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geboren te Tarsus, Turkije



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. G.J.J.A.N. van Houtum
en
prof.dr. A.G. de Kok



Aileme...
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Summary

Optimal Reliability and Upgrading Decisions for Capital Goods

Advanced technical systems, also called advanced capital goods (e.g. medical systems,
material handling systems, defense systems, manufacturing systems, packaging lines,
computer networks) are used in core processes by their users. By core processes,
we mean the processes which are essential for operational continuity. For example,
baggage handling at airports, transactions in a bank, data processing in a computer
network, can be considered as core processes. Operational interruptions of these
systems lead to significant losses for the users and keeping the systems up and running
(availability of the systems) is crucial.

A high level of system availability can be provided by maintaining

• a low frequency of system failures, and/or

• a high speed of system repair activities (short downtime per system failure).

The frequency of failures of a system depends heavily on its design. The focus of this
thesis is on two major design decisions in this context:

(i) reliability of components that compose the system, and

(ii) redundancy (i.e., having a number of identical components in parallel instead
of a single component).

We refer to these decisions as reliability decisions.

The speed of system repair is commonly accelerated by using the repair-by-replacement
concept during the exploitation phase. That is, if a part fails and leads to a system
failure, the system is restored by replacing the failed part with a ready-for-use one.
Spare parts are kept on stock at a short distance of the installed systems to prevent
long downtimes. For a fixed system design, the spare parts inventory level is a key
factor affecting the system availability. We take the spare parts inventory into account
when investigating the optimal reliability decisions.



The primary goal of this thesis is to develop quantitative models and methods for
optimal reliability decisions in the design phase. In Chapter 2 and 3, we study the
optimal reliability level of a critical component and the redundancy optimization for
serial systems, respectively. Typically, Original Equipment Manufacturers (OEMs) of
capital goods are responsible for the availability of their systems in the field through
service contracts. OEMs redesign components that fail too often and therefore have a
strong negative effect on availability. It is then economical to improve the reliability
of those components and upgrade the systems by replacing the old parts in the field
with the redesigned ones. After the redesign, there are multiple policies that can
be followed by an OEM for upgrading the systems. In Chapter 4, we study two
common upgrading policies and investigate their optimality. In Chapter 1 and 5, an
introduction and the conclusions are given. In Appendix A, we provide several results
for the Erlang loss system which are motivated by the problem studied in Chapter 2.

In Chapter 2, we develop a model for the optimization of the reliability level of
a critical component. In this model, portions of the Life Cycle Costs (LCC -
total costs incurred throughout the lifetime of systems) of a general number of
systems that are affected by component reliability and the spare parts inventory
level are formulated. We develop an efficient solution procedure for the problem. By
conducting a numerical experiment, we show that taking the spare parts inventory
level into account for the optimization of component reliability in the design phase
lead to significant cost reductions compared to solutions generated by sequential
consideration the component reliability and the spare parts inventory level. The
results of the experiment also reveal that the optimal component reliability is much
higher for a cheap component than for an expensive component and increases as
the number of the systems increases, the downtime penalty rate increases; and, the
exploitation phase gets longer. We also show that the optimal LCC have negligible
or limited sensitivity to the most of the major parameters in our model.

In Chapter 3, we introduce a redundancy optimization model for a capital good with
a serial structure (from the reliability point of view). We refer to the units which
are connected to each other in series in the capital good as stages. When there is
no redundancy in a stage, the stage is composed of a single component. If a stage is
designed with redundancy, then it includes two units of the same component which are
connected to each other in parallel (from the reliability point of view). In the problem
that we studied, three policies per stage are defined. Redundancy is included by one of
the policies. Each of the three policies provides different levels of uptime (availability).
We formulate the problem as the minimization of the Total Cost of Ownership (TCO
- equivalent to LCC from the customer perspective) of a general number of systems
under a defined constraint on the expected downtime of the systems throughout their
life cycle. We decompose the problem into single-stage problems and show that a
solution for the multi-stage problem can be generated by solutions of each of the
single-stage problems. We develop an efficient procedure to find optimal solutions of
the single-stage problems for varying levels of the downtime constraint. Solutions for
the multi-stage problem for varying levels of the downtime constraint are generated



efficiently by repeating this procedure for each stage. We derive the following major
results through the analysis of the single-stage and multi-stage problem formulations:

• Single-stage: When level of the downtime constraint is decreased from a high
value to zero; i.e., the constraint was initially loose and got tighter and tighter,
the policy to include redundancy becomes optimal at a certain level and remains
optimal for all smaller levels.

• Multi-stage:

– One can generate an efficient frontier which reflects the trade-off between
the uptime and the TCO .

– An optimal ordering of the stages to include redundancy one-by-one can
be generated.

In Chapter 4, we develop a model for studying the following two upgrading policies
that an OEM may follow for multiple systems in the field after the redesign of a
component (we denote the time just after the redesign by time 0):

• Policy 1 - Upgrade all systems preventively at time 0.

• Policy 2 - Upgrade systems one-by-one correctively.

Under Policy 2, new (improved) parts are kept on stock for upgrading while no
inventory of new parts is kept under Policy 1. Under Policy 2, the initial supply
quantity of new parts is a decision variable and new parts can be replenished in
batches with a fixed size after the initial supply. The unit price of the new parts
might increase after time 0.

We develop a problem formulation for the comparison of the two policies and perform
exact analysis. We conduct a numerical study and find out that Policy 1 is favored
by low values of the number of the systems, long lifetime of the systems, low values
of the MTBF of the old parts (for fixed percentage improvement in MTBF), high
values of the percentage improvement in MTBF, high values of the increase in the
unit price of the new parts after time 0, large batch sizes for new parts under Policy
2, and high values of the downtime costs per failures. The reverse of each of these
conditions favors Policy 2. Our numerical study showed that the optimal policy may
change by varying any of the mentioned factors.
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1

Chapter 1

Introduction

Advanced technical systems, also called advanced capital goods (e.g. medical systems,

material handling systems, defense systems, manufacturing systems, packaging lines,

computer networks) are used in core processes by their users. By core processes,

we mean the processes which are essential for operational continuity. For example,

baggage handling at airports, transactions in a bank, data processing in a computer

network, can be considered as core processes. Operational interruptions of these

systems lead to significant losses for the users and keeping the systems up in the field

(availability of the systems) is crucial.

In many cases, Original Equipment Manufacturers (OEMs) are the service providers

of their systems. Traditionally, after selling a system, OEMs are responsible for the

availability of their systems at customer sites only during a warranty period (2-3 years)

which is considerably shorter than the life cycle (lifetime) of these systems, which is 10-

40 years. After the warranty period, they benefit from failures by charging customers

for spare parts, labor, and other resources that are used during service activities.

However, the market dynamics force OEMs to be responsible for the availability of

their systems throughout their life cycle. Service contracts with payment terms based

on performance of systems (availability) in the field rather than materials used for

keeping systems up are becoming more and more common.

A high level of system availability can be provided by maintaining

• a low frequency of system failures, and/or

• a high speed of system repair activities (low downtime per system failure).

The frequency of failures of a system depends heavily on its design. The focus of this
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thesis is on two major design decisions in this context:

(i) reliability of components that compose the system, and

(ii) redundancy (i.e., having a number of identical components in parallel instead

of a single component).

We refer to these decisions as reliability decisions.

The speed of system repair is commonly accelerated by using the repair-by-replacement

concept during the exploitation phase. That is, if a part fails and leads to a system

failure, the system is restored by replacing the failed part with a ready-for-use one.

Spare parts are kept on stock at a short distance of the installed systems to realize

the repair-by-replacement concept efficiently. For a fixed system design, the spare

parts inventory level is a key factor affecting the system availability. We investigate

the optimal reliability decisions taking into account the effect of spare parts inventory

on availability.

In addition, periodically, OEMs redesign some components as they decide that it

is more economical to improve the reliability of those components and upgrade the

systems by replacing the old parts in the field with the redesigned ones. But, after the

redesign, there are multiple policies that can be followed by an OEM for upgrading

the systems. We also study a number of common upgrading policies and investigate

their optimality.

The remainder of this chapter is organized as follows. We first motivate the need

for investigating reliability related problems for capital goods in Section 1.1. In

Section 1.2, we give the definitions of the problems that we study. Concepts such

as maintenance, spare parts, availability, and critical components are fundamental

for our research. We explain the relevance of these concepts in Section 1.3. In

Section 1.4, we introduce terminology to make the descriptions in the remainder of the

Thesis clearer. This thesis has connections to several research fields such as reliability

optimization, warranty, and spare parts inventory control. We give an overview of the

relevant literature in these fields in Section 1.5. We identify that the models in the

literature are incapable of providing satisfactory solutions for the needs in the capital

goods industry and list our contributions accordingly in Section 1.6. Finally, we give

the outline of the rest of the thesis in Section 1.7.
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1.1. Motivation

The research in this thesis is a part of an IOP-IPCR1 project entitled “Life cycle

oriented design of capital goods: System availability and integral costs”. The goal

of this project is to develop quantitative methods for integrated decision making to

balance availability and Life Cycle Costs (LCC) of capital goods in the design phase.

We carried out our research in cooperation with a number of companies, in particular

with Philips Healthcare and Vanderlande Industries, and all the problems addressed

in this thesis are motivated by practice.

1.1.1 Life Cycle Costs

The life cycle of a system is composed of four phases: design/development, production,

exploitation and disposal; see Figure3 . LCC includes costs that are incurred in each

of these phases. A number of definitions for LCC can be found in different publications

which date back to the 1960’s; see Gupta and Chow (1985); Asiedu and Gu (1998);

Christensen et al. (2005). In this thesis, we use the following definition given by the US

Department of Energy in 1995; see Barringer and Weber (1996): “LCC are the total

costs estimated to be incurred in the design/development, production, operation,

maintenance, support, and final disposition of a major system over its anticipated

useful life span.” Operation costs, maintenance costs, and support costs are incurred

in the exploitation phase. We also incorporate downtime costs explicitly into the

exploitation phase costs.

Figure 1.1 Life cycle of a system

LCC can be calculated with two different perspectives: the manufacturer’s perspective

or the customer’s perspective. The costs that are included in LCC depend on the

perspective. For example, a manufacturer distinguishes the design/development and

production costs for LCC while these costs are incorporated in the acquisition costs

for a customer. The LCC of a system from a customer perspective is also known as

Total Cost of Ownership (TCO); see Ellram (1994).

1In Dutch, ‘Innovatiegerichte Onderzoeksprogramma’s - Integrale Productcreatie en Realisatie’

or ‘Innovation oriented research programs - Integrated Product Creation and Realization’, which is

a research programme of the Netherlands Ministry of Economic Affairs
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1.1.2 Downtime Costs and Maintenance Costs are High for

Advanced Capital Goods

In general, advanced capital goods are very expensive and their utilization is usually

high. Downtime costs (stemming from losses in revenues, penalties, idle employees,

etc. during the downtime) can be considerably high as the operations of users depend

heavily on the availability of these goods. For example, downtime costs of computer

systems of large e-commerce companies and brokerage companies can be $100,000-

$1,000,000 per hour (see Patterson (2002); cnet news (2001); see also Downtime-

Central (2009) for other examples). Intense maintenance activities are carried out to

keep downtime as small as possible, which results in high maintenance costs.

We studied the TCO of an engineer-to-order type of system and found that the

TCO is distributed as given in Table 1.1 (see Öner et al. (2007) for the details of

the measurement). The downtime costs account for almost 50% of TCO and the

downtime and maintenance costs together constitute 75% of TCO. These figures are

in line with the other studies conducted within the scope of the IOP-IPCR project

(see Basten (2006); Meutstege (2007)) and figures in the literature (see Gupta (1983);

Saranga and Kumar (2006)).

Table 1.1 Distribution of TCO for an engineer-to-order system

Acquisition costs 23%

Maintenance costs 27%

Operations costs 2%

Downtime costs 48%

1.1.3 OEMs Focus on After-Sales Service Business

As stated earlier, OEMs are usually the primary service providers of their systems;

the conditions in the capital goods market force OEMs to shift their focus from pure

manufacturing to servicing systems. Below, we explain these conditions and their

effects on OEMs.

After-sales service is a big business: A number of recent studies revealed the high

volume of after-sales service business. The research firm Aberdeen Group reported

that spare parts and after-sales services accounted for 8% of the annual gross domestic

product in the United States in 2003 and the total annual global spending on after-

sales services was over $1.5 trillion (see AberdeenGroup (2003)). Deloitte Consultancy

states that the revenues from service business covers 25% of total business of many
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of the globally leading OEMs see (Deloitte (2006)). Similarly, this share lies between

20-30% according to a report by Aberdeen Group (see AberdeenGroup (2006)). Profit

margins for after-sales services and parts range from 25% to 1000% higher than

margins for initial products, which makes after-sales services account for about 40%

of profits for most companies (see AberdeenGroup (2006) and Deloitte (2006)). A

benchmark study by Deloitte Consulting (Deloitte (2006)) which included many of

the world’s largest manufacturing companies revealed that the average growth of the

service businesses is about 10% higher than that of the business units overall.

Downtime costs and maintenance costs become concerns of OEMs: Down-

time costs and maintenance costs have been concerns for customers only until recently.

An OEM sells a system with a warranty and she incurs maintenance costs only during

the warranty period. After the warranty period, the customer and OEM agree on a

so-called material contract and the customer pays the OEM for spare parts, labor,

and other resources that are used during service activities (see Kim et al. (2007b)).

The OEM benefits from failures and downtime with such an agreement, let alone that

she is bothered with them.

Nevertheless, OEMs increasingly feel the pressure to decrease downtime costs and

maintenance costs of their systems. There are two main reasons for this change.

First, TCO (LCC) of a system is increasingly becoming the primary criterion for a

customer in her purchasing decision rather than price (acquisition costs). Previously,

customers have tended to concentrate on acquisition costs when purchasing systems.

However, they have gradually recognized the fact that seeking low prices in the

short-run might lead to high exploitation phase costs in the long-run. Thus, they

ask for TCO estimates during purchasing. As we described, a significantly large

portion of TCO may be constituted by downtime costs and maintenance costs. But

estimation of downtime costs is usually a nontrivial task, if ever possible. Thus, in

many cases, availability estimates are demanded by customers together with TCO

estimates disregarding downtime costs.

Second, performance-based and power-by-the-hour business models are becoming more

common means of service provision (see Cohen et al. (2006)) as the service priority is

very high in the capital goods industry. In a performance-based model, customers pay

for services according to the performance of systems (e.g. through a contract which

contains a service level agreement with respect to the uptime of the system(s)); while

in a power by the hour model, customers pay for the services used. In both models,

the OEM directly suffers from the losses due to downtime and incurs maintenance

costs.

Customer demand for services increases: Nowadays, customers ask for near-100-

% asset availability and better customer support. These requirements are translated
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into shorter lead times and/or higher service levels in the service supply chains (see

AberdeenGroup (2005); Deloitte (2006)).

Oliva and Kallenberg (2003) study 11 OEMs and identify major reasons for the

shift of the focus of OEMs to services. Together with the economic arguments

and increasing customer demand for services (explained above), they also state a

competitive argument as one of the reasons: Services are difficult to imitate and,

thus, become a sustainable competitive advantage.

1.1.4 Long-Term Approach During the Design Phase

Although OEMs benefit from the large-scale service business, there are still unutilized

opportunities, primarily due to different characteristics of service supply chains which

make them more difficult to manage than manufacturing supply chains. Cohen et al.

(2006) state these characteristics and propose a procedure for high-level management

of service supply chains. Oliva and Kallenberg (2003) also propose a process model

for the transition of orientation from manufacturing to service, which helps OEMs in

changing their organization and processes.

The trends in the capital goods market brings further challenges. As stated earlier,

OEMs are becoming responsible for the life cycle and availability management of their

products. Despite its difficulty, this responsibility also brings the opportunity to grasp

full handling of products from the beginning (i.e. their design phase). A long-term

perspective which takes the effect of design decisions on major performance measures

and costs in the exploitation phase is a necessity to benefit from this opportunity.

The reliability decisions of a system (reliability of its components and redundancy)

are key factors that affect availability, downtime costs, and maintenance costs of the

system and they are determined in its design phase. The spare parts inventory levels

are the other main determinant of availability, downtime costs, and maintenance costs

and they are managed during the exploitation phase. These decisions are typically

made not only at different points in time, but also by different departments. Design

departments aim at meeting a target reliability level by keeping design and production

costs as small as possible rather than taking all costs affected by the reliability

decisions into account. In general, there is a trade-off among these costs: components

with higher reliability and redundancy have higher design and production costs and

lower maintenance and downtime costs. Thus, ignoring downtime costs, maintenance

costs and the effects of spare parts inventory might lead to suboptimal solutions. A

long-term approach for reliability decisions, which incorporates the effects of spare

parts inventory will help companies to adapt their design processes to the market

trends.



1.2 Reliability Optimization and Upgrading Policy Problem 7

1.2. Reliability Optimization and Upgrading Policy

Problem

In this section, we give general definitions of the problems that we study in this thesis.

1.2.1 Reliability Optimization

The reliability of a system is defined as the probability that the system will perform

its intended function for a predetermined mission period under a given set of

environmental conditions (see Lewis (1996), and Blischke and Murthy (2000)). The

main determinants of system reliability are the reliability of its parts and its structure

(e.g. simple series, simple parallel, series-parallel, parallel-series, etc.). In general,

during the design, for each component that will constitute the system, there exists a

set of options with different reliability levels such that the unit costs (prices) of these

options increase with their reliability levels. That is, an option is less costly than a

more reliable option. Given a system structure, a high system reliability level can be

achieved by

• selecting options with high reliability levels, and/or

• redundancy - using a subsystem composed of a number of identical parts in

parallel instead of a single part,

In both cases, an increase in system reliability is provided by a higher investment in

reliability during the design.

Two main reliability optimization problems are defined with respect to the decision

studied:

• Reliability allocation problem: the optimal selection of a design option for each

part in a system.

• Redundancy allocation problem: the optimal number of identical parts placed

in parallel in each subsystem.

In this thesis, we study a component-level reliability optimization problem which

is closely related to the reliability allocation problem. Notice that the reliability

allocation problem is on system-level by definition. We also study the redundancy

allocation problem. We use availability of a system rather than its reliability as a

performance measure.



8 Chapter 1. Introduction

1.2.2 Upgrading Policy Problem

In some cases, systems in the field do not satisfy certain availability requirements

and/or significant maintenance costs and downtime costs are incurred during the

exploitation phase. In such a case, the OEM might choose to redesign one or multiple

components to improve their reliability. The following problems then have to be

solved by the OEM for the redesign:

1. Selection of component(s) for redesign.

2. Determination of the level up to which the reliability of the component(s) will

be improved.

3. Determination of the policy for upgrading the systems in the field (e.g., replacing

all old parts with the improved ones at once after the redesign or replacing an

old part with an improved one only when the old part fails).

We refer to the third problem as the upgrading policy problem.

Studying these three problems together would result in very complex models. Thus,

we study only the upgrading policy problem. Its solution may be a basis for studying

the first and second problem.

1.3. Key Concepts

There are four key concepts that play a role in the problems that we study:

Maintenance, spare parts supply, availability, and critical components. Below, we

will give necessary definitions related to these concepts and explain their relations.

1.3.1 Maintenance, Repair-by-Replacement, and

Repair-on-Site

Maintenance can be defined as a set of actions necessary to sustain and restore the

performance, reliability and safety of a system (see Kumar et al. (2000)). The main

objective of maintenance is to assure that a system is available for operation when

required. Maintenance actions which are planned to avoid unexpected failures and

downtime are known as preventive maintenance actions while those which are taken

whenever a failure occurs are known as corrective maintenance actions (see Coetzee

(2004)). We focus on corrective maintenance in this thesis as the companies that



1.3 Key Concepts 9

we cooperated with reported that preventive maintenance has very little impact on

the failures of many parts and downtime costs stemming from failures are very high

compared to those incurred during preventive maintenance as preventive maintenance

is scheduled beforehand.

As we mentioned before, the repair-by-replacement concept is commonly used for

system repair. That is, spare parts are kept on stock for a set of components of a

capital good and if a part belonging to that set fails, it is replaced with a ready-for-use

one from the inventory. However, some parts (e.g. X-ray chain in an X-ray machine)

are repaired on customer site rather than being replaced with a ready-for-use one

when they fail. The major reasons for applying the repair-on-site concept can be

listed as follows:

• The replacement of a failed part with a ready-for-use one is more costly and/or

technically more difficult than repairing it on site.

• The owner(s) of systems prefer(s) to keep their original parts rather than

replacing them with spare ones.

Obviously, spare parts are not kept for parts which are repaired on site.

In this thesis, we study the reliability optimization problems for the situations in

which only the repair-by-replacement is applied and the upgrading policy problem for

situations in which only the repair-on-site is applied.

1.3.2 Spare Parts Supply, Ordinary Procedure, and Emer-

gency Procedure

In practice, the activities that are executed upon a failure of a part for which repair-

by-replacement is applied depend primarily on the status of the spare parts supply

and the location(s) where spare parts are stored. If there is a ready-for-use part

available from the inventory, the failed part is replaced with the ready-for-use one

independently of the status of the system (i.e., whether the system is down or not).

We refer to the procedure of such a replacement with a part from inventory as an

ordinary procedure. In case of an out-of-stock situation, if the system fails or the

probability of a system failure becomes significantly high due to the failure of the

part, an emergency procedure is carried out to replace the failed part; that is, other

means of supply for a ready-for-use part are exploited. For example, rather than

waiting for a part to be finished at the repair facility, a part may be shipped from a

more distant warehouse.
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The emergency procedure becomes particularly crucial when a failure of a part leads

to a system failure, as typically downtime will be significantly longer if it is not

applied. However, the emergency procedure is more costly and takes a longer time

than the ordinary procedure (i.e., when parts are in stock). Hence, for a fixed system

design, the spare parts inventory level is a key factor affecting the system availability

and exploitation phase costs as this influences the need to execute the emergency

procedure. Of course, the replacement times and costs in the ordinary procedure and

emergency procedure play important roles as well.

1.3.3 Availability

Availability can be defined as the proportion of the time a system is available

for operation to the total time that it is required to be in operation (see Moss

(1985); Thompson (1999); Birolini (2007)). It is used to measure the combined

effect of reliability, maintenance and logistic support on the operational effectiveness

of systems. Different types of availability, such as inherent availability, achieved

availability, and operational availability, are defined to measure effects of different

factors (see Kumar et al. (2000) and Sherbrooke (2004)). In this thesis, we formulate

total expected downtime or downtime costs stemming from corrective maintenance

actions (the ordinary procedure and emergency procedure) throughout the life cycle

of systems rather than using any defined availability of systems with respect to the

existing definitions.

1.3.4 Critical Components

A system is composed of a number of components. Some of these components are

vital for the functioning of the system (i.e., the failure of a vital part leads to a system

failure) while others are not. We refer to the vital components as critical components.

The focus in reliability optimization and spare parts inventory models is on critical

components.

All critical components in a system can be represented as a serial structure from the

reliability point of view. The serial structure shows that a failure of any component

results in a system failure. This representation does not necessarily mean that the

corresponding parts are connected to each other physically in series. For example, a

car cannot run if any of its tires is flat, so the tires are connected to each other in

series when its reliability is considered while they are not physically in series.

In this thesis, we focus on critical components and consider a serial structure when

we deal with multi-component problems.
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Table 1.2 Terms

Abstract Concrete

Capital Good System

Stage Subsystem

Component Part

1.4. Terminology

Terms used during system design represent abstract concepts as a physical system does

not exist yet. In general, the same terms are also used for the concrete counterparts

of those concepts after the design. The term “system” is a good example for this

situation. It may refer to an abstract representation of an object during the design,

while it refers to a physical object afterwards. Our problem includes such abstract

concepts and their concrete counterparts. In the remainder of this thesis, we use

different terms for the abstract and concrete versions of several key concepts for the

precision of our descriptions. These terms are given in Table 1.2.

Within the context of this thesis, each unit in a capital good with a serial structure is

referred to as a stage. When there is no redundancy in a stage, the stage is composed of

a single component. If a stage is designed with redundancy, then it includes a number

of units of the same component which are connected to each other in parallel from

the reliability point of view. In Figure 1.2, you can see the illustration of a capital

good with four stages in a serial structure. Stage 2 is designed with redundancy

and has two identical units in parallel, while the other stages are designed without

redundancy.

Component 2

Component 2

Component 1 Component 3 Component 4

Stage 1 Stage 2 Stage 3 Stage 4

Component 2

Component 2

Component 1 Component 3 Component 4

Stage 1 Stage 2 Stage 3 Stage 4

Figure 1.2 The representation of a capital good with four stages in a serial structure
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1.5. Literature

There are three major streams of research relevant to the reliability decisions that we

focus in this thesis: Reliability optimization, warranty, and spare parts inventory. In

this section, we first give an overview of the literature in these streams. Then, we

discuss the literature on the upgrading policy problem.

1.5.1 Reliability Optimization

There exists a large number of papers in the reliability optimization literature (see

review papers by Kuo and Prasad (2000) and Kuo and Wan (2007) and references

therein). The models in these papers deal with either the reliability allocation

problem, or the redundancy allocation problem, or both. The reliability of a system

(survival probability of a system throughout a predetermined mission period - as

defined in Subsection 1.2.1) is used as the performance measure in models for

nonmaintained systems, while availability is the performance measure in models

for maintained systems. In some cases, one of the availability measures defined in

Subsection 1.3.3 can be used (see Vintr and Holub (2001), and Elegbede and Adjallah

(2003)), while case-specific availability measures have to be derived in others (see

Sharma and Misra (1988)).

In a typical formulation of any model, the objective is the maximization of system

reliability/availability against certain constraints, e.g. a budget constraint, a total

weight constraint, a total volume constraint. Several formulations include the

minimization of acquisition cost (or design cost and production cost) of a system

under a reliability/availability constraint (reliability/availability must be greater than

or equal to a target level) together with other mentioned constraints. Denoting the

decision variables by vector ~x, a general formulation for the existing models can be

given as

(P0) min/max π(~x)

s.t. gi(~x) ≤ bi for i ∈ {1, 2, ..., z}

~x ∈ X .

where π(~x) represents the system reliability/availability or acquisition cost of a

system, and gi(~x) ≤ bi, j ∈ {1, 2, ..., z}, represents the relevant constraints.

Multiobjective formulations in which maximization of reliability/availability and

minimization of acquisition cost are the main objectives have also been introduced. A

number of models also employ maximization of percentile life of a system (maximum

mission time for which system reliability satisfies at least a certain level) as the
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objective to cope with uncertain mission times. See Kuo and Prasad (2000) and

Kuo and Wan (2007) for extensive review of the models.

Reliability optimization problems are known to be NP-hard (see Chen (1992)). As a

result, a large number of papers is devoted to finding efficient optimization algorithms

rather than models themselves. The reviews by Kuo and Prasad (2000) and Kuo and

Wan (2007) also provide an organized report of algorithms existing in the literature

(e.g. heuristics, metaheuristics, exact methods).

An important aspect of this stream of research is that the cost factors are limited to

acquisition costs or design and production costs. Quantitative models that incorporate

maintenance costs - repair costs in particular - exist mainly in the warranty literature.

1.5.2 Warranty

Normally, a system (product) is sold together with a base warranty and a customer

can obtain an additional warranty period against a premium payment. Warranties

have different aspects in terms of management, marketing, engineering, logistics

and accounting. As a consequence of these various aspects, warranties have been

investigated by researchers from different fields (see Blischke and Murthy (1996)).

Blischke and Murthy (1992) and Murthy and Blischke (1992a,b) provide an extensive

review of the studies conducted on warranty until 1992. The review by Murthy and

Djamaludin (2002) covers the later period until 2002.

Quantitative models constitutes an important part of the warranty literature (see

Murthy and Blischke (1992b) and Blischke (1990)). These models may differ

with respect to warranty policies (see Blischke and Murthy (1992) for a taxonomy

for warranty policies), the viewpoint taken (OEM’s or customer’s), cost elements

included, whether the items are repairable or not, etc. In the models, the primary

focus is on the optimal length of the warranty period. A general lifetime distribution

for items is given and failures throughout the warranty period are modeled as renewal

processes. Costs are derived through cost parameters and formulations obtained from

the renewal processes. These models were mostly developed for base warranties,

however, they also have been used as a basis for long-term warranties (see Murthy

and Djamaludin (2002), Rahman and Chattopadhyay (2006), and Chattopadhyay and

Rahman (2008)).

As warranty costs depend on the reliability of systems, reliability optimization is also

studied in warranty literature. Models developed by Nguyen and Murthy (1988),

Hussain and Murthy (2003), Huang et al. (2007) can be considered as reliability

allocation models while those introduced by Hussain and Murthy (1998), Monga and

Zuo (1998) can be considered as redundancy allocation models. Nevertheless, in all
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these reliability optimization models, it is assumed that ready-for-use parts that are

used for replacement of failed parts are always available and spare parts inventory is

not incorporated.

1.5.3 Joint Optimization of Reliability and Spare Parts Inven-

tory

The research on spare parts inventory is extensive. See Muckstadt (2005) and

Sherbrooke (2004) for a broad overview of the models and the methods for spare

parts inventory. The focus in this thesis is on reliability decisions rather than spare

parts inventory. In Chapter 2 and 3, we incorporate the spare parts inventory level

into our models as it is a crucial determinant of maintenance costs, downtime costs

and availability. In this subsection, we discuss the literature in which reliability and

spare parts inventory are considered jointly as is the case in our models.

Kim et al. (2007a,b) study the spare parts inventory and reliability of a single-

component system in game-theoretic settings in order to compare certain service

contract types. In Kim et al. (2007b), the reliability level is incorporated into the

model explicitly and the trade-off between investing in reliability and investing in

spare parts is evaluated. The reliability level is indirectly included in the model

in Kim et al. (2007a). As the authors’ objective is to derive high level managerial

insights about the contract types, they develop stylized models in which an overall

reliability level for a system is represented rather than the reliability of its components,

incorporating redundancy.

Sharma and Misra (1988) consider redundancy and spare parts jointly for a single

system with subsystems in a serial structure. Within a subsystem, multiple parts

of the same type might be required to function simultaneously for system operation

(subsystems with k-out-of-n structure) and the parts are repairable. The decision

variables are redundancy level (the number of parts in parallel), the number of spare

parts to be bought for each subsystem and the repair capacity. The objective is

the maximization of availability of the system subject to several constraints. They

develop an algorithm for the solution of the Mixed Integer Program (MIP) arising

from their model; their algorithm can solve a formulation with linear constraints.

