
Designing logistics support systems

Level of repair analysis and spare parts inventories

Rob Basten

Dissertation committee

Chairman / Secretary Prof. dr. P.J.J.M. van Loon
Promotor Prof. dr. W.H.M. Zijm
Assistant Promotors Dr. M.C. van der Heijden

Dr. ir. J.M.J. Schutten
Members Prof. dr. J.L. Hurink

Prof. dr. R.J. Boucherie
Prof. dr. E. Kutanoglu
Prof. dr. ir. G.J.J.A.N. van Houtum
Prof. dr. ir. R. Dekker

This thesis is number D of the thesis series of the Beta Research School
for Operations Management and Logistics. The Beta Research School is a joint
effort of the departments of Technology Management, and Mathematics and
Computing Science at the Technische Universiteit Eindhoven and the Centre
for Telematics and Information Technology at the University of Twente. Beta
is the largest research centre in the Netherlands in the field of operations
management in technology-intensive environments. The mission of Beta is
to carry out fundamental and applied research on the analysis, design, and
control of operational processes.

This research has been funded by the Innovation-Oriented Research Pro-
gramme ‘Integrated Product Creation and Realization (iop ipcr)’ of the Nether-
lands Ministry of Economic Affairs.

Ph.D. thesis, University of Twente, Enschede, the Netherlands

Printed by Wöhrmann Print Service

The image on the front cover is based on a photo by Shonna Cunningham
of the U.S. Navy. It shows the Hr. Ms. De Zeven Provinciën, a frigate of the
Royal Netherlands Navy. Its equipment includes an apar and smart-l by Thales
Nederland.

© R.J.I. Basten, Enschede, 

All rights reserved. No part of this publication may be reproduced without the
prior written permission of the author.

isbn ----

DESIGNING LOGISTICS SUPPORT SYSTEMS

LEVEL OF REPAIR ANALYSIS AND SPARE PARTS INVENTORIES

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag  januari  om : uur

door

Robertus Johannes Ida Basten
geboren op  november 

te Boxmeer

Dit proefschrift is goedgekeurd door de promotor:

prof. dr. W.H.M. Zijm

en de assistent-promotoren:

dr. M.C. van der Heijden
dr. ir. J.M.J. Schutten

Acknowledgements

Writing a PhD thesis has not only required a huge effort from me, but also
from people around me. Therefore, I would like to thank the following people.

First, I thank my supervisors. My department, ompl, has had four chairmen in
the last four years, but Matthieu van der Heijden and Marco Schutten provided
steady supervision. They complement each other, having a different focus and
different skills, and when I needed help, Marco and particularly Matthieu freed
enormous amounts of time. In the last year, Henk Zijm became the chairman of
ompl and my promotor. He made a significant contribution by giving extensive
feedback on draft versions of the various chapters in this thesis.

Second, I am grateful to those who facilitated my research. Erhan Kutanoglu
provided me with the opportunity to work in Austin, Texas, which I really
enjoyed. The logistic engineers at Thales Nederland provided a lot of informa-
tion and were always there to answer questions. In particular, I thank Cees
Doets and Jürgen Donders. Next, I am grateful to the students who made a
contribution, most importantly Martijn Smit. He did a lot of work at Thales
Nederland and without him, Chapter might not have been there. Lastly in
this group, I gratefully acknowledge the support of the Innovation-Oriented
Research Programme ‘Integrated Product Creation and Realization’ (iop ipcr)
of the Netherlands Ministry of Economic Affairs, and I thank the people who
attended the meetings of the user committee of the iop ipcr project. They kept
me focused on doing practically relevant research.

Third, my thanks go out to the colleagues at ompl. In particular, I thank my
roommate Leendert, both for his help on (mainly mathematical) problems that
I faced and for the pleasant working atmosphere. I also greatly appreciated the
coffee breaks with the other PhD candidates and some faculty members.

Finally, I thank my parents, brothers, my girlfriend Miriam, and my friends.
I appreciate that they allowed me to talk about my thesis and that they gave
me the possibility to take my mind off of it. Furthermore, I am grateful for
Berteun’s unrivaled LaTeX skills.

Rob Basten
Enschede, December 

v

Contents

 Introduction 
. Motivation . 
. Level of repair analysis and spare parts stocking 
. Example . 
. Literature . 
. Contribution . 
. Outline of the thesis . 

 Literature and research challenges 
. Requirements in practice . 
. Level of repair analysis . 
. Spare parts stocking . 
. Joint problem of lora and spare parts stocking 
. Conclusions . 

 Basic lora model 
. Model . 
. Improved model . 
. Computational experiments . 
. Conclusions . 

 Flow model for the lora problem 
. Model assumptions and input data 
. Minimum cost flow model . 
. Computational experiments . 
. Conclusions . 

 Extensions to the lora flow model 
. Motivation of model extensions 
. Model formulation of extensions 
. Computational experiments . 
. Conclusions . 

vii

viii

 Iterative method for the joint problem of lora and spare parts stock-
ing 
. Model . 
. General approach . 
. Algorithm . 
. Computational experiments . 
. Case study at Thales Nederland 
. Extension to non-symmetrical lora decisions 
. Conclusions . 

 Integrated method for the joint problem of lora and spare parts
stocking 
. vari-metric: the marginal approach 
. Algorithm . 
. Test results . 
. Conclusions . 

 Conclusions and further research 
. Conclusions . 
. Usage in practice . 
. Further research . 

A Notation 

B Proof that the lora problem is NP-hard 

C Experimental design for the basic lora model 

D Experimental design for the lora flow model 

E Experimental design for the joint model 

Bibliography 

Samenvatting 

About the author 

Chapter 

Introduction

Manufactured products and installations are often prone to failure. Inexpen-
sive products, such as many consumer goods, will be discarded upon failure.
Capital goods, which are more expensive products and installations, will be
repaired. Capital goods are physical systems that are used to produce products
or services. The focus in this thesis is on the logistics support system that is
required to maximize the operational availability during the lifetime of capi-
tal goods. We concentrate on capital goods that are expensive and have high
downtime costs. Examples are manufacturing systems, power plants, defence
systems, medical devices, and airplanes. In many cases, safety regulations
require regular inspections, during which (upcoming) failures are detected; in
other cases, the capital good simply stops functioning due to a failure. High
downtime costs result in these cases from lost production, missions that need
to be aborted, patients that cannot be treated, and flights that are delayed
or cancelled. Typical characteristics of capital goods that are relevant in the
context of this thesis are, besides their high price and high downtime costs,
their technical complexity, low failure rate, geographically dispersed installed
base, and long life cycle.

The focus is on corrective maintenance rather than preventive maintenance,
since the negative consequences of system downtime arise from unexpected
failures, whereas preventive maintenance is usually scheduled. Quick recovery
of the system is of utmost importance, which means that capital goods are
typically restored by repair by replacement of a component. An identical spare
part is put in the system, so that it functions again. Since those components
can be expensive as well, up to more than several hundreds of thousands of
euros, these are repaired by replacement (of a subcomponent) too. In all cases,
the question is whether a component (or subcomponent) should be repaired or
discarded upon failure, if repair is technically feasible. This economic trade-off
is complex, due to the complex product structure, the geographically dispersed
installed base, the spare parts that are required, and the various resources (e.g.,



 Chapter 

test and repair equipment) that are required to perform repairs. In this thesis,
we will develop mathematical models to support the economic trade-off.

The remainder of this chapter is structured as follows. In Section ., we further
motivate this research, and in Section ., we define in detail the problem that
we focus on in this thesis. An example in Section . serves to illustrate the
problem. We dicuss the relevant literature in Section ., and our contribution
to the literature in Section .. This section includes the research objective and
research questions. Finally, in Section ., we give the outline of this thesis.

. Motivation

The research in this thesis is part of the iop-ipcr project life-cycle oriented
design of capital goods. The goal of the project is to develop a set of quantitative
techniques that can be used for an integrated balancing of system availability
and life cycle costs (lcc). These techniques are to be used in the development
process of capital goods, to gain insights into the impact of design decisions
on the lcc and the availability of the product. Below, we motivate the need for
such methods.

First, we discuss in Section ..why a focus on the total lcc is relevant already
at the design phase. Then, in Section .., we argue that downtime costs
form a large part of the lcc. In Section .., we explain that the maintenance
strategy is the key factor determining downtime, and, in Section .., we
show that the maintenance costs, including the costs of setting up maintenance
facilities, form a large part of the lcc. The high costs of both maintenance and
downtime, and the clear relation between these two cost factors, is the reason
that we focus in this thesis on the relation between maintenance (costs) and
downtime . Finally, we explain in Section .. why we do not optimize the
product design itself.

.. Life cycle costs are a key factor in purchasing decisions

Instead of focusing on the initial purchasing price, customers increasingly
take the total life cycle costs into account in their purchasing decisions (Ferrin
and Plank, ). Therefore, original equipment manufacturers (oems) need
methods to estimate those lcc. We also observe a trend in which customers
outsource activities for product upkeep to the oem, using service contracts
that guarantee a certain service level against fixed annual costs. For the oem,
this may be attractive, since selling services is generally more profitable than
selling products (AberdeenGroup, ; Cohen et al., ; Deloitte, ;
Murthy et al., ; Oliva and Kallenberg, ).

In Dutch ‘Innovatiegerichte onderzoeksprogramma’s – Integrale productcreatie en -realisatie’
or ‘Innovation oriented research programs – Integral product creation and realisation’, which is
funded by the Netherlands Ministry of Economic Affairs.

Introduction 

For the acquisition of defence systems, it is required by both the United States
Department of Defense (mil-std--a, United States Department of De-
fense, ) and the United Kingdom Ministry of Defence (def stan -
(part ), United Kingdom Ministry of Defence, a) that instead of the pur-
chasing costs, the complete life cycle costs are considered, especially the costs
for system upkeep.

For oems, this means a change in the way of working. The traditional way of
working is that the oem sells a product and is responsible for a functioning
system during a limited warranty period. After this period, the oem can earn
from system upkeep by selling spare parts or performing maintenance. In this
setting, the sound choice for an oem at the design phase is to focus on the
manufacturing costs of the product. Preventing failures during the warranty
period is useful as well; preventing failures during the remainder of the life
cycle is less useful from a cost perspective. Nowadays, customers increasingly
ask for an lcc estimate or a service contract for system upkeep with a given
target availability. Therefore, the oem needs methods to estimate the main-
tenance costs. Besides, those costs should be lowered, since that leads to a
higher probability of actually selling the product or service contract. Higher
costs during the production phase (e.g., more reliable components or more
redundancy in a system) can be balanced against lower costs during the use
phase and at product disposal (e.g., a more efficient service organization, less
downtime costs, lower energy or manpower usage, or lower disposal costs).

.. Downtime costs are high for capital goods

The focus in this thesis is on capital goods. Since capital goods are very expen-
sive in general, capacity on this type of equipment is usually tight, and uptime
or availability is highly important. Consequences of downtime may be very
serious. For example:

• If a defence radar system on a naval vessel breaks down, the vessel is
vulnerable since it cannot detect incoming missiles anymore.

• If a baggage handling system at an airport stops to function, direct costs of
sending luggage at a later point in time, and indirect costs of unsatisfied
customers, are very high.

• If an mri scanner needs to be shut down, there is probably not enough
excess capacity to reschedule patients to other mri scanners, and patients
have to be sent home.

• If a lithography system in a semiconductor fabrication facility fails, an
entire product line may be down, since this system is often the bottleneck
in semiconductor manufacturing.

mil-std--a contains requirements. It is superseded by mil-hdbk- (United States
Department of Defense, ), which is for guidance only.

 Chapter 

Some sources report that downtime costs may be up to $, per hour, e.g.,
for the computer systems of large e-commerce companies or brokerage firms
(cnet news, ; Patterson, ; Downtime Central, ).

.. The maintenance strategy determines downtime

For a given product design, the key factor that determines the downtime costs
is the responsiveness of the logistics support system. Therefore, we have to
balance the costs of logistics support, including the costs of setting up mainte-
nance facilities (e.g., locating resources and spares), and the downtime costs.
The focus is on corrective maintenance rather than preventive maintenance,
since the negative consequences of system downtime arise from unexpected
failures, whereas planned maintenance is usually scheduled. However, in Sec-
tion ., we will see that part of our research can also be applied in a preventive
maintenance setting. Furthermore, since maintenance that results from regular
inspections can often not be scheduled either, we consider this to be corrective
maintenance, and the methods that we develop can be used in this case (see
also Section .).

.. Maintenance costs are high for capital goods

By focusing on the costs of corrective maintenance, we exclude other life cycle
costs. In order to show which parts of the lcc are considered, and which
parts are not, we discuss the product life cycle. Asiedu and Gu () and
Ullman () distinguish four phases in the product life cycle: design &
development, production, use, and disposal. Costs during the use phase can
be split into operational costs and maintenance (or support) costs (Blanchard,
; Blanchard and Fabrycky, ). By focusing on corrective maintenance
costs, we therefore exclude: design & development costs, production costs,
operational costs, preventive maintenance costs, and disposal costs. However,
for capital goods, the use phase is typically the longest phase; it can last from a
couple of years to up to more than  years (e.g., for planes). As a result, the
percentage of the lcc that is due to upkeep activities or activities during the
use phase in general is quite large:

• Gupta () states that more than % of total life cycle costs are made
during the use phase. Saranga and Dinesh Kumar () state that it is
-%.

• From research that is performed as part of the iop-ipcr project at Thales
Nederland (Basten, ), VanderLande Industries (Franssen, ), and
PANalytical (Meutstege, ), we know that -% of lcc is made up
of (corrective and preventive) maintenance costs.

An example of relatively high costs during the use phase is also of current
interest in the Netherlands. The Netherlands are selecting a new fighter type
plane to replace the current F- fighter planes. Journalists believe that Saab

Introduction 

has offered  planes (Saab Gripen NG) for an initial price of € . billion, with
a maintenance contract for  years for another € . billion (Vrij Nederland,
). This means that maintenance costs and purchasing price are the same
over the life cycle of the plane. At the moment of writing, it is most probable
that another plane will be acquired (F- Lightning II, also known as Joint
Strike Fighter). The budget to buy  planes was raised to €. billion, and
the Netherlands Ministry of Defence estimates that usage and maintenance
for  years will cost almost €  billion (nu.nl, ). Assuming that disposal
costs are relatively low, this means that costs during the use phase, including
operational costs, form more than % of the total lcc (the purchasing price
covers both design & development costs and production costs).

.. Only a few product designs need to be considered

In practice, only a limited number of product designs is considered during
the later stages of the product design process; in the earlier stages, there is not
enough detailed information to estimate the costs of maintenance. Therefore,
we can focus on a method that determines the costs of maintenance for a given
product design. By estimating the maintenance costs for each product design,
the product designs can be compared, and the best one can be selected. In such
a comparison, other costs, such as the production costs, may be compared as
well, and other considerations may play a role too. In this way, the methods
that we develop can be part of a design for maintainability or design for
serviceability approach (see, e.g., Gershenson and Ishii, ).

. Level of repair analysis and spare parts stock-
ing

As mentioned in the introduction of this chapter, capital goods are generally
maintained by a repair by replacement policy: a failed component is removed
from the product and replaced by a functioning spare part, if available. Oth-
erwise, the replacement has to wait until a functioning component arrives.
In the military world, the components that are taken out of the product are
called lrus or line replaceable units. Defective lrus can either be discarded or
repaired. If it is discarded, a new lru needs to be purchased. If it is repaired,
then possibly a subcomponent needs to be replaced by a functioning one. Since
this replacement is typically performed in a repair shop, these subcomponents
are called srus or shop replaceable units. The sru should in turn be repaired,
possibly by replacement of a part, or discarded itself. The product is thus char-
acterized by a multi-indenture product structure as shown in Figure .a, where
an indenture level is the level in the product structure. If the indenture level is
not important, we use the term components, which can have subcomponents. In
principle, any number of indenture levels is possible.

In practice, the installed base, consisting of all systems that are sold and still in

 Chapter 

Product

lrulru lru

srusru sru

PartPart Part

Ind. 

Ind. 

Ind. 

Ind. 

(a) Product structure

Central
depot

Intermediate
depot

Intermediate
depot

Intermediate
depot

Operating
site

Operating
site

Operating
site

Installed base

Ech. 

Ech. 

Ech. 

(b) Repair network

Figure .: Examples, including the naming convention that we use

use, is usually dispersed over a large geographical area. A support network is
needed with facilities that are not too far from the installed base locations, the
operating sites. However, locating repair and test equipment and spares close to
each of the operating sites is usually expensive. Therefore, often more central
locations are used to stock some spare parts and to locate more expensive
equipment. As a consequence, a repair network usually consists of multiple
echelon levels. Figure .b shows an example including the naming convention
that we use. In principle, any number of echelon levels is possible. In practice
however, it is usually limited to three. If there are various echelon levels, it
should be decided where to perform repairs, where to locate resources (e.g.,
test and repair equipment), and where to stock spare parts. The oem is usually
responsible for the support network, except in the military world. There, the
customer often owns its own support network.

The numbering of the indenture levels and echelon levels might be a bit
confusing at first sight. However, it is used both in practice and in the literature
(see, e.g., Sherbrooke, ). The logic is that the repair of a system starts by
finding the lru (indenture level ) that failed, repairing this lru by replacing
an sru (indenture level ), and so on. At the moment the system fails, it is at
the operating site (obviously), which is at echelon level . Components that
failed may then be moved upstream in the repair network to higher echelon
levels.

In Sections .. to .., we discuss the problems that we consider in this
thesis. However, we first clearly define the term availability as we use it (see,
e.g., Sherbrooke, , for multiple definitions of availability). A system is
available, or operational, if it is not down for either maintenance or because
it is waiting for spare parts. This is reflected by the definition of operational
availability, which is mtbm

mtbm+mcmt+mpmt+msd , with mtbm being the mean time be-
tween maintenance, mcmt being the mean corrective maintenance time, mpmt
being the mean preventive maintenance time, and msd being the mean supply
delay, so the time waiting for spares. The operational availability may also be

Introduction 

approximated as the product of two availabilities: maintenance availability
and supply availability, with maintenance availability being mtbm

mtbm+mcmt+mpmt ,
and the supply availability being mtbm

mtbm+msd . In this thesis, we are interested in
the delay time due to a lack of spares. As a consequence, we wish to minimize
the msd, and therefore, the term availability in this thesis refers to the supply
availability.

Furthermore, notice that all times (e.g., mtbm) are mean times: since we con-
sider stochastic variables, the availability as we use it, is the expected average
availability over the life cycle of all capital goods in the installed base.

.. Level of repair analysis problem

The level of repair analysis (lora) problem is to determine whether a compo-
nent should be repaired or discarded upon its failure, and at which location in
the repair network to do that. To enable certain types of repairs, resources have
to be located in the repair network as well. The goal is to achieve the lowest
costs over the life cycle of the product. Those costs consist of both fixed costs
and costs that are variable in the number of failures. Variable costs include
costs of hiring service engineers and transportation of components; fixed costs
include costs for resources such as test equipment and tools. The number of
spare parts that need to be stocked in the network and the availability of the
installed base are not considered in the classical lora, but in a spare parts
stocking problem that is solved after the lora has been solved. We come back
to this in Section ...

Commercial lcc estimation tools generally contain a lora part, see for example
price hl () and edcas (), but it is not clear how they function. In
the military world, a lora is usually requested by the customer.

In practice, not all components in the product structure are considered in the
(economic) lora that we focus on in this thesis. For other components, not all
repair/discard options may be available. This is a result of the non-economic
lora that is typically performed before a(n economic) lora is performed (see
also Section ..). In the non-economic lora, it is determined that some
components cannot be repaired at all, or can be repaired by the oem only. Other
repairs cannot be performed at the operating site, since, for example, there
is no space for certain resources, or a vibration-free environment is required.
Other components (e.g., bulk items such as screws or cables) are so inexpensive
that they are discarded by default.

Although it does not become clear from their websites that these tools contain a lora part, we
know this both from experts who have been using these tools and from the literature (e.g., Barros,
).
It is noticed that it is unclear how commercial lora tools function both by experts who have

been using these tools and in the literature (e.g., Brick and Uchoa, ).
In the remainder of this thesis, the term lora refers to the economic lora, unless stated

otherwise.

 Chapter 

.. Spare parts stocking problem

The spare parts stocking problem is generally solved using the decisions that
result from the lora as an input. The goal is to allocate spare parts inventory
in a repair network such that a certain availability of the installed base is
achieved against the lowest possible spare parts costs. In the military world, a
recommended spares list is usually requested at the acquisition phase. Various
commercial tools exist that can perform the spare parts stocking problem. For
example, a tool, which comes from the same company as the aforementioned
edcas (), is VMetric ().

.. Joint problem of lora and spare parts stocking

The focus in this thesis is on the joint problem of lora and spare parts stocking.
Since both the lora and spare parts stocking problem are well known in the
military world, we illustrate both problems and possible solutions by means of
case material of Thales Nederland, a manufacturer of naval sensors and naval
command and control systems.

In practice, the joint problem of lora and spare parts stocking is usually solved
sequentially, as mentioned in Section ... However, the lora problem is
often not solved explicitly using a formal model, but implicitly using expert
knowledge and the decisions made for earlier products. Spreadsheets are used
to calculate the costs for a few scenarios only. After solving the lora problem
and spare parts stocking problem, it may turn out that spare parts costs for
some components are very high. In that case, a second iteration is sometimes
made in which another lora decision is taken for those components. Obviously,
it is not guaranteed that the optimal solution is found in this sequential or
iterative manner. Furthermore, this way of working is time consuming and
there is a lot of room for errors (see also Section ..).

We explained that we focus on corrective maintenance. Although a lora can
be used for preventive maintenance as well, the joint problem of lora and
spare parts stocking is different for preventive maintenance. The key reason
for this is that preventive maintenance is usually scheduled, which means
that demand for spare parts occurs at set intervals only (some components are
always replaced, other components are inspected and replaced if necessary),
whereas for corrective maintenance the occurrence of demands is a (more or
less) continuous stochastic process.

. Example

An example may serve to illustrate the joint problem of lora and spare parts
stocking. Let us consider an airline (e.g, klm) with a fleet of planes (e.g., Boeing
-). A plane is generally used for a large number of years, and it will
need maintenance during its life span. Because of safety regulations, vital

Introduction 

components of the airplane are inspected at each airport where it lands. At
the main hub of the airline (e.g., Schiphol, Amsterdam), the airplane is period-
ically inspected more thoroughly. At both types of inspections, components
that do not function according to specification are maintained, and replaced if
required. (At the latter type of inspection, some components are also preven-
tively maintained or replaced; we do not consider these components.) Although
this setting reflects condition based preventive maintenance, the inspection
intervals are so short, that the occurrence of demands can be seen as a continu-
ous stochastic process, which means that the methods that we develop in this
thesis may be applied in this situation.

At the design phase of the plane, or at the moment the airline acquires the
planes, it is determined what will be done if a part needs maintenance. Let
us assume that if the engine fails, it is replaced in total (e.g., if a bird flies
into the engine). The engine can then be sent to the oem for repair. However,
shipping a complete engine is expensive. Besides that, the engine is away for
a long time. If the probability is relatively high that any of the other planes
needs a spare engine in that period as well, then to keep the planes available
for % of the time, at least two, but maybe even more spare engines may be
required. Therefore, the airline may decide to acquire repair equipment so that
it can stock the subcomponent of the engine that failed. If the equipment is
available at the hub, the subcomponent that failed can be located and replaced
by a spare part. This spare part is usually far less expensive than a complete
spare engine. If locating and replacing the defective subcomponent can be
done quickly, stocking one spare engine only may be sufficient. Subcomponents
need to be stocked instead of complete engines, and subcomponents are sent to
the oem for repair instead of complete engines, which leads to lower shipping
costs. Instead of repairing the subcomponents, some subcomponents may also
be discarded, or the airline may decide to repair some of these subcomponents
itself.

In our example, decisions are taken on whether to discard or to repair compo-
nents, where to perform the repairs, whether or not to buy test equipment, and
on the number and locations of spare parts to stock in order to achieve a target
availability of the planes. These are the decision problems that are studied in
this thesis. At other companies, the same kind of problems exist, although the
number of options may differ, for example, if the number of echelon levels in
the repair network is smaller.

. Literature

Most of the related literature focuses on one of the two problems: lora and
spare parts stocking. To the best of our knowledge, only one paper exists
that provides a model and solution method that can be used to solve the two
problems simultaneously. We discuss the literature below; in Chapter , we
discuss the literature in more detail.

 Chapter 

.. lora

The literature on lora is limited; to the best of our knowledge, only the pa-
pers by Barros (), Barros and Riley (), Saranga and Dinesh Kumar
(), and Brick and Uchoa () discuss the key issues of lora. Some of
the presented models can be used for multi-indenture product structures and
multi-echelon repair networks, others are more restricted in this perspective.
However, the multi-indenture, multi-echelon models have very restrictive
assumptions on the resource-component relations: all components at one in-
denture level require the same resource in order to be repaired (there are as
many resources as there are indenture levels), or each component requires its
own resource (no sharing of resources).

Problem instances in practice (e.g., at Thales Nederland, see Section ..)
generally require that multi-echelon repair networks, multi-indenture product
structures, and fairly loose restrictions on the resource-component relations
can be modelled. None of the models in the literature fits these requirements.

.. Spare parts stocking

A vast amount of literature exists on the (multi-item) spare parts stocking
problem. In the context of this research, we are interested in expensive, slow
moving, repairable components. The paper of Sherbrooke () is generally
seen as the seminal paper in this field. He developed the metric model (multi-
Echelon Technique for Recoverable Item Control), which is the basis for a huge
stream of metric type models. We refer to Sherbrooke () and Muckstadt
() for an extensive overview of the literature on metric type models.

Given the long tradition in spare parts stocking, the current state-of-the-art
is sufficient to solve spare parts stocking problems in practice. In the defence
industry, it is quite common to apply such models.

.. Simultaneous lora and spare parts stocking

To our knowledge, the paper by Alfredsson () is the only paper in which
the lora and spare parts stocking problem are solved simultaneously (instead
of solving the lora first and then the spare parts stocking problem). However,
the model is too restrictive to be used in practice, since the author assumes one
indenture level and two echelon levels, and uses very strong assumptions on
the resource-component relations (see Section .).

. Contribution

This section gives the research objective and the research questions. We elabo-
rate on these questions and thereby show the contribution of this thesis.

Introduction 

.. Research objective

Our research objective is:

To develop a method that companies can use to analyze the joint problem of
level of repair analysis and spare parts stocking for multi-indenture, multi-
echelon problem instances.

The solution to the joint problem prescribes for a given product design and
repair network:

• Which components to repair upon failure, and which to discard,

• for each component that will be repaired, where in the repair network to
do this,

• for each required resource (e.g., test or repair equipment), where in the
network to install it, and

• the locations and amounts of spare parts to stock,

such that a target availability is achieved against the lowest possible life cycle
costs.

.. Research questions

We noticed in Section . that there is little literature on lora, let alone on
the joint problem of lora and spare parts stocking, whereas there is a lot of
literature available on the spare parts stocking problem. We have to know
exactly what literature is available and what is needed in practice. This means
that our first research question is:

() Which methods are available to analyze the lora and spare parts stock-
ing problem, what is required in practice, and what are therefore the gaps
in the literature?

For the spare parts stocking problem, we find that what is required in practice
(e.g., Thales Nederland) is available in the literature. However, the models that
are available for the lora problem are not sufficient to be used in practice.
Therefore, we focus on the lora problem, and our second research question is:

() What is a suitable lora model that can be solved in a reasonable amount
of time for problem instances with a size that is realistic in practice?

To answer this question, we formulate two subquestions. The main problem
with the models in the literature is that the assumptions on the sharing of

 Chapter 

resources between components are too restrictive. Therefore, our first subques-
tion to answer is:

(a) In what way can we generalize the models that are available in the
literature?

Answering this question leads to a model that gives insights into the existing
models and the lora problem in general. For example, we use the model to
show that the lora problem is NP-hard in general. Since this model generalizes
the existing models, it provides a good basis for further work. To be able to
model realistic problem instances, the model needs to be extended, for example
by allowing for a probability of unsuccesssful repair (instead of assuming that
repair is always successful). Therefore, the second subquestion is:

(b) How can we model the extensions that may be needed in practice?

