSMs based on the PCANS
(short for Precedence Commitment Assignment Network Skill) model of (Krackhardt
and Carley 1998) to identify Conway’s Law STSC.

 67

de Souza et al. (de Souza, Redmiles et al. 2004) on the other hand, use more qualitative
techniques as used in TESNA. In their tool called Ariadne (now called Theseus) they
check dependency relationships between software call graphs and developers.
.
In the next Chapter (Chapter 5) we analyse the first commercial case study conducted for
evaluating the TESNA method and tool.

 68

5. Mendix Case Study

5.1 Introduction

The first case study to test the TESNA method and tool was conducted in a software
company called Mendix, who develop a large middleware product. One version of the
middleware product was already released at the time of the study.

The reason behind choosing this case was that Mendix followed an agile approach (itera-
tive incremental software development by incorporating frequent feedback) and it was
interesting to see whether even a small company like Mendix has STSCs and if we could
identify them.

The system architecture of Mendix (at the time of this study) consisted of a client sys-
tem, a work flow server and a modelling server (Figure 22). The project staff included
15 full-time personnel; 8 full-time developers, 2 project leaders, 2 project managers, 2
sales people and one system administrator. The personnel were divided into 3 teams,
with 3 developers, one project leader and one project manager for the client system, 3
developers for the Modelling Server and 3 developers and one project manager for the
workflow server. Figure 22 gives a sense of the dependencies as a result of task alloca-
tions related to the software architecture of the system. The XML interchange indicates
that there exists an input and output dependency between the Server, the XML server
and the Client System.

Most of the literature on Socio-Technical dependencies (de Souza, Redmiles et al. 2004;
Wagstrom and Herbsleb 2006) focuses on gathering the dependencies from the recently
modified source code (from CVS). The research approach was adopted by analysing the
source code of the company Mendix with the help of our tool. As the company, Mendix
is small most of the dependencies in each section of the architecture (client, xml server,
and modeller server) were satisfied by the communication among the developers work-
ing on them. Also, knowledge of the technology used in the particular platform (Java,
JavaScript or Delphi) was an essential prerequisite for a developer to be working in that
part of the project. Due to this fundamental skill requirement, developers seldom worked
on projects or changed code other than their own assigned part of the architecture. As
each developer worked on only specific parts of the code and architecture, there were
workflow dependencies between the colleagues due to the architecture. The dependen-
cies due to the XML input and output between the client/server and the servers couldn’t
be identified by only analysing the call graph and function call dependencies. Thus, ana-
lysing source code of the software product isn’t very helpful in analysing the dependen-
cies for a small company like Mendix. So, we used the technical architecture as a basis

 69

to understand the coordination dependencies between the software developers as previ-
ously done by Ovaska et al. (Ovaska, Rossi et al. 2003).

The data was collected in fall 2006 over a period of 3 months, through participant obser-
vation, interviews and gathering work related documents from development tools and
communication servers. Among the documents observed were the chat logs, which were
stored in XML format. Four weeks of logs of chat transcripts, each week evenly distrib-
uted in the 3 month period, were analysed with the help our software tool, TESNA.

All the main developers, project leaders and project managers were interviewed. Among
the questions asked in the interview were; who they discuss work related subjects with
(advice, discussion and work flow), how much data was exchanged per communication,
and, what the mode of communication was. It was ascertained that almost all technical
communication was done through online chat. This was because Mendix uses a dedi-
cated Jabber chat server running for the company (which eliminated wastage of time due
to external chats), and developers consider the use of chat more efficient than face to
face communication. The primary ties in the social networks analysed from the chat log
corresponded with those that the interviewees had themselves provided. Further, through
participant observation of the software developers (in 6 separate visits lasting a day
each) it was ascertained that indeed almost all technical communication was through the
online chat.

The data was analysed and then discussed with the CTO of the company, who doubled
as a project manager (roakr in Figure 22.). With the help of our software tool TESNA,
the social networks for four different weeks (each with cumulative chat data over the
period of a week) of only the developers and project leads/managers were constructed.
The chat records were parsed and displayed as social networks by TESNA with the chat
ids, as labels for our nodes in the social network. This was also done in compliance with
the company policy of protecting the identity of the employees.

We calculated the degree and betweenness centrality (Freeman 1977) of the nodes and
plotted a graph showing its variation over the 3 month period. The resultant diagram was
shown to the CTO for his input that was then used for the identification of STSCs ac-
cording to the Betweenness Centrality Match pattern (Table 6, Chapter 3).

TESNA can construct and analyse software metrics from XML logs of chat messages
(the chat server being Jabber). Moreover, TESNA displays the different metrics of the
social network over a period of time. This option was used to analyse the betweenness
centrality of the social networks over the period under study. The data was taken back to
the CTO once it was displayed and analysed. In this way we could ascertain whether our
technique was really useful to the CTO.

 70

The cumulative chat logs were analysed over a period of a week and converted into a
social network of the developers and project leaders with the help of our tool (we use
JUNG (Madadhain, Fisher et al. 2005) to display and calculate metrics). The social net-
work was represented with labels, and the strength of each link was determined by the
number of chat messages exchanged. The black links were drawn for the maximum
number of chat messages exchanged, and dotted links if the number of chat messages
was less than half of the maximum that week. The system architecture (which didn’t
change in the period of observation) was then superimposed on the social networks in
order to assist the identification of STSCs, according the Conway’s Law pattern (Table
6, Chapter 3).

Figure 22: The Software Architecture along with the task responsibilities

5.2 Conway’s Law and CTO feedback

The CTO considered Conway’s law pattern (Chapter 3, Section 3.8), very important, in
his words

 “..it is very important that the organization of the company is according to the architec-
ture and I want all the developers to communicate to resolve their problems”.

 So, the CTO was quite pleased when we showed our tool which maps the social net-
works to the software architecture of his company’s product. When asked how he would

 71

expect the social network of the developers and project leads in his company to look, the
CTO said

“I would expect vla, jonve and micka to be central, as they are the Gurus in the work
they do

and no one knows the functioning of the server, xml server and the client better than
them”

Figure 23: The social network mapped onto the Software Architecture for week I

The social network from week I (Figure 23) was interesting as the CTO immediately
spotted a STSC, which was the missing link between Jonve and Judva, both of whom are
developers for the XML server (Figure 22).

The CTO found the social network from week II (Figure 24) more reasonable than week
I, even though there was no connection to johde (who was away doing a project). The
three central players were jasva, micka and jonve which was what he had expected ac-
cording to the tasks and results in that week. He found that there was little communica-
tion with derkr (who is the project manager for the client part of the architecture Figure
22), which he found odd as there was some trouble with the client that week.

 72

Figure 24: The social Network mapped onto the Software Architecture for week II

Week III (Figure 25) was interesting as many of the employees were on vacation, and
the CTO was interested in how the employees communicated. There was no communica-
tion between jasva and micka, as jasva was supposed to work on the Client that week.
This could be an indication of a potential problem (or STSC). Also, the CTO found the
fact that mne was central quite surprising.

 73

Figure 25: The social Network mapped onto the Software Architecture for week III

In week IV (Figure 26) the fact that micka was not communicating was surprising as the
deadlines were near and it would have been important that he spoke with his fellow cli-
ent developers. The reason behind pan and matku (having high out-degree) being central
was that there was a product shipment on week IV which caused the project leaders to
play a more central role. The strong link between jonve and matku was quite odd accord-
ing to the CTO as they wouldn’t have the need to communicate on technical problems.
The fact that bruva had a central role seemed quite odd to the CTO, while the CTO was
quite surprised that derkr wasn’t communicating much in the week with the shipment
deadline.

 74

Figure 26: The social Network mapped onto the Software Architecture for week IV

5.3 Betweenness Centrality Match

Centrality index gives us an idea of the potential importance, influence and prominence
of an actor in a network. Betweenness (as described in Chapter 3, Section 3.10) refers to
the frequency with which a node falls between pairs of other nodes in the network. In
other words, betweenness centrality is a measure of, “the degree that each stands be-
tween others, passes messages and thereby gains a sense of importance in contributing
to a solution, .. , the greater the betweenness, the greater his or her sense of participa-
tion and potency” (Freeman 1977). In terms of coordination, betweenness maybe the
most appropriate measure of centrality as it provides a measure of the influential control
of each node (employee) on the whole networks. This is the reason why betweenness
centrality was used to analyse potential STSCs.

 75

Figure 27: The change in the betweenness centrality over the four weeks

The change in the betweenness centrality index (Chapter 3, Section 3.10) over the 3
month period can give us an idea of how the most important employee (or the employee
who handles most of the communication) in the network changes depending on the tasks
at hand. On observing Figure 27, one can see that the employees who are important to
each part of the software architecture (or the gurus as the CTO called them) namely,
jonve, micka and vla were very central during the period around the first week. This pe-
riod was exclusively meant for software development where their expertise was very
much in demand (as the CTO named them as the experts in their domain) by fellow de-
velopers and project leaders. However, as the project moves towards delivery of the
product we find the core developers taking a more passive role in the network while the
non-core developers like jasva, bruva and mne as well as the system integration experts
take a more central role. This can be explained by the fact that a greater amount of inte-
gration and front end work is required near the delivery deadline.

We also notice that the project leaders and managers (pan and derkr) assume a more cen-
tral role when the project is nearer to the deadline for delivery to the customer (week
IV). This movement to a more central role is required by the project leaders and manag-
ers in order to be able to control all the possible contingencies that might crop up near
the delivery time. This display of the variation of betweenness centrality index of the
social network can also help a manager in recognizing STSCs relevant to different stages
in an agile software process. When a person is too central for the wrong reasons, i.e.
when a developer is taking responsibility to communicate with the rest of the team, then

 76

such a scenario would be a structure clash. For example, the CTO was surprised that
mne had a central role in the week III when not much work was required at the client
side; he was also surprised that bruva was central in week IV. There is also cause for
concern (potential STSC) when two employees working on (or managing) the same part
of the architecture (that is being modified) are not communicating with each other, for
example micka and derkr were not communicating in any of the weeks under observa-
tion.

This Chapter dealt with a preliminary investigation of the method of identifying STSCs
in a corporate environment. In the next Chapter (Chapter 6) a more detailed analysis of
different STSCs is carried out in a different but comparable corporate environment.

 77

6. eMaxx Case Study

6.1 Case Study Details

We conducted our case study in a software development company called eMaxx.
eMaxx is one of the leading providers of Web Portals and Mid Office solutions for city
halls in The Netherlands. They have between 30 to 40 percent of the market share
among all the companies who supply mid office solutions to Municipalities. The solu-
tions offered by eMaxx are personalized for each municipality so their software devel-
opment is manpower intensive. eMaxx has around 20 developers distributed among
three teams and follows a variant of the waterfall development methodology. In the re-
cent past they have merged with another company called XL21, who also work on Mid
Office solutions for city halls.

Figure 28: The Mid Office application Architecture and the task responsibilities

 78

eMaxx develops software in the java platform while XL21 develops in the .NET plat-
form and employs a variant of the waterfall model for their software development. Over
period of 6 months we mined the Software Repository (CVS) as well as the Bug
Tracker repository (Mantis (Tracker Retrieved 1st August 2008)) used by the developers
at eMaxx. We also interviewed the support staff, developers as well as the project lead-
ers of each primary software development team, where each team is represented by a
different part of the architecture in Figure 28. For example, the developers working on
the Front Office part of the architecture was considered to be a part of the Front Office
team and so on. In total we took nine interviews covering all the teams in eMaxx. Each
interview lasted between 1 to 2 hours. Among the many questions asked were questions
related to what was the communication network (as well as frequency) of the employee
was, what the modes of communication were and whether the employee had observed
STSCs in the functioning of the projects he or she was involved in. For the interview
process and the subsequent analysis of data gathered we used the coding technique de-
scribed my Miles and Huberman (1984).
The architecture of the main Mid Office application, the various teams as well as the
task responsibilities of the developers are described in Figure 28. As seen in Figure 28,
the architecture of the primary product Mid Office that eMaxx develops consists pri-
marily of the Front office, Application Server and the BPEL Engine. The business logic
in the Mid Office application is modelled using BPEL (Business Process Engineering
Language). The business logic is embedded in the Application Server as well as the
Front Office, which make them both dependent on the BPEL specification. The Front
Office and the Application Server part communicate through XML (SOAP) messages.
All the corresponding task responsibilities that changed during the period of the study
were duly noted.

6.2 STSCs in eMaxx and Feedback

We identified three primary STSCs based on the three Socio/Technical Patterns. Just as
in the Mendix case study (Amrit and van Hillegersberg 2008), we noticed the occur-
rence of STSCs based on Conway’s Law Pattern, and the Betweenness Centrality
match pattern. Additionally, we also noticed the occurrence of an STSC based on Code-
Ownership pattern. The three patterns are explained in more detail (in the pattern for-
mat) in Table 6 (Chapter 3). The patterns are based on the Social (betweenness central-
ity) as well as Socio-Technical STSCs (Conway’s Law and Code ownership). While the
Betweenness Centrality Match STSC at eMaxx was based on analysing only the social
network of the employees and calculating the betweenness centrality over time, the
Conway’s Law STSC at eMaxx was based on analysing the social network of the em-

 79

ployees as well as their dependencies at the architectural level (similar to what was
done in the Mendix Case) and the Code Ownership STSC was based on analysing the
Technical dependencies at the level of the application code over time and determining
who is responsible for the particular version of the application. We mined the Mantis
bug tracker in order to determine the project specific communication links. We com-
pared and verified these links to the ones we got through the individual interviews. The
data from the Bug tracker after verification with the interview data was used to identify
the Betweenness Centrality STSC. In order to identify the Conway’s law STSC, we
also used the communication link data from the bug tracker along with the interview
data and compared it with the dependencies between teams at the level of the architec-
ture. On the other hand the Code Ownership STSC was identified by mining the soft-
ware repository (CVS) used in eMaxx and by determining the ownership of the modifi-
cations done on the software over time.
After the data was analysed we took the data back to the CTO David for his feedback
and we used some of the feedback to locate and validate the STSCs. We also asked the
project leader from the Support Team, Oliver for his feedback on the data. We followed
up on the data we got from observing the Betweenness Centrality STSC. By interview-
ing the different people involved in the particular STSC we tried to get arrive at a better
understanding of the reason behind the STSC.
We presented the data to the developers of eMaxx to get more feedback on the data and
the STSCs found. We used the opportunity to also get feedback on our software tool
TESNA. All the names used in this case study are pseudonyms at the request of the
CTO of eMaxx. All theSTSCs and their identification are explained in the following
subsections, but first we will explain how the Mantis bug tracker and the CVS software
repository were mined with TESNA.

6.3 Mining Repositories

eMaxx uses the Mantis bug tracker (Tracker Retrieved 1st August 2008) to keep track
of the progress on software bugs specific to different projects. The reason for choosing
the bug tracker was that the CTO of the company informed us, that the bug tracker dis-
cussion was an accurate representation of not only the bug finding and fixing activities
but also the coordination activities required surrounding it.

We were able to mine 2250 pages from the Bug tracker corresponding to 23 different
customer oriented projects. The bug tracker pages spanned a period of four years, start-
ing from 2004 and ending in the beginning of 2008. Each web page of the bug tracker
dealt with a specific bug concerning a software component of a project. From each page
we were able to extract the sequence in which the developers tackled the particular

 80

software bug in question. Data on the names of the developers, the dates at which they
posted the message as well as the name of the project in concern was mined with the
help of TESNA. The social network of the people who posted messages on the bug
tracker was built as follows: if developer A posted a message and developer B replied
to it, then a link was established from A to B, similar to the method used by Howison et
al. (2006). In this way we arrived at one social network from each bug tracker page. As
the number of such networks was 2250, which was too many to analyse, we had to
group the networks together. We grouped 25 networks belonging to a particular project
at one time, to end up with 90 social network diagrams. We then calculated the be-
tweenness centrality of the networks and plotted the change of the betweenness central-
ity of each individual involved in a project over time. We also analysed the ratio of the
messages between any two teams to the total number of messages in order to determine
the projected related communication among the different teams.

eMaxx uses CVS (Concurrent Versions System) to keep track of eMaxx’s Mid Office
application code. We used TESNA to mine the CVS in order to retrieve data on the
name of the software class file which had been modified, the name of the developer
who modified the file as well as the date at which the file was modified. We also ob-
tained the different versions of the compiled source code (jar files) of each of the core
Mid Office modules that was also checked into the CVS.
We used TESNA to analyse and display the call graphs of each of the application mod-
ules (jar files). We could then conduct a temporal analysis of the call graphs, to deter-
mine changes in the responsibilities for different versions of the application modules. In
total we analysed 29 application modules of the core, belonging to Application Server
part of the Mid Office architecture (Figure 28). Of these 29 application modules we
found 14 very interesting in terms of their call graph dependencies and importance in
the functioning of the Application Server. We analysed the core-periphery nature
(Chapter 3, Section 3.12) of these 14 application modules (as we shall describe later).
We determined which developer modified (and as a result was responsible for) which
part of the application module and when.

6.4 Betweenness Centrality STSC

As we explained in the previous section, the social network diagrams were grouped
based on the projects the bugs addressed. We could then calculate the betweenness cen-
trality (Chapter 3, Section 3.10) of the people involved in the bug tracker of each pro-
ject over time. As explained previously, betweenness refers to the frequency with
which a node falls between pairs of other nodes in the network. Scott, J (2000) defines
betweenness as the extent to which an actor can play the role of a broker or a gate-

 81

keeper with a potential to control others. In the case of the usage of the bug tracker at
eMaxx, we analysed the messages posted and observed that most of the coordination
work was the allocation of bugs and in routing the replies to the attention of other de-
velopers. This had to be done, as the developers at eMaxx did not respond to a bug re-
port unless and until the message was addressed to them. Hence, in this case the coor-
dinating role did correspond to the person with the higher betweenness centrality. This
is unlike the case reported by Howison et al. (2006). According to whom, as bug
tracker in an Open Source project is readable by everyone, one cannot use betweenness
centrality as means of ‘information brokerage’(Howison, Inoue et al. 2006).

We could then see who has a higher betweenness centrality at which period of the pro-
ject. Depending on whether this is different from what was planned in the project plan-
ning stage or expected with the job description, we would have an STSC (Table 3). The
90 social network diagrams (as explained in the previous section) were distributed
among 23 different projects. Among these different projects we found four projects in-
teresting as they involved more developers than others and were spread across a com-
paratively larger timeline. The interesting projects were DPT, TRM, LR and LPOC (all
pseudonyms). As described earlier, each network was culled from 25 pages of the Bug
Tracker, and each page had postings from eMaxx employees. The employees included
XL21 employees as well as employees from the customer side (the city halls involved
in the project).

DPT had 28 people working in the project with 9 employees from eMaxx, including 2
employees from Support (Oliver and Paul), 1 employee from Front Off (Joshua), 2 em-
ployees from Application Server and 4 employees from BPEL team ; 9 employees from
the company XL21 (including their service desk, Nuru and Nico) and 10 employees
from the Customer side.

 82

Figure 29: The variation of the Betweenness Centrality of the people working on DPT Project

When we asked the CTO of eMaxx about who should be coordinating the DPT project,
he mentioned the names of three Project Leaders, two of whom were from eMaxx and
one from XL21. While the project leader of the Support Team; Oliver mentioned the
names of himself and Nuru.
As none of the Project Leaders participated in the discussions in Bug Tracker for this
project one would expect the support staff (as this was their role, in the planning stage)
to take over the coordination of the project. The support staff members that did partici-
pate in the DPT project (as seen in Figure 29) were Oliver and Paul (for eMaxx). When
we observe the change in betweenness centrality of the employees who participated in
the project, we see Oliver taking the main coordinating role from the beginning of the
project (week 0) to around week 12. Then from week 13 we see Nuru from the Front
Office team of XL21 taking over the main coordinating role till around week 26. From
week 26 till week 28 we see another member of XL21, Nico taking over the main coor-
dinating role. As no one from eMaxx support is involved in the coordination of the
DPT project from week 26 to 28, this can be considered as a possible Betweenness
Centrality STSC. Also, what is interesting is that the project leaders from the customer
side of the DPT project namely, Madison and Riley did not play a very important role
in coordinating the Bug Tracker discussion.

 83

Figure 30: The variation of Betweeness Centrality for the LPOC project.