Later, in Misra and Sharma (1991), they generalize their algorithm to a wider range

of MIP models for reliability/availability optimization.
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1.5.4 Upgrading Policy

The models that are related to the upgrading problem that we study were first

introduced for replacement decisions of a part or a system due to technological

obsolescence. In practice, new units (parts or systems) which have the same

functionality as the old ones in use but with a higher performance often become

available in the market. The higher performance could be in terms of reliability,

efficiency, energy consumption, purchase cost, etc. In general, the replacement

problems are formulated periodically. At each period, one has to decide whether

to replace an old unit with one of the available improved ones. Sethi and Chand

(1979) and Chand and Sethi (1982) introduce models for deterministic technological

changes; that is, the timing and the nature of changes are known with certainty. Nair

and Hopp (1992), Nair (1995), and Rajagopalan and M.R. Singh (1998) models cases

in which stochasticity in the timing and/or the nature of change is involved.

Mercier and Labeau (2004) study replacement policies that largely overlap with the

upgrading policies that we consider (see Section 1.6). We refer to the units which

are in use just before the technological change, and improved units provided by the

new technology, as old units and new units, respectively. Mercier and Labeau (2004)

investigate situations in which failure rates for both old units and new units are

constant. The new units have a lower failure rate and lower energy consumption rate

(cost per unit time) compared to that of the old units. They introduce a so-called K

strategy for a general number, N , of identical and independent units on some finite

time interval [0, T ]. Under this strategy, failed old units are replaced with new ones

correctively until the Kth failure of the old units, K ∈ {0, 1, ..., N}. After the Kth

failure, the failed part is replaced correctively and the remaining N −K old units are

replaced preventively. K = 0 and K = N correspond to strategies under which all

old units are replaced preventively at time 0 and each old unit is replaced correctively

(no preventive replacement), respectively. A new unit is replaced with another new

unit with zero lead time when it fails. They calculate the mean total cost over [0, T ],

which includes replacement costs and energy consumption costs. They discount the

total costs to time zero. They show that only three strategies can be optimal: the

strategies with K = 0, K = 1, and K = N ,respectively.

Mercier (2008) extends the model introduced by Mercier and Labeau (2004) for

general failure rates (e.g., with degradation) and show that the optimal strategy can

be different than K = 0, K = 1, and K = N ; and it depends on the time horizon T .

In Mercier and Labeau (2004) and Mercier (2008), inventory decisions are not

incorporated into the models. The new items are available at any instant. In recent

papers by Clavareau and Labeau (2009b,a), inventory decisions are incorporated

into a Petri net model and a simulation model, respectively, which are developed
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to investigate the K strategy. The inventory is managed by the so-called point

command method in Clavareau and Labeau (2009b), while a modified version of

the Economic Order Quantity is used in Clavareau and Labeau (2009a). These

models also include other details (e.g., different types of maintenance actions, limited

maintenance capacity, priority rules for different actions, effectiveness of a repair,

etc.). The interaction between the inventory decisions and the optimal strategy is not

established explicitly in these models.

As a final remark in this section, we use the term upgrading rather than replacement

to avoid the confusion with the repair-by-replacement concept. Within the context

of this thesis, repair-by-replacement means replacement of a part with another of the

same type; that is, the parts which is used for replacement is not an improved one.

1.6. Contributions of the Thesis

The main goal of this thesis is to develop quantitative models and methods for the

optimal reliability decisions for advanced capital goods. As we stated before, we study

the reliability optimization problems for situations in which repair-by-replacement is

used, which means that spare parts inventory is kept and it is a key factor affecting

availability and exploitation phase costs of capital goods.

In practice, OEMs and their customers often only consider the initial costs (design

and production costs or acquisition costs) for their reliability decisions. A similar

approach is also followed in the reliability optimization literature. However, our

exploratory studies and LCC calculations at companies involved in the IOP-IPCR

project revealed that the exploitation phase costs (maintenance costs and downtime

costs) can be considerably higher than the initial costs of the systems. Models and

methods which take into account the initial costs and the exploitation phase costs for

reliability decisions, are not only relevant but also necessary for both OEMs and their

customers due to the market trends.

As the reliability optimization models in the warranty literature include costs from

the warranty claims during the exploitation phase of systems, they have the potential

to assist companies in their decisions. However, these models lack the focus on

availability and they do not incorporate spare parts inventory.

The existing models that do consider reliability and spare parts jointly and/or

incorporate exploitation phase costs (Kim et al. (2007a,b), Sharma and Misra (1988),

and Misra and Sharma (1991)) have several limitations for the cases that we consider.

First, the situations in these models do not involve any emergency procedures. That

is, when a part in a system fails and there is no ready-for-use part available from a
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warehouse, the system is down until a part is available from a repair facility, meaning

that downtime can be considerably long. This is unrealistic within the companies we

studied. As stated before, Kim et al. (2007b) and Kim et al. (2007a) use stylized

models for comparison of certain service contract types. Sharma and Misra (1988)

and Misra and Sharma (1991) do not include maintenance costs. In addition, these

models are developed for a single system and spare parts are dedicated to this single

system. In practice, spare parts are usually stocked for multiple systems at a central

location and there is a pooling effect on spare parts which is not captured in these

models.

Consequently, there is a need to develop models for the reliability optimization

problems which include the following attributes:

• maintenance costs

• downtime costs or availability (or downtime) constraints

• spare parts inventory

• an emergency procedure

Such a reliability optimization problem can be a single-stage problem or a multi-stage

problem. While studying a multi-stage problem, once its relation to relevant single-

stage problems can explicitly be established (e.g., decomposition of the multi-stage

problem into single-stage problems), one can first analyze and solve the single-stage

problems and use these findings to analyze and solve the multi-stage problem. We

thus start with a single-stage problem in Chapter 2 and contribute to the literature

with the followings:

• We develop a reliability optimization model for critical components and an

efficient solution procedure for the resulting problem formulation.

• We derive insights about how certain factors, such as component type (cheap,

medium, expensive), the size of the installed base, the downtime penalty rate,

and the lifetime of the system, affect the optimal reliability decision.

The approach followed for single-stage problems in Chapter 2 serves as a basis to

analyze and solve the related multi-stage problem.

Next, we study a multi-stage redundancy allocation problem for capital goods in

Chapter 3. Our contribution in Chapter 3 can be listed as follows:
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• We develop a redundancy allocation model for capital goods and establish its

relation to the relevant single-stage problems.

• We develop an algorithm to solve the single-stage problems and the redundancy

allocation problem.

• We provide insights on the optimality of having redundancy by deriving results

for the single-stage and the multi-stage problems.

The two models introduced in Chapter 2 and Chapter 3 include the key aspects

such as maintenance costs, spare parts inventory, and emergency procedure (listed

above) and they are developed for multiple systems. The effect of downtime is

incorporated differently in the two models. In the reliability optimization model

for critical components (Chapter 2), downtime costs are included in the model, while

there is a constraint on the total uptime (or downtime) throughout the lifetime of

a number of systems in the redundancy allocation model (Chapter 3). These two

approaches are consistent with each other.

Reliability decisions during the redesign of components for improvement also fit within

the broad scope of our research. We focus on the upgrading policy problem of critical

components for which repair-on-site is applied in Chapter 4. We study two major

policies that OEMs follow for the upgrading of N systems, each of which includes a

single unit of the old parts (we denote the time just after the redesign by time 0):

• Policy 1 - Upgrade all systems preventively at time 0: All the old parts are

preventively replaced with the redesigned components immediately after the

redesign.

• Policy 2 - Upgrade systems one-by-one correctively: An inventory of redesigned

component is kept. As an old component in the field fails, it is correctively

replaced with a redesigned one from the inventory.

Notice that Policy 1 and 2 are the special cases of the K strategy introduced in Mercier

and Labeau (2004) with K = 0 and K = N , respectively (see Subsection 1.5.4). We

investigate a situation in which the initial order quantity (initial supply quantity) for

the inventory under Policy 2 is one of the main factors that affects the costs incurred

for upgrading the systems. Remember that Mercier and Labeau (2004) and Mercier

(2008) study the K strategy without inventory considerations. Clavareau and Labeau

(2009b,a) do incorporate inventory decisions into their investigation of the K strategy,

but as mentioned in Subsection 1.5.4, they use predefined methods and fix the order

quantities with respect to certain parameter values rather than formulating the costs

affected by these decisions and optimizing them. Furthermore, the effect of inventory
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decisions cannot be explicitly observed in their models as there are a number of other

details incorporated into these models.

Our contribution in Chapter 4 is as follows:

• We develop a quantitative model for the upgrading problem with Policy 1 and

Policy 2. We formulate the interaction between the initial supply quantity and

the costs affected by the initial supply quantity under Policy 2 explicitly.

• We develop an efficient solution procedure for the optimal initial supply quantity

in Policy 2.

• We derive insights on conditions under which each policy is optimal.

1.7. Outline of the Thesis

This thesis is composed of two parts, one devoted for the reliability optimization

and the other for the upgrading policy problem. Part 1 consists of Chapter 2 and

Chapter 3, in which we study the optimal reliability level of critical components and

redundancy allocation for serial systems, respectively. The models that we introduce

in these chapters include the following attributes that are essential for capital goods:

maintenance costs, downtime costs or a downtime constraint, spare parts inventory

and an emergency procedure. Part 2 is constituted by Chapter 4, in which we

investigate the optimality of the two upgrading policies that are mentioned in Section

1.6. In Appendix A, we provide monotonicity and supermodularity results for the

Erlang Loss System, which are motivated by the reliability optimization problem

that we study in Chapter 2.

The research presented in Chapters 2, 3, 4, and Appendix A is based on Öner et al.

(2010b,a,c, 2009), respectively.
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Chapter 2

Optimization of Component

Reliability

2.1. Introduction

As we mentioned in Chapter 1, we focus on critical components in this thesis. In this

chapter, we start our investigation of reliability decisions for capital goods by studying

the optimization of the reliability of critical components. We present a quantitative

model to support the decision on the reliability level of a critical repairable component

during the design phase of a capital good. We investigate a situation in which an OEM

will sell a number of units of the same system together with a Performance-Based

(PB) service contract which covers the life time of a system. The PB contract specifies

multiple service aspects including a downtime penalty; that is, the OEM pays a certain

amount of money to its customers per unit of downtime. The systems are installed in

one region that is served by a single spare parts inventory stock point which is at a

sufficiently close distance from all systems. Our objective is the minimization of the

portion of the system’s Life Cycle Costs (LCC) which is affected by the component’s

reliability, as measured by its Mean Time Between Failures (MTBF) and the spare

parts inventory level.

In order to cover all costs, we need to formulate the maintenance costs and downtime

costs as a function of the reliability level. However, the spare parts inventory level is

also a crucial determinant of these costs. It is not a given parameter during the design

phase,but a decision variable which is set (optimized) with respect to the reliability

level later. We aim at providing a decision support model which makes the best use
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of available data/information in the simplest way during the design phase: Our joint

optimization helps the OEM foresee the effect of the reliability level decision on spare

parts inventory level, and, ultimately, the total maintenance and downtime costs.

In a recent paper, Murthy et al. (2004) highlight the current issues and challenges

in product warranty logistics. They underline the need for linking the spare parts

inventory levels to failures of parts, i.e., to component reliability. As stated in

Subsection 1.5.3, the spare parts inventory level and component reliability have been

jointly studied in recent work by Kim et al. (2007b,a). Recall though that the models

in these papers are stylized ones which do not include any emergency procedures.

This aspect is important for capital goods as it has a large impact on downtimes and

thus the related costs. Incorporation of this aspect leads to a more complex model

than the models in Kim et al. (2007a,b). Furthermore, to simplify the analysis, the

normal approximation for the lead-time demand is used in these previous papers. We

provide an exact analysis for the LCC function, which enables us to derive an exact

optimization procedure.

The contributions of this chapter can be stated as follows:

• First, we propose a new decision support model to determine the reliability of

a critical component in the design phase. In this model, we explicitly formulate

the relationship between the reliability level of the component and its spare

parts inventory level, incorporating design costs, production costs and service

costs (including downtime costs).

• Second, we perform an exact analysis on the LCC and we derive several of its

analytical properties.

• Third, we provide an efficient optimization algorithm.

• Fourth, we provide managerial insights through a numerical experiment which is

based on real-life data. We compare costs obtained under our joint optimization

method to costs obtained via a non-integrated method. In our experiment, we

show that joint optimization leads to an average cost reduction of 44.3% and

the optimal reliability level significantly depends on component type, the size

of the installed base, the downtime penalty rate, and the lifetime of the system.

We also perform sensitivity analysis and show that the average extra costs that

would be incurred is negligibly small for most of the cases with parameter values

even ±50% off the values that we have in our numerical experiment.

Our model in this chapter is closely related to reliability allocation models. Through

the discussions in Chapter 1, we can deduce that the following attributes are

fundamenta in reliability optimization models for advanced capital goods:
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Table 2.1 Comparison of papers
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Maintenance costs X X X X X

Downtime costs X

Multiple systems X X X

Spare parts X X

Emergency Procedure X

• Maintenance costs (due to their high magnitude),

• Downtime costs or availability targets (requirements-constraints) (due to high

downtime costs),

• Multiple systems (due to the pooling effect on spare parts),

• Spare parts (due to its large effect on maintenance costs and availability of

systems), and

• an emergency procedure (as it is a common practice which limits the downtime

significantly).

Several of these attributes are covered in reliability allocation models in the warranty

literature and the contracting literature; see subsections 1.5.2 and 1.5.3. In Table

2.1, you can see a comparison of this chapter and the most related papers from these

literatures. We include the papers which have at least one of the given attributes.

The problem in this chapter is on a component-level. Remember that critical

components in a capital good form a serial structure (see Subsection 1.3.4). Within the

context of this chapter, a critical component corresponds to a stage in a capital good

with series structure, as redundancy is not considered. Thus, we can equivalently state

that the problem in this chapter is a single-stage problem. The problem can serve as

a building block for a multi-stage problem which can be decomposed into single-stage
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problems, each of which corresponds to an instance of the problem studied in this

chapter. Once the decomposition is established, one can analyze and solve the multi-

stage problem by making use of the analysis and the solution procedure developed in

this chapter.

In Chapter 3, we work on a redundancy allocation problem, which is a multi-stage

problem by definition, and show its relation to the single-stage problems that are

generated by its decomposition. In that chapter, we first derive results for the single-

stage problems and then provide results for the redundancy allocation problem by

making use of the results of the single-stage problems. The multi-stage problem

analogous to the problem introduced in this chapter could be tackled in a similar way

as followed in Chapter 3.

The outline of this chapter is as follows. In Section 2.2, we present our model

assumptions and problem formulation. We derive the LCC function and provide a

number of analytical properties and an optimization procedure in Section 2.3. We give

the setting and the results of our numerical experiment in Section 2.4. We conclude

the chapter by Section 2.5.

2.2. Model

An OEM is designing/developing a critical repairable component for a capital good

(system). The OEM estimates that he will sell N units of the same system (N ∈ N =

{1, 2, 3, ...}) after the design of the capital good (system). The OEM expects that he

will sell each system with a service contract. The lifetime (exploitation phase) of each

system is estimated to be T , which is in the order of 10-30 years and considerably

longer than the design and production phases (e.g. at least ten times longer). We

assume that design costs and production costs are incurred at time 0. The OEM

plans to offer the service contracts for the estimated lifetime of the systems (T ).

We assume that the N systems are all sold at time t = 0. During the exploitation

phase of the systems, which we denote by [0, T ], the OEM will keep a spare parts

inventory of the critical component. The OEM will produce s parts for the spare

parts inventory at time t = 0; s is a decision variable. When the part in a system

fails, the system will be repaired by replacement of the failed part with a ready-for-use

one when it is available from the inventory. The OEM cooperates with a secondary

supplier for the emergency replenishment of a part in an out-of-stock situation.
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2.2.1 Failure and Repair Processes

In general, failures of the repairable parts in the systems will depend on the parts’

quality, how the systems will be used and the usage conditions (e.g. environmental

conditions). We assume that no systematic failure will occur due to deficiencies in

production of the systems, so the parts, will satisfy all quality specifications at the

beginning of their lives. We denote the MTBF of the component by τ which is a

decision variable to be fixed during the design of the component. We assume that there

is a lower bound τ
−

for the MTBF. This lower bound can have two interpretations: It

can be a target reliability level which is determined with respect to customer / market

expectations; or it can be the reliability level of an already existing component in the

market. (Note that, τ
−

is not the minimum MTBF that can be achieved (technically)

in any case.) We also assume that there is a limit τ̄ > τ
−

that the MTBF can be

improved up to; i.e., there is a limitation on the level to which the reliability can be

improved.

The systems will be supported by a single warehouse where all spare parts are stocked.

There is a single repair facility where defective parts will be repaired.

Upon the failure of a system at a customer site, one of the following two procedures

will be applied depending on the availability of a part from the spare parts inventory:

1. Ordinary Procedure: If a ready-for-use part is available from the inventory, it will

be transported to the customer site. A service engineer will visit the customer

site and repair the system by replacing the defective part with the ready-for-use

one. The defective part will be transported to the repair facility for a repair.

After repair, the part will be restored to an as-good-as-new condition and added

to the spare parts inventory.

2. Emergency Procedure: If there is an out-of-stock situation, an as-good-as-new

part will be replenished from the secondary supplier and it will be transported

to the customer site as soon as possible. The failed part will be replaced with

the replenished part and will be returned to the secondary supplier. We assume

that the secondary supplier has ample supply of the parts.

The emergency procedure assures that downtimes are always short (i.e., even in out-of-

stock situations). The spare parts inventory is affected only by the ordinary procedure.

In this procedure, a part is removed form the inventory when a failure occurs, and

each failed part is immediately sent to the repair and added to the inventory after its

repair. In out-of-stock situations, demand is lost for the inventory. Hence the spare

parts inventory position (the sum of pipeline stock and actual stock-on-hand) is kept
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at a constant and will be equal to the initial amount of spare parts that one stocks in

the warehouse which is s. As a result, we may also say that the spare parts inventory

is controlled by a continuous-review basestock policy with basetock level s; see books

by Sherbrooke (2004) and Muckstadt (2005).

We assume that the total stream of system failures will follow a Poisson process with

rate N/τ . The memoryless property of the Poisson failures implies that there is

no aging (degradation) effect. This assumption is justified when the number of the

systems (N) is sufficiently large or if lifetimes of parts are close to exponential. In

reality, when a system is down due to a failure of the critical part in it, the failure

rates of all of the parts decreases during the downtime of the system as there is

one less system contributing for the total stream of failures. However, owing to the

short downtimes and large number of systems, we neglect this effect and assume that

the failure rate is constant, as is standard in the spare parts inventory literature.

This simplifies the analysis considerably and has been demonstrated to be a benign

assumption; see books by Sherbrooke (2004) and Muckstadt (2005).

We assume that when a part fails during the exploitation phase, it will be diagnosed

with 100% accuracy in a negligibly short time. The system will become operational

just after the replacement of the failed part. The downtime after a failure is equal

to the replacement time of the part. Replacement times in the applications of

the ordinary procedure are independently and identically distributed with mean

µ1. Similarly, replacement times in the applications of the emergency procedure are

independently and identically distributed with mean µ2. µ1 and µ2 are in the order

of 1-48 hours and we assume that µ1 ≤ µ2.

The repair facility has planned leadtimes for all repairs. This is also a standard

assumption in the spare parts inventory literature (see Sherbrooke (2004) and

Muckstadt (2005)). This fits best to situations in which the repair facility is

outsourced and a limit on repair time to repair is specified in an agreement. We

assume that repair times which include time to transport the part to and from the

repair facility are independent and identically distributed with mean U > 0 which is

in the order of 1-4 months. The orders of magnitude imply that µ2 is significantly

shorter than U , which reflects the users incentive to apply the emergency procedure.
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2.2.2 Problem Formulation

We formulate our problem as

(P) min π(τ, s)

s.t. τ
−

≤ τ ≤ τ̄

s ∈ N0 = {0, 1, 2, ...}.

where π(τ, s) is the expected Net Present Value (NPV) of the LCC of the N systems

affected by the reliability of a part, τ , and the spare parts inventory position, s.

In our model, LCC consists of design costs, production costs, spare parts inventory

costs, repair costs, and downtime costs. We assume that design costs and production

costs are incurred at time 0 and formulate the NPVs of the other costs, which occur

throughout [0, T ], at time 0. We denote the discount rate by α > 0; a cost of 1 at time

t contributes e−αt to the NPV (notice that α = 0 would correspond to no discounting).

We use the following notation to refer to these costs and cost parameters relevant to

these costs.

K(τ): The expected NPV of the design costs of the component.

P (τ): The expected NPV of the production costs of the parts that will be installed

in the N systems.

S(τ, s): The expected NPV of the spare parts costs

R(τ, s): The expected NPV of the system repair costs that stem from the failures

of the repairable parts.

D(τ, s): The expected NPV of the downtime costs that stem from the failures

of the repairable parts.

h: The storage cost rate per part (h > 0).

r1: Expected cost of an ordinary repair.

r2: Expected cost of an emergency repair.

p: Downtime penalty rate (p > 0).

d1: Expected downtime penalty incurred because of a failure leading to an ordinary

repair.

d2: Expected downtime penalty incurred because of a failure leading to

an emergency repair.

Obviously,

π(τ, s) = K(τ) + P (τ) + S(τ, s) + R(τ, s) + D(τ, s) (2.1)

The factors r1 and r2 include all costs originating from the corresponding procedures,

such as administrative costs, costs of one or more visits of a service engineer,
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transportation costs, repair costs of a failed part, and storage costs during the repair

lead time at the repair facility. We assume that hU ≤ r1 ≤ r2, as emergency repairs

require more expensive activities than ordinary repairs do and r1 and r2 include

storage costs at the repair facility. We also assume that r1 and r2 are immediately

incurred when a failure occurs.

Upon a system failure, an average downtime cost of d1 = pµ1 is incurred if an ordinary

repair is performed and an average downtime cost of d2 = pµ2 is incurred if an

emergency repair is performed. We assume that downtime costs are immediately

incurred when a failure occurs. As µ1 ≤ µ2, d1 ≤ d2.

Since τ
−

is the target reliability that the manufacturer has to provide, we define the

function K(τ) for the extra design cost that would be incurred to improve reliability

to τ , τ
−

6 τ 6 τ̄ . Thus, K(τ
−

) = 0. Design costs of a component can be derived by

analyzing data of previous versions of the component or data of a similar component.

In general, design costs are assumed to be an increasing convex function of the

reliability level (see Mettas et al. Mettas (2000) and Kim et al. Kim et al. (2007b)).

We also assume that K(τ) is an increasing convex function of τ .

Production costs include all the costs incurred for the production of these N

components that will be installed in the systems. The production cost per part

is c(τ) which is an increasing convex function of τ . Then c(τ
−

)N is the baseline

production cost. This fixed amount will be invested by the manufacturer regardless

of the choice τ . Thus, we include P (τ) =
[

c(τ) − c(τ
−

)
]

N in our model. This is the

extra production costs that is incurred when N parts are produced with an MTBF

of τ instead of τ
−

.

2.3. Analysis

In this section, we first give the formulations of the spare parts costs, the repair costs,

and the downtime costs. Next, we derive a number of analytical properties of the

LCC function. We finalize the section by providing an optimization algorithm based

on those analytical properties.

2.3.1 Analysis of the Cost Functions

The average spare parts inventory, the number of ordinary and emergency repairs and

the downtime throughout [0, T ] depend on the out-of-stock probability of the spare

parts inventory. This out-of-stock probability is denoted by G(τ, s) and we start by
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determining this function.

The factors affecting the stock-on-hand process of the spare parts inventory and their

effects are as follows. Demands arrive at the spare parts inventory according to a

Poisson process with rate N/τ . Upon the arrival of a demand, if a ready-for-use

part is available from the inventory, the demand is satisfied (a part is taken from the

inventory) and a part is added to the inventory after a generally distributed lead time

with mean U . If there is an out-of-stock situation, the emergency procedure is applied

and the demand is lost. Remember that the spare parts inventory position (sum of

stock on hand and pipeline) is kept at a constant level which is set to s at time 0.

Consequently, the stock-on-hand process of the spare parts inventory is identical to

the process for the number of free servers in an Erlang loss system (also denoted as

the M/G/s/s queueing system) with an arrival rate N/τ , mean service time U , and

s servers. Hence, G(τ, s) is equal to the Erlang loss probability (see Cooper (1982)),

and we obtain

G(τ, s) =
(NU/τ)s

s!
s
∑

i=0

(NU/τ)i

i!

. (2.2)

Later on we will exploit the following property of G(τ, s).

Property 2.1 G(τ, s) is strictly decreasing and strictly convex in τ .

Proof: Our formulation of the Erlang loss probability g(τ, s) is mathematically

equivalent to the Erlang loss probability given by Harel (1990) with λ = NU and

µ = τ , where λ is the arrival rate and µ is the service rate in their notation. In Harel

(1990), Harel shows that the Erlang loss probability is strictly decreasing and strictly

convex in µ. This is equivalent to G(τ, s) being strictly decreasing and strictly convex

in τ . 2

The spare parts costs S(τ, s) are the sum of spare parts investment costs, S1(τ, s) =

c(τ)s, and spare parts storage costs, S2(τ, s). The formulations of S2(τ, s), repair

costs R(τ, s), and downtime costs D(τ, s) are given in Lemma 2.2 below. After that,

in Lemma 2.3 and Lemma 2.4 we provide the monotonicity properties of S(τ, s),

R(τ, s), and D(τ, s). In the proof of Lemma 2.2, we will exploit the property stated

in Lemma 2.1, which therefore is presented first.

Lemma 2.1 The numbers of applications of the ordinary procedure and that of the

emergency procedure performed throughout [0, T ] have Poisson distributions with

means (N/τ)T [1 − G (τ, s)] and (N/τ)TG (τ, s), respectively.
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Proof: Let Q be the random variable representing the length of time when there is

a part available from the inventory throughout [0, T ]. Then, E[Q] = T [1 − g (τ, s)].

Let M1 denote the random variable for the number of ordinary repairs throughout

[0, T ]. As the failures follow a Poisson process with rate Nτ−1, for a given Q = x,

M1 has Poisson distribution with mean Nτ−1x and

E[M1] =

T
∫

0

E[M1|Q = x]dx =

T
∫

0

N

τ
xdx =

N

τ
E[Q] =

N

τ
TG [1 − (τ, s)] .

The proof for the number of emergency repairs can be obtained similarly. 2

Lemma 2.2 It holds that:

(i)

S2(τ, s) =
h

α

(

1 − e−αT
)

[

s −
NU

τ
+

NU

τ
G(τ, s)

]

. (2.3)

(ii)

R(τ, s) = [1 − G (τ, s)]
N

τ

r1

α

(

1 − e−αT
)

+ G (τ, s)
N

τ

r2

α

(

1 − e−αT
)

. (2.4)

(iii)

D(τ, s) = [1 − G(τ, s)]
N

τ

d1

α
(1 − e−αT ) + G(τ, s)

N

τ

d2

α
(1 − e−αT ). (2.5)

Proof: See the Appendix at the end of the chapter. 2

The equations in Lemma 2.2 can be explained as follows: In equation (2.3),
h
α

(

1 − e−αT
)

can be interpreted as the NPV of the cost of storing one unit of spare

parts throughout [0, T ] while
[

s − NU
τ + NU

τ G(τ, s)
]

is the average inventory in the

steady state. The factor r1

αT

(

1 − e−αT
)

is the NPV of the cost of an arbitrary ordinary

repair and its multiplication with the expected number of ordinary repairs throughout

the lifetime, [1 − G (τ, s)](N/τ)T , results in the first term of equation (2.4), which

is the expected NPV of the cost of ordinary ordinary repairs throughout [0, T ]. The

second term of equation (2.4) can be explained in the same way as the expected NPV

of the costs of ordinary repairs. The downtime costs given by equation (2.5) have the

same interpretation as the repair costs.
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By Lemma 2.2, we can write equation (2.1) as

π(τ, s) = K(τ) +
[

c(τ) − c(τ
−

)
]

N + c(τ)s +
h

α

(

1 − e−αT
)

[

s −
NU

τ
+

NU

τ
G (τ, s)

]

+ [1 − G (τ, s)]
N

τ

r1 + d1

α

(

1 − e−αT
)

+G (τ, s)
N

τ

r2 + d2

α

(

1 − e−αT
)

. (2.6)

Lemma 2.3 For a fixed value of s, the following monotonicity properties hold:

(i) S(τ, s) is strictly increasing in τ for s > 0; S(τ, s) = 0 for s = 0.

(ii) R(τ, s) and D(τ, s) are strictly decreasing in τ .

Proof: See the Appendix at the end of the chapter. 2

Recall the assumption that K(τ) and c(τ) are increasing in τ . Together with this

assumption, Lemma 2.3 reflects the conflicting behavior of the costs included in π(τ, s)

for varying reliability levels: Some parts of π(τ, s) are increasing in τ while others are

decreasing in τ .

Lemma 2.4 For a fixed value of τ , the following monotonicity properties hold:

(i) S(τ, s) is strictly increasing in s.

(ii) R(τ, s) and D(τ, s) are decreasing in s.

Proof: See the Appendix at the end of the chapter. 2

Lemma 2.4 shows that there is also a trade-off among costs for varying spare parts

level.

2.3.2 Solution Procedure for Problem (P)

We give the properties of π(τ, s) that we exploit for its optimization in Lemma 2.5

below.

Lemma 2.5 π(τ, s) has the following properties:

(i) For a fixed τ ∈ [τ
−

, τ̄ ], π(τ, s) is strictly convex in s.
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(ii) For all τ ∈ [τ
−

, τ̄ ], lim
s→∞

π(τ, s) = ∞.

(iii) For a fixed s ∈ N0, π(τ, s) is strictly convex in τ .

(iv) For a fixed τ ∈ [τ
−

, τ̄ ], define s∗(τ) = min{arg min
s∈N0

π(τ, s)}, i.e., s∗(τ) is the

smallest value of s under which π(τ, s) is minimized. Then, s∗(τ) is decreasing

in τ .

Proof: See the Appendix at the end of the chapter. 2

(i) and (ii) in Lemma 2.5 imply that s∗(τ) is finite for a fixed value of τ and can

be found by standard procedures for optimization in one variable. Let (τ∗, s∗) be

a minimizer of π(τ, s). By (iv), s∗(τ̄ ) ≤ s∗ ≤ s∗(τ
−

). (iii) implies that we can also

find the optimal value of τ for a fixed value of s, which we denote by τ∗(s). Then,

an optimal solution (τ∗, s∗) can be found by enumerating all solutions (τ∗(s), s) for

s∗(τ̄ ) ≤ s ≤ s∗(τ
−

).