To model the extensions, we reformulate the lora model as a minimum cost
flow model with side constraints. We extend that model with practically rele-
vant extensions. This means that we have developed a lora model that can be
used in practice.

Since there are already good models and methods to solve the spare parts
stocking problem, we reached, in a way, our research objective. However, we do
not know the quality of the total solution (lora and spare parts): when solving
both problems sequentially, the lora may result in the need to perform many
repairs at a central location, since this means that repair equipment needs to be
located at one location only. This implies that the installed base faces long repair
lead times, which increases the amount of spare parts inventory. If repairs
would be performed at the operating sites, we need more repair equipment,
but less spares, to achieve the same target availability of the installed base. In
an integrated model, the higher costs of resources can be balanced against the
lower costs of spares. For this reason, Alfredsson () and Brick and Uchoa
() stress the importance of an integrated model, which is what we pursue
next:

() What is a suitable method to solve the joint problem of lora and spare
parts stocking?

There are various ways to approach this joint problem. One of the more obvious
ways is to use existing methods to solve the lora and spare parts stocking
problems and make a feedback loop to get the results of the spare parts stocking
problem to the lora. In an iterative way, this should lead to a good overall
solution. Therefore, our first subquestion is:

(a) How can we iteratively use a lora model and a spare parts stocking

Introduction 

model to solve the joint problem of lora and spare parts stocking?

This iterative method often leads to lower total costs than solving the lora and
spare parts stocking problems sequentially. This shows that usage of a method
that solves the joint problem is useful. However, although the iterative method
often achieves interesting cost reductions, it does not guarantee to find a good
solution: robustness appears to be an issue. This leads to the second and final
subquestion:

(b) Which method can we use to solve the joint problem of lora and spare
parts stocking in a more robust way, leading to a solution that is close to
optimal?

Answering this subquestion completes our research.

. Outline of the thesis

The outline of the thesis closely follows the research questions. In Chapter 
(question ), we discuss the relevant literature in more detail and we discuss
what is needed in practice. This leads to a list of gaps in the literature. In
Chapter  (question a), we present a lora model that generalizes the models
that exist in the literature. This model closely resembles the existing models.
In Chapter  (first step in answering question b), we then reformulate the
lora model as a minimum cost flow model with side constraints, which can be
solved fast and proves to be easy to extend. We discuss possible extensions in
Chapter  (second step in answering question b). This chapter concludes our
discussion of the lora models. In the next chapter, Chapter  (question a),
we present an iterative method to solve the joint problem of lora and spare
parts stocking. We conclude our discussion of the joint problem in Chapter 
(question b) with an integrated method. This thesis ends with Chapter , in
which we give conclusions and recommendations for further research.

Chapter 

Literature and research
challenges

In this chapter, we answer research question : “Which methods are available
to analyze the lora and spare parts stocking problem, what is required in
practice, and what are therefore the gaps in the literature?” To this end, we start
in Section . with a discussion of the requirements that problem instances
in practice pose on lora and spare parts stocking models. In the next few
sections, we discuss parts of the literature: the literature on the lora problem in
Section . and the literature on the spare parts stocking problem in Section ..
In Section ., we discuss the one paper in which an algorithm is developed
to solve the joint problem of lora and spare parts stocking. In Section ., we
also discuss related literature that may be used when developing an algorithm
to solve the joint problem. Section . concludes this chapter by listing the
gaps in the literature.

. Requirements in practice

Throughout this thesis we refer to a case study at Thales Nederland, a manufac-
turer of naval sensors and naval command and control systems. Section ..
discusses that case study and Section .. lists the requirements that are posed
by problem instances in practice, partly based on the case study.

.. Case study

This section discusses the case study that we performed, which is representative
for the lora and spare parts stocking problems that Thales Nederland faces.
Two examples of Thales radar systems are the smart-l, which is a rotating long
range surveillance radar, and the apar or Active Phased Array Radar, which



 Chapter 

does not rotate. apar can be used for surveillance, tracking of hostile missiles,
and guidance of missiles and canons. A non-rotating radar has the advantage
that there are less mechanical parts that are prone to wear-out. Moreover, it is
easier to keep out (salt) water and other environmental influences. Rotating
radar systems are generally less expensive. There also exist electro-optical
surveillance systems, which use, for example, infrared cameras to detect hostile
units. The advantage of such systems is that they are passive, whereas radar
systems transmit a signal, which may be detected by enemies. The case study
concerns a combined radar and electro-optical surveillance system that is
mounted on a naval vessel (operating site). The exact system is confidential;
we will refer to the system as sensor system.

Some spare parts are typically stocked on board the ship, and the crew can ex-
change many components (the lrus or line replacable units). Some repairs can
be performed on board the ship, but most specialized equipment is typically
not available there. The case study concerns twelve ships; seven of them are
located at one base (intermediate depot), and five ships are located at another
base. The two bases are linked to a central depot, which, in turn, can send
components to Thales Nederland for repairs. New components may also be
ordered at Thales Nederland. Thus, the repair network consists of four echelon
levels.

We consider three indenture levels in the product structure and over 
components, of which % are lrus. The sensor system consists of more com-
ponents and more indenture levels, but not all components are relevant. This
is explained in more detail in Section ., but one may think, for example, of
bulk items such as screws, bolts, and wiring.

In order to test and repair components, there are  different resources, 
of which are ‘adapters’. These adapters are used in concurrence with other
test/repair equipment. This means that some expensive equipment can be used
to test or repair a set of components, but distinct adapters need to be acquired
for each component that is actually tested or repaired on the equipment. Notice
that this means that there are sets of components requiring the same resource,
and there are components that require two (or more) resources simultaneously.

Some of the resources that we consider are required for calibration: some lrus
need to be tuned when they are put back in the system. Therefore, there is a
choice to have this equipment at each ship, or have it at the bases only. In the
latter case, if a failure occurs in that lru, the sensor system will be down until
the ship returns to its base.

Costs of the components can be upto one million euros, and costs of resources
can be upto a couple of million euros. As a result, the life cycle costs of twelve
sensor systems are tens of millions of euros. Resources are not used intensively.
Even at depot, usage rates are below % in general, which means that no two
resources of the same type are required at any one location.

The annual failure rate of each lru per ship is in the range of . to ..

Literature and research challenges 

Lead times can be more than a year for newly acquired components, upto
half a year for repairs at the oem, and over one and a half months for repairs
in the customer’s repair network. The lead time to get a component at ship
from base is related to the average mission time, which is an input from the
customer. In the case study it is two weeks. This lead time could be reduced
by using emergency shipments, for example, by using a helicopter to send a
new component to a ship. However, we do not consider this in the model, since
customers do not want to perform such shipments on a reqular basis.

Not all repairs are successful in practice. For many components, a probability of
unsuccessful repair is specified, which is usually %. There are also components
that are returned to be repaired, but no failure is found when diagnosing them.
After extensive testing, such a component is returned to stock. However, Thales
Nederland does not have the data available to incorporate ‘no-fault-founds’ in
the considerations yet. Still, this may be desirable in the future. Furthermore,
there are components in which multiple failure modes can be distinguished:
for example, simple failures that can be repaired without any resource, and
more difficult failures (of the same component) that require a resource in order
to be repaired.

We conclude that in order to solve this case study, we need a model that can deal
with multi-indenture product structures, multi-echelon network structures,
and very loose restrictions on the resource-component relations. In addition, it
would be useful if the model can cope with probabilities of successful repair
and no-fault-found probabilities.

.. General requirements

Based on the case study, on experience at other companies (in particular those
that participate in the iop-ipcr project), and on the literature, this section gives
the requirements that are generally posed on lora and spare parts stocking
models and methods.

The number of indenture levels in the case study at Thales Nederland is three;
in the case study of Saranga and Dinesh Kumar () there are two indenture
levels. In general, multiple indenture levels exist in the product structure.
Multiple echelon levels in the repair network are common as well. Cohen
et al. () notice in a benchmark study that three-echelon networks prevail,
followed in popularity by two-echelon networks. In the case study, there are
four echelon levels.

The repair network may be asymmetrical, which means that, for example, not
the same number of operating sites is supplied by each intermediate depot. In
the case study, five ships are attached to one base and seven ships are attached
to another base. This means that taking the same decision at each location at
one echelon level may not be optimal. A network may also be unbalanced due
to higher failure rates of the products (due to more intensive usage), higher
costs, or longer lead times in parts of the network.

 Chapter 

Resource-component relations may be very general. Some components require
multiple resources in order to be repaired, and some resources are required
by multiple components, possibly at multiple indenture levels. At Thales
Nederland, the usage rates of the resources are so low, that the waiting time
for a resource will never be significant. Therefore, at any location, at most
one resource (of the same type) is required, which means that we may assume
uncapacitated resources. However, this is not the case at all componanies (see,
e.g., the assumptions in Alfredsson, ).

We conclude that the key requirements for a model that is to be used in practice,
are that it should cover multiple indenture levels and multiple echelon levels.
Besides, it should cover fairly general resource-component relations. For some
problem instances, it may be required to model the exact repair network,
whereas for other problem instances, data may be aggregated such that the
same decision is taken at each location at the same echelon level (which is
often done in the literature, see Section .). Other extensions may be required
as well, such as the usage of capacitated resources, multiple failure modes
per component, a probability of unsuccessful repair, and a no-fault-found
probability.

The current way of working in practice is using a sequential approach of
solving a lora first, and then a spare parts stocking problem. In the case study,
spare parts costs make up over % of the total costs (lora and spare parts
stocking). Since these costs are not included in the lora, it is doubtful whether
an overall optimal solution can be achieved using the sequential approach.
Another approach in which the two problems are solved simultaneously may
be required.

. Level of repair analysis

This section dicusses the literature that exists for the lora problem (Barros,
; Barros and Riley, ; Saranga and Dinesh Kumar, ; Brick and
Uchoa, ). The analysis of a lora model should prescribe for a given product
design and repair network:

• for each component, whether to repair or discard it upon failure, and

• where in the repair network to do this, and

• for each required resource (e.g., test or repair equipment), where in the
network to install it,

such that the lowest possible life cycle costs are achieved. Those costs con-
sist of both fixed costs and costs that are variable in the number of failures.
Variable costs include costs of hiring service engineers and transportation of
components; fixed costs include costs for resources such as test equipment and
tools.

Literature and research challenges 

Central depot

Intermediate depots

Operating sites

Ech. 

Ech. 

Ech. 

Figure .: Three-echelon repair network (aggregated)

Barros () and Barros and Riley () use the same (mixed) integer pro-
gramming model. Throughout these two papers, two-indenture product struc-
tures and two-echelon repair networks are assumed. However, the authors
state that the model can be used to solve problem instances with any number
of indenture levels and echelon levels. All data is aggregated per echelon level,
which means that the same decision is taken for each location at one echelon
level; each three-echelon repair network would be represented as in Figure ..

There are |E|+  possible decisions for each component, with E being the set
of echelon levels in the repair network: a component can be repaired at one
of the echelon levels, or it can be discarded. The assumption with respect to
the resource-component relations is that all components at one indenture level
require the same resource in order to be repaired. As a result, the number
of resources in the model is equal to the number of indenture levels in the
product structure, and every component requires exactly one resource. The
resources are uncapacitated.

Barros () uses a commercial linear programming solver (lindo) to solve
the model, and Barros and Riley () use a dedicated branch-and-bound
method.

Saranga and Dinesh Kumar () assume three-indenture product structures
and three-echelon repair networks, but the extension to general multi-inden-
ture, multi-echelon problem instances is straightforward. The authors model
three possible decisions per echelon level: repair, discard, or move to the next
higher echelon level. If the last decision is taken, one of the three options at
the next higher echelon level needs to be chosen. At the highest echelon level,
the move option is not available. The result is that for each component one
repair or discard will be chosen at one of the echelon levels. Resources are not
shared between multiple components, and each component requires exactly
one resource: the number of resources is equal to the number of components.
As in the model of Barros, data is aggregated per echelon level and resources
are uncapacitated. The model is an integer programming model, which is
solved using genetic algorithms.

We mentioned that the model is a (mixed) integer programming model. However, Barros
() assumes that the relaxation of the integer programming formulation leads to a natural
integer solution. We come back to this in Section .., in which we show that this is not always
true.

 Chapter 

Barros (), Barros and Riley (), and Saranga and Dinesh Kumar ()
focus purely on the lora problem. Brick and Uchoa () add to the lora
problem the problem of where to locate repair facilities, the well known facility
location problem (see, e.g., Daskin, ). Since this increases the complexity of
the problem, the authors have to make simplifying assumptions. They assume
single-echelon repair networks and two-indenture product structures, but they
pose fairly general restrictions on the resource-component relations. Resources
are capacitated, which means that multiple resources (of the same type) may be
required at one location, and data is not aggregated per echelon level. Instead,
the exact network is modelled. The model is a mixed integer programming
model, which is solved using a commercial solver (cplex .).

. Spare parts stocking

Given the repair/discard decisions per component, which result from the lora,
the spare parts stocking problem is to find the most cost effective allocation of
spare parts in a network that achieves a target availability of the installed base.

A vast amount of literature exists on the multi-item spare parts stocking prob-
lem. Lines of research can be distinguished based on their focus on repairable
or consumable components, and on fast moving, inexpensive components or
slow moving, expensive components. In the context of this research, we are
interested in expensive, slow moving, repairable components. The paper of
Sherbrooke () is generally seen as the seminal paper in this field. He
developed the metric model (Multi-Echelon Technique for Recoverable Item
Control), which is the basis for a huge stream of metric type models. The
initial model can be used for single-indenture items only. Muckstadt ()
developed the first multi-echelon, multi-indenture model, called mod-metric.
The development of the vari-metric models (Slay, ; Graves, ; Sher-
brooke, ) has been another important step forward; the relations between
various echelon levels and indenture levels are more accurate in these models
(see also Section .). These relations can also be calculated exactly (Graves,
; Rustenburg et al., ), but this is computationally intensive. We refer
to Sherbrooke () and Muckstadt () for an extensive overview of the
literature on metric type models. We will use vari-metric in our experiments
if we require a spare parts stocking analysis method. Therefore, we will often
use the term vari-metric from now on, even though the statements are also
valid for most other metric type models.

vari-metric aims to find the most cost effective allocation of spare parts in a
network that achieves a target availability of the installed base. Equivalently,
the availability can be maximized for a given budget and maximizing the
availability is approximately equivalent to minimizing expected backorders
(ebo) for lrus at operating sites. A backorder arises if a request for a spare part
cannot be fulfilled immediately. Backorders at higher echelon levels or higher
indenture levels influence the availability only in an indirect way, since they

Literature and research challenges 

influence the lead times of requests for lrus at operating sites.

Two key assumptions that are generally used in the metric type models are:

• A location in the repair network at echelon level e is only supplied from
its parent-location at echelon level e + , not by a lateral supply from
another location at echelon level e or by emergency shipments from
locations at an echelon level > e+ .

• One for one (s − , s) replenishment is appropriate for every component
at every echelon level.

The metric type models can be solved using a Lagrangian method or using a
marginal analysis approach. In general, the former method leads to a solution
that is not as good as the solution of the latter method. Moreover, the latter
method leads to an ebo-curve, which we require for our method in Chapter ,
whereas the former method does not.

We focus on the marginal analysis approach in detail in Section .. To explain
the basic idea, we first define an lru family as an lru including all its subcom-
ponents at any indenture level (Muckstadt, ). Since the ebo of all lrus
can be summed in order to get the ebo of the complete product, the overall
spare parts stocking problem is separable per lru family. For each lru family a
subproblem should be solved, which results in an ebo-curve. An ebo-curve is
a set of ebo-costs-combinations, in which each combination corresponds to a
number of spare parts, allocated to the locations in the repair network.

To solve the overall problem, it is used that each ebo-curve is convex. Starting
without any spares, that ebo-curve is picked for which adding a spare leads to
the highest ebo-reduction per dollar (biggest bang for the buck). This spare is
added, and the next best spare to add is found, et cetera. Since the curves are
convex, the first step on a curve leads to an ebo-reduction per dollar that is at
least as high as that of the next step. This guarantees that it is optimal to look
ahead one step per curve only when adding spares. Spares are added until an
ebo-value is reached that corresponds with an expected availability that is at
least as high as the target availability. Except for the approximation errors in
vari-metric, the solution that is thus found is an efficient point, which means
that the same availability cannot be achieved against lower costs. However,
there may be solutions that achieve a lower availability, which is still higher
than the target availability, against lower costs. We come back to this in our
detailed explanation of vari-metric in Section ..

For the special case of a single system per operating site, Rustenburg ()
shows that it is better to use the sum of the backorder probabilities for all
lrus at the operating sites (pbo) instead of the sum of the expected number of
backorders (ebo). We come back to this in Section . as well.

 Chapter 

. Joint problem of lora and spare parts stocking

To the best of our knowledge, only one paper so far focuses on the joint problem
of lora and spare parts stocking (Alfredsson, ). However, more literature
exists on a related problem: the joint problem of facility location and inventory
stocking. Therefore, we first discuss the paper by Alfredsson, and then we
discuss the literature on the related problem.

Alfredsson () assumes a single-indenture product structure, and a two-ech-
elon repair network, but the extension to more echelon levels is straightforward.
The data is not aggregated per echelon level. Instead, the exact network is mod-
elled. Each component requires one specific tester (resource), which is required
by one component only. Furthermore, one multi-tester exists. This multi-tester
can be used for the repair of one component, and adapters can be added in a
fixed order to enable the multi-tester to be used for the repair of additional
components. If the multi-tester can be used to repair a component, the original
specific resource for that component is not used anymore. Resources are capac-
itated, which means that multiple resources of the same type may be required
at one location. Furthermore, system downtime includes the waiting times for
the resources, the repair times, and the waiting times for spares. The model is
a non-linear integer programming model.

Alfredsson uses a decomposition method that sequentially decomposes the
overall problem in smaller subproblems. We focus on the author’s method in
more detail in Section ., since we use his ideas in the method that we develop
there. The basic idea is that he can decompose the problem into subproblems
per resource, in a way similar to how the problem is decomposed per lru
family in the marginal analysis approach for the metric type models. The other
way of decomposing the problem is to fixate a decision variable. For example,
a resource can be either at echelon level  or at echelon level  in his model
(not at both echelon levels or none of the echelon levels). Therefore, he solves a
subproblem in which the resource is at level , and a subproblem in which the
resource is at level . Using a metric type marginal analysis method he gets an
ebo-curve for each of the subproblems and next he finds the convexification
of the lower envelope of these two curves. This is the ebo-curve for the total
subproblem of this resource.

Although only one paper exists that focuses on the joint problem of lora and
spare parts stocking, related work exists in which the facility location problem
and the inventory stocking problem are solved simultaneously (not necessarily
in the context of logistics support systems, but, for example, in the context of
retail). This means that given possible facility locations and demand points
with a given annual Poisson-distributed demand, it should be decided:

• which facilities to open,

• which demand points to connect to each of these facilities, and

• the amount of spare parts to stock at each facility.

Literature and research challenges 

The goal is to minimize the total costs (facility operating costs, transportation
costs, and inventory holding costs) such that a target fill rate is achieved. The
fill rate is the percentage of requests for components that can be satisfied
immediately. A target can be specified for the fill rate per component or for
some weighted average over the fill rates of multiple components.

This is a similar problem to ours since it also covers the decisions of locating
resources (facilities), assigning demands to locations, and stocking inventory at
locations, such that a certain service criterion is achieved. Besides some smaller
differences, there are three key differences with our model:

• a constraint on the fill rate is used instead of a constraint on the availabil-
ity, as mentioned above,

• the focus is on single-indenture product structures only, often even a
single component, instead of multi-indenture product structures, and

• resources can usually be located at one echelon only. Although customers
need to be assigned to the facilities, these models therefore basically
consider single-echelon repair networks, instead of multi-echelon repair
networks.

As a result of the first two differences, often an item approach is used instead
of a system approach.

Most of the literature in this field uses an ordering policy similar to a (Q,r)
policy. For example, determining the order quantity Q using an economic
order quantity (eoq) model, and then determining the reorder point r (see, e.g.,
Daskin et al., ; Gabor and Van Ommeren, ). This makes these models
more applicable in the setting of fast-moving components with relatively high
set-up costs, which are, for example, found in supply chains for consumer
goods, whereas we develop a model that can be used in the context of a service
supply chain with low demands. For an overview of facility location problems
in the former context, we refer to Melo et al. (). The authors survey the
literature published in the last decade, associated with both the facility location
problem and supply chain management (but not service supply chains). They
identify approximately  papers, out of which  integrate inventories with
the facility location problem in some way.

However, we mention two papers that are applicable in the setting that we
are interested in: slow moving components for which one for one (s − , s)
replenishment is used: Candas and Kutanoglu () and Jeet et al. (). In
both papers, the standard fill rate defined above is adapted such that a certain
percentage of requests for spare parts should be fulfilled in a pre-specified time
window (e.g., two hours). One of the inputs is the time it takes to ship a spare
part from each facility to each demand point. A request is not in time if it is
assigned either to a facility that cannot ship within the requested time window,
or to a facility that can ship in the requested time window, but has no spares
on hand. The target fill rate is specified per component, which means that this

 Chapter 

is an item approach. Although one may argue that it is a system approach since
the fill rate is the average over all locations in the network, this is not a system
approach in the sense that we use it.

In the model of Candas and Kutanoglu (), multiple components (at one
indenture level) are considered, and if a request cannot be fulfilled, it is backo-
rdered. The authors formulate an integer programming model that is non-linear
due to the fill rate functions: the item fill rate as a function of lead time de-
mand and number of spare parts. The key idea of their solution technique is to
approximate the fill rate function for all reasonable spare part stock levels with
a function that is piecewise linear in the lead time demand. Since demands
are low, the potential fill rates for all reasonable demand levels and reasonable
stock levels can be tabulated a priori. This leads to additional variables and
constraints, but the non-linearity is removed.

Because of the approximation, their solution does not necessarily fulfil the
service requirements (the fill rate in their approximation can be both higher
and lower than the actual fill rate). Therefore, to guarantee that the fill rate
is achieved for each component, the authors post-process the solution: they
keep the decision on which facilities to open and which demand points to
connect to each of these facilities, and they solve a ‘normal’ spare parts stocking
problem to determine the amount of spare parts to stock at each facility. The
solution that is thus found, necessarily fulfils the service requirements. The
authors compare this solution with the solution of solving a facility location
problem first, and then a spare parts stocking problem (the so-called sequential
approach).

There are two differences between the model that Jeet et al. () use and the
model that Candas and Kutanoglu () use: Jeet et al. () assume that
any unfulfilled demand is lost (instead of backordered) and they consider a
single-item model only. Therefore, this paper is less relevant in the context of
our research, and we will not focus on it in more detail.

Both Candas and Kutanoglu () and Jeet et al. () have to approximate
the fill rate (or, in the latter case, a variable that is substituted for a couple
of variables including the fill rate). For single-indenture product structures
and single-echelon repair networks, it may be possible to approximate the
ebo in a similar way. However, as explained in Section ., the backorders
at higher echelon levels and at higher indenture levels in multi-indenture
or multi-echelon problem instances, increase the lead times for requests of
lrus at operating sites. This means that in this setting, we would combine
multiple approximations, which may lead to unsatisfactory results. Therefore,
the methods that we develop in Chapters  and  for the joint problem of
lora and spare parts stocking will not be based on the methods of Candas and
Kutanoglu () or Jeet et al. ().

Literature and research challenges 

. Conclusions

We conclude that none of the existing lora models fits well on practical prob-
lem instances. Barros (), Barros and Riley (), and Saranga and Di-
nesh Kumar () use very restrictive assumptions on the resource-com-
ponent relations, whereas Brick and Uchoa () consider two-indenture
product structures and single-echelon repair networks only. Aggregating data
per echelon level, as Barros (), Barros and Riley (), and Saranga and
Dinesh Kumar () do, may lead to suboptimal solutions if the network
structure is unbalanced, but we do not now how big the gap with the optimal
solution is. It may be so small that aggregating all data per echelon level is not
a problem in practice.

Given the long tradition in spare parts stocking, the current state-of-the-art is
sufficient to solve spare parts stocking problems in practice. Improvements are
still possible, but in this thesis, we will not focus on these problems.

Only one paper (Alfredsson, ) exists in which the problems are integrated,
but the author considers single-indenture product structures and two-echelon
repair networks only. Besides, the assumptions on the resource-component
relations are very restrictive. The methods that are developed for the related
problem of simultaneously solving the facility location problem and the spare
parts stocking problem (Candas and Kutanoglu, ; Jeet et al., ) consider
single-indenture, single-echelon problems only, and the extension to multi-
indenture, multi-echelon problems seems problematic.

It would be most useful to have one method to solve the joint problem of lora
and spare parts stocking for multi-echelon multi-indenture problems with
general restrictions on the resource-component relations. However, since such
a general model does not even exist for the lora problem itself, developing
such a lora model is an important first step, which we start with in the next
chapter.

Chapter 

Basic lora model

In Chapter , we discussed the fact that no lora model exists that fits the
requirements that are posed on such models in practice. Therefore, we posed
in Section . research question : “What is a suitable lora model that can
be solved in a reasonable amount of time for problem instances with a size
that is realistic in practice?” The ‘pure’ lora models that are available in the
literature (Barros, ; Barros and Riley, ; Saranga and Dinesh Kumar,
) fit multi-indenture, multi-echelon problems, but the restrictions on the
resource-component relations are too strict to be used in practice. Development
of a model with more general restrictions on the resource-component relations
is therefore the first step to take, which leads to research question a: “In what
way can we generalize the models that are available in the literature?”

In Section ., we present an integer (linear) programming (ip) formulation of
the lora problem. This formulation is intuitive and it closely resembles the
models in the literature. We can therefore easily show how it generalizes the
existing models. In Section ., we also show that, in general, removing the
integrality constraints in the ip model yields a fractional solution. Therefore,
we provide in Section . an improved version of the model in which the
integrality constraints on most of the variables can be removed without yielding
a fractional solution. This positively influences the time it takes to solve the
model.

We use this improved model to show which integrality constraints can be
removed if we use the model assumptions of the already existing lora mod-
els. In Section .., we show that it is not possible to remove all integrality
constraints in the model of Barros (), although the author claims this. In
Section .., we show that if we use the model assumptions of Saranga and

Based on Basten et al. (b)
In the remainder of this chapter, if we say that ‘integrality constraints can (cannot) be removed’,

this means that ‘integrality constraints can (cannot) be removed without yielding a fractional
solution’.



 Chapter 

Dinesh Kumar () in our model, all integrality constraints can be removed.
This means that a linear programming (lp) problem remains, which can be
solved in polynomial time; Saranga and Dinesh Kumar () use genetic
algorithms. We further use this model formulation to show, in Appendix B,
that the lora problem is NP-hard.

Section . provides results for the computational experiments. We base our
problem instances on cases that we have seen at Thales Nederland and it turns
out that problem instances of a realistic size can be solved using cplex in a
reasonable amount of time. The chapter ends with conclusions in Section ..

. Model

This section provides our basic ip model. We give the model assumptions in
Section .., and the notation that we use in Section ... A summary of the
notation that we use throughout this thesis can be found in Appendix A. In
Section .., we give the model formulation and in Section .. we show
why the integrality constraints cannot be removed in this formulation without
yielding a fractional solution. Therefore, we propose in Section . an improved
version of the model in which most integrality constraints can be removed.

.. Model assumptions

A number of assumptions are generally made, both in the literature and, to
the best of our knowledge, by companies developing and using commercial
lora-software. We list the key assumptions below. Most of them were already
mentioned in Section .:

• Each time a repair is performed, variable costs are incurred. To be able
to perform the repair of a certain component at a certain echelon level,
annual fixed costs are incurred. For example, if fixed costs are related to
acquiring test equipment, they represent the annual depreciation costs.

• The system itself (indenture level ) is never moved from its location, but
is always repaired by replacing an lru.

• The repair of a component is in principle accomplished by replacing a
subcomponent that failed with a working one. A component is repaired
directly if it is at the highest indenture level, since there are no subcom-
ponents modelled at that level. It may also be that the failure in a certain
component c is caused by a failure of component b in % of the cases,
a failure of component b in % of the cases, a simultaneous failure
of components b and b in % of the cases, and a failure that can be
repaired directly in % of the cases. In this last % of the cases, no
replacement of a subcomponent is required.