LPOC and LR were two phases of the same project. While LPOC was the initial design
phase, LR was the implementation phase.
In Figure 30 we see the variation of the Betweenness Centrality of the LPOC project. In
this project there were 24 employees involved of whom 6 were from eMaxx and the
rest were from the customer side. Again we asked the CTO, who had the central role of
coordinating this project. The CTO mentioned a project leader from eMaxx. As there
were no project leaders from eMaxx participating in the Bug Tracker discussion, we
would expect the eMaxx support staff to take over the role of coordinating the discus-
sion in the Bug Tracker. When we analyse the betweenness centrality of the LPOC pro-
ject we see Robert, who is the project manager for the customer, taking over the central
coordinating role in the Bug Tracker discussion of the project from its inception to
around week 8. Around week 8 we see Joshua, who is in the Front Office team taking
over. Again, as there are no employees from eMaxx support team involved in the Bug
Tracker message coordination for most of the project, we can conclude that there is a
Betweenness Centrality STSC for this project.

 84

Figure 31: The variation of Betweenness centrality for the LR project

In Figure 31 we see the variation of Betweenness centrality in the LR project. The LR
project had 34 employees participating in the Bug Tracker discussions 15 of whom
were from eMaxx. Among employees who participated in the Bug Tracker from eMaxx
were 2 Project Leaders (Gavin and Luis), 2 support staff (Oliver and Paul), 4 employ-
ees from the Front Office team (Joshua, Karsten, Ryan and sander), 4 employees from
the Application Server team (David, Ethan, Thomas and Ian) and 3 employees from the
BPEL team (Faron, Brian and Nathan).
When we asked the CTO of eMaxx about who had the main coordinating role in the LR
project, the CTO mentioned 2 project leaders (Gavin and Luis) as well as one Front Of-
fice member namely Joshua. While Oliver said that Joshua, Luis and himself (Oliver)
had the main coordinating role for the project in the Bug Tracker. On analysing the
change in betweenness centrality of the LR project, we notice that Tristan, (belonging
to the customer side (of the LR project)) has the central coordinating role in the discus-
sions in the Bug Tracker from the inception of the project (week 0) to around week 6.
Around week 6 Joshua takes over the coordinating role (as expected) till around week
14. Then from week 14 the central coordinating role in the Bug Tracker discussion is
again taken up by Tristan. As Tristan was not supposed to take the central coordinating
role, we see a clear case of a Betweenness Centrality STSC.

 85

Figure 32 shows the change in the betweenness centrality of the TRM project. The
TRM project involved 9 employees; 4 from the client side (Peter, user30, user 33 and
user14), 2 from the application server team (David and Ethan), 2 from eMaxx support
team (Victor and Oliver) and Max, the Project Leader from eMaxx. On calculating the
betweenness centrality for the project we see that Max has very high betweenness cen-
trality throughout the project. When the CTO was asked who had the main coordinating
role in the TRM project, the CTO mentioned the names of himself and that of the CEO.
This clearly shows a discrepancy from the expected coordination role to the actual co-
ordination.

Figure 32: The variation of Betweenness centrality for the TRM project

6.5 Conway’s Law STSC

Conway in 1968 stated that there is an inherent homomorphism between the communi-
cation structure and the structure of the system design (Conway 1968). When this
alignment between the system structure and the communication structure are not met
then we have what we call the Conway’s Law STSC (Table 6). The Conway’s Law
STSC we identified at eMaxx involves technical dependencies at the level of the system
architecture (Figure 28) that are not met with corresponding communication between
the people involved with the technical artefacts.
As in the Mendix case study (Chapter 5), we analysed the technical dependencies at the
level of the software application modules as well as at the level of the system architec-
ture. Just as in the case of Mendix, we found that the dependencies at the level of the
software application modules were fulfilled with face to face communication (team
members located in the same room) or communication via chat and e-mail (in the case

 86

of team members located in different rooms). Also, the project planning stage of eMaxx
ensured that developers or testers who worked on the same software application module
were located nearby or had access to a quick and reliable communication route. Hence,
we concentrated our analysis at the architectural level of technical dependencies and the
communication among teams, working on the different parts of the architecture (Figure
28). The technical dependencies at the level of the architecture were found through
gathering information on the architecture and through individual interviews. We real-
ised that the main architectural dependency that was critical to the process was the de-
pendency between BPEL, Front Office and that between BPEL and the Application
Server.
We gathered the social network of the developers, support staff as well as project lead-
ers through the open ended interviews. We asked each developer who they spoke with
(other developers, support personnel and project leaders) and how much. We also asked
them if they had encountered any coordination problems/inconsistencies in the projects
they were working on.
One of the main developers: Ryan of the Front Office Team had this to say:
“There is a communication problem between teams.., between Front Off and the BPEL
team, they
(BPEL team) decide things they should not decide.., they should ask us”
…
“I think the communication within teams internally is more than between teams”
…
“Sometimes they (BPEL team) decide things that are difficult to do with the framework,
but most of the time BPEL (BPEL Team) just decides process specific logic, with proc-
ess specific logic it’s easier to accept things”
Sometimes they decide things that really have to change in the framework that is more
difficult”
…
“When they (BPEL team) communicate with us (Front Office Team) it’s about stan-
dard, not process specific things”
The framework that the developer mentioned above refers to the core data structure im-
plemented in the Front Office application based on the BPEL process specifications. So
every time the BPEL process specific logic dealing with the framework changed, the
particular Front Office developers (like the developer Ryan) had to be contacted. The
technical dependency between Front Office team and the BPEL team made the lack of
a smooth communication link between the Front Office team and the BPEL team a co-
ordination bottleneck. This point was also brought up by another Front Office devel-
oper: Kyle who had this to say:

 87

“there were problems between BPEL (team) and Front End (team), because BPEL did
things differently than before
...
So you develop things and you think that now I can communicate with BPEL (to the
Application Server), but it doesn’t work, all I have are errors and faults
...
Then you walk to the BPEL team and they say “Oh we do it differently now, we have
changed it””
..
The whole communication within this company should be much better a lot of problems
in this company are related to bad communication!”

What Kyle means, by the above statements, is that, when the BPEL team makes
changes to the business logic used by the Front Office applications, they do not inform
the Front Office development team of the changes. This lack of relevant communica-
tion and transfer of important information, in spite of the existence of a dependency be-
tween the teams causes problems in the development process.
This communication problem was further ascertained from the interview with Project
Manager Lin. She had this to say:

“..When the clients find an error, we have the Bug Tracker to report the errors, they
always go to BPEL first, mostly, they (BPEL team) look at it, but they look at it by
themselves, they don’t go to the Mid Office (Application Server team), Front Office
(team) to discuss and look at the problem and how they can fix it, they (Mid Office
team) do it just by themselves”
…
“So what I did after a while, when I noticed that is that I went to BPEL (team) and then
I went upstairs to the Mid Office (Application Server team) and the Front Office (team)
and I put the three together to solve the problem, because they don’t do it by them-
selves”
…
“Some people do it by themselves, but most people think “Oh well it’s not my problem!
It’s the Mid Office (team’s) problem or the Front Office (team’s) problem”. Many
times it’s the interaction between the two where the real problem is.”
“In the beginning I thought that the two people know it’s a problem between them, and
they will solve it together, but I realised it’s not always the case”

 88

When asked her which team, in her opinion, was problematic, she had this to say:

“It looks like the problem lies with the BPEL guys, because the problem comes to them
and they have to look, as they are the middle ones (in the architecture) to see who can
solve it, whether it’s a Front Office (problem) or a Mid Office (problem), they have to
look to see who can solve it. So most of the time they say it’s your problem you solve it,
but it’s (the company) a team so they all have to solve the problem together.”

On realising that most of the dependencies were between teams we also measured the
ratio of messages between teams in the Bug Tracker to the total number of messages in
the Bug Tracker. On measuring the ratio of messages over time between BPEL and
Front Office as well as the Application Server teams, to the total messages in the Bug
Tracker during the same period we got a graph that is shown in Figure 33. We divided
with the total number of messages in the Bug Tracker in order to normalise the data.

Figure 33: The ratio of the messages between BPEL team FrontOffice, Application Server teams

The mean of the ratio of messages was 0.07 while the standard deviation was 0.18. We
would get a better feel of the lack of communication between these teams if we com-
pare these numbers to the similarly normalized number of messages between the Sup-
port and the three teams (Front Office, Application Server and BPEL). We arrive at the
graph shown in Figure 34. The mean of the ratio in this case was 0.11, while the stan-
dard deviation was around 0.19. This clearly shows that the communication in the bug
tracker was also more between the Support and the three teams (Front Office, Applica-
tion Server and BPEL), as compared to the communication among the three teams

 89

(BPEL and Front Off and Application Server teams). This result confirms what the Pro-
ject Manager, Lin told us that even though the BPEL team got the bug report from the
customer, they did not assign or discuss it with the other teams through the Bug
Tracker.

Figure 34: The ratio of messages between Support team FrontOffice, Application Server and BPEL

teams

6.6 Code Ownership STSC

In this section we use the concept of Code Ownership STSC (described in Chapter 3,
Section 3.9) and the Core Periphery Distance Metric (CPDM, described in Chapter 4,
section 4.4.3.1).
In Figure 37 we notice the software clusters of MZM, an application module in the Ap-
plication Server along with the developers who modified the different clusters. Here the
size of the cluster indicates the number of dependent source files in the cluster. We
consider a cluster to be more Core the larger and the more connections it has. We then
calculated the CPDM of the developers from this clustering process and displayed it as
a graph. From this graph we can elicit the Code Ownership STSC. The CPDM ranges
from 0 which represents the most periphery part of the application code module to 9
which represents the most core part of the application module. A higher CPDM implies
that the developer modified the core part of the software. While a low CPDM indicates
that the developer modified the periphery of the software. In Figure 35 we notice the
software clusters of MC, an application module in the Application Server along with
the developers who modified the different clusters. We then calculated the Core-
Periphery metric (from now on called CPDM) from this clustering process and dis-

 90

played it as a graph. From this graph we can identify the Core-Periphery STSC as we
have described earlier.
The CPDM ranges from 0 which represents the most periphery part of the program to 9
which represents the most core part of the program. A higher CPDM implies that the
developer modified the core part of the software. While a low CPDM indicates that the
developer modified the periphery of the software.

Figure 35: The notice the software clusters of MC version 1.7.5 along with the developers, Thomas and

David who modified the classes in the different clusters.

In Figure 35, we see the 1.7.5 version of the MC application module. In the figure, we
see Thomas working on classes in cluster number 6, while David works on classes in
cluster number 1 and 3. As cluster 6 is more central (in terms of connectivity to cluster
1 and 3), we find the CPDM of Thomas to be higher than David as seen in Figure 35.
Figure 36 represents the variation of CPDM for the MC software application module.
The MC module is one of the most important modules of the Application server and has
the three main developers of the Application server team working on it namely, David,
Ethan and Thomas. In Figure 36, we see David and Ethan work on the core parts of MC
in the version 1.7.2. In the next version, we see David working on the core (having a
high CPDM of 6) while Ethan is not working on the software. From the next version,
we see the trend that one of David or Ethan works on the core while the other works on
the lesser core modules (more peripheral modules). This causes a coordination re-
quirement between David and Ethan where the developers need to discuss the changes
in the code from the previous version. But as they have worked on the Core of MC ear-
lier, the coordination requirement is not as large as the case in which they had not

 91

worked on the core (or had a low CPDM) earlier. When Thomas enters the project in
version 1.7.5, we see that he has David (who is also working near the core) to discuss
the previous project’s changes with.

Figure 36: The Core-Periphery Shift of the MC application module

Figure 37 describes the variation of the CPDM of the different versions of MZM, which
is one of the main application modules of the Application Server. The versions of MZM
started with version 1.7.1 and developed to version 1.7.3.2. The versions also represent
the timeline of development of the software, i.e. 1.7.1 was developed before 1.7.2 and
so on (these also correspond to the versions in the CVS). From the figure we can arrive
at the conclusion that there are two developers creating and modifying the application
module, namely David and Ethan. In Figure 37 we see that David has a CPDM of 5
while initiating the project and working on version 1.7.1 of MZM, while Ethan has a
CPDM of 0. This implies that while David was working on the core part of the soft-
ware, Ethan was not modifying the software at all. While for version 1.7.2, we see that
David’s CPDM hasn’t changed, Ethan’s CPDM is 3.5.

 92

Figure 37: The Core-Periphery Shift of the MZM application module from the Application Server

This shows that, in this version Ethan modified a reasonably core part of the software.
What we can see from the trend of this graph is that, from version 1.7.1 to version
1.7.3.2 David consistently has the highest CPDM indicating that he is modifying the
most core part of the software module. Thus we see that David has Subsystem Code
Ownership (Nordberg 2003) of this software application module.

Figure 38: The Core-Periphery Shift of the MLRD application module from the Application Server

In Figure 38 we observe the variation of CPDM for another application module called
MLRD. In this application module we have three developers creating and modifying

 93

the application, namely David, Thomas and Ian. In this graph we see that Thomas initi-
ated the project and hence was creating/modifying the core of the software and conse-
quently has a very high CPDM of nearly 7. In version 1.7.1 we see David entering the
project and modifying core modules with a similar CPDM as Thomas for version 1.7.1.
While David has a high CPDM for alternate versions, we see that Thomas is constantly
working at the core of the software. This indicates Code Ownership of the application
module and we think it reduces coordination problems.
Having seen these three positive examples of work practice, let us consider a counter
example that is also an example of an occurrence of Code Ownership STSC.
We do see an occurrence of Code Ownership STSC in Figure 39. The figure represents
the variation of CPDM for the MGM module. In the figure we see Ethan working on
the core of the different versions of MGM, implying that he is the main developer of
MGM. Except in version 1.7.6.1, even though it’s meant to be a subsidiary version of
1.7.6 (with the naming convention adopted in CVS), through our CPDM we find that
David modified quite a core part of the MGM application module. This implies that
though David didn’t work on the software until version 1.7.6.1, he had to learn about all
the changes that have been done on it and the reason behind those changes. So this
situation makes the coordination requirement quite high between David and Ethan,
causing an occurrence of a Code Ownership STSC.

Figure 39: The Core-Periphery Shift of the MGM application module from the Application Server

 94

Figure 40: The Core-Periphery Shift of the MDDS application module from the Application Server

Figure 40 shows the variation of the CPDM for the different versions of the MDDS
project. In this project, we see that David and Ethan were involved in working on the
core of the software at the start, as they have a relatively high CPDM until version
1.7.5. Then David stops working on the software module as his CPDM drops to zero in
version 1.7.6, while Ethan continues to work at the core of the software till version
1.7.7. In the meanwhile, we see find efloothuis and Ian working on the core of the pro-
ject (having a CPDM of nearly 6), on versions 1.7.6 and 1.7.7 respectively. This
doesn’t cause a very high coordination requirement (and consequently a Code Owner-
ship STSC), as we also find Ethan working on the core of the software (having a
CPDM of nearly 5) during the same period. So, it’s easy for Ethan to discuss the details
of the code with them. While on the other hand in version 1.7.8, we find only Thomas
working on the core of the project with a CPDM of nearly 6. This places a very high
Coordination Requirement on Thomas. As, he has to discuss the details of the changes
that David, Ethan, Ian and efloothuis have made if he is going to be modifying similar
files as is quite likely with the high CPDM. Hence, this large Coordination Require-
ment makes this a clear candidate of the Code Ownership STSC.

6.7 Discussion

We decided to find the reasons for the STSCs observed in the different STSCs. To do
so we interviewed some of the people involved in the STSC by not coordinating
enough or who took proactive responsibility of the coordination.

 95

6.7.1 Conway’s Law

We interviewed one of the main developers in BPEL, Faron (a pseudonym). When we
asked him who he talks to in his team (BPEL) he had this to say:

“I spoke to no one for the last six months!, now and then I talk to the Team Leader
(Brian)”
..
“Now its better as I am in the same room”

When asked who he communicated with in the Application Server and the Front Office
teams:

“I worked on a lot of projects, a lot of it on my own and with some mid office people
like David”
..
“I discuss problems and new functionality with David”
..
“I do the proof of concepts; just make the functionality, not a common way of doing a
project,
It’s faster and has less documentation”

This shows that Faron only spoke with David in the Application Server team and only
when he had a problem or a new functionality to discuss. As the project manager Lin
told us, when the clients encountered a bug in the project they directly contacted the
BPEL team. We also found that Faron was contacted by the clients on multiple occa-
sions. So though the other teams like the Front Office team were waiting for data re-
garding BPEL changes or bugs from Faron, he was not aware or didn’t take heed of
this, causing a Conway’s Law STSC to occur.

6.7.2 Betweenness Centrality

We followed up on three of the projects where we found a Betweenness Centrality
STSC at eMaxx, namely, the LPOC, LR and the TRM projects. We interviewed the
project leaders and developers involved in the coordination of these projects in order to
understand why they undertook the coordination responsibility in these projects.

In the case of the LPOC project (Figure 30) we interviewed the Team Leader Robert
from the client side. We asked him why he took up the coordination of the LPOC pro-

 96

ject though he was from the client side. He said that the client in this case had a better
understanding of the business process involved in the project, so it made sense to coor-
dinate the project. Also, the fact that he knew the technicalities of the project quite well
helped him take up the coordinating role. We think that Robert’s role in coordinating
most of the bugs in the project is still an STSC, as it’s not a good idea to rely on the cli-
ent to manage the software development and testing process.

In the case of the LR (Figure 31) project, we interviewed Tristan who was the Project
Manager from the same customer site as the LPOC project. We asked him why he took
the coordinating role and how difficult it was to coordinate the bug reports as well as
the project on the whole. The reason Tristan gave was that no one from eMaxx took up
the responsibility to coordinate the project themselves. This, combined with the fact
that they knew exactly what technical specifications they wanted, made it easier for him
to coordinate the project progress and also the interaction in the bug tracker. Though,
he had reservations on the way the support staff at eMaxx was structured. He preferred
it if there were different people for the roles for project management, support (in the
bug tracker) as well as the testing of Bugs. Implying that eMaxx was short staffed and
this could be one of the reasons that persuaded the customer side to take up the coordi-
nation responsibility. We confirmed the remarks of Tristan by interviewing Max who
was one of the Project Leaders at eMaxx.
The project leader of the support team, Oliver confirmed these statements, when asked
which team is not so fast to respond to bugs in the Bug Tracker, he had this to say:

“Our own team is the biggest problem because Paul and Victor (pseudonyms used)
have too less time.
..
Also projects can have a problem with that, as Paul and Victor have 70 to 80 hrs a
week planned. We have to change it back to 40, but of course somewhere we will have a
problem with that..
I think a good idea is to split things up before the project is completed and not after de-
livery.”

This confirmed the fact that the support team was indeed overworked and understaffed,
leading to customers taking the initiative to handle the coordination.

In the case of the TRM project (Figure 32) we asked the project leader Max why he had
coordinated most of the project in the bug tracker. Max explained that the project man-
agement of the TRM project was assigned to an external company CG. As the person-

 97

nel in the company didn’t understand the technicalities of the project someone from
eMaxx had to take up the responsibility to coordinate the technical part of the project.
As the main project manager (also the CEO of the company) was very busy at that time,
Max took up the responsibility himself. In his words:

“ ..they (CG employees) did not have the right understanding of the technical details.
They did not have the knowledge to understand the change requests. Then Project
Management becomes difficult. It was very difficult for them to understand or change
things..”

We further discussed, why, in his opinion the customer in the DPT project (Figure 29)
did not take up the role of project coordinator. His explanation was similar to the TRM
project and in contrast to the LPOC and LR projects. Max explained:

“Both Madison and Riley (pseudonyms used) had no background on the technical is-
sues.
If they had a coordinating role and couldn’t explain why a certain issue is the way it is,
it wouldn’t be good”

This explained why certain projects like LPOC and LR had the project managers from
the customer side taking up the central coordination role, while in projects like DPT
they didn’t take up a central role.

6.7.3 Evaluation using Feedback on TESNA

In the presentation given to the eMaxx on the data collected we also distributed ques-
tionnaires for feedback on the tool. We later discussed the feedback with all the partici-
pants of the talk, in order to get more qualitative data on their feedback. In total eight
developers, support personnel and project leaders attended the presentation and also
filled the questionnaires.

Summary of the Responses

The participants unanimously agreed (some even completely agreed) that it was impor-
tant for the company to have information on the Coordination Requirements as well as
the Coordination Problems (or STSCs). The responses to questions about the usefulness
of the TESNA visualisations were mostly positive except for two responses one suggest-
ing that information on projects should be added and another suggesting that actor roles
should be added to the visualisations. The question as to what additional information

 98

could improve the visualisation included three respondents who suggested that data on
the project should be included, two respondents suggested that developer roles should be
included and four responses suggesting that time (instead of version data) could be in-
cluded and finally one response suggesting that the possibility of zooming into the data
would be useful. The responses for the kind of CSCW application that could solve such
coordination problems drew a blank with the exception of one respondent naming min-
ing and using data from CVS using XDDTS. As for the evaluation of TESNA, we gath-
ered many interesting responses, including four responses were very positive indicating
that detection of such coordination problems is indeed very useful. A fifth respondent
suggested that a comparison with other tools would be helpful and that the data might be
difficult to comprehend in its entirety due to the size of data from different sources. As
for the drawbacks of TESNA, two people suggested that one must be judicious in inter-
preting the data generated by TESNA. Finally we received a suggestion that additional
functionality could be added to TESNA in order to not only process historical and cur-
rent data but also be able to support and advice on future projects. On the final query
about whether the participants were aware of tools that were similar to TESNA, only one
response was received. This referred to Eclipse (an Integrated Development Environ-
ment) plugin that could find and display dependencies in software code but does not dis-
play data on the developers.