Theorem 2.1 The following procedure determines an optimal solution of of problem

(P):

1. Find s∗(τ̄ ) and s∗(τ
−

).

2. For each s = s∗(τ̄ ), s∗(τ̄ ) + 1, ..., s∗(τ
−

), solve the problem {min π(τ, s), s.t.

τ
−

≤ τ ≤ τ̄}. Let τ∗(s) be an optimal τ for a given s.

3. (τ∗, s∗) = arg min
(τ∗(s),s)

{π(τ∗(s), s), s = s∗(τ̄ ), s∗(τ̄ ) + 1, ..., s∗(τ
−

)} is an optimal

solution and π∗ = π(τ∗, s∗) is the corresponding minimum LCC.

2.4. Numerical Results

In this section, we present a numerical experiment which is based on healthcare

systems data. We identify four main factors in our model, generate a testbed of 81

instances by having three choices for each factor, and compute the optimal decision

parameters. Since our model is used during the design phase of a system and there is

not much data or information available in this phase, the estimates of the parameters

in our model are vulnerable to errors. Therefore, we also perform a sensitivity analysis.
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2.4.1 Testbed

We use the following modified version of the design cost function introduced by Mettas

(2000) (see Huang et al. (2007) as well) in our numerical experiments:

K(τ) = B1

[

exp

(

k
τ − τ

−

τ∞ − τ

)

− 1

]

, τ
−

≤ τ ≤ τ̄ ,

where B1 and k are strictly positive factors and τ∞ is a given reliability level that

exceeds τ̄ (i.e. τ̄ < τ∞). Notice that under this definition, reliability improvement

becomes infeasible already before the costs become infinite. k is a parameter that

represents the difficulty in increasing MTBF due to complexity, limited resources

and technology, etc. Larger values of k correspond to more difficulties in increasing

MTBF, so, higher design costs.

We formulate the unit production cost function as

c(τ) = A + B2(τm − τ
−

m), τ
−

≤ τ ≤ τ̄ ,

where A ≥ 0, B2 > 0, and m ≥ 1. This is a modified version of the unit

production cost function used by Huang et al. (2007). In their paper, Huang et

al. consider a situation in which production is carried out for a considerable duration

and incorporate a learning effect on top of an initial unit cost in their unit production

cost formulation. Since the production phase is negligibly short in our case, we omit

the learning effect and our formulation is similar to their initial unit cost function.

We investigate the effect of four factors on optimal decisions: component type

(explained below), number of systems N , downtime penalty rate p, and length of the

exploitation phase T . We created 81 instances by all combinations of three choices of

the four factors. The choices of the factors are given in Table 2.2.

Component type reflects the value of a component in monetary terms. At the smallest

possible MTBF, τ
−

, the unit production cost of an expensive component is larger than

that of a cheaper one. Furthermore, a certain amount of improvement in MTBF leads

to a higher increase in both the unit production cost and design cost of an expensive

component compared to a cheaper component. We realize the choices of component

type mainly through the parameter B1 in K(τ) and the parameters A and B2 in c(τ).

Table 2.2 Choices of the factors

Component type N T (months) p ($ per hour)

cheap, medium, expensive 100, 500, 2500 60, 120, 240 100, 500, 2500
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Table 2.3 Parameter values for component types

Parameters

Comp. B1 A B2 h ($/mt. r1 r2

Type ($) ($/mt.) ($) per pt.) ($ per rp.) ($ per rp.)

1 (ch) 200000 1000 10 20 600 1200

2 (med) 2000000 10000 100 200 1500 3000

3 (exp) 20000000 100000 1000 2000 10500 21000

h (the storage cost rate per part), r1, and r2 are also varied for different choices of

component type since each include a variable part which is positively correlated with

the design costs and unit production cost. We use k = 1 and m = 1 in K(τ) and

c(τ), respectively, for all three types of components. The other parameter values for

different component types are given in Table 2.3. In the table, comp., mt., pt., and

rp. stands for component, month, part, and repair, respectively.

Table 2.4 shows the values of the other parameters, which are fixed.

2.4.2 Results and Managerial Insights

We call the method where decisions on reliability level and the spare parts inventory

level are made separately the non-integrated method. In the non-integrated method,

while deciding on the reliability level, the focus is only on the design costs and the

production costs. Then, for any values of the parameters of the cost functions, the

OEM sets MTBF at the target value τ
−

since the sum of design costs and production

costs has its minimum value when τ = τ
−

. Next, the summation of the other cost

terms in π(τ, s), which belong to the exploitation phase, are optimized by the optimal

inventory level s for τ = τ
−

. Thus, the LCC found by the non-integrated method is

πn = π(τ
−

, s∗(τ
−

)). Denoting the optimal LCC in the joint optimization case as π∗, we

define the relative cost reduction achieved by the joint optimization as

∆π =
πn − π∗

πn
(100%).

We present the results of the experiment in Table 2.5. The numbers given in the

Table 2.4 Values of fixed parameters

τ
−

(mt.) τ̄ (mt.) τ∞ (mt.) µ1 (hours) µ2 (hours) L (mt.) α (per year)

24 240 360 10 50 3 0.05
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Table 2.5 Results of the experiment

Avg. τ∗ min τ∗ max τ∗ Avg. ∆π min ∆π max ∆π

Comp. 1 (ch) 162.63 68.91 240.00 72.6% 42.4% 88.4%

2 (med) 82.21 31.99 183.38 43.2% 6.1% 76.5%

3 (exp) 42.63 24.58 74.40 17.0% 0.1% 44.7%

N 100 79.96 24.58 202.92 39.0% 0.1% 84.3%

500 99.18 28.17 240.00 45.8% 2.0% 87.3%

2500 108.32 29.03 240.00 47.9% 2.7% 88.4%

p 100 62.18 24.58 148.68 29.7% 0.1% 70.6%

500 91.82 27.36 225.89 43.2% 1.3% 82.7%

2500 133.47 36.61 240 59.9% 11.5% 88.4%

T 60 79.82 24.58 240.00 35.9% 0.1% 85.4%

120 96.21 30.61 240.00 44.7% 4.1% 87.4%

240 111.44 36.78 240.00 52.1% 11.3% 88.4%

All 95.82 24.58 240.00 44.3% 0.1% 88.4%

columns named Avg. τ∗ and Avg. ∆πn are the average optimal MTBF values and

the average relative cost reduction values, respectively. For example, the values 162.63

and 72.6% in the first row are the average optimal MTBF and the average relative

cost reduction values found in the 27 instances with the cheap component. We also

depict the minimum and maximum values of the optimal MTBF to show whether the

lower bound τ
−

and the upper bound τ̄ are attained as optimal values. The minimum

and maximum relative cost reductions are also reported to show to what extent the

joint optimization can be advantageous.

We derive the following managerial insights by the results observed in our numerical

experiment:

• Avg. τ∗ is much higher for the cheap component than for the expensive

component. For the cheap component, reliability improvement is favoured by

the relatively low cost of reliability improvement and reductions in the repair

costs and downtime costs achieved by reliability improvement.

• Avg. τ∗ increases as the number of the systems increases. When the number

of the systems increases, the frequency of system failures increases under the

same τ , and, thus, repair costs and downtime costs increase. This constitutes

an incentive to choose a higher reliability level.

• Avg. τ∗ increases as the downtime penalty rate increases. The only effect of an
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increase in downtime penalty rate is an increase in downtime costs. A higher

reliability level compensates this increase.

• Avg. τ∗ increases as the exploitation phase gets longer. A longer exploitation

phase implies that the OEM has to deal with a larger number of failures and

suffer from higher repair costs and downtime costs. This provokes choosing a

higher reliability level.

Note that, the increasing/decreasing effects of all factors on Avg. τ∗ is significant.

Avg. ∆π follows the same pattern as Avg. τ∗. Generally, the larger the distance

between τ∗ and τ
−

, the larger the difference between πn and π∗, and the larger

∆π. Further, we should remark that the joint optimization leads to an average cost

reduction of 44.3% in our experiment and it can even go up to 88.4%. These reductions

correspond to large savings in absolute terms.

2.4.3 Sensitivity Analysis

We investigate the sensitivity of the optimal MTBF (τ∗) and the optimal LCC (π∗)

to design costs (K(τ)), unit production cost (c(τ)), the number of system (N),

downtime penalty rate (p), and the length of the exploitation phase (T ). We see

the 81 instances of the testbed of Subsection 2.4.1 as the true instances. Next, we

generate modifications of each true instance by deviating K(τ), c(τ), N , p, and T

by ±20% and ±50%. We provide the deviations of the functions K(τ) and c(τ) by

simply changing their coefficients. We identify each modification as a false case of the

true instance where an estimation error is made for a function or a factor. Then we

compare the optimal solutions of the true instances and that of their false cases.

Let πtrue(τ, s) be the LCC function of a true instance (i.e., πtrue(τ, s) has the correct

parameter values for that instance). Let τ∗
true, s∗true, and π∗

true = πtrue(τ∗
true, s

∗
true)

be the optimal MTBF, spare parts inventory level and optimal LCC of the instance,

respectively. Let τ∗
false and s∗false be the optimal MTBF and spare parts inventory

level of a false modified instance. We use

∆τ∗ =
τ∗
false − τ∗

true

τ∗
true

(100%),

∆s∗ =
s∗false − s∗true

s∗true

(100%),

and

∆π∗ =
πtrue(τ∗

false, s
∗
false) − π∗

true

π∗
true

(100%)
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Table 2.6 Results of the sensitivity analysis (1)

K(τ ) c(τ ) N

∆̄τ∗ ∆̄s∗ ∆̄π∗ ∆̄τ∗ ∆̄s∗ ∆̄π∗ ∆̄τ∗ ∆̄s∗ ∆̄π∗

-50% 6.2% -4.6% 0.5% 18.8% -10.4% 2.5% -6.8% -39.1% 29.1%

-20% 2.3% -1.7% 0.1% 6.3% -4.0% 0.3% -2.0% -14.9% 3.7%

+20% -1.8% 1.4% 0.0% -5.6% 5.0% 0.3% 1.9% 14.2% 1.7%

+50% -4.2% 3.6% 0.3% -10.7% 8.2% 1.1% 3.7% 36.0% 6.3%

to measure the error in the optimal MTBF, the optimal spare parts inventory level,

and the optimal LCC.

We calculate ∆τ∗, ∆s∗, and ∆π∗ for each of the false instances. We summarize the

results of the analysis in Table 2.6 and Table 2.7, where ∆̄τ∗, ∆̄s∗ and ∆̄π∗ denote

the averages of the percent differences in the optimal MTBF and percent differences

in LCC for the 81 instances, respectively. For example, the values -4.2%, 3.6%, and

0.3% in the last row of Table 2.6 are the averages of ∆τ∗, ∆s∗, and ∆π∗, respectively,

when design costs are 50% higher. Our focus is on the ∆τ∗ and ∆π∗ since we concern

supporting the reliability decision in the design phase for optimal LCC. We use ∆s∗

to explain why ∆τ∗ and ∆π∗ follow the same pattern with the deviations in the

functions and factors.

In Table 2.6 and Table 2.7 large deviations in the LCC can only be observed with

respect to the parameter N while for all other factors the model is robust against

estimation errors. Especially when the expected number of systems to be sold is

underestimated, the resulting costs will be high, because low values of N lead to

less investment in reliability and spare parts inventory, which leads to low initial

investment costs but higher costs in the exploitation phase. When such a situation

is discovered in practice, replenishment of extra spare parts during the exploitation

phase (possibly against a higher unit price than the initial price) can be an option to

reduce the LCC.

The optimal MTBF is more sensitive to c(τ), p, and T compared to K(τ) and N . In

Table 2.7 Results of the sensitivity analysis (2)

p T

∆̄τ∗ ∆̄s∗ ∆̄π∗ ∆̄τ∗ ∆̄s∗ ∆̄π∗

-50% -12.8% 6.9% 2.2% -18.5% 15.5% 3.5%

-20% -4.6% 2.2% 0.2% -6.1% 4.6% 0.3%

+20% 4.2% -2.1% 0.2% 5.2% -3.6% 0.2%

+50% 9.6% -4.4% 0.8% 11.3% -7.5% 0.9%
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cases where |∆τ∗| is high, ∆π∗ is significantly low. These cases also have high values

of |∆s∗|; i.e., |∆s∗| acts as a compensator when |∆τ∗| is high, too.

2.5. Conclusions

In this chapter, we introduced a reliability optimization model for critical components.

We formulated the costs that are affected by the reliability level of the component

and its spare parts inventory level throughout the life time of a number of systems

(LCC). We showed certain analytical properties of the cost function and derived an

optimization procedure based on these properties.

We conducted a numerical study based on real-life data to derive insights about how

certain factors, such as component type (cheap, medium, expensive), the size of the

installed base, the downtime penalty rate, and the lifetime of the system, affect the

optimal reliability decision. We showed that our method leads to significant cost

reductions compared to a non-integrated optimization method. The results of the

experiment revealed that the optimal value of MTBF of a component depends on

whether the component is cheap or expensive, the number of systems to be installed,

downtime penalty rate and the length of exploitation phase. We also performed

a sensitivity analysis for all the instances in our experiment and showed that the

primary parameter to be concerned with is the size of the installed base and the

optimal LCC have negligible or limited sensitivity to the other major parameters in

our model.

As mentioned in Section 2.1, the findings in this chapter can be used as a foundation

for a relevant multi-stage problem. In the next chapter, we will explain how to

establish such a relation in detail for a redundancy allocation problem.
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Appendix

Proof of Lemma 2.2: (i) Let I(t) be the random variable denoting inventory on

hand at time t, fI(t)(x) be its probability mass function and h′(t) be the expected

rate at which storage cost is incurred at time t. Then

h′(t) = h

∞
∑

x=0

xfI(t)(x).

The expected NPV of storage cost throughout [0, T ], S2(τ, s), is

S2(τ, s) =

T
∫

0

h′(t)e−αtdt =

T
∫

0

h

(

∞
∑

x=0

xfI(t)(x)

)

e−αtdt. (2.7)

Because the stochastic process I= {I(t) : t > 0} is assumed to be in steady-state

throughout [0, T ], (2.7) may be further rewritten as

S2(τ, s) =

T
∫

0

h

(

∞
∑

x=0

xfI(x)

)

e−αtdt =





T
∫

0

he−αtdt





(

∞
∑

x=0

xfI(x)

)

=
h

α

(

1 − e−αT
)

(

∞
∑

x=0

xfI(x)

)

, (2.8)

where by fI(x) denotes the steady-state distribution of I. Let Ī(τ, s) denote the

expected steady-state inventory level for a given τ and s. Then Ī(τ, s) is equal to the

average number of idle servers in Erlang Loss System:

Ī(τ, s) =

∞
∑

x=0

xfI(x) = s −
NU

τ
+

NU

τ
g(τ, s) (2.9)

where g(τ, s) is the probability of being out of stock (see (2.2) in Section 2.3). By

substitution of this result into (2.8), we obtain

S2(τ, s) =
h

α

(

1 − e−αT
)

[

s −
NU

τ
+

NU

τ
g(τ, s)

]

(ii) Let M1 and M2 be the random variables representing the numbers of ordinary

repairs and emergency repairs performed throughout [0, T ], respectively. By Lemma

2.1, M1 and M2 have Poisson distributions with means [1 − G (τ, s)](N/τ)T and

G (τ, s) (N/τ)T , respectively.

Let W1,..., WM1 be the random variables representing the times of failures leading to

instances of ordinary system repair throughout [0, T ] and V1,..., VM1 be the NPVs of
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the costs of the respective instances. Wi’s are unordered times, that is, W1 does not

necessarily represent the time of the first failure, W2 does not necessarily represent

the time of the second failure, and so on. Since failures follow a Poisson process,

Wi’s are independent and uniformly distributed. That is, letting fWi
(t) denote the

probability density function of Wi, fWi
(t) = 1/T , 0 ≤ t ≤ T . Then we can derive

E[Vi], the expectation of Vi, by conditioning on Wi.

E [Vi] =

T
∫

0

E [Vi|Wi = t]fWi
(t)dt =

T
∫

0

r1e
−αt 1

T
dt =

r1

αT

(

1 − e−αT
)

, i = 1, ..., M1.

Let P1 be the NPV of the costs of instances of ordinary system repair that are

performed throughout [0, T ].

E [P1|M1 = m] = E

[

m
∑

i=0

Vi|M1 = m

]

= E

[

m
∑

i=0

Vi

]

=

m
∑

i=0

E [Vi] = mE [V1] .

since E[Vi]’s are the same for all i. Let fM1(m) denote the probability mass function

of M1. Then

E [P1] =

∞
∑

m=0

E [P1|M1 = m] fM1(m) =

∞
∑

m=0

mE [V1] fM1(m)

= E [M1] E [V1] = [1 − G (τ, s)]
N

τ

r1

α

(

1 − e−αT
)

.

We denote the NPV of the costs of instances of emergency system repair that are

performed throughout [0, T ] by P2. Using similar arguments, E [P2] can be derived

as

E [P2] = G (τ, s)
N

τ

r2

α

(

1 − e−αT
)

.

Then

R(τ, s) = [1 − G (τ, s)]
N

τ

r1

α

(

1 − e−αT
)

+ G (τ, s)
N

τ

r2

α

(

1 − e−αT
)

.

(iii) Follows from the same arguments used in the proof for R(τ, s) in part(ii).

Proof of Lemma 2.3: (i) S(τ, s) = S1(τ, s) + S2(τ, s) and it is trivial to show that

S(τ, s) = 0 when s = 0. For a fixed s > 0, S1(τ, s) = c(τ)s is increasing in τ as c(τ)

is increasing in τ .

The Erlang loss probability g(τ, s) can be expressed as B(s, a) = as

s! /
s
∑

i=0

ai

i! , where

a = (N/τ)L; a represents the arriving workload in the corresponding Erlang loss
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system. Then the average inventory given in equation (2.9) can be rewritten as

Ī (τ, s) = Ī

(

NU

a
, s

)

= s − a[1 − B(s, a)].

a[1 − B(s, a)] is known as the carried load in the Erlang loss system and is strictly

increasing in a for a fixed value of s > 0 (see Appendix A). Thus, Ī
(

NU
a , s

)

is

strictly decreasing in a, which implies that Ī(τ, s) is strictly increasing in τ . As
h
α

(

1 − e−αT
)

> 0, this monotonicity property of Ī(τ, s) implies that S2(τ, s) is strictly

increasing in τ for s > 0 (see equation (2.3)). Hence, S(τ, s) is strictly increasing in

τ for s > 0.

(ii) R(τ, s) can be rewritten as

R(τ, s) =
r1

α

N

τ

(

1 − e−αT
)

+ g(τ, s)
r2 − r1

α

N

τ

(

1 − e−αT
)

. (2.10)

For its derivative with respect to τ , we find:

∂R(τ, s)

∂τ
= −

r1

α

N

τ2

(

1 − e−αT
)

+ N
r2 − r1

α

(

1 − e−αT
)

[

∂g(τ, s)

∂τ

1

τ
−

1

τ2
g(τ, s)

]

.

∂g(τ,s)
∂τ < 0 as g(τ, s) is strictly decreasing in τ (see Property 2.1). Thus, ∂R(τ,s)

∂τ < 0.

The proof for D(τ, s) follows from the same arguments as used for R(τ, s).

Proof of Lemma 2.4: (i) It is trivial that S1(τ, s) = c(τ)s is increasing in s (note

that S1(τ, s) = 0 when c(τ) = 0). Let ∆S2(τ, s) = S2(τ, s + 1) − S2(τ, s).

∆S2(τ, s) =
h

α

(

1 − e−αT
)

{

1 − [g(τ, s) − g(τ, s + 1)]
NU

τ

}

. (2.11)

The Erlang loss probability G(τ, s) is strictly decreasing and strictly convex in s (see

Karush (1957); see also Remark 2 in Kranenburg and van Houtum (2007)). This

implies that ∆g(τ, s) = g(τ, s) − g(τ, s + 1) in equation (2.11) is strictly decreasing in

s. The maximum value of ∆g(τ, s) for a fixed τ is attained when s = 0, and

∆g(τ, 0) = 1 −
NU
τ

1 + NU
τ

=
τ

τ + NU
. (2.12)

Then

∆g(τ, s)
NU

τ
6 ∆g(τ, 0)

NU

τ
=

NU

τ + NU
< 1, (2.13)

which implies that

∆S2(τ, s) =
h

α

(

1 − e−αT
)

[

1 − ∆g(τ, s)
NU

τ

]

> 0. (2.14)
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That is, S2(τ, s) is strictly increasing in s. Hence, S(τ, s) is strictly increasing in s.

(ii) The first term of R(τ, s) in equation (2.10) is constant. As g(τ, s) is strictly

decreasing in s, (1 − eαT ) > 0, and r1 ≤ r2, R(τ, s) is decreasing in s. The proof for

D(τ, s) follows from the same arguments.

Proof of Lemma 2.5: (i) We rewrite equation (2.6) as

π(τ, s) = K(τ) +
[

c(τ) − c(τ
−

)
]

N +
N

α
(r1 + d1)

(

1 − e−αT
) 1

τ
+ c(τ)s

+
h

α

(

1 − e−αT
)

[

s −
NU

τ

]

+
N

α

(

1 − e−αT
)

(hL + r2 + d2 − r1 − d1)
1

τ
g(τ, s). (2.15)

For a fixed value of τ :

• The first three terms of (2.15) are constant.

• The fourth and fifth term are linear in s.

• The last term in (2.15) is strictly convex in s because the Erlang loss probability

G(τ, s) is strictly convex in s,
(

1 − e−αT
)

> 0, r1 ≤ r2, and d1 ≤ d2.

Hence π(τ, s) is strictly convex in s.

(ii) For a fixed value of τ :

• The first three terms of (2.15) are constant.

•

lim
s→∞

{

c(τ)s +
h

α

(

1 − e−αT
)

[

s −
NU

τ

]}

= ∞.

• The last term depends on s via g(τ, s), but it is bounded from below by 0.

Hence lim
s→∞

π(τ, s) = ∞.

(iii) We rewrite equation (2.6) for π(τ, s) as

π(τ, s) = −c(τ
−

)N +
h

α

(

1 − e−αT
)

s + K(τ) + c(τ)N + c(τ)s

+
N

α

(

1 − e−αT
)

(r1 + d1 − hL)
1

τ

+
N

α

(

1 − e−αT
)

(hL + r2 + d2 − r1 − d1) g(τ, s)
1

τ
(2.16)

Recall that hL ≤ r1 ≤ r2, h > 0, L > 0, and d1 ≤ d2. For a fixed value of s:
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• The first two terms of (2.16) are constant.

• The following three terms are convex in τ .

• The sixth term is strictly convex in τ .

• The last term is also strictly convex in τ . Let

f(τ, s) = g(τ, s)
1

τ
.

Then
∂2f(τ, s)

∂τ2
= .

[

∂2g(τ, s)

∂τ2

1

τ
− 2

1

τ2

∂g(τ, s)

∂τ
+

2

τ3
g(τ, s)

]

.

As g(τ, s) is strictly decreasing and strictly convex in τ , ∂g(τ,s)
∂τ < 0 and

∂2g(τ,s)
∂τ2 > 0. So, ∂2f(τ,s)

∂τ2 > 0, which implies the strict convexity of the last

term in τ .

Hence, π(τ, s) is strictly convex in τ .

(iv) Let ∆π(τ, s) = π(τ, s + 1) − π(τ, s). As we define s∗(τ) = min{arg min
s∈N0

π(τ, s)},

by parts (i) and (ii) imply that s∗(τ) is the smallest value of s satisfying ∆π(τ, s) > 0

and s∗(τ) is finite. The inequality ∆π(τ, s) > 0 may be shown to be equivalent to

(use equation (2.15))

∆g(τ, s)

τ
>

h(1 − e−αT ) + αc(τ)

N(1 − e−αT )(hL + r2 + d2 − r1 − d1)
, (2.17)

where that ∆g(τ, s) = g(τ, s) − g(τ, s + 1). Let a = (N/τ)L represents the arriving

workload in the corresponding Erlang loss system, as in the proof of Lemma 2.3. Let

FB(s + 1, a) = a [B(s, a) − B(s + 1, a)]. FB(s + 1, a) is known as the load carried by

the last server in the Erlang loss system (with s + 1 servers). Then, equation (2.17)

may be rewritten as

hL(1 − e−αT ) + αc(NU
a )

(1 − e−αT )(hL + r2 + d2 − r1 − d1)
− FB(s + 1, a) ≥ 0. (2.18)

FB(s + 1, a) is known to be increasing in a (see Appendix A). Hence, the lefthand

side of inequality (2.18) is decreasing in a for each s. This implies that the first s for

which inequality (2.18) is satisfied is increasing in a, and s∗(τ) (the first s for which

inequality (2.17) is satisfied) is decreasing in τ .
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Chapter 3

Redundancy Allocation for

Serial Systems

3.1. Introduction

In Chapter 2, we worked on a single-stage reliability optimization problem. We focus

on a redundancy allocation problem, which is a multi-stage problem by definition,

in this chapter. As we stated in Chapter 2, the approach that we follow in this

chapter will also help the reader to connect the single-stage problem in Chapter 2 to

a corresponding multi-stage problem.

In this chapter, we investigate a situation in which a user buys a number of systems.

Each system is composed of subsystems placed in a serial structure (i.e., a failure of

any subsystem leads to a system failure). At most two identical, repairable parts can

be used in a cold standby redundancy setting in each subsystem; that is, only one

part is active in each subsystem and if there is a redundant part in a subsystem, it

immediately becomes active when the active part in the subsystem fails.

We also extend the range of application of the emergency procedure in this chapter

compared to the one defined in Chapter 2. The emergency procedure defined in

Chapter 2 is applied only when there is an out-of-stock situation upon a failure

while the one in this chapter can also be applied when stock-on-hand is one, as a

preventive measure to avoid long downtime. The probability of stock-out events

decreases significantly with the preventive application of the emergency procedure,

meaning a failed part is almost always replaced with a ready-for-use one form the

inventory. However, the activities performed in an application of the emergency
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procedure when stock-on-hand is one, slightly differ from the activities performed in

an application of the emergency procedure in an out-of-stock situation. Thus, we

only refer to the procedure applied when there is an out-of-stock situation as the

emergency procedure and name the procedure applied when stock-on-hand is one the

provision procedure, for the sake of clarity. We will give the details of these procedures

in Subsection 3.2.1 and clarify their difference.

We consider the case in which the availability requirement is defined as a constraint

on the total uptime throughout the lifetime of a number of systems. In the problem

formulation, we translate this constraint to an equivalent downtime constraint.

The user can implement one of the following three policies per stage:

1. Policy (0,0) - Do not choose redundancy and apply the emergency procedure

when a failure occurs and there is an out-of-stock situation.

2. Policy (0,1) - Do not choose redundancy and apply the provision procedure when

a failure occurs and stock-on-hand is 1.

3. Policy (1,0) - Choose redundancy and apply the emergency procedure when a

failure occurs and there is an out-of-stock situation.

In the name Policy (y, z), y represents whether redundancy is chosen or not and z

represents whether the emergency procedure or the provision procedure is applied.

These policies provide different total uptime against different TCO. If Policy (1,0) is

chosen for a stage, 100% availability of the corresponding subsystems is attained. As

a result, choosing redundancy and applying the provision procedure for a stage does

not provide any further advantage in terms of availability and we exclude Policy (1,1)

in our study.

Cold standby redundancy can be considered as a special strategy for keeping spare

parts inventory: A number of spare parts dedicated to a certain subsystem of a

system are kept in the system rather than at another location. Furthermore, when

a single system is considered, a redundancy allocation model is equivalent to a spare

parts inventory model under certain assumptions (e.g. negligible switching time for

redundancy and negligible replacement time for spare parts, costs stemming from a

standby part is equal to that stemming from a spare part); see Black and Proschan

(1959). Due to this equivalence, Mizukami (1968), Bryant and Murphy (1983), and

Wells and Bryant (1985) use the terms standby parts and spares interchangeably.

Spare parts and redundancy are not equivalent in our case, as is common in a number

of papers in the literature.

Sharma and Misra (1988) and Misra and Sharma (1991) present models similar to

ours in which the equivalence of redundancy and spare parts does not hold. However,
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as explained in Section 1.6, these papers have the following limitations: They do

not include maintenance costs and their models do not incorporate any emergency

procedures, meaning considerably long downtime is allowed. In addition, these models

are developed for a single system, so the pooling effect of multiple systems on spare

parts does not exist.

The contributions of this chapter are:

• First, we develop a model for redundancy allocation of a capital good in the

design phase. This model includes three different policies per stage as explained

above. We develop a problem formulation in which the three policies per stage

are represented. The formulation can be summarized as the minimization of

the TCO of a general number of systems under a defined downtime constraint.

TCO includes acquisition costs, spare parts costs, and repair costs. We explicitly

relate the redundancy level and spare parts inventory level of each subsystem

to these costs and the downtime of the systems.

• Second, we decompose the multi-stage problem into single-stage problems by

using the Lagrangian relaxation method. The multi-stage problem has a

combinatorial nature as any of the three policies can be applied per stage. Our

decomposition enables the generation of optimal solutions for the multi-stage

problem efficiently, without considering all possible combinations: The single-

stage problems have the same formulations with different parameter values.

We show that a solution for the multi-stage problem can be generated by

finding solutions of each of the single-stage problems. We develop an efficient

optimization procedure which can be used to solve any of the single-stage

problems for varying resource levels of the downtime constraint. Thus, our

procedure can be used to find solutions for the multi-stage problem for varying

resource levels of the downtime constraint efficiently.

• Third, we compare the three policies at the stage level and provide conditions

under which one policy outperforms the other. When the downtime constraint is

loose, Policy (0,0) is optimal. As the constraint becomes tight (i.e., the resource

level of the downtime constraint is decreased), one of the following two cases

occurs depending on the values of the parameters such as the MTBF of a part,

the number of the systems, the lifetime of the systems, the unit repair costs and

the mean downtime stemming from the ordinary and the emergency procedures,

the unit storage rate of a part, and the repair lead time of a part:

– Policy (0,1) becomes optimal after a certain level, say D1, of the constraint.

As the constraint is further tightened, it remains optimal until another

level, say D2 < D1, at which Policy (1,0) becomes optimal. Policy (1,0)
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remains optimal for all smaller resource levels afterwards; that is, it remains

optimal for all recourse levels that lie within [0, D2].