Basic lora model 

• A failed component can be moved only from a certain echelon level e to
echelon level e+ .

• Combining the previous two assumptions means that if, for example, an
lru is repaired at echelon level , the failed sru that was contained in the
lru, can only be repaired at echelon level e ≥ .

• If the choice is made to repair a certain component at a certain echelon
level, the probability of a successful repair is %.

• All data at a certain echelon level is aggregated. This means that the exact
structure of the repair network is not known by the model. Instead, we
use, for example, average repair costs at each echelon level and if there
are ten locations at a certain echelon level, either zero or ten resources
may be installed at that echelon level.

• As a result of the previous assumption, the repair of a certain component
should always be performed at the same echelon level, independent of
the operating site from which the component originates. This may be
suboptimal in practice; for example, if the repair network is asymmetrical
(see Section ..).

• As a result of the previous assumption, the number of locations between
any operating site and the most central location should be equal for all
operating sites. For example, it is not possible that one operating site is
connected to the central depot directly, whereas another operating site
is connected to an intermediate depot, which in turn is connected to the
central depot.

.. Notation

Let the set C consist of all components in the product structure and let I consist
of all indenture levels in the product structure. Ci is het set of all components
at indenture level i. For example, C ⊆ C is the set of lrus. Obviously,

⋃
i Ci = C

and Ci ∩Cj = ∅ if i , j. A component (parent) may contain subcomponents
(children), which are at the next higher indenture level. Γc denotes the set of
children of component c. This set may be empty (for components at the highest
indenture level).

As explained in Section ., Saranga and Dinesh Kumar () assume that
fixed costs are due to one component, which means that each component
requires its own type of test/repair equipment, whereas Barros () assumes
that fixed costs are incurred by all the components at one indenture level. As
mentioned in Section ., in practice (e.g., at Thales Nederland), these kind
of sets are too restrictive, since equipment is sometimes used by multiple
components at various indenture levels, and some components require two
or more resources simultaneously. Therefore, we model fairly general sets of
components that share fixed costs G ∈ G (G ⊆ C ,G , ∅). Not all components
need to be in one of the sets, and components may be in more than one set,

 Chapter 

indicating that multiple resources are required simultaneously. If every set
contains exactly one component and every component belongs to exactly one
set, fixed costs are incurred per component, as in the model of Saranga and
Dinesh Kumar. If every set consists of all components at one indenture level,
the assumptions of Barros are used.

Generally, the repair network consists of multiple echelon levels. These ech-
elon levels form the set E. At each echelon level e ∈ E, except for the highest
echelon level ecen, there are three possible decisions d ∈ D to take for each
component c ∈ C:

• Discard: component c is scrapped and a new one is acquired.

• Repair: component c is repaired by replacing its defective child(ren) b ∈ Γc
with an operating one (or by repairing c directly). One of the decisions
needs to be taken for component b at the same echelon level e.

• Move: component c is moved to echelon level e + . At echelon level e + ,
a decision needs to be taken. Note that the ‘move’ option does not exist
at the highest echelon level (ecen).

The set De consists of all decisions that are available at echelon level e. So,
for all e ∈ E with e , ecen: De = {discard,repair,move}. Furthermore, Decen =
{discard,repair}.

vcc,e,d are the variable costs of taking action d (discard, repair, or move) for one
component c at echelon level e. As mentioned before, variable costs include
costs for working hours of service engineers, usage of spare parts, and trans-
portation costs. f cG,e,d are the fixed costs that have to be incurred to enable at
echelon level e the action d for all components that are in set G. We will also
call this ‘enabling decision d at echelon level e for set G’. Fixed costs include
costs for test and repair equipment, but also training of service engineers. No-
tice that if a component c is part of both G and G, fixed costs for decision d
at echelon level e for both these sets need to be taken into account before that
decision can be taken for component c.

For lrus c ∈ C, λc is the total annual number of failures in lru c. If an lru is
repaired, then a certain fraction of the repairs leads to a failed sru for which a
decision needs to be taken. If the lru is discarded however, then no decisions
need to be taken for any of the srus contained in this lru. As a result, the
observed annual number of failures in components c ∈ C \C depends on the
decisions taken for its parent components. We define λc such that the observed
demand of components c ∈ C \C is either  or λc. This means that λc is an
input for all c ∈ C. If multiple children of component c fail at the same time,
then it may be that

∑
b∈Γc λb > λc. Furthermore,

∑
b∈Γc λb may also be smaller

than λc if some repairs can be performed directly without replacement of a
subcomponent.

|G| = |C|, for all G ∈ G it holds that |G| = , and if G , G, then G ∩G = ∅.
|G| = |I |, for all G ∈ G there exists an i ∈ I such that G = Ci , and if G , G then G ∩G = ∅.

Basic lora model 

If for a component b it holds that b ∈ Γc and b ∈ Γc (commonality), we treat b
as being two different components b and b, with for all G: b ∈ G ⇐⇒ b ∈ G.
This means that two different decisions may be taken for b and b. If, for
example, c is repaired at echelon level  and c is repaired at echelon level , it
may be optimal to discard b at echelon level  and repair b at echelon level .

The model uses two sets of decision variables:

Xc,e,d =
{
, if for component c ∈ C at echelon e ∈ E decision d ∈D is taken
, otherwise

YG,e,d =


, if for all components in set G ∈ G decision d ∈D is enabled at

echelon e ∈ E
, otherwise

.. Model formulation

We propose the following model formulation:

minimize
∑
c∈C

∑
e∈E

∑
d∈D

vcc,e,d ·λc ·Xc,e,d +
∑
G∈G

∑
e∈E

∑
d∈D

f cG,e,d ·YG,e,d (.)

subject to: ∑
d∈D

Xc,,d =  ,∀c ∈ C (.)

Xc,e,move ≤
∑
d∈De+

Xc,e+,d ,∀c ∈ C ,∀e ∈ E | e , ecen (.)

Xc,e,repair ≤
∑
d∈De

Xb,e,d ,∀c ∈ C | Γc , ∅ ,∀b ∈ Γc ,∀e ∈ E (.)

Xc,e,d ≤ YG,e,d ,∀G ∈ G ,∀c ∈ G ,∀e ∈ E ,∀d ∈D (.)
Xc,e,d ,YG,e,d ∈ {,} ,∀c ∈ C ,∀e ∈ E ,∀d ∈D ,∀G ∈ G (.)

The objective function minimizes the sum of all annual variable and fixed
costs. Constraint . guarantees that a decision is taken for every lru at ech-
elon level . If the move option is chosen for a component at echelon level e,
Constraint . assures that a decision is taken for that component at the next
higher echelon level e+ . Constraint . assures that if repair is chosen at an
echelon level for a component, a decision is taken for all its child components
at that echelon level.

The inequalities in both constraints . and . cannot be changed to equalities.
To show why, assume that there is a component c with one child component b:

• If c is moved from echelon level  to , where it is repaired, a decision
needs to be taken for b at echelon level . This means that

∑
d∈D Xb,,d = .

An equality in Constraint . would then imply that Xb,,move = , which
is incorrect.

 Chapter 

• If c is repaired at echelon level  and b is moved to echelon level ,
a decision needs to be taken for b at echelon level . This means that∑
d∈D Xb,,d = . An equality in Constraint . would then imply that

Xc,,repair = , which is incorrect.

If discard is chosen for a component, no decision has to be taken for its chil-
dren. The costs of discard include the costs of discard of the children. This is
different from the model formulations of both Barros () and Saranga and
Dinesh Kumar (), in which choosing the discard option for a parent com-
ponent means that discard should also be chosen for all its child components.
We believe that it is intuitively more logical that nothing needs to be done with
the children if the parent is discarded.

Constraint . assures that fixed costs are taken into account for set G if a
decision is taken for any component c ∈ G.

.. LP relaxations

The model uses two sets of binary decision variables: Xc,e,d and YG,e,d . In this
section, we give a problem instance that shows that, in general, the integral-
ity constraints on the Xc,e,d variables cannot be removed without yielding a
fractional solution.

It is, however, possible to remove the integrality constraint on YG,e,d , since
Constraint . assures that YG,e,d =  if any Xc,e,d =  with c ∈ G. If Xc,e,d = 
for all c ∈ G, the minimization in the objective function will cause YG,e,d to be
. However, we prefer to remove the integrality constraint on Xc,e,d (which is
possible for the model we give in Section .), since there are generally more
Xc,e,d than YG,e,d variables.

To see why the integrality constraint on the Xc,e,d variables cannot be removed
in our basic model, consider a system consisting of components c and c, with
c being the parent of c. The repair netwerk consists of two echelon levels, and
there are no fixed costs for enabling a decision. Table .a shows the variable
costs and the demand rates.

Table .b shows the resulting optimal lp solution, which is not an integer
solution. The objective value is ., but it is  for the optimal ip solution. To
understand why the lp solution differs from the ip solution, and why the lp
solution is not integer, see Figure .. The figure shows in a graph which
decisions can be taken for components c and c. Each displayed arc represents
a decision Xc,e,d . At the top node, only one arc or decision should be chosen, so
that the associated Xc,,d = . If two options are chosen simultaneously, both
associated Xc,,d = .. What happens in the example, is that via two ways,

Except when f cG,e,d = , but in that case, an optimal integer solution exists as well.
The two ways are: () Component c is moved to echelon level  (c,,move) and is repaired

there (c,,repair). Component c results at echelon level  in need for repair. () Component c is
repaired at echelon level  (c,,repair). Component c results at echelon level  in need for repair

Basic lora model 

Component c c
λc  
vcc,,discard  
vcc,,repair  
vcc,,move  
vcc,,discard  
vcc,,repair  

(a) Inputs

Component c c

Xc,,discard  
Xc,,repair . 
Xc,,move . .
Xc,,discard  
Xc,,repair . .

(b) Outputs

Table .: Instance with fractional solution (Section ..)

c1,1,d
c1 ,1,m

c1 ,1,r

c1 ,2,d c1 ,2,r
c2 ,1,m

c2 ,1,d
c2 ,1,r

c2,2,d c2 ,2,r

Figure .: Resulting fractional solution (Section ..)
Each arc in the graph represents a decision Xc,e,d , with d being d for discard, r for repair, or m for
move. The bold arcs represent the options that are selected in the example (Xc,e,d = .).

component c reaches echelon level  in need for repair (the bold arcs in the
figure). Constraint . and Constraint . ensure that the value of Xc,,repair
is greater than or equal to Xc,,move(= .) and Xc,,repair(= .), respectively,
which means that Xc,,repair needs to be . only, although it is clear that
Xc,,repair should be . Since we explained in Section .. that we cannot
replace the inequalities in these constraints with equalities, we cannot prevent
the problem in this formulation without using the integrality constraints on
the Xc,e,d variables.

. Improved model

Since the integrality constraints in the model provided in Section . could
not be removed for the Xc,e,d variables, we show an improved model in Section
... We still use the assumptions outlined in Section ... Then, in Sec-
tion .., we show that the integrality constraints on the Xc,e,d variables can

and is moved to echelon level  (c,,move).

 Chapter 

be removed in the improved model. In Section .., we use this result to show
which integrality constraints can be removed in the model of Barros (); in
Section .., we uses the result to show that all integrality constraints can be
removed when the assumptions of Saranga and Dinesh Kumar () are used
in our model.

.. Model formulation

The improvement in the lora formulation is inspired by the problem shown in
Section ... We show the model below, and explain the differences with the
basic model afterwards.

minimize
∑
c∈C

∑
e∈E

∑
d∈D

vcc,e,d ·λc ·Xc,e,d +
∑
G∈G

∑
e∈E

∑
d∈D

f cG,e,d ·YG,e,d (.)

subject to: ∑
d∈D

Xc,,d =  ,∀c ∈ C (.)

Xc,e,move =
∑
d∈De+

Xc,e+,d ,∀c ∈ C ,∀e ∈ E | e , ecen (.)

Xc,,repair =
∑
d∈D

Xb,,d ,∀c ∈ C | Γc , ∅ ,∀b ∈ Γc (.)

Xc,e+,repair +Xb,e,move =
∑
d∈De+

Xb,e+,d ,∀c ∈ C | Γc , ∅ ,∀b ∈ Γc ,∀e ∈ E | e , ecen

(.)

Xc,e,d ≤ YG,e,d ,∀G ∈ G ,∀c ∈ G ,∀e ∈ E ,∀d ∈D (.)
Xc,e,d ,YG,e,d ∈ {,} ,∀c ∈ C ,∀e ∈ E ,∀d ∈D ,∀G ∈ G (.)

There are four differences with the original model:

• Constraint . is similar to Constraint ., but is used for the lrus (c ∈ C)
only, instead of for all components.

• Constraint . is similar to Constraint ., but is used for echelon level 
only, instead of for all echelon levels.

• Constraint . is added to deal with the problem shown in Section ...
It combines Constraints . and . in that it assures that a decision is
taken for a child component if it is either moved from a lower echelon
level, or its parent component is repaired at the current echelon level.

• Constraints . and . are inequalities (and cannot be changed to equal-
ities, see Section ..), but Constraints ., . and . are equalities.

Basic lora model 

Component c c c
λc   
vcc,,discard   
vcc,,repair   
vcc,,move   
vcc,,discard   
vcc,,repair   

(a) Variable costs and annual de-
mand

Set G

f cG,,discard 
f cG,,repair 
f cG,,move 
f cG,,discard 
f cG,,repair 

(b) Fixed costs

Table .: Inputs for instance with fractional solution (Section ...)

Component c c c
Xc,,discard  . .
Xc,,repair .  .
Xc,,move . . 
Xc,,discard . . 
Xc,,repair   

(a) Xc,e,d

Set G
YG,,discard .
YG,,repair .
YG,,move .
YG,,discard .
YG,,repair 

(b) YG,e,d

Table .: Outputs for instance with fractional solution (Section ...)

.. LP Relaxations

The model uses two sets of binary decision variables: Xc,e,d and YG,e,d . In
Section ..., we show that we cannot remove the integrality constraint on
both sets of variables without yielding a fractional solution. However, we show
in Section ... that we can remove the integrality constraint on the Xc,e,d
variables.

... Removing all integrality constraints

In this section, we give an example of a lora instance that leads to a non-integer
solution (that cannot be adapted to an integer solution, while keeping the same
objective function value). In the example, we consider a two-echelon repair
network and three lrus (c, c, c) without child components. The lrus share
fixed costs, so G = {c, c, c}. Table .a gives the annual demand rate per
component and the variable costs per repair action. Table .b gives the fixed
costs.

The optimal lp solution value for this instance is , but the optimal ip
solution value is . Tables .a and .b show the values of Xc,e,d and YG,e,d
in the optimal lp solution. The optimal ip solution can be achieved in multiple

 Chapter 



c,,d
c ,,m

c ,,r



c ,,d c ,,r c c

c c

c ,,d
c ,,m

c ,,r

c ,,d
c ,,m

c ,,r

c ,,d

c ,,r

c ,,d

c ,,r

c ,,d

c ,,r

c ,,d

c ,,r

Figure .: Decision tree: three components, two echelon and indenture levels
Each non-bald arc in the graph represents a decision Xc,e,d , with d being d for discard, r for
repair, or m for move. The bold arcs show that below node  and , decisions need to be taken
simultaneously for components c and c.

ways. Since repair and discard on echelon level  do not incur any costs, we
can focus on the three decisions at echelon level :

• Enabling one decision leads to fixed costs of . Depending on the
option we would open, one component would incur variable costs of .
Fixed costs and variable costs together would be .

• Opening two or more decisions leads to fixed costs of at least .

This example shows that, in general, not all integrality constraints can be
removed. However, based on our experiments we conclude that only about %

of the lora problem instances leads to a non-integer solution if all integrality
constraints are removed.

... Removing integrality constraints on the Xc,e,d variables

In this section, we discuss removing the integrality constraints on the Xc,e,d
variables and we consider the resulting optimal solution. We show that all
Xc,e,d variables will be integer.

The basic idea of our proof is that we take the costs of the optimal solution
for all the children together, and add these to the parent component. Assume
that we have a system consisting of three components, components c, c, and
c, with Γc = {c, c}, and we have a two-echelon repair network. Figure .
shows the decision tree for the repair options of the system. If the decision
repair is chosen for c at either echelon levels  or , a decision needs to be
taken for both c and c, which is indicated by the bold arcs originating at
node  and  respectively. We show below that the optimal decisions for the
child components can be chosen independently of each other. In other words,

Basic lora model 

the parts below nodes  and  can be solved independently. After that, these
parts can be removed, and the optimal costs of these parts can be added to the
cost of the arcs that end in nodes  and  (the options repair at echelon level 
and , respectively).

We consider the optimal solution of the ip model in which the integrality
constraints on the Xc,e,d variables are removed. The YG,e,d variables are still
binary. Since we are looking at the optimal solution, it is fixed, for example, at
which echelon level test equipment is available and at which echelon level it
is not. This in turn means that not all decisions may be possible anymore: in
Figure ., not all arcs can be chosen.

We need one further observation: components at the same indenture level can
only be connected to each other by their parent component (or a parent of
a parent et cetera) and by the sets of components sharing fixed costs (G). It
follows that given a repair decision for all the parents and given the values for
YG,e,d , decisions for components at the same indenture level can be made inde-
pendently. The lrus do not have a parent component modelled, so decisions
for them can be made independently as well.

We are now ready to show that the repair decision for each component can
be seen as a minimum cost flow problem (refer to Figure . if required).
Figure .a shows the network that is used in the minimum cost flow problem
for component c, given that c is repaired at echelon level . If c is repaired
at echelon level , the network for c is shown in Figure .b. The capacity of
an arc is  (effectively uncapacitated) if the associated decision is enabled (if
YG,e,d =  ,∀G ∈ G with c ∈ G). The capacity is  otherwise. The costs of using
an arc are equal to the associated variable costs times the associated annual
demand (vcc,e,d ·λc).

It is well known in the literature that a minimum cost flow problem has an
optimal integer solution, provided that all capacities, supplies and demands
are integer (see, e.g., Ahuja et al., ). Capacities are all  or  in our example.
Supply at the top and demand at the sink (bottom vertex) is . It follows that
all Xc,e,d ∈ {,}.

The reasoning for component c goes analogous to the reasoning for c in the
previous two paragraphs. What may differ are the capacities of the arcs and
the costs for using the arcs.

We add the sum of the costs of the best decisions of c and c at echelon level 
(the optimal solution for both c and c, see Figure .a) to the costs of repairing
c at echelon level  (the arc ending in node  in Figure .). In the same way,
we add the sum of the costs of the best decisions of c and c at echelon level 
(Figure .b) to the costs of repairing c at echelon level  (the arc ending in
node  in Figure .). The result is that for component c, we have a similar
network as shown in Figure .a (replace c with c). Since c is an lru in our
example, Constraint . assures an inflow of . With a reasoning analogous to
the reasoning in the previous paragraph, this shows that all Xc,e,d ∈ {,}, and

 Chapter 

c2,1,d
c2 ,1,m

c2 ,1,r

c2 ,2,d c2 ,2,r

(a) Two echelon levels

c2 ,2,d c2 ,2,r

(b) One echelon level

Figure .: Minimum cost flow models
Each arc in the graph represents a decision Xc,e,d , with d being d for discard, r for repair, or m for
move. An arc has capacity  if the associated decision is feasible (given the values of YG,e,d). The
capacity is  otherwise.

therefore Xc,e,d ∈ {,} for c ∈ {c, c, c}.

It may happen that some of the minimum cost flow problems for component c
or c do not have a feasible solution (Figures .a and .b). This happens if
no path through the network has a capacity of more than , due to the values
of the YG,e,d variables. These networks originate in node  or  in Figure .,
which means that the arc ending in that node cannot be chosen in the optimal
solution. This means that if we add the optimal values for c and c to the arc
corresponding to Xc,e,repair (for e ∈ {,}), this arc gets a capacity of . However,
in the minimum cost flow problem for each lru (c), it is still guaranteed that
there is at least one path with capacity , since we are discussing the optimal
solution.

The extension of our reasoning to more echelon levels, more indenture levels
or more children per parent is straightforward. This means that in the general
lora problem, we can remove the integrality constraints on the Xc,e,d variables
and it is still guaranteed that there exists an optimal solution in which all
Xc,e,d ∈ {,}, provided that all YG,e,d ∈ {,}. If any Xc,e,d < {,} in the resulting
solution of our mixed integer programming model, we can construct an integer
solution based on the reasoning above (however, we never encountered non-
integer solutions in any of our tests).

.. Model of Barros

Barros () mentions that her formulation of the lora problem “. . . provides
a natural integer solution in its relaxed linear programming version” (p. ).
This section shows that this is not true for the general case with more than two
echelon levels or more than two indenture levels. Although Barros states that

Basic lora model 

Component c c c
λx   
vcc,discard   
vcc,repair at    
vcc,repair at    
vcc,repair at    

(a) Variable costs and annual de-
mand

Set G

f cG,discard 
f cG,repair at  
f cG,repair at  
f cG,repair at  

(b) Fixed costs

Table .: Inputs for instance with fractional solution (Section ..)

her model can be used for any number of echelon levels and indenture levels,
we know from Gutin et al. () that Barros tests her model for the case of two
echelon levels and two indenture levels only. We cannot find a counter example
for that specific case. Furthermore, Gutin et al. () show that this specific
problem can be solved in polynomial time, by reducing it to the maximum
weight independent set problem on a bipartite graph. They use the fact that the
the problem can be represented as a minimum cost homomorphism problem
on a monotone bipartite graph.

The example used in the current section resembles the example given in Sec-
tion .... Table .a shows the annual demand rate and the variable costs,
Table .b shows the fixed costs. There are a couple of differences with the
previous example, due to differences between our model and that of Barros:

• The echelon level e is incorporated in the decision d in Barros’ model.

• Barros assumes that no fixed costs need to be incurred for opening the
discard option.

• Barros assumes one discard option only.

• Barros does not distinguish the move option. Costs for moving a com-
ponent are part of the costs of repairing that component at the higher
echelon level.

• Fixed costs are incurred by all the components at one indenture level. In
our case, this means that all components are in the same set G, because
they are all at indenture level .

The resulting outputs are shown in Tables .a and .b. The explanation of
the results is analogous to the explanation of the results in Section ... and
is therefore not repeated.

.. Model of Saranga and Dinesh Kumar

Saranga and Dinesh Kumar () assume that fixed costs are due to one

 Chapter 

Component c c c
Xc,discard   
Xc,repair at   . .
Xc,repair at  .  .
Xc,repair at  . . 

(a) Xc,e,d

Set G
YG,discard 
YG,repair at  .
YG,repair at  .
YG,repair at  .

(b) YG,d

Table .: Outputs for instance with fractional solution (Section ..)

component. Therefore, these fixed costs are not really different from variable
costs. We can construct ‘new’ variable costs vc′c,e,d from the ‘old’ variable
costs and fixed costs in the following way (remember that in our model, fixed
costs are the mean annual fixed costs): vc′c,e,d = vcc,e,d + f cG,e,d

λc
with G = {c}.

Using these new variable costs, the new fixed costs are zero. If all fixed costs
are zero, all YG,e,d variables can be removed from the model (or set to ).
Section .. shows that no integrality constraints are needed on the Xc,e,d
variables if all YG,e,d ∈ {,}. This means that with a little pre-processing, all
integrality constraints can be removed for problem instances that comply
with the assumptions of Saranga and Dinesh Kumar (). Using genetic
algorithms for these problem instances, which Saranga and Dinesh Kumar do,
is therefore not necessary using our model formulation.

. Computational experiments

To test the model, we generate instances of the lora problem and solve these
using the cplex callable library version  (with default settings), running
under windows xp, service pack , on a Pentium , . ghz with  gb ram. We
use only one core of the dual core processor.

In Section .., we explain how we generate the test instances. In Section ..,
we then provide the inputs that we use and we discuss some issues concerning
the actual testing. We show the results of the tests in Section ...

.. Problem instance generator

In this section, we explain the basic idea of our problem instance generator.
Based on our experience at Thales Nederland, we believe that the size and
structure of the problem instances is realistic in practice. More extensive
information can be found in Appendix C.

Our problem instance generator receives as inputs the number of compo-
nents (|C|), the number of indenture levels (|I |), the number of echelon lev-

Basic lora model 

els (|E|), the number of fixed costs sets (|G|), and the maximum number of
fixed costs sets that each component will be part of (smax). For each number
of fixed costs sets s with  ≤ s ≤ smax, a percentage Ps has to be specified, such
that

∑smax

s= Ps = %. Ps is the percentage of components that will be in s sets
of components sharing fixed costs. For example, if the components may be at
maximum in  fixed costs set (smax = ), P is the percentage of components
that will be in no set at all and P is the percentage of components that will be
in one fixed costs set. These percentages should add up to %.

Depending on the number of components and indenture levels, we calculate
how many children every parent component should have approximately, in
order to get a ‘balanced’ system structure. This means that the average number
of child components per parent component is the same at all indenture levels.

The last inputs are the minimum and maximum values for vcc,e,d , f cG,e,d , and
λc. The actual values are drawn from a uniform distribution ranging from the
provided minimum to the provided maximum. We adapt the vcc,e,discard and
λc by adding the values of the child components to the values of their parents
(so, λc >

∑
b∈Γc λb).

.. Inputs and general issues

In each of our tests, we vary one parameter only. The other parameters get their
default values, which are: |C| = ,, |I | = , |E| = , |G| = , and smax = . For
each parameter value, we generate , problem instances.

If the maximum number of fixed costs sets that any component may be part
of is set to  (smax = ), then % of the components will not be in any fixed
costs set, % will be in one of those sets, and % will be in two of those sets.
In general: for any number of fixed costs sets s with  ≤ s < smax, % of the
components will be in that number of sets. As a result, %− smax · % of the
components will be in the maximum number of fixed costs sets (smax ≤  in
our tests).

In all the tests, we set the minimum and maximum input values for vcc,e,d to
 and , respectively, for f cG,e,d to  and ,, and for λc to . and
.

As explained in Section ., our model generalizes the models of Barros ()
and Saranga and Dinesh Kumar (). The former assumes that fixed costs
are incurred by all the components at one indenture level; the latter assumes
that fixed costs are incurred by one component. In our model, fixed costs are
incurred by sets of components that can be defined freely. For each of these
different assumptions about fixed costs, we performed tests with our model.
We call tests with general fixed costs sets ‘Gen.’, tests with fixed costs per
indenture level ‘Barros’, and tests with fixed costs per component ‘SDK’ (for

In our model, we have sets of components that share fixed costs (G ∈ G). We will call these sets
from now on fixed costs sets.

 Chapter 

Components  , , , , ,
Gen. .a .b .c .d — —
Barros . . . . . .
SDK . . . . . .

Table .: Computation times (seconds), varying the number of components

a runs exceeded the time limit of minute
b runs exceeded the time limit of minutes
c runs exceeded the time limit of minutes
d runs exceeded the time limit of minutes

Saranga and Dinesh Kumar). For the ‘SDK’ tests, we solve the model as an lp
problem, as explained in Section ... In all other cases, we model YG,e,d as
binary variables.

In some cases, solving the problem instances takes so much time, that we
restrict cplex; we set a time limit of  seconds per , components for each
problem instance. The tables provide the number of tests that exceed the time
limit, which only happens for ‘Gen.’ tests. We exclude these problem instances
from the calculations of the computation times. At the end of Section .., we
discuss the problem instances that exceed the time limit. For now, it suffices to
mention that we find feasible solutions for all of them.

.. Results

Table . shows the mean computation times for various numbers of compo-
nents in the system. In Tables . and ., we vary the number of indenture
levels and echelon levels respectively. The run times increase more than linear
with the number of components. The run times also increase, as expected, if the
number of indenture levels or echelon levels increases. The run times increase
strongly if the number of indenture levels increases from one to two. This is
logical, since one indenture level means that components are not connected
to each other in the product structure (they are all lrus). They are, however,
connected by sharing fixed costs sets. It is remarkable to see that the average
computation time slightly decreases if the number of indenture levels increases
from two to three for the ‘Gen.’ tests.