In this Case Study we noticed the occurrence of three STSCs related to Conway’s Law,
Code Ownership and the Betweenness Centrality Match. In the next Chapter (Chapter
7) we see how the Open Source software development process compares to commercial
software development (seen in Chapters 5 and 6). Particularly, we look at whether the
Socio/Technical Patterns that are applicable to commercial closed source development
are also applicable to Open Source development. Later, we explore what kinds of
Socio/Technical patterns are more applicable to the Open Source environment.

 99

7. Open Source Case Study

7.1 Introduction

Open Source2 software development has become quite popular in recent times. Open
Source software development has become quite popular in recent times, with such well-
known success stories as Linux, Send Mail, Apache and Firefox, to name a few. A recent
report from Gartner says that Linux is the fastest growing Operating System for the
server market and continues to substitute Unix because to its “cost-to-performance ratio,
high availability of support resources and lower cost of ownership” (Pettey 2008).
Nearly 50% of the web sites run on Apache web server (Survey 2008)and Send Mail is
used for all the e-Mail routing for the Internet. Yet Open Source development projects
still face significant challenges. Out of 158669 projects registered in the Sourceforge
portal, largest host of Open Source projects(Sourceforge Retrieved 1st August 2008),
only 27004 (17 %) of the projects were considered stable (has a stable version of their
software) and only 2414 (1,52 %) had reached mature status (data was accessed in July
2008). It has been observed that the success or failure of Open Source software depends
largely on the health of the health of such Open Source communities (Crowston and
Howison 2003; 2006). Open Source developers are spread all over the world and rarely
meet face to face. They coordinate their activities primarily by means of computer-
mediated communications, like e-mail and bulletin boards (Raymond 1999; Mockus,
Fielding et al. 2002). Developers, users and user-turned-developers of the software form
a community of practice (Ye and Kishida 2003). For an IT professional or Open Source
project leader it is crucial to know the status of the Open Source project in order to con-
tribute or recommend the project (Crowston and Howison 2006). Understanding how the
coordination of software developers can be carried out in an Open Source environment
can help in ensuring that many of the Open Source projects are not abandoned. To
achieve this goal, one needs to know if and how the process of development of Open
Source projects is different from that of Commercial Software Development projects.
Realising how the development process differs, can help us understand which
Socio/Technical Patterns are applicable in the Open Source development environment.
This would also help us understand which STSCs one can identify in order to improve
the Open Source development process. In this Chapter we wanted to explore (i) how the
Open Source software development process is different from the closed source commer-
cial software development, (ii) whether the Socio/Technical patterns we found in the

2 In this thesis the term Open Source denotes Free/Libre Open Source Software; Initiative, O. S. (Re-

trieved 1st August 2008). "Open Source Initiative." from http://opensource.org/.

 100

commercial software development companies are applicable in the Open Source envi-
ronment and (iii) if the same Socio/Technical patterns are not applicable, then which
Socio/Technical patterns would be applicable in Open Source environments.

7.2 Comparing Open Source and Commercial Development Processes

Though the Cathedral versus Bazaar metaphor (Raymond 1999) has been criticised
(Bezroukov 1999), it is still regarded as the first paper to describe the differences in the
development processes. In this section, we address the question how the Open Source
software development process is different from closed source commercial software de-
velopment. We intend to see if the Socio/Technical Patterns (in particular the patterns
discussed in the earlier Chapters) that apply to Commercial Software Development
Processes also apply to Open Source software development processes. In order to
achieve this goal, we employ a secondary analysis of published case studies in a way,
similar to, the one done by Gallivan (2001). With such analysis, we can see if they men-
tion these patterns explicitly or implicitly and in what way they find them relevant. In
order to identify relevant case studies we searched electronic archives (of ACM, IEEE,
ISI web of Science and Scopus) for relevant literature with search terms like ‘ “Case
Study” AND “Open Source”. From the papers obtained, we shortlisted those that explic-
itly or implicitly discuss coordination issues in Open Source software. In all we accumu-
lated 154 papers on Open Source software, of which the list of papers that discuss the
particular Socio/Technical Patterns are shown in Table 8. To avoid selection bias we did
not exclude the papers that only mentioned “code ownership”, “Conway’s law” or “Be-
tweenness Centrality”. To fit the selection criteria the case studies had to describe the
development process of particular open source software and also had to contain original
data as well as analysis. The case studies in each of the papers reviewed a minimum of
three times in order to locate passages which mention the patterns explicitly or implic-
itly. We used a similar approach as used by Gallivan (2001), of applying content analy-
sis to identify relevant passages. We highlight the terms that refer to Conway’s Law,
Code Ownership as well as Betweenness Centrality patterns, similar to Gallivan’s ap-
proach. Table 8 shows the different paper authors, the context of the Open Source case
study, the methods used as well as the occurrence of particular patterns. A tick mark (√)
indicates that the particular pattern solution was followed, while a cross (X) indicates a
work around to avoid the occurrence of the STSC related the particular pattern. A ques-
tion mark (?) indicates that with the analysis and data given, we cannot ascertain either
way and finally a dash indicates that the particular STSC was not observed in the case
study. We first deal with literature on case studies that only reference Code Ownership
STSC.

 101

Papers Context of
Study

Research Methods Used Code
Ownership
Pattern

Conway’s
Law Pattern

Betweenness
Centrality
Pattern

Raymond (1998) Linux,
Fetchmail

Participant (devel-
oper/essayist) ? - -

Dinh-Trong et al.
(2005)

FreeBSD Case Study: eMail archive,
Bug Database and CVS Re-
pository

X - -

German, (2003) GNOME Participant, Analysis of CVS
Logs and Mailing List ? - -

Jensen, Scacchi
(2007)

NetBeans -same-
√ - -

Jensen, Scacchi (2007) Mozilla Case Study: participant in-
terviews, collection and
cross-coding of OSSD arte-
facts, semi automated
web site data mining, and
multi-mode modelling

√ - -

Jorgensen, (2001) FreeBSD Case Study:
web based questionnaire and
subsequent interviews

X - -

Jensen, Scacchi
(2005)

NetBeans -same-
- X -

MacCormack et al.
(2006)

Linux,
Mozilla

Case Study: Analysis of
source code using Design
Structure Matrices (DSMs),
Interviews with Developers.

 X

Mockus et al. (2002) Apache Case Study: Participant,
feedback on description of
development process, eMail,
CVS and Bug Repository

X X -

Mockus et al. (2002) Mozilla Case Study: Analysis of
CVS Logs and Bug Reposi-
tory

√ ? -

Rigby et al. (2008) Apache Case Study: Analysis of
Commit logs and Mailing
Lists

X X -

von Krogh et al.
(2003)

Freenet Case Study: Telephonic in-
terviews, analysis of e-
Mails, Analysis of CVS re-
pository,

√ X -

Bird et al. (2006a) Apache Case Study: Analysis of
Apache HTTP project eMail
archive

- - √

Bird et al. (2006b) PostGres Case Study: Analysis of
Apache HTTP project eMail
archive

- - √

Table 8: Open Source Case studies in relation to Socio/Technical Pattern

 102

Raymond (Raymond 1998) in his article elaborates on the ownership of projects in the
Linux and Fetchmail environment. Raymond states:

The owner of a software project is the person who has the exclusive right, recognized by the
community at large, to distribute modified versions. (Raymond, 1999, p6)

He then goes on to describe the various ways one can get to own a project in Linux
namely; starting a project, when the project is handed over and taking proactive respon-
sibility of a project for which the previous owner has lost interest or has disappeared.
Though one may subsume ownership at the level of individual code modules, this might
not be the case as the individual modules can be modified by multiple persons while the
project is owned by a particular person. So code ownership at the level of individual
code modules, in this case, is not ascertained.

German (2003) states
 GNOME has been divided into smaller projects that minimize the number of people involved
that are involved in each of these subprojects (or modules). The analysis made suggests that
fewer than five people are responsible for 70 to 80% of the programming effort of a given mod-
ule. When a module starts to grow in complexity and the number of core developers grows too, it
is either split into two different projects, or submodularized, and then one or two developers take
control of each of the given submodules. (German, 2003, p212)

Thus implying that, though code ownership at the level of code modules is not enforced
in the GNOME project, it is still practiced to some extent. A more quantitative analysis
along the lines of Mockus et al. (2003) is required to conclusively verify.

Jorgensen (2001) describes the software development process in FreeBSD in a case
study and observes the following:

The maintainer owns and is responsible for that code. This means that he is responsible for fix-
ing bugs and answering problem reports . . .[. Changes to directories which have a maintainer
shall be sent to the maintainer for review before being committed . . .] (FreeBSD, 2001c).
For a given area of the code, there may be an official maintainer, or the ‘de facto maintainer’
may simply be the contributor of the last change: In cases where the ‘maintainer-ship’ of some-
thing isn’t clear, you can also look at the CVS logs for the file(s) in question and see if someone
has been working recently or predominantly in that area. (FreeBSD, 2001b). (Jorgensen, 2001,
p7)

 103

This implies that Code Ownership is not enforced in FreeBSD and generally exists only
when code maintenance is concerned. He also mentions the coordination mechanism of
peer reviews that can be used to prevent the Conway’s Law STSC as will be described
later.
Jensen and Scacchi (2007) do a comparative analysis of role migration and project career
advancement process in three Open Source Software Development projects, namely
Apache, Mozilla and NetBeans. They observe the following about the Mozilla project:

“In rare cases, such a developer may even be offered the position of module owner if s/he is the
primary developer of that module and it has not been blocked for inclusion into the trunk of the
source tree” (Jensen and Scacchi, 2007, p3)

Though they also note the following about Mozilla project:

“It appears that notions of module ownership and a formal quality assurance process have di-
minished in recent years.” (Jensen and Scacchi, 2007, p4)

Thus suggesting that there has been “Code Ownership” practiced in Mozilla until re-
cently when such practice has declined.
They observe the following about NetBeans Project:

Additionally, they may gain module owner status by creating a module or taking over ownership
of an abandoned module of which they have been a primary committer. (Jensen and Scacchi,
2007, p6)

Thereby, suggesting Code Ownership in the NetBeans project.

Jensen and Scacchi (2005) describe the collaboration processes in the NetBeans project

Thus, this separation of concerns in the Netbeans.org design architecture engenders separation
of concerns in the process architecture. Of course, this is limited by the extent that each module
in the Netbeans.org community is dependent on other modules.
(Jensen and Scacchi, 2005, p3)

Thus suggesting that at the level of modules the separation of concerns makes sure that
the processes are also not very dependent implying less need for communication and
preventing a Conway’s Law STSC.

 104

While on the other hand they also note that:

Last, volunteer community members have periodically observed difficulties collaborating with
one another. For example, at one point a lack of responsiveness of the (primarily Sun employed)
user interface team4, whose influence spans the entire community, could be observed. This co-
ordination breakdown led to the monumental failure of usability efforts for a period when us-
ability was arguably the most-cited reason users chose competing tools over Netbeans.org. Thus,
a collaboration failure gave rise to product failure. (Jensen and Scacchi, 2005, p4)

Thus implying that at a higher level of the architecture, there exist dependencies that
when not resolved can lead to a Conway’s Law STSC. They also go on to say that this
particular STSC described was later resolved.

MacCormack et al. (2006) compare the architecture of Linux and Mozilla based on cou-
pling dependency at the file level. One of the main findings of the paper is this:

In this respect, our study generates useful data on the question of whether a link exists between a
product’s architecture and the structure of the organization from which it comes. WE show that
the architecture of a product developed by a highly distributed team of developers (Linux) was
more modular than another product of similar size developed by a colocated team of developers
(Mozilla). Critically, however, I find that a purposeful effort to redesign Mozilla resulted in an
architecture with greater modularity. Hence, the initial differences between Linux and Mozilla
were not driven by the different functional requirements of these products. These results are con-
sistent with the idea that a product’s design mirrors the organization that develops it.
((MacCormack, Rusnak et al. 2006), p1027)

Thus, MacCormack et al. clearly indicate how Open Source projects try and avoid Con-
way’s Law STSC by increasing modularity of the software and thus using it as a coordi-
nation mechanism.

von Krogh et al. (2003) study joining and early contribution and its relation to the collec-
tive action of open source software innovation. They use the term “specialization” to de-
note Code Ownership and note:

Roughly 80% of all files created and/or modified by a maximum of two developers during the
period of analysis, with a mean value of 1.88 contributors per file. (von Krogh et al., 2003,
p1230)

 105

Thus showing a high level of Code Ownership and thereby having less than two devel-
opers per file on an average.
On the other hand, they notice a very interesting way of avoiding Conway’s Law STSC.
In one of the interviews one of the core developers had the following to say:

“”We are adding a public key to the cryptography to the entire system, and unfortunately, any
change you make in that affects just not only the protocol, which is what I am working on right
now, but it affects how the keys are handled (Module 4), how the client interprets the keys
(Module 8), how data is verified. Basically, that little change affects pretty much everything in
Freenet and, therefore, the kind of people making those changes, myself and (developer #6)
mainly, have to understand everything that happens in Freenet in order to do it.”” (von Krogh et
al., 2003, p1230)

Thus, showing the way the software developers tackled the Conway’s Law STSC. The
developers proactively assigned tasks to themselves, especially ones that involved modi-
fying highly dependent modules thus removing the need for additional coordination.
Further, von Krogh et al. observe the following:

“Developer #101 contrasts this with the core node functionality, including cryptography, where
the “learning curve” for newcomers is very high because it requires thorough understanding of
modules and features and their interconnectedness. As I reasoned, those modules are highly
intertwined and specific to the project and require significant past investment in learning about
the architecture, thus erecting contribution barriers for newcomers” (von Krogh et al., 2003,
p1232)

Thus, reiterating the coordination mechanism used by core developers to avoid Con-
way’s Law STSC i.e. assigning the modification of complex higher interdependent mod-
ules to themselves.

Mockus et al. (2002) describe and compare the development process of two Open
Source software development projects namely Apache and Mozilla to commercial soft-
ware development. They particularly test seven hypotheses related to the development
process that also includes a hypothesis on Code Ownership.
For the Apache Project they observe:

 106

“For the Apache project, I noted that the process did not include any “official” code ownership;
that is, there was no rule that required an owner to sign off in order to commit code to an owned
file or module.” (Mockus et al., 2002, p29)

Thus, suggesting the lack of code ownership in the Apache project and on the other hand
they observe the following for the Mozilla project:

“In Mozilla, on the other hand, code ownership is enforced
..
the module owner is responsible for: “fielding bug reports, enhancement requests, patch sub-
missions, and so on. The owner should facilitate good development, as defined by the developer
community.” Also, “before code is checked in to the CVS Repository it must be reviewed by the
appropriate module owner and possibly peers.” (Mockus et al., 2002, p29)

Thus, the enforcement of code ownership in the Mozilla project is clearly mentioned in
this paper.

Mockus et al. (2002) describe the coordination mechanism used by Apache developers
who avoid Conway’s Law STSC without resorting to communication.

Apache adopts an approach to coordination that seems to work extremely well for a small pro-
ject. The server itself is kept small. Any functionality beyond the basic server is added by means
of various ancillary projects that interact with Apache only through Apache’s Ill-defined inter-
face. That interface serves to coordinate the efforts of the Apache developers with anyone build-
ing external functionality, and does so with minimal ongoing effort by the Apache core group.
…
The coordination concerns of Apache are thus sharply limited by the stable asymmetrically con-
trolled interface. The coordination necessary within this sphere is such that it can be success-
fully handled by a small core team using primarily implicit mechanisms..
…
The tasks of finding and reporting bugs are completely free of interdependencies, in the sense
that they do not involve changing the code. (Mockus et al. (2002), p34-35)

Thus, Mockus et al. (2002) describe how the Apache community avoids the need for
communication to resolve Conway’s Law STSC and instead adopts other coordination
mechanisms. In the case of the Mozilla project they have this to say:

 107

However, the Mozilla modules are not as independent from one another as the Apache server is
from its ancillary projects. Because of the interdependence among modules, considerable effort
(i.e., inspections) needs to be spent in order to ensure that the interdependencies do not cause
problems. In addition, the modules are too large for a team of 10 to 15 to do 80% of the work in
the desired time. Therefore, the relatively free-wheeling Apache style of communication and
implicit coordination is likely not feasible. (Mockus et al. (2002), p35)

Rigby et al. (2008) describe the process of code reviews in a case study of Apache and
observe the following:
“Since the contribution sizes are very small (see Section4.3), one would expect that the discus-
sion would remain very localized. However, our findings indicate that a large proportion of the
reviews that found defects discussed the abstract or global implications of the contribution. One
explanation for this finding is the lack of “code ownership” exhibited by Apache develop-
ers”(Rigby, 2008, p7)
 This reiterates the observation of lack of code ownership in Apache by Mockus et al.
(2002).

Rigby et al. (2008) also deal with the reduced communication possibilities in Open
Source projects:
Since the original developers were all volunteers who had never met in a face-to-face manner, it
would seem natural that they would examine each other’s code before including it in their own
local server. (Rigby et al.(2008), p2)
Thus, Rigby et al. (2008) describe the coordination mechanism Apache developers use
in order to mange highly interdependent code in the Apache HTTP server project with-
out resorting to communication. This particular coordination mechanism involves fre-
quent reviews of code by Core team members thus reducing the problems that occur
when dependent modules are modified.

Dinh-Trong and Bieman. (2005) observe the following about Code Ownership in
FreeBSD:

Our study shows that, among 26,048 .c and .h files, only 30 percent of the files were modified by
one committer, 25 percent by two committers, 15 percent by three committers, and 8 percent by
10 or more committers. One file was changed by 74 developers. In fact, every committer has the
privilege to make any change to any file in the system. Code ownership in FreeBSD does not
exist. (Dinh-Trong and Bieman, 2005, p8)
Clearly stating that code ownership in FreeBSD as in Apache doesn’t exist thereby also
reiterating what Jorgensen (2001) stated earlier in his paper.

 108

Bird et al. (2006) analyse the social network of Apache HTTP server project by mining
the Apache mailing list. On calculating the betweenness centrality of the developers and
correlating it with the changes to the source code, they find the following:

In fact the correlation for betweenness is quite high, at 0.757. It should be noted that these are
non-parametric correlation measures, and are thus more robustly indicative of a relationship.
This indicates that even within the higher-status group of developers, the most active developers
play the strongest role of communicators, brokers, and gatekeepers. It’s also noteworthy that the
correlation with document changes is much weaker, indicating that higher activity in source
code is a stronger determinant of social status than activity in documents. (Bird et al. (2006a),
p6)

Hence, Bird et al. (2006) show that the Core developers have a higher betweenness cen-
trality than peripheral developers. The peripheral developers thus manage to avoid the
Betweenness Centrality STSC for an open source project. Bird et al. (2006) replicate this
case study on another Open Source project called PostGres to achieve similar results.