– Policy (1,0) becomes optimal after a certain level, say D3, of the constraint

and remains optimal for all smaller resource levels afterwards; that is, it

remains optimal for all recourse levels that lie within [0, D3].

We show that the values of the TCO and downtime (or uptime) when the optimal

policy changes from one to the other can be easily computed. Notice that the

conditions under which Policy (1,0) is optimal correspond to the situations in

which having redundancy is optimal.

• Fourth, we provide the following multi-stage results:

– We introduce a method to construct an efficient frontier which reflects the

trade-off between the uptime and the TCO. The optimal value of the TCO

and uptime, when the policy decision for a stage is changed from one to

another, is found by this method.

– We provide a method for ordering of the stages in a capital good

reflecting the benefits of investing in redundancy. In many cases, one

is interested in finding the optimal order to implement redundancy for

stages, while making one-by-one decisions during the design due to some

other considerations (e.g. there might be a budget limit and one might

follow such an order until the budget limit is reached).

As we compared the model in Chapter 2 to a number of models existing in the

literature, we also provide a comparison of the model in this chapter to the models

existing in the literature in Table 3.1. The discriminative attributes that are

incorporated in our model are identified as maintenance costs, multi-component

(system-level), multiple systems, spare parts and the emergency procedure. We

include the papers which have at least one of the given attributes.

This chapter is organized as follows. In Section 3.2, we present our model assumptions.

Next, we formulate our problem, derive the cost functions and decompose the multi-

stage problem into single-stage problems by using the Lagrangian relaxation method

in Section 3.3. We finalize the chapter by comparing the three policies on stage level

and providing the multi-stage results in Section 3.4.

3.2. Model

A capital good is being designed by an Original Equipment Manufacturer (OEM) for

a user. The user will buy N (N ∈ N = {1, 2, ...}) systems. We assume that the N
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systems will start operating at the same time and it is estimated that they will be in

use for a time length of T years, which is in the order of 10-30 years. We denote the

exploitation phase of the systems by [0, T ]. The user requires the uptime of at least

p ∈ (0, 1] of the total possible operational time (NT system-years). We will use p as

an availability measure in Subsection 3.4.3.

The capital good includes m (m ∈ N = 1, 2, ...) stages placed in a serial structure.

Each component is included in only one stage, so there is a 1-1 relationship between

stages and components. We index stages and components with the same indices; that

is, stage i includes component i, i ∈ M = {1, 2, ..., m}. We refer to a subsystem of

stage i as a stage-i subsystem and a part of component i as a component-i part. Each

stage i, i ∈ M , includes at least one unit of component i; the user can choose to have

a second unit of component i in a cold standby redundancy setting.

The user may keep spare parts inventory for each stage at a single stock point. She

buys si component-i spare parts together with the systems at time 0. We refer to the

purchase of the spare parts at time 0 as the initial supply. There will be a single repair

facility for defective parts. The user also agrees with the OEM for replenishment of

ready-for-use parts as soon as possible via a fast transportation mode (e.g. by plane)

in case of need. We assume that the OEM has ample supply of the parts.

Table 3.1 Comparison of papers on redundancy allocation
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3.2.1 Failure and Repair Processes

We denote the MTBF of a component-i part by τi. The τi, i ∈ M , are typically in the

order of 1-10 years and known by the user. We assume that the failures of a part in a

system are independent of the failures of the other parts in the system and the total

stream of failures of component-i parts follows a Poisson process with the constant

rate Nτ−1
i throughout [0, T ]. Remember that the memoryless property of the Poisson

failures implies that there is no aging (degradation) effect. As stated in Subsection

2.2.1, this assumption is justified when the number of the systems (N) is sufficiently

large or if lifetimes of parts are close to exponential. Also, remember that the short

downtimes justify the assumption of constant failure rates.

Upon the failure of a component-i part at time t ∈ [0, T ], one of the ordinary

procedure, the provision procedure or the emergency procedure defined below will

be applied. These definitions are independent of choosing redundancy or not for a

stage. That is, each procedure will be applied in the defined manner for the stage

regardless of the redundancy decision of the stage. Which procedure is applied will

depend on a predetermined threshold value zi ≥ 0 for the actual stock-on-hand, which

we denote by Hi(t), and Hi(t) itself:

1. Ordinary Procedure: If Hi(t) > zi, the failed part is replaced with a ready-for-

use part from the inventory. The defective part is transported to the repair

facility for a repair. After the repair, the part is restored to an as-good-as-new

condition and added to the spare parts inventory.

2. Provision Procedure: If the 0 < Hi(t) ≤ zi, the failed part is replaced with a

ready-for-use part from the inventory. An as-good-as-new component-i part is

replenished from the OEM and added to the inventory. The defective part is

returned to the OEM.

3. Emergency Procedure: If the Hi(t) = 0 (out-of-stock situation), an as-good-as-

new component-i part is replenished from the OEM and directly transported to

the location of the failure. The failed part is replaced with the replenished part

and returned to the OEM.

Notice that if zi = 0, the provision procedure is never applied and we have the same

ordinary procedure and emergency procedure defined in Chapter 2.

We assume that when a part fails during the exploitation phase, it will be diagnosed

with 100% accuracy in a negligibly short time. If the failure occurs in a subsystem

with a single part, the subsystem becomes operational just after the replacement of

the failed part. The downtime after a failure of a part is equal to the replacement time
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of the part. We call a replacement in an application of the ordinary procedure or the

provision procedure an inventory-replacement and a replacement in an application

of the emergency procedure an OEM-replacement due to the replacement modes.

Inventory-replacement times are independently and identically distributed with mean

µ1,i > 0, for all i ∈ M . Similarly, OEM-replacement times are independently and

identically distributed with mean µ2,i. µ1,i and µ2,i are in the order of 1-48 hours and

µ1,i ≤ µ2,i as the stock point of the spare parts is at a close distance to the systems

(the stock point and the systems may even be at the same site). The emergency

procedure assures that downtimes are short even in out-of-stock situations as one does

not have to wait until a ready-for-use part becomes available from the repair facility.

The provision procedure serves as a preventive action to avoid longer downtimes that

would rise in out-of-stock situations, in which OEM-replacements take place.

The repair facility has planned lead times for all repairs. Again, as stated in

Subsection 2.2.1, this is a standard assumption in the spare parts inventory literature.

We assume that repair times of component-i parts which include time to transport the

part to and from the repair facility are independent and identically distributed with

mean Ui > 0 which is typically in the order of 1-4 months. The orders of magnitude

imply that µ2,i is very small compared to Ui, which reflects the users incentive to

apply the emergency procedure.

For zi > 0, if a component-i part fails at time t and 0 < Hi(t) ≤ zi, the part which

is replenished by the provision procedure is added to the inventory after a random

lead time with mean µ3,i. µ3,i is also in the order of 1-48 hours (the distance between

the OEM’s site and the user’s stock point is comparable to the distance between the

OEM’s site and the location(s) of the systems). Notice that this lead time has no

relation to the replacement times.

Upon a failure, the spare parts inventory of component i is affected as follows. If the

ordinary procedure or the provision procedure is applied, a part is removed form the

inventory and a part is added to the inventory after some lead time. If the emergency

procedure is applied, demand is lost for the inventory; i.e., no parts are removed or

added to the inventory. As a result, the assumed procedures imply that the inventory

position (the sum of pipeline stock and actual stock-on-hand) of component-i is kept

at a constant level which is equal to the initial supply amount si. Similar to the

situation in Subsection 2.2.1, for component i, we may also say that the spare parts

inventory is controlled by a continuous-review basestock policy with basetock level si.
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3.2.2 Policies

For each stage i, i ∈ M , we denote the redundancy decision by yi: yi = 0 means that

no redundancy is chosen and yi = 1 means that redundancy is chosen. The user can

implement one of the three policies which are defined couples (yi, zi) as follows:

1. Policy (0,0) - Do not choose redundancy (yi = 0) and apply only the ordinary

procedure and the emergency procedure.

2. Policy (0,1) - Do not choose redundancy (yi = 0) and apply the ordinary

procedure and the provision procedure with zi = 1.

3. Policy (1,0) - Choose redundancy (yi = 1) and apply only the ordinary procedure

and the emergency procedure.

Notice that Policy (0,1) requires si ≥ 1. Also notice that the number of policies on

the system level is m3. Now, we compare downtimes under the policies.

Under Policy (0,0), downtimes arise during both inventory-replacements and OEM-

replacements.

We assume that µ3,i is very small compared to τi/N , which is the mean time

between events in the process of the total stream of failures of component-i parts.

Consequently, under Policy (0,1), if a component-i part fails at time t and Hi(t) = 1

(the provision procedure is applied), the probability that a component-i part in

another system would fail during the replenishment lead time is negligibly small.

Based on this, we assume that no failure of component-i parts occurs during the

replenishment lead time, which means that there is at least one component-i part

available from the inventory whenever a component-i part fails. As a result, the

emergency procedure is never applied under Policy (0,1) and downtimes arise only

during inventory-replacements.

Similarly, under Policy (1,0), at most one of the two component-i parts in each stage-i

subsystem will be active at any instant during the exploitation phase. We assume

that the switchover will be perfect and instantaneous in all stage-i subsystems; that

is, when an active part fails, the standby part will take over the functionality in

a negligibly small time without any failure (this is a standard assumption in the

redundancy allocation literature). As µ1,i ≤ µ2,i and µ2,i is very small compared to

τi (see their orders of magnitude), the failed part will be replaced by the ordinary

procedure or the emergency procedure in a negligibly short time compared to the

MTBF of the standby part. Thus, the failure probability of the subsystem will

be negligibly small. Hence, we assume that the redundancy is sufficient for 100%
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availability of the subsystem (no downtime), and limit the redundancy setting to two

parts.

Under Policy (0,0) and Policy (0,1), when a subsystem fails and leads to a system

failure, the probability that another subsystem with a single part in the same system

would fail before the failed part is replaced by the ordinary procedure or the emergency

procedure is negligibly small as µ1,i ≤ µ2,i and µ2,i is very small compared to τj for

all i, j ∈ M . Thus, we assume that downtimes of different subsystems in a system

do not overlap. That is, when a system is down, only one of its subsystems with a

single part is down. This assumption leads to a simple formula for availability (or

downtime).

3.2.3 Cost Factors

The objective is the minimization of the portions of TCO which are affected by

the policy chosen for each stage and the initial supply amount of its spare parts

inventory. These portions are the acquisition costs, the spare pasts costs, and the

repair costs stemming from the applications of the three procedures. We assume that

the acquisition costs of the N systems and spare parts are incurred at time 0. The

other costs are incurred throughout [0, T ] and their Net Present Values (NPVs) at

time 0 are taken into account. We denote the discount rate by α > 0. We use the

following notation to refer to the cost parameters in our model:

c0,i: Unit acquisition cost of a component-i part during the initial supply.

c1,i: Extra cost incurred for a stage-i subsystem with two component-i parts

in a redundancy setting.

hi: The storage cost rate per spare part of component i (hi > 0 for all

i ∈ M).

r1,i: Expected costs incurred per application of the ordinary procedure for

a component-i part (r1,i > 0 for all i ∈ M).

r2,i: Expected costs incurred per application of the emergency procedure for

a component-i part (r2,i > 0 for all i ∈ M).

Also expected costs incurred per application of the provision procedure

for a component-i part; see the explanation below.

In the emergency procedure, a ready-for-use part is transported from the OEM’s site

to the location of the failure and the failed part is transported from the location of

the failure to the OEM’s site. In the provision procedure, a ready-for-use part is

transported from the stock point to the location of the failure, another ready-for-

use part is transported form the OEM’s site to the stock point and the failed part is
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transported from the location of the failure to the OEM’s site. Despite this difference,

we assume that the costs incurred in the two cases are equal as the stock point is at

a close distance to the systems.

The factor r1,i includes all costs originating from an instance of the ordinary procedure

applied for a component-i part, which are administrative costs, costs of a visit of

a service engineer, transportation costs, and repair costs of a failed component-i

part. Similarly, the factor r2,i includes all costs originating from an instance of the

emergency procedure or the provision procedure applied for a component-i part, which

are administrative costs, costs of a visit of a service engineer, relevant transportation

costs and replenishment costs of a component-i part from the OEM.

We assume that r2,i ≥ r1,i; that is, an application of the emergency procedure costs

at least as much as an application of the ordinary procedure, which is an incentive for

the user to keep spare parts and apply the ordinary procedure. Generally, r2,i will be

much larger than r1,i.

The effect of redundancy in a subsystem on its acquisition cost appears as an extra cost

compared to a subsystem without redundancy. The variable part of the acquisition

costs of the subsystems originate from this extra cost. So, in our model, we only take

into account this extra cost and treat the acquisition cost without redundancy as a

fixed cost. Notice that, c0,i is defined as the unit acquisition cost of a component-i

part but not as the unit acquisition cost of stage-i subsystem without redundancy. It

serves in the formulation of the acquisition costs of spare parts.

The spare parts costs includes the spare parts investments costs (i.e. acquisition)

and the spare parts storage costs. The resources for storing si units of component-i

part are allocated permanently throughout [0, T ]. That is, at any instant, the costs

incurred for storing spare parts depend on the initial supply amount (si), not on

actual stock-on-hand.

The repair costs stemming from the ordinary procedure and the emergency procedure

depend on the stock-on-hand processes of the spare parts. We assume that the spare

parts stock-on-hand process of each component is in the steady state from time 0.

3.3. Problem Formulation

In this section, we first give the multi-stage problem formulation and several

preliminary results. Next, we derive the cost and downtime functions which constitute

the problem formulation. We finalize the section by decomposing the multi-stage

problem into single-stage problems by the Lagrangian relaxation.
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Our problem formulation is as follows:

(Q0) min π(y, z, s)

s.t. D(y, z, s) ≤ D0

(yi, zi) ∈ {(0, 0), (0, 1), (1, 0)} for all i ∈ M

si ∈ N0 = {zi, zi + 1, zi + 2, ...} for all i ∈ M ,

where y, z, and s are the vectors of yi, zi, and si, respectively, i ∈ M . That is,

y = (y1, ..., ym), z = (z1, ..., zm), and s = (s1, ..., sm). π(y, z, s) is the expected

NPV of TCO of the N systems, D(y, z, s) is the expected downtime of all N systems

together throughout [0, T ] (in system-years), and D0 = (1 − p)NT is the maximum

downtime that can be tolerated as uptime of at least p ∈ (0, 1] of the NT system-years

is required. We give the notation for the cost functions and the downtime per stage

as below:

Pi(yi): The expected NPV of extra acquisition costs of the N subsystems of

stage i due to redundancy (remember that we take into account only

the extra acquisition costs incurred when redundancy is chosen)

S1,i(si): The expected NPV of spare parts investment costs of component i

S2,i(si): The expected NPV of spare parts storage costs of component i

Si(si): The expected NPV of spare parts costs of component i incurred

throughout [0, T ]. Si(si) = S1,i(si) + S2,i(si)

Ri(zi, si): The expected NPV of repair costs incurred for the stage-i subsystems

throughout [0, T ].

Di(yi, zi, si): The expected downtime stemming from failures of the N stage-i

subsystems throughout [0, T ].

πi(yi, zi, si): The expected NPV of total costs of stage i.

πi(yi, si) = Pi(yi) + Si(si) + Ri(zi, si).

Obviously, π(y, z, s) =
m
∑

i=1

πi(yi, zi, si). As downtimes of different subsystems in a

system do not overlap, total downtime of the N systems is D(y, z, s) =
m
∑

i=1

Di(yi, zi, si)

(if they could overlap, D(y, z, s) would be an upper bound for the downtime).

Different combinations of the the binary variables yi and zi, i ∈ M , correspond to

different policies per stage. We limit the choices of the combinations to (yi, zi) =

{(0, 0), (0, 1), (1, 0)} as (yi, zi) = (1, 1) which corresponds to choosing redundancy

and applying the emergency procedure with zi = 1 does not exist as a policy in our

model.
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3.3.1 Derivation of the Cost and Downtime Functions

The acquisition costs of stage-i subsystems only depend on the redundancy decision

of stage i. As we assume that total stream of failures of stage-i subsystems occur

according to a Poisson process with rate Nτ−1
i for all i ∈ M , the failures of subsystems

of different stages are independent of each other. Independent failures also lead to

independence of the spare parts usage (spare parts inventory) of different stages.

Hence, acquisition costs Pi(yi), spare parts costs Si(si), and repair costs Ri(zi, si)

can be formulated independently for each i ∈ M . Then, the expected NPV of total

costs of stage i and the expected NPV of total costs of the N systems, which is our

objective function, can be written as πi(yi, zi, si) = Pi(yi) + Si(si) + Ri(zi, si) and

π(y, z, s) =
m
∑

i=1

πi(yi, zi, si), respectively.

The objective function and the constraint of problem (Q0) are linear combinations of

objectives and constraints per stage; hence (Q0) is separable. That is, if we consider

the downtime as a resource, it can be committed into stages independently and

the overall TCO is simply the sum of the total costs incurred for each independent

stage.We make use of this separability of the multi-stage problem to decompose it into

single-stage problems by the Lagrangian relaxation method in the next subsection.

We continue this section with the derivation of the single stage cost functions and

downtime.

As we assume that the acquisition costs of the N systems and spare parts are incurred

at time 0,

Pi(yi) = Nc1,iyi,

and

S1,i(si) = c0,isi.

The expected NPV of spare parts storage costs throughout [0, T ] is

S2,i(si) =

T
∫

0

hisie
−αtdt =

hi

α
(1 − e−αT )si. (3.1)

Hence,

Si(si) =

[

c0,i +
hi

α
(1 − e−αT )

]

si.

To derive the repair costs and downtime of stage-i subsystems, we need to identify

in which cases the emergency procedure and the provision procedure are applied

mathematically (the ordinary procedure is applied in other cases). These cases depend

on the stock-on-hand process of the spare parts inventory of component i. Demands
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arrive at the spare parts inventory of component i according to a Poisson process with

rate N/τi. Upon the arrival of a demand at time t ∈ [0, T ], if Hi(t) > 0, the demand

is satisfied (a part is taken from the inventory) and a part is added to the inventory

after a generally distributed lead time with mean Ui. Remember that the spare parts

inventory position (sum of stock on hand and pipeline) of component i is kept at a

constant level which is set to si at time 0.

• Under Policy (0,0) and Policy (1,0) (for zi = 0), the emergency procedure is

applied if Hi(t) = 0 and the demand is lost for the inventory. Hence, the stock-

on-hand process of the spare parts inventory of component i, {Hi(u) : u ∈

[0, T ]}, is identical to the process for the number of free servers in an Erlang

loss system (also denoted as the M/G/si/si queueing system) with an arrival

rate N/τi, mean service time Ui, and si servers.

• Under Policy (0,1) (for zi = 1), the provision procedure is applied if Hi(t) = 1.

As we assume that µ3,i is very small compared to τi/N and no failures of

component-i parts occur during the replenishment lead time, Hi(u) ≥ 1 for all

u ∈ [0, T ]. Hence, Hi(u) = 1 + H̄i(u) where {H̄i(u) : u ∈ [0, T ]} is a stochastic

process identical to the process for the number of free servers in an Erlang loss

system with an arrival rate N/τi, mean service time Ui, and si − 1 servers.

Under Policy (0,0) and Policy (1,0), the emergency procedure is applied if a failure

occurs when the stochastic process {Hi(u) : u ∈ [0, T ]} is in state zero. Under Policy

(0,1), the providence procedure is applied if a failure occurs when the stochastic

process {H̄i(u) : u ∈ [0, T ]} is in state zero. As we assume that {Hi(u) : u ∈ [0, T ]}

(the stock-on-hand process) is in equilibrium from the beginning, so is {H̄i(u) : u ∈

[0, T ]}. Hence, the probabilities of Hi(u) = 0 and H̄i(u) = 0 are equal to the Erlang

loss probabilities Bi(si) and Bi(si − 1), respectively, where

Bi(x) =

(

NUi
τi

)x

x!

x
∑

q=0

(

NUi
τi

)q

q!

.

(We do not use the notation that we used in Chapter 2 for the Erlang loss probability

as its arguments are different in this chapter.)

By using this result, first, we derive the distribution of the numbers of applications

of the ordinary procedure and applications of the emergency procedure for stage-i

subsystems throughout [0, T ]. Next, we derive the expected NPV of repair costs

incurred for stage-i subsystems (Ri(si)) and the expected downtime stemming from

failures of the stage-i subsystems throughout [0, T ] (Di(si)). We introduce these

derivations in Property 3.1.
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Property 3.1 For all i ∈ M , the followings hold.

(i) Under Policy (0,0) and Policy (1,0) (for zi = 0), the numbers of applications

of the ordinary procedure and applications of the emergency procedure due to

failures of component-i parts throughout [0, T ] have Poisson distributions with

means (N/τi)T [1 − Bi(si)] and (N/τi)TBi(si), respectively.

(ii) Under Policy (0,1) (for zi = 1), the numbers of applications of the ordinary

procedure and applications of the provision procedure due to failures of

component-i parts throughout [0, T ] have Poisson distributions with means

(N/τi)T [1 − Bi(si − 1)] and (N/τi)TBi(si − 1), respectively.

(iii) The expected NPV of repair costs incurred for the stage-i subsystems through-

out [0, T ] is given by

Ri(zi, si) =
N

ατi
(1 − e−αT )

{

r1,i + (r2,i − r1,i)
[

(1 − zi)Bi(si) + ziBi(si − 1)
]

}

.

(3.2)

(iv) The expected downtime stemming from failures of the stage-i subsystems

throughout [0, T ] is given by

Di(yi, zi, si) =
NT

τi
(1 − yi)

[

µ1,i + (µ2,i − µ1,i)(1 − zi)Bi(si)
]

Proof: See Appendix at the end of this chapter. 2

We reconstruct the storage costs function S2,i(si) in equation (3.1) and repair costs

function Ri(zi, si) in equation (3.2) to simplify their representation and interpretation.

Let

ĥi =
hi

αT
(1 − e−αT ), r̂1,i =

r1,i

αT
(1 − e−αT ), and r̂2,i =

r2,i

αT
(1 − e−αT ).

Then,

S2,i(si) = ĥiTsi (3.3)

and

Ri(zi, si) =
NT

τi
{r̂1,i + (r̂2,i − r̂1,i)[(1 − zi)Bi(si) + ziBi(si − 1)]}. (3.4)

So, ĥi, r̂1,i and r̂2,i can be interpreted as the parameters which already include the

discounting effect on h, r1,i, and r2,i throughout [0, T ], respectively, as equations

(3.3) and (3.4) are formulations without discounting when storage cost rate is ĥi, the

expected cost of an application of the ordinary procedure is r̂1,i, and the expected cost

of an application of the emergency procedure is r̂2,i. We will use these interpretations

in the remainder of this chapter.
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3.3.2 Decomposition into single-stage Problems

The Lagrangian function for Problem (Q0) is defined as

L(y, z, s, λ) =

m
∑

i=1

πi(yi, zi, si) + λ

(

m
∑

i=1

Di(yi, zi, si)−D0

)

where λ ≥ 0 is a Lagrange multiplier. As (Q0) is separable, the Lagrangian is also

separable; that is, we can rewrite the Lagrangian as

L(y, z, s, λ) =

m
∑

i=1

Li(yi, zi, si, λ) − λD0,

where

Li(yi, zi, si, λ) = πi(yi, zi, si) + λDi(yi, zi, si)

is the decentralized Lagrangian for stage i. Observe that the decentralized Lagrangian

functions are connected to each other through a single Lagrange multiplier (λ) as

there is only one constraint in our problem. For a given value of λ, if a solution

(y∗
i (λ), z∗i (λ), s∗i (λ)) that minimizes the decentralized Lagrangian Li(yi, zi, si, λ) (i.e.,

(y∗
i (λ), z∗i (λ), s∗i (λ)) = arg min

(yi,zi,si)

{Li(yi, zi, si, λ)}) can be found for each stage i, the

vectors (y∗(λ), z∗(λ), s∗(λ)), y
∗(λ) = (y∗

1(λ), ..., y∗
m(λ)), z

∗(λ) = (z∗1(λ), ..., z∗m(λ)),

s
∗(λ) = (s∗1(λ), ..., s∗m(λ)), will also minimize the Lagrangian L(y, z, s, λ) for that

value of λ.

By the so-called Everett result (see Theorem 1 in Everett (1963)), for all i ∈

M , if a solution (y∗
i (λ), z∗i (λ), s∗i (λ)) that minimizes the decentralized Lagrangian

Li(yi, zi, si, λ) can be found for a given λ ≥ 0, then (y∗
i (λ), z∗i (λ), s∗i (λ)) is also an

optimal solution to the Problem (Qi(λ)) given as

(Qi(λ)) min πi(yi, zi, si)

s.t. Di(yi, zi, si) ≤ Di(y
∗
i (λ), z∗i (λ), s∗i (λ))

si ∈ N0 = {0, 1, 2, ...}

(yi, zi) ∈ {(0, 0), (0, 1), (1, 0)}.

(y∗
i (λ), z∗i (λ), s∗i (λ)) will satisfy the downtime constraint in Problem (Qi(λ)) with

equality. Furthermore, the vectors (y∗(λ), z∗(λ), s∗(λ)) will also be a solution for the

problem (Q(λ)) formulated as
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(Q(λ)) min π(y, z, s)

s.t. D(y, z, s) ≤ D(y∗(λ), z∗(λ), s∗(λ))

si ∈ N0 = {0, 1, 2, ...} for all i ∈ M

(yi, zi) ∈ {(0, 0), (0, 1), (1, 0)} for all i ∈ M ,

and they will satisfy the downtime constraint with equality. Thus, by using various

values of λ, we can generate optimal solutions of Problem (Q0) for specific values of

D0 (equivalently, specific values of the availability measure p). As a direct result of

Theorem 1 in Fox (1966), such solutions are also so-called efficient solutions for the

problem (Q1) given as

(Q1) min π(y, z, s)

min D(y, z, s)

si ∈ N0 = {0, 1, 2, ...} for all i ∈ M

(yi, zi) ∈ {(0, 0), (0, 1), (1, 0)} for all i ∈ M .

A solution (ye, ze, se) is efficient for Problem (Q1) if and only if π(y, z, s) >

π(ye, ze, se), or D(y, z, s) > D(ye, ze, se), or (π(y, z, s), D(y, z, s)) = (π(ye, ze, se),

D(ye, ze, se)), for all y = {y1, ..., ym}, z = {z1, ..., zm} and s = {s1, ..., sm}

where (yi, zi) ∈ {(0, 0), (0, 1), (1, 0)} and si ∈ N0 = {0, 1, 2, ...} for all i ∈ M .

Let ǫ denote the set of all efficient solutions of problem (Q1). Then, the points

(π(ye, ze, se), D(ye, ze, , se)), (ye, ze, se) ∈ ǫ, constitute an efficient frontier for the

total costs vs. total downtime. From this efficient frontier, an appropriate solution

for Problem (Q0) may be selected.

In Subsection 3.4.1, we develop a procedure for finding an optimal solution (y∗
i (λ),

z∗i (λ), s∗i (λ)) for given values of λ ≥ 0 and i ∈ M (see Lemma 3.3). Once

this procedure is applied for all i ∈ M , it suffices to obtain an optimal solution

(y∗(λ), z∗(λ), s∗(λ)) for Q(λ), without considering all 3m combinations of policies for

the multi-stage problem. Then, a set of efficient solutions can be generated by varying

values of λ and repeating this procedure.

An intuitive explanation for the Lagrangian multiplier λ in Li(yi, zi, si, λ) and

L(y, z, s, λ) is as follows. Remember the interpretations of ĥi, r̂1,i and r̂2,i

as the parameters that include the discounting effect. As Di(yi, zi, si) is the

expected downtime stemming from failures of stage-i subsystems throughout [0, T ],

λDi(yi, zi, si) becomes the expected NPV of downtime costs stemming from failures

of stage-i subsystems once λ is considered as a downtime penalty rate that includes

the discounting effect throughout [0, T ]. Then, Li(yi, zi, si, λ) and L(y, z, s, λ) can

be interpreted as pure cost formulations which also include downtime costs. Also
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remember that the effect of downtime is incorporated into the model through

downtime costs in Chapter 2. So, this interpretation also shows the consistency

between the approaches followed to incorporate the downtime costs into the models

in this chapter and in Chapter 2.

The effect of downtime is incorporated differently in the two models. In the reliability

optimization model for critical components (Chapter 2), downtime costs are included

in the model, while there is a constraint on the total uptime (or downtime) throughout

the lifetime of a number of systems in the redundancy allocation model (Chapter 3).

These two approaches are consistent with each other.

By Theorem 2 in Everett (1963), Di(y
∗
i (λ), z∗i (λ), s∗i (λ)) in Problem (Qi(λ)) is decreas-

ing in λ for all i ∈ M . A direct result of this property is that D(y∗(λ), z∗(λ), s∗(λ))

in Problem (Q(λ)) will also be decreasing in λ. That is, if we start with a λ

value and find solutions for each single-stage problem (Qi(λ)) by increasing λ, the

resource levels of the downtime constraint in Problem Qi(λ) in those solutions will be

decreasing . Likewise, the corresponding resource levels of the downtime constraint in

Problem Q(λ) will be decreasing (equivalently, corresponding availability levels will

be increasing), too.

We will make use of this property and the interpretation of λ as a downtime penalty

rate to compare the three policies in subsection 3.4.2 and to derive results for the

system level problem in subsection 3.4.3.

3.4. Analysis

In this section, we first provide a number of results for the optimization of the single-

stage problems. Then, we compare the three policies on stage-level. We finalize the

section by introducing a method to construct an efficient frontier and an ordering

of the stages in a capital good for redundancy, which are results for the multi-stage

problem.

3.4.1 Optimization of the Single-Stage Problems

In this subsection, we derive three lemmas. Lemma 3.1 states that Li(yi, zi, si, λ) is

strictly convex in si for a given policy and given values of λ. We introduce a number of

properties of the optimal si values for a given policy and Li(yi, zi, si, λ) in Lemma 3.2.

Lemma 3.3 details an optimization procedure for Li(yi, zi, si, λ) for a given value of

λ. An optimal solution for L(y, z, s, λ) can be found by generating optimal solutions

of Li(yi, zi, si, λ) for all i ∈ M by this procedure.
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Lemma 3.1 For all i ∈ M , for a given policy (yi, zi) ∈ {(0, 0), (0, 1), (1, 0)} and for

a given value of λ ≥ 0, Li(yi, zi, si, λ) is convex in si .