The ‘Gen.’ tests take far more time than those of ‘Barros’ and ‘SDK’. These
last two types of problem instances can easily be solved using cplex, instead
of using genetic algorithms (Saranga and Dinesh Kumar, ) or branch-
and-bound techniques (Barros and Riley, ) . We solve ‘SDK’ tests as lp
problems, so it is not surprising that these are much faster than ‘Gen.’ tests.
In the ‘Barros’ tests, the number of fixed costs sets is equal to the number
of indenture levels. This means that the number of binary variables is much
smaller in the ‘Barros’ tests than in the ‘Gen.’ tests. An additional explanation
of the difference in computation times between the ‘Barros’ and ‘Gen.’ tests

Basic lora model 

Indenture levels     
Gen. . .a .b .c .d

Barros . . . . .
SDK . . . . .

Table .: Computation times (seconds), varying the number of indenture
levels

a run exceeded the time limit of minutes
b runs exceeded the time limit of minutes
c runs exceeded the time limit of minutes
d runs exceeded the time limit of minutes

Echelon levels     
Gen. . . .a .b .c

Barros . . . . .
SDK . . . . .

Table .: Computation times (seconds), varying the number of echelon levels

a runs exceeded the time limit of minutes
b runs exceeded the time limit of minutes
c runs exceeded the time limit of minutes

is that components are more ‘connected’ in the ‘Gen.’ tests. For example, if
G = {c, c} and G = {c, c}, a change in the decision of c can change the best
option for c.

The findings in Table ., in which we vary the maximum number of fixed
costs sets per component (smax), support this assumption. Notice that the
computation times increase a lot if the maximum number of fixed costs sets
per component increases from one to two. This is not surprising, since one
fixed costs set per component means that components are connected only to
the other components in that one fixed costs set, but they are not connected
through these components to other fixed costs sets, as described in the previous
paragraph. Notice however, that they are still connected to other components
in the product structure.

smax     
Gen. . .a .b .c .d

Table .: Computation times (seconds), varying the maximum number of fixed
costs sets of which a component can be part of

a runs exceeded the time limit of minutes
b runs exceeded the time limit of minutes
c runs exceeded the time limit of minutes
d runs exceeded the time limit of minutes

 Chapter 

Sets     
Gen. . .a .b .c .d

Table .: Computation times (seconds), varying the total number of fixed
costs sets

a runs exceeded the time limit of minutes
b runs exceeded the time limit of minutes
c runs exceeded the time limit of minutes
d runs exceeded the time limit of minutes

In order to be complete, Table . shows how run times change if the total
number of fixed costs sets changes. Run times increase with an increasing
number of fixed costs sets. However, this changes when the number of sets
increases from  to . We test what happens with , sets: the mean
optimization time decreases further to . seconds. A plausible explanation
is that this is due to the components becoming less ‘connected’ to each other. If
there are , components that are at maximum in two sets each and there
are , sets, there will be on average less than two components per set. With
 sets, there will be a little less than eight components per set. If G = {c, c}
and G = {c, c}, a change in the decision of c can change the best option for
c. This will probably happen more often if there are eight components per set
than if there are two components per set.

In most ‘Gen.’ tests, a small percentage of the problem instances is not solved
to optimality, due to the time limit of  seconds per , components we
set on solving the instances. We calculate the gap between the best ip solution
that was found at the moment that the solver is stopped, and the best lower
bound that cplex has found at that moment. The gap is mostly below %, with
exceptional cases of gaps up to .%. It also happens  times (out of the ,
‘Gen.’ tests that we performed) that no ip solution is found before the test is
stopped.  of these tests were problem instances with , components,
the other test is a problem instance with  fixed costs sets. These kind of
instances are not realistic at Thales Nederland.

If we solve the problem instances that exceed the time limit (both those for
which we already found an ip solution and those for which we did not), and set
a new time limit of one hour, all but three of the problem instances are solved to
optimality. The remaining problem instances are one with five echelon levels,
one with  fixed costs sets, and one with , components. If we solve
these three problem instances with a time limit of three hours, they are solved
to optimality. If we focus on the ‘problematic’ problem instance with ,
components, we see that the lp relaxation is solved after ten minutes. The first
ip solution is found a few seconds later, with a gap of .%. After minutes,
the optimal solution is found, but optimality is not verified yet. After one hour,
the gap is below .% and optimality of the solution is verified in three hours.

At the development stage of a product, we do not think that waiting for one

Basic lora model 

hour is problematic. However, if the lora is one building block in an iterative
method to solve the joint problem of lora and spare parts stocking (such as we
develop in Chapter ), such an optimization time is too long. We believe that a
gap of below % is not problematic, since the input data generally consists of
rather rough estimates.

. Conclusions

We developed a lora model that generalizes the two lora models that exist
in the literature (Barros, ; Saranga and Dinesh Kumar, ). We did this
by using sets of components that share fixed costs that can be defined freely,
instead of assuming that fixed costs are shared between all components at a
certain indenture level (Barros) or assuming that fixed costs are incurred by
one component (Saranga and Dinesh Kumar). This generalization was needed
to be able to model cases we found at Thales Nederland. We presented an
ip formulation and showed when some of the integrality constraints can be
removed (without yielding a fractional solution). Using these results, we were
able to show that all integrality constraints can be removed if the model
assumptions of Saranga and Dinesh Kumar () are used, so that there is no
need to solve problem instances using genetic algorithms, as they do. We also
showed that it is not possible to remove all integrality constraints in the model
of Barros (), which the author claims.

We solved lora problem instances with sizes that are realistic in practice
(Thales Nederland), using cplex. Most problem instances could be solved in a
couple of seconds. The most important factor that influences the computation
time is the number of components in the system. The number of components
in cases at Thales Nederland does not cause a problem, but at other companies
it might do so. The computation times also increase if any of the following
increases: the number of indenture levels in the system, the number of echelon
levels in the repair network, and the number of fixed costs sets of which each
component is part of. If the total number of fixed costs sets increases, the
computation times increase as well, but only until a certain number of fixed
costs sets is reached (around ). After that, computation times decrease. The
computation time of the general model is up to over  times larger than
the computation time for models restricted to the assumptions of Barros or,
especially, Saranga and Dinesh Kumar.

Chapter 

Flow model for the lora
problem

In the previous chapter, we presented a lora model that generalizes the models
that are available in the literature. We thus answered research question a. In
this chapter we take the first step in answering research question b: “How
can we model the extensions that may be needed in practice?” Although the
formulation that we presented in the previous chapter is very intuititve, and
allowed us to study the models of Barros () and Saranga and Dinesh Ku-
mar (), modelling extensions in this formulation is not straightforward.
The key problem is that incorporating an extension, e.g., a probability of un-
successful repair, leads to constraints that are very complicated. Incorporating
multiple extensions simultaneously is even more problematic. Therefore, we
reformulate in this chapter the lora model as a minimum cost flow model with
side constraints. This formulation generalizes the model that we presented
in the previous chapter, by allowing for more general resource-component
relations and for modelling the exact repair network, and it allows us to model
extensions in an intuitive way, as will be shown in Chapter .

The structure of this chapter is as follows. In Section ., we discuss the
inputs that the model needs and the assumptions that we make. Then, in
Section ., we present the lora problem as a minimum cost flow model with
side constraints. The results of the computational experiments can be found in
Section ., and the chapter ends with conclusions in Section ..

Based on Basten et al. ()



 Chapter 

l1

l2 l3

Ech. 

Ech. 

(a) Repair network

c1

c2 c3

Ind. 

Ind. 

(b) Product structure

Figure .: Example used throughout this chapter

. Model assumptions and input data

The assumptions that we make and the input data that we require are very
similar to those in the previous chapter, see Section .. A summary of the
notation can be found in Appendix A.

The key difference is that instead of aggregating all data per echelon level, as we
did in Chapter , we model a multi-echelon repair network, with L being the set
of all locations. The structure is divergent, that is, each location in the network
has a single upstream location to which it can move its failed components. All
locations that supply failed components to location l constitute the set Φl . For
example, in Figure .a, Φl = {l, l}. The set of locations at echelon level e is
Le. We define the echelon levels such that the operating sites are at echelon
level . The locations that are a parent-location of operating sites (locations
in L) only, form the set L. The locations that are a parent-location of locations
in L and L only, form the set L, et cetera. As a result, if we add to the network
in Figure .a two locations (l and l) such that Φl = {l, l} (l is the central
depot and l is an operating site), then L = {l, l, l}, L = {l}, and L = {l}.

Modelling the explicit repair network means that instead of vcc,e,d , we now
use vcc,l,d as the variable costs of taking action d (discard, repair, or move)
for one component c at location l (∈ L). Next, instead of using λc, we now
define λc,l as the annual failure rate of component c ∈ C at operating site l ∈ L
(in Chapter , we will define λc,l for locations l ∈ L \ L). Furthermore, we
define qc,b as the fraction of failures in component c that is due to a failure

in component b (b ∈ Γc): qc,b = λb,l
λc,l

. This means that we asssume that although
the number of failures may differ over the various operating sites (due to
various usage intensities), the factors λb,l

λc,l
do not change. If a failure of a certain

component c is caused by a failure of component b in % of the cases, a failure
of component b in % of the cases, a simultaneous failure of components b
and b in % of the cases, and a failure that can be repaired directly in % of
the cases, then qc,b = . and qc,b = .

Instead of modelling sets of components sharing fixed costs, which we did in
the previous chapter in order to resemble the models of Barros () and
Saranga and Dinesh Kumar (), we make a generalization by modelling
resources r ∈ R. Let Ωr consist of all combinations of a component c and

lora flow model 

a decision d for which resource r is required. So, if component c requires
resource r in order to enable decision d, then the -tuple (c,d) ∈ Ωr. One
tuple may be an element of multiple setsΩr , indicating that more resources
are required simultaneously. We assume that the resource capacity is infinite,
although we can extend our model to finite capacities (see Chapter ).

Without loss of generality, we have chosen to minimize the average total costs
per year with our definition of λc,l . Therefore, we define f cr,l to be the annual
fixed costs to locate resource r at location l. These costs represent, for example,
the annual depreciation costs of the resource and costs of capital.

Finally, instead of decision variables Xc,e,d , we now use:

Xc,l,d =
{
, if for component c ∈ C at location l ∈ L decision d ∈D is taken
, otherwise

. Minimum cost flow model

In this section, we explain how the lora problem can be modelled as a mini-
mum cost flow model with side constraints (see, for example, Ahuja et al., ,
for an overview of minimum cost flow models). To define the graph G = (V ,A)
underlying the flow model, with V being the set of all nodes in the graph and A
being the set of all arcs in the graph, we need four different node types: source
nodes (v ∈ V s ⊆ V) are used to represent the occurrence of failures of lrus
(indenture level ) at operating sites (echelon level ). The flows from these
source nodes arrive at decision nodes (v ∈ V d ⊆ V) where a decision is made
between the three available options: discard, repair, and move. The variable
costs are attached to the outgoing arcs of the decision node, each representing
a possible decision. If repair is chosen, then a transformation node (v ∈ V t ⊆ V)
is used to represent that a failure in a parent is due to a failure in any of the
children. If no decisions need to be made anymore, the flow goes to a sink node
(we do not need a distinct subset for the sink nodes). We model the use of
resources by side constraints on the minimum cost flow model: if the outgoing
arc of a decision node represents a decision for a component that can only be
chosen if a resource is available, then the capacity of this arc is  if the resource
is not available.

In Section .., we explain how to construct the graph that forms the basis
of the flow model. Then, in Section .., the resources are added to the
model as side constraints. Finally, we provide the formal model formulation in
Section ...

Modelling the sets of components sharing fixed costs that we used in Chapter  can be done
as follows. For each of the three possible decisions d ∈D model one resource r ∈ R for each set of
components sharing fixed costs G ∈ G and let (c,d) ∈Ωr ⇐⇒ c ∈ G. This means that |R| =  · |G|.

 Chapter 

c1

Figure .: Source node
Failures of component c originate at the
source node.

c1, l2

c1

r
d

m

Figure .: Decision node
Failures of component c at location l
go into the decision node. Decisions r (re-
pair), d (discard), and m (move) can be
taken.

.. Construction of the graph

In this section, we explain how the node types are used in the model and we
define the incoming and outgoing arcs (v,w) and the relevant cost parameters.
To illustrate our model, we use the following example throughout this section:
we have a two-indenture system with three components (Γc = {c, c}, see
Figure .b) and a two-echelon repair network with three locations (Φl =
{l, l}, see Figure .a). We show an example of each node type, and after we
have introduced all the node types, we show the complete flow model. In all
figures related to this example, some arcs represent a component, whereas a
letter next to an arc represents an option (r is repair, d is discard, and m is
move).

... Source nodes

Source nodes represent occurrences of failures of a certain lru at a certain
operating site. So, for every component c ∈ C and every location l ∈ L, there is
one source node v ∈ V s ⊆ V with outflow ov := λc,l . In our example, failures in
component c occur at locations l and l. This means that we have two source
nodes in our flow model, one of which is shown in Figure .. If we assume
that this source node represents failures in component c at location l, then
the flow out of this source node is equal to λc,l .

... Decision nodes

If an lru at an operating site fails, there are three options to choose from:

• Move the component to the next higher echelon level.

• Repair the component, which means replacing a subcomponent or repair-
ing the component directly.

• Discard the component.

lora flow model 

In the flow model, it means that an arc originating at a source node terminates
at a decision node v ∈ V d ⊆ V . Every arc going out of the decision node
represents one of the possible decisions. The variable costs, acv,w, for using an
arc (v,w) with v ∈ V d are equal to vcc,l,d , where arc (v,w) represents decision d
for component c at location l. In this way, the variable costs of the lora model
are attached to the arcs originating at the decision nodes; all other arcs have
zero costs associated to them (acv,w = ,∀v,w ∈ V | v < V d). Figure . shows
the decision node for component c at location l in our example. If arc (v,w)
represents the decision repair (r), then the variable costs for using this arc,
acv,w, are equal to the variable costs of repair for component c at location l:
vcc,l,repair.

If the decision is taken to move component c from location l to location l, a
decision should to be taken at location l. This means that the arc representing
the move option (m) in our example (Figure .) terminates at the decision
node representing component c at location l. In general, the arc representing
the move decision for component c at location k terminates at the decision
node representing component c at location l, where k ∈ Φl . Note that at a
node representing a component at the highest echelon level, location l in our
example, the move option is not available. The arcs representing the repair and
discard options are discussed below.

... Transformation nodes

Transformation nodes v ∈ V t ⊆ V represent the repair of a parent component c
by replacement of any of the subcomponents b ∈ Γc. If arc (v,w) represents
component b ∈ Γc resulting from a repair of component c, then the fraction of
inflow in node v that flows out on arc (v,w) is defined as pv,w, and pv,w := qc,b.
Notice that the total inflow and outflow of a transformation are not necessarily
equal, which is not common in minimum cost flow models.

In our example, a failure in component c can be caused by a failure in com-
ponent c or c (Γc = {c, c}). The arc representing the decision repair (r) for
component c at location l (in Figure .) terminates at the transformation
node that is shown in Figure .. The two arcs originating at the transforma-
tion node represent failures of components c and c respectively. Suppose
that % of those failures are caused by failures in component c and % are
caused by failures in component c (qc,c = . and qc,c = .), then, if the
outgoing arcs (v,w) and (v,u) represent components c and c respectively,
then pv,w = . and pv,u = .. Notice that no further decisions need to be taken
for the failures that are repaired directly, which is why this is not modelled in
the transformation node.

The source node could also be integrated in the decision node, but for clarity we prefer to have
a distinction between source and decision nodes.

 Chapter 

c1, l2,r

r

c2
c3

Figure .: Transformation node
The flow going into the node results from
a repair (r) of component c at location l,
components c and c flow out of the
node.

d

Figure .: Sink node
The flow that is discarded (d) goes into the
sink.

... Sink nodes

If no other decisions need to be taken after a certain decision has been made,
then the flow goes to a sink node. In the example, arcs that terminate at a sink
node represent the decision ‘discard’ for any component at any location and
the decision ‘repair’ for component c or c at any location. Figure . shows
how we represent a sink node.

... Example

We already showed parts of the flow model that results from the lora problem
that we used as an example throughout this section. Figure . shows the
complete resulting flow model. The dotted arcs for component c should be
replaced by flows similar to the flows for component c. We omitted them to
improve the readability of the figure.

.. Modelling resources as side constraints

In some cases, resources r ∈ R are required before a certain decision can be
taken for certain components. Θr,l is the set of arcs that are enabled due to the
location of resource r at location l. So, for each location l and every resource r
we define Θr,l = {(v,w) | (v,w) denotes decision d for component c at location l
if (c,d) ∈Ωr }. Notice that fixed costs in our model are only related to the arcs
originating at the decision nodes (the same holds for the variable costs, as
explained in Section ...).

For example, resource r may be required if and only if component c is to be
repaired. In that case,Ωr = {(c,repair)}. At all three locations in our example
repair network, we may decide to locate resource r. If resource r is available
at location l, then the arc representing repair of component c at location l is
enabled. If this is the arc (v,w), then Θr,l = {(v,w)}.

lora flow model 

c1, l2 c1, l3

c1 c1

c1, l2,r c1, l1 c1, l3,r

r
d m m d

r

c2, l2 c1, l1,r c2, l3

c2

c3

r d c2

c3

,

r
d m

c2

c3

m d
r

rd

Source node

c, l Decision node: Component, location

c, l,d Transformation node: Component, location, decision

Sink node

Figure .: Example: Network flow problem
Some of the arcs represent components c, other arcs represent a decision that can be taken, with
r is repair, d is discard, and m is move.

.. Flow model formulation

In our model, there are two sets of decision variables:

Fv,w = the amount of flow through arc (v,w)

Yr,l =
{
, if resource r is located at location l
, otherwise

Furthermore, we introduce a big M that is used to make the resources uncapac-
itated. The value of the big M is set for each arc (v,w) such that it is equal to
the maximum possible value of Fv,w. The resulting minimum cost flow model
with side constraints is:

 Chapter 

minimize
∑

(v,w)∈A
acv,w ·Fv,w +

∑
r∈R

∑
l∈L

f cr,l ·Yr,l (.)

subject to:

Fv,w = ov ,∀(v,w) ∈ A | v ∈ V s (.)∑
u|(u,v)∈A

Fu,v =
∑

w|(v,w)∈A
Fv,w ,∀v ∈ V d (.)

Fv,w = pv,w ·
∑

u|(u,v)∈A
Fu,v ,∀(v,w) ∈ A | v ∈ V t (.)

Fv,w ≤M ·Yr,l ,∀r ∈ R ,∀l ∈ L ,∀(v,w) ∈Θr,l (.)
Fv,w ≥  ,∀(v,w) ∈ A (.)
Yr,l ∈ {,} ,∀r ∈ R ,∀l ∈ L (.)

Constraint . states that the outflow of each source node v is equal to ov and
Constraint . assures that the inflow into any decision node is equal to the
outflow (balancing constraint). For any arc (v,w) going out of a transformation
node, Constraint . assures that the inflow into that transformation node is
transformed to outflow on arcs (v,w). Constraint . assures that only arcs are
used that are enabled due to the availability of resources. We effectively make
an arc uncapacitated if the required resources (if any) are available by setting
the value of the big M equal to the maximum possible value of Fv,w. Arcs that
are not in any Θr,l are uncapacitated as well.

. Computational experiments

In Section .. we compare the time it takes to solve problem instances using
the flow model and the model that we presented in the previous chapter. A
more efficient optimization method is useful to solve large problem instances,
but it is also useful if a lora is performed multiple times. This is for example
the case if an iterative procedure is used to solve the joint problem of lora
and spare parts stocking, as we do in Chapter . In Section .., we compare
modelling the repair network exactly with aggregating all inputs per echelon
level. We compare the time it takes to solve problem instances, the cost reduc-
tions that can be achieved by modelling the repair network exactly, and the
repair strategies that result from modelling the repair network exactly and
aggregating all data per echelon level.

For our tests, we generate instances of the lora problem and solve these using
the cplex callable library version  (with default settings), running under
windows xp, service pack , on an Intel Centrino Duo,  ghz with  gb ram.
Although cplex  can use both cores of the dual core processor, it seldomly
does for these problems.

lora flow model 

Parameter (varied) Values
Components  & , & , & ,
Echelon levels  & 
Indenture levels  & 
Max. # resources per component  & 

Parameter (not varied) Value
Resources 

Parameter (not varied) Range
Annual demand [.; ]
Variable costs [; ,]
Fixed costs [; ,]

Table .: Input parameters

.. Comparison with the basic lora model in terms of opti-
mization time

We generate problem instances in which all data is aggregated per echelon
level, corresponding to the assumption that we made in the previous chapter.
In our model, this is equivalent to a network structure with one location at
each echelon level. We use the problem instance generator as described in
Section .. and Appendix C.

We vary the four input parameters that most heavily influenced the optimiza-
tion time in the previous chapter: the number of components, the number
of echelon levels, the number of indenture levels, and the maximum num-
ber of resources per component. If the maximum number of resources per
component is two, this means that in order to repair a component, at most
two different resources are required. See Table . for the settings. For each
combination of parameters, we generated  problem instances. In total, this
makes  ·  ·  ·  ·  =  test runs.

Table . shows the average time it takes to solve the lora problem instances
for each parameter that we varied. It is clear that our model increasingly
outperforms the basic lora model if the number of components, the number
of indenture levels, the number of echelon levels, or the maximum number of
resources per component increases.

.. Effect of modelling the exact repair network

In this section, we show the circumstances under which exactly modelling the
repair network reduces the total costs and those under which inputs can be
aggregated. We also compare the time it takes to solve these problems and the
repair strategies that result.

 Chapter 

Components Basic lora model Flow model
 . .
, . .
, . .
, . .

Echelon levels Basic lora model Flow model
 . .
 . .

Indenture levels Basic lora model Flow model
 . .
 . .

Max. # resources per component Basic lora model Flow model
 . .
 . .

Table .: Comparison of optimization times (seconds)

We generate instances that are realistic in practice, based on our experience
at Thales Nederland. We make comparisons () for a base situation with a
symmetrical repair network, and for an asymmetrical network () in terms of
the number of operating sites that is attached to each intermediate depot and
() in terms of the costs for moving and repairing components. Section ...
explains the problem instances we use and Section ... discusses the results.

... Problem instances

In all tests, the system structure consists of  components at the first indenture
(lrus),  at the second level and  at the third level. We use random
generators to construct  instances of a product structure with corresponding
failure rates and cost factors, see Appendix D for details.

For our tests, we use various repair networks, of which some are balanced
in terms of the number of operating sites per intermediate depot and some
are not. We call them balanced and unbalanced in the locations. The smallest
balanced network consists of one central depot, two intermediate depots and
four operating sites (two per intermediate depot). We vary the number of inter-
mediate depots ( or ) and the number of operating sites per intermediate
depot ( or ).

In the unbalanced networks, there are  operating sites per intermediate depot
for half of the intermediate depots and  operating sites per intermediate
depot for the other half of the intermediate depots. Below, we call the left half
of the intermediate depots with the attached operating sites the ‘left half’. The

lora flow model 

other intermediate depot(s) with the attached operating sites are called the
‘right half’. This holds for both balanced and unbalanced networks.

Besides being unbalanced in the locations, repair networks can be unbalanced
in terms of the costs. In our tests, costs in the left half and at the central depot
are always equal. Repair and move costs in the right half can differ from the
costs in the left half and at the central depot. We test what happens if the
repair costs in the right half are . or  times the repair costs in the left half
(and at the central depot). We say that the relative repair costs are . or . In
the same way, we test with relative move costs of . or . These values are
chosen because for a European oem, the costs of moving components to Asia
can be a number of times as high as those costs in Europe. Repair costs can
differ as well, but the relative difference is assumed to be smaller. Discard costs
are assumed to be approximately the same at all locations, since a main part of
these costs are due to the costs of purchasing a new component.

If we do not include spare parts costs in the lora problem, which is what
happens usually in practice, we see that many repairs are performed at a
central location. The explanation is that in that case only  resource of each
type needs to be acquired. If repairs are performed decentrally, many resources
are needed. In the problem instances that we discuss below, % of the costs
for resources would be made at the central depot if we do not include spare
parts costs. Integrating spare parts optimization into the lora is what we do in
Chapters  and , but it does not fit in the scope of this chapter. However, we
add spare parts costs in a basic way, by assuming lead times for all possible
decisions (discard, repair and move) and relating spare parts costs to these
lead times. This is elaborated on in more detail in Appendix D.

There are  or  resources (types of test equipment) and we distinguish two
cases for the number of resources that each component requires. In the first
case, % of the components needs no resources, % needs one resource, and
% needs  resources: ‘.–.–.’. The other case is ‘.–.–.’.

Summarizing, we have  experimental factors, namely the number of inter-
mediate depots, the number of operating sites in the left half, the number
of operating sites in the right half, the relative move costs in the right half,
the relative repair costs in the right half, the total number of resources, and
the number of resources per component. This gives  ·  ·  ·  ·  ·  ·  = 
combinations. For each combination, we generate  problem instances as
described in Appendix D. In this way we prevent that we draw conclusions
based on one exceptional case.

... Results

Table . shows for the  repair networks, the average time it takes to solve the
exact and aggregated model. It also shows the average and maximal difference
in optimal costs for both models. In each test we vary over all other parameters,
as explained in the previous section. We focus on the other parameters below.

 Chapter 

operating sites Optimization Cost difference
#Intermediate per interm. depota time exact – aggr.b

depots Left half Right half Exact Aggr.b Mean Max


  .s. .s. .% .%

 .s. .s. .% .%

  .s. .s. .% .%

 .s. .s. .% .%


  .s. .s. .% .%

 .s. .s. .% .%

  .s. .s. .% .%

 .s. .s. .% .%

Table .: Comparison of various repair networks
It may seem strange that there is a difference between row  and  ( intermediate depots and
unbalanced network). However, these cases are not the same because, for example, if the relative
repair or move costs are not , this affects more operating sites in row  than in row .

aPer intermediate depot.
bData is aggregated per echelon level.

We see that the aggregated models can be solved much faster than the exact
models. Still, it took only  seconds to solve the most time consuming
problem instance using the exact model. This means that the exact model can
be solved fast enough to be used in practice.

The maximum cost difference for networks that are balanced in the locations
is .% and only % of these problem instances lead to a cost difference of
more than .%. Since modelling the exact network requires more inputs,
there is hardly any reason to do this if the repair network is balanced in the
locations, even if the network is unbalanced in the costs. However, in our
tests, the spare parts costs that are added to the variable costs, are always
balanced in the network, even if the remainder of the variable costs for repair
and move are unbalanced. In a global repair network, the spare parts costs
may be unbalanced too, due to differences in lead times. If we vary the spare
parts costs with the move and repair costs in a network that is balanced in the
locations, we see cost differences between the exact and aggregated model of
over %. However, our basic way of incorporating spare parts, does not allow
us to analyse this in detail.

The maximum cost difference for networks that are unbalanced in the locations
is .%. For % of the problem instances, a cost difference of more than .%

is achieved and % of the problem instances leads to a cost difference of more
than %. We focus in more detail on the networks that are unbalanced in the
locations in Table ., in which we vary the three parameters that most heavily
influence the cost differences: The number of intermediate depots, the number
of resources, and the number of resources per component. We see that high cost
differences are mainly achieved in problem instances with ten intermediate

lora flow model 

Cost difference
#Intermediate # Resources exact – aggr.a

depots Total Per comp.b Mean Max


 .–.–. .% .%

.–.–. .% .%

 .–.–. .% .%

.–.–. .% .%


 .–.–. .% .%

.–.–. .% .%

 .–.–. .% .%

.–.–. .% .%

Table .: Comparison of three most important parameters

aData is aggregated per echelon level.
bPer component.

Type of Costs (×,)
model Variable Resources Total
Exact , , ,

Aggregated , , ,
Difference -.% .% .%

Table .: Example of different solutions

depots. If there are also many resources in total and many components need
one or two resources, a large cost reduction by modelling the exact network is
almost guaranteed. However, we cannot define a broad category of problem
instances in which we can guarantee that there are no cost reductions possible.

If relatively small cost reductions can be achieved by modelling the exact
network, the solutions of the exact model and the aggregated model can still
differ substantially. If there are multiple, really different solutions that lead to
approximately the same total costs, there can be other, more qualitative reasons
to choose for another solution than the one with the lowest total costs. Industry
might be interested in tools that can provide these different solutions. To give
an example, we focus on the problem instances in which the repair network
is unbalanced in the locations, there are ten intermediate depots, the number
of resources per component is .–.–., and there are ten resources.
Table . shows that for these problem instances, the costs of resources are %

higher on average if the model is aggregated. However, this is compensated for
by lower variable costs, so that the total costs differ only .%.