7.2.1 Discussion

All the case studies considered in the above literature are from highly successful Open
Source projects namely, Apache, Mozilla, Netbeans, FreeBSD, GNOME, Linux (and
Fetchmail) and Freenet. While some of these projects like Mozilla, Netbeans have the
backing and support of commercial companies, the rest are purely Open Source projects
started by individuals. As seen in Table 8, ten papers mention Code Ownership pattern,
five mention Conway’s Law pattern, while we could only locate two papers that explic-
itly mention the Betweenness Centrality match pattern. In Table 8, we see that the num-
ber of crosses and the number of ticks are nearly the same for the Code Ownership pat-
tern. We see that the company supported Open Source projects (Netbeans, Mozilla) use
Code Ownership pattern to coordinate the development process, with the exception of
Freenet. Mockus et al. (2002) reason, that this could be because the commercial projects
are started within the companies where the development teams develop a more interde-
pendent piece of code. Thus, the company needs more formal mechanisms to coordinate,
like code ownership mechanism. On the other hand, they say that teams of core develop-
ers in Apache do not practice code ownership. Instead, they use the coordination mecha-
nism of keeping the core functionality of the server small, in order to make it easier to
understand and modify some other developer’s implicitly owned code. Further investiga-
tion is required to verify if Linux and FreeBSD implement code ownership. We see that

 109

all the case studies that mention the dependencies between individual code modules or
between parts of the architecture, do not suggest communication as means to coordinate
the dependencies, as suggested by the Conway’s Law pattern. Instead, the case studies
mention other coordination mechanisms, such as few core developers taking up the task
of modifying highly interdependent pieces of code (von Krogh et al., 2003), by design-
ing stable interfaces (Mockus et al., 2002) and by performing frequent code reviews
(Rigby et al., 2008). Performing frequent code reviews is a coordination mechanism that
minimizes communication, as one can concentrate on the dependencies being affected
by previous modifications, without having to resort to communication. Again, Mockus et
al. (2002) reason that this could be because the “communication-only” approach does
not scale and as the complexity and size of the project increases the channels of commu-
nication can get overwhelmed.
It is clear from the onset that Open Source developers do not have the same motivations
as Commercial developers (Lerner and Tirole 2002; Ye and Kishida 2003; Lakhani and
Wolf 2005). So, the management of Open Source developers has to be different from the
management of Commercial developers. As, even if the Project Leader of an Open
Source project wants to relocate tasks or enable communication among developers he or
she has to wait for the developer to get self motivated and take proactive steps. This pro-
active behaviour, on a “need to basis”, could explain why, mostly, only the core devel-
opers coordinate the development process and as a result have a higher betweenness cen-
trality, as observed in the case study by Bird et al. (2007). Furthermore, pure Open
Source projects being the meritocracy (a social system based on merit) they are, discour-
age developers who are inexperienced from coordinating the development process
(Ducheneaut, (2005)). To summarise, the three Socio/Technical Patterns: Code Owner-
ship, Conway’s Law and Betweenness centrality match, are not very applicable in Open
Source projects as:

(i) Code Ownership is usually implicit in many pure Open Source projects (non-
commercial) and not enforced. The reason behind this could be to encourage
core developers and give them the freedom to analyse and modify other’s
implicitly owned code, thereby facilitating good code reviews. As a result the
core developers employ other coordination mechanisms such as keeping the
core functionality of the software small in order to enable easier understand-
ing, as is done in the case of Apache and Linux (Mockus, Fielding et al.
2002).

(ii) Conway’s Law is usually not practiced in an Open Source development envi-
ronment as communication as a means of solving different coordination prob-

 110

lems is not suitable in a large globally distributed environment (Mockus,
Fielding et al. 2002). Instead, the many Open Source projects employ other
coordination mechanisms such as enabling only core developers with suffi-
cient experience to take up the task of modifying highly interdependent
pieces of code (von Krogh et al., 2003), by designing highly stable interfaces
(Mockus et al., 2002) and by performing frequent code reviews (Rigby et al.,
2008).

(iii) Though all the literature reviewed indicated that Betweenness Centrality pat-
tern is applicable to Open Source projects, there were not many case studies
available to confirm this fact. As most developers of Open Source projects
work on the project in their free time, they try to have a bias towards “action”
(Yamauchi, Yokozawa et al. 2000), hence they would avoid trying to coordi-
nate the project out of turn. A review of literature reveals that Open Source
projects are generally a meritocracy (Fielding 1999; Ducheneaut 2005), and
very often only a core developer is nominated to coordinate and manage re-
leases as a Release Manager (Mockus, Fielding et al. 2002; Jensen and Scac-
chi 2007). In such a scenario, it is very unlikely that an inexperienced periph-
eral developer would take up the initiative to coordinate the development, re-
view or the release of the Open Source software module.

Hence, what an Open Source project leader needs to help him coordinate the develop-
ment process are Process Patterns that deal specifically with the idiosyncrasies of the
Open Source development process. As seen form the Table 8 with the possible exception
of Betweenness Centrality Match Pattern, most of the Socio/Technical patterns that are
applicable in the commercial closed source environment are not really applicable in the
Open Source environment. In the following sections, we describe the new Patterns that
are required to deal with the coordination issues for Open Source software development.

7.3 Open Source Software Development Process

Distributed self-organizing teams develop most Open Source software. Developers from
all over the world rarely meet face to face and coordinate their activity primarily by
means of computer-mediated communications, like e-mail and bulletin boards
(Raymond 1999; Mockus, Fielding et al. 2002). For an IT professional or Open Source
project leader it seems to be crucial to know the status of the Open Source project in or-
der to contribute or recommend the project (Crowston and Howison 2006). To this ex-
tent, we provide a set of STSCs along with the associated Patterns which can be checked
in order to see the coordination inconsistencies of the work being done in an Open

 111

Source project. In this section, we discuss two types of Patterns for Open Source pro-
jects, namely a Technical Pattern and a Socio-Technical Pattern. The purely Technical
Pattern, as the name suggests, deals with only the software and related artefacts created
as part of the Open Source development process. On the other hand, Socio-Technical
Patterns deal with the social as well as the technical aspects together, such as about
which developer is modifying which part of the technical artefact.
In this section, we motivate and develop a pattern for Open Source development envi-
ronment for each of these two types. We then describe how one can identify the Struc-
ture Clashes related to this pattern.

7.4 Technical Structure Clash (Modularity Pattern)

Software Modularity is considered a very important and critical parameter for successful
Open Source projects. Authors like O’Reilly (1999) have claimed that Open Source
software is inherently more modular than commercial software. While other authors
have reasoned that Open Source software needs to be more modular in order for the de-
velopment process to be coordinated more easily (Mockus, Fielding et al. 2002). On the
other hand, there exists literature that have analysed Open Source software quantitatively
and that do not agree that it is indeed more modular. Schah et al. (2002) study Linux’s
kernel modules and count the number of instances of common coupling (coupling be-
tween files due to calls to external variables). They find that, the modules experience
exponential growth in common coupling for successive Linux versions, thus leading to
high failure proneness. Yu et al. (2006) compare the common coupling of Linux kernel
to the kernels of different software for Open Source projects (FreeBSD, NetBSD and
OpenBSD) and find that the amount of common coupling for Linux to be much greater
than other Open Source software projects. Paulson et al. (2004), compare the coupling of
Open Source projects (Apache, Linux and GCC) with three closed source projects. They
do so, by comparing the growing versus the changing rate for software (as a tighter cou-
pling will require more changes with each additional feature). Their results indicate that
Open Source projects need more changes when new features are added. Hence, suggest-
ing tighter coupling in Open Source projects than previously understood. MacCormack
et al. (2006) compare the architectures of Linux and Mozilla by comparing the pattern of
distribution of their software coupling. They find that Linux had a more modular struc-
ture than the first version of Mozilla. While after a redesign the resulting architecture,
Mozilla became more modular than the previous versions and even more modular than
Linux. As Mozilla was redesigned in an effort to make it an Open Source project, this
result is in line with the view that in order to have a successfully coordinated Open

 112

Source project one needs to have a loosely coupled and modular software (MacCormack,
Rusnak et al. 2006).

Pattern Format Modularity Pattern (MacCormack,
Rusnak et al. 2006)

Problem: A problem growing from
 the Forces

Making sure Open Source software has
few interdependencies (low coupling)

Context: The current structure of the
system giving the context of
the problem

The Open Source software project has
software code in place

Forces: Forces that require Resolution When the modularity of the software un-
der development has a sharp decrease in
modularity (increase in the interdepend-
ence of the modules).

Solution: The solution proposed
for the problem

Make sure that the modularity of the soft-
ware is kept high, by refactoring the code
if necessary

Resulting Context: Discusses the context
resulting from applying the pattern.
 In particular, trade-offs
 should be mentioned

The software code will increase its modu-
larity

Design Rationale/Related patterns: The
design rationale behind the proposed
solution. Patterns are often coupled or
composed with other patterns, leading to
the concept of pattern language.

Open Source software needs to be very
modular (have low coupling) in order to
make coordination easier

Table 9: Modularity Technical Pattern for Open Source projects

We postulate that, if there is a sudden increase in the coupling of an Open Source system
then it could hamper coordination of the project and hence result in a Technical or even
a Socio-Technical Structure Clash. Hence, we suggest the Modularity Pattern for Open
source as shown in Table 9. We investigate the Modularity Pattern (Table 9) in a large
open source project namely, JBoss application server.
JBoss project was started in 1999 by Marc Fleury who wanted to advance his research
interests in middleware. JBoss Group LLC, was incorporated in 2001 and JBoss became
a corporation in 2004. After a few bids from big companies, JBoss was finally acquired
by Red Hat in 2006. The JBoss Application Server is one of the main products of the
JBoss project and is said to have pioneered the professional Open Source business
model. JBoss has 79 listed developers and three project administrators of which one is
the Chief Technical Officer (CTO) of JBoss. JBoss was voted the project of the Month
for the month of April in (Sourceforge 2003). Recently, JBoss has also won the popular
BOSSIES award.

 113

In order to analyse Technical Structure of the JBoss software, we read the CVSLog us-
ing TESNA from the CVS Archive of the JBoss Application Server (JBoss) over the pe-
riod starting from May 2002 to December 2006, which was the time period in which
JBoss used CVS as their code version control system. We then grouped the log files so
that they reflected the time periods between version releases. We use the Software De-
pendency Matrix to calculate the Propagation Cost similar to what MacCormack et al.
(MacCormack, Rusnak et al. 2006) do. In order to calculate the Propagation Cost, Mac-
Cormack et al. first raise their dependency matrix to successive powers of n and obtain
the direct and indirect dependencies for successive path lengths (MacCormack, Rusnak
et al. 2006). They then obtain a Visibility Matrix by summing up all the successive pow-
ers of the dependency matrix. From the Visibility Matrix they calculate the “fan-in” and
“fan-out” visibilities by summing along the columns or the rows and dividing the result
with the total number of elements. As we consider undirected dependencies (like Mac-
Cormack et al., 2006), we find the “fan-in” visibility to equal the “fan-out” visibility,
which is what MacCormack et al. call as the Propagation Cost (MacCormack, Rusnak et
al. 2006). The variation of the Propagation Cost over the different versions of JBoss Ap-
plication Server (simply known as JBoss) is shown in Figure 41.
In order to calculate the Clustered Cost, MacCormack et al. cluster the Dependency Ma-
trix using an algorithm by Fernandez (1998). Where, they define a cost function and an
element is allocated to a cluster only if and when the net cost of adding the element de-
creases the existing Clustered Cost of the element (MacCormack, Rusnak et al. 2006).
We use the same algorithm to calculate the Clustered Cost of the Software Dependency
Matrix. (Algorithm 1, Chapter 4, Section 4.4.2.1). The variation of the Clustered Cost of
JBoss over different versions is shown in Figure 42.
We analysed the Mailing List archive of JBoss, in order to determine the communication
patterns used by the developers. Especially to discuss the development of the system,
report bugs, coordinate the bug fixes, as well as discuss new features before and after the
release of each version. An analysis of the different mediums of coordination in JBoss
revealed that the Mailing List was the primary means of coordination. Unless the devel-
opers used private means, which is considered unlikely given the trend of openness in
Open Source projects (Raymond 1999). The Mailing Lists were analysed from one
month before each release to one month after each release, corresponding to the period
of analysis of the CVS repository (i.e. from April 2002 to January 2007). We did a quali-
tative analysis of the messages in the Mailing List archive looking for coordination
mechanisms used by the developers. In order to do this, we read randomly selected mails
looking for coordination mechanisms as described in previous literature. The following
post mailed on 28th of June shows how the management of each release was undertaken
by one of the Project Leaders (Scott Stark in this case).

 114

Its about 36 hours until I'm planning on cutting the 3.0.1 release. Any
changes you want in 3.0.1 should be in by Sat Jun 29 18:00:00 2002 GMT.

xxxxxxxxxxxxxxxxxxxxxxxx
Scott Stark

This post also shows that the planning for a release was done around a month earlier to
the release, as the release date for version 3.0.1 was on 6th August 2002.
While the following post shows another instance of a post reporting a fix for a bug.

Sender: d_jencks
Logged In: YES
user_id=60525

I believe I have fixed this in HEAD. I'd appreciate verification before I backport it to 3.2, since
it is a substantial refactoring of the ejb deployment/service lifecycle code. I'll close this after
backporting to 3.2.

This post shows two important mechanisms; the first is the request for verification im-
plying the coordination mechanism of code review as was described by Rigby et al.
(2008), while the other mechanism is the one which d_jenks refers to as “backport”. By
“backport” the author refers to making changes to the previous version well after the re-
lease (2002-08-27). This coordination mechanism coincides with what was observed by
Yamauchi et al. (2000), namely, a bias towards action first and coordination later. Given
that the planning for the release and the coordination for the bugs in the release was con-
ducted around a month before and a month after the release respectively, we decided to
consider the messages related to a release over a three month window. The reason for
this, was that, a three month window would cover the month before, during as well as
the month after the release.

 115

Figure 41: The variation of Propagation Cost of

JBoss over different versions

Figure 42: The variation of Clustered Cost of JBoss

over different versions

7.4.1 Discussion

Figure 41 describes the variation of the Propagation Cost of JBoss over the different ver-
sions, while Figure 42 denotes the variation of the Clustered Cost of JBoss over different
versions. In both figures and particularly in Figure 42 we notice a sharp rise in the Clus-
tered Cost for version 3.2.7. While the increase in the Propagation Cost is minor the in-
crease in the Clustered Cost for version 3.2.7 is quite marked. We even calculated the
KLOC (Lines of Code in thousands) of each of the versions to see how much code was ac-
tually added. Figure 43 shows the variation of KLOC over the different versions of JBoss.
As can be seen from the figure the trend is similar to the variation of coupling seen in Fig-
ures 41 and 42. The largest increase in KLOC, as evident from the slope of the graph in
Figure 43, occurs for version 3.2.7. Clearly showing that for version 3.2.7 not only was the
complexity of the code increased (with the increased coupling), but also the size.
When one considers the Open Source Modularity Pattern as described in Table 9, we notice
that this is an instance of a Modularity Technical Structure Clash, or a Modularity TSC.
This TSC would therefore require an increased amount of coordination to resolve the extra
dependencies and features included for version 3.2.7.
Figure 44 describes the variation in the number of messages over the different versions of
JBoss. We see a huge increase in the number of messages for discussing the features and
bugs for version 3.2.7. The increase in the number of messages is nearly 5000, nearly twice
more than the average number of messages (2650) discussing other versions. Though one
needs to analyse the mails more closely to ascertain if they are indeed discussing the par-
ticular version, one can say with some confidence that this sharp increase in messages can
be explained by the increased need for coordination. This increased need for coordination
arises from the increased number of couplings and related features of JBoss in the release.
One might also vary the time window to make sure that only messages discussing the par-

 116

ticular version are included. However, we find through an analysis of the email messages
that even if the time window is decreased, the trend noticed in Figure 44 is not affected
considerably. Such an increase in the communication of the developers in the eMail List
can indicate how the developers of JBoss satisfy the changing coordination needs for dif-
ferent versions and as a result remains a successful Open Source project. Had the coordina-
tion not increased to offset the increase in coupling and complexity of the software, we
might have noticed a Socio-Technical Structure Clash resembling the Conway’s Law
STSC.
The eMail archive of JBoss also reveals two particular coordination mechanisms used to
coordinate the development of JBoss, namely code reviews (Rigby, German et al. 2008)
and post-release coordination (Yamauchi, Yokozawa et al. 2000). For external validity one
needs to conduct a similar study for different Open Source projects to see if the findings
match. Though the Modularity Pattern is also relevant to closed source development, the
pattern is more interesting and applicable to Open Source software due to the need to re-
duce the coupling and increase the modularity of Open Source software (MacCormack,
Rusnak et al. 2006).

7.4.2 OSS Community Structure

Although there is no strict hierarchy in Open Source communities, the structure of the
communities is not completely flat. There does exist an implicit role-based social structure,
where certain members of the community take up certain roles based on their interest in the
project (Ye and Kishida 2003).

 117

Figure 433: Variation of KLOC with Version

number of JBoss

Figure 444: Variation of the Number of eMail

messages with JBoss Version number

Figure 455: The Onion Model of an OSS Community

A healthy Open Source community has the structure as shown in Figure 45 with distinct
roles for developers, leaders and users. The Project Leaders who could also be Core Devel-
opers are responsible for guiding and coordinating the development of an Open Source pro-
ject. These developers are generally involved with the project for a relatively long period,
and make significant contributions to the development and evolution of the Open Source
system.
In those Open Source projects that have evolved into their second generation there exists a
council of core members that take the responsibility of guiding development. Such a coun-
cil replaces the single core developer in second-generation projects like Linux, Mozilla,
Apache group etc.

 118

• Project Leaders: The Project Leader is generally the person responsible for starting
the Open Source project. This is the person responsible for the vision and overall di-
rection of the project.

• Core Developers: Are responsible for guiding and coordinating the development of
Open Source projects. Core Developers or Core Members have generally been with
the project for a long time (sometimes since the project’s inception) and have made
significant contribution to the system. In some communities they may be called as
Maintainers.

• Contributing Developers: Also known as peripheral developers, occasionally con-
tribute new features and functionality to the system. Frequently, the core developers
review their code before inclusion in the code base. By displaying interest and ca-
pability, the peripheral developers can move to the core.

• Active Users: Contribute by testing new releases, posting bug reports, writing
documentation and by answering the questions of passive users.

• Bug Reporters: Discover and report bugs. They might not be fixing bugs as they
generally do not read the source code. They can be considered the same as testers in
commercial software development.

• Passive users: Generally just use the system like any other commercial system.
They may be using Open Source because of the quality and the possibility of chang-
ing when needed.

Each Open Source community has a unique structure depending on the nature of the system
and its member population. The structure of the system differs on the percentage of each
role in the community. In general, most members are passive users, and most systems are
developed by a small number of developers (Mockus, Fielding et al. 2002).
Crowston, Wei et al. (2006) describe three methods to identify a core-periphery structure in
Open Source projects. The three methods include formally appointed roles, distribution of
developer contributions and an analysis of the Core-Periphery structure of the social net-
work of the developers using the Core-Periphery concept from Borgatti and Everett (1999).
They find that all three methods give different results with the developer distribution being
most useful. In this research we apply the Core-Periphery structure of the developer social
network (Crowston, Wei et al. 2006) to the developer Core-Periphery structure related to
the software call graph (what we call the Socio-Technical Core-Periphery structure). We
then see how the movement across this structure relates to the health of the project. We also
show how this movement can be monitored using visualizations as well as a metric. In the
next section we dwell on the Open Source literature surrounding Core-Periphery structures,
and then we describe what is meant by Socio-Technical Core-Periphery in the context of
Open Source projects, this is followed by a Case study to provide a preliminary validation
of the STSC.