Proof: Let i ∈ M and λ ≥ 0. For Policy (0,0),

Li(0, 0, si, λ) = (c0,i+ĥiT )si+
NT

τi
(r̂1,i+λµ1,i)+

NT

τi
[(r̂2,i−r̂1,i)+λ(µ2,i−µ1,i)]Bi(si)

(3.5)

The second and fourth term of (3.5) is constant and the first term is linear in si.

The Erlang Loss probability Bi(si) is strictly decreasing and strictly convex in si

(see Karush (1957) and also Kranenburg and van Houtum (2007)). It holds that

r2,i ≥ r1,i, r̂2,i ≥ r̂1,i, and µ2,i ≥ µ1,i. The last term is convex in si as µ2,i ≥ µ1,i,

and thus Li(0, 0, siλ) is convex.

For Policy (0,1),

Li(0, 1, si, λ) = (c0,i + ĥiT )si +
NT

τi
(r̂1,i + λµ1,i) +

NT

τi
(r̂2,i − r̂1,i)Bi(si − 1), (3.6)

and for Policy (1,0),

Li(1, 0, si, λ) = Nc1,i + (c0,i + ĥiT )si +
NT

τi
r̂1,i +

NT

τi
(r̂2,i − r̂1,i)Bi(si) (3.7)

Notice that Li(1, 0, si, λ) is independent of λ, as there is no downtime in Policy (1,0).

By following similar arguments that we used for Li(0, 0, si, λ), it can be shown that

Li(0, 1, si, λ) and Li(1, 0, si, λ) are convex in si for a given value of λ. 2

We define

s∗i (yi, zi, λ) = arg min
si

{Li(yi, zi, si, λ)|si ∈ N0}.

That is, for a given value of λ, s∗i (0, 0, λ), s∗i (0, 1, λ), and s∗i (1, 0, λ) are the smallest

values of si under which Li(0, 0, si, λ), Li(0, 1, si, λ) and Li(1, 0, si, λ) are minimized

(optimal values of initial supply in Policy (0,0), Policy (0,1), and Policy (1,0)),

respectively. We also define

∆Bi(si) = Bi(si) − Bi(si + 1).

∆Bi(si) is positive for all si. As Bi(si) is strictly convex in si, ∆Bi(si) is strictly

decreasing in si.
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Lemma 3.2 For all i ∈ M , it holds that:

(i) s∗i (1, 0, λ) = s∗i (1, 0) and Li(1, 0, s∗i (1, 0, λ), λ) = Li(1, 0, s∗i (1, 0), 0) = Li(1, 0)

(constant) for all λ ≥ 0, where

s∗i (1, 0) = min

{

si ∈ N0 | ∆Bi(si) ≤
(c0,i + ĥiT )

(r̂2,i − r̂1,i)

τi

NT

}

. (3.8)

(ii) s∗i (0, 1, λ) = s∗i (1, 0)+1 for all λ ≥ 0 and Li(0, 1, s∗i (0, 1, λ), λ) = Li(0, 1, s∗i (1, 0)+

1, λ) = Li(0, 1, λ) is an increasing linear function of λ.

(iii) s∗i (0, 0, 0) = s∗i (1, 0), Li(0, 0, s∗i (0, 0, λ), λ) = Li(0, 0, λ) is a strictly increasing,

concave, piecewise linear function of λ, and s∗i (0, 0, λ) is increasing in λ.

Proof: Let ∆sLi(yi, zi, si, λ) = Li(yi, zi, si + 1, λ) − Li(yi, zi, si, λ).

(i) The property that Li(1, 0, si, λ) is independent of λ (see equation (3.7)), for

all λ ≥ 0, implies that s∗i (1, 0, λ) is independent of λ and may be denoted as

s∗i (1, 0). Li(1, 0, s∗i (1, 0, λ), λ) = Li(1, 0, s∗i (1, 0), 0) is also a constant that we

denote by Li(1, 0). As Li(1, 0, si, λ) is strictly convex in si, s∗i (1, 0) = min{si ∈

N0 | ∆sLi(1, 0, si, λ) ≥ 0}.

∆sLi(1, 0, si, λ) = (c0,i + ĥiT ) −
NT

τi
(r̂2,i − r̂1,i)∆Bi(si)

implies equation (3.8).

(ii) As Li(0, 1, si, λ) is strictly convex in si,

s∗i (0, 1, λ) = min{si ∈ N0 | ∆sLi(0, 1, si, λ) ≥ 0}.

∆sLi(0, 1, si, λ) = (c0,i + ĥiT ) −
NT

τi
(r̂2,i − r̂1,i)∆Bi(si − 1);

thus

s∗i (0, 1, λ) = min

{

si ∈ N0 | ∆Bi(si − 1) ≤
c0,i + ĥiT

r̂2,i − r̂1,i

τi

NT

}

= s∗i (1, 0) + 1.

Li(0, 1, λ) = Li(0, 1, s∗i (0, 1, λ), λ) = Li(0, 1, s∗i (1, 0) + 1, λ)

= (c0 + ĥiT )(s∗i (1, 0) + 1)

+
NT

τ
[ ˆr1,i + ( ˆr2,i − ˆr1,i)Bi(s

∗
i (1, 0))] +

NT

τ
µ1,iλ

is an increasing linear function of λ as N , T , and µ1,i ≥ 0.
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(iii) As Li(0, 0, si, λ) is strictly convex in si for λ ≥ 0,

s∗i (0, 0, λ) = min {si ∈ N0 | ∆sLi(0, 0, si, λ) ≥ 0} .

∆sLi(0, 0, si, λ) = (c0,i + ĥiT ) −
NT

τi
[(r̂2,i − r̂1,i) + (µ2,i − µ1,i)λ]∆Bi(si);

thus

s∗i (0, 0, λ) = min

{

si ∈ N0 | ∆Bi(si) ≤
c0,i + ĥiT

r̂2,i − r̂1,i + (µ2,i − µ1,i)λ

τi

NT

}

.

(3.9)

Obviously, si(0, 0, 0) = s∗i (1, 0).

For a given si ∈ N0, Li(0, 0, si, λ) is a linear function of λ; see equation

(3.5). The function Li(0, 0, si, λ) starts with Li(0, 0, si, 0), which is increasing

in si. The slope of Li(0, 0, si, λ) is positive for each si, and the slope decreases

as si increases. Li(0, 0, s∗i (0, 0, λ), λ) = min{Li(0, 0, si, λ), si ∈ N0}; hence,

Li(0, 0, λ) = Li(0, 0, s∗i (0, 0, λ), λ) is strictly increasing, concave, and piecewise

linear function of λ and s∗i (0, 0, λ) is increasing in λ. In Figure 3.1, we illustrate

Li(0, 0, λ) for a given stage in Example 3.1.

2

Example 3.1 Consider the redundancy allocation problem for a capital good with

two stages. N = 15 systems are purchased with an expected lifetime of T = 15 years.

The annual discount rate is α = 0.05. The parameters for the stages are given in

Table 3.2 (we will also refer to this table in the other examples in this chapter later).

Table 3.2 Parameters for Example 3.1

Stage 1 Stage 2

τ (years) 3 6

c0,i (Euros) 5000 125000

c1,i (Euros) 4000 125000

hi (Euros per month) 75 1875

r1,i (Euros) 1000 25000

r2,i (Euros) 2000 50000

µ1,i (hours) 10 8

µ2,i (hours) 24 48

Ui (months) 3 3
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In Figure 3.1, the solid line depicts the minimum of the Lagrangian functions under

Policy (0,0) for stage 1, L1(0, 0, λ) = L1(0, 0, s∗i (0, 0, λ), λ) . The dotted lines are the

Lagrangian functions L1(0, 0, s, λ) of Policy (0,0) for three different values of s. By

part (iii) of Lemma 3.2, we know that s∗1(0, 0, 0) = s∗1(1, 0), hence we start plotting

L1(0, 0, s, λ) with s = s∗1(1, 0) = 2. Observe that L1(0, 0, λ) is a strictly increasing,

concave, piecewise linear function of λ.

We provide the following intuitions for Lemma 3.2:

(i) As there is no downtime in Policy (1,0) (Di(1, 0, si) = 0 for all si), the downtime

penalty rate (λ) does not affect the optimal number of spare parts and the

optimal total costs.

(ii) In Policy (0,1), all failures result in downtimes equal to the respective inventory-

replacement times, independent of inventory-on-hand or inventory positions.

Hence, the downtime penalty rate (λ) does not affect the optimal number of

spare parts. However, it affects optimal total costs due to its effect on downtime

costs.

(iii) In Policy (0,0), downtime per failure is equal to either inventory-replacement

time or OEM-replacement time depending on the stock-on-hand, which is

Figure 3.1 Lagrangian of stage 1 for Policy (0,0) in Example 3.1
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affected by the initial supply. Hence, the optimal initial supply amount changes

with the downtime penalty rate (λ). Increasing the downtime penalty rate

results in increasing downtime costs, unless downtime is decreased. Thus, one

has to keep a higher number of spare parts to compensate for the increase in

downtime penalty rate by a decrease in downtime. However, this does not fully

compensate for the increase in downtime costs, and total costs increases.

Lemma 3.3 For all i ∈ M , for a given value of λ ≥ 0, the following procedure

determines a solution (y∗
i (λ), z∗i (λ), s∗i (λ)) which minimizes Li(yi, zi, si, λ).

1. Determine s∗i (1, 0) by equation (3.8).

2. Determine s∗i (0, 0, λ) by equation (3.9).

3. Find

(y∗
i (λ), z∗i (λ), s∗i (λ)) = arg min

(yi,zi,si)

{

Li(yi, zi, si, λ)|(yi, zi, si) ∈

{

(0, 0, s∗i (0, 0, λ)), (0, 1, s∗i (1, 0) + 1), (1, 0, s∗i (1, 0))
}

}

.

3.4.2 Comparison of the Policies

In this subsection, we will first make pairwise comparisons of the three policies

for single-stage problems. Then, we will give an overall comparison. We will use

Li(0, 0, λ), Li(0, 1, λ), and Li(1, 0) (see Lemma 3.2) for the comparisons as they

constitute the optimal values of the Lagrangian function as a function of λ in Policy

(0,0), Policy (0,1), and Policy (1,0), respectively. We will illustrate the comparisons

by examples.

Policy (0,1) and Policy (1,0)

Lemma 3.4 For all i ∈ M ,

(i) If Nc1,i ≤ c0,i + hi

α (1− e−αT ), then Policy (1,0) outperforms Policy (0,1) for all

λ ≥ 0.

(ii) If Nc1,i > c0,i + hi

α (1−e−αT ), then Policy (0,1) outperforms Policy (1,0) for 0 ≤

λ < λ01−10,i = τi

NTµ1,i
[Nc1,i−c0,i−

hi

α (1−e−αT )]; and Policy (1,0) outperforms

Policy (0,1) for λ > λ01−10,i.
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Proof: As s∗i (0, 1, λ) = s∗1(1, 0) + 1 for all λ ≥ 0, the following can be deduced by

equations (3.6) and (3.7):

Li(0, 1, λ) = Li(1, 0) − Nc1,i + c0,i + ĥiT +
NT

τi
µ1,iλ.

Observe that Li(0, 1, 0) = Li(1, 0)−Nc1,i + c0,i + ĥiT and Li(0, 1, λ) is an increasing

linear function of λ. Remember that ĥi = hi

αT (1− e−αT ) to see the relation to hi and

T .

(i) If Nc1,i ≤ c0,i + hi

α (1 − e−αT ),  Li(1, 0) ≤ Li(0, 1, λ) for all λ ≥ 0.

(ii) If Nc1,i > c0,i + hi

α (1 − e−αT ),  Li(1, 0) and Li(0, 1, λ) intersects at λ01−10,i =
τi

NTµ1,i
[Nc1,i − c0,i −

hi

α (1− e−αT )]. For 0 ≤ λ < λ01−10,i, Li(0, 1, λ) ≤  Li(1, 0);

for λ > λ01−10,i,  Li(1, 0) ≤ Li(0, 1, λ).

2

Example 3.2 Consider the redundancy allocation problem introduced in Example

3.1 with N = 15, T = 15 years, α = 0.05 annually, and the parameters given in Table

Figure 3.2 Comparison of Policy (0,1) and Policy (1,0) for stage 1 in Example 3.2
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3.2. In Figure 3.2, you can see the comparison of Policy (0,1) and Policy (1,0) for

stage 1. The dashed line is the Lagrangian function L1(0, 1, λ) = L1(0, 1, s∗i (1, 0) +

1, λ), where s∗1(1, 0) = 2. The dash-dot line (-.) is the Lagrangian function

L1(1, 0, s∗1(1, 0), λ) = L1(1, 0). The solid line is the minimum of the Lagrangian

functions of Policy (0,1) and Policy (1,0) for λ ≥ 0. L1(0, 0, s, λ) and L01,i(λ)

intersect at λ01−10,1 = 43682.49 Euros/month, Policy (0,1) outperforms Policy (1,0)

for λ ≤ λ01−10,1 and Policy (1,0) outperforms Policy (0,1) for λ > λ01−10,1.

The result given in Lemma 3.6 can be interpreted in two ways:

• For small values of the downtime penalty rate λ, Policy (0,1) results in less

TCO. After a certain value, Policy (1,0) provides less TCO.

• When the downtime constraint is relatively loose, Policy (0,1) satisfies it with

less TCO. As it gets tighter and tighter, it is met by Policy (1,0) with less TCO

after a certain value of the resource level of the downtime constraint.

In Corollary 3.1 we provide the relation of λ01−10,i to each model parameter. Corollary

3.2 specifies an upper bound for λ01−10,i. As an explicit formula for λ01−10,i can be

derived and the formula is not complex, the proofs of these corollaries are trivial and

we will not elaborate on them here.

Corollary 3.1 For all i ∈ M , λ01−10,i is

(i) decreasing as a function of T , µ1,i, and c0,i;

(ii) increasing as a function of N , τi, and c1,i; and,

(iii) independent of µ2,i, ri,1, ri,2 and Ui.

Corollary 3.2

λ01−10,i < c1,i

(

T

τi
µ1,i

)−1

.

Parts (i) and (ii) in Corollary 3.1 are intuitively easy to understand: The increases

in the parameters in (i) favors Policy (1,0) and it outperforms Policy (0,1) at a

smaller value of λ (or availability level), while the increases in the parameters in (ii)

favors Policy (0,1). The result that λ01−10,i is independent of µ2,i is also expected as

downtime stemming from OEM-replacements does not occur in either of the policies.

However, independence of ri,1, ri,2 and Ui are not trivial, as given a sample path for the

failures of component-i parts, the provision procedure and the emergency procedure

are applied at different points in time in different ways under Policy (0,1) and Policy
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(1,0), respectively. These parameters affect the repair costs in both policies: ri,1, ri,2

affects them directly while the effect of Ui is through the Erlang loss probability. This

independence stem form the relationship between the optimal initial supply amounts,

s∗i (0, 1, λ) = s∗i (1, 0)+1 for all λ ≥ 0. By the comparison of equations (3.6) and (3.7),

we see that the effects of these parameters depend on Bi(si − 1) and Bi(si) under

Policy (0,1) and Policy (1,0), respectively. These effects are equal in the two policies

due to the relationship of the optimal values of si.

Corollary 3.2 can be explained as follows: Due to the relationship between the optimal

initial supply amounts in the two policies, given a sample path for the failures of

component-i parts, the ordinary procedure is applied for the same failures (at the

same time points) under both policies. The provision procedure and the emergency

procedure are applied under Policy (0,1) and Policy (1,0), respectively, for the failures

which are not handled by the ordinary procedure. As the expected costs incurred

per application of the provision procedure and the expected costs incurred per the

application of the emergency procedure are equal, the repair costs are equal under the

two policies. This leaves T
τi

µ−1
1,i λ, the total expected downtime costs that would be

incurred per system under Policy (0,1) for a given downtime penalty rate λ ≥ 0, as all

failures lead to inventory replacements. There is no downtime cost under Policy (1,0).

Hence, Policy (0,1) can outperform Policy (1,0) only if the extra cost for redundancy

(c1,i) is less than the expected total downtime costs that would be incurred per system.

Policy (0,0) and Policy (1,0)

Lemma 3.5 For all i ∈ M , the followings hold:

(i) For 0 ≤ λ < c1,i

(

T
τi

µ2,i

)−1

, Policy (0,0) outperforms Policy (1,0).

(ii) For c1,i

(

T
τi

µ1,i

)−1

< λ, Policy (1,0) outperforms Policy (0,0).

(iii) There exists a λ00−10,i, c1,i

(

T
τi

µ2,i

)−1

≤ λ00−10,i ≤ c1,i

(

T
τi

µ1,i

)−1

, such that

Policy (0,0) outperforms Policy (1,0) for all λ ≤ λ00−10,i and Policy (1,0)

outperforms Policy (0,0) for all λ > λ00−10,i.

Proof: For a given si, define

∆yLi(zi, si, λ) = Li(1, zi, si, λ)−Li(0, zi, si, λ) = Nc1,i−
NT

τi
[µ1,i+(µ2,i−µ1,i)Bi(si)]λ.

Then ∆yLi(0, si, λ) is the difference between the decentralized Lagrangian of Policy

(1,0) and the decentralized Lagrangian of Policy (0,0).
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(i) If 0 ≤ λ < c1,i

(

T
τi

µ2,i

)−1

, then ∆yLi(0, si, λ) > Nc1,i(µ2,i − µ1,i)[1 − Bi(si)].

As Nc1,i(µ2,i − µ1,i)[1 − Bi(si)] ≥ 0 for all si ∈ N0, Policy (0,0) outperforms

Policy (1,0).

(ii) If c1,i

(

T
τi

µ1,i

)−1

< λ, then ∆yLi(0, si, λ) < −Nc1,i(µ2,i − µ1,i)Bi(si). As

−Nc1,i(µ2,i − µ1,i)Bi(si) ≤ 0 for all si ∈ N0, Policy (1,0) outperforms Policy

(0,0).

(iii) By (i), Li(0, 0, λ) < Li(1, 0) for 0 ≤ λ < c1,i

(

T
τi

µ2,i

)−1

. It is trivial to show

that lim
λ→∞

Li(0, 0, λ) = ∞. As Li(0, 0, λ) is a strictly increasing function of λ

and Li(1, 0) is a constant, there exists a λ00−10,i such that Li(0, 0, λ) ≤ Li(1, 0)

for all λ ≤ λ00−10,i and Li(0, 0, λ) > Li(1, 0) for all λ > λ00−10,i. By (i) and

(ii), c1,i

(

T
τi

µ2,i

)−1

≤ λ00−10,i ≤ c1,i

(

T
τi

µ1,i

)−1

.

2

A closed form expression cannot be derived for λ00−10,i, but it can be found by simple

numerical procedures as these are the values λ at which two linear functions intersect.

Example 3.3 Consider the redundancy allocation problem introduced in Example

3.1. In Figure 3.3, you can see the comparison of Policy (0,0) and Policy (1,0) for

stage 1. The dotted lines are the Lagrangian functions L1(0, 0, s, λ) of Policy (0,0) for

three different values of s. As we know that s∗1(0, 0, 0) = s∗1(1, 0), we start plotting

L1(0, 0, s, λ) with s = s∗1(1, 0) = 2. The dash-dot line (-.) is the Lagrangian function

L1(1, 0, s∗1(1, 0), λ) = L1(1, 0). The solid line is the minimum of the Lagrangian

functions of Policy (0,0) and Policy (1,0) for λ ≥ 0. L1(0, 0, s, λ) cannot be the

minimum of the Lagrangian functions of Policy (0,0) and Policy (1,0) at λ > 0 for

s ≥ s∗1(1, 0) + 2. L10,1 and L1(0, 0, λ) intersects at λ00−10,1 = 45630.35 Euros/month,

Policy (0,0) outperforms Policy (1,0) for λ ≤ λ00−10,1 and Policy (1,0) outperforms

Policy (0,0) for λ > λ00−10,1.

We now provide some intuition for Lemma 3.5 with interpretation of λ as downtime

penalty rate. Notice that given a sample path for the failures of component-i parts,

the ordinary procedure and the emergency procedure are applied in the same way

under both policies at the failure times. T
τi

λµ−1
1,i is the total expected downtime costs

that would be incurred per system if all failures are handled by the ordinary procedure

and T
τi

λµ−1
2,i is the total expected downtime costs that would be incurred per system

if all failures are handled by the emergency procedure. Then, Lemma 3.5 states that
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Figure 3.3 Comparison of Policy (0,0) and Policy (1,0) for stage 1 in Example 3.3

(i) If the extra cost for redundancy (c1,i) is greater than or equal to the

total expected downtime costs that would be incurred per system if all

failures are handled by the emergency procedure, not choosing redundancy is

optimal. Without redundancy, handling all failures by the emergency procedure

represents the worst case in terms of the expected downtime costs. Not choosing

redundancy is optimal as the downtime costs that would be incurred in the worst

case is less than the cost of the extra unit for redundancy.

(ii) If the extra cost for redundancy is less than or equal to the expected total

downtime costs that would be incurred per system if all failures are handled by

the ordinary procedure, choosing redundancy is optimal. Without redundancy,

handling all failures by the ordinary procedure represents the best case in

terms of the expected downtime costs. Choosing redundancy is optimal as

no downtime cost is incurred and the extra unit for redundancy is less costly

than the best case for not choosing redundancy.

(iii) There exists a point between the worst case and the best case where choosing

redundancy becomes optimal as the downtime penalty rate increases. Increasing

the downtime penalty rate after that point will not change the redundancy

decision as downtime costs are the incentive to choose redundancy.
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An interpretation of part (iii) of Lemma 3.5 with respect to the downtime constraint,

similar to the one given for Lemma 3.4, can also be given: When the downtime

constraint is not tight, one can satisfy it with less TCO by not choosing redundancy.

As the constraint gets tighter and tighter, one has to choose redundancy to satisfy it

with less TCO after a certain value of the resource level of the downtime constraint.

Policy (0,0) and Policy (0,1)

Lemma 3.6 For all i ∈ M , there exists a λ00−01,i > 0 such that Policy (0,0)

outperforms Policy (0,1) for λ ≤ λ00−01,i and Policy (0,1) outperforms Policy (0,0)

for λ > λ00−01,i.

Proof: For all i ∈ M , remember that Li(0, 0, λ) is a strictly increasing, concave,

piecewise linear function of λ whose pieces are constructed by Li(0, 0, si, λ), si ∈

{s∗i (1, 0), s∗i (1, 0)+1, ...} as s∗i (0, 0, 0) = s∗i (1, 0). It is trivial to show that Li(0, 0, 0) <

Li(0, 1, 0) and the slope of Li(0, 0, si, λ) is greater than the slope of Li(0, 1, λ) for each

si ∈ {s∗i (1, 0), s∗i (1, 0) + 1, ...}. Hence, there exists a λ00−01,i > 0 such that Policy

(0,0) is optimal for λ ≤ λ00−01,i and Policy (0,0) is optimal for λ > λ00−01,i. 2

As it was the case for λ00−10,i, a closed form expression cannot be derived for λ00−01,i

but it can be found numerically.

Example 3.4 Consider the redundancy allocation problem introduced in Example

3.1. In Figure 3.4, you can see the comparison of Policy (0,0) and Policy (0,1) for

stage 1. The dotted lines are the Lagrangian functions L1(0, 0, s, λ) of Policy (0,0) for

three different values of s. We start plotting L1(0, 0, s, λ) with s = s∗1(1, 0) = 2. The

dashed line is the Lagrangian function L1(0, 1, λ) = L1(0, 1, s∗i (1, 0) + 1, λ), where

s∗1(1, 0) + 1 = 3. L1(0, 0, s, λ) and L1(0, 1, λ) do not intersect at λ > 0 for s ≥

s∗1(1, 0)+2. The solid line is the minimum of the Lagrangian functions of Policy (0,0)

and Policy (0,1) for λ ≥ 0. L1(0, 1, λ) and L1(0, 0, λ) intersects at λ00−01,1 = 59977.70

Euros/month, Policy (0,0) outperforms Policy (0,1) for λ ≤ λ00−01,1 and Policy (0,1)

outperforms Policy (0,0) for λ > λ00−01,1.

Intuitions similar to those given for Lemma 3.4 and Lemma 3.5 can also be provided

for Lemma 3.6.
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Overall Comparison

Theorem 3.1 For all i ∈ M :

• If Nc1,i ≤ c0,i + hi

α (1 − e−αT ), Policy (0,0) is optimal for λ ∈ [0, λ00−10,i] and

Policy (1,0) is optimal for λ ∈ [λ00−10,i,∞).

• If Nc1,i > c0,i + hi

α (1 − e−αT ), either

– Policy (0,0) is optimal for λ ∈ [0, λ00−10,i] and Policy (1,0) is optimal for

λ ∈ [λ00−10,i,∞); or,

– Policy (0,0) is optimal for λ ∈ [0, λ00−01,i], Policy (0,1) is optimal for

λ ∈ [λ00−01,i, λ01−10,i], and Policy (1,0) is optimal for λ ∈ [λ01−10,i,∞).

Proof:

• If Nc1,i ≤ c0,i + hi

α (1−e−αT ), Policy (1,0) outperforms Policy (0,1) for all λ ≥ 0

by Lemma 3.4. Then, by Lemma 3.5, Policy (0,0) is optimal for λ ∈ [0, λ00−10,i]

and Policy (1,0) is optimal for λ ∈ [λ00−10,i,∞).

Figure 3.4 Comparison of Policy (0,0) and Policy (0,1) for stage 1 in Example 3.4
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Figure 3.5 Comparison of Policy (0,1), Policy (1,0) and Policy (1,0) for stage 1 in

Example 3.5

• If Nc1,i > c0,i + hi

α (1 − e−αT ), Policy (0,0) is the optimal policy for either

λ ∈ [0, λ00−10,i] or λ ∈ [0, λ00−01,i] by Lemma 3.5 and Lemma 3.6, respectively.

By Lemma 3.4 and Lemma 3.5, it is obvious that Policy (1,0) is optimal as

λ → ∞. We need to show that there exists cases in which Policy (0,1) is

optimal for some λ > 0 and there exists cases in which it is never optimal. We

show that both situations may occur in Example 3.5, which completes the proof.

2

Example 3.5 We continue with the redundancy allocation problem introduced in

Example 3.1. In Figure 3.5 and Figure 3.6, we give the comparison of the three

policies for stage 1 and stage 2. In Figure 3.5, the functions are the same as those in

Figure 3.2, Figure 3.3, and Figure 3.4. In Figure 3.6, the functions are represented for

stage 2 as they were represented for stage 1 in those figures. Observe that Policy (0,1)

is never optimal for stage 1 (Figure 3.5) while it is optimal for λ ∈ [λ00−01,2, λ01−10,2],

where λ00−01,2 = 818238 Euros/month and λ01−10,2 = 3630156 Euros/month (Figure

3.6).

Theorem 3.1 shows the optimal sequence of the policies followed for stage i for

increasing downtime penalty rate (λ) or decreasing resource level of the downtime
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Figure 3.6 Comparison of Policy (0,1), Policy (1,0) and Policy (1,0) for stage 2 in

Example 3.5

constraint (D0) in (Q0). The sequence can be either (0,0)-(1,0) or (0,0)-(0,1)-(1,0).

For low downtime penalty rate or high resource level of the downtime constraint

in (Q0), Policy (0,0) is optimal. As the penalty rate increases or the resource

level decreases, a switch from Policy (0,0) to Policy (0,1) or Policy (1,0) occurs

to compensate the increase in the penalty rate by decreasing the downtime or to

cope with the tighter downtime constraint. If Nc1,i ≤ c0,i + hi

α (1 − e−αT ), Policy

(0,1) can never be optimal and the switch always occurs to Policy (1,0) at λ01−10,i.

If Nc1,i > c0,i + hi

α (1 − e−αT ), the switch is to Policy (0,1) if λ00−01,i < λ01−10,i

(or λ00−10,i < λ01−10,i) and it is to Policy (1,0) otherwise. If the switch occurs to

Policy (0,1), Policy (0,1) remains optimal for λ00−01,i < λ ≤ λ01−10,i and Policy (1,0)

becomes optimal for λ ≥ λ01−10,i.

Remember that λ01−10,i has a closed form expression, and λ00−01,i and λ00−10,i can

be found by simple numerical procedures. So, the optimal sequence of the policies

can be identified for given instances. As our focus is on the redundancy decision,

our major interest is in the switching point to Policy (1,0). We denote this point by

λ10,i. Obviously, for Nc1,i ≤ c0,i + hi

α (1 − e−αT ), λ10,i = λ00−10,i; and for Nc1,i >

c0,i+
hi

α (1−e−αT ), λ10,i = max{λ00−10,i, λ01−10,i}. Corollary 3.3 determines an upper

bound and a lower bound for λ10,i.
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Corollary 3.3

c1,i

(

T

τi
µ2,i

)−1

≤ λ10,i ≤ c1,i

(

T

τi
µ1,i

)−1

.

Proof: These bounds are immediate results of Corollary 3.2 and Lemma 3.5. 2

3.4.3 Results for the Multi-Stage Problem

We will provide two system level results in this subsection. The first one is for

the generation of efficient solutions. In our original problem formulation (Q0), we

define a specific resource level for the downtime constraint. However, in general,

one is interested in exploring the trade-off between the downtime (availability) and

minimum TCO rather than in finding the optimum LCC for some given resource level.

Efficient solutions provide this exploration.

The second result is for ordering the stages for choosing redundancy (Policy (1,0)).

In many cases, there might be other factors which affects the redundancy decision

(e.g. a budget limit) and one might be interested in the optimal order to follow for

the stages to choose redundancy one-by-one.

Finding Efficient Solutions

The most interesting efficient solutions are those at which a decision changes. That

is, the values the downtime and the optimal LCC assume when the optimal decision

changes from Policy (0,0) to Policy (0,1) or Policy (1,0), and from Policy (0,1) to Policy

(1,0) (see Theorem 3.1) for each stage will constitute the most important elements of

the efficient frontier. These points are generated by λ00−01,i, λ00−10,i, and λ01−10,i,

which can be determined either directly or by simple numerical procedures. Hence,

the most interesting points for the efficient frontier can easily be generated for given

instances.

Example 3.6 In Figure 3.7, we give an efficient frontier for the capital good with

two stages introduced in Example 3.1. This efficient frontier has the downtime on

its x-axis. Figure 3.8 depicts the same efficient frontier with p values on the x-axis.