Figure . shows that more in general, resource costs are higher if we aggre-
gate the data in an unbalanced network than if we model the exact network,
especially if there are ten intermediate depots. If, for those problem instances,
we divide the amount of money that is spent on resources at the intermediate

 Chapter 

Exact Aggreg. Exact Aggreg.






 

Operating sites

Intermediate depots

Central depot

Number of intermediate depots, and algorithm that is used

C
os
ts

(m
il
li
on

s)

Figure .: Resource costs in repair networks that are unbalanced in the
locations

depots by the number of sytem locations in the network, there is a clear differ-
ence between the half of the network with two operating sites per intermediate
depot (€,) and the half with ten operating sites (€,). Such a
distinction cannot be made if the data is aggregated, because in that case, the
model implicitly assumes there are six operating sites per intermediate depot
on average.

Figure . gives some insights into how costs (divided by the number of oper-
ating sites) change if a network (that is balanced in the locations) grows due
to more operating sites per intermediate depot (compare bars  and , and
bars  and ) or more intermediate depots (compare bars  and , and bars 
and ). Notice that both bars  and  give results for networks with  oper-
ating sites, although the results differ substantially. The reason is that repair
at intermediate depot is much more expensive if there are ten intermediate
depots, than if there are only two, due to the number of required resources. As
a result, many more repairs are performed at the central depot instead of at the
intermediate depot, which Figure . shows. Since many repairs are performed
at the central depot, it is relatively inexpensive to repair the subcomponents
of those components at the central depot too. Therefore, the discard costs in
the network with ten intermediate depots are lower than in the network with
two intermediate depots. In general, we see that the more operating sites there
are, the more attractive it becomes to acquire resources and repair components
instead of discarding them. As a result, total costs increase not as much as the
number of operating sites increases.

We conclude that modelling the repair network exactly brings cost reductions
of almost % on average for networks that are unbalanced in the locations. In
some cases, the cost reductions are over %, which means that it is worthwhile
to model the repair network exactly for unbalanced networks. For networks
that are balanced in the locations, cost reductions are never higher than .%,
which means that it is doubtful whether the additional effort of acquiring all

lora flow model 

, , , ,


.



.

Variable discard costs

Variable repair costs

Variable move costs
Resource costs

Network structure

C
os
ts

(m
il
li
on

s)

Figure .: Total costs divided by number of operating sites in balanced repair
networks
x,y (e.g., ,) means: x intermediate depots and y operating sites per intermediate depot

, ,


.

.

Operating sites

Intermediate depots

Central depot

Network structure

C
os
ts

(m
il
li
on

s)

Figure .: Resource costs divided by number of operating sites in balanced
repair networks
x,y (e.g., ,) means: x intermediate depots and y operating sites per intermediate depot

inputs is worth it. In this case, aggregating all data does not lead to much
higher costs. However, we do note that if the costs for spare parts are not equal
in the whole network, due to a difference in lead time between different parts
of the global repair network, it might be necessary to explicitly model the
repair network. However, more research is needed on the integration of spare
parts optimization into the lora before this question can be answered.

. Conclusions

We have modelled the lora problem as a minimum cost flow model with side
constraints. This formulation allows us to model all kinds of extensions in an
elegant manner. Such extensions include probabilities of unsuccessful repair,
no-fault-found probabilities, and equipment with a finite capacity. Besides that,
we have shown that the lora problem with all data aggregated per echelon

 Chapter 

level, can be solved much faster using our formulation than it could using the
formulation that we developed in the previous chapter.

Our model allows us to explicitly model the repair network instead of aggregat-
ing all information per echelon level, as is often done in the literature. We have
shown that with networks that are unbalanced in the locations, cost reductions
of over % can be achieved by modelling the exact network. If networks are bal-
anced in the locations, then the maximal costs reductions that can be achieved
are only .%, even if the network is unbalanced in the costs.

However, our research suggests that if lead times differ across the repair net-
work, significant cost reductions may be achieved by modelling the exact
network, even for networks that are balanced in the locations. To be able to
analyse this, integration of spare parts optimization in the lora is necessary.

We have shown that in some cases, only small cost differences exist between
using the exact and the aggregated network, although the decisions that are
taken differ a lot. If there are multiple ways to achieve almost the same total
costs, there can be other, more qualitative reasons to choose for another solution
than the one with the lowest total costs. Future research could lead to an
approach that results in multiple alternative solutions that differ a lot in terms
of decisions, but lead to almost the same costs.

Chapter 

Extensions to the lora flow
model

In the previous chapter, we reformulated the lora model that we developed in
Chapter  as a minimum cost flow model with side constraints. In this chapter,
we show the flexibility of this formulation by explicitly modelling several
practically relevant model extensions. Thereby, we take the second and final
step in answering research question b: “How can we model the extensions that
may be needed in practice?” Two of the model extensions, the possibility that
a repair is unsuccessful and the option to outsource repairs, are particularly
relevant because we require them for our case study at Thales Nederland (see
Section ..).

In Section ., we give an overview of the model extensions and we discuss
their practical relevance. Two of the extensions appear to be straightforward;
for the remaining three extensions, we give the mathematical formulation in
Section .. Then, we perform an extensive numerical experiment in Section .,
in which we examine how both the repair strategies and the computation times
change as a result of incorporating the latter three extensions. Finally, we draw
conclusions in Section ..

. Motivation of model extensions

In this section, we give the motivation for the extensions that we model in
this chapter; Sections .. to .. each discuss one extension. We pick these
extension based on discussions with industry representatives (in particular
those who participate in the iop-ipcr project). However, more extensions can
be modelled, see, for example, Section ....



 Chapter 

.. Unsuccessful repair

Until now, we assumed that all repairs are successful. In practice, however, this
does not need to be true. First, a failure can occassionally be very serious. For
example, a component may be seriously overheated, yielding unrecoverable
damage. In that case, the component has to be discarded. Second, components
can generally not be repaired over and over again. After they have been repaired
a number of times, they can only be discarded. Third, it is possible that a failure
is occassionally rather complex, so that specific expertise is required. In the
latter case, it may happen that repair at the operating site is unsuccessful, but a
second repair at the central depot is successful. At Thales Nederland, a rule of
thumb is that about % of the repairs is unsuccessful and results in discarding
the component.

In general, the costs of an unsuccessful and a successful repair may differ: on
the one hand, if a component is visibly heavily damaged, costs of an unsuc-
cessful repair may be low, since no testing is required (the subsequent discard
action is just as expensive as any other discard action for this component).
On the other hand, if the exact failure type is not easily determined, many
tests may be required before it can be determined that a component cannot be
repaired. In the latter case, unsuccessful repairs may be more expensive than
successful repairs.

We have seen that if a repair is unsuccessful, a component can sometimes only
be discarded, whereas in other cases a second repair attempt at a higher echelon
level is useful. If a component needs to be discarded, there is the option to
discard it at the location where the repair attempt was made, but if the discard
costs are unequal at the various echelon levels, it may also be cost-effective to
ship the component to a higher echelon level first. If a second repair attempt is
still useful, the probability of unsuccessful repair at the second repair attempt
may be the same as the probability at the first attempt, but it is probably
higher. Since there are various options, we model four ways of incorporating
the unsuccessful repair in Section ...

.. No-fault-found

In practice, a certain fraction of the components that a repair shop receives,
appears to have no problem, which is known as a no-fault-found. There are
various reasons why a no-fault-found may occur: the diagnosis of the failure
may be wrong, or a failure may occur due to the interaction of a component
with the system; if the component is used in another system, it simply works.
After extensive testing, the component goes back in stock as-good-as-new.

Since a no-fault-found is actually not a failure, it may seem reasonable to
exclude it from the failure rate. However, the component may be tested exten-
sively, possibly requiring a resource or shipment of the component to another
location. As a result, the costs for the no-fault-founds cannot be neglected.

Extensions to the lora model 

Furthermore, the costs of finding a no-fault-found and performing a normal
repair may differ. Another difference is that no decisions need to be taken for
subcomponents if a no-fault-found is detected, whereas they need to be taken
if a component is repaired by replacing a subcomponent. We show how to
model the extension to no-fault-found probabilities in Section ...

.. Capacitated resources

In our basic lora model, we assume that we need at most one resource of the
same type at each location. In other words, resources have infinite capacity. At
Thales Nederland, this is a realistic assumption since the resource utilization
rate is generally very low (below %). However, at other companies it is
possible that one resource is insufficient to accommodate all demand, and
multiple resources need to be installed. This may happen especially if repairs
are performed upstream in the repair network (e.g., at the central depot) and
the installed base is relatively large, consisting of hundreds of systems. This
is quite common for, e.g., medical equipment and airplanes. In that case, we
should take the resource capacities explicitly into account, because it may
impact the repair/discard decisions and the costs for resources. For example,
if we need two resources at the central depot to handle all repair jobs, it
could be more attractive to repair at the intermediate depots. If there are two
intermediate depots, we may still require two resources in total, but we avoid
shipping costs in this way. In Section .., we show how we can use a step
function for the fixed costs for resources to accommodate resource capacities.

We do not take into account waiting times that arise from resource utilization,
as this does not fit within the framework of a deterministic optimization model.
We assume that we can specify in advance which resource utilization rate is
acceptable (e.g., %). A drawback of this approach is that if the utilization rate
is just slightly above the acceptable rate (e.g., % instead of %), we require
two resources, whereas in practice, one resource might still be sufficient.

.. Multiple failure modes per component

In the basic model, we implicitly assume that all failures of a certain component
should be handled in the same way. That is, all those failures require the same
resources and lead to the same variable repair costs. Therefore, we should take
a single repair/discard decision for each component, irrespective of the exact
failure mode. Obviously, this does not need to be true: multiple failure modes
may occur in one type of component, and some failure modes may be more
serious than others.

As an example, an optimal decision for a certain component () may have the
following structure: component  has two failure modes: failure modes a and
b. We diagnose the failure at an operating site, and our repair/discard decision
depends on the failure mode that we find. In case of failure mode a, we have a

 Chapter 

simple, mechanical failure: repair is cheap and we do not need any resource.
Therefore, we repair the component at the operating site. In case of failure
mode b, we have an electronic failure, and we need an expensive resource that
we install at the central depot. As a result, we have multiple repair/discard
decisions for the same component.

To include multiple failure modes in the lora model, we do not need to change
the model. Instead, we can replace ‘component’ by ‘failure mode’, and change
costs, parent-child relations between failure modes, and relations between
resources and failure modes. However, the size of the problem grows, and
we need more detailed information on failures modes as input in the model.
Particularly for the last reason, it makes sense to group failure modes in
advance based on resource requirements and similar variable repair costs.
Still, the increase in input data requirements prohibits the inclusion of failure
modes in our case study at Thales Nederland; data at this level of detail is not
available.

Finally, note that we have to be careful with modelling failure modes when
combining lora with spare parts stocking, as we do in Chapters  and : al-
though we may take different repair/discard decisions for a certain component
depending on the specific failure mode, we have a single set of spare parts that
we allocate in the network, irrespective of the failure mode. We will return to
this issue in Chapter .

.. Outsourcing of repair

For some repair jobs, it may be cost-effective to outsource repair instead of
carrying out repairs in the own service network. This is especially true if
expensive resources are required to perform the repairs. Acquiring such a
resource may be only cost-effective if it can be used for other repairs as well. If
the decision is to not buy the resource, it may still be better to outsource the
repair than to discard the component.

Including the outsourcing option in the minimum cost flow model is straight-
forward. We can simply add an option ‘outsource’ at each location, or just at
the central depot if all outsourced components should first be shipped to the
central depot. The outsource option is specified similar to the discard option,
so no decisions have to be taken for the component or its subcomponents if
the outsource option is chosen. Furthermore, we have no resource costs, so
only variable repair costs are to be taken into account (which may be higher
than the variable repair costs for normal repairs). At Thales Nederland, we
encountered the outsourcing decision for some components (outsource to the
oem).

Notice that the choice for outsourcing may also impact the spare parts require-
ments, because the repair lead times will be different. This can be an extra
reason to include the outsourcing decision in the joint optimization models for
lora and spare part stocking that we discuss in Chapters  and .

Extensions to the lora model 

c1, l2,r

r

c2
c3

Figure .: No unsuccessful repair
Node : A tuple (component, location, state), with state r is repair decision chosen. Arcs : A compo-
nent for which no decision has been taken yet, or a letter representing a state.

. Model formulation of extensions

In this section we model three of the extensions that we discussed in Section .:
unsuccessful repair, no-fault-found, and capacitated resources. As explained,
the other two extensions do not require a fundamental change in the model.

.. Unsuccessful repair

As discussed in Section .., a new decision needs to be taken for the unsuc-
cessfully repaired components. In some circumstances we can only discard the
component, whereas in other circumstances a second repair attempt is possible
(or even more attempts). Step-by-step, we include more options in our model:

• In Section ..., we discuss the most restricted case: after unsuccessful
repair at a certain location, the component is discarded at that location.

• In Section ..., we allow the component to be shipped to a higher
echelon level to be discarded there.

• In Section ..., we allow for a second repair attempt at a higher echelon
level. We make the assumption that the probability of unsuccessful repair
does not depend on whether or not a previous repair attempt has been
made.

• In Section ..., we allow the probability of unsuccessful repair to be
higher at a second repair attempt if we know that a first attempt failed.

As a result of adding more options to the model, the model requires more nodes
and arcs. We will clarify this throughout this section using a small example:
we consider a component (c), having two subcomponents (c and c). We
assume that component c is repaired at location l. In Figure ., we show the
transformation node in our basic flow model from the previous chapter; in the
sections below, we show what modifications we make to this part of the flow
model to incorporate a probability of unsuccessful repair.

 Chapter 

c1, l2,r

r

c1, l2,s

su

c2
c3

(a) Discard at location of
repair attempt

c1, l2,u

m
u

d
m

(b) Discard at higher eche-
lon

Figure .: Unsuccessful repair
Nodes : A tuple (component, location, state), with state r is repair decision chosen, s is successfuly
repaired, and u is unsuccessfully repaired. Arcs : A component for which no decision has been
taken yet, or a letter representing a state. In addition to states r, s, and u, state m is move decision
chosen and d is discard decision chosen.

... Discard at location of repair attempt

The simplest case of incorporating a probability of unsuccessful repair, is by
assuming that after an unsuccessful repair, the component will be discarded
at the location where the repair attempt was made. To model this, we add an
additional transformation node, see Figure .a, such that the incoming flow
of components that are to be repaired, is split into two flows:

. A flow of successfully repaired components, which goes to the already ex-
isting transformation node (which is renamed to c, l,s, with s denoting
successfully repaired).

. A flow of unsuccessfully repaired components that will be discarded.
This flow ends in a sink node.

Note that the two transformation nodes could be combined to one transforma-
tion node, but for clarity, we treat them as being separate.

Since the costs of unsuccessful repair and successful repair may be different,
the variable repair costs can be attached to the arc representing unsuccessfully
repaired (u) and successfully repaired (s), respectively.

... Discard at a higher echelon level

If the costs of discard are different at the various echelon levels, it may be
cost-effective to ship a component to a higher echelon level, and discard it
there. In that case, we add a transformation node in the same way as we
did in the previous section (Figure .a). However, the flow representing the

Extensions to the lora model 

unsuccessfully repaired components (u) is sent to a decision node (instead of a
sink node), see Figure .b. At this node, there are the options to discard and
to move the component. The arc representing the move option (the outgoing
arc m) terminates at a decision node representing the next upstream location;
flow on the incoming arc m represents components that were unsuccessfully
repaired at a lower echelon level and are moved to location l. Notice that at
the central depot, only the discard option is available (a decision node is not
necessary in that case).

... Second repair attempt at a higher echelon level: independent prob-
abilities

If the probability of unsuccessful repair is lower at a higher echelon level, or if
engineers at different echelon levels have different skills or different equipment,
it may be cost-effective to make a second repair attempt at a higher echelon
level after a first attempt failed.

In the model in Section ... (Figure .b), the unsuccesfully repaired compo-
nents are in a distinct part of the network; they do not mix with the components
for which no repair attempts have been made yet. A simple way to incorporate
the possibility of a second repair attempt is by merging the flow of unsuccess-
fully repaired components that are moved to a higher echelon level (outgoing
arc m) with the flow of components that were directly moved to that higher
echelon level, without a repair attempt first. This means that these two types
of components cannot be distinguished anymore at the higher echelon level.
Consequently, we assume that the probability of unsuccessful repair is equal
for both flows.

As an example, let us assume that the probability of unsuccessful repair of
component c is . at location l, and . at location l. Φl = {l}, which
means that components that are moved upstream at location l, are shipped
to location l. If a repair is attempted at both locations l and l, then %

(. · . = .) of the components is unsuccessfully repaired after the two
attempts.

... Second repair attempt at a higher echelon level: generalized model

In Section ..., we assumed that the probability of unsuccessful repair is
independent on the number of previous repair attempts. In some cases, this
may be correct, but as explained in Section .., the probability of unsuccessful
repair is generally higher for a second repair attempt than for a first repair
attempt.

It is possible to assign different probabilities for the second (and any further)
repair attempt at any location. To explain how we can model conditional
probabilities, we use an example of three locations at three different echelon
levels. Location l (at echelon level ) is the operating site. If components are

 Chapter 

Location of Fraction unsuccessfully repaired
First Second Third First Second Third In

attempt attempt attempt attempt attempt attempt total
Loc. l — — . — — .
Loc. l Loc. l — . . — .
Loc. l Loc. l Loc. l . . . .
Loc. l Loc. l — . . — .
Loc. l — — . — — .
Loc. l Loc. l — . . — .
Loc. l — — . — — .

Table .: Fractions of components that are unsuccessfully repaired

moved upstream in the network, they are shipped to location l, which can in
turn ship components to location l (Φl = {l} andΦl = {l}). The probability of
unsuccessful repair is . at location l, . at location l and . at location l.
We now know the values in the fourth column (First attempt) in Table .. The
values in the fifth and sixth columns can be specified, which automatically
leads to a value in the last column. In this way, we cover the general case of
probabilities that may depend on the number and locations of all previous
repair attempts. It also allows us to specify the probabilities such that we
reproduce the model that we showed in the previous section.

However, although conditional probabilities fit perfectly within the framework
of the minimum cost flow model with side constraints from a modelling point
of view, we face two drawbacks. First, it is hard to specify all the required
probabilities from a practical perspective. Second, the flows corresponding to
each unsuccessful repair at each location should be separated, which yields a
less transparent and larger model. Therefore, we propose a model in which
only a few probabilities need to be specified. To this end, we assume that
failures can be ranked according to their complexity. This means that if the
probability of unsuccessful repair at one location is lower than at another
location, all failures that will successfully be repaired at the latter location, will
also successfully be repaired at the former location. In our example, this means
that the fraction of the repairs that are successful at location l (.) concern
the least complicated failures, whereas the fraction that can be repaired at
location l, but not at location l (.-.=.) is more complicated, et cetera.
Under these assumptions, if a first repair attempt is made at location l and
a second repair attempt is made at location l, then a fraction of .. = .
of the components that are unsuccessfully repaired at location l, are also
unsuccessfully repaired at location l. Note that under these assumptions, a
second repair attempt is useful only if the probability of unsuccessful repair
is lower at the higher echelon level. Furthermore, it is only relevant to know
the last location where a repair attempt has been performed; it does not matter
whether any other repair attempts have been made. In Table ., we show the
fractions of components that are unsuccessfully repaired at the first attempt,

Extensions to the lora model 

c1, l3,u3

u

c1, l2,u3

d m

c1, l2,r

d
m

r

c1, l2,s c1, l2,u2

s
u u

c3
c2 m

d

(a) Standard version

c1, l3,u3

u

c1, l2,r

d1

d2

d3

r2 r1

c1, l2,s c1, l2,u2

s
u u

c3
c2 r1

d1

d2

(b) Merged version

Figure .: Unsuccessful repair: discard or repair later
Nodes : A tuple (component, location, state), with state r is repair decision chosen, s is successfuly
repaired, and u is unsuccessfully repaired. A subscript indicates the location of the last unsuccess-
ful repair. Arcs : A component for which no decision has been taken yet, or a letter representing a
state. In addition to states r, s, and u, state m is move decision chosen and d is discard decision
chosen. A subscript indicates where the repair or discard is to be performed.

the second attempt (if applicable), the third attempt (if applicable), and overall,
for various combinations of repair locations in our example. The values for
the second and third attempt, and the overall value, result from the three
probabilities that are specified. In the remainder of this chapter, we use this
restricted version of conditional probabilities, instead of the general version of
conditional probabilities in which columns five and sixe in Table . need to
be specified.

We give the description of our new model for the example discussed above; the
new model is shown in Figure .a. We start with a flow of components that
were repaired unsuccessfully at location l (% of the failures, represented
as u (unsuccessful at location l) in the decision node). Such components can
either be discarded or moved to the next higher echelon level. At location l
(the decision node c, l,u), there are three possible decisions:

. The component can be discarded.

. The component can be moved to location l.

. A (second) repair attempt can be made.

 Chapter 

c1, l2,r

r

c1, l2,s

s n

c2
c3

Figure .: No-fault-found
Nodes : A tuple (component, location, state), with state r is repair decision chosen and s is
successfuly repaired. Arcs : A component for which no decision has been taken yet, or a letter
representing a state. In addition to states r and s, n is no-fault-found.

A repair attempt is either successful (% of the components) or unsuccessful
(%). In the latter case, the component cannot be distinguished from a compo-
nent which was unsuccessfully repaired at location l only (%). Therefore,
we can merge these two streams of components in the decision node c, l,u.

Finally, note that we can simplify the representation by merging decision nodes
such that after an unsuccessful repair, we immediately decide what the next
repair/discard decision will be (discard at the current or a higher echelon level
or repair at a higher echelon level), see Figure .b.

.. No-fault-found

Modelling the no-fault-found probability is similar to modelling the simplest
case of a probability of unsuccessful repair (see Section ...). In Figure .,
we show an example in which we assume that there is a probability of a
no-fault-found (at location l). We add a transformation node, such that the
incoming flow of components that are to be repaired, is split into two flows:

. A flow of successfully repaired components, which goes to the already ex-
isting transformation node (which is renamed to c, l,s, with s denoting
successfully repaired).

. A flow of components in which no failures is found, which terminates
in a sink node, since these components are put back in stock, and no
additional decision needs to be taken.

Note that the two transformation nodes could be combined to one transforma-
tion node, but for clarity, we treat them as being separate.

Notice: in the general case of probabilities that may depend on the number and locations of all
previous repair attempts, merging these two streams is not possible, resulting in a larger model.

Extensions to the lora model 

Since the costs of a no-fault-found and a normal repair may be different, the
variable repair costs can be attached to the arc representing no-fault-found (n)
and successfully repaired (s), respectively.

.. Capacitated resources

To model capacitated resources, we change the side constraint that links arcs
to resources in the minimum cost flow model. In Section .., we defined Θr,l
such that if a flow on an arc (v,w) is only allowed if resource r is available
at location l, then (v,w) ∈Θr,l . We change Constraint ., which allows flows
on arcs (v,w) only if all required resources r are available at location l (Fvw ≤
M ·Yr,l ,∀r ∈ R ,∀l ∈ L ,∀(v,w) ∈Θr,l) such that the total flow over all arcs (v,w) ∈
Θr,l should be lower than the capacity per resource r times the number of
resources r at location l. For the detailed technical description, see the technical
note at the end of this chapter.

. Computational experiments

In this section, we perform an extensive numerical experiment to answer the
following two questions for the three extensions that we modelled in the
previous section:

. How do repair strategies and total costs change as a result of incorporat-
ing the extensions that we modelled?

. How do optimization times change as a result of incorporating these
extensions?

The main goal of our tests is to examine the importance of incorporating the
extensions in order to get accurate, practically useful results. For example, we
will see that incorporating a certain probability of unsuccessful repair leads
to almost doubling the total costs on average. This means that neglecting this
probability leads to a significant underestimation of the true costs in practice.
The goal of the second question is to determine whether incorporating these
extensions leads to a model that can still be solved in a reasonable amount of
time. This is especially relevant if the lora model is solved several times in an
iterative approach to solve the joint problem of lora and spart parts stocking,
as we do in Chapter .

For our numerical experiment, we generate problem instances using a slightly
modified version of the generator that was presented in the previous chapter
(Section ...) and is described in detail in Appendix D. We make two
changes:

• Due to incorporating the model extensions, the problem sizes increase
and, more importantly, there are more possible decisions. As a result,
cplex requires much more memory when solving the problem instances,

 Chapter 

especially for the problem instances with capacitated resources. This
means that cplex is not able to solve the largest problem instances when
incorporating the capacitated resources. Therefore, we reduce the prob-
lem size by decreasing the size of the repair network: instead of perform-
ing tests with  and  intermediate depots, and  and  operating sites
per intermediate depot ( operating sites at maximum), we perform
tests with  and  intermediate depots, and  and  operating sites per
intermediate depot ( operating sites at maximum). This means that the
size of the largest repair networks is still larger than the repair network
in our case study (see Section ..).

• In the previous chapter, we varied seven parameters, leading to 
(combinations of) parameter settings. In the current chapter, we perform
tests for symmetrical repair networks only, which means that we vary
four parameters, leading to  parameter settings (not considering the
extensions). Assuming symmetrical repair networks means that we can
merge all results per echelon level, which makes it easier to analyze the
effect of incorporating the extensions. Besides, we concluded in Chapter 
that assuming symmetrical decisions in asymmetrical networks generally
yields a small cost increase only.

We generate ten problem instances for each of the parameter settings, resulting
in  basic problem instances.

We perform tests for the three extensions that we discussed in the previous
section, one by one. Although we showed four variants to incorporate the
probability of unsuccessful repair, we perform tests for only two of them:
the simplest and the most complicated one, so ‘discard at location of repair
attempt’, see Section ..., and ‘discard or repair at any location’, see Sec-
tion .... Furthermore, we assume that the costs of an unsuccessful repair, a
successful repair, and finding a no-fault-found are equal. Finally, we assume
that the failure rates of the lrus are not changed if an extension is incorporated.
This means that no-fault-founds are part of this failure rate, so the number
of ‘actual failures’ decreases if we incorporate a no-fault-found probability. In
Sections .. to .., we give for each of the three extensions, respectively,
the additional parameters that we use and the test results.

.. Probability of unsuccessful repair

For the probability of unsuccessful repair, we distinguish nine settings. We
give the values that we use for the probabilities in each setting in Table .;
the indenture level of the component and the echelon level of the location
together determine the probability in the problem instances. In settings  to ,
the probabilites are equal for all echelon levels and for all indenture levels.
Since, under the assumptions given in Section ..., equal probabilities of
unsuccessful repair means that no additional repairs can be performed at
the higher echelon levels, performing tests using these settings is less useful

Extensions to the lora model 

Echelon  Echelon  Echelon 
Setting lru sru part lru sru part lru sru part
 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

 . . . . . . . . .
 . . . . . . . . .
 . . . . . . . . .

Table .: Parameters: probability of unsuccessful repair

for the tests with ‘second repair attempt at higher echelon level’, so we will
not perform such tests. In settings  to , we vary the probabilities over the
echelon levels, but keep them equal for the various indenture levels. The
probabilities are lower at the higher echelon levels, since in general, more
specialized engineers and equipment will be available at the higher echelon
levels. In settings  to , we vary the probabilities over both the echelon levels
and the indenture levels. The lower the indenture level of the component (e.g.,
lru), the lower the probability of unsuccessful repair. The reason is that these
components are more expensive, which makes it worthwhile to invest time and
money if the failure is hard to repair. Besides, it is more probable that a part
of the lru can be replaced, thus repairing the lru, whereas this is often not
possible for the higher indenture level components (e.g., parts).

Since there are  problem instances for each parameter setting, there are
 ·  = , problem instances in total for the tests ‘discard at location of
repair attempt’, and  · =  problem instances for the tests ‘second repair
attempt at at higher echelon level’.