 119

7.4.3 Literature Overview of Core-Periphery in Open Source

In the literature overview presented here we start by discussing papers published using the
Social concept of core-periphery and move on to papers published using the Socio-
Technical concept of core-periphery while paying attention to the whether the papers men-
tion a static structure or describe a more dynamic evolution of the socio-technical commu-
nities.
In the Open Source context there have been quite a few papers in the recent past discussing
the Social Concept of Core-Periphery. Moon and Sproull (2000) describe the process by
which the Linux operating system was developed. They study the linux-kernel mailing list
and notice that 50% of the messages are contributed by only 2% of the total contributors
and 50% of the 256 core contributors are members of the core team of developers and
maintainers. Mockus et al. (2002) analyse Apache httpd project and find that only around
15 developers contributed 80 percent of the code while bug reporting was decentralized
with the top 15 developers only contributing 5 percent. Crowston and Howison (2003) ana-
lyse the bug trackers for 120 Open Source projects from Sourceforge (Sourceforge Re-
trieved 1st August 2008)and study the social communication structures in the projects. They
find that a consistent Core-Periphery Shift Pattern does not exist across different projects.
Lee and Cole (2003) describe the core-periphery structure in Open Source projects as a two
tier structure and describe how this structure of an organization accommodates scale better
than hierarchical structure found in a typical commercial firm. They reason that this is be-
cause in the two tier organization the peripheral developers follow Linus’s Law (Raymond
1999), i.e. that defects are found and fixed very quickly due to the peripheral developers, or
in other words that debugging is parallelizable (Raymond 1999). Xu et al. (2005) quantita-
tively analysed a large data dump from Sourceforge. What they noticed was that large and
small projects had different distributions of core and peripheral developers. While large
projects had many co-developers and active users, small projects had a majority of project
leaders and core developers. Ye and Kishida (2003) analyse the GIMP project in order to
understand the motivation behind new members joining and aspiring to have more influen-
tial roles in an Open Source project. They postulate that the motivation could be in the
learning that is possible through Legitimate Peripheral Participation (LPP). In particular
they notice that there is a relationship between active participation in the mailing list and
the contributions made to the GIMP software thus showing that the GIMP community is a
meritocracy. Nakakoji et al. (2002) analyse the evolution of developer roles in four Open
Source software projects. They note that the evolution of developer roles is consistent with
the theory of LPP and is determined by the existence of enthusiastic developers who aspire
for more influential roles and the nature of the community that encourages and enables role
changes. They further describe the co-evolution of the communities along with the systems,

 120

noting how any modification done to the system not only makes the system evolve but also
modifies the roles of the developers and the social dynamics of the community. They cite
the example of GIMP and explain that without new members aspiring to become core de-
velopers, the development of the Open Source project will stop the day the existing core
members decide to leave the project in pursuit of other ventures (Nakakoji, Yamamoto et
al. 2002). Herraiz et al. (2006) study the pattern of joining the GNOME Open Source pro-
ject. They notice a majority of developers committed a change in the CVS repository be-
fore posting a bug report, thus indicating that the onion model (Figure 1) based on the mail-
ing lists and bug tracker is not very accurate when used to predict the joining behaviour of
new members. Moreover, they noticed the difference in the joining patterns of volunteers
and hired developers, while volunteers had a slow joining process the hired developers in-
tegrated into the community very fast. Christley and Madey (2007) study the global versus
temporal social positions from data dump from Sourceforge.net (Sourceforge Retrieved 1st
August 2008). They find that new members can initially occupy any of the peripheral social
positions, and eventually move to the position of a software developer or a handyman (a
person who does a little bit of everything). They find this pattern especially true in software
projects that maintain a high activity level after the initial months. Ducheneaut (2005)
analyses the socio-technical joining behaviour of new members for the Python Open
Source project. Ducheneaut (2005) analyses both the social and the technical networks over
time and shows how the socialization of new members is both individual learning as well
as a political process.
All the papers mentioned above discuss the notion of core-periphery in Open Source soft-
ware development from the social network notion, i.e. the communication ties between the
members of the Open Source project.
While there is a lot of literature discussing the core-periphery aspect of Open Source team
as we have discussed, there are only a handful of papers (we could only locate two) that
discuss the core-periphery aspect of Open Source from a socio-technical point of view, i.e.
by first considering the two mode network of the developers working on the different soft-
ware and then looking at the affiliation network of the developers (where two developers
are connected if the work on the same software modules or dependent modules).
Lopez et al. (2006) apply social network analysis techniques to the affiliation networks of
developers (where two developers are connected if they work on the same software mod-
ules) for Apache, GNOME and KDE projects. When they plot the average weighted degree
of the developers they find that the developers with higher degrees are only related to de-
velopers with similar degrees. Hence, they postulate that these developers can be called
“core”.
de Souza et al. (2005) identify changes in developer positions in different Open Source pro-
jects by studying the Socio-Technical network of developers. They notice a core periphery

 121

shift by mining software repositories. The core-periphery shift in a healthy Open Source
project is when the peripheral developers move from the periphery of the project to the
core, as their interest and contribution in the project increases (de Souza, Froehlich et al.
2005).
Table 10 lists all the literature reviewed in this section along with a brief description of the
case and whether the particular paper studied a static or dynamic core-periphery shift. As
shown, most of the literature has concentrated on static core-periphery descriptions of Open
Source social networks. We could only locate two papers of which only one looked into the
dynamic aspect of socio-technical core-periphery shift. This research adds to the literature
on socio-technical core-periphery shift pattern while providing another way of assessing
the health of an Open Source project. Our notion of Core-Periphery is from the perspective
of the software, namely, if a developer modifies a more dependent part of the code, he or
she affects more code modules than when modifying the periphery modules. Using the av-
erage Core-Periphery shift metric we build on the notion of how one can determine the
health of an Open Source project (Crowston and Howison, 2006).
Papers Open Source

Project
Artefacts Analysed Social

Core-
Periphery
Structure

Socio-
Technical
Core-
Periphery
Structure

Static/Dynamic
Analysis

Moon and
Sproull,
(2002)

Linux Code Release and
Linux mailing lists. √ Static

Mockus et al.
(2002)

Apache,
Mozilla

Participant, feedback
on description of
development proc-
ess, eMail, CVS and
Bug Repository

√ Static

Crowston ,
Howison
(2003)

120 projects
from Source-
forge

Bug Tracking sys-
tems √ Static

Lee and Cole
(2003)

Linux Source Code analysis
, code related arte-
facts, developer
working patterns and
Linux kernel mailing
list

√ Static

Xu et al.
(2005)

Sourceforge
projects (data
dump)

Quantitative analysis
of Sourceforge data √ Static

Crowston,
Wei et
al.(2006)

Projects from
Sourceforge

Analysis of Bug
Tracking systems. √ Static

Ye and Ki-
shida (2003)

GIMP Mailing List, CVS
Log √ Dynamic

 122

Nakakoji et
al.(2002)

GNU Wingnut,
Linux Support,
SRA-
PostgreSQL,
Jun

Developer Inter-
views, Analysis of
the mailing lists √ Dynamic

Herraiz et al.
(2006)

GNOME CVS Logs, Mailing
List and Bug tracker √ Dynamic

Christley and
Madey,
(2007)

Sourceforge
projects (data
dump)

Quantitative analysis
of Sourceforge data √ Dynamic

Ducheneaut
(2005)

Python CVS Logs and Mail-
ing list √ Dynamic

Lopez et
al.,(2006)

Apache,
GNOME,
KDE

Mining CVS Reposi-
tory √ Static

de Souza et
al.(2005)

Megamek,
Ant, Sugarcrm,
cvs, python

CVS Logs
 √ Dynamic

Table 10: Literature Overview for Core Periphery Shifts

All the papers mentioned above do not define the Core-Periphery structure of the social or
technical network explicitly as attempted in this section and focus more on how developers
can successfully contribute to an Open Source project rather than on the health of the Open
Source project. We also wanted to explore what are the trends of motion in various Open
Source projects. In order to identify the trends of motion we needed a technique to first
identify the core and the periphery of software. Then we needed a technique to visualize
the bipartite (or affiliation networks) core and the periphery of the software along with the
developers working on them. This visualization also needs to be easily understandable
(Miller 1956; Baddeley 1994). In order to make the visualization understandable we cluster
the software modules into 9 clusters (as will be described in the next section). We then cre-
ate a bipartite or 2-mode affiliation network (Wasserman and Faust 1994) of the clusters
and the developers. But, unlike a normal 2-mode network where the connections between
the nodes of each mode are not displayed, we show dependency relations (connections) be-
tween the Software Clusters. By showing the dependencies between the Software Clusters
we want to make the location of each cluster with respect to the other clusters visually clear
and thereby show how Core or Periphery the cluster each developer is working on is.
The first paper to define and comprehensively describe the concept of core-periphery is
Borgatti and Everett (1999). They consider two types of core-periphery models namely (i)
Discrete Model: this model contains just two clusters a core and a periphery. An actor be-
longs to the core depending on the correlation of the matrix of connections with the ideal
core-periphery matrix (where a small group of actors, or the core form a clique and the rest
are only connected to the core actors) (ii) Continuous Model: in this model they consider

 123

three clusters a core, a semi-periphery and a periphery and suggest that one can try parti-
tions with even more classes. According to Borgatti and Everett the concept of Core-
Periphery structure describes the “pattern of ties” between actors in a network where the
core is more densely interconnected than the periphery. The notion of Core-Periphery used
in this research is based on this continuous model of Core/Periphery structure (Borgatti and
Everett 1999) and applies this concept of Core-Periphery (Crowston, Wei et al. (2006)) to a
Socio-Technical perspective. Thus, this is similar to the Core-Periphery perspective of de
Souza et al.(2005) and Lopez-Fernandez et al.(2006). At the same time it is different as we
cluster the software and then see how core the module is that the developer is modifying.
de Souza et al. (2005) define Core and Periphery in terms of the dependencies between de-
velopers, i.e. from the developer to developer dependency network. The Core-Periphery
notion used in this paper is a reflection of the part of the software a developer changes.
This is different from just looking at developer-developer dependency as if a developer is
in the core of the developer to developer network doesn’t imply that the developer is work-
ing on the most dependent part of the Call Graph. As even if the developer is working on
the Periphery of the software, for e.g. changing HTML documentation files, he could be
central in the developer-to-developer network (e.g. dependencies among the html docu-
mentation files). Hence, if the change the core developer makes affects more developers,
the changes (e.g. HTML documentation) might not be critical for the project as a whole. So
if a developer shifts from the Core to the Periphery it need not necessarily have an impact
on the health of the software. Thus, the Core-Periphery notion in this research is from the
perspective of the software, i.e. if a developer modifies a more dependent part of the code
and hence affects more software code modules than when working on the periphery mod-
ules.
So, in this sense we can be adding one more technique of defining Core-Periphery develop-
ers (Crowston, Wei et al. 2006; Amrit, Hegeman et al. 2007). We postulate that if the de-
velopers working on the core of the project move towards working on the periphery of the
project and at the same time developers working on the periphery don’t move to the core,
then this indicates an STSC. This seems especially true if the core of the software is not
stable, but after studying various Open Source projects with stable software cores we think
one can safely say that its true for most if not all Open Source projects. This Open Source
STSC is illustrated in Table 11.

Pattern Format Core-Periphery Shift Pattern (de Souza,
Froehlich et al. 2005)

Problem: A problem growing from
 the Forces

Developers have sustained interest in work-
ing on the Core Modules of the software.

 124

Context: The current structure of the
system giving the context of
the problem

Developers working on the different areas
(Core/Periphery) of the Software.

Forces: Forces that require Resolution When core developers move on to develop-
ing peripheral parts of the software.

Solution: The solution proposed
for the problem

Get more developers interested in
the core part of the software

Resulting Context: Discusses the context
resulting from applying the pattern.
 In particular, trade-offs
 should be mentioned

Make sure that more people are interested
in the core part of the software project.

Design Rationale/Related patterns: The
design rationale behind the proposed
solution. Patterns are often
coupled or composed
with other patterns, leading to the concept
of pattern language.

The core of the FLOSS project is vital to its
performance and hence needs more work in
order to reach stability.

Table 11: Core-Periphery Shift Pattern for Open Source projects

7.4.4 Identification of Core-Periphery STSC in Open Source

In this section we describe how the Core-Periphery Shift STSC can be identified in an
Open Source project.
In order to identify the STSC we used a clustering algorithm based on the algorithm by
Fernandez (1998) and later on used by MacCormack et al. (2006). We implemented this
algorithm (Chapter 4, Section 4.4.2.1, Algorithm 1) to cluster the software components, as
explained in the following subsection. The resulting software clusters are the red clusters
seen in Figure 46. We then included the author information of the components (mined and
then parsed from the project’s software repository (SVN)) in the same diagram and dis-
played the authors of the individual code modules as authors of the respected clusters (in
which the code modules lay). This is shown in Figure 46 where the developers are shown
as blue circles. As this clustering method is based on the dependencies between, the soft-
ware components, the central cluster would represent the most dependent components of
the software, or in other words the software core. Thus, the structure of the clustered soft-
ware graph would represent the actual core and periphery of the software architecture.
It has to be noted that this break up of core and periphery is based on software dependen-
cies and could be different from that which was designed. In this Chapter we trace the co-
evolution of the project and the communities (Ye and Kishida 2003) and show the method
of identifying Open Source related STSCs by looking at the author-cluster figures (Figure
46 – 48) at equal intervals in the development lifetime of the project. To make the identifi-
cation more quantitative compared to a qualitative observation of the evolution of author-

 125

clusters, we define a way of measuring the extent of this shift with a metric. The metric is
based on the representation of the cluster graph and the author cluster graph (Figure 46) as
Matrices as shown in the following subsection.

7.4.5 Measuring the Core Periphery Shift metric

As described earlier, the core-periphery concept used in this section is based on the Con-
tinuous Model described by Borgatti and Everett (1999) and is calculated with nine classes
(or clusters as they are called here). The reason behind the number of clusters is to keep
prevent cognitive overload the when the number of elements is more than nine (using the
famous seven plus or minus two rule) which build on the work by Miller (1956). The con-
cept of core-periphery used in this paper is similar to the socio-technical concept used by
Lopez et al. (2006) and de Souza et al. (2005) and uses affiliation networks of people de-
pending on which part of the software they are working on or the core-ness concept de-
pends on the “pattern of ties” among the software modules. The software is clustered into
nine clusters, each of the clusters has a number assigned to it depending on how core the
cluster is, and the number is then assigned to the developers who have modified a file in the
cluster. This number is an indicator of how core the software is that a particular developer
modified. The metric is called Average CPDM (Average CPDM) and as the name suggests
describes the average distance from the core.
In order to better understand the Core-Periphery Shift, we cluster the software based on the
dependencies of the software modules using the algorithm described by Fernandez (1998)
and used by MacCormack et al. (2006). The clusters formed from this clustering process
represent the amount of dependency in the modules. The larger a particular cluster is the
more number of closely dependent modules the cluster would have. After clustering we
define the Cluster Dependency Matrix to represent the connections or dependencies be-
tween software module clusters. The corresponding People Cluster Matrix represents the
people working on the clusters. We also have the Cluster Size Matrix which is the matrix of
the sizes of the clusters in the Cluster Dependency Matrix.
The procedure to calculate the core-periphery shift consists of the following steps:

1. Identifying the core and the periphery of the Cluster Dependency Matrix
2. Reordering the Cluster Dependency Matrix in the descending order of Core-ness.
3. Reordering the People Cluster Matrix in the same order as the Cluster Dependency
Matrix.
4. Calculating the core-periphery metric

In order to identify the core and the periphery of the Cluster Dependency Matrix we realize
that the core-ness of a particular cluster depends not only on the size of the cluster but also

 126

the dependencies of the particular cluster with other clusters. We hence multiply the Clus-
ter Dependency Matrix with the Cluster Size Matrix. The resulting matrix gives us an indi-
cation of the core and the periphery clusters with the larger entries being more core than the
smaller entries. So if we arrange the columns of this matrix in the descending order we
would have the clusters in the descending order of core-ness. Now we can assign weights
to the clusters (if there are 9 clusters then, 9 for the most core, 8 for the little less core, and
so on) and take a weighted average based on which clusters the particular developer in the
People Cluster Matrix has worked.
The average of the Core-Periphery metric of all the developers together would give the Av-
erage CPDM of the software for the particular instance of time.
The Algorithm can be summarised in Algorithm 2 (Chapter 4, Section 4.4.3.1, pg 62). The
average of the Core-Periphery metric of all the developers together would give the Average
CPDM of the software for the particular instance of time.

7.4.6 Empirical Data

The purpose of this research is to help the software project manager become aware of the
software core-periphery shifts in the software development process. To this end we tested
our method on various Open Source projects from the large (in terms of size of software)
and popular project like jEdit to relatively small and not so popular projects like JAIM and
Megameknet. We chose these projects in order to get an idea of, as well as compare the
Core-Periphery structures of small (JAIM), medium (Megameknet) and large (jEdit) pro-
jects. The software and the social technical connections required to develop the Matrices
(described in the previous section) was collected from the Sourceforge.net site and mined
with the help of our tool, TESNA. We could then construct visualizations (as in Figure 46)
of the Core-Periphery shifts through time. We could also calculate the Average CPDM over
equal time intervals of each project. In order to calculate the Average CPDM cumulative
CVS Log data for the project was taken at regular intervals of time since the inception of
the Open Source project. The Average CPDM was then calculated on this cumulative data
(from the particular time period) according to the algorithm described in the earlier section.

 127

Figure 46: The Core-Periphery snapshot of JAIM at the first instance of time

Figure 47: Snapshot of JAIM at the second instance, notice that the developer dingercat has moved to the

periphery

 128

Figure 48: Snapshot of JAIM at the third instance, notice that dingercat has moved even further to the pe-

riphery

Using the tool TESNA, we generated the author-cluster diagrams (using the matrices and
the algorithm described in the earlier section) for the projects in Table 12. We noticed three
distinct patterns of Core-Periphery shifts. They can be listed as:

1) a steady shift away from the core

2) oscillatory shifts away and towards the core (almost sinusoidal in nature)

3) no perceptible shift away or towards the core

The first pattern was (a steady shift away from the core) was observed in the JAIM project
as seen in Figures 46-48. In Figure 46 we notice the developer dingercat working on three
Core software clusters (0, 3 and 6), while after an interval of time in Figure 48 he is work-
ing on only one core cluster (cluster 0). After another equal interval of time we see him not
working on any of the software clusters, this means that he is modifying a non java file
which could be an XML or HTML document. This trend is seen on plotting the Average
CPDM versus the Version of the software as seen in Figure 49. We studied the JAIM pro-
ject (like all the other projects) from the inception of the project (marked zero on the graph)
until 10 months after the inception. In Figure 49 we see that after 7 1/2 months the Average
CPDM reduces to zero as all the core developers (there were only two developers observed
for the project) moved away from the core of the JAIM software.

 129

Figure 49: The steadily decreasing Average CPDM of JAIM plotted over equal time intervals

We then analyzed the Open Source project called Megameknet. The Average CPDM of this
project was plotted at equal intervals of time over a 17 month period (where month 0 indi-
cates the start of the Open Source project). We observed oscillatory shifts away and to-
wards the core. We also noticed that the peaks steadily decreased with time. This trend is
seen on plotting the Average CPDM of Megameknet versus the version of the software as
seen in Figure 50.

Figure 50: The oscillatory Average CPDM of Megameknet plotted over equal time intervals

Finally, we tested our Core-Periphery metric on a large Open Source projects like jEdit.
We calculated the Average CPDM over a period of 7 years since the inception of the pro-
ject. In this case we observed that after the initial dip there were no perceptible shifts away
or towards the core over a period of time (Figure 51).

 130

Figure 51: The steady Average CPDM of jEdit plotted over equal time intervals

We studied the Average CPDM of different projects from Sourceforge.net(Sourceforge Re-
trieved 1st August 2008) selected based on the following criteria on the basis of (i) size of
the project, in terms of number of developers as well as Lines of Code (LOC) and (ii) based
on the health of the project according to the status of the project on Sourceforge.net
(Sourceforge Retrieved 1st August 2008). The other criterion for choosing the particular
projects was that the language of coding had to be predominantly Java as TESNA currently
can only calculate the call graph of software written in Java. Within this constraint we
could get quite a diverse set of projects to study varying from 3 developers and 847 LOC
(JAIM) to 79 developers and nearly 72 KLOC (JBoss).
Table 12 shows the name of the Open Source Project, the development status, number of
developers, LOC, Clustered Cost and which pattern of Core-Periphery shift was observed
for the project. The LOC and Clustered Cost were calculated for the last version accessed
from the home of the Open Source project. The rows of Table 12 are sorted in ascending
order of the Clustered Cost of the different projects.
From Table 12 we notice two projects that have a Core-Periphery shift away from the Core,
namely JAIM and Eclipse Plugin Profiler. While JAIM has had very low activity (its last
version release was in 2003), Eclipse Plugin Profiler is formally inactive. Table 12 also
shows three projects with an Oscillating Core-Periphery shift away and towards the Core,
namely ivy-ssh, JBoss and Megameknet. While ivy-ssh and Megameknet are declared inac-
tive (on Sourceforge.net (Sourceforge Retrieved 1st August 2008)), JBoss is Produc-
tion/Stable and as seen earlier is considered a successful Open Source project.
So, intuitively as well as supported by this small but diverse sample of projects we can say
that the Core-Periphery Shifts Pattern described in Table 11 is correct, in the sense that if a
project has a steady shift away from the Core we can assume that the developer’s interest in
the project has began to wane. But the converse as seen in the case of Megameknet and
ivy-ssh need not be true, i.e. a project that is inactive or whose health is waning need not
have a Core-Periphery shift away from the core. Further an oscillating shift to and from the

 131

Core need not reflect poorly on the health of the project especially as the Average CPDM
never touches zero (as in the case of Megameknet and ivy-ssh).

Figure 52 represents the variation of the Average CPDM of JBoss, while Figure 53 repre-
sents the Average CPDM of ivy-ssh. As is clear from Figure 52 the Average CPDM of
JBoss reaches one but does not become zero as it does in the case of Megameknet and ivy-
ssh (Figures 50, 53). The reason why touching zero is considered bad is that, it means that
during the period of observation not a single change has been done to the software (the
Java code) and changes have only been done to the documentation or related files (like
XML).

As explained earlier the entries in Table 12 are arranged in the ascending order of Clustered
Cost metric. From the data in Table 12 we can also gain some insight into the differences in
modularity of the different Open Source projects. We see that even though JBoss has the
highest LOC it is only 5th in Clustered Cost and hence much more modular than Megamek-
net or jython.