Remember that p ∈ (0, 1] is the availability measure that reflects the required uptime

portion of the NT system-years. The frontier includes the efficient solutions at which

switches from one policy to the other occurs for a stage. When Policy (0,0) is chosen

for the two stages and initial supply amounts are optimized, expected downtime of

the N = 15 systems is 2.64 months (Figure 3.7), which is equivalent to an availability
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Figure 3.7 Efficient frontier for Example 3.6 with downtime

level of p = 0.999 (Figure 3.8), with TCO of 1371004 Euros. The first policy change -

the one that brings the most benefit (highest increase in availability per unit increase

in TCO) - is the one from Policy (0,0) to Policy (1,0) for stage 2. The next change is

from Policy (0,0) to Policy (0,1) for stage 1. Finally, downtime becomes zero (p = 1)

when Policy (1,0) is chosen for the both stages, as we assume that a subsystem is

100% available when redundancy is implemented.

Notice that in Figure 3.8, the value of p is already significantly high without choosing

redundancy for either of the stages. This is due to the small number of stages in the

capital good. The total downtime of the systems is equal to the sum of the downtimes

of the subsystems which are short as failures occur rarely (MTBF of the subsystems

are τ1 = 3 years and τ2 = 6 years) and the ordinary and emergency procedures are

applied. Total downtime increases (i.e., p decreases) as the number of stages increases.

In Figure 3.9, you can see the efficient frontier for a capital good with 60 stages. In

this figure, the point displayed as a circle depicts the (TCO , p) couple when Policy

(0,0) is chosen for all the stages, the points displayed as squares depict (TCO , p)

couples when a switch from Policy (0,0) to Policy (0,1) occurs for a stage, and the

points displayed as stars depict (TCO , p) couples when a switch from Policy (0,1)

to Policy (1,0) occurs for a stage. As you can observe, the values of p ranges within

[0.961 1].



78 Chapter 3. Redundancy Allocation for Serial Systems

Figure 3.8 Efficient frontier for Example 3.6 with availability

Figure 3.9 Efficient frontier for a capital good with 60 stages
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Ordering Stages for Redundancy

We aim at generating an order of the stages such that if one follows this order while

choosing redundancy one-by-one for stages, she will pay the least amount (lowest

increase in TCO) per unit decrease in the resource level of the downtime constraint

(or unit increase in p value) at each step. This ordering can be achieved by ordering

the stages with respect to λ10,i’s, i ∈ M , the values of λ (downtime penalty rate) at

which optimal Policy switches to Policy (0,1). The ascending order of λ10,i’s provides

the intended order for the stages.

The procedure for ordering the stages can be stated as follows:

(1) For all i ∈ M with Nc1,i ≤ c0,i + hi

α (1−e−αT ), find λi = λ00−10,i. For all i ∈ M

with Nc1,i > c0,i + hi

α (1 − e−αT ), find λ10,i = max{λ00−10,i, λ01−10,i}.

(2) Generate the permutation J = (j1, ..., jm) of set M such that i < k implies that

λji
≤ λjk

for all i, k ∈ M .

For each i ∈ M , λi found in step (1) is the value of λ for which Policy (1,0) becomes

optimal. By permutation J = (j1, ..., jm), an ascending order {λ10,j1 , λ10,j2 ..., λ10,jm
}

for the set {λ10,1, λ10,2..., λ10,m} can be generated. Remember that the resource level

of the downtime constraint in Q(λ), D(y∗(λ), z∗(λ), s∗(λ)), is decreasing in λ. Hence,

by choosing redundancy for the stages one-by-one with the order in permutation J

(i.e., in the order (stage j1, stage j2,..., stage jm)), the optimal TCO values are

provided for decreasing resource level of the downtime constraint (i.e., increasing p

value) at each step.

Example 3.7 We apply the procedure for ordering the stages of the capital good

given in Example 3.1. The relevant λ values are λ00−10,1 = 45630.35 Euros/month,

λ01−10,1 = 43682.49 Euros/month, λ00−10,2 = 3005896 Euros/month, and λ01−10,2 =

3630156 Euros/month.

(1) λ10,1 = 45630.35 Euros/month and λ10,2 = 3630156 Euros/month.

(2) J = (1, 2) as λ10,1 < λ10,2.

Hence, one should choose first stage 1 and then stage 2 to implement redundancy.
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3.5. Conclusions

In this chapter, we developed a redundancy allocation model for capital goods. In

the problem that we studied, three policies per stage, namely Policy (0,0), Policy

(0,1), and Policy (1,0), were defined. Under Policy (0,0) and Policy (1,0), a defined

emergency procedure was applied when a failure occurred and there was an out-of-

stock situation. Under Policy (0,1), a defined provision procedure was applied when a

failure occurred and the actual stock-on-hand of the relevant component was 1, which

prevented out-of-stock situations. Each of these policies provided different levels of

uptime. We developed the problem formulation as the minimization of the TCO of

a general number of systems under a defined downtime constraint. TCO included

acquisition costs, spare parts costs, and repair costs. The multi-stage problem had a

combinatorial nature due to the three candidate policies per stage.

We decomposed the problem into single-stage problems and showed that a solution for

the multi-stage problem could be generated by finding solutions of each of the single-

stage problems. We developed an efficient procedure to find the optimal solutions of

the single-stage problems for varying resource levels of the downtime constraint. This

procedure enabled us to find the optimal solutions for the multi-stage problem for

varying resource levels of the downtime constraint efficiently, without considering all

possible combinations of the three policies for all stages.

We derived results for the single-stage problems and the multi-stage problem. The

results for the single-stage problems revealed that when the value of the resource level

of the downtime constraint was varied by starting from a high value and decreased

down to zero; i.e., the constraint was initially loose and got tighter and tighter, Policy

(1,0), which corresponded to choosing redundancy, became optimal at a certain value

of the resource level and remained optimal for all its smaller values afterwards. We

also showed that the values of the TCO and downtime (or uptime) when the optimal

policy changed from one to the other could be easily computed. This property lead to

a simple method to construct an efficient frontier to explore the trade-off between the

downtime and the TCO for the multi-stage problem. We also provided an ordering

of the stages in a capital good for redundancy as one might be interested in finding

the optimal order to follow for stages to make one-by-one decisions.

In Chapter 2 and this chapter, we investigated optimal reliability of a component and

the redundancy allocation for a capital good, respectively. In the next chapter, we

will study the upgrading problem for an improved component. In this problem, the

reliability level of the component is already fixed and redundancy is not considered.



Appendix 81

Appendix

Proof of Property 3.1:

(i) Under Policy (0,0) and Policy (1,0), the processes of instances of the ordinary

procedure and the emergency procedure are identical to those defined in

Subsection 2.2.1 and this property is equivalent to Lemma 2.1 with τ = τi

and G(τ, s) = Bi(si)).

(ii) The property for Policy (0,1) can be proved in a similar manner given for Lemma

2.1.

(iii) In part (ii) of Lemma 2.2, we derive NPV of the expected repair costs. By

following a similar manner used in that derivation, it can be shown that

Ri(0, si) =
N

ατi
(1 − e−αT )r1,i + (r2,i − r1,i)Bi(si),

and

Ri(1, si) =
N

ατi
(1 − e−αT )r1,i + (r2,i − r1,i)Bi(si − 1.)]

The two formulations can be represented by equation (3.2).

(iv) For a given i ∈ M , suppose that Policy (0,0) is chosen ((yi, zi) = (0, 0)). Let Z1

be the random variable denoting the downtime after a failure of a component-i

part that leads to an instance of the ordinary procedure. Remember that this

downtime is equivalent to the inventory-replacement time of the failed part,

and inventory-replacement times have independent and identical distributions

with mean µ1,i. Let F1 denote the random variable representing the number of

failures of component-i parts that lead to applications of the ordinary procedure

throughout [0, T ]. Then, E[F1] = NT
τi

[1 − Bi(si)] by part (i). Let D1,i be the

expected downtime stemming from those failures. Then,

D1,i = E[Z1]E[F1] =
NT

τi
µ1,i[1 − Bi(si)]

Similarly, the expected downtime stemming from failures of component-i parts

that lead to applications of the emergency procedure throughout [0, T ] can be

derived as

D2,i =
NT

τi
µ2,iBi(si)

Hence, for Policy (0,0), the expected downtime throughout [0, T ] is

Di(0, 0, si) =
NT

τi
[µ1,i + (µ2,i − µ1,i)Bi(si)].
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For Policy (0,1) ((yi, zi) = (0, 1)), downtime per failure is equal to the inventory-

replacement time and the expected downtime can be derived similarly as

Di(0, 1, si) =
NT

τi
µ1,i.

As there is no downtime in Policy (1,0) ((yi, zi) = (1, 0)), the expected downtime

throughout [0, T ] can be written as

Di(yi, zi, si) =
NT

τi
(1 − yi)[µ1,i + (µ2,i − µ1,i)(1 − zi)Bi(si)].
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Chapter 4

Upgrading Policy After

Redesign of a Component

4.1. Introduction

In Chapter 2 and 3, we studied reliability decisions during the design phase of a

capital good. In practice, reliability improvement activities are also performed during

the exploitation phase. In this chapter, we study the upgrading policy problem, which

is encountered during the exploitation phase.

We consider a situation in which an OEM is responsible for the availability of a

general number N of systems in the field through service contracts. She has already

decided that it is economical to improve the reliability of a certain critical component

by redesign and upgrade the systems in the field by replacing the parts in the field

(old parts) with the redesigned parts (new parts). The question to be investigated is

when the upgrading should take place: immediately when the component has been

redesigned or old parts are replaced only when they fail. Contrary to the cases that

we studied in Chapter 2 and 3, repair-on-site is applied for the critical component

and no spare parts are kept on stock.

In general, an OEM and a supplier of the new parts might agree on different terms

for the supply of the new parts, such as one-for-one replenishment, replenishment in

batches, unit price, etc. We assume the following setting: The OEM can buy any

number of new parts just after the redesign (at time 0) and she can replenish new

parts only in batches after time 0. The OEM and the supplier agree on a fixed batch

size and unit price(s) of the new parts through negotiations. The unit price after time
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0 is greater than or equal to the unit price at time 0. This is a very likely situation

as the production facility of the supplier might undergo some changes after time 0

(e.g., the production line or the technology might change) and an extra effort might

be necessary to produce the new parts.

The OEM considers the following two upgrading policies for the N systems in the

field:

• Policy 1 - Upgrade all systems preventively at time 0: N new parts are bought

at time 0 and all the old parts in the field are preventively replaced with the

new parts at time 0.

• Policy 2 - Upgrade systems one-by-one correctively: A number of new parts is

bought at time 0 (initial supply) and is kept on stock. When an old component

in the field fails, it is correctively replaced with a new one from the inventory.

The OEM replenishes new parts in batches whenever a new part is needed and

there is an out-of-stock situation after time 0.

Under Policy 1, the OEM faces less failures and less downtime as all old parts are

replaced with the new ones immediately after the redesign. However, she forfeits

the remaining lifetimes of the old parts. Under Policy 2, OEM benefits from the

remaining lifetimes; however, she faces more failures and downtime. An increase in

the unit price after time 0 (which is probable as we stated above) favors Policy 1. All

factors that play a role in Policy 1 are predetermined. The initial supply quantity is

a decision that the OEM has to make and it affects the costs incurred under Policy

2. All other factors in Policy 2 are predetermined.

In this chapter, we develop a quantitative model for the upgrading problem with Policy

1 and Policy 2. We formulate the effect of the initial supply quantity on procurement

costs, inventory storage costs, replenishment costs and salvage value under Policy

2 explicitly. Although these policies were previously studied in the literature (see

Mercier and Labeau (2004), Mercier (2008), and Clavareau and Labeau (2009b,a)),

the existing models did not incorporate these effects which is fundamental in our case.

Mercier and Labeau (2004) investigate a situation in which the failure rate and the

energy consumption rate of a unit (part or system) are improved. They define a so-

called K strategy for a general number, N , of identical and independent units (parts

or systems) on some finite time interval [0, T ]. The upgrading period is separated into

two phases under this strategy. Until the Kth failure of the old units, K ∈ {0, 1, ..., N},

failed old units (including the Kth unit) are replaced with the new ones correctively.

Afterwards, the remaining N−K old units are replaced preventively. They investigate

situations in which failure rates for both old units and new units are constant. K = 0



4.1 Introduction 85

represents the strategy under which all old units are replaced preventively at time 0

while K = N represents the strategy under which each old unit is replaced correctively

(no preventive replacement). Notice that K = 0 corresponds to the same as Policy

1 in our model; and K = N results in the same policy as Policy 2 with an initial

supply quantity of zero and a batch size of 1 for replenishment after time 0. When

a new unit fails, it is replaced with another new unit with zero lead time. They

formulate the mean discounted total cost over [0, T ] at time 0. The mean discounted

total cost includes replacement costs and energy consumption costs. They show that

only three strategies can be optimal: the strategies with K = 0, K = 1, and K = N ,

respectively.

Mercier (2008) incorporates general failure rates (e.g., increasing failure rate due to

degradation) into the model developed by Mercier and Labeau (2004). They show

that in this case the optimal strategy can be different than K = 0, K = 1, and

K = N ; and it depends on the time horizon T .

The inventory of new parts, which is a crucial aspect in our case, is not incorporated in

the models by Mercier and Labeau (2004) and Mercier (2008). Clavareau and Labeau

(2009b,a) incorporate the inventory into a Petri net model and a simulation model,

respectively, to study the K strategy. In their model, an order quantity is determined

and new parts can be procured at any time with this order quantity. However, the

order quantity is fixed by certain inventory control methods, such as point command

method and Economic Order Quantity rather than being optimized with respect to

the total costs incurred for upgrading the systems in these papers. These models

also incorporate other aspects (e.g., different types of maintenance actions, limited

maintenance capacity, priority rules for different actions, effectiveness of a repair, etc.)

which makes it difficult to realize the interaction between the inventory decisions and

the optimal strategy. In our model, the initial supply quantity under Policy 2 is a

decision variable. We formulate the relevant costs as a function of the initial supply

quantity and optimize the initial supply quantity with respect to total costs.

We conducted a numerical study to derive insights about conditions which favor each

policy. We used the percentage difference in the MTBF of the old parts and the MTBF

of the new parts as a measure of the reliability improvement. In our numerical study,

we found out that Policy 1 is favored by low values of the number of systems, long

lifetime of the systems, low values of the MTBF of the old parts (for fixed percentage

improvement in MTBF), high values of the percentage improvement in MTBF, high

values of the increase in the unit price of the new parts after time 0, large batch

sizes, and high values of the downtime costs per failures. The reverse of each of these

conditions favors Policy 2. Our numerical study showed that the optimal policy may

change by varying any of the mentioned factors.
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The contribution of this chapter can be stated as follows:

• First, we introduce a model for the upgrading problem with Policy 1 and Policy 2

for a general number of systems. We formulate total costs incurred under Policy

1 and Policy 2. These costs include procurement costs of the new parts, costs

incurred for upgrading the systems and costs incurred during repairs of the new

parts under Policy 1; and costs of the initial supply, costs incurred for upgrading

the systems, repair costs incurred during repairs of the new parts, replenishment

costs after time 0 and inventory storage costs under Policy 2. Downtime costs

are incorporated into the costs incurred for upgrading the systems and the costs

incurred during repairs of the new parts. We develop a problem formulation in

which the relationship between the initial supply quantity and the costs affected

by the initial supply quantity under Policy 2 is explicitly established.

• Second, we perform an exact analysis on the total costs under Policy 2 and we

derive several analytical properties.

• Third, we develop an efficient solution procedure for the initial supply quantity

in Policy 2.

• Fourth, we perform a numerical study and provide insights about conditions

which favor each policy. We use the percentage difference in the MTBF of

the old parts and the MTBF of the new parts as a measure of the reliability

improvement. Policy 1 is advantageous for

– low values of the number of systems,

– long lifetime of the systems,

– low values of the MTBF of the old parts (for fixed percentage improvement

in MTBF),

– high values of the percentage improvement in MTBF,

– high values of the increase in the unit price of the new parts after time 0,

– large batch sizes,

– high values of the downtime costs per failures.

Policy 2 is advantageous for

– high values of the number of systems,

– short lifetime of the systems,

– high values of the MTBF of the old parts (for fixed percentage improvement

in MTBF),

– low values of the percentage improvement in MTBF,
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– low values of the increase in the unit price of the new parts after time 0,

– small batch sizes,

– low values of the downtime costs per failures.

Our numerical study shows that varying any of the mentioned factors may lead

to a change in the optimal policy.

The outline of this chapter is as follows. In Section 4.2, we detail our model and

develop a problem formulation. We derive the total cost function per policy and

provide a number of analytical properties and an optimization procedure for the total

cost function of Policy 2 in Section 4.3. We give the setting and the results of our

numerical study in Section 4.4. We finalize the chapter by drawing conclusions in

Section 4.5.

4.2. Model

An OEM provides service for N identical systems that she produced and sold with a

service contract. The contract covers the systems’ lifetime and we assume that the

lifetime of all systems will end at the same time.

The OEM redesigns one of the critical repairable components as she realizes that it

is economical to improve its reliability and upgrade the systems. Each system has

a single unit of the critical component. The OEM starts to upgrade the systems at

time 0 (just after the redesign) and the lifetime of the systems ends at time T ; i.e.,

the new parts can be used throughout the time interval [0, T ]. The remaining lifetime

of the systems (T ) is in the order of 1-30 years.

We denote the Mean Time Between Failures (MTBF) of the old parts by τold, which

is in the order of 1-10 years. After the redesign, an MTBF of τnew > τold is achieved

for the new parts. We assume that the time to failure of each old part and time to

failure of each new part in the field have exponential distributions with mean τold and

τnew, respectively, throughout [0, T ]. We further assume that τold and τnew are fixed

throughout [0, T ].

The OEM has two options for the procurement of new parts: First, she can buy any

number of new parts with a unit price of c0 at time 0. Second, she can replenish

batches of q1 new parts throughout (0, T ] with a unit price of c1. The batch size q1

(q1 ∈ {1, 2, ...N}) is a fixed value that the OEM and the supplier of the new parts

agree on. The OEM may choose to keep an inventory of the new parts for upgrading

the systems. The storage cost rate per part is h > 0.
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There are two types of upgrading per system:

• Preventive Upgrading: Planning and executing the replacement of the old part

in a system before the old part fails.

• Corrective Upgrading: Replacing the old part when it fails.

In both cases the following actions are taken. A new part is transported to the

customer site; a service engineer visits the customer site and replaces the old part

with the new one; the old part is transported to a disposal site and discarded. The

expected costs that are incurred for a preventive upgrading and a corrective upgrading

are u1 and u2, respectively. These costs include administrative costs, costs of a visit of

a service engineer, the downtime costs stemming from the interruption of operation

during the upgrading, transportation costs of the new part and the old part. As

preventive upgrading is planned beforehand, the downtime costs and the costs of

the visit of a service engineer incurred during a preventive upgrading are less than

that incurred during a corrective upgrading. All the actions that are taken in both

cases are the same; thus, the difference between the upgrading costs stem from the

difference between the downtime costs and the service engineer costs; and u1 ≤ u2.

When a new part fails in the field, a service engineer visits the customer site and

repairs the part. That is, the failed part is not replaced with a ready-for-use one

but repaired on site. If the OEM keeps an inventory of the new parts, the parts in

stock are used only for upgrading the systems. We denote the expected costs incurred

during such an on-site repair by r. r includes administrative costs, costs of a visit of

a service engineer, downtime costs, and the repair costs of a new part.

The salvage value of an old part and that of a new part are sold and snew , respectively.

sold and snew can be positive or negative. Positive values mean that revenue is

generated and negative values mean that discarding costs are incurred by salvaging

parts. We assume that snew ≤ c0; that is, the new parts cannot be salvaged at a

higher value than their unit price. All new parts are salvaged at time T . An old part

is salvaged immediately after it is replaced with a new one.

4.2.1 Policies

The OEM chooses one of the following two upgrading policies after the redesign:

1. Policy 1 - Upgrade all systems preventively at time 0: N new parts are

replenished and all old parts in the field are replaced with new parts at time 0.
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2. Policy 2 - Upgrade systems one-by-one correctively: q0 (q0 ∈ {0, 1, 2, ...N})

new parts are replenished at time 0. q0 is a decision variable. After their

replenishment, the parts are kept in an inventory. When an old part fails, it is

replaced by a new part from the inventory as long as there is a ready-for-use

part available. After the initial supply, whenever a failure of an old part occurs

and there is an out-of-stock situation in the inventory of the new parts, a batch

of new parts is replenished. After each replenishment, one of the q1 new parts

is used to replace the failed old part which triggered the replenishment. The

remaining q1 − 1 new parts are kept in the inventory for later use to replace the

old parts when they fail.

The OEM’s decision about the implementation policy depends on the total costs that

would be incurred throughout [0, T ]. Under Policy 1, the total costs would be the

sum of the investment costs of N new parts, costs incurred for upgrading the systems

(including downtime costs), costs incurred during repairs of the new parts (including

downtime costs), and salvage value. Under Policy 2, the total costs would be the sum

of the costs of initial supply, costs incurred for upgrading the systems, inventory costs,

replenishment costs that would be incurred after the usage of the first q0 new parts,

costs incurred during repairs of the new parts, and salvage value. We assume that the

production costs, costs incurred for upgrading the systems, and salvage value of the

old parts under Policy 1 and initial replenishment costs of q0 parts under Policy 2 are

incurred at time 0. As the other costs are incurred throughout [0, T ], we formulate

the Net Present Values (NPVs) of these costs at time 0. We denote the discount rate

by α > 0.

We assume that the replenishment lead time, which plays a role only under Policy

2, is zero. In case of a positive replenishment lead time (in the order of 1-2 weeks),

the OEM would keep a small safety stock; that is, she would order a new batch

whenever a failure occurred and the actual inventory-on-hand decreased to a certain

positive level. The safety stock would serve to replace old parts that failed during

the lead time; so, the OEM would decide on the safety stock level with respect to the

probability of having failures during the lead time. As the lead time would be small

compared to the MTBF of the old parts (τold), the mean number of failures during

the lead time would also be small, which would impose a small safety stock level and

safety stock costs. Hence, the effect of a positive lead time on the optimal initial

order quantity (q0) and total costs would be very small. Ignoring a possible small

replenishment lead time has no or a very limited effect on the costs under Policy 1

and 2, and it keeps the analysis clean.
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4.2.2 Problem Formulation

We use the following notation for the costs incurred under the two policies:

π1: The expected NPV of the total costs under Policy 1.

π2(q0): The expected NPV of the total costs under Policy 2.

P1: The expected NPV of the procurement costs of N new parts under

Policy 1.

V1: The expected NPV of the salvage value under Policy 1.

U1: The expected NPV of the costs incurred for upgrading the systems

under Policy 1.

R1: The expected NPV of the costs incurred during repairs of the new

parts under Policy 1.

P2(q0): The expected NPV of the procurement costs of the initial supply

under Policy 2.

S2(q0): The expected NPV of the inventory storage costs under Policy 2.

K2(q0): The expected NPV of the replenishment costs incurred

after time 0 under Policy 2.

V2(q0): The expected NPV of the salvage value under Policy 1.

U2: The expected NPV of the costs incurred for upgrading the systems

under Policy 2.

R2: The expected NPV of the costs incurred during repairs of the new

parts under Policy 2.

There is no decision variable in Policy 1, so the costs do not have a functional form.

π1 = P1 − V1 + U1 + R1, where P1 = c0N , V1 = soldN + snewNe−αT and U1 = u1N .

The derivation of R1 will be given in Section 4.3.

Under Policy 2, the old parts are replaced with the new ones whenever they fail, thus

the upgrading costs U2 is independent of q0. The failure process of the new parts do

not depend on q0; therefore, the repair costs R2 are not a function of q0 either. The

other costs are functions of q0. For Policy 2, the following optimization problem has

to be solved:

(Q) min π2(q0)

s.t. q0 ∈ M = {0, 1, 2, ..., N},

where π2(q0) = P2(q0) + S2(q0) + K2(q0) − V2(q0) + U2 + R2 and P2(q0) = c0q0. The

formulations of the other costs will be derived in Section 4.3.

Let q∗0 be an optimal solution of problem (Q) and π∗
2 = π2(q∗0); i.e., π∗

2 is the minimum

cost found for problem (Q). The OEM compares π1 and π∗
2 , and selects the policy
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with the minimum cost. That is, if π1 ≤ π∗
2 , she will implement Policy 1; otherwise,

she will implement Policy 2 with initial supply amount of q∗0 .

4.3. Analysis

In this section, we first derive the costs incurred during repairs of the new parts

under Policy 1. Then, we provide a number of preliminary results for Policy 2. Next,

we derive inventory storage costs, replenishment costs, salvage value, costs incurred

for upgrading the systems, and costs incurred during repairs of the new parts under

Policy 2. We finalize the section by developing a solution procedure for Problem (Q).

Lemma 4.1 The costs incurred during repairs of the new parts under Policy 1 has

the following formulation:

R1 =
N

τnew

r

α
(1 − e−αT )

Proof: See Appendix at the end of this chapter. 2

So

π1 = P1 − V1 + U1 + R1

= c0N − (soldN + snewNe−αT ) + u1N +
N

τnew

r

α
(1 − e−αT ).

4.3.1 Preliminary Results for Policy 2

Let I(t) represent the actual inventory-on-hand at time t > 0 under Policy 2. For

a given initial order quantity (q0), I(t) follows a certain cyclic pattern. In Figure

4.1, we illustrate this pattern for q0 = 4 and q1 = 3. In this figure, (tn)n∈{1,2,...,N},

represents the times of an arbitrary realization of the failures of the old parts. We

consider the procurement of the q0 new parts at time 0 as batch replenishment and

refer to this batch as the 0th batch. Observe that after the procurement of any batch,

I(t) is depleted in the same manner, which depends on the times of the failures of the

old parts after the procurement.

In the remainder of this section, we first construct a mini-model as an analogue of an

arbitrary cycle of I(t). We derive generic results for the mini-model, which we will

use to characterize failure times of the old parts and derive storage costs under Policy

2. Next, we give the probability density and the probability distribution functions of
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Figure 4.1 Visual representation for of the inventory-on-hand

the failure times of the old parts and two properties regarding replenishment of the

new parts.

Mini-model and Generic Results

Suppose that there are N̂ systems with old parts in the field at time 0. The systems

will be used until time T̂ . q̂ ∈ {0, 1, 2, ..., N̂} new parts are procured and added to

stock at time 0. These new parts will be used to upgrade the systems correctively.

We denote the random variable that represents the time of the nth failure of the old

parts under infinite horizon by T̂n, n ∈ {0, 1, 2, ..., N̂}, T̂0 = 0. That is, T̂n is the time

of the nth event in the process of the total stream of failures of the old parts. Under

finite horizon (T̂ < ∞), the old part which fails at time T̂n ≤ T̂ is replaced with a

new part. If T̂n > T̂ , the old part is not replaced. All the other parameters are the

same as the ones in the original model. We do not consider replenishment of new

batches if the number of the failures of the old parts is larger than q until time T̂ , as

we focus on the storage costs of the batch which is procured at time 0.

In Property 4.1, we derive the probability density and probability distribution

functions of T̂n, which we denote by fn(t, N̂) and Fn(t, N̂). Including N̂ as an

independent variable in the definitions of these functions enables us to use these

functions to formulate the probability density and probability distribution functions

of the times of failures of the old parts in the original model.

Property 4.1 T̂n, n ∈ {1, 2, ..., N̂}, has the probability density function

fn(t, N̂) =

n
∑

i=1

Ci,n(N̂ )λi(N̂)e−λi(N̂)t, t ≥ 0, (4.1)
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and the probability distribution function

Fn(t, N̂) =

n
∑

i=1

Ci,n(N̂)(1 − e−λi(N̂)t), t ≥ 0,

where λi(N̂) = N̂−i+1
τ0

, C1,1(N̂) = 1, and Ci,n(N̂) =
n
∏

j=1
j 6=i

λj(N̂)

λj(N̂)−λi(N̂)
for n ∈

{2, 3, ..., N̂}.

Proof: Let X̂i be the random variable that represents the time between the (i− 1)st

failure and ith failure, for i ∈ {1, 2, 3, ..., N̂}. Then, X̂i is exponentially distributed

with rate λ̂i(N̂) = N̂−i+1
τ0

and T̂n =
n
∑

i=1

X̂i, n ∈ {1, 2, 3, ..., N̂}; that is, T̂n is the sum

of n exponential random variables with different rates. Such a random variable is said

to be a hypoexponential random variable and its probability density function is given

by equation (4.1) (see equation (5.8) in Ross (2007)). 2

Let Ŝ(N̂ , T̂ , q̂) denote the expected NPV of the storage costs of the batch at time 0.

We derive Ŝ(N̂ , T̂ , q̂) in Lemma 4.2. The storage costs of each cycle (batch) in the

original model can be derived by varying N̂ , T̂ , and q̂ with respect to the parameters

of the cycle.

Lemma 4.2 It holds that

Ŝ(N̂ , T̂ , q̂) = h

q̂
∑

n=1

n
∑

i=1

Ci,n(N̂)
1

α + λi(N̂)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

.

Proof: See Appendix at the end of this chapter. 2

Failure Times of the Old Parts and Replenishment After Time 0

As we mentioned in Subsection 4.2.2, the costs under Policy 2 depend on the times of

the failures of the old parts. Hence, for their derivation, we need to characterize these

failure times. Let Tn, n ∈ M , denote the random variable that represents the time of

the nth failure of the old parts under infinite horizon under Policy 2, where T0 = 0.

Under finite horizon, the old part which fails at time Tn ≤ T is replaced with a new

part. We refer to the failed old part as the nth old part and the new part which is

used to replace the old part as the nth new part. We denote the probability density

and the probability distribution functions of Tn by fTn
(t) and FTn

(t), respectively.

We derive these functions as as direct results of Property 4.1.
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Corollary 4.1 For n ∈ {1, 2, ..., N}, it holds that fTn
(t) = fn(t, N) and FTn

(t) =

Fn(t, N).

We give two straightforward properties about batch replenishment after time 0 in

Property 4.2. We make use of these properties in the derivation of the cost functions.

Property 4.2 (i) The maximum number of batches that can be replenished is

k̄(q0) =
⌈

N−q0

q1

⌉

.

(ii) For each k ∈ {1, 2, ..., k̄(q0)}, if Tq0+(k−1)q1+1 ≤ T , the kth batch is replenished

at time Tq0+(k−1)q1+1 and Nk(q0) = N − [q0 + (k − 1)q1 + 1] old parts remain

in the field just after the replenishment.