... Discard at location of repair attempt

Incorporating a probability of unsuccessful repair leads to almost a doubling
of the costs on average: . million versus . million (% increase). The
maximum cost increase is %. This means that ignoring a probability of
unsuccessful repair may lead to a huge underestimation of the true costs. The
reason is that many components cannot be repaired successfully and need to
be discarded. However, discarding components is very expensive, since that
means that replacements need to be purchased.

If the probability of unsuccessful repair at all echelon levels and all inden-
ture levels is . (setting ), costs increase with % at minimum, % on
average and % at maximum. Comparing the various settings shows that
these values almost double if the probability of unsuccessful repair doubles.

 Chapter 

Variable costs Resource costs Total
Discard Repair Move Ech.  Ech.  Ech.  costs

No extension  , ,  , , ,
Settings - , , ,  , , ,

Settings - , , ,  , , ,
Settings - , , ,  , , ,

Table .: Costs (×,), resulting from using a probability of unsuccesful
repair (immediate discard)

The computation time increases from . seconds to . seconds on average
if the probability of successful repair is incorporated (less than  seconds at
maximum), which means that from the model point of view, this extension
can easily be included. Of course, the question is whether in practice, all the
required data is available.

In Table ., we see that not only the costs change, the repair strategy changes
as well (first two rows) the variable costs of discard increase significantly, which
is a direct result of incorporating the probability of unsuccessful repair. To
understand the other results, we have to look in more detail to the results
(last two rows). There is a clear difference between settings  to  on the one
hand, and settings  to  on the other hand. In the problem instances that
are generated using settings  to , the probability of unsuccessful repair is
equal at all echelon levels for all components, whereas it decreases in the other
problem instances.

In the former case, less repairs are performed and less components are moved.
Since a probability of unsuccessful repair for components means that in some
cases, no subcomponents are replaced, there are simply less components in
total that require a repair or move action. This decrease in demand also means
that in some cases, it is not worthwhile to locate a resource, as can be seen in
Table .: if a component is not too expensive, its repair requires a resource,
and there is a significant probability that repair is not successful, it can be
sensible to discard the component immediately. This also leads to a decrease in
the variable repair and move costs (there is no reason to move a component to
a higher echelon level if it will be discarded). Since the decrease in resource
costs is relatively small (and at echelon level  only) and the decrease in repair
and move costs can partly be explained by a decrease in the number of failed
srus and parts for which any decision needs to be taken, we conclude that
the repair strategy is affected to a very small extend only if a probability of
unsuccessful repair is incorporated that is equal at all echelon levels.

In the latter case, the problem instances generated using settings  to , results
are quite different. The repair strategy changes significantly due to the inclusion
of a probability of unsuccessful repair; we see a large increase in the variable
move costs and in the resource costs at central depot, but a decrease of the
resource costs at the lower echelon levels: it is worthwhile to ship components

Extensions to the lora model 

Variable costs Resource costs Total
Discard Repair Move Ech.  Ech.  Ech.  costs

No extension  , ,  , , ,
Settings - , , ,  , , ,

Table .: Costs (×,), resulting from using a probability of unsuccesful
repair (repair/discard at higher echelon)

to the central depot, since that leads to a low probability of discarding the
component. We also see that the repair costs increase, which means that a
repair attempt is made on more components (instead of a direct discard). The
reasoning is as follows. If components are sent to the central depot in order to
be repaired there, then the subcomponents are replaced at the central depot. If
no resource is required in order to repair this subcomponent, it can be repaired
at the central depot. More importantly, if a resource is required, chances are
that this resource is available at the central depot, whereas in the solution
without a probability of unsuccessful repair, the resource may be available
only at a lower echelon level, or the component may be replaced at a lower
echelon level, and moving the component to repair it at a higher echelon level
may be more expensive than discarding it.

... Second repair attempt at at higher echelon level

The inclusion of a second repair attempt at a higher echelon level yields a cost
increase of % on average compared with ignoring unsuccessful repair: .
million versus . million. The maximum cost increase is %. However,
we have seen in Section ... that if we allow for discard at the location
of the repair attempt only, costs increase with % on average, and % at
maximum. This means that if the probabilities differ at the various echelon
levels, it is worthwhile to allow for a second repair attempt. However, the
additional possibilities come at a price: the optimization time increases from
. seconds for the case of no probability of unsuccessful repair, to . seconds
for the case that only discard at the location of the repair attempt is allowed,
to . seconds if all options are open. Still, the maximum optimization time
is under  seconds (compared with  seconds if only immediate discard is
allowed). Obviously, the computation time is not a problem for usage of this
model extension in practice.

Let us look at the results in more detail, see Table .. Compared with the
last row in Table . (discard only), the discard and move costs increase less,
whereas the variable repair costs increase more. The resource costs decrease
far less and even increase at the central depot. The reason is that instead of
shipping components to the highest echelon level, and performing one repair
attempt there, now a first repair attempt is made on many components at the
lower echelon levels, and a second (and third) repair attempt is made at higher
echelon levels.

 Chapter 

Setting lru sru
 . .
 . .
 . .

 . .
 . .
 . .

Table .: Parameters: no-fault-found probability

.. No-fault-found probability

To examine the impact of the no-fault-found probability on the results, we
perform tests with six different settings, see Table .. Since in our tests, find-
ing a no-fault-found is equally expensive as performing a repair, and the
component goes back in stock in as-good-as-new state in both cases, the only
difference is that a no-fault-found means that no decisions need to be taken
for subcomponents. Therefore, setting a no-fault-found probability is useful
only for components that have subcomponents, i.e., not for parts. Since the
no-fault-found probability is mainly related to the components themselves, we
assume that the values are equal at all echelon levels. Furthermore, we assume
that they are equal at both indenture levels in settings  to , and they differ
for both indenture levels in settings  to . In the latter case, the probability
for the lrus is higher than that for the srus, since lrus are technically more
complex. Besides, lrus are always replaced in the field, whereas srus are typi-
cally replaced in a repair shop. This means that the probability of an incorrect
replacement (another component failed) is generally higher for lrus than it is
for srus.

In general, incorporating a no-fault-found probability leads to lower costs (-%

on average) and an increase in the computation time (. seconds versus .
seconds). The maximum cost reduction that can be achieved is over %, which
makes it worthwhile to incorporate the no-fault-found probability in a lora
model. Obviously, the higher the no-fault-found probability, the higher the
cost reduction compared with not incorporating the no-fault-found probability.
Both the average and maximum cost reduction almost double if the no-fault-
found probability doubles.

We see in more detail how costs change in Table .. The reasoning to explain
the results is as follows. Some of the lrus that are repaired, turn out to be a
no-fault-found, which means that its srus need not be repaired or discarded.
The same holds for srus and parts, respectively, which means that the total
demand for repair and discard actions decreases in the lora problem. For
some resources, the demand gets so low that it is cost-effective to discard
all components that require that resource in order to be repaired, instead of
locating the resource and repairing the components. As a result, less resources

Extensions to the lora model 

Variable costs Resource costs Total
Discard Repair Move Ech.  Ech.  Ech.  costs

No extension  , ,  , , ,
Settings -  , ,  , , ,

Table .: Costs (×,), resulting from using a no-fault-found probability

Costs Optimization
(×,) time (seconds)

No extension , .

RR =  , .
RR =  , .

Table .: Results for various settings for the capacitated resources

are located in the network, the discard costs increase, and the (variable) repair
and move costs decrease. This leads to a reduction of the total costs. However,
the change in the repair strategy is small.

.. Capacitated resources

To test the extension to capacitated resources, we need to set two sets of
parameters:

• the demand in hours for a resource that results from performing one
repair action for a component that requires that resource, and

• the annual number of hours that each resource can be used (capacity of
the resource).

For simplicity, we set all demands to . Then, notice that for each resource, the
demand for that resource at any location, cannot be higher than the demand
for that resource at the central depot if all components are sent to the central
depot in order to be repaired. We design our experiments such that it holds
for all resources that if all components are repaired at the central depot, we
require RR resources at the central depot. We perform tests with RR =  and
RR = . Notice that RR =  effectively represents uncapacitated resources.

The cost difference due to assuming capacitated resource compared with as-
suming uncapacitated resources is quite large, as can be seen in Table .. If
RR = , it is % on average and % at maximum. This suggests that companies
need to consider whether or not the assumption of uncapacitated resources
is realistic in their business settings; if uncapacitated resources are assumed
where this is not realistic, this leads to a significant underestimation of the
costs.

 Chapter 

Variable costs Resource costs Total
Discard Repair Move Ech.  Ech.  Ech.  costs

No extension  , ,  , , ,
RR ∈ {,} , , ,  ,  ,

Table .: Costs (×,), resulting from using capacitated resources

The optimization time increases significantly as well; it is almost half an hour
at maximum (compared with . seconds if no extensions are included). In
itself, such an optimization time is not problematic, but if the problem size
increases, or if the lora is a building block in an iterative approach to solve the
integrated problem of lora and spare parts stocking analysis (see Chapter ),
such a time may be problematic.

In Table ., we give more detailed results. If resources are capacitated, the
repair option gets relatively more expensive compared with the discard option.
Therefore, there is an increase in the discard costs and a decrease in the repair
costs (notice that the resource costs are not part of the variable repair costs). If
resources are capacitated, two or more of the same resources may be required
if all repairs are performed at the central depot. In that case, it may be cost-
effective to perform the repairs at a lower echelon level, thus reducing the move
costs, while not increasing the total number of required resources. Therefore,
the move costs decrease and the resources are located at lower echelon levels.
We also see an increase in the total costs for resources, which is due to the
fact that sometimes a couple of resources of the same type are required if they
are capacitated. Upto RR resources of the same type are located at the central
depot.

As shown in Table ., the cost difference between assuming capacitated re-
sources and assuming uncapacitated resources decreases if the number of
intermediate depots increases. If the number of intermediate depots is  and
RR = , then locating a resource at the intermediate depots may mean that
two resources per intermediate depot are required. However, if the number of
intermediate depots is , then locating one resource at each of the intermediate
depots is always sufficient, due to the way we construct our problem instances
(see the beginning of this section for our definition of RR). This means that
with five intermediate depots, additional resources are required only if repairs
are performed at the central depot.

If the number of operating sites per intermediate depot decreases or the number
of resources increases, the cost difference increases as well. This makes sense,
since in that case, the resource costs make up a larger percentage of the total
costs, and in Table ., we have seen that the cost difference results mainly
from the cost increase in the resource costs.

Extensions to the lora model 

Parameter Setting Cost difference

intermediate depots
 .%
 .%

operating sites per intermediate depot
 .%
 .%

resources
 .%
 .%

Table .: Cost difference due to using capacitated resources for various
parameter settings
The cost difference is the average over all problem instances of: the total costs incorporating
capacitated resources minus the total costs neglecting the resource capacities, divided by the
total costs neglecting the resource capacities.

. Conclusions

In this chapter, we presented a number of extensions to the lora model that
we presented in Chapter :

• a probability of unsuccessful repair,

• a no-fault-found probability,

• capacitated resources,

• multiple failure modes per component, and

• outsourcing of repair.

We showed how to model the first three extensions: the first two extensions
require a change in the nodes and arcs; the capacitated resources require a
change in the constraint that links components to resources. The last two
extensions do not require a fundamental change in the model.

We tested the first three extensions by generating problem instances in a
similar way as we did in the previous chapter. We have seen that incorporating
a probability of unsuccessful repair leads to a cost increase (compared with
neglecting this probability) of more than % at maximum. The cost increase
is larger if an unsuccessfully repaired component can only be discarded at the
location where the repair was performed (% on average), than if we allow a
second (and third) repair attempt at a higher echelon level (% on average). If
the probabilities are equal at all echelon levels, the change in repair strategy
(compared with not incorporating unsuccessful repair) is small: slightly less
resources are located at the central depot. If the probability of unsuccessful
repair decreases with an increasing echelon level, the repair strategy changes
significantly. The key difference is that the resource costs at central depot
increase, wherease they decrease at the lower echelon levels. This holds both if
components need to be discarded after an unsuccessful repair attempt, and if a

 Chapter 

second repair attempt is allowed.

Incorporating a no-fault-found probability leads to a reduction of the costs of
% on average and over % at maximum. The change in the repair strategy is
small.

Incorporating capacitated resources leads to a cost increase of % on average
and % at maximum. The optimization time increases significantly as well: it
is almost half an hour at maximum compared with . seconds if no extensions
are included. Since repair is more expensive if resources are capacitated, more
components are discarded. Furthermore, resources are located at lower echelon
levels.

For all extensions it holds that the costs change significantly. Even for the
no-fault-found probability it is over % at maximum. For the extension to
capacitated resources and the inclusion of a probability of unsuccessful repair
that decreases with an increasing echelon level, it also holds that the repair
strategy changes. Therefore, these two extensions should be incorporated in
practice. Incorporating a probability of unsuccessful repair that is equal at all
echelon levels and incorporating a no-fault-found probability does not lead
to a significant change in the repair strategy. Therefore, it may be possible to
neglect these probabilities during optimization, and adapt the total costs with
a certain percentage afterwards.

Technical note

In this technical note, we define formally the extension to capacitated resources
that we presented in Section ... To this end, we define two parameters:

• hc,r,d is the demand (in hours) for resource r per component c for which
decision d is taken, and

• ur is the annual number of hours that resource r can be used (capacity of
resource r assuming a certain maximum utilization rate, e.g., %).

We change Yr,l from being binary to being integer, and we change Constraint .
to the constraint: ∑

(v,w)∈Θr,l

gv,w,r ·Fv,w ≤ ur ·Yr,l ,∀r ∈ R ,∀l ∈ L (.)

With gv,w,r being the demand (in hours) for resource r if a flow of one goes
through arc (v,w): gv,w,r := hc,r,d if arc (v,w) represents decision d for compo-
nent c at a certain location.

Chapter 

Iterative method for the joint
problem of lora and spare
parts stocking

In the previous chapters, we focused on the lora problem, since we concluded
in Section . that that should be the first step in our research. Solving the joint
problem of lora and spare parts stocking can be done by executing a lora
first, and then solving a spare parts stocking problem, the so-called sequential
approach. However, we expressed our concerns about the quality of a solution
that results from this approach in Section ., while Alfredsson () and
Brick and Uchoa () express similar doubts. Now that we have a general
lora model, we are ready to answer research question : “What is a suitable
method to solve the joint problem of lora and spare parts stocking?”

Question  is split in two subquestions. In Chapter , we answer research
question b; in this chapter we answer research question a, which is: “How
can we iteratively use a lora model and a spare parts stocking model to solve
the joint problem of lora and spare parts stocking?” This means that we restrict
ourselves to an algorithm that is based on known building blocks. As building
blocks, we use our model from Chapter  and the vari-metric model (see,
e.g., Muckstadt, ; Sherbrooke, ). However, other lora models and
metric type spare parts stocking models could be used as well. In order to keep
the model transparent, we do not include the extensions that we modelled in
Chapter . In the next chapter, we develop an algorithm that finds a solution
that is optimal in the sense that the achieved availability cannot be achieved
against lower costs (an efficient point) and except for the approximation errors
in vari-metric. That algorithm can be used as a benchmark for the iterative
algorithm that we develop in the current chapter.

Based on Basten et al. (c)



 Chapter 

This chapter is structured as follows. Section . outlines the integrated model
for lora and spare parts stocking that we use. In Section ., we explain the
general idea behind our iterative method. Next, we specify a basic algorithm
and several variants in Section .. In Section ., we examine the added
value of our iterative approach compared with the sequential approach in an
extensive numerical experiment. We show that our algorithm significantly
improves the sequential approach with a maximum cost reduction of more
than % (over % on average). Also, we identify the variant of our iterative
algorithm that performs best in terms of cost reduction. We apply this variant
in Section . to the case study at Thales Nederland (see Section ..) and show
that we achieve a cost reduction of almost % compared with the sequential
approach. Also, we show that the current way of working at Thales Nederland
leads to a cost reduction that is about a quarter of the cost reduction that
we achieve. This chapter ends with a possible extension to our algorithm in
Section . and the conclusions in Section ..

. Model

In this section, we outline the model that we use. The general description
is presented in Section .., while Section .. lists the assumptions. We
give the mathematical model formulation in Section ... In Section ..
we make two further assumptions. These are not critical for our approach,
but they do ease both the presentation in the remainder of this thesis and the
implementation. They also decrease the problem size.

.. Description

We aim to solve the joint problem of lora and spare parts stocking. This means
that given a product design, an installed base, and a repair network, we decide
on:

• which components to repair upon failure, and which to discard,

• the repair location for each component that we decide to repair,

• the location(s) (if any) where we install resources (e.g., repair equipment),
and

• the locations and amounts of spare parts to stock for each component,

such that a target availability is achieved against the lowest possible life cycle
costs (lcc). The lcc include all relevant costs of the lora problem (e.g., costs
of hiring service engineers and transportation of components, and costs for
resources such as test equipment and tools), as well as the spare parts holding
costs.

We model the lora part of the problem similar to the model in the previous
chapters; at each location there are three possible decisions for each component:

Iterative method for the joint problem 

repair, discard, and move to the next higher echelon. This means that upon
failure of an lrus at the operating sites, we choose one of the three options:

• If we decide to discard a component (and purchase a new one), no fur-
ther repair/discard decisions need to be taken for this component or its
subcomponents (spare parts still need to be located for the component).

• If a component is repaired that has subcomponents, a decision (repair,
discard, or move) needs to be taken for the subcomponent that failed, at
the same location.

• If a component is moved to the location at the next higher echelon, a
decision needs to be taken for that component at that location. Notice that
failed components and subcomponents can move only in the direction of
the highest echelon level.

To enable the repair, discard, or movement of certain components, resources
may be required. Therefore, the decision that a certain component is to be
repaired, discarded or moved at a certain location, means that the required
resources (if any) should be installed at that location as well.

As in the standard metric type models, spare components may be stocked at
any location where demand for that component is positive. In the standard
models, each component has a fixed probability that it can be repaired at a
certain location (r in metric terms). In our model, this parameter is determined
by the lora decisions and r ∈ {,}. As a result, if an lru is removed from the
system that failed (echelon level ) and repaired at the intermediate depot
(echelon ) by replacing an sru, spare lrus may only be stocked at echelon
levels  and , since there is no demand at the higher echelon level(s). If the
sru is repaired at the intermediate depot as well, it may be stocked at echelon
level  only, since that is the only echelon level with a positive demand for the
sru.

The goal is to achieve the lowest possible lcc subject to a constraint on the
availability. In the unavailability, we only account for downtime waiting for
spares.

.. Assumptions

Similar to the standard vari-metric model (see, e.g., Muckstadt, ; Sher-
brooke, ), we assume that:

• The number of failures (demands) in a time period of any fixed length is
Poisson distributed with constant rate. This means, for example, that we

Due to pooling effects of the spare parts, it may be useful to stock spare parts at a higher
echelon level. However, in that case, it would generally be a good idea to perform the repair at
the higher echelon level as well, thus reducing the number of required resources. In that case, the
assumption is met again, since spare parts are stocked at locations with positive demand only.

 Chapter 

do not take into account that the installed base grows at the start of its
life cycle, and declines at the end of its life cycle.

• A failure in a component with subcomponents is always due to a failure
in at most one subcomponent. Notice that in the previous chapters, we
allowed failures to be due to a failure in two or more subcomponents
simultaneously.

• A location in the repair network at echelon e is only supplied from its
parent-location at echelon e + , not by a lateral supply from another
location at echelon e or by emergency shipments from locations at an
echelon > e+ .

• One for one replenishment (or an (s − , s) inventory control policy) is
appropriate for every component at every echelon level.

In Section .., we mentioned the fixed probability that a component can be
repaired at a certain location (r in metric terms) and we mentioned that in our
model r ∈ {,}. If we model multiple failure modes in one component (see
Section ..), a non-integer value between  and may result. For example,
% of the failures in the component (failure mode A) do not require any
resource and are repaired at the operating site, whereas the other % of the
failures (failure mode B) require an expensive resource and are repaired at the
central depot. However, we do not include this model refinement.

In addition to the assumptions above, we assume that at all locations at one
echelon level we take the same lora decisions (the repair/discard decisions
and the location of resources); we call this symmetrical lora decisions. The
locations and amounts of spare parts stocks need not be symmetrical, and the
repair networks that we consider need not be symmetrical either. This means
that, for example, the number of operating sites per intermediate depot may
differ for the various intermediate depots, or that repair costs are not equal at
all operating sites. However, having a three-echelon repair network with one
or more operating sites that are connected directly to the central depot is not
allowed.

In symmetrical repair networks, the optimal solution consists of symmetrical
lora decisions; in asymmetrical networks this is not necessarily true. For
example, if a European oem has some customers in Asia, it might be better to
perform certain repairs at a central location in Asia, whereas all other repairs
are performed at the central depot in Europe. However, we assume symmetrical
lora decisions for ease of implementation and testing of our iterative method.
Furthermore, in many cases, companies prefer to treat all locations at one
echelon level equally, be it just for ease of communication. In Section ., we
discuss the extension to non-symmetrical decisions, which, among other things,
leads to a growth of the problem size.

In practice, there is more flexibility than we model. For example, emergency
supplies from a higher echelon can be used if a spare lru is not available at the

Iterative method for the joint problem 

operating site, or cannibalization can be used; cannibalization means that if a
system needs a spare component that is not available, a component is disas-
sembled from another system that is already waiting for a spare part. However,
exclusion of these flexibility options makes the model more transparent. A
similar reasoning holds for the (s − , s) replenishment policy: costs may be
lower in practice due to batching of replenishments. However, the model is
more transparent if we assmue a simple replenishment policy. We refer to
Section ... for a discussion of including more flexibility.

.. Mathematical model

In Sections .. and ., we introduced notation for the lora model, and it is
summarized in Appendix A. In Section ..., we introduce one set that we re-
quire in addition to the sets that we introduced before. Then, in Section ...,
we introduce the input parameters that we require in addition to the input
parameters that we introduced before, and in Section ... we introduce
the decision variables. Next, we give two mathematical model formulations.
We present the model formulation of the general model in Section ....
Then, we discuss in Section ... the model that results if symmetrical lora
decisions only are used; we use the latter formulation to discuss our algorithm
in Sections . and ..

... Sets

The set Dl consists of all decisions that are available at location l, which
means that for all l ∈ L \ Lecen : Dl = {discard,repair,move}. Furthermore Dl =
{discard,repair} if l ∈ Lecen .

... Input parameters

In Section ., we defined λc,l as the failure rate for component c ∈ C at oper-
ating site l ∈ L. Since we require, in this and next chapter, that a failure in a
component with subcomponents is due to a failure in at most one subcompo-
nent, it should now hold that:

∑
b∈Γc λb,l ≤ λc,l , ∀l ∈ L, ∀c ∈ C.

Notice that if component c is discarded at operating site l, the observed demand
of its subcomponent b ∈ Γc at operating site l is . In general, the observed
demand of component b at operating site l ∈ L is qc,b ·λc,l ·Xc,l,repair. Instead of
qc,b ·λc,l , we use λb,l , see also Section .. This means that the observed demand
of component b at operating site l is equal to either  or λb,l , depending on
the decisions taken for its parent c. λb,l is an input parameter, the observed
demand is not.

With a similar reasoning, the observed demand of lru c ∈ C at location l ∈ L\L
is equal to

∑
k∈Φl λc,k · Xc,k,move, and we define λc,l =

∑
k∈Φl λc,k . For compo-

nent b ∈ C \C at location l ∈ L \L, the observed demand is more complicated

 Chapter 

since it can result both from moving that component upstream in the network
and from repairing its parent component at location l (the two ways that we
discussed in Section ..). The observed demand of component b ∈ C \C at
location l ∈ L \ L is equal to

∑
k∈Φl λb,k ·Xb,k,move + qc,b · λc,l ·Xc,l,repair | b ∈ Γc.

Since
∑
k∈Φl λb,k = qc,b ·λc,l , we can define λb,l as either

∑
k∈Φl λb,k or as qc,b ·λc,l .

As a result, using the defintion of λc,l for components c ∈ C at operating
sites l ∈ L given in Section ., we can now define λc,l for components c ∈ C at
locations l ∈ L \L recursively as

∑
k∈Φl λc,k .

hcc is the annual costs of holding one spare of component c.

... Decision variables

There are three sets of decisions variables:

Xc,l,d =
{
, if for component c ∈ C at location l ∈ L decision d ∈D is taken
, otherwise

Yr,l =
{
, if resource r is located at location l
, otherwise

Sc,l = the number of spare parts of component c located at location l

In addition, X denotes the matrix of all repair/discard decisions Xc,l,d and S
denotes the matrix of all spare parts decisions Sc,l .

... General model formulation

The resulting model:

minimize
∑
c∈C

∑
l∈L

∑
d∈D

vcc,l,d ·λc,l ·Xc,l,d +
∑
r∈R

∑
l∈L

f cr,l ·Yr,l +
∑
c∈C

∑
l∈L

hcc ·Sc,l (.)

subject to: ∑
d∈D

Xc,l,d =  ,∀c ∈ C ,∀l ∈ L (.)

Xc,k,move ≤
∑
d∈Dl

Xc,l,d ,∀c ∈ C ,∀l ∈ L \L ,∀k ∈ Φl (.)

Xc,l,repair ≤
∑
d∈Dl

Xb,l,d ,∀c ∈ C ,∀b ∈ Γc ,∀l ∈ L (.)

Xc,l,d ≤ Yr,l ,∀r ∈ R ,∀(c,d) ∈Ωr ,∀l ∈ L (.)
availability(X ,S) ≥ target availability (.)

Xc,l,d ,Yr,l ∈ {,} (.)
Sc,l ∈N (.)

Iterative method for the joint problem 

Constraint . guarantees that a decision is taken for each of the failures
that occur in lrus at the operating sites. Constraint . makes sure that if
the decision is taken to move a component to the next higher echelon level, a
decision is taken at the location at that echelon level. Constraint . assures that
if the decision is taken to repair a component at a certain location, a decision
is taken for all its subcomponents at that location as well. Constraint .
guarantees that repair, discard, or move actions are only performed at locations
at which all required resources are available. Constraints . to . are the ‘lora
constraints’, and together with the first two terms in the objective function, they
make up exactly the lora model that we used in Chapter . Constraint . is
the ‘spare parts stocking constraint’; it makes sure that the target availability
is met. Together with the third (and last) term in the objective function, it
makes up the spare parts stocking problem. However, the availability is a non-
linear function of the repair/discard decisions and the spare parts decisions.
Therefore, this mathematical model cannot be solved in this form, but is used
to define the problem clearly. To calculate the availability, we use the sum of
the expected backorders (ebo) of the lrus c ∈ C at operating sites l ∈ L. For
details, we refer to Section ., Sherbrooke (), or Muckstadt ().

... Model formulation using symmetrical lora decisions

We can add a constraint to the model formulation presented in Section ... to
achieve symmetrical lora decisions. However, we prefer to present a simplified
model with far less decision variables.

First, we define the input parameters that we use in the new model, using the
definitions of the input parameters that we used in the model in Section ...:
for all echelon levels e and all components c: λc =

∑
l∈Le λc,l . Notice that we de-

fined λc,l recursively in Section ... such that this equality holds indeed. For

all decisions d for all components c at all echelon levels e: vcc,e,d =
∑
l∈Le vcc,l,d ·λc,l∑

l∈Le λc,l
.

And for all resources r at all echelon levels e: f cr,e =
∑
l∈Le f cr,l . Notice that we

define λc and vcc,e,d in the same way as we did in Chapter .

Second, we define new decision variables, using the definitions of the decision
variables presented in Section .... It holds for all decisions d for all compo-
nents c at all echelon levels e that Xc,e,d = Xc,l,d , ∀l ∈ Le. Next, it holds for all
resources r at all echelon levels e that Yr,e = Yr,l , ∀l ∈ Le. Notice that we define
Xc,e,d in the same way as we did in Chapter .

Since the models are very similar, it should be clear how the constraints in the
model in the previous section relate to the constraints in the model that we
show below.
The formulation of the lora model in Chapter  is different from the formulation that we use

here. The latter formulation is easier to grasp; the former formulation is faster, and is therefore used
in our implementation. Furthermore, notice that the formulation here looks like the formulation
in Chapter  (although data is aggregated per echelon level in that formulation), but the constraint
on the resource-component relations is more general (Equation .).