 132

Name of
OSS
Project

Development
Status

Number of
Active De-
velopers

LOC Clustered
Cost

Shift
Away
from
Core

Oscillating
Shift away
and towards
Core

No Shift
from Core
(Steady)

EIRC
(Eteria
IRC Cli-
ent)

Stable and
Inactive 1 4,171 2,63E+07 √

JAIM
Beta 3

 847 4,03E+07 √

Ivy-ssh
Inactive 1 2,978 1,28E+09 √

Eclipse
Plugin
Profiler

Inactive 7 3,267 2,30E+09 √

JBoss Production/
Stable 79 71,974 1,01E+F10 √

Megame
knet Inactive 9 11,189 1,66E+10 √

jEdit
Mature 156 29,957 8,85E+10 √

jython Production/
Stable 21 13,972 1,89E+11 √

Table 12: The Core-Periphery trends of the different OSS projects studied

Figure 52: The Average CPDM of JBoss

Figure 53: Average CPDM of ivy-ssh

7.4.7 Conclusion

 In this Chapter, we have discussed three aspects of Open Source software projects:
(i) The first section uses secondary analysis of published case studies to discuss how the
Open Source development process is different from closed source commercial software de-

 133

velopment and hence patterns that apply to closed source software development do not ap-
ply for Open Source development processes.
(ii) The second section discusses a Technical Pattern that can be applied to Open Source
software development that we call Modularity Pattern. We then go on to show how this
Technical Pattern can be related to an Open Source version of the Socio-Technical Con-
way’s Law pattern.
(iii) The third section does an extensive literature review and then discusses the different
core-periphery shift patterns that one can observe in Open Source software projects.

In the third section introduced a way of displaying socio-technical Core-Periphery struc-
tures as well as a metric to measure the shifts. We have demonstrated a visualization tech-
nique (a clustering based display mechanism) that can be used to identify these Core-
Periphery shifts as well as a metric to measure the extent of the shift. We have also tested
this technique by identifying Core-Periphery shift patterns in multiple Open Source pro-
jects.
Crowston et al. (Crowston, Howison et al. 2006) describe code quality, user ratings, num-
ber of users/downloads and code reuse among other indicators for the health and success of
an Open Source project. The core-periphery shift pattern could give us another indicator of
Open Source project health. The project JAIM is in the beta stage of development and has
all the signs of joining the ranks of an inactive and failed project in the Sourceforge data-
base. So a steady shift away from the core could be an indication of lack of interest in the
project. Through the identification of core-periphery shift patterns, we plan to provide the
project leader (of JAIM for example) as well as potential interested developers with one
more indicator the health of the Open Source project. An oscillatory shift away and towards
the core with a CPDM of zero in-between, as in the case of the Megameknet project, could
also be considered as unstable for the health of the project. While, a steady Average CPDM
as in the case of jEdit could be considered as good for the health of the project.
In the next Chapter (Chapter 8) we look at the causes behind the different STSCs provide
insights for Project Managers, in a cross case analysis. We also look at the different threats
of validity for the data and analyses done in the case studies.

 134

8. Discussion of the Case Studies

In this Chapter we discuss the findings of the case studies (we consider the commercial
(closed source) and the Open Source cases separately). We also analyse the patterns and the
related STSCs in each case study.

8.1 STSCs in the Commercial Software Development Cases

Three STSCs were identified in the eMaxx Case study namely Conway’s Law STSC, Code
Ownership STSC and Betweenness Centrality Match STSC. Two of these STSCs namely
Conway’s Law and Betweenness Centrality were also found in the Mendix Case Study. In
this section we look at the STSCs in more detail and elicit the lessons learned from them.

8.1.1 Conway’s Law STSC

The Conway’s Law STSC as well as the Betweenness Centrality Match STSC was ob-
served in both the Mendix and the eMaxx case studies, while, the Code Ownership STSC
was only observed in the eMaxx case. The main reason for this is that the development
tool followed a design science research methodology of iterative improvement. So, at the
time of the Mendix case the TESNA tool did not have the functionality of displaying the
Code Ownership STSC. It is interesting to investigate the broader managerial reasons be-
hind the STSCs. In order to do that, we invoke the classic typology (Thompson 1967)) and
build upon by Kumar et al. (Kumar, Fenema et al. Forthcoming).

Figure 54: Integration Interdependence versus Reciprocal with Integration Interdependence causing Con-

way’s Law STSC

In both the eMaxx and Mendix case studies a Conway’s Law STSC was observed among
the teams working on different parts of the architecture (Front Office, BPEL and Applica-
tion Server Teams in the eMaxx case). In both cases, a particular team (BPEL in eMaxx

 135

and Workflow server team in Mendix) were situated in different rooms (also in a different
floor of the building in the eMaxx case). Hence, the way the development teams were de-
signed resembled the Integration Interdependence typology as seen in the left hand side of
Figure 54. But in reality, the teams had reciprocal interdependence with each other owing
to the messaging (XML) between the parts of the architecture they were working on. Fur-
ther, the dependence was also “sticky” (von Hippel 1994) as there was a cost attached to
the transfer of information especially as some teams and even team members from the
same team were seated in different rooms. The resulting changes done to the different parts
of the mid office application architecture, required integration in order to make sure that the
different parts work together and is free of major bugs. Thus, this integration of the differ-
ent changes and the resulting typology of interdependence is Reciprocal with Integration
Interdependence typology as shown in the right side of Figure 54. In Figure 54, the rectan-
gles represent the teams working on the different parts of the software system architecture
and the arrows represent the flow of tasks. By identifying the Conway’s Law STSC over a
period of time in both the Mendix and the eMaxx case studies, we have added a temporal
dimension to the concept of identification of coordination problems by Malone and Crow-
ston (Malone and Crowston 1994; Crowston 1997).
On having such an understanding of the interdependence typology, the Project Manager(s)
can restructure the organization so that the teams are closer in terms of physical proximity.
They can also use new and improved Groupware technology to increase and improve the
quality of sharing knowledge virtually among team members.

8.1.2 Code Ownership STSC

To better understand the Code Ownership STSC identified in the eMaxx case we use the
extension to the classical interdependence typology from Kumar et al. (Kumar, Fenema et
al. Forthcoming). Ideally, the Code Ownership pattern suggests that a particular developer
is assigned or takes the responsibility of a particular software module and this was what the
project managers anticipated at eMaxx. This situation requires discussion to split the work,
before performing and review along with integration after the changes have been made.
This can be described by the ideal integration interdependence typology shown in the left
hand side of Figure 55.

 136

Figure 55:Non-Sticky Integration Interdependence versus Fully Sticky Integration Interdependence causing

the Code Ownership STSC

While, as in the eMaxx case it was seen that there were more instances of collective code
ownership at the level of the software application module (packages in .jar file format).
Such collective code ownership requires information transfer from the previous developers
(who last made the changes to the software application module) to the developers who are
currently making the changes. Such information transfer occurs at the beginning of the
modification (answering the query of what must be done), during the modifications (an-
swering the query about how can the changes be done) and after the modifications (discuss-
ing what has been done). The information transfer is also “sticky” (von Hippel 1994), as
the developers did not share the same room, or could have been away for some reason.
Thus the actual Interdependence typology resembles the “fully sticky” Integration Interde-
pendence typology (Kumar, Fenema et al. Forthcoming).
Like in the previous Conway’s Law STSC, identifying the Code Ownership STSC over a
period of time in the eMaxx case study, we have added a temporal dimension to the con-
cept of identification of coordination problems by Malone and Crowston (Malone and
Crowston 1994; Crowston 1997).
On identifying the Code Ownership STSC, the project manager can restructure the devel-
opment process in such a way that fewer developers have the responsibility of the software
package module or the project can even consider adopting an more Agile development
methodology like Extreme Programming (XP) (Nordberg 2003).

8.1.3 Betweenness Centrality Match STSC

The Betweenness Centrality Match STSC was observed in the both the commercial case
studies (Chapters 5 and 6). This Structure Clash is related to who is in charge of coordinat-
ing the project and as a result who decides what the resulting Socio-Technical Network
looks like. Due to the nature of the Structure Clash, it is not possible to represent it using

 137

Interdependence typology. Thus, we have added another dimension to the purely task and
resource concept of Coordination Problem considered by Malone and Crowston (Malone
and Crowston 1994; Crowston 1997), by considering the person who is coordinating the
project.
In the Mendix Case Study (Chapter 5), we saw that the CTO noticed instances where some
employees were coordinating the project when someone else had the responsibility or ex-
pertise. While in the eMaxx Case Study (Chapter 6), the change in the Betweenness cen-
trality of employees (developers and managers) in four large projects were considered. In
each of the projects Betweenness Centrality STSCs were identified based on interviews
conducted with the different members of the project.
Like in the Conway’s Law STSC and Code Ownership STSC, we also observed the Be-
tweenness Centrality STSC over a period of time in both the Mendix and the eMaxx case
studies. We have added a temporal dimension to the concept of identification of coordina-
tion problems by Malone and Crowston (Malone and Crowston 1994; Crowston 1997).
In the eMaxx case we also found that when some employees or even customers found that
no one was taking the responsibility of coordinating the project, took the proactive initiate
to coordinate (Chapter 6). In the case of a customer taking the initiative to coordinate, we
found that only those customers who had a good technical knowledge of the product as
well as the process took such an initiative.
Identification of Betweenness Centrality Match STSC can help the Project Manager or
Controller identify employees who are not doing the job of coordinating that they are en-
trusted with, while at the same time also identifying the employees who have taken a pro-
active responsibility to manage the project. The project manager can then decide if he
needs to re-assign the responsibility of coordinating the project and mark the proactive em-
ployee for praise.

8.2 STSCs in the Open Source Software Development Cases

In the Chapter on Open Source development it was shown how the Open Source develop-
ment environment differed from Commercial closed source development. Two Patterns
were also proposed, namely the Modularity Technical Pattern and the Core-Periphery Shift
Socio-Technical Pattern. The patterns were used to identify STSCs in different case stud-
ies.

8.2.1 Modularity STSC

The Modularity Pattern suggests that when the amount of coupling of the software of an
Open Source project increases rapidly across versions, then we have a Modularity STSC.
The ideal situation for an Open Source project is where there is minimal coupling and well

 138

defined stable interfaces (that do not change regularly) between software modules. Such
minimal coupling, as well as well defined stable interfaces between modules reduces the
need for coordination among developers. The ideal situation can be represented with the
Integration Interdependence typology as shown in the left side of Figure 56. In the figure
the rectangles with the circles represent the different actors who are globally distributed
and not collocated (as is often the case in Open Source software development).

Figure 56: The existing Fully Sticky Integration Interdependence typology versus the ideal Integration Inter-

dependence typology

On the hand, we see that most Open Source projects can only aspire for such a situation as
the coupling between the software modules is not only large but also increases during the
course of the project (Chapter 7). Furthermore, the interfaces between different modules
are not well defined and keep changing with time. Such a situation can be represented by
the fully sticky Integration Interdependence as shown in the right side of Figure 56.
A case study of JBoss was conducted (Chapter 7), where the amount and the pattern of dis-
tribution of JBoss were monitored during the lifespan of the project. In the case of JBoss, it
was seen that the increased coordination requirements due to a sudden increase in software
coupling were offset by increased discussion in the JBoss mailing list.
A project manager of an Open Source project could constantly monitor the coupling of the
software produced in the project, to make sure that it does not increase all of a sudden.
When there is such an increase, the manager should make sure that the developers coordi-
nate sufficiently to see to it that the final software release is bug free.

8.2.2 Core-Periphery Shift STSC

The Core-Periphery Shift Pattern suggests that a Core-Periphery STSC exists, if all the de-
velopers of an Open Source software project move from working on the Core of the soft-
ware to working on the Periphery and at the same time no developer joins the project or

 139

moves to working on the Core then the software project. Given the nature of the STSC, it is
not possible to represent it with the help of Interdependence typology diagrams. Thus, in
order to represent this one needs to add another dimension to the purely task and resource
concept of Coordination Problem considered by Malone and Crowston (Malone and Crow-
ston 1994; Crowston 1997).
Like the patterns described earlier the Core-Periphery shift STSC over a period of time in
both the Mendix and the eMaxx case studies, we have added a temporal dimension to the
concept of identification of coordination problems by Malone and Crowston (Malone and
Crowston 1994; Crowston 1997).
The Core-Periphery Shift of the different developers could be monitored by the project
manager of the Open Source project, in order to make sure there are no occurrences of a
Core-Periphery Shift STSC. When the project manager does notice such an STSC, the
manager can increase the developer’s interest in the project by suggesting new directions or
features, or even advertise for new developers in different forums.
In the last chapter (Chapter 9) we revisit the research questions, analyse the limitations of
the research and provide ideas for future research.

 140

9. Conclusions

In the first Chapter we asked three research questions that were later refined in Chapter 3,
using the concepts of Socio/Technical Patterns and Socio/Technical Structure Clashes. So
here, we consider how the development of the tool and the accompanying method along
with the evaluation through the different case studies answers the research questions from
Chapter 3. To answer to the first research question, we have developed the TESNA method
and tool using the design research methodology (Hevner, March et al. 2004), to identify
STSCs. In an answer to the second research question, we have shown from the different
case studies (Chapters 5, 6 and 7) how the TESNA method and tool can be used to qualita-
tively (with the help of network and graph visualisations) as well as quantitatively (with the
help of metrics) identify different STSCs. In an attempt to answer the third research ques-
tion, we found through a secondary analysis of published case studies that the
Socio/Technical Patterns that were applicable to commercial closed source software devel-
opment were not applicable for Open Source software development process (Chapter 7).
This motivated us to find patterns that were more applicable to the Open Source domain,
thus attempting to answer the final research question, resulting in the Modularity and the
Core-Periphery Shift pattern. The case studies also provided a way of validating the pat-
terns and this result is important to the Pattern literature, as not many papers on pattern test-
ing and validation are published. Though there possibly are many more Socio/Technical
patterns that are applicable to the closed source or Open Source software development, we
think that this research is a starting point for the discussion of how different
Socio/Technical Patterns can be used for identifying the corresponding STSCs.
Initially, we expected to find STSCs in large commercial software projects and we were
surprised to find the presence of STSCs even in small and medium sized companies like
Mendix and eMaxx. So, we had expected the size of the project (number of people in-
volved and number of lines of code) to determine the kind of Socio/Technical Patterns that
would be applicable to the project. From the different case studies it became evident that
the size of the project did not matter much, rather, the coordination mechanisms used in the
particular project determined the applicability of certain Socio/Technical Patterns. For ex-
ample, though the size of the software project at Mendix was small in comparison to
eMaxx the same patterns (Conway’s Law STSC and Betweenness Centrality match) were
observed in both cases. On the other hand, these patterns are not applicable to the Open
Source software development process as shown in Chapter 7, as different coordination
mechanisms apply in the Open Source context. Hence, one can conclude that similar
Socio/Technical Patterns would be applicable to different software development environ-
ments, as long as the same coordination mechanisms are used in those environments.

 141

An increasing number of Socio/Technical Patterns are becoming available based on experi-
ences and expert opinions (Petter and Vaishnavi 2007; Zigurs and Khazanchi 2008). These
patterns are potentially useful for managing systems development, but it is difficult and la-
bour intensive for the project manager to select appropriate patterns and keep track of their
potential violation. Identifying STSCs can prove particularly difficult when multiple people
are responsible for various tasks and when the task requirements keep changing in a dy-
namic and iterative software development environment. In this thesis, we have used the
STINs (Kling, McKim et al. 2003; Scacchi 2005) framework to study the Socio-Technical
structure in commercial and Open Source project settings.
Though as team leader David (from eMaxx case study) suggested, the identification of a
STSC does not necessarily mean that a real STSC exists, the presence of a STSC can be
considered as one more indication of a potential problem in the Socio/Technical structure
of the organization. Further investigation, like looking into other social and technical arte-
facts in different archives can give further credence to the results.

9.1 Limitations

The primary limitation of this research is that, in order to be able to be able to apply the
TESNA tool and the method, the Project Manager must have a good understanding of the
various Socio/Technical Patterns. The reason for this is that, as the tool and the method are
not automated the Project Manager must be able to recognize STSCs during the develop-
ment process. This process of recognizing STSCs can get complex (even with the help of
TESNA tool that reduces complexity), if the Project Manager is responsible for many
teams, with each team having a large number of developers. As, in the present implementa-
tion of the TESNA method and tool, the Project Manager must decide on (i) which STSC
can be identified in the particular view and, (ii) how the STSC can be identified with the
given data. Such identification assumes a degree of familiarity with the different
Socio/Technical Patterns and their related STSCs. Also, a purely brute force approach of
trying to identify a series of STSCs related to Socio/Technical Patterns consumes a fair
amount of time and effort and could be infeasible. However, such a brute force method
would be possible in an automated setting, though an automated recognition of various
STSCs is still a challenge.
In such a setting, ideally a Project Manager would like to have an automated system of
STSC identification and the TESNA method and tool is just a first step towards such a sys-
tem. The other limitation is that, some of the metrics used in the case studies, like the Core-
Periphery Distance Metric were developed due to the necessity of identifying STSCs and
needs further research to establish its usefulness. Though the interviews were beneficial in
providing rich qualitative data, it would be beneficial to the Project Manager if there was a

 142

system of automatically identifying the social network from the Chat, Bug tracker and
eMail server/archives. Furthermore, an automatic analysis of the semantic content of mes-
sages would make it easier to identify the messages related to a particular project and topic.
Another limitation is that the dependency based clustering algorithm used in this thesis, has
the same problems faced by other stochastic clustering algorithms, namely that the clusters
are not stable. This means that the size and position of the cluster is dependent on the order
of the bidding (Algorithm 1). Also, finding the optimum set of clusters is at least NP-hard
so there are no easy solutions. In order to obtain more accurate and stable values for the
metrics, the clustering algorithm had to be run multiple times and the resulting values were
averaged.

9.2 Threats to Validity

As in most case study research, the case studies conducted in this thesis have threats to
their validity. Four threats to validity are considered namely: construct validity, content va-
lidity, internal validity and external validity. Construct validity addresses the meaningful-
ness of the results (Nunally and Bernstein 1978). In order to show that a variable has con-
struct validity we need to show that the measurements are consistent with the intuitive or-
dering of entities with the attribute of interest (Fenton and Pfleeger 1997). Let us consider
the construct validity for each of the STSCs found:

• Conway’s Law: This identification was based on qualitative data and manual identi-
fication. Moreover this identification was carried out in a similar fashion for both
the commercial case studies. The way the social network was computed was similar
in both the commercial case studies.

• Code Ownership: In the eMaxx case study the Core-Periphery Distance Metric
(CPDM) was calculated and the values for this metric were important relative to the
project. By this we mean that if a developer involved in project had a consistent
CPDM of 3.5 while other developers had less than the developer was still the owner
of the project.

• Betweenness Centrality: As in the case of the CPDM metric the importance of the
Betweenness Centrality metric also depends on the relative values held by other de-
velopers and managers.

• Modularity: The Propagation and Clustered Cost values have been tested in multi-
ple case studies and are good indicators of not only the extent but also the pattern of
the modularity of a given software system (MacCormack, Rusnak et al. 2006).

• Core-Periphery Shift: In this case the average Core-Periphery Distance Metric (Avg
CPDM) was calculated and this value was found to be consistent and varied accord-
ing to how Core or how Periphery a developer worked in given software project.

 143

Content validity refers to the “representativeness or the sampling adequacy of the content”
(Kerlinger 1986; Fenton and Pfleeger 1997). Let us consider the content validity of each of
the STSCs found in the different case studies:

• Conway’s Law: In the commercial case studies, the Social Network was primarily
mined from a repository (Chat Server/Bug tracker).Hence, we needed to validate if
the network was indeed representative of the technical discussion that the develop-
ers and the managers carried out in the project. In order to achieve this, the social
network mined from the Chat Server/Bug tracker was cross-checked with the in-
formation gathered from the interviews with the developers and mangers.

• Code Ownership: In the eMaxx case study, the Code Ownership pattern was applied
in the level of the software project. Hence, in order to understand the code owner-
ship at the level of the individual code modules one has to zoom into the clusters
and calculate metrics based on how many code modules were modified by whom.
This is not currently implemented in the TESNA tool and is also something for fu-
ture work.

• Betweenness Centrality: This metric is an often used metric in the field of Social
Networks and has been found to be a good indicator of the extent to which a person
takes the charge of coordination in the social network (Hossain, Wu et al. 2006).

• Modularity: The Propagation and the Clustered cost have been validated for con-
struct validity in other case studies (MacCormack, Rusnak et al. 2006), and also in
this thesis. The metrics taken in combination give a good idea of the extent as well
as the pattern of the dependencies (MacCormack, Rusnak et al. 2006).

• Core-Periphery Shift: The Average CPDM metric used to identify the Core-
Periphery Shift STSC could face challenges in content validity. Especially, when
the developers have developed code and other important artefacts using different
languages. As the present implementation of the TESNA tool only reads software
code written in the Java programming language, the Average CPDM might not re-
flect the work of all the developers in the project.