4.3.2 Analysis of the Cost Functions Under Policy 2

We derive the cost functions under Policy 2 in Lemma 4.3. We define the following

notation for the storage costs and the salvage value under Policy 2, which helps us in

the derivation of these costs:

S2,k(q0): The expected NPV of the storage costs of the kth batch,

k ∈ {0, 1, 2, ..., k̄(q0)}, under Policy 2.

Vnew,k(q0): The expected NPV of the salvage value received for the kth batch

of the new parts under Policy 2.

Vold: The expected NPV of the salvage value of the old parts under

Policy 2.

Lemma 4.3 It holds that:

(i)

S2(q0) =

k̄(q0)
∑

k=0

S2,k(q0),

where

S2,0(q0) = Ŝ(N, T, q0),
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and for k ∈ {1, 2, ..., k̄(q0)},

S2,k(q0) =

q1−1
∑

n=1

n
∑

i=1

Ci,n(Nk(q0))
1

α + λi(Nk(q0))
×

q0+(k−1)q1+1
∑

j=1

Cj,q0+(k−1)q1+1(N)λj(N) ×





1 − e−
(

α+λj(N)
)

T

α + λj(N)
+

e−
(

α+λj(N)
)

T − e−
(

α+λi(Nk(q0))
)

T

λj(N) − λi(Nk(q0))



 .

(ii)

K2(q0) = c1q1

k̄(q0)
∑

k=1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N) ×

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

.

(iii)

V2(q0) = Vold +

k̄(q0)
∑

k=0

Vnew,k(q0),

where

Vold = sold

N
∑

n=1

n
∑

i=1

Ci,n(N)
1

α + λi(N)

[

λi(N) + αe−
(

α+λi(N)
)

T

]

, (4.2)

Vnew,0(q0) = snewe−αT q0,

and for k ∈ {1, 2, ..., k̄(q0)},

Vnew,k(q0) = snewq1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N)

[

e−αT − e−
(

α+λi(N)
)

T

]

.

(iv)

U2 = u2

N
∑

n=1

n
∑

i=1

Ci,n(N)
λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

.
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(v)

R2 =
r

ατ1

N
∑

n=1

n
∑

i=1

Ci,n(N) ×

{

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

− e−αT (1 − e−λi(N)T )

}

.

Proof: See Appendix at the end of this chapter. 2

4.3.3 Solution Procedure for Problem (Q)

We derive a convexity-like property for S2(q0) and K2(q0) − V2(q0) on the elements

of a certain partition of {1, 2, ..., N} in Lemma 4.4. Lemma 4.5 makes use of these

properties to derive a similar property for π2(q0). Finally, we develop a solution

procedure for Problem (Q) in Theorem 4.1 by exploiting the result given in Lemma

4.5.

Remember that q0 ∈ M = {0, 1, 2, ..., N}. For a given q1 ∈ {1, ..., N} and x ∈

{0, 1, ..., q1 − 1}, let

Mx =

{

x + zq1 | z = 0, 1, ...,

⌊

N − x

q1

⌋}

,

and

P̄ = {Mx | x = 0, 1, ..., q1 − 1} .

Observe that Mx ∩ My = ∅ for any x, y ∈ {0, 1, ..., q1 − 1}, x 6= y and
q1−1
⋃

x=0
Mx = M ;

that is, P̄ a partition of M .

Let

θ2(q0) = K2(q0) − V2(q0)

We define the operator ∆q1 for an arbitrary function g(q0) as

∆q1g(q0) = g(q0 + q1) − g(q0).

Lemma 4.4 For each Mx ∈ P̄ ,

(i)

∆q1S2(q0 + q1) ≥ ∆q1S2(q0), q0 ∈ Mx, (4.3)
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(ii)

∆q1θ2(q0 + q1) ≥ ∆q1θ(q0), q0 ∈ Mx. (4.4)

Proof: See Appendix at the end of this chapter. 2

Lemma 4.4 states a convexity-like property for S2(q0) and θ2(q0) on each element

of P̄ . For any Mx ∈ P̄ , x ∈ {0, 1, ..., q1 − 1}, when the elements of Mx are put in

an ascending order, two consecutive elements can be represented by q0 and q0 + q1.

Inequality (4.3) indicates that the difference between the values of S2(q0) at two

consecutive elements is increasing, which is equivalent to the definition of convexity

when the two consecutive elements differ by one. The same argument also holds for

inequality (4.4).

Lemma 4.5 For each Mx ∈ P̄ ,

∆q1π2(q0 + q1) ≥ ∆q1π2(q0) (4.5)

on Mx:

Proof: It directly follows from Lemma 4.4 as π2(q0) = P2(q0) + S2(q0) + K2(q0) −

V2(q0) + U2 + R2, P2(q0) = c0q0, and U2 and R2 are constant. 2

The relation of Lemma 4.4 to convexity also holds for Lemma 4.5.

Corollary 4.2 If q1 = 1 (one-for-one replenishment), π2(q0) is convex on M .

Proof: If q1 = 1, P̄ has only one element which is M itself. Then, Lemma 4.5 is

equivalent to stating that π2(q0) is convex on M . 2

In Figure 1.1, we illustrate the property given in Lemma 4.5 for q1 = 2 and N = 13

(i.e., M = {0, 1, 2, ..., 13}). As you can see in Figure 4.2(a), π2(q0) is not convex on

M . The partition P̄ is given as P̄ = {M0, M1}, where

M0 = {0, 2, 4, 6, 8, 10, 12} ,

M1 = {1, 3, 5, 7, 9, 11, 13} .

In Figure 4.2(b), you can observe that π2(q0) has a convex shape on M0 and M1.

For a given x ∈ {0, 1, ..., q1 − 1}, we define

q0,x = min{q0 ∈ Mx|π2(q0) ≤ π2(q) for all q ∈ Mx}.
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(a)

(b)

Figure 4.2 Visual Representation of Lemma 4.5

That is, q0,x is the smallest value of q0 which minimizes π2(q0) over Mx. By the

convexity-like property, we may take

q0,x =















min {q0|∆q1π2(q0) ≥ 0} if there exists q0 ∈ Mx −
{

x +
⌊

N−x
q1

⌋

q1

}

such that ∆q1π2(q0) ≥ 0

x +
⌈

N−x
q1

⌉

q1 otherwise.

(4.6)

As a result, an optimal solution q∗0 can be found for Policy 2 by enumerating all

optimal solutions q0,x for all Mx ∈ P̄ .

Theorem 4.1 The following procedure determines an optimal solution of problem

(Q):

1. For all Mx ∈ P̄ , find q0,x by equation (4.6).

2. q∗0 = arg min
q0,x

{

π(q0,x) | x ∈ {0, 1, ..., q1 − 1}
}

is an optimal solution.
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4.4. Numerical Study

In this section, we present a numerical study for the investigation of the effect of

7 factors on optimality of the two policies. One of these factors is the percentage

improvement in MTBF defined as

∆τ =
τnew − τold

τold
(100%).

The other 6 factors are MTBF of old parts (τold) (when percentage improvement ∆τ

is fixed), downtime costs (included in u1, u2, and r), the increase in the unit price of

the new parts after time 0 (c1−c0) (when initial unit price c0 is fixed), batch size (q1),

number of systems (N), and remaining lifetime of the systems (T ). In our study, we

first define a base case with certain factor/parameter values. Then we vary a single

factor of interest at a time to extract its effect. Each factor has two choices other than

its value in the base case. That is, there are three instances per factor, one of which

is common for all (there are 7× 2 + 1 = 15 instances in total). We compute total cost

function of Policy 1 (π1), optimize q0 under Policy 2, and compute the optimal total

cost function of Policy 2 (π∗
2) for each instance. We compare values of π1 and π∗

2 per

factor.

4.4.1 Base Case and Choices of Factors

We define the base case with values of factors/parameters given in Table 4.1. We

consider a situation in which costs of activities and downtime costs during upgrading

a system in Policy 2 and repairing a new part are comparable; so, u2 and r has equal

values. We vary u2 and r simultaneously while studying the effect of downtime costs.

The choices of the factors other than their values in the base case are given in Table

4.2. For the effect of downtime, we vary u2 and r, but not u1, as upgrading is

performed preventively (i.e., it is planned) and the effect of downtime can be kept

under control under Policy 1.

4.4.2 Results

We define the relative cost difference between Policy 1 and Policy 2 as

∆π =
π∗

2 − π1

π1
(100%).

We use it as a measure for the effects of the factors on optimality of the policies. We

report the optimal policy, values of ∆π, and the optimal initial supply quantities q∗0 ,

for the instances we generate in Table 4.3.
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Table 4.1 Values of factors/parameters for the base case

Factor / Parameter Value

N 50

T (years) 10

τold (years) 3

∆τ 50%

c0 (Euros per part) 25000

c1 − c0 (Euros per part) 5000

q1 4

h (Euros per month per part) 400

sold (Euros per part) 0

snew (Euros per part) 0

u1 (Euros) 9000

u2 = r (Euros) 25000

α (yearly) 0.05

We derive the following managerial insights by the results observed in our numerical

study:

• High number of systems favors Policy 2. As the number of systems increases,

one has to buy a higher number of new parts initially under Policy 1 and replace

all old parts without making use of their remaining lifetime. Benefiting from

the remaining lifetimes makes Policy 2 favorable. The optimal initial supply

quantity (q∗0) is higher for higher number of systems as the failure rate of the

total stream of failures is higher initially.

• Short lifetime favors Policy 2. Once Policy 1 is optimal for a certain lifetime,

Table 4.2 Choices of the factors

Factor Values

N 40, 60

T (years) 5, 15

τold (years) 1, 5

∆τ 20%, 100%

c1 − c0 (Euros per part) 0, 10000

q1 2, 6

u2 (Euros) 12500, 50000

r (Euros) 12500, 50000
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Table 4.3 Results of the numerical study for the effects of the factors

π1 π∗
2 ∆π Optimal Policy q∗0

N 40 3,108,753 3,116,587 0.25% Policy 1 12

50 3,885,941 3,883,587 -0.06% Policy 2 14

60 4,663,129 4,648,567 -0.31% Policy 2 16

T 5 2,928,885 2,704,236 -7.67% Policy 2 14

10 3,885,941 3,883,587 -0.06% Policy 2 14

15 4,631,297 4,642,833 0.25% Policy 1 14

τold 1 8,257,822 8,328,512 0.86% Policy 1 30

3 3,885,941 3,883,587 -0.06% Policy 2 14

5 3,011,564 2,820,218 -6.35% Policy 2 10

∆τ 20% 4,432,426 4,252,833 -4.05% Policy 2 14

50% 3,885,941 3,883,587 -0.06% Policy 2 14

100% 3,339,456 3,514,341 5.24% Policy 1 14

c1 − c0 0 3,885,941 3,705,901 -4.63% Policy 2 6

5000 3,885,941 3,883,587 -0.06% Policy 2 14

10000 3,885,941 4,014,705 3.31% Policy 1 22

q1 2 3,885,941 3,834,851 -1.31% Policy 2 12

4 3,885,941 3,883,587 -0.06% Policy 2 14

6 3,885,941 3,910,380 0.63% Policy 1 14

u2 = r 12500 2,792,970 2,613,377 -6.43% Policy 2 14

25000 3,885,941 3,883,587 -0.06% Policy 2 14

50000 6,071,882 6,424,007 5.80% Policy 1 14

it remains optimal for longer lifetimes. Under Policy 1, the replenishment costs

and the upgrading costs are incurred at time 0. Only the repair costs are

incurred throughout (0, T ]. Under Policy 2, all costs except the costs of initial

supply are incurred throughout (0, T ]. Under Policy 1, the failures stem only

from the new parts and costs are incurred for the repair of the new parts. Under

Policy 2, the failures stem from the old parts and the new parts. The old parts

are replaced with new ones when they fail, while the new parts are repaired.

The expected number of failures of the new parts throughout (0, T ] under Policy

1 is smaller than the total expected number of failures of the new parts and the

old parts throughout (0, T ] under Policy 2. As u2 and r are equal, after any

instant t ∈ (0, T ], the upgrading costs and the repair costs under Policy 2 will

be greater than the repair costs under Policy 1. As a result, as T increases, the

difference between the total costs incurred under Policy 1 and the total costs
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incurred under Policy 2 will get smaller.

• High values of the MTBF of old parts favor Policy 2 as Policy 2 benefits from

the remaining lifetime of old parts while Policy 1 forfeits from it. The optimal

initial supply quantity is lower for higher values of the MTBF of the old parts

as the failure rate of the total stream of failures is lower.

• Low values of the percentage improvement in MTBF (∆τ) favor Policy 2. Once

Policy 1 is optimal for a certain value of the percentage improvement, it remains

optimal for its higher values. When the percentage improvement is higher, the

total costs decreases under Policy 1 and Policy 2 as the repair costs of the

new parts decreases. However, the relative effect of decrease under Policy 1 is

higher as Policy 2 still suffers from the failures of the old parts. The percentage

improvement does not affect the optimal initial supply quantity as the costs

that depend on the initial supply quantity (the costs of the initial supply, the

replenishment costs and the storage costs) are not affected by the MTBF of the

new parts.

• Low values of the increase in the unit price of the new parts after time 0 favors

Policy 2 as one can make use of the remaining lifetime of the old parts and

replenish the new parts at a relatively low price when they are needed after time

0. Higher values of the increase in the unit price is an incentive to replenish

parts at time 0. This effect is reflected by the decrease in the relative cost

difference and the increase in the optimal initial order quantity.

• A small batch size provides the opportunity to fine-tune replenishment timings

and actual inventory-on-hand, which favors Policy 2. This advantage declines

when the batch size is increased as some parts might be replenished unnecessar-

ily and the average actual inventory-on-hand increases. A high batch size result

in high replenishment cost per batch after time 0 and leads to higher optimal

initial order quantity.

• Low values of the downtime costs per failure favors Policy 2. This is due to

the fact that the expected number of failures of the new parts throughout (0, T ]

under Policy 1 is smaller than the total expected number of failures of the new

parts and the old parts throughout (0, T ] under Policy 2. As the total number of

failures under Policy 2 is independent of the initial supply quantity, the optimal

initial supply quantity is not affected by the increase in the downtime costs.

Our numerical study reveals that a change in any factor may lead to a change in the

optimal policy. All factors except the number of the systems and the batch size lead

to significant changes in the difference between the total costs under Policy 1 and the

total costs under Policy 2 when they are varied.
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Another interesting observation is that the difference between the number of the

systems and the optimal initial supply quantity (N − q∗0) is a multiple of the fixed

batch size (q1) in all instances. So, no new parts would be procured unnecessarily

due to the fixed batch size in the optimal solutions.

4.5. Conclusions

In this chapter, we introduced a model for studying the following two upgrading

policies that an OEM may implement after the redesign of a component:

• Policy 1 - Upgrade all systems preventively at time 0: N new parts are bought

at time 0 and all the old parts in the field are preventively replaced with the

new parts at time 0.

• Policy 2 - Upgrade systems one-by-one correctively: A number of new parts is

bought at time 0 (initial supply) and is kept on stock. When an old component

in the field fails, it is correctively replaced with a new one from the inventory.

The OEM replenishes new parts in batches whenever a new part is needed and

there is an out-of-stock situation after time 0.

Lower number of failures and less downtime are the advantages of Policy 1 compared

to Policy 2. However, one forfeits the remaining lifetimes of the old parts under Policy

1, while Policy 2 makes use of them. The unit price of the new parts might increase

after time 0, which favors Policy 1.

Initial supply quantity is a major factor affecting the costs that would be incurred

under Policy 2. We developed a problem formulation which includes the relationship

between the initial supply quantity and the relevant costs under Policy 2. We

performed exact analysis on our problem formulation and derived a convexity-like

property for the total costs under Policy 2. This property enabled us to develop

a solution procedure for the optimal initial supply quantity under Policy 2. We

conducted a numerical study to derive insights about conditions which favor each

policy. We used the percentage difference in the MTBF of the old parts and the MTBF

of the new parts as a measure of the reliability improvement. In our numerical study,

we found out that Policy 1 is favored by low values of the number of systems, long

lifetime of the systems, low values of the MTBF of the old parts (for fixed percentage

improvement in MTBF), high values of the percentage improvement in MTBF, high

values of the increase in the unit price of the new parts after time 0, large batch

sizes, and high values of the downtime costs per failures. The reverse of each of these
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conditions favors Policy 2. Our numerical study showed that the optimal policy may

change by varying any of the mentioned factors.



Appendix 105

Appendix

[Proof of Lemma 4.1]: As we assume that failures of each new part in the field

occur according to Poisson processes with rate 1/τnew, total stream of failures of the

new parts occur according to a Poisson process with rate N/τnew under Policy 1.

Then, the repair costs can be derived in a similar way followed in part (ii) of Lemma

2.2 for the derivation of the repair costs in Chapter 2.

[Proof of Lemma 4.2]: In the mini-model, the q̂ parts added to the stock at time 0

are the 1st, 2nd,..., q̂th new parts. If T̂n ≤ T̂ , n ∈ {1, 2, ..., q̂}, the nth new part is kept

on stock throughout [0, T̂n]; otherwise, it is kept throughout [0, T̂ ]. Let Sn(N̂ , T̂ ) be

the random variable denoting the storage costs incurred for the nth new part. Then,

E[Sn(N̂ , T̂ )|T̂n = t] =



















t
∫

0

he−αudu = h
α (1 − e−αt) if t ≤ T̂

T̂
∫

0

he−αudu = h
α (1 − e−αT̂ ) if t > T̂ ,

and

E[Sn(N̂ , T̂ )] =

T̂
∫

0

h

α
(1 − e−αt)fn(t, N̂)dt +

∞
∫

T̂

h

α
(1 − e−αT̂ )fn(t, N̂)dt

=

T̂
∫

0

h

α
(1 − e−αt)

n
∑

i=1

Ci,n(N̂)λi(N̂)e−λi(N̂)tdt

+

∞
∫

T̂

h

α
(1 − e−αT̂ )

n
∑

i=1

Ci,n(N̂)λi(N̂)e−λi(N̂)tdt

=
h

α

n
∑

i=1

Ci,n(N̂)







T̂
∫

0

λi(N̂)e−λi(N̂)tdt −

T̂
∫

0

λi(N̂)e−
(

α+λi(N̂)
)

tdt

+(1 − e−αT̂ )

∞
∫

T̂

λi(N̂)e−λi(N̂)tdt






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=
h

α

n
∑

i=1

Ci,n(N̂)

{

(1 − e−λi(N̂)T̂ ) −
λi(N̂)

α + λi(N̂)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

+(1 − e−αT̂ )e−λi(N̂)T̂

}

=
h

α

n
∑

i=1

Ci,n(N̂)

{

1 − e−
(

α+λi(N̂)
)

T̂

−
λi(N̂)

α + λi(N̂)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

}

=
h

α

n
∑

i=1

Ci,n(N̂)

(

1 −
λi(N̂)

α + λi(N̂)

)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

= h

n
∑

i=1

Ci,n(N̂)
1

α + λi(N̂)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

.

Hence,

Ŝ(N̂ , T̂ , q̂) = h

q̂
∑

n=1

n
∑

i=1

Ci,n(N̂)
1

α + λi(N̂)

[

1 − e−
(

α+λi(N̂)
)

T̂

]

.

[Proof of Lemma 4.3]: (i) As the 0th batch is procured at time 0, it is equivalent

to the batch considered in the mini-model with N̂ = N , T̂ = T , and q̂ = q0 and

S2,0(q0) = Ŝ(N, T, q0).

Remember that if Tq0+(k−1)q1+1 ≤ T , kth batch, k ∈ {1, 2, ..., k̄(q0)}, is replenished at

time Tq0+(k−1)q1+1 and its storage costs are incurred until either time T or the batch

is depleted. Otherwise, replenishment of the kth batch does not occur and no storage

costs are incurred. Also, remember that the number of the old parts remaining in the

field just after time Tq0+(k−1)q1+1 ≤ T is Nk(q0) = N−[q0+(k−1)q1+1]. Then, the kth

batch can be represented by the mini-model with N̂ = Nk(q0), T̂ = T −Tq0+(k−1)q1+1,

and q̂ = q1 − 1 (remember that one new part in the batch is used to replace the old

part failed at time Tq0+(k−1)q1+1 and remaining q1 − 1 new parts are added to the

inventory). So, Ŝ
(

Nk(q0), T − Tq0+(k−1)q1+1, q1 − 1
)

is equivalent to the discounted
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expected storage costs of the kth batch at time Tq0+(k−1)q1+1. Then,

S2,k(q0) =

T
∫

0

e−αtŜ
(

Nk(q0), T − Tq0+(k−1)q1+1, q1 − 1
)

fTq0+(k−1)q1+1
(t)dt

=

T
∫

0

q1−1
∑

n=1

n
∑

i=1

Ci,n(Nk(q0))
1

α + λi(Nk(q0))

[

1 − e−
(

α+λi(Nk(q0))
)

(T−t)

]

×

q0+(k−1)q1+1
∑

j=1

Cj,q0+(k−1)q1+1(N)λj(N)e−
(

α+λj(N)
)

tdt

=

q1−1
∑

n=1

n
∑

i=1

Ci,n(Nk(q0))
1

α + λi(Nk(q0))
×

q0+(k−1)q1+1
∑

j=1

Cj,q0+(k−1)q1+1(N)λj(N) ×





T
∫

0

e−
(

α+λj(N)
)

tdt − e−
(

α+λi(Nk(q0))
)

T

T
∫

0

e

(

λi(Nk(q0))−λj(N)
)

tdt





=

q1−1
∑

n=1

n
∑

i=1

Ci,n(Nk(q0))
1

α + λi(Nk(q0))
×

q0+(k−1)q1+1
∑

j=1

Cj,q0+(k−1)q1+1(N)λj(N) ×





1 − e−
(

α+λj(N)
)

T

α + λj(N)
+

e−
(

α+λj(N)
)

T − e−
(

α+λi(Nk(q0))
)

T

λj(N) − λi(Nk(q0))



 .

(ii) Let K2,k(q0) be the random variable denoting the NPV of the replenishment costs

of the kth batch, k = {1, 2, ..., k̄(q0)}, of new parts. As kth batch is replenished at

time Tq0+(k−1)q1+1,

E[K2,k(q0)|Tq0+(k−1)q1+1 = t] =

{

c1q1e
−αt if t ≤ T

0 if t > T,

and,

E[K2,k(q0)] =

T
∫

0

c1q1e
−αt

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N)λi(N)e−λi(N)tdt
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= c1q1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N)λi(N)

T
∫

0

e−
(

α+λi(N)
)

T dt

= c1q1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N) ×

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

.

Hence,

K2(q0) =

k̄(q0)
∑

k=1

E[K2,k]

= c1q1

k̄(q0)
∑

k=1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N) ×

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

.

(iii) In this part, we first derive Vold. Then, we derive Vnew,k for k = 0 and k ∈

{1, 2, ..., k̄(q0)} separately.

Let Vold,n be the random variable denoting the NPV of the salvage value of the nth

old part under Policy 2.

E[Vold,n|Tn = t] =

{

solde
−αt if t ≤ T

solde
−αT if t > T.

Then,

E[Vold,n] =

T
∫

0

solde
−αtfTn

(t)dt +

∞
∫

T

solde
−αT fTn

(t)dt

=

T
∫

0

solde
−αt

n
∑

i=1

Ci,n(N)λi(N)e−λi(N)tdt

+

∞
∫

T

solde
−αT

n
∑

i=1

Ci,n(N)λi(N)e−λi(N)tdt
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= sold





n
∑

i=1

Ci,n(N)λi(N)

T
∫

0

e−
(

α+λi(N)
)

tdt

+e−αT
n
∑

i=1

Ci,n(N)λi(N)

∞
∫

T

e−λi(N)tdt





= sold

{

n
∑

i=1

Ci,n(N)
λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

+

n
∑

i=1

Ci,n(N)e−
(

α+λi(N)
)

T

}

= sold

n
∑

i=1

Ci,n(N)
1

α + λi(N)

[

λi(N) + αe−
(

α+λi(N)
)

T

]

,

and

Vold = sold

N
∑

n=1

n
∑

i=1

Ci,n(N)
1

α + λi(N)

[

λi(N) + αe−
(

α+λi(N)
)

T

]

.

As q0 new parts procured by the initial supply and these parts are salvaged at time

T ,

Vnew,0(q0) = snewe−αT q0.

q1 new parts are replenished in kth batch, k ∈ {1, 2, ..., k̄(q0)}, at time Tq0+(k−1)q1+1 <

T are salvaged at time T . Hence,

Vnew,k(q0) =

T
∫

0

snewq1e
−αT fTq0+(k−1)q1+1

(t)dt

= snewq1e
−αT

T
∫

0

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N)λi(N)e−λi(N)tdt

= snewq1

q0+(k−1)q1+1
∑

i=1

Ci,q0+(k−1)q1+1(N)

[

e−αT − e−
(

α+λi(N)
)

T

]

.

(iv) Let Dn be the random variable denoting the NPV of the costs that are incurred

for upgrading the system at which the nth failure of the old parts occurs under Policy

2.

E[Dn|Tn = t] =

{

u2e
−αt if t ≤ T

0 if t > T.
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Then, the following can be derived by similar operations done for E[K2,k(q0)]:

E[Dn] = u2

n
∑

i=1

Ci,n(N)
λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

.

Hence,

U2 =

N
∑

n=1

E [Dn] = u2

N
∑

n=1

n
∑

i=1

Ci,n
λi

α + λi

[

1 − e−
(

α+λi

)

T

]

.

(v) For n ∈ {1, 2, ..., N} such that Tn < T , nth new part is in use throughout [Tn, T ].

Let Hn(t) be the random variable that denotes the discounted costs that are incurred

during repairs of the nth new part throughout [Tn, T ] at time t. Then, the following

can be derived in a similar way followed in part (ii) of Lemma 2.2 for the derivation

of the repair costs in Chapter 2:

E[Hn(t)|Tn = t] =

{

r
ατnew

[

1 − e−α(T−t)
]

if t ≤ T

0 if t > T.

Then,

E[Hn(0)] =

T
∫

0

e−αt r

ατnew

[

1 − e−α(T−t)
]

n
∑

i=1

Ci,n(N)λi(N)e−λi(N)tdt

=
r

ατnew





n
∑

i=1

Ci,n(N)λi(N)

T
∫

0

e−
(

α+λi(N)
)

tdt

−e−αT
n
∑

i=1

Ci,n(N)λi(N)

T
∫

0

e−λi(N)tdt





=
r

ατnew

N
∑

n=1

n
∑

i=1

Ci,n(N) ×

{

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

− e−αT (1 − e−λi(N)T )

}

.

Hence,

R2 =

N
∑

n=1

E[Hn(0)]

=
r

ατ1

N
∑

n=1

n
∑

i=1

Ci,n(N) ×

{

λi(N)

α + λi(N)

[

1 − e−
(

α+λi(N)
)

T

]

− e−αT (1 − e−λi(N)T )

}

.
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Proof of Lemma 4.4: We will prove parts (i) and (ii) via a sample path approach.

For a given x ∈ {0, 1, ..., q1 − 1}

Mx =

{

x, x + q1, x + 2q1, ..., x +

⌈

N − x

q1

⌉

q1

}

.

Three consecutive elements of Mx can be represented by x, x + q1, and x + 2q1 when

its elements are put in an ascending order. Consider three cases in which Policy 2 is

implemented with initial supply amounts q0
0 = x+zq1, q1

0 = q0
0 +q1, and q2

0 = q0
0 +2q1,

where z is an arbitrary element of
{

0, 1, ...,
⌈

N−x
q1

⌉

− 2
}

(i.e. q2
0 ≤ N). We refer to

these cases as Case 0, Case 1, and Case 2, respectively; i.e., the initial supply amount

is qm
0 in Case m, m ∈ {0, 1, 2}.

We couple the failure times of the old parts in the three cases. Let yn, n ∈ {1, 2, ..., N},

be an arbitrary realization of a random variable distributed exponentially with rate

λn = N−n+1
τold

. We define the sequence (tn)n∈{0,1,2,...,N} with t0 = 0 and tn = tn−1+yn.

Then, (tn)n∈{0,1,2,...,N} corresponds to an arbitrary sequence of failure times of the

old parts under infinite horizon. Notice that 0 = t0 < t1 < t2 < ... < tN . Let

n̄ = max{n | tn ≤ T }. Then, (tn)n∈{1,2,...,n̄} corresponds to an arbitrary sequence of

failure times of the old parts throughout [0, T ] (the last failure is the n̄th one). The

inequalities 0 = t0 < t1 < t2 < ... < tN assures that there is one failure at a time. We

start with the proof of part (i).

(i) Let Im(t) be the actual inventory-on-hand at time t ∈ [0, T ] in Case m. We will

show that

I2(t) − I1(t) ≥ I1(t) − I0(t) , t ∈ [0, T ] (4.7)

Inequality (4.7) implies inequality (4.3) as

Sk
2 =

T
∫

0

he−αtIk(t)dt,

where Sk
2 denotes the storage costs in Case m and we show the inequality for an

arbitrary realization of the failure times of the old parts.

If T → ∞, then the following equalities hold:

I1(t) =

{

I0(t) + q1 for 0 ≤ t < tq0
0+1

I0(t) for t ≥ tq0
0+1,

(4.8)

I2(t) =

{

I1(t) + q1 for 0 ≤ t < tq0
0+q1+1

I1(t) = I0(t) for t ≥ tq0
0+q1+1.

(4.9)
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Figure 4.3 Visual representation for equations (4.8) and (4.9)

In Figure 4.3, you can see I0(t), I1(t), and I2(t) graphically for a case with q0 = 4

and q1 = 3. Observe that I1(t) = I0(t) + 3 for 0 ≤ t < t5 and I1(t) = I0(t) for t ≥ t5,

I2(t) = I1(t) + 3 for 0 ≤ t < t8 and I2(t) = I1(t) = I0(t) for t ≥ t8.

Under a finite horizon T for the inventory, the following cases can be distinguished:

• If 0 ≤ T < tq0
0+1, then:

I1(t) = I0(t) + q1 for 0 ≤ t ≤ T,

I2(t) = I1(t) + q1 for 0 ≤ t ≤ T.

Then I2(t) − I1(t) = I1(t) − I0(t) = q1, which implies (4.7).

• If tq0
0+1 ≤ T < tq0

0+q1+1, then:

I1(t) =

{

I0(t) + q1 for 0 ≤ t < tq0
0+1

I0(t) for tq0
0+1 ≤ t ≤ T,

I2(t) = I1(t) + q1 for 0 ≤ t ≤ T.