 Chapter 

minimize
∑
c∈C

∑
e∈E

∑
d∈D

vcc,e,d ·λc ·Xc,e,d +
∑
r∈R

∑
e∈E

f cr,e ·Yr,e +
∑
c∈C

∑
l∈L

hcc ·Sc,l (.)

subject to: ∑
d∈D

Xc,,d =  ,∀c ∈ C (.)

Xc,e,move ≤
∑
d∈De+

Xc,e+,d ,∀c ∈ C ,∀e ∈ E | e , ecen (.)

Xc,e,repair ≤
∑
d∈De

Xb,e,d ,∀c ∈ C ,∀b ∈ Γc ,∀e ∈ E (.)

Xc,e,d ≤ Yr,e ,∀r ∈ R ,∀(c,d) ∈Ωr ,∀e ∈ E (.)
availability(X ,S) ≥ target availability (.)

Xc,e,d ,Yr,e ∈ {,} (.)
Sc,l ∈N (.)

In the third term of the objective function and in the spare parts stocking
constraint, Constraint ., we use the data per location, instead of per echelon
level. The reason is that we assume that the lora decisions are symmetrical,
but the spare parts decisions need not be symmetrical. If, for example, lead
times differ for the various operating sites, the amount of spare parts to stock
at each operating site may differ as well.

.. Demarcation

Now that we have displayed the model that we use, we make two additional
assumptions that are used in the remainder of this thesis. These are not critical
for our approach, but they do ease both the presentation in the remainder of
this thesis and the implementation. They also decrease the problem size.

• We only consider resources that are required to enable the repair option;
resources that are required for discard and move do not occur frequently
in practice (e.g., not in the case study).

• Discard costs are equal at all echelon levels, which is a reasonable as-
sumption since the main part of the discard costs consists of the costs of
acquiring a replacement component. As a result, we consider one discard
option only: discard at the central depot (most upstream location in the
network). This means that spare components can be stocked at any lo-
cation in the repair network upstream from and including the location
where its parent component is repaired. lrus, which do not have a parent
component, can be stocked at all locations in the repair network.

Iterative method for the joint problem 

Perform lora

Perform
spare parts
stocking
analysis

(a) Sequential

Perform lora

Perform
spare parts
stocking
analysis

Adapt lora
inputs

(b) Iterative

Figure .: Schematic representation of the algorithms

. General approach

The basic way of executing a lora and spare parts stocking analysis, is by the
sequential approach as depicted in Figure .a. A lora recommends for a given
product design and repair network, which components to repair, and which
to discard, where to perform the repairs, and where to locate resources. The
goal is to achieve the lowest possible life cycle costs. These costs consist of both
fixed costs (

∑
r∈R

∑
e∈E f cr,e ·Yr,e, see the objective function .), and costs that

vary with the number of failures (
∑
c∈C

∑
e∈E

∑
d∈D vcc,e,d ·λc ·Xc,e,d).

The spare parts holding costs are sometimes included (see, e.g., Saranga and
Dinesh Kumar, ), but it is not clear how these costs should be estimated.
The reason is that the number of spare parts that should be stocked as a result
of a repair/discard decision is not only related to the repair/discard decision
for the component itself, but also to the decisions for other components. For
example, if an availability of % should be achieved for a product consisting of
two components (A and B), then an unavailability of at maximum % is allowed
for the two components (the availability of component A times the availability
of component B should be higher than %). It is not necessarily optimal to
achieve an unavailability of .% for both components; if component A is
relatively inexpensive, it may be optimal to achieve an unavailability of .%

for component A, and an unavailability of .% for component B. Furthermore,
if the repair/discard decision for component B is changed, so that the lead
time for that component is reduced, then less spares are needed to achieve
the same unavailability of .%. As a result, it may now be optimal to achieve
an unavailability of .% for component B and an unavailability of .% for
component A. vari-metric, which uses a so-called system approach, implicitly
finds the best way of dividing the allowed unavailability over the components.
An item approach fails to do this due to its focus on individual components.

Therefore, we see in practice (e.g., at Thales Nederland) that spare parts holding
costs are not included in the lora. Instead, given the repair/discard decisions
that result from the lora, a spare parts stocking analysis is conducted (e.g.,
using vari-metric) to determine where to locate spare parts in the repair
network such that a target availability of the installed base is achieved against
the lowest possible spare parts holding costs (

∑
c∈C

∑
l∈L hcc · Sc,l).

 Chapter 

Our iterative approach, which is depicted in Figure .b, uses the same two
building blocks as the sequential approach does. However, instead of stopping
after executing one lora and one spare parts stocking analysis, we use the
annual spare parts holding costs that result from the spare parts stocking
analysis to adapt the lora inputs, and perform a second iteration of lora and
spare parts stocking. The goal of the feedback loop is to incorporate an estimate
of the spare parts holding costs that result from a lora decision in the lora
problem. In this way, we aim to find a lora solution that leads to low total
costs. Since the lora decisions are used to solve a spare parts stocking problem,
we satisfy the constraint on the availability after each iteration.

In terms of our mathematical model formulation in Section ..., we first
solve the model without the last term in the objective function, and with-
out Constraint .. Then, using the repair decisions (X) as an input, we use
vari-metric to determine the amount of spare parts to stock for all compo-
nents in the complete network (S), such that Constraint . is satisfied, and
the spare parts holding costs (

∑
c∈C

∑
l∈L hcc · Sc,l) are minimized. The aim of

our feedback loop is then to add the calculated spare parts holding costs to
either the variable costs (

∑
c∈C

∑
e∈E

∑
d∈D vcc,e,d · λc ·Xc,e,d) or the fixed costs

(
∑
r∈R

∑
e∈E f cr,e ·Yr,e), so that these are taken into account in the lora problem

in the next iteration (the model without the last term in the objective function,
and without Constraint .). Below, we discuss the basic idea of our algorithm
and the feedback loop. A formal description, including the stopping criterion,
is given in Section ..

The iterative procedure starts with executing a lora, ignoring the spare parts
holding costs, and then the execution of a spare parts stocking analysis using
the lora decisions. At this stage, after one iteration, we have a lora solution,
consisting of repair/discard decisions for each component ignoring spare parts
holding costs, and the spare parts stocking solution, consisting of a stock
allocation in the complete network and resulting spare parts holding costs for
each component. The key idea is that, as an approximation, we may decompose
the spare parts holding costs into spare parts holding costs per component, so
that for each component c the spare parts holding costs are

∑
l∈L hcc · Sc,l . That

is, if the lora solution recommends to repair a component at a certain echelon
in the repair network, or it recommends to discard the component, we assume
that the spare parts holding costs that result from this decision are always
the same, no matter which decisions are taken for the other components. As
discussed before, this is just an approximation, since the decisions taken for
one component may influence the amount of spare parts to stock for another
component. However, using such a simple approach, we only need to solve
a limited number of lora and spare part stocking problems to get a (rough)
estimate of the spare parts holding costs that result from all other (reasonable)
lora solutions.

We feed back the spare parts holding costs of each component in the entire
network to the lora problem; the costs are added to the costs of the repair/-

Iterative method for the joint problem 

discard option that was chosen in the first iteration for that component (the
technical specification can be found in Section .). Most probably, this repair/-
discard option will now be expensive, compared with the other possible repair/-
discard options, so that another option is chosen in the lora in the second
iteration. A second spare parts stocking analysis is performed, and the spare
parts holding costs that are thus found are decomposed into spare parts holding
costs per component and added to the repair/discard decision taken for that
component in the second iteration. By performing a couple of iterations, we
will gradually find spare parts holding costs for more repair/discard decisions.
We expect that after a couple of iterations, the lora will recommend an option
that leads to low total life cycle costs: lora costs excluding the added spare
parts holding costs, plus spare parts holding costs resulting from the spare
parts stocking analysis. Each time we encounter a solution that leads to lower
life cycle costs than the lowest we have found thus far, we store this solution.

Before we move to the technical description, we point out that we encounter
two issues. First, our algorithm does not converge monotonically. Instead, the
total costs may both increase and decrease during the iterations, and even
cycling between two (or more) solutions is possible. This mean that we have to
define a stopping criterion carefully, see Section ...

Second, we may find different estimates for the spare parts holding costs related
to a specific repair/discard decision for a certain component, since these costs
are influenced by the decisions taken for the other components. In our basic
algorithm, we always use the newest estimate in the next iteration. However,
one may also use the oldest estimate or a weighted average of the two estimates,
see Section ...

. Algorithm

After explaining our general approach, we now explain the algorithm in more
detail. We distinguish four parts in our algorithm:

• The lora building block: The minimum cost flow formulation that we
presented in Chapter .

• The spare parts stocking building block: vari-metric.

• The feedback loop: Discussed in Section ...

• The stopping criterion: Discussed in Section ...

We further propose three variants of the basic algorithm in Section ...

.. Feedback mechanism

In a standard lora, there are two cost components: the variable costs per
repair/discard action vcc,e,d , and the fixed costs to locate resources f cr,e. In

 Chapter 

lora costs Spare parts holding costs (vcs
c,e,d,j)

(fixed and at the end of iteration
variable)   

Component A B A B A B A B
Repair at ship        
Repair at depot        
Discard        
Total costs
(lora and spares)   

Table .: Costs in the lora problem (× €,)

principle, we can include the spare parts holding costs in both cost types;
we choose to include them in the variable costs. For each repair and discard
option (not for the move options) for each component, we add to the orig-
inal variable costs vcc,e,d the stored spare parts holding costs vcs

c,e,d,j after
iteration j (input for iteration j + ). In the input of the first iteration (j = ),
all vcs

c,e,d, =  in our basic algorithm. At the end of each iteration j, we set
for each tuple (c,e,d,) with d ∈ {repair,discard} for which Xc,e,d >  in iter-

ation j: vcs
c,e,d,j =

∑
l∈L Sc,l ·hcc
λc

. For all other repair and discard decisions (all
tuples (c,e,d,) with d ∈ {repair,discard} for which Xc,e,d =  in iteration j), we
set vcs

c,e,d,j = vcs
c,e,d,j−.

We explain the feedback mechanism using an example. We consider a radar
system that consists of two components (A and B). The radar system is installed
at two ships, which are supported by a depot. So, we consider a two-echelon,
single-indenture problem instance. We assume that for both components:

• the annual failure rate is  per ship,

• variable move costs are € ,

• repair costs are € ,, and

• discard costs are € ,.

Both components require a unique resource in order to enable repair. The one
for component A has fixed annual costs of €,, the other one has fixed
annual costs of € ,.

In the first iteration, there are no spare parts holding costs in the lora problem.
Therefore, the repair/discard options with the lowest lora costs are chosen for
both components. For component A this is ‘repair at depot’, since that leads
to annual repair costs of € , ( failures,  at each ship) and a resource at
the central depot; for component B this is ‘discard’, since that leads to annual
discard costs of €, and no resource costs. The annual lora costs for
each repair/discard option can be found in the second and third columns of
Table .. Next, we solve the spare parts stocking problem, and we find that

Iterative method for the joint problem 

spares for component A should be stocked at both the ships and the depot,
leading to annual spare parts holding costs of € , for component A only.
For component B, we find annual spare parts holding costs of €,. The
fourth and fifth columns in Table . show the costs related to spare parts in
our lora input after the first iteration (input for the second iteration). The
costs that are changed are bold and italic.

In the second iteration, we solve the lora with the modified input. The lora
will choose for component A one of the two options ‘repair at the ships’, or
‘discard’, since both options lead to total costs of €, + € (lora costs
+ spare parts holding costs), whereas repair at depot leads to total costs of
€ , + € ,. We assume that repair at ships is chosen. For component B,
repair at the depot is the most cost effective option. Of course, after solving
the spare parts stocking problem, we find that the spare parts holding costs
are not zero for these repair options. They are € , and € , for the two
components respectively. We feed this information to the lora problem again,
see columns six and seven in Table ..

In the third iteration, we decide to discard component A. For component B, it
turns out that repair at ships is not an interesting option, even if this leads to
zero spare parts holding costs. As a result, component B is repaired at depot.
Executing the spare parts stocking analysis leads to annual spare parts holding
costs of €, for each of the components A and B. Notice that we do not
modify the lora decision for component B, but the spare parts holding costs
for component B are changed, due to a change in the repair/discard decision
for component A. We simply replace the old stored costs of €, by the
newly calculated costs of €, (in the basic algorithm), see the last two
columns in Table .. Notice that the costs of €, mean that the option
to repair component B at depot has become so expensive, that it is not chosen
anymore in later iterations, whereas we know that the costs may also be lower
if combined with another decision for component A (for example, repairing
both components at depot). Instead, in the next iterations, the solution will be
to repair component A at depot and to discard component B.

The storage of spare parts holding costs that are too high is the key drawback
of our approach. As a result, we may end up with a non-optimal solution, and
we cannot give an indication of the quality of our algorithm compared with
the optimal solution. However, we do show in the numerical experiments in
Section .what we gain compared with the sequential approach. Furthermore,
in Chapter , we give an algorithm that finds a solution that is optimal in the
sense that the achieved availability cannot be achieved against lower costs (an
efficient point) and except for the approximation errors in the vari-metric
methods. We will use that algorithm to further analyze the quality of our itera-
tive algorithm. For now, we try to reduce the problem of storing spare parts
holding costs that are too high, which is the main reason why we develop vari-
ants of our algorithm in Section ... First however, we discuss the stopping
criterion for our algorithm in Section ...

 Chapter 

.. Stopping criterion

As mentioned in Section ., the stopping criterion for our iterative algorithm is
not trivial because of the non-monotonous behaviour of the objective function.
Stopping when the total costs in two consecutive solutions are almost equal
does therefore not work, the costs being the total of the lora costs without the
added spare parts holding costs, plus the spare parts holding costs resulting
from the spare parts stocking analysis. Instead, when defining an appropriate
criterion, we have to take into account two events that may occur:

. Two solutions are chosen alternately (‘cycling’), so that the algorithm will
not find better solutions anymore.

. The costs in two consecutive iterations are almost equal, but spare parts
holding costs in the lora problem are still being changed (values vcs

c,e,d,j ,
which are not part of the objective function). If the costs are still being
changed, the lora might still find a better solution during a later iteration.
This may happen in the first few iterations, when the algorithm is still
‘exploring’ all the options; two different lora solutions may accidently
lead to almost the same total costs.

We can cope with the occurence of both events using a stopping criterion
consisting of two conditions that should both be satisfied:

. After each iteration, we store the solution if it is better than the best we
have found thus far. We stop our algorithm if we have not found a better
solution during j iterations.

. Solving the lora problem leads to certain ‘lora costs’, and certain spare
parts holding costs as a result of spare parts holding costs estimates
that we added to the variable costs in the lora problem. We assume
that the estimates of the spare parts holding costs in the lora inputs
(all values vcs

c,e,d,j) are accurate enough, if the total spares parts holding
costs that is part of the lora solution (

∑
c∈C

∑
e∈E

∑
d∈D vc

s
c,e,d,j ·λc ·Xc,e,d)

deviates less than p% from the total spare parts holding costs that is calcu-
lated in the spare parts stocking problem after the lora has been solved
(
∑
c∈C

∑
l∈L hcc · Sc,l). We can stop calculations j iterations afterwards.

The choice of the number of iterations (j and j) and the percentage differ-
ence p is more or less arbitrary. We choose j = j =  and p = % in our
experiments. We performed tests on  of the most difficult problem instances
(see Section .) to see whether results would change if j = j =  and
p = .%, but for none of the problem instances they do. Therefore, we con-
clude that our stopping criterion serves its purpose in the sense that we do not
stop too early (which leaves open the possibility that we can stop even earlier,
but this is less important given the speed of the algorithm as we will see in
Section .).

Iterative method for the joint problem 

.. Variants

As mentioned in Section .., the spare parts holding costs for a certain repair/-
discard option may be very high in a single iteration, due to the decisions that
have been taken for the other components. As a result, that option is not chosen
in later iterations anymore, although it may be an interesting option if we take
alternative decisions for the other components. We discuss two variants of our
algorithm to cope with this issue.

In the first variant, we do not simply replace the stored spare parts holding
costs in the lora problem by newly calculated spare parts holding costs, but
we take a weighted average. In this way, we aim to avoid storing spare parts
holding costs that are too high. In the second variant, we run the basic algorithm
until the stopping criterion is reached. We then restore the best solution we
found thus far, decrease the stored spare parts holding costs that belong to this
solution, and start our algorithm again. In this way, we test whether the stored
spare parts holding costs for the repair/discard options that were not chosen
in the final soltuion are too high.

Next to these two variants, we introduce a variant in which we try to improve
the starting solution of our algorithm. Instead of starting with stored spare
parts holding costs of zero for all repair/discard options, we make an initial
estimate of those costs. Sections ..., ... and ... discuss each of
these three variants respectively.

... Using a weighted average to update stored spare parts holding
costs

If our algorithm finds spare parts holding costs for a certain repair/discard
option, we add these to the inputs of the lora problem. If new spare parts
holding costs are found for a repair/discard option for which we already stored
spare parts holding costs in the lora problem, we simply replace the old value
with the new value in the basic algorithm. A result of this approach is that if
the costs are very high in one iteration, the spare parts holding costs that we
store are very high as well, and the corresponding repair/discard option may
be excluded in the lora in any later iteration. Therefore, we use a different
procedure to update the spare parts holding costs in this variant: we take a
weighted average of the old and new value. The new value gets weigth  ≤ α ≤ ,
and the old value gets weigth  −α. More specifically, if we get a new spare
part holding costs estimate (vcest

c,e,d,j) for option d at echelon e for component c
at the end of iteration j, we do not store it directly, but instead, we store the
value vcs

c,e,d,j = α · vcest.
c,e,d,j + (−α)vcs

c,e,d,j−, with:

• vcs
c,e,d,j being the spare parts holding costs stored in the database for

option d at echelon level e for component c at the end of iteration j.

• α being the weight.

 Chapter 

• vcest.
c,e,d,j being the estimate for the spare parts holding costs for option d at

echelon level e for component c that results from the spare parts stocking
analysis at the end of iteration j (notice that we only adapt spare parts
holding costs for the repair/discard options that are chosen in the last
iteration).

• hcc,e,d, being  in the basic model, or the initial estimate as discussed in
Section ....

If we select the same option in a number of consecutive iterations, we gradually
update the spare parts holding costs to the value that we find repeatedly,
which makes the approach similar to the exponential smoothing technique in
forecasting (see, e.g., Brown, ). A drawback of using a weighted average is
that the number of required iterations will usually grow. Furthermore, since it
is a different method than the basic algorithm, there is no guarantee that the
solution that is found is at least as good as the solution that is found using the
basic algorithm.

Besides, the second part of our stopping criterion gets more important when
using a weighted average to update spare parts holding costs. The reason is
that the total costs in a number of consecutive iterations may be almost equal,
since the stored spare parts holding costs are not changed that much. After the
spare part holding costs are adapted a few times, and are getting closer to the
actual spare parts holding costs, the lora may find another lora solution.

... Decreasing stored spare parts holding costs

Instead of preventing stored spare parts holding costs in the lora problem
of becoming too high, which is what we tried to do in the previous section,
we may also decrease stored spare parts holding costs if they are too high.
However, we do not know which costs are too high. Therefore, we have to
decide when to decrease the stored spare parts holding costs, which costs to
decrease exactly, and with how much to decrease them.

We choose to lower the costs at the moment that the basic algorithm reaches
the stopping criterion. At that moment, we have reached a local optimum, and
we try to get the algorithm out of that local optimum, hoping that it will find a
better (local) optimum. There are various ways to decide which stored spare
parts holding costs to decrease. For example:

• Decrease the spare parts holding costs for repair/discard options that
have not been chosen in the last j iterations (for example, j = ).

• Decrease the spare parts holding costs for randomly picked repair/-
discard options (x% of the total number of repair/discard options, with,
for example, x = ).

• Decrease the x% highest stored spare parts holding costs (for example,
x = ).

Iterative method for the joint problem 

If we know which spare parts holding costs to decrease, we can still decide to
decrease all of them with the same percentage, or with the same amount of
money. We can also differentiate in some way.

Since each of the options has pros and cons, we choose a relatively simple
approach, inspired by the variable neighborhood search (see, e.g., Mladenović
and Hansen, ): if the stopping condition is reached, we restore the stored
spare parts holding costs that we had in the best iteration (the lowest total
life cycle costs), which is not necessarily the last iteration. We decrease the
restored costs by a certain percentage p for all repair/discard options, except
for those that were picked in the best lora solution (the lora solution in the
best iteration), since those values are up-to-date. We also reset our stopping
condition. If our stopping condition is reached again without finding a better
solution, we restore the best solution again, and decrease all stored spare parts
holding costs with a percentage p > p (again, not those that were set in
the best iteration), et cetera. If we do find a better solution, we start all over
again, in that we store that better solution, and when the stopping condition
is reached, we lower the stored spare parts holding costs with p, et cetera.
Obviously, the number of iterations that is required will grow. However, the
solution that is found is at least as good as the solution that is found using the
basic algorithm, since we extend that basic algorithm.

... Initial estimate of spare parts holding costs

In the basic algorithm, all spare parts holding costs are initially zero in the
lora problem. In this variant, we try to start with more realistic estimates for
the spare parts holding costs; we make these estimates using an item approach
that is commonly used for fast moving consumables. Although this is not really
applicable in our setting, we hope that these estimates improve the initial
solution (solution after first iteration). In general, a good initial solution speeds
up a local search and leads to better results on average (for examples of such
behaviour, see Gademann and Schutten, ; Guldemond et al., ). We
test whether this holds for our algorithm as well.

We estimate the initial spare parts holding costs (vcs
c,e,d,)

 for repair/discard
option d at echelon level e for component c using a safety-stock approach per
item (see, e.g., Silver et al., , pp.–). Remember that for the spare
parts calculations, we use the data per location, instead of per echelon, so that
our estimate is as follows: vcs

c,e,d, =
∑
l∈Le hcc

(
λc,l · ltc,l,d + k

√
λc,l · ltc,l,d

)
, with:

• hcc being the annual holding costs of one spare component c.

• λc,l being explained in detail in Section ..., but it can be read here as
the annual demand for spares of component c at location l.

We also tested a more sophisticated approach, but the change in results was minor.
Remember that vcsc,e,d,j represents the holding costs for all spare parts of component c located

throughout the repair network.

 Chapter 

• ltc,l,d being the lead time for component c at location l if option d is
selected. For the discard option, the lead time includes the order-and-
ship time from the external supplier to the central depot, and the time it
takes to ship it from the central depot to the operating site. For the option
‘repair at central depot’ in a three-echelon repair network, this lead time
includes the time it takes to ship the component from the operating site
to the central depot, repair it there, and ship it back to the operating site.
There are two issues to notice here:

. If subcomponents are required to perform a repair, their unavail-
ability may lead to an increase in the lead time. We ignore this delay,
thereby underestimating the effective lead time for components
with subcomponents.

. In the lead time, we assume that the component ‘originates’ at the
operating site. This is true for lrus, but for components that have a
parent component, this need not be true, since the parent may have
been shipped to a higher echelon to be repaired there. However, we
do not know the repair location of the parent at the moment the
initial spare parts holding costs estimate is made. Therefore, the
lead time for components that are not lrus, may be overestimated.

• k being the safety factor.

λc,l · ltc,l,d is the mean demand over the lead time. Since we assume a Poisson
distributed number of failures in any period, the variance is equal to the
mean, and the standard deviation of the demand over the lead time is the
square root of the mean (and of the variance):

√
λc,l · ltc,l,d . We estimate that

the number of spare parts that need to be stored is equal to the mean demand
over the lead time, plus k times the standard deviation of the demand over the
lead time. Notice that the number of spares that we estimate need not be an
integer, although we know that the actual number of spares will be integer.
However, rounding the estimated value up to the next integer may lead to
a huge overestimation of the spare parts holding costs, whereas rounding it
down may lead to zero spare parts holding costs, which means that the estimate
does not help with directing the lora to choosing repair/discard options that
lead to low overall costs (lora costs and spare parts holding costs). The exact
amount of spares will be calculated after the lora has been solved, in the spare
parts stocking analysis.

One of the major drawbacks of estimating the spare parts holding costs per item
is that we treat all items in the same way, whereas we mentioned in Section .
that in practice, relatively few items are stocked for expensive components, and
relatively many items are stocked for inexpensive components. Differentiating
between types of components (expensive slow movers versus inexpensive
relatively fast movers) may help. However, we have analysed the results of
our case study at Thales Nederland, and notice that some components are not
put on stock at all, which effectively means that a negative k should be used,

Iterative method for the joint problem 

whereas for some other components, one spare part needs to be put on stock
at each ship. If, at the same time, the lead time demand is very small, since
we have slow movers, we may effectively have a safety factor k > . A system
approach is required to be able to find such results; this is inherently not
possible using an item approach, particularly not if we have many (extreme)
slow movers.

There is no guarantee that using an initial estimate of the spare parts holding
costs leads to a solution that is at least as good as the solution of the basic
algorithm. However, we hope that on average we will find a better solution,
and we aim for a decrease in the number of iterations.

. Computational experiments

In this section, we perform an extensive numerical experiment to answer the
following questions:

. What cost reduction can be achieved by performing the lora and spare
parts stocking analysis iteratively, compared with performing them se-
quentially?

. Which variant of our iterative method gives the best results?

. How do the repair strategies change if we use the iterative approach
instead of the sequential approach?

. Under which parameter settings does the iterative approach yield most
cost reductions compared with the sequential approach?

To answer these questions, we design a numerical experiment that we present
in Section ... In Section .., we discuss the results of our tests and answer
the questions.

.. Design

In our experimental design, we restrict ourselves to problem instances that are
completely symmetrical in the network structure, the cost factors, the demand
rates, and the throughput times. Some parameter settings are the same in all
problem instances, others are varied to see their impact. For some parameters,
we give a range, instead of one value. In that case, we randomly draw values in
the given range for that parameter. These randomly drawn values are the same
for all settings of the other parameters.

We use three sets of problem instances; each with its own focus, which will
be explained below. In each of these sets, we use a full factorial design, in
that a couple of parameter settings are varied and we test each combination
of parameter settings. For each of these combination of settings we generate
ten problem instances, in order to obtain a variety of problem instances. Since

 Chapter 

each parameter setting has a default value (or range) that is the same in the
three test sets, there are ten problem instances that are part of each of the three
sets. The parameter settings for these ten problem instances are used below,
where we explain how we generate problem instances. After this explanation,
we show which parameters are varied in each test set. Details on the generator
can be found in Appendix E.

... Default scenario

The repair network consists of three echelon levels, with a central depot, two
intermediate depots, and ten operating sites. We use the following lead times:

• the discard time, so the time it takes to receive a new component at the
central depot, is in the range [/, /],

• the replenishment lead time from one echelon to the next is in the range
[/, /] ( weeks to  weeks), and

• the repair time is in the range [/, /].

The product structure consists of three indenture levels, with  lrus,  srus,
and  parts. The annual demand for a component is equal to the annual
demand of its subcomponents, and the annual demand of a part (indenture
level ) is in the range [./,./]. This means that the demand of
each lru is close to the range [.,.], see for details Appendix E. The net
component price is in the range [,, ,]. Using these prices, we calculate
the variable costs as follows:

• repair costs as a fraction of the net component price are in the range [%,
%],

• for the discard, move and holding costs, we recursively add the costs of
each subcomponent to its parent to get the gross component price of the
parent,

• the discard costs as a fraction of the gross component price are in the
range [%, %],

• the move costs as a fraction of the gross component price are %,

• the annual costs of holding one spare part of a component are % of the
gross component price.

There are ten resources and their annual costs are in the range [,, ,].
% of the resources is required by one component only, the other % is re-
quired by  to  components. We distinguish  ‘component types’, for example
electronic versus mechanical components. Each resource and each lru family
(an lru including all its subcomponents at any indenture level) is randomly
assigned to one of the component types. The result is that resources of one
component type do not interact with resources of another component type,
which is realistic in practice.

Iterative method for the joint problem 

... Three test sets

The problem instances are divided into three sets, as mentioned above. For
each of these sets, we explain the focus and we give the values for each of the
parameters that are varied:

. This is a general test set, in which we vary the problem size, the spare
parts holding costs and the lead times: # Echelons:  & , # indentures:
 & , # lrus:  & , annual holding costs: [%, %] & [%, %],
discard time: [/, /] & [/, /], repair time: [./, /] & [/,
/], and move time: [./, /] & [/, /] (, instances).