In identification of both the Conway’s Law and the Betweenness Centrality STSC, the So-
cial Network of the employees is considered. The research presented in this thesis, as in the
previous work on identifying the Conway’s Law STSC (Cataldo, Wagstrom et al. 2006;
Sosa 2008) quantitatively, have ignored the content and semantics of the messages. What is
important to be considered, is whether the communication between the employees really
resolves the problems in the dependencies between the software modules or components.
Thus, the content and the semantics of the communication messages between employees
have to be considered. Furthermore, the Communication Richness (Ngwenyama and Lee

 144

1997) of the messages could be taken into account. Communication Richness as defined by
Ngwenyama and Lee (1997) (Ngwenyama and Lee 1997) “not only understanding what the
speaker or writer means, but the action type associated with the action type enacted by the speaker
or writer. The results of the tests enable the listener or reader to identify and analyze distorted
communications. By distorted communication we mean communicative acts that are false, incom-
plete, insincere or unwarranted.” ((Ngwenyama and Lee 1997), p152). Thus, one may con-
sider the Communication Richness in each of the messages sent between the employees of
an organization while computing the Social Network of the organization.

Internal validity deals with cause and effect relationships. The threat to internal validity is
whether “the observed effects could have been caused by or correlated with a set of un-
hypothesised and/or unmeasured variables” (Straub 1989). This thesis proposes that the use
of TESNA method and tool makes it easier for a Project Manager to identify STSCs. So,
the independent variable here is the existence or non-existence of our tool and method,
while the dependent variable is the possibility of identifying STSCs.
There are two main threats to the internal validity:

(i) Selection Bias: Is that the case studies selected made it easier to identify
STSCs

(ii) History: The experience of Project Managers in dealing with similar
cases made the identification of STSCs easier.

In the fist case of selection bias, there is a possibility that the relatively small size of the
companies: Mendix and eMaxx made it easier to detect STSCs. This threat is offset by the
detection the detection of STSCs in large Open Source project like JBoss and jEdit.
Though, in those case studies the person identifying the STSCs is the author of this thesis
and this brings us to the second threat of validity, namely, prior experience Project (in the
case of the Project Manager) and Tool/Method (in the case of the author of this thesis).
This threat to the internal validity is indeed not addressed in this thesis and a more con-
trolled laboratory experiment is required to address this.
External validity refers to how well the results of the case study can be generalised beyond
the study data. Lee and Baskerville (2003) provide a framework for the different types of
generalizability. They provide suggest four different ways of generalizability:

(i) Type EE: Generalizing from data to description
(ii) Type ET: Generalizing from description to theory
(iii) Type TE: Generalizing from theory to description

 145

(iv) Type TT: Generalizing from concepts to theory
The research presented in this thesis falls into the category of type ET form of Generaliza-
bility. Lee and Baskerville (2003) describe two ways of generalizability involved in a type
ET form of generalizability. The two ways being: generalizing from empirical data to the-
ory and generalizing the resulting theory to other domains and samples.
In this research we showed how we developed our tool and method from empirical data
(Chapter 2). On performing the different case studies and from the resulting empirical data
we have come to develop a theory that the detection of STSCs is easier with a method and
tool that TESNA provides. This theory is a first step to a type ET form of generalizabil-
ity(Lee and Baskerville 2003). Regarding the second step of generalizing the resulting the-
ory beyond the sample, Lee and Baskerville state that such generalizability is not feasible.
In other words, they state that the theory resulting from empirical data from a case study
cannot be generalized beyond the particular case study (Lee and Baskerville 2003). In this
context it is interesting to see if the theory is indeed valid in large (commercial) globally
distributed settings. Also, it is interesting to see if the theory is valid in different non-Java
based Open Source development projects.
On the other hand, though the Modularity Socio-Technical Pattern is intuitive and sup-
ported in literature (MacCormack, Rusnak et al. 2006), more research is required to verify
the concepts behind the Modularity Socio-Technical Pattern. This is primarily since in the
case study described in Chapter 7 only a proper application of the Modularity Pattern was
found instead of a Modularity STSC. Future research should be able to test the pattern in
many other Open Source projects in order to verify if it is indeed possible to easily identify
the Modularity STSC.

9.3 Contributions

The research presented in this thesis is based on the Socio-Technical Interaction Networks
(STINs) framework. It further builds on the work of Coordination Theory of Malone and
Crowston (Malone and Crowston 1994) and Crowston (Crowston 1997) by providing a
method and tool to identify specific coordination problems or Socio/Technical Structure
Clashes (STSCs).

9.3.1 Contributions to Research

The thesis addresses the important question of how a software development manager can
identify Coordination Problem in his project (or in the company in general). The approach
taken to answering this question is by first narrowing and refining the research problem to
specific coordination problems. We define Socio/Technical Patterns that can be used to
identify different specific Coordination Problems that we call Socio/Technical Structure

 146

Clashes. These Socio/Technical Structure Clashes can alternately (from the definition in
Chapter 3) be defined to occur when the actual social network of the software development
team and/or the technical dependencies within the software architecture under development
represents the specific coordination problem for which a Socio/Technical Pattern solution
can be applied. We have extended the concept of Coordination problem by considering Co-
ordination problems over time and beyond the static concepts of tasks and resources as
suggested by Malone and Crowston (Malone and Crowston 1994) and later by Crowston
(Crowston 1997). We have identified STSCs related to all the Socio/Technical Patterns
considered in this thesis over a period of time. We have also included the Coordination
problem of who is coordinating (Betweenness Centrality STSC) and who is working on
which part of the source code resource (Core-Periphery shift STSC).
Second, in order to answer the research problem literature from diverse fields like Organi-
zation Theory (Coordination Theory), Production Engineering (DSM), CSCW (Socio-
Technical Congruence) and Software Engineering (Organizational and Process Patterns)
were analysed and combined. This combination of concepts and ideas from different fields
in order to solve the research problem is contribution in itself.
Third, we have identified and validated new Socio/Technical Patterns taken from different
literature sources. In the commercial software development domain, we have identified the
Betweenness Centrality match pattern, while in the Open Source software development
domain we have identified the Modularity and the Core-Periphery Shift patterns.
Fourth, the primary research contributions of this thesis are the tool TESNA and the ac-
companying method that can be used to identify STSCs in commercial as well as Open
Source software development processes. We have followed the Design Research method-
ology (Hevner, March et al. 2004) to guide in the development of the TESNA method and
tool.
Fifth and finally, in the different case studies we have validated the tool TESNA and the
method for identifying STSCs. We have thus shown how STSCs can be identified in differ-
ent commercial as well as Open Source projects.

9.3.2 Contributions to Practice

This research has some important contributions for software project leaders and managers
in both the commercial closed source and the Open Source software development domains.
Software project leaders and managers can learn about the different specific coordination
problems (STSCs) related to Socio/Technical Patterns. Awareness of the problem is the
first step in order to solve such problems.
Consequently, software project leaders can learn about the TESNA method and tool that
can be used to identify specific Coordination Problems (STSCs) in their companies. They

 147

can also learn how to identify the STSCs related to the Socio/Technical Patterns that are
dealt with in this thesis. They can gain insights into what they can do to avoid such Coordi-
nation Problems (from the discussion in Chapter 8).
Open Source project leaders can gain from the understanding that Socio/Technical Patterns
(studied in this thesis), that apply to commercial closed source development are not very
relevant to their project. Instead, Open Source project leaders can understand the specific
coordination problems (STSCs) related to the Socio/Technical patterns that are more appli-
cable to their environment.

9.4 Future Work

Future work can concentrate on different techniques to identify technical dependencies at
different levels, for example at the code level, at the level of the architecture and at the
level of work flow. Through the investigation of different dependencies, we can gain in-
sights into different possible STSCs. We have found that dependencies due to the code
structure are more applicable to larger commercial software development organizations.
Future research on large developments projects can explore the possibilities of finding the
occurrences of different STSCs in such development environments.
The study of middle and large software development organizations and inter-organisational
development in globally distributed settings to identify the presence of STSCs can be con-
ducted. It would be interesting to compare the Open Source software development process
to a commercial closed source globally distributed software process, in order to examine
the differences between corporate globally distributed STSCs and Open Source STSCs.
Apart from using this technique to validate new and existing Socio/Technical patterns, fu-
ture research could also focus on different predictors of STSCs rather than study the out-
come of the collaboration to identify STSCs, as we have done in this research. We can also
study first and later include the actions; managers take, when they encounter an STSC, to
the TESNA method. What is particularly interesting is whether Managers use the solutions
to the STSCs, as suggested by the Socio/Technical Patterns.
One of the main limitations of the TESNA method and tool involves social networks,
namely that of easily and effectively identifying the semantic content of eMail or Chat
messages without human intervention (thus reducing privacy issues). In order to address
this, an automated mining system that identifies key patterns in the messages can be devel-
oped in the future as attempted in the Conversation Map software(Sack 2000). Also, as dis-
cussed earlier in the Limitations section, one of the prerequisites of applying the TESNA
method is a good understanding of the Socio/Technical Patterns. In order to eliminate this
need for human intervention, one needs to automate the identification process for the dif-
ferent STSCs. In the case of the Conway’s Law and Code Ownership STSCs this might

 148

involve quite straightforward matrix algebra. Although, carrying out the Matrix computa-
tions in real time taking into account the semantics of developer dependencies and of the
communication messages could involve some fuzzy logic reasoning. There are couple of
ways of performing this including using machine learning algorithms along with graph re-
writing (especially for Socio-Technical patterns).
The development of a suite or repository of Socio/Technical patterns similar to Portland
Pattern Repository (PPR Retrieved 1st August 2008) would be useful for future research
and for an elaborate testing of the TESNA method and tool.
The TESNA method and tool can also be used in the outsourcing of knowledge work, as
long as the dependencies between the various artefacts are made explicit and there is a
product architecture that can be analysed.
We are currently working on a serious gaming simulation environment that utilizes the data
from the case studies described in this thesis. The aim of this simulation environment is to
enable project managers gain familiarity with the different Socio/Technical Patterns and
thereby increase their ability for identifying STSCs in various network displays.

 149

References

(2008). "Best of open source platforms and middleware." from

http://www.infoworld.com/slideshow/2008/08/171-best_of_open_so-3.html.
(2008). "Senior Scholars' Basket of Journals." from

http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=346.
Acuna, S. T. and N. Juristo (2005). Software Process Modeling, Springer.
Alexander, C., S. Ishikawa, et al. (1977). A Pattern Language. New York.
Amrit, C. (2005). "Coordination in software development: the problem of task allocation."

ACM SIGSOFT Software Engineering Notes 30(4): 1-7.
Amrit, C., J. H. Hegeman, et al. (2007). Exploring Coordination Structures in Open Source

Software Development. 1st Workshop on Tools for Managing Globally Distributed
Software Development, Munich, ICGSE 2007, Centre for Telematics and
Information Technology (CTIT).

Amrit, C. and J. Van Hillegersberg (2007). Mapping Social Network to Software
Architecture to Detect Structure Clashes in Agile Software Development. European
Conference on Information Systems.

Amrit, C. and J. van Hillegersberg (2007). Matrix Based Problem Detection in the
Application of Software Process Patterns. ICEIS 2007, INSTICC.

Amrit, C. and J. van Hillegersberg (2008). "Detecting Coordination Problems in
Collaborative Software Development Environments." Information Systems
Management 25(1): 57 - 70.

Amrit, C., J. van Hillegersberg, et al. (2004). A Social Network approach to Software
Development. In CSCW'04 Workshop on Social Networks.

Baddeley, A. (1994). "The magical number seven: Still magic after all these years."
Psychological Review 101(2): 353-356.

Baldwin, T. T., M. D. Bedell, et al. (1997). "The Social Fabric of a Team-Based M.B.A.
Program: Network Effects on Student Satisfaction and Performance." The Academy
of Management Journal 40(6): 1369-1397.

Basili, V. R., R. W. Selby, et al. (1986). "Experimentation in software engineering." IEEE
Trans. Softw. Eng. 12(7): 733-743.

Bezroukov, N. (1999). "A Second Look at the Cathedral and the Bazaar."
Bird, C., A. Gourley, et al. (2006). "Mining email social networks." Proceedings of the

2006 international workshop on Mining software repositories: 137-143.
Bird, C., A. Gourley, et al. (2006). Mining email social networks in Postgres. Proceedings

of the 2006 international workshop on Mining software repositories. Shanghai,
China, ACM.

Boehm, B. (2000). "Unifying software engineering and systems engineering." Computer
33(3): 114-116.

Borgatti, S. P. and M. G. Everett (1999). "Models of core/periphery structures." Social
Networks 21: 375-395.

Borgatti, S. P. and M. G. Everett (2000). "Models of core/periphery structures." Social
Networks 21: 375-395.

Brooks, F. P. (1987). "No Silver Bullet: Essence and Accidents of Software Engineering."
IEEE Computer 20(4): 10-19.

 150

Burt, R. (1992). Structural holes: the social structure of competition, Harvard University
Press.

Cataldo, M., P. Wagstrom, et al. (2006). Identification of coordination requirements:
implications for the Design of collaboration and awareness tools. Proceedings of the
2006 20th anniversary conference on Computer supported cooperative work. Banff,
Alberta, Canada, ACM Press.

Christley, S. and G. Madey (2007). "Global and Temporal Analysis of Social Positions at
SourceForge. net." Third International Conference on Open Source Systems, IFIP
WG 2.

Conway, M. (1968). How do Committees Invent. Datamation. 14: 28-31.
Coplien, J., O (1994). A Development Process Generative Pattern Language. Proceedings

of PLoP/94. Monticello, Il.: 1--33.
Coplien, J., O. and N. Harrison, B. (2004). Organizational Patterns of Agile Software

Development. Upper Saddle River, NJ, USA.
Coplien, J. O. and D. C. Schmidt (1995). Pattern languages of program design. New York,

NY, USA.
Crowston, K. (1997). "A Coordination Theory Approach to Organizational Process

Design." Organization Science 8(2): 157-175.
Crowston, K. and J. Howison (2003). "The social structure of open source software

development teams." OASIS 2003 Workshop (IFIP 8.2 WG).
Crowston, K. and J. Howison (2006). "Assessing the health of open source communities."

Computer 39(5): 89-91.
Crowston, K., J. Howison, et al. (2006). "Information systems success in free and open

source software development: theory and measures." Software Process
Improvement and Practice 11(2): 123-148.

Crowston, K., K. Wei, et al. (2006). "Core and periphery in Free/Libre and Open Source
software team communications." Proceedings of the 39th Annual Hawaii
International Conference on Systems Sciences.

Crowston, K., K. Wei, et al. (2006). "Core and periphery in Free/Libre and Open Source
software team communications." Proceedings of the 39th Annual Hawaii
International Conference on System Sciences-Volume 06.

Cummings, J. N. and R. Cross (2003). "Structural properties of work groups and their
consequences for performance." Social Networks 25: 197-210.

Curtis, B., H. Krasner, et al. (1988). "A Field-Study of the Software-Design Process for
Large Systems." Communications of the Acm 31(11): 1268-1287.

de Souza, C., R. B., J. Froehlich, et al. (2005). Seeking the source: software source code as
a social and technical artifact. GROUP '05: Proceedings of the 2005 international
ACM SIGGROUP conference on Supporting group work. New York, NY, USA:
197--206.

de Souza, C., R. B., D. Redmiles, et al. (2004). Sometimes you need to see through walls: a
field study of application programming interfaces. CSCW '04: Proceedings of the
2004 ACM conference on Computer supported cooperative work. New York, NY,
USA: 63--71.

Dinh-Trong, T. T. and J. M. Bieman (2005). "The FreeBSD Project: A Replication Case
Study of Open Source Development." IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING: 481-494.

 151

Ducheneaut, N. (2005). "Socialization in an Open Source Software Community: A Socio-
Technical Analysis." Computer Supported Cooperative Work (CSCW) 14(4): 323-
368.

Emery, F. E. and E. L. Trist (1960). "Socio-technical systems." Management Science,
Models and Techniques 2: 83-97.

Eppinger, S. D., D. E. Whitney, et al. (1994). "A model-based method for organizing tasks
in product development." Research in Engineering Design 6(1): 1-13.

Faraj, S. and L. Sproull (2000). "Coordinating Expertise in Software Development Teams."
Management Science 46(12): 1554-1568.

Fenema, P. C. v. (2002). Coordination and Control of Globally Distributed Software
Projects. LIS. Rotterdam, Erasmus University. PhD.

Fenton, N. and S. L. Pfleeger (1997). Software metrics: a rigorous and practical approach,
PWS Publishing Co. Boston, MA, USA.

Fernandez, C. I. G. (1998). "Integration Analysis of Product Architecture to Support
Effective Team Co-location." ME thesis, MIT, Cambridge, MA.

Fielding, R. T. (1999). "Shared leadership in the Apache project." Communications of the
Acm 42(4): 42-43.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Reading MA.
Freeman, L. C. (1977). "A Set of Measures of Centrality Based on Betweenness."

Sociometry 40(1): 35-41.
Freeman, L. C., D. Roeder, et al. (1979). Centrality in Social Networks II: Experimental

Results, School of Social Sciences, University of California.
Froehlich, J. and P. Dourish (2004). Unifying Artifacts and Activities in a Visual Tool for

Distributed Software Development Teams. ICSE '04: Proceedings of the 26th
International Conference on Software Engineering. Washington, DC, USA: 387--
396.

Gall, H., K. Hajek, et al. (1998). "Detection of logical coupling based on product release
history." Proceedings of the International Conference on Software Maintenance:
190–198.

Gallivan, M. J. (2001). "Striking a balance between trust and control in a virtual
organization: a content analysis of open source software case studies." Information
Systems Journal 11(4): 277-304.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Resuable Object Oriented
Software. MA.

German, D. M. (2003). "The GNOME project: a case study of open source, global software
development." Software Process Improvement and Practice 8(4): 201-215.

Gero, J. S. (1990). "Design Prototypes: A Knowledge Representation Schema for Design."
AI Magazine 11(4): 26-36.

Grinter, R., E. (1998). Recomposition: putting it all back together again. CSCW '98:
Proceedings of the 1998 ACM conference on Computer supported cooperative
work. New York, NY, USA: 393--402.

Grinter, R., E. , J. D. Herbsleb, et al. (1999). The geography of coordination: dealing with
distance in R&D work. Proceedings of the international ACM SIGGROUP
conference on Supporting group work. Phoenix, Arizona, United States, ACM
Press.

 152

Guo, G., Yanbing, J. Atlee, M., et al. (1999). A Software Architecture Reconstruction
Method. WICSA1: Proceedings of the TC2 First Working IFIP Conference on
Software Architecture (WICSA1). Deventer, The Netherlands, The Netherlands:
15--34.

Hegeman, J. H. (2007). Towards a Comprehensible Representation of Software
Development Tasks. Twente Student Conference, University of Twente.

Herbsleb, J., M. Cataldo, et al. (2008). Socio-technical congruence (STC 2008).
Companion of the 30th international conference on Software engineering. Leipzig,
Germany, ACM.

Herbsleb, J., D. and R. Grinter, E. (1999). Splitting the organization and integrating the
code: Conway's law revisited. ICSE '99: Proceedings of the 21st international
conference on Software engineering. Los Alamitos, CA, USA: 85--95.

Herbsleb, J., D. and R. Grinter, E. (1999a). Architectures, Coordination, and Distance:
Conway's Law and Beyond. IEEE Software. Los Alamitos, CA, USA. 16: 63--70.

Herbsleb, J., D. Zubrow, et al. (1997). "Software quality and the Capability Maturity
Model." Communications of the Acm 40(6): 30-40.

Herraiz, I., G. Robles, et al. (2006). "The processes of joining in global distributed software
projects." Proceedings of the 2006 international workshop on Global software
development for the practitioner: 27-33.

Hevner, A., R., S. March, T., et al. (2004). Design Science in Information Systems
Research. MIS Quarterly. 28.

Hossain, L., A. Wu, et al. (2006). Actor centrality correlates to project based coordination.
Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work. Banff, Alberta, Canada, ACM Press.

Howison, J., K. Inoue, et al. (2006). "Social dynamics of free and open source team
communications." Proceedings of the IFIP 2nd International Conference on Open
Source Software, Lake Como, Italy.

Hunt, A. and D. Thomas (2002). "Software archaeology." Software, IEEE 19(2): 20-22.
Initiative, O. S. (Retrieved 1st August 2008). "Open Source Initiative." from

http://opensource.org/.
Institute, T. "The Tavistock Institute." from http://www.tavinstitute.org/.
JavaSVN. (Retrieved 1st August 2008). "JavaSVN." from http://svnkit.com/.
Jensen, C. and W. Scacchi (2005). "Collaboration, Leadership, Control, and Conflict

Negotiation in the Netbeans. org Community." Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS 05), page 196b.