Then,

I2(t) − I1(t) = I1(t) − I0(t) = q1 for 0 ≤ t < tq0
0+1,

I2(t) − I1(t) = q1 > I1(t) − I0(t) = 0 for tq0
0+1 ≤ t ≤ T,

which implies (4.7).
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• If T ≥ tq0
0+q1+1, then:

I1(t) =

{

I0(t) + q1 for 0 ≤ t < tq0
0+1

I0(t) for tq0
0+1 ≤ t ≤ T,

I2(t) =

{

I1(t) + q1 for 0 ≤ t < tq0
0+q1+1

I1(t) = I0(t) for tq0
0+q1+1 ≤ t ≤ T.

Then,

I2(t) − I1(t) = I1(t) − I0(t) = q1 for 0 ≤ t < tq0
0+1,

I2(t) − I1(t) = q1 > I1(t) − I0(t) = 0 for tq0
0+1 ≤ t < tq0

0+q11,

I2(t) − I1(t) = I1(t) − I0(t) = 0 for tq0
0+q1+1 ≤ t ≤ tT ,

which implies (4.7).

(ii) Now, we will prove that inequality (4.4) holds. Let Km
2 , and V m

2 be replenishment

costs of the new parts throughout (0, T ] and the salvage value of the new parts in

Case m. Let θm
2 = Km

2 − V m
2 . We will show that inequality

θ2
2 − θ1

2 ≥ θ1
2 − θ0

2 (4.10)

holds, which implies inequality (4.4) as the salvage value of the old parts are fixed

and the same for the three cases; see equation (4.2).

Km
2 and V m

2 are dependent on T . Below, we distinguish the different cases that may

occur with respect to the value of T .

• If 0 ≤ T < tq0
0+1, no replenishment occurs throughout [0, T ] in the three cases

and K0
2 = K1

2 = K2
2 = 0. The salvage value of the new parts are as follows:

V 0
2 = snewe−αT q0

0 ,

V 1
2 = snewe−αT (q0

0 + q1),

V 2
2 = snewe−αT (q0

0 + 2q1).

Then, θ2
2 − θ1

2 = θ1
2 − θ0

2 = −snewe−αT q1, which implies (4.10).

• If tq0
0+1 ≤ T < tq1

0+1, a batch is replenished at time tq0
0+1 in Case 0 while no

replenishment occurs in Case 1 and Case 2 throughout [0, T ]. Thus,

K0
2 = c1q1 exp(−αtq0

0+1),

K1
2 = K2

2 = 0.
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The salvage value of the new parts are as follows:

V 0
2 = snewe−αT (q0

0 + q1),

V 1
2 = snewe−αT (q0

0 + q1),

V 2
2 = snewe−αT (q0

0 + 2q1).

Then,

θ2
2 − θ1

2 = −snewe−αT q1,

θ1
2 − θ0

2 = −c1 exp(−αtq0
0+1)q1,

which implies (4.10) as snew ≤ c1 and tq0
0+1 ≤ T .

• If tq1
0+1 ≤ T < tq2

0+1, two batches are replenished at time tq0
0+1 and tq1

0+1,

respectively, in Case 0; and one batch is replenished at time tq1
0+1 in Case 1.

Thus,

K0
2 = c1q1

(

exp(−αtq0
0+1) + exp(−αtq1

0+1)
)

,

K1
2 = c1q1 exp(−αtq1

0+1),

K2
2 = 0.

The salvage value of the new parts are as follows:

V 0
2 = snewe−αT (q0

0 + 2q1),

V 1
2 = snewe−αT (q0

0 + 2q1),

V 2
2 = snewe−αT (q0

0 + 2q1).

Then,

θ2
2 − θ1

2 = −c1 exp(−αtq1
0+1)q1,

θ1
2 − θ0

2 = −c1 exp(−αtq0
0+1)q1,

which implies (4.10) as tq0
0+1 ≤ tq1

0+1.

• If tq2,0+1 ≤ T , the number of batches replenished in Case 0, Case 1 and Case 2

throughout [0, T ] are (remember that n̄ = max{n | tn ≤ T })

* k̄0 =
⌈

n̄−q0

q1

⌉

,

*
⌈

n̄−(q0+q1)
q1

⌉

= k̄0 − 1, and

*
⌈

n̄−(q0+2q1)
q1

⌉

= k̄0 − 2,

respectively. The kth batch is replenished at time
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* tq0
0+(k−1)q1+1,

* tq0
0+q1+(k−1)q1+1 = tq0

0+kq1+1, and

* tq0
0+2q1+(k−1)q1+1 = tq0

0+(k+1)q1+1,

in Case 0, Case 1 and Case 2, respectively. Then,

K0
2 = c1q1

k̄0
∑

k=1

exp(−αtq0
0+(k−1)q1+1)

= c1q1



exp(−αtq0
0+1) + exp(−αtq0

0+q1+1) +
k̄0
∑

k=3

exp(−αtq0
0+(k−1)q1+1)



 ,

K1
2 = c1q1

k̄0−1
∑

k=1

exp(−αtq0
0

+ kq1 + 1)

= c1q1



exp(−αtq0
0+q1+1) +

k̄0
∑

k=3

exp(−αtq0
0+(k−1)q1+1)



 ,

K2
2 = c1q1

k̄0−2
∑

k=1

exp(−αtq0
0

+ (k + 1)q1 + 1) = c1q1

k̄0
∑

k=3

exp(−αtq0
0+(k−1)q1+1).

In Case 0, Case 1, and Case 2, the total number of the new parts procured

is q0 + k̄0q1. As all these parts are salvaged at time T in the three cases,

V 0
2 = V 1

2 = V 2
2 . Then,

θ2
2 − θ1

2 = −c1 exp(−αtq1
0+1)q1,

θ1
2 − θ0

2 = −c1 exp(−αtq0
0+1)q1,

which implies (4.10) as tq0
0+1 ≤ tq1

0+1.
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Chapter 5

Conclusions

In this thesis, we studied the optimal reliability decisions and upgrading policies for

advanced capital goods. Our primary goal was to develop quantitative models and

methods for reliability optimization in the design phase. Advanced capital goods

require the following attributes to be included in the models which distinguish them

from the existing models in the literature:

1. maintenance costs

2. downtime costs or availability (or downtime) constraints

Furthermore, if the repair-by-replacement concept is used for the components whose

reliability decisions are considered, the following attributes also become fundamental

for the models:

3. spare parts inventory

4. emergency procedure

We started our investigation with the optimization of the reliability of a critical

component, which was a single-stage problem. Next, we focused on a redundancy

allocation problem, which was a multi-stage one. In both cases, the repair-by-

replacement concept was used for components and we developed models which

included the 4 attributes listed above. Spare parts inventory levels were also

incorporated into these models as decision variables to represent their interaction

with the reliability decisions and effect on availability, maintenance activities and

relevant costs properly.
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We also studied the upgrading policy problem as it is one of the major reliability

related issues that OEMs face during the exploitation phase of capital goods. We

developed a model for a component which is repaired on site. We included two major

policies that are common in both practice and the literature. In one of the policies, an

inventory of the improved parts is kept. The initial order quantity for the inventory

was one of the main factors that affected the costs incurred for upgrading the systems.

We established an explicit relation between the initial order quantity and the relevant

costs in our model, which distinguished it from the existing models. We compared

the two policies and derived results about conditions which favor each policy.

Below, we shortly summarize our findings per chapter.

In Chapter 2, we developed a quantitative model for the optimization of the reliability

level of a critical component. In this model, we formulate the portions of the LCC

of a general number of systems that were affected by component reliability and spare

parts inventory level. We developed an efficient solution procedure for the problem.

By conducting a numerical experiment, we showed that the joint optimization of the

component reliability and spare parts inventory level lead to significant cost reductions

compared to solutions generated by sequential consideration of these decisions (i.e.,

component reliability is optimized first; then spare parts inventory level is optimized

with respect to the fixed component reliability). The results of the experiment also

revealed that the optimal component reliability is much higher for a cheap component

than for an expensive component and increases as

• the number of the systems increases,

• the downtime penalty rate increases; and,

• the exploitation phase gets longer.

We also showed that the optimal LCC have negligible or limited sensitivity to the

most of the major parameters in our model.

The approach that we followed in Chapter 2 forms the background to tackle single-

stage problems that can serve to analyze and solve a related multi-stage problem.

We show how to establish such a relationship between a multi-stage problem and a

single-stage problem in Chapter 3 for a redundancy allocation problem.

In Chapter 3, we introduced a redundancy allocation model for capital goods. In

the problem that we studied, three policies per stage were defined. Redundancy was

included by only one of the policies. Each of the three policies provided different levels

of uptime. We formulated the problem as the minimization of the TCO of a general

number of systems under a defined constraint on the expected downtime of the systems
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throughout their life cycle. We decomposed the problem into single-stage problems

and showed that a solution for the multi-stage problem could be generated by finding

solutions of each of the single-stage problems. We developed an efficient procedure

to find optimal solutions of the single-stage problems for varying resource levels of

the downtime constraint. Solutions for the multi-stage problem for varying resource

levels of the downtime constraint can also be generated efficiently by repeating this

procedure for each stage.

We derived the following major results through the analysis of the single-stage and

multi-stage problem formulations:

• Single-stage: When the value of the resource level of the downtime constraint

was varied by starting from a high value and decreased down to zero; i.e.,

the constraint was initially loose and got tighter and tighter, the policy which

included choosing redundancy, became optimal at a certain value of the resource

level and remained optimal for all its smaller values afterwards.

• Multi-stage:

– The values of the TCO and downtime (or uptime) when the optimal policy

changed from one to the other could be easily computed. An efficient

frontier which reflects the trade-off between the uptime and the TCO can

easily be generated by these values.

– An optimal ordering of the stages to follow for choosing redundancy one-

by-one could be generated.

In Chapter 4, we developed a model for studying the following two upgrading policies

that an OEM may implement after the redesign of a component (we denote the time

just after the redesign by time 0):

• Policy 1 - Upgrade all systems preventively at time 0: N new parts are bought

at time 0 and all the old parts in the field are preventively replaced with with

the new ones at time 0.

• Policy 2 - Upgrade systems one-by-one correctively: A number of new parts are

bought at time 0 (initial supply) and are kept on stock. As an old component

in the field fails, it is correctively replaced with a new one from the inventory.

The OEM replenishes new parts in batches whenever a new part is needed and

there is an out-of-stock situation after time 0.

The two policies can be compared as follows: There would be less number of failures

and less downtime under Policy 1; however, one forfeits the remaining lifetimes of the
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old parts under Policy 1, while Policy 2 benefits from them. Furthermore, an increase

in the unit price after time 0, which is probable in the case that we consider, favors

Policy 1.

As the initial supply quantity is a major factor affecting the costs that would be

incurred under Policy 2, we developed a problem formulation which includes the

relationship between the initial supply quantity and the relevant costs under Policy

2. We performed exact analysis on our problem formulation and derived a convexity-

like property for the total costs under Policy 2. This property enabled us to develop

a solution procedure for the optimal initial supply quantity under Policy 2. We

conducted a numerical study to derive insights about the conditions under which

each policy is optimal. We used the percentage difference in the MTBF of the old

parts and the MTBF of the new parts as a measure of the reliability improvement.

We found out that Policy 1 is favored by low values of the number of systems, long

lifetime of the systems, low values of the MTBF of the old parts (for fixed percentage

improvement in MTBF), high values of the percentage improvement in MTBF, high

values of the increase in the unit price of the new parts after time 0, large batch

sizes, and high values of the downtime costs per failures. The reverse of each of these

conditions favors Policy 2. Our numerical study showed that each of the mentioned

factors affect the optimal policy.



Appendices





123

Appendix A

Monotonicity and

Supermodularity Results for

the Erlang Loss System

A.1. Introduction

Consider the Erlang loss system, also denoted as M/G/s/s queue, with arrival rate

λ > 0, mean service time µ−1, (µ > 0), and s parallel servers (s ∈ N0 := {0}∪N). Its

steady-state probability that all servers are busy is equal to

B(s, a) =
as

s!
s
∑

i=0

ai

i!

, (A.1)

where a = λµ−1 (> 0) is the offered load. The formula in (A.1) is called the

Erlang loss formula or Erlang B formula, and it was first derived by Erlang (1918)

for deterministic service times. Later, Sevastyanov (1957) showed that B(s, a) is

insensitive to the service time distribution; that is, equation (A.1) is valid for any

service time distribution with mean µ−1. The Erlang loss formula occurs in many

different applications and its analytical properties are useful for e.g. solving design

problems; see Cooper (1982).

In the literature, the following properties are known for B(s, a) and related quantities.

Karush (1957) showed that B(s, a) is strictly convex and decreasing as a function of

s ∈ N0 (see also Remark 2 in Kranenburg and van Houtum (2007)). Harel (1990)
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investigated B(s, a) as a function of the traffic intensity ρ = λ
sµ , service rate µ, and

arrival rate λ. He showed that, for each fixed s ∈ N, there exists a ρ∗ such that B(s, a)

is strictly convex and increasing in ρ for all ρ < ρ∗ and strictly concave and increasing

in ρ for all ρ > ρ∗. Hence, equivalently, for each fixed s ∈ N, there exists an a∗ such

that B(s, a) is strictly convex and increasing in a for all a < a∗ and strictly concave

and increasing in a for all a > a∗. For s = 0, B(s, a) = 1 for all a, i.e., then B(s, a) is

a constant function of a (or ρ). Harel also showed that B(s, a) is strictly convex and

decreasing in µ for a fixed λ and s ∈ N.

The carried load A(s, a) is defined as the time-average amount of work carried out by

the Erlang loss system, and is equal to

A(s, a) = a [1 − B(s, a)] , s ∈ N0. (A.2)

By the above result of Karush for B(s, a), A(s, a) is strictly concave and increasing

in s. Yao and Shanthikumar (1987) showed that, the throughput λ[1 − B(s, a)] is

concave and increasing in λ for a fixed µ. Hence, equivalently, A(s, a) is concave and

increasing in a.

The load carried by the last server of a system with s servers is defined as the extra

load that can be handled in comparison to a system with s − 1 servers. This load

carried by the last server is denoted by FB(s, a), and it holds that

FB(s, a) = A(s, a) − A(s − 1, a)

= a [B(s − 1, a) − B(s, a)] , s ∈ N. (A.3)

Because of the strict concavity of A(s, a) as a function of s, FB(s, a) is strictly

decreasing in s. In this technical note, we prove that FB(s, a) is strictly increasing

as a function of the offered load a and that A(s, a) is strictly supermodular on

X := {(s, a)|s ∈ N0 and a ∈ (0,∞)}. We use the regular ‘≤’ ordering for X ; i.e.,

for elements (s−, a−), (s+, a+) ∈ X , we say that (s−, a−) ≤ (s+, a+) if and only if

s− ≤ s+ and a− ≤ a+. Then the set X is a so-called lattice, and thus the definitions

of supermodular and submodular functions apply; see p. 43 of ?. These definitions

imply that the function A(s, a) is strictly supermodular on X if and only if

A(s+, a−) + A(s−, a+) < A(s−, a−) + A(s+, a+) (A.4)

for all (s−, a−), (s+, a+) ∈ X with s− < s+ and a− < a+.

Theorem A.1

(i) For each s ∈ N, FB(s, a) is strictly increasing as a function of a ∈ (0,∞).

(ii) A(s, a) is strictly supermodular on X .



A.2 Proof of Theorem A.1 125

The proof of Theorem A.1 is given in Section A.2, where we first prove part (i) via a

kind of sample path method (the actual result that we prove is even stronger than part

(i) and also holds under generalized assumptions; see Remark A.1). Next, we show

that part(i) and part (ii) are equivalent. An alternative, algebraic proof of Theorem

A.1 is given in Öner et al. (2008).

As A(s, a) =
∑s

i=1 FB(i, a), part (i) of Theorem A.1 implies that, for each fixed s ∈ N,

A(s, a) is strictly increasing in a. (For s = 0, A(s, a) = 0 for all a, i.e., then B(s, a) is

a constant function of a.)

Theorem A.1 may be relevant for design problems with the offered load a (or the

arrival rate λ when µ is fixed) and the number of servers s as decision variables.

To demonstrate this relevance, we exploit part (ii) of Theorem A.1 in a simple

optimization problem for an Erlang loss system in Section A.3.

The main motivation for deriving Theorem A.1 came from the component reliability

problem that we study in Chapter 2. Remember that in Chapter 2, we develop a

model for the effect of the reliability level of a single component of a capital good on

the life cycle costs for the whole installed base of that capital good. In the resulting

optimization problem, one has the reliability level and the spare parts stock as decision

variables. These variables play a similar role as the arrival rate λ and the number of

servers s of the Erlang loss system. Part (i) of Theorem A.1 is used in the derivation

of an efficient optimization procedure.

A.2. Proof of Theorem A.1

The Erlang loss system with s servers (s ∈ N) can be viewed as an ordered-entry

system with all servers having the same service rate but rank-ordered; that is, the

servers are rank-ordered from 1 to s and each arriving customer will be served by

the first available server under this rank order. Then, FB(s, a) is equal to the steady

state probability that the last (sth) server is busy at an arbitrary instant (see Cooper

(1982)). We make use of this equality in a sample path based approach and prove

part (i) of Theorem A.1 for the special case with exponential service times. As B(s, a)

is insensitive to the service time distribution (so is FB(s, a)), this result implies that

part (i) of Theorem A.1 also holds for generally distributed service times. Next, we

prove part (ii) by showing that it is equivalent to part (i).

Consider two M/M/s/s systems with rank-ordered servers, with service rates µ, and

arrival rates λ1 = λ and λ2 = λ + ǫ, ǫ > 0, respectively. We refer to these systems

as System 1 and System 2. We denote the server with rank order j in System i by

Ci
j , j ∈ S = {1, 2, . . . , s}, i ∈ {1, 2}. We denote the offered load to System i by ai;
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it holds that a1 < a2. Letting P i
s be the steady-state probability that the last server

in System i is busy at an arbitrary instant, we need to show that P 1
s < P 2

s . We first

show P 1
s ≤ P 2

s through the sample path based approach, and after that we show that

the inequality is strict.

Since λ1 < λ2, we cannot couple all arrivals of the two systems; however, coupling all

arrivals at System 1 with a subset of arrivals at System 2 is possible. To enable this

coupling, we first split the Poisson arrival process with rate λ2 = λ + ǫ for System 2

into two independent Poisson arrival processes with rates λ1 = λ and ǫ, respectively.

We denote the time of the nth arrival to System 2 by tn, n ∈ N. It holds that

0 < t1 < t2 < . . . (only one arrival at a time) and lim
n→∞

tn = ∞. Then, (tn)n∈N is the

sequence of arrival times for all customers at System 2. Let (t̃n) be a subsequence of

(tn) that corresponds to arrival times originating from the first decomposed Poisson

process with rate λ1. The times (t̃n) are coupled with the arrivals at System 1. Thus,

the nth arrival to System 2 can be of two types which we denote by rn:

rn =

{

1 if the nth arrival is common at both systems;

2 if the nth arrival is only at System 2.

We use Ii
j(t) to indicate whether server Ci

j is busy at time t:

Ii
j(t) =

{

1 if server Ci
j is busy at time;

0 otherwise.

Exponential service times allow us to sample new remaining service times at any point

in time; see Enders et al. (2008) for a similar approach. In both System 1 and System

2, we resample the service times at the times tn, i.e., the arrival times at System 2.

Let ui
j,n be the remaining service time sampled for server Ci

j at time tn if Ii
j(tn) = 1.

If servers C1
j and C2

j are both busy at time tn, we couple their remaining service times

by sampling a single service time for both; that is, u1
j,n = u2

j,n for each j for which

I1
j (tn) = I2

j (tn) = 1.

We will show that for all j ∈ S: if server C1
j is busy at any time t ∈ [0,∞), then

server C2
j is also busy at t. We state this claim mathematically as

I1
j (t) ≤ I2

j (t) for all j ∈ S and t ∈ [0,∞). (A.5)

This result implies that the probability that the last server in System 1 is busy is less

than or equal to the probability that the last server in System 2 is busy at any time;

i.e., that P 1
s ≤ P 2

s .

We prove inequality (A.5) by induction. There are no arrivals or departures in the

time interval [0, t1). So, all servers are idle in both systems and inequality (A.5)
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holds in this period. Assume that inequality (A.5) is valid for t ∈ [0, tn), for some

n ∈ N. Below, we prove that inequality (A.5) also holds for t ∈ [tn, tn+1), and thus,

for [0, tn+1).

At time tn, a new customer arrives. Let t−n denote the time just before tn. We define

p =

{

min{j|I1
j (t−n ) = 0} if there exists a j such that I1

j (t−n ) = 0

∞ otherwise,

and

q =

{

min{j|I2
j (t−n ) = 0} if there exists a j such that I2

j (t−n ) = 0

∞ otherwise.

That is, if p < ∞, then C1
p is the idle server with the lowest rank-order in System

1 just before tn, and all servers are occupied otherwise; and, similarly, q denotes the

‘lowest’ idle server for System 2. By inequality (A.5), p ≤ q.

• If rn = 1 (i.e., we have an arrival at both systems), then we distinguish 4 cases:

(i) p = q < ∞: The customer arriving at time tn is served by servers C1
p

(in System 1) and C2
p (in System 2). That is, I1

p (tn) = I2
p (tn) = 1 and

I1
j (tn) = I1

j (t−n ) ≤ I2
j (t−n ) = I2

j (tn) for all j ∈ S, j 6= p.

(ii) p < q < ∞: I1
p (t−n ) = 0, I2

p (t−n ) = 1, I1
q (t−n ) = I2

q (t−n ) = 0, and the

customer arriving at time tn is served by C1
p in System 1 and by C2

q in

System 2. Then, I1
p (tn) = I2

p (tn) = 1, I1
q (tn) = 0 < 1 = I2

q (tn), and

I1
j (tn) = I1

j (t−n ) ≤ I2
j (t−n ) = I2

j (tn) for all j ∈ S, j 6= p, j 6= q.

(iii) p < q = ∞: The customer arriving at time tn is served by C1
p in System

1, while she/he is lost by System 2. Then, I1
p (tn) = I2

p (tn) = 1 and

I1
j (tn) = I1

j (t−n ) ≤ I2
j (t−n ) = I2

j (tn) = 1 for all j ∈ S, j 6= p.

(iv) p = q = ∞: The customer arriving at time tn is lost by both systems.

Thus I1
j (tn) = I1

j (t−n ) = I2
j (t−n ) = I2

j (tn) = 1 for all j ∈ S.

• If rn = 2 (i.e., we have an arrival at System 2 only), we distinguish 2 cases:

(i) q < ∞: I1
q (t−n ) = I2

q (t−n ) = 0 and the customer arriving at time tn is served

by C2
q . Then, I1

q (tn) = I1
q (t−n ) = 0 < 1 = I2

q (tn) and I1
j (tn) = I1

j (t−n ) ≤

I2
j (t−n ) = I2

j (tn) for all j ∈ S, j 6= q.

(ii) q = ∞: The customer arriving at time tn is lost; that is, I1
j (tn) = I1

j (t−n ) ≤

I2
j (t−n ) = I2

j (tn) = 1 for all j ∈ S.

Hence, inequality (A.5) holds at tn in all cases.

Now, we will show that inequalities (A.5) hold on (tn, tn+1). We will do this by

comparing the status of C1
j and C2

j (as denoted by I1
j (t) and I2

j (t)) for each j ∈ S
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on (tn, tn+1), which depends on their status and remaining service times at time tn
(I1

j (tn), I2
j (tn), u1

j,n and u2
j,n). For each j ∈ S, the following cases may occur:

• I1
j (tn) = I2

j (tn) = 1 (both servers are busy at time tn): It holds that u1
j,n = u2

j,n.

If tn + u1
j,n < tn+1, then I1

j (t) = I2
j (t) = 1 for t ∈ (tn, tn + u1

j,n) and I1
j (t) =

I2
j (t) = 0 for t ∈ (tn + u1

j,n, tn+1). If tn + u1
j,n > tn+1, then I1

j (t) = I2
j (t) = 1

for t ∈ (tn, tn+1).

• I1
j (tn) = 0, I2

j (tn) = 1 (the server in System 1 is idle and the server in System

2 is busy at time tn): If tn + u2
j,n < tn+1, then 0 = I1

j (t) < I2
j (t) = 1 for t ∈

(tn, tn + u2
j,n) and I1

j (t) = I2
j (t) = 0 for t ∈ (tn + u2

j,n, tn+1). If tn + u2
j,n > tn+1,

then 0 = I1
j (t) < I2

j (t) = 1 for t ∈ (tn, tn+1).

• I1
j (tn) = I2

j (tn) = 0 (both servers are idle at time tn): I1
j (t) = I2

j (t) = 0 for

t ∈ (tn, tn+1).

Hence, I1
j (t) ≤ I2

j (t) holds for t ∈ (tn, tn + 1) in all cases and the proof of P 1
s ≤ P 2

s is

completed. Next, we will show that this inequality is strict; i.e. P 1
s < P 2

s .

Let Systems 1 and 2 be coupled in the same way as above. System 2 regenerates at

the time points that all servers become idle. P i
s , i = 1, 2, is equal to the fraction of

time that the last server of System i is busy in the first renewal interval of System

2, where one has to take the average over all possible sample paths (notice that a

sample path is described by the arrival times tn, the variables rn, and the remaining

service times ui
j,n). Under the sample paths with rs = 2 and no service completions

before time ts, the s-th server of System 2 is busy for a positive fraction of time, while

the s-th server of System 1 is idle. As these sample paths have a positive probability

mass, it holds that P 1
s < P 2

s .

Now, we prove that part (i) and part (ii) are equivalent. Let (s−, a−), (s+, a+) ∈ X

with s− < s+ and a− < a+. For the strict supermodularity of A(s, a) on X , we must

show that inequality (A.4) holds. By the strictly increasing behavior of FB(s, a) in a,

we find that

A(s+, a−) − A(s−, a−) =

s+
∑

s=s−+1

[A(s, a−) − A(s − 1, a−)] =

s+
∑

s=s−+1

FB(s, a−)

<

s+
∑

s=s−+1

FB(s, a+) =

s+
∑

s=s−+1

[A(s, a+) − A(s − 1, a+)]

= A(s+, a+) − A(s−, a+), (A.6)

which implies (A.4). As a final step, it is trivial to show that inequality (A.4) implies

the strictly increasing behavior of FB(s, a) in a.
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Remark A.1 Via the sample path proof, we proved inequality (A.5). This result

does not only imply that the load of the last server increases in a. In fact, it

implies that, in an ordered-entry system, the load of each of the servers increases

in a. Further, the proof of inequality (A.5) is easily extended to situations with

generalized assumptions for the service times and arrival streams at Systems 1 and 2:

• As long as we assume an ordered-entry system, we may allow different service

rates at the s parallel servers. However, we need to keep the assumption of

exponentially distributed service times, so that we can still resample service

times at the arrival times tn.

• We may relax the assumption of Poisson arrivals. The only property that we

need is that the arrival times at System 1 form a subset of the arrival times at

System 2, so that all arrivals at System 1 can be coupled with arrivals at System

2. This allows for the following generalizations of the arrival processes at the

Systems 1 and 2: (i) Potential arrivals are generated by a renewal process, and

each potential arrival becomes an actual arrival with a given probability, where

the given probability is larger for System 2 than for System 1; (ii) Compound

Poisson arrival processes with the same distribution for the compounds for both

systems but with a higher arrival rate of compounds for System 2 than for

System 1; (iii) Compound Poisson arrival processes with the same arrival rate

of compounds for both systems but with stochastically larger compounds for

System 2 than for System 1.

A.3. Application

Consider an Erlang loss system (e.g., a call center), with arrival rate λ, average service

time µ−1 (> 0), and s ∈ N0 parallel servers. The arrival rate depends on the intensity

of advertisements activities; λ ∈ [λl, λu], where 0 < λl < λu. One earns a fixed

revenue r (> 0) for each served customer, and costs consist of advertisement costs

and costs for the servers. The advertisement costs to obtain an arrival rate λ are

given by a function K(λ), which is assumed to be increasing and convex on [λl, λu].

These costs are made per time unit. The cost per server per time unit is c (> 0). The

average profit per time unit is denoted by the function P (s, λ), and is equal to

P (s, λ) = rA(s, a) − K(λ) − cs, s ∈ N0, λ ∈ [λl, λu], (A.7)

where a = λµ−1 is the offered load and A(s, a) is the carried load by the system (cf.

the definitions in Section A.1).
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By part (ii) of Theorem A.1, we know that, for a fixed µ, A(s, a) = A(s, λ/µ) is

strictly supermodular in (s, λ), where (s, λ) ∈ X ′ = {(s, λ)|s ∈ N0 and λ ∈ [λl, λu]}.

As the second and third term on the righthand side of equation (A.7) only depend on

λ and s, respectively, it immediately follows that also P (s, λ) is strictly supermodular

on X ′. Therefore we obtain the following monotonicity results for optimal solutions.

Suppose that s ∈ N0 is fixed and that we are interested in the optimization of λ. By

Yao and Shanthikumar (1987), A(s, a) = A(s, λ/µ) is concave in λ. Further, K(λ) is

convex, and thus P (s, λ) is concave in λ. Therefore P (s, λ) is maximized by

λ∗(s) :=











λl if P (s, λ) is stricly decreasing on [λl, λu];

λu if P (s, λ) is stricly increasing on [λl, λu];

the smallest λ for which d
dλ

P (s, λ) = 0 otherwise.

Because of the supermodularity of P (s, λ), it holds that λ∗(s) is increasing as a

function of s. Similarly, we may assume that λ ∈ [λl, λu] is fixed and that we want

to optimize s. P (s, λ) is strictly concave in s, and hence P (s, λ) is maximized by

s∗(λ) := the smallest s for which P (s + 1, λ) − P (s, λ) ≤ 0.

Because of the supermodularity of P (s, λ), s∗(λ) is increasing as a function of λ.

Finally, suppose that we want to optimize both s and λ. Then the above properties can

be exploited to obtain the following efficient optimization procedure. First, determine

sl = s∗(λl) and su = s∗(λu). Notice that there is an optimal solution (s∗, λ∗) with

s∗ ∈ {s|sl ≤ s ≤ su}. Next, determine λ∗(s) for each s = sl, sl + 1, . . . , su. Finally,

an optimal solution (s∗, λ∗) is found as a best solution among the set {(s, λ∗(s))|sl ≤

s ≤ su}.
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Öner, K.B., G.P. Kiesmüller, G.J. van Houtum. 2010b. Optimization of component

reliability in the design phase of capital goods. European Journal of Operational

Research, to appear .
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