Jensen, C. and W. Scacchi (2007). "Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study." Proceedings of the 29th International
Conference on Software Engineering: 364-374.

Jorgensen, N. (2001). "Putting it all in the trunk: incremental software development in the
FreeBSD open source project." Information Systems Journal 11(4): 321-336.

JUNG. "Java Universal Network/Graph Framework." from http://jung.sourceforge.net/.
Kaplan, B. and D. Duchon (1988). "Combining Qualitative and Quantitative Methods in

Information Systems Research: A Case Study." Management Information Systems
Quarterly 12(1): 31.

Kazman, R. (1998). Assessing architectural complexity. Software Maintenance and
Reengineering, European Conference on.

 153

Kazman, R. and S. J. Carriere (1998). View extraction and view fusion in architectural
understanding, IEEE Computer Society Washington, DC, USA.

Kerlinger, F. N. (1986). Foundations of Behavioral Research, Holt, Rinehart and Winston.
Kling, R., G. W. McKim, et al. (2003). "a Bit More to It: Scholarly Communication

Forums as Socio-technical Interaction Networks." JASTIS 54(1): 47-67.
Kling, R. and W. Scacchi (1980). "Computing as Social Action: The Social Dynamics of

Computing in Complex Organizations." Advances in Computers 19: 249-327.
Krackhardt, D. and K. M. Carley (1998). PCANS Model of Structure in Organizations,

Carnegie Mellon University, Institute for Complex Engineered Systems.
Kraut, R., E. and L. Streeter, A. (1995). Coordination in software development. Commun.

ACM. New York, NY, USA. 38: 69--81.
Kruchten, P. (1998). The Rational Unified Process, An Introduction. Massachusetts.
Kumar, K. and H. G. Diesel (1996). "Sustainable Collaboration: Managing Conflict and

Cooperation in Interorganizational Systems." MIS Quarterly 20(3): 279-300.
Kumar, K., P. C. v. Fenema, et al. (Forthcoming). "Offshoring and the Global Distribution

of Work: Implications for Task Interdependence Theory and Practice." Journal of
International Business Studies.

Kumar, K., P. C. van Fenema, et al. (2005). "Intense Collaboration in Globally Distributed
Work Teams: Evolving Patterns of Dependencies and Coordination." Managing
Multinational Teams: Global Perspectives.

Lakhani, K. R. and R. G. Wolf (2005). "Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects." Perspectives on
Free and Open Source Software.

Latour, B. (1987). Science in Action: How to follow Scientists and Engineers through
society, Harvard University Press.

LaToza, T. D., G. Venolia, et al. (2006). Maintaining mental models: a study of developer
work habits, ACM New York, NY, USA.

Lee, A. S. and R. L. Baskerville (2003). "Generalizing Generalizability in Information
Systems Research." Information Systems Research 14(3): 221-243.

Lee, G. K. and R. E. Cole (2003). "From a Firm-Based to a Community-Based Model of
Knowledge Creation: The Case of the Linux Kernel Development." Organization
Science 14(6): 633.

Lerner, J. and J. Tirole (2002). "Some Simple Economics of Open Source." Journal of
Industrial Economics 50(2): 197-234.

Li, B., Y. Zhou, et al. (2005). Matrix-based component dependence representation and its
applications in software quality assurance. ACM SIGPLAN Notices. New York,
NY, USA. 40: 29--36.

Lindvall, M. and D. Muthig (2008). "Bridging the Software Architecture Gap." Computer:
98-101.

Lonchamp, J. (1998). Process Model Patterns for Collaborative Work. Proc. of the 15th
IFIP World Computer Congress, Telecooperation Conference, Telecoop.

López-Fernández, L., G. Robles, et al. (2006). "Applying Social Network Analysis
Techniques to Community-Driven Libre Software Projects." International Journal
of Information Technology and Web Engineering 1(3).

 154

MacCormack, A., J. Rusnak, et al. (2006). "Exploring the structure of complex software
designs: An empirical study of open source and proprietary code." Management
Science 52(7): 1015-1030.

Madadhain, J. O., D. Fisher, et al. (2005). The JUNG (Java Universal Network/Graph)
Framework. Technical Report UCI-ICS 03-17 University of California, Irvine.

Malone, T. W. and K. Crowston (1994). "The interdisciplinary study of coordination."
ACM Comput. Surv. 26(1): 87-119.

Malone, T. W., K. Crowston, et al. (1999). "Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes." Management Science 45(3): 425-443.

March, S., A. Hevner, et al. (2000). "Research Commentary: An Agenda for Information
Technology Research in Heterogeneous and Distributed Environments."
Information Systems Research 11(4): 327-341.

March, S. T. and G. F. Smith (1995). "Design and natural science research on information
technology." Decision Support Systems 15(4): 251-266.

Miles, M. B. and A. M. Huberman (1984). Qualitative data analysis, Sage Publications
Beverly Hills.

Miller, G. A. (1956). "The magical number seven, plus or minus two: some limits on our
capacity for processing information." Psychological Review 63(2): 81-97.

Mockus, A., R. O. Y. T. Fielding, et al. (2002). "Two Case Studies of Open Source
Software Development: Apache and Mozilla." ACM Transactions on Software
Engineering and Methodology 11(3): 309-346.

Moody, D. (2007). "What Makes a Good Diagram? Improving the Cognitive Effectiveness
of Diagrams in IS Development." Advances in Information Systems Development;
New Methods and Practice for the Networked Society.

Moody, D. L. and A. Flitman (1999). A Methodology for Clustering Entity Relationship
Models - A Human Information Processing Approach. Proceedings of the 18th
International Conference on Conceptual Modeling, Springer-Verlag.

Moon, J. Y. and L. Sproull (2002). "Essence of Distributed Work: The Case of the Linux
Kernel." Distributed Work: 381-404.

Morelli, M. D., S. D. Eppinger, et al. (1995). "Predicting technical communication in
product development organizations." Engineering Management, IEEE Transactions
on 42(3): 215-222.

Mullen, B., C. Johnson, et al. (1991). "Effects of communication network structure:
Components of positional centrality." Social Networks 13(2): 169-185.

Murphy, G., C. , D. Notkin, et al. (2001). Software Reflexion Models: Bridging the Gap
between Design and Implementation. IEEE Trans. Softw. Eng. Piscataway, NJ,
USA. 27: 364-380.

Murphy, G., C. and D. Notkin (1996). "Lightweight lexical source model extraction." ACM
Trans. Softw. Eng. Methodology 5(3): 262-292.

Nakakoji, K., Y. Yamamoto, et al. (2002). Evolution patterns of open-source software
systems and communities. Proceedings of the International Workshop on Principles
of Software Evolution: 76-85.

Ngwenyama, O., K. and A. Lee, S. (1997). Communication richness in electronic mail:
critical social theory and the contextuality of meaning. MIS Q. Minneapolis, MN,
USA. 21: 145--167.

Nordberg, M. E., III (2003). "Managing code ownership." Software, IEEE 20(2): 26-33.

 155

Novick, L. R. and S. M. Hurley (2001). "To Matrix, Network, or Hierarchy: That Is the
Question." Cognitive Psychology 42(2): 158-216.

Nunally, J. C. and I. H. Bernstein (1978). Psychometric Theory, New York: McGraw-Hill.
O'Reilly, T. (1999). "Lessons from open-source software development." Commun. ACM

42(4): 32-37.
O’Madadhain, J., D. Fisher, et al. (2003). "The JUNG (Java Universal Network/Graph)

Framework." University of California, Irvine, California.
Osborn, C. S. (1993). Field Data Collection for the Process Handbook. Process Handbook.

Cambridge MA, MIT Center for Coordination Science.
Ovaska, P., M. Rossi, et al. (2003). "Architecture as a coordination tool in multi-site

software development." Software Process: Improvement and Practice 8(4): 233-
247.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM. New York, NY, USA. 15: 1053--1058.

Paulson, J. W., G. Succi, et al. (2004). "An Empirical Study of Open-Source and Closed-
Source Software Products." IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING: 246-256.

Pentland, B. T. (1999). "Useful descriptions of organizational processes: collecting data for
the process handbook."

Petter, S. and V. Vaishnavi (2007). "Facilitating experience reuse among software project
managers." Information Sciences.

Pettey, C. (2008). "Gartner Says Increased Disruption Lies Ahead for Operating System
Software Market." from http://www.gartner.com/it/page.jsp?id=673308.

PPR. (Retrieved 1st August 2008). "Portland Pattern Repository." from http://c2.com/ppr/.
Raymond, E. (1999). "The Cathedral and the Bazaar." Knowledge, Technology, and Policy

12(3): 23-49.
Raymond, E. S. (1998). "Homesteading the Noosphere." First Monday 3(10).
Reich, Y. (1995). "A critical review of General Design Theory." Research in Engineering

Design 7(1): 1-18.
Rigby, P. C., D. M. German, et al. (2008). "Open source software peer review practices: a

case study of the apache server." Proceedings of the 13th international conference
on Software engineering: 541-550.

Robert, L. P., A. R. Dennis, et al. (2008). "Social capital and knowledge integration in
digitally enabled teams." Information Systems Research 19(3): 314-334.

Sack, W. (2000). "Conversation Map: An Interface for Very Large-Scale Conversations."
Journal of Management Information Systems 17(3): 73-92.

Saracevic, T. (1995). "Evaluation of evaluation in information retrieval." Proceedings of
the 18th annual international ACM SIGIR conference on Research and
development in information retrieval: 138-146.

Scacchi, W. (2004). "Socio-technical design." The Encyclopedia of Human-Computer
Interaction. Berkshire Publishing Group: 656-659.

Scacchi, W. (2005). "Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes." Software Process Modeling: 1-27.

Schach, S. R., B. Jin, et al. (2002). "Maintainability of the Linux kernel." Software, IEE
Proceedings-[see also Software Engineering, IEE Proceedings] 149(1): 18-23.

Schmidt, D., M. Fayad, et al. (1996). Software Patterns. Commun. ACM. 39: 37-39.

 156

Scott, J. (2000). Social Network Analysis: a handbook, Sage Publications Inc.
Seidman, S. B. (1981). "Structures induced by collections of subsets: A hypergraph

approach." Mathematical Social Sciences 1: 381-396.
Sosa, M. E. (2008). "A structured approach to predicting and managing technical

interactions in software development." Research in Engineering Design 19(1): 47-
70.

Sosa, M. E., S. D. Eppinger, et al. (2002). "Factors that influence technical communication
in distributedproduct development: an empirical study in the
telecommunicationsindustry." Engineering Management, IEEE Transactions on
49(1): 45-58.

Sosa, M. E., S. D. Eppinger, et al. (2003). "Identifying Modular and Integrative Systems
and Their Impact on Design Team Interactions." Journal of Mechanical Design 125:
240.

Sosa, M. E., S. D. Eppinger, et al. (2004). "The Misalignment of Product Architecture and
Organizational Structure in Complex Product Development." J Manage. Sci.
50(12): 1674-1689.

Sourceforge. (2003). "Project of the Month." from http://sourceforge.net/potm/potm-2003-
04.php.

Sourceforge. (Retrieved 1st August 2008). "Sourceforge.net." from http://sourceforge.net/.
Sparrowe, R. T., R. C. Liden, et al. (2001). "Social networks and the performance of

individuals and groups." Academy of Management Journal 44(2): 316-325.
Steven, D. E., E. W. Daniel, et al. (1994). "A model-based method for organizing tasks in

product development." Research in Engineering Design V6(1): 1-13.
Steward, D. (1981). "The design structure system: a method for managing the design of

complex systems." IEEE Transactions on Engineering Management 28(3): 71-74.
Steward, D. V. (1965). "Partitioning and tearing systems of equations." SIAM J. Numer.

Anal 2(2): 345-365.
Stewart, G. L. and M. R. Barrick (2000). "Team Structure and Performance: Assessing the

Mediating Role of Intrateam Process and the Moderating Role of Task Type." The
Academy of Management Journal 43(2): 135-148.

Straub, D. W. (1989). "Validating instruments in MIS research." MIS Quarterly 13(2): 147-
169.

Sullivan, K., J., W. Griswold, G., et al. (2001). The structure and value of modularity in
software design. Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, Vienna, Austria, ACM Press.

Survey, W. S. (2008). "June 2008 Web Server Survey." from
http://news.netcraft.com/archives/web_server_survey.html.

Tessier, J. "Dependency Finder." from http://depfind.sourceforge.net/.
Thompson, J. D. (1967). Organizations in Action: Social Science Bases of Administrative

Theory, Transaction Publishers.
Tracker, M. B. (Retrieved 1st August 2008). "Mantis Bug Tracker." from

http://www.mantisbt.org/.
Ven, A. H. V. D., A. L. Delbecq, et al. (1976). "Determinants of Coordination Modes

within Organizations." American Sociological Review 41(2): 322-338.

 157

Vessey, I. and R. Glass (1998). "Strong vs. weak approaches to systems development."
Communications of the Acm 41(4): 99-102.

Vokurka, R. J., J. Choobineh, et al. (1996). "A prototype expert system for the evaluation
and selection of potential suppliers." INTERNATIONAL JOURNAL OF
OPERATIONS AND PRODUCTION MANAGEMENT 16: 106-127.

von Hippel, E. (1994). ""Sticky information" and the locus of problem solving:
implications for innovation." Manage. Sci. 40(4): 429-439.

von Krogh, G., S. Spaeth, et al. (2003). "Community, joining, and specialization in open
source software innovation: a case study." Research Policy 32(7): 1217-1241.

Wagstrom, P. and J. Herbsleb, D. (2006). Dependency forecasting in the distributed agile
organization. Commun. ACM. New York, NY, USA. 49: 55--56.

Warshall, S. (1962). "A Theorem on Boolean Matrices." Journal of the ACM (JACM) 9(1):
11-12.

Wasserman, S. and K. Faust (1994). Social Network Analysis: methods and applications,
Cambridge University Press.

Wong, K., S. R. Tilley, et al. (1995). "Structural redocumentation: a case study." Software,
IEEE 12(1): 46-54.

Woods, S. and Q. Yang (1998). "Program Understanding as Constraint Satisfaction:
Representation and Reasoning Techniques." Automated Software Engineering 5(2):
147-181.

Xu, J., Y. Gao, et al. (2005). "A Topological Analysis of the Open Souce Software
Development Community." System Sciences, 2005. HICSS'05. Proceedings of the
38th Annual Hawaii International Conference on: 198a-198a.

Yamauchi, Y., M. Yokozawa, et al. (2000). "Collaboration with Lean Media: how open-
source software succeeds." Proceedings of the 2000 ACM conference on Computer
supported cooperative work: 329-338.

Yang, H.-L. and J.-H. Tang (2004). Team structure and team performance in IS
development: a social network perspective. Information and Management.
Amsterdam, The Netherlands, The Netherlands. 41: 335--349.

Ye, Y. and K. Kishida (2003). "Toward an understanding of the motivation of open source
software developers." Proceedings of the 25th international conference on Software
engineering, Portland, Oregon, IEEE Computer Society: 419-429.

Yin, R. K. (2003). Case Study Research: Design and Methods, Sage Publications Inc.
Yoshikawa, H. (1981). "GENERAL DESIGN THEORY AND A CAD SYSTEM." Man-

Machine Communication in CAD/CAM: Proceedings of the Ifip Wg5. 2-5.3
Working Conference Held in Tokyo, Japan, 2-4 October 1980.

Yu, L., S. R. Schach, et al. (2006). "Maintainability of the kernels of open-source operating
systems: A comparison of Linux with FreeBSD, NetBSD, and OpenBSD." The
Journal of Systems & Software 79(6): 807-815.

Zelkowitz, M. V. and D. R. Wallace (1998). "Experimental Models for Validating
Technology." Computer: 23-31.

Zigurs, I. and D. Khazanchi (2008). "From Profiles to Patterns: A New View of Task-
Technology Fit." Information Systems Management 25(1): 8-13.

 158

About the Cover

The cover photo3,4 has been modified to create an illusion of looking through a glass
screen.
The glass screen alludes to the fictional glass door of the cabin in which a software devel-
opment manager sits. The cover photo refers to the manager’s hazy and unclear perspective
of the software development team and process. Such a manager is isolated from developers
and unaware of their coordination difficulties and coordination problems. This is one of the
typical scenarios in large software development organizations addressed by the TESNA
method and tool, developed as part of the research leading to this thesis.

3 Courtesy of Prof Dr Frank Harmsen
4 It was taken at one of Capgemini’s facilities in Mumbai, India

 159

 Summary in English

Today’s dynamic and distributed development environment brings significant challenges
for software project management. In distributed project settings, “management by walking
around” is no longer an option, and project managers may miss out on key project insights.
At the same time, the high coordination requirements caused by the dynamic distributed
environment can cause many coordination difficulties and can even lead to coordination
breakdowns. In response to some of these problems, researchers have developed detailed
patterns for describing the preferred relationships between the team communication struc-
ture (the social network) and the technical software architecture. We call such patterns
Socio-Technical Patterns. As they capture a wide variety of knowledge and experience
Socio, Technical and Socio-Technical Patterns (or Socio/Technical Patterns in short) are
potentially very useful for the project manager in planning and monitoring complex devel-
opment projects. However, these patterns are hard to implement and monitor in practice.
The reason behind this is that it is difficult to find coordination problems in order to apply
the solutions provided by the Socio/Technical Patterns, as purely manual techniques are
labour intensive. Especially within dynamic and iterative distributed environments, the use
of Socio/Technical Patterns is challenging. But, even in small companies, employing be-
tween 20 and 50 developers (ref Chapter 5 and 6), the social network and the relation to the
software tasks can get quite complicated for the software manager to track. As part of the
TESNA (TEchnical Social Network Analysis) project, we have developed a method and a
tool that a project manager can use in order to identify specific coordination problems that
we call Socio/Technical Structure Clashes (STSCs). We have evaluated the TESNA
method and tool in two commercial case studies (Chapters 5 and 6) and multiple case stud-
ies in the Open Source development environment (Chapter 7).

 160

 Summary in Dutch

Softwareontwikkelingsomgevingen zijn tegenwoordig steeds vaker globaal gedistribueerd
en dynamisch van aard. Dit brengt grote uitdagingen met zich mee voor projectleiders van
softwareontwikkelingstrajecten. In gedistribueerde projectomgevingen, is “managing by
walking around” geen optie. Projectleiders met een dergelijke managementmethode be-
langrijke projectinformatie en -inzichten over het hoofd zien.
Tegelijkertijd kunnen de hoge coördinatievereisten, welke gepaard gaan met complexe ge-
distribueerde softwareontwikkeling, leiden tot coördinatieproblemen die soms ernstige
vormen kunnen aannemen. Om dergelijke problemen tegen te gaan hebben onderzoekers
gedetailleerde patronen ontwikkeld voor het beschrijven van de ideale samenhang tussen de
communicatiestructuur van teams (het sociale netwerk) en de technische softwarearchitec-
tuur. Dergelijke patronen worden ook wel Socio-Technische Patronen genoemd.
Aangezien dergelijke patronen een grote verscheidenheid aan kennis en ervaring omvatten,
kunnen Socio, Technische en Socio-Technische Patronen (ook wel kortweg So-
cio/Technische Patronen genoemd) potentieel erg bruikbaar zijn ter ondersteuning van pro-
jectmanagers bij planning en beheer van complexe ontwikkelingsprojecten.
Deze patronen zijn in de praktijk echter moeilijk implementeerbaar en ook moeilijk te mo-
nitoren. De reden hiervoor is dat het detecteren van coördinatieproblemen, waarop de So-
cio/Technische patronen toegepast kunnen worden, nog puur handwerk is en daarom zeer
arbeidsintensief. Juist binnen dynamische, iteratieve gedistribueerde omgevingen is het ge-
bruik van Socio/Technische Patronen extra complex.
Echter, zelfs bij relatief kleine organisaties, met tussen de 20 en 50 ontwikkelaars, (zie
hoofdstuk 6 en 7) is het voor de softwaremanager al erg lastig om de (relaties tussen) socia-
le netwerken en softwaretaken te beheren en indien nodig bij te sturen.
Dit proefschrift beschrijft het TESNA (TEchnical Social Network Analysis) project waarin
we een methode en bijbehorende tool ontwikkeld, welke een projectmanager kan gebruiken
om specifieke coördinatieproblemen te detecteren. Deze coördinatieproblemen noemen we
ook wel Socio/Technical Structure Clashes (STSCs). De TESNA-methode en -tool zijn
zowel door middel van twee case studies binnen een commerciële setting geëvalueerd (zie
hoofdstuk 6 en 7) als middels meerdere case studies binnen Open Source softwareontwik-
kelingsomgevingen (zie hoofdstuk 8). In hoofdstuk 9 geven we een cross-case discussie en
analyse van de verschillende case studies.