. In this set, we make acquiring resources more and less attractive, by
changing the annual number of failures, and the costs of resources and
components (and thereby the variable repair, discard and move costs):
Annual demand of lru: [., .], [., .], [., .] & [., ],
net component price: [,, ,] & [,, ,], annual resource
cost: [,, ,] & [,, ,] ( instances).

. In this set, we change the resource-component relations in various ways:
Component types:  & , % resources used by  component: % & %,
components per resources:  to  &  to  ( instances).

.. Results

In this section, we compare the results of using our algorithm with those of
using a sequential approach. Since the problem instances that we use are com-
pletely symmetrical, we decided to make the spare parts decisions symmetrical
as well. This means that if we decide to stock a spare part at a certain location,
we stock spare parts at all locations at that echelon level. Stocking spare parts
symmetrically is optimal for symmetrical networks, except that the overshoot
increases (the achieved availability may be higher than the target availability).

A key result is that using our basic algorithm, we achieve a cost reduction
on average over the , problem instances in test set  of .% compared
with using the sequential method. At maximum, the cost reduction is almost
%. This means that using a sequential approach may lead to costs that are
far higher than necessary. Remember that the life cycle costs of a number of
sensor systems are tens of millions of euros, which means that a huge amount
of money can be saved.

In Section ..., we use test set  only to test which of the proposed variants
(Section ..) leads to an improvement of the results in terms of more cost
reduction compared with the sequential approach, and which setting performs
best for each of the variants (e.g., which α for the weighted average). After
we have thus found the settings to use for each variant, we perform, still in
Section ..., a test combining the variants for test sets  to  to see whether
combining the variants leads to a further improvement.

 Chapter 

Parameter Values
Weighted average α ., ., ., .
Decrease factorsa % – % – %, % – % – %

Initial spares k-value , , , , 

Table .: Parameters of the iterative algorithm variants

ap – p – p means that if the stopping condition is met the first time, values are decreased
with p, if no better solution is found, values are decreased with p, and if still no better solution
is found, values are decreased with p.

Cost reduction compared with
Iter- Sequential Basic iterative

α ations Ave. Min. Max. Ave. Min. Max.
—  .% .% .% — — —

.  .% .% .% .% -.% .%

.  .% .% .% .% -.% .%

.  .% .% .% .% -.% .%

.  .% .% .% .% -.% .%

.  .% .% .% .% -.% .%

Table .: Varying the weighted average α

In Section ..., we then compare the actual repair strategies that result
from using the sequential approach and using our algorithm. We also analyse
which parameters impact the cost reductions that can be achieved. So, in
Section ..., we answer the first two questions that we posed at the start of
Section ., and we answer the last two questions in Section ....

... Comparison of various settings for the proposed variants

For each of the three variants, Table . lists the parameter values that we
use. Note that using α =  would mean that the old stored spare parts holding
costs are replaced by the new value, which is what the basic algorithm does.
Note, furthermore, that k =  means that we use an initial spares estimate
considering the mean demand only, which is not the same as using the basic
algorithm.

We test the variants one at a time, and compare them with the basic algorithm.
Next, we combine the three variants, each with its best setting, and examine
whether this yields a further improvement. Tables ., . and . show the
cost reductions that we achieve by using each of the three variants respectively.
The first row in each of the tables shows the results of our basic algorithm.

Table . shows that using a weighted average to update the stored spare
parts holding costs does improve the results compared with using our basic
algorithm. About .% additional cost reduction on average may not seem

Iterative method for the joint problem 

Cost reduction compared with
Decrease # Iter- Sequential Basic iterative
factors ations Ave. Min. Max. Ave. Min. Max.

—  .% .% .% — — —

% – % – %  .% .% .% .% .% .%

% – % – %  .% .% .% .% .% .%

Table .: Varying the decrease factors

much, but we are talking about tens of millions of euros over the life time of
a number of sensor system, for example. Besides, the cost reduction can be
more than %. Using a weighted average increases the time it takes to solve
problem instances, but it does certainly not explode; over all tests, we found
a maximum of  iterations or . minutes (both with α = .). We see that,
with a minor bump for α = ., the average cost reduction (compared with the
basic algorithm) keeps increasing with a decreasing α. However, the number
of iterations keeps increasing as well. As a result, we recommend to take α as
low as possible for problem instances in practice, but for our further tests, we
take α = ., since that gives a good combination of cost reduction and number
of iterations.

The last two columns in Table . show that using a weighted average leads to
a cost reduction compared with using the basic algorithm for some problem
instances, and a cost increase for other problem instances. In practice, it may
be worthwhile to solve a problem instance with a couple of different settings,
and to choose the best of the solutions. However, we do not perform such tests
here.

Table . presents the results of decreasing the stored spare parts holding
costs with a certain percentage when the stopping criterion is met. We see
that it does reduce the costs with just over .% on average compared with
our basic algorithm. We also see that the performance of both sets of decrease
factors does not differ much, and that for both sets, the number of iterations
increases, as expected; this leads to an average optimization time of about one
and a half minute. In contrast to using a weighted average, we see that using
decrease factors never yields a solution that is worse than the solution of the
basic algorithm, as explained in Section ....

Since both settings yield approximately the same results, we propose to use
the decrease factors of % – % – %, since that leads to the least number
of iterations. This may especially be important if the decrease factors are
combined with using a weighted average, since that may lead to a further
increase of the number of iterations.

It can be seen that using an initial spare parts holding costs estimate (Table .)
leads to worse results on average compared with the basic iterative algorithm.
For some problem instances, a significant cost reduction can be achieved (more

 Chapter 

Cost reduction compared with
Iter- Sequential Basic iterative

k ations Ave. Min. Max. Ave. Min. Max.
—  .% .% .% — — —

  .% .% .% -.% -.% .%

  .% -.% .% -.% -.% .%

  .% -.% .% -.% -.% .%

  -.% -.% .% -.% -.% .%

  -.% -.% .% -.% -.% .%

Table .: Varying the initial spare parts holding costs estimate

than %), but we also see cost increases of more than %. In Section ..., we
explained that using an item approach that is used for fast moving consumables
in the setting of slow moving repairables, may not be appropriate. It turns out
that this is the case. Therefore, we recommend not using an initial spare parts
holding costs estimate. In practice however, it may be worthwhile to solve a
problem instance with a couple of different settings, and to choose the best of
the solutions.

Based on the results for each of the variants individually, we perform tests
using no initial spare parts holding costs estimate, a weighted average α = .
and the decrease factors % – % – %. The average cost reduction compared
with using the sequential method is .% in test set , which means that
the additional cost reduction over using the basic iterative algorithm is .%

on average (compared with .% for using only α = . and .% for using
only the decrease factors % – % – %). The cost reduction compared with
the basic iterative algorithm is -.% at minimum (so it is actually a cost
increase), and .% at maximum. Again, this suggests that in practice, it may
be interesting to use a number of settings when solving a problem instance and
to choose the best solution. Over all three test sets, the average cost reduction
compared with the sequential approach is .%, and it is over % at maximum.
Since the first iteration in the iterative algorithm is exactly the same as using
the sequential approach, there can be no cost increase. The maximum number
of iterations that is required is , and the maximum running time is just over
ten minutes.

We summarize the results in this section by answering the first two questions
that we posed at the beginning of Section .:

 What cost reduction can be achieved by performing the lora and spare
parts stocking analysis iteratively, compared with performing them se-
quentially?

The cost reduction is .% on average, and over % at maximum.

 Which variant of our iterative method gives the best results?

Iterative method for the joint problem 

Echelon level Sequential Iterative Difference
Central depot . . +.
Intermediate depots . . +.
Operating sites . . -.
Total . . -.

Table .: # annually repaired lrus

The best variant is a combination of using a weighted average when updating
spare parts holding costs, with α = ., and decreasing costs when the stopping
condition is reached, using decrease factors % – % – % (but no initial spare
parts holding costs estimate).

... Detailed comparison of iterative and sequential method

Now we move to the third question that we posed at the beginning of Sec-
tion ., so we focus on the differences in the repair strategies that result from
using the sequential and iterative approach. After that, we study the impact of
the various input parameter settings on the cost reductions that we can achieve
(question four). We perform the tests in this section using the best combination
of variants (answer to question two).

The third question that we posed is:

 How do the repair strategies change if we use the iterative approach
instead of the sequential approach?

The iterative procedure places more resources in the network than the se-
quential approach does. Still, the number of resources is small: . (. at
central depot) and . (. at central depot) on average respectively ( of the
 different resources at maximum for both the sequential and the iterative
approach). As a result, slightly more repairs and less discards are performed in
the iterative solution. In addition, we see that the iterative algorithm performs
some more repairs at the higher echelon levels, instead of at the operating
sites for components that do not require resources. To clearly show this effect,
we focus on the  problem instances in test set  for which no resources
are located in the results of either the sequential or the iterative algorithm.
The average cost reduction that is achieved for these problem instances is
.% compared with .% on average over all other problem instances in
test set . If no resources are bought, as in all the  problem instances, the
solution is simple for the sequential algorithm: repair all components that
require no resource at the operating site, thus avoiding move costs, and discard
all other components. In the result of the iterative algorithm, some repairs
are performed at a more central location (and some more components are
discarded), see Table .. If repairs are performed at the operating sites, spare
parts can be stocked at the operating sites only. If repairs are performed at
a higher echelon level, pooling effects for the spare parts can sometimes be

 Chapter 

Cost reduction comp-
ared with sequential

Parameter Setting Average Maximum

indenture levels
 .% .%

 .% .%

lrus
 .% .%

 .% .%

echelon levels
 .% .%

 .% .%

Annual holding costs
[%, %] .% .%

[%, %] .% .%

Discard lead time
[/, /] .% .%

[/, /] .% .%

Repair lead time
[./, /] .% .%

[/, /] .% .%

Move lead time
[./, /] .% .%

[/, /] .% .%

Table .: Cost reduction for each parameter setting (test set )

used: instead of stocking one spare part at each operating site, leading to ten
spare parts in total, maybe only two spare parts are required at each of the
intermediate depots, leading to four spare parts in total.

Now that we have answered question three, we can go to the fourth question
that we posed:

 Under which parameter settings does the iterative approach yield most
cost reductions compared with the sequential approach?

Tables ., . and . give the cost reductions that the iterative algorithm
achieves compared with the sequential algorithm for the various parameter
settings in test sets ,  and  respectively. We discuss the results for test sets 
and  below; in test set , there is no parameter that has a big impact on the
achieved cost reductions.

The two parameters that really influence the cost reduction that is achieved in
test set , are the number of lrus and the move lead time.

The influence of the number of lrus on the cost reduction that can be achieved
relates to the total unavailability of % (=%-%) that is allowed for the
complete product. We know that if we want to achieve the same availability for
a product with  lrus as for a product with  lrus, then the unavailability
that is allowed per lru is about twice as low in the case of  lrus. If the
unavailability that is allowed per lru is so low (or equivalently, the ebo per lru
are so low), then using pooling effects with the spare parts is often not possible.

Iterative method for the joint problem 

Cost reduction comp-
ared with sequential

Parameter Setting Average Maximum

Demand per lru

[., .] .% .%

[., .] .% .%

[., .] .% .%

[., ] .% .%

Component price
[,, ,] .% .%

[,, ,] .% .%

Annual resource costs
[,, ,] .% .%

[,, ,] .% .%

Table .: Cost reduction for each parameter setting (test set )

If there are no spares at the operating sites, the achieved availability is already
too low. To verify that this is the reason that this happens, we performed a
test for all problem instances with  lrus, aiming at an availability of .%.
In that case the cost reduction that can be achieved by using the iterative
approach compared with the sequential approach decreases to .%, which is
still higher than .% ( lrus, % target availability), but much lower than
.% ( lrus, % target availability).

The effect of the move lead time on the cost reduction is counterintuitive.
Intuitively, long lead times lead to high spare parts holding costs, and therefore,
much can be gained using an iterative procedure. However, this is not what the
results show. Above, we discussed that pooling effects are used by the iterative
procedure, which are not used in the sequential approach. Now, if the move
lead time is relatively long, using these pooling effects is not possible: if spares
are not located at the operating site, there is always a long downtime if a failure
occurs, since it takes a while before the spare part arrives. This means that
with increasing lead times, the cost reduction that can be achieved decreases.

In test set , the demand per lru is the parameter that mainly determines the
cost reduction that can be achieved. The main reason is that if the demand per
lru is very low ([., .]), pooling effects can be used more effectively than if
demands are higher. The costs for spare parts at the central depot increase with
% compared with the sequential solution in the case of very low demands,
whereas it decreases with % on average for the higher demands. The reason
is that if demands are very low, the availability will be high without storing
many spares. For higher demands, storing at least one spare part at a lower
echelon, possibly even at the operating sites, may be required to achieve the
target availability. As a result, we see a cost reduction of % of the spare parts
holding costs if we compare the iterative solution with the sequential solution
for the problem instances with an lru demand in the range [., .], whereas
this reduction is only % on average for the higher demands.

 Chapter 

Cost reduction comp-
ared with sequential

Parameter Setting Average Maximum

Component types
 .% .%

 .% .%

Components per resource
[, ] .% .%

[, ] .% .%

% resources used by  component
% .% .%

% .% .%

Table .: Cost reduction for each parameter setting (test set )

. Case study at Thales Nederland

We performed a case study at Thales Nederland, which is described in Sec-
tion .. and summarized in Section ... The goal of this study is to find
out which cost reduction we may obtain in practice and which advantages and
drawbacks of our new approach we can identify for application in practice.
In Section .., we discuss the current way of working at Thales Nederland
to solve the lora and spare parts stocking problem, and the difficulties this
leads to. Section .. compares the results of using our iterative algorithm
with those of using the sequential algorithm and those of the logistic engineers
at Thales Nederland.

.. Current way of working

Data for the case study is stored in the lsar database, where lsar stands
for logistics support analysis record. In the military world, logistics support
analysis (lsa) is the activity of generating source data and a maintenance plan
for a newly acquired product (from the viewpoint of the customer). The lsa is
part of the integrated logistics support (ils) program, in which much more is
done. For example, it is specified what training should be given to maintenance
personel and which spare parts should be acquired. def stan - (part )
(United Kingdom Ministry of Defence, b) gives more information on lsa(r)
and ils. The logistic engineers at Thales Nederland are responsible for the lsar
database.

Before analyzing the lora decisions based on cost considerations, logistic
engineers at Thales Nederland first conduct a so-called non-economic lora.
The goal of this non-economic lora is to exclude non-realistic repair or discard
options and to simplify the problem. The most important questions posed are:

• Is the component prone to failure? In the product structure, there are
also so-called ‘structure parts’, which are, for example, cabinets in which
a couple of subcomponents are installed. These cabinets themselves are

Iterative method for the joint problem 

not prone to failure, and they cannot be removed easily. Instead, the
subcomponents in the cabinet will be removed. In this way, it is also
determined which components are the lrus, so the lowest indenture level
items that can be replaced upon failure. These lrus may be part of a
subsystem that is not replaced upon failure.

• Does the customer prescribe the maintenance policy for the component?
If so, this policy is followed.

• Does the value of the component exceed a certain threshold? If not, it can
be discarded by default, since it is not worth repairing.

• Are intellectual property rights involved that prohibit the customer from
performing repairs? If so, the oem can repair it, or it can be discarded.

• Is the component procurable, and will it be procurable in the future? If
not, it should not be discarded.

• Does the component have any handling constraints? For example, a
component may be hazardous or repair can only be performed in a dust-
free and vibration-free environment. Such an environment cannot be
created on board a ship (it is far too expensive), so repair at ship is not a
viable option.

The result is that for some components, repair/discard options may be excluded.
Multiple options may remain, but it may also happen that only one option
remains. In that case, no decision needs to be taken in the lora problem for
that component, but the component is still taken into account in the spare parts
stocking problem, because the corresponding spare part inventories influence
the availability.

Furthermore, only part of the resources are included in the lora, mainly the
expensive ones. For example, every engineer has a screwdriver, so they need
not be considered. Besides, some expensive resources may already be available
at each location, so that they need not be acquired (and taken into account in
the lora).

After the input data has been structured and filtered, the logistic engineer
finds a reasonable solution. He uses decisions made for previous products, his
experience, and spreadsheet calculations. Then, he uses a spare parts stocking
tool (inventri, based on vari-metric and the work of Rustenburg, ) to
stock spare parts. Analyzing the results, he finds components for which spare
parts costs are very high. If he thinks that it might help to repair (some of)
these components at a lower echelon level, he changes the lora decision for
these components, calculates the new lora costs and solves a spare parts
stocking problem. So in fact, the logistic engineer tries to perform some manual
iterations, which has as its drawbacks that it is:

• Time consuming, since an analysis takes up to a few days after all data
has been acquired.

 Chapter 

• Non-reproducable, because of the judgmental feedback loop. This means
that two different logistic engineers may arrive at different solutions,
and even a single logistic engineer may come to a different solution if he
solves the same case at a later moment.

• Error sensitive. The change of the lora decision of a parent has impact
on the lora decision of its children. If not thoroughly checked, costs
may be doubled or left out. For example, a camera unit is repaired at the
oem in the solution of the logistic engineer. However, repair costs for the
subcomponents of the camera unit are taken into account at the central
depot, although repair at the oem means that these subcomponents are
necessarily repaired by the oem as well.

In Section .. we will see that the logistic engineer finds a better solution
than the sequential approach does in the case study, but our algorithm leads to
considerably better results. This is not surprising, since it is very hard, if not
impossible, to cover all possible combinations of repair/discard options for all
components using only a spreadsheet, even though the logistic engineer is very
experienced.

.. Case description

We consider a sensor system manufactured by Thales Nederland. Although
the product structure in the lsar database consists of six indenture levels, we
consider only three indenture levels, as a result of the non-economic lora as
discussed in the previous section. For the same reason, the product structure
in the database consists of over , components, but only slightly more than
 turn out to be relevant after the non-economic lora, of which % are
lrus. For about one third of the components, only one repair/discard option
remains after the non-economic lora, and for an additional one third of the
components, the repair/discard options that can be chosen are restricted.

In practice, there is also a certain probability of successful repair, as discussed
in Chapters  and . Although a probability of successful repair can easily be
included in the iterative algorithm, it is much more difficult in the integrated
algorithm that we develop in the next chapter. To be able to compare the results
of both algorithms, we assume a % probability of successful repair here.

The repair network consists of twelve ships, attached to two intermediate
depots, a central depot and the oem. There are  resources,  of which are
‘adapters’. These adapters are used in concurrence with other test equipment.

The costs of the various components can be up to one million euros, and the
costs of the various resources can be up to a couple of million euros. These costs
are not used directly. Instead, there are three types of costs in the joint problem
of lora and spare parts stocking: variable costs per repair or discard action,
fixed annual costs for locating resources, and annual spares holding costs. For
each type of costs we give the most important cost factors that we included

Iterative method for the joint problem 

(another overview of the cost factors to include can be found in Saranga and
Dinesh Kumar, ):

• Variable repair costs (customer’s network): working hours (e.g., locating
failure, exchanging subcomponents, and performing direct repair), vari-
able costs for using resources (e.g., energy consumption and wear), and
usage of additional parts (e.g., bulk items such as screws and wires).

• Variable repair costs (oem and outsourced in general): listed repair price.

• Variable discard costs: procurement price for the component that replaces
the discarded component and disposal costs of the discarded component.
The disposal costs can also be ‘negative’, which means that the component
has residual value.

• Variable move costs: transportation costs and handling and administra-
tive costs.

• Fixed resource costs: depreciation costs, costs of capital, a risk factor (e.g.,
insurance against all kinds of damage and theft), fixed operating costs
(e.g., a location to operate the tool or test equipment), and maintenance
costs of the resource. Resources may have a residual value after their
economic lifetime.

• Spares holding costs: costs of capital, a risk factor, and storage costs.
Spares may have a residual value after the lifetime of the product.

.. Results

We solved the problem instance using the iterative algorithm, with weighted
average α = . and decrease factors % – % – %, without an initial spares
estimate (as discussed in Section ...). Solving the instance takes less than
one and a half minute ( iterations) and Figure . shows the results. A cost
reduction of .% is achieved compared with the sequential method, which is
worth millions over the life time of twelve sensor systems. The cost reduction
is achieved by:

• installing two resources at the depot that are not installed in the sequen-
tial solution,

• installing one resource at both intermediate depots instead of one at the
central depot, and

• installing one resource at all ships instead of one at each of the two
intermediate depots.

The other resources are located at the same location in both solutions. This
means that more resources are installed and more repairs are performed in
the customer’s network and in total. This leads to higher resource costs and
higher variable repair/discard costs, but also to much lower spares costs. This
is profitable, since spare parts tend to be very expensive in the defence industry.

 Chapter 

Sequential Iterative




Resource costs

Variable costs

Spares costs

Figure .: Costs for Thales case (normalised)

According to the logistic engineers at Thales, the solution that we find can be
implemented in practice.

The logistic engineer at Thales Nederland achieves about a quarter of the
cost reduction that we achieve using the iterative algorithm. The differences
between his solution and the solution of the iterative algorithm are:

• one resource is put at depot, instead of at base,

• another is put at depot, instead of at ship, and

• two resources are not acquired at all, whereas they are located at central
depot in the iterative solution.

The other resources are located at the same echelon levels in both solutions.
This means that the logistic engineer puts resources at a more central location
than our iterative algorithm does and he recommends to acquire less resource.
However, he recommends to acquire more resources than the sequential algo-
rithm does and puts them at more decentralized locations.

. Extension to non-symmetrical lora decisions

Although we found in Chapter  that aggregating all data per echelon level
does not lead to a large increase in the costs in general, it was mentioned in
Section . that if lead times differ across the repair network, significant cost
reductions may be achieved by modelling the exact network, even for networks
that are balanced in the locations.

In principle, our approach can be extended to non-symmetrical lora decisions.
For the lora building block, there are no difficulties, see Chapter . Supplying
the lora decisions to the spare parts stocking problem, and solving the spare
parts stocking problem causes no difficulties either. The difficulties come
with the feedback loop, and more specifically, the decomposition of the spare
parts holding costs over the various locations. In our current approach, we

Iterative method for the joint problem 

assume that we can decompose, as an approximation, the spare parts holding
costs

∑
c∈C

∑
l∈L hcc · Sc,l into spare parts holding costs per component c, see

Section .. If we model non-symmetrical lora decisions, we need to further
decompose the spare parts holding costs into spare parts holding costs per
location.

In some cases, this is relatively easy. Assume that in a repair network with
three echelon levels, there are two intermediate depots I and II. If a component
is repaired at the operating sites that are attached to intermediate depot I (first
half of the network), but the component is repaired at intermediate depot II
for the other operating sites (second half), it is easy to decompose the spare
parts holding costs. In the first half, the spares at one operating site lead to
spare parts holding costs related to the option repair at that operating site. In
the other half, all spare parts lead to spare parts holding costs related to the
option repair at intermediate depot II.

However, it becomes more difficult if ‘flows mix’. For example, components
failing in the first half are discarded (and resupplied through the central depot),
whereas components failing at the other half are repaired at the central depot.
In this case, both types of failures cause demand at the central depot, and
therefore, it is not clear what part of the spare parts holding costs should
be assigned to each repair/discard option and to each location. This leads to
another approximation. An option is to use the effect of the demand at each
location on the pipeline at central depot (demand times lead time), but this is
further research.

A second drawback, besides the second approximation that is required, is that
the problem will grow in size: there are more decision variables in each of
the two problems (lora and spare parts stocking analysis), and as a result,
there are more repair options for which spare parts holding costs need to be
estimated. This will probably lead to an increase in the number of iterations.

. Conclusions

In this chapter, we presented an algorithm that can be used to perform the
lora and spare parts stocking analysis in an iterative way for multi-indenture,
multi-echelon problem instances with very mild restrictions on the resource-
component relations.

We have shown that we can solve real life problems by solving a case study at
Thales Nederland, a manufacturer of naval sensors and naval command and
control systems. We can solve the case study in about one and a half minute
and achieve a cost reduction of almost % compared with performing the
lora and spare part stocking analysis sequentially.

We generated problem instances that are realistic in practice and showed that
we can solve problems consisting of up to  components in just over ten

 Chapter 

minutes at maximum. On average, a cost reduction of over % is achieved, com-
pared with performing the lora and inventory stocking analysis sequentially,
with a maximum of over %.

The major drawback of our approach is that we do not know whether the
solutions that we find are close to optimal. Therefore, we develop in the next
chapter an algorithm that finds a solution that is optimal in the sense that the
achieved availability cannot be achieved against lower costs (an efficient point)
and except for the approximation errors in the vari-metric methods.

Chapter 

Integrated method for the
joint problem of lora and
spare parts stocking

The main drawback of the method that we presented in Chapter  for the
joint problem of lora and spare parts stocking, is that we do not know how
close our solutions are to a theoretical optimum. Therefore, we develop a new
method that finds efficient points, except for the approximation errors in the
vari-metric methods, which are known to be small for practically relevant
problem instances. If the target availability is %, our method may find a
solution that leads to an availability of .%, which means that there is no
solution with lower costs that still achieves an availability of .%. However,
there may be a solution with an availability between .% and .% that leads
to lower costs. This chapter answers research question b: “Which method can
we use to solve the joint problem of lora and spare parts stocking in a more
robust way, leading to a solution that is close to optimal?”

To find these solutions, we will develop a new, integrated method for simul-
taneous optimization of repair/discard decisions, location of resources, and
spare parts stocking decisions. This method is based on the logic of the metric
type methods for spare parts optimization, especially vari-metric. Therefore,
we discuss vari-metric in Section .. In Section ., we outline our algorithm,
and in Section ., we show the results of the computational experiments. We
achieve a cost reduction of .% on average compared with the sequential
method, with a maximum of almost %. Compared with the iterative method,
we achieve a cost reduction of .% on average, with a maximum of almost %.
We also show the results of the case study at Thales Nederland. In Section .,
we present the conclusions.

Based on Basten et al. (a)



 Chapter 

. vari-metric: the marginal approach

Given the repair/discard decisions per component, vari-metric aims to find
the most cost effective allocation of spare parts in a network that achieves a
target expected operational availability of the installed base. A more elaborate
discussion of vari-metric and other metric type models, including proofs of
some inferences we make, can be found in Muckstadt () and Sherbrooke
(); we base our explanation mainly on Muckstadt (). There is, however,
one main difference. In the literature, the total investment in spare parts is
minimized, whereas we minimize the total annual spare parts holding costs.
Notice that if the spare parts holding costs are a certain fraction of the invest-
ment costs, the difference between these two types of costs is a constant factor
so that the solution does not change (the solution value does).

Recall that an lru family was defined as an lru including all its subcomponents
at any indenture level (see Section .), and that lrus are the first indenture
components (see Figure .a). Furthermore, the operating sites are the locations
where the systems are located, see Figure .b. We use these definitions in the
explanation below.

Minimizing the costs for a given availability is the dual formulation of maxi-
mizing the availability for a given budget. Maximizing the expected availability
of the installed base is approximately equivalent to minimizing lru expected
backorders (ebo) at operating sites (see, e.g., Sherbrooke, , pp.–). A
backorder arises if a request for a spare part cannot be fulfilled immediately. As
an approximation, the number of lru backorders at operating sites equals the
number of systems that are down waiting for a spare part. Backorders at higher
indenture levels in the lru family or at higher echelon levels, influence the
availability of the installed base only in an indirect way, since they influence
the throughput times of requests for lrus at operating sites.

For an example problem instance with two echelon levels and two indenture
levels, Figure .a shows that demand for lrus at the lowest echelon level
(operating sites, or bases in the terminology of Sherbrooke, ) leads to
demand for srus at that level (if repair of the lru at base is chosen) or demand
for lrus at depot (if lrus are moved from base to depot). With an analogous
reasoning, demand for srus at base and for lrus at depot leads to demand
for srus at depot. If a request for a spare sru at depot cannot be fulfilled
immediately, a backorder results. Such backorders increase the pipeline of
srus at depot. The pipeline is defined as the number of components in repair
at a location, or being resupplied to that location from a location at a higher
echelon level (see, e.g., Sherbrooke, , p.). Both repairs of lrus at the
depot and the replenishments of srus at a base may be delayed, because a
higher pipeline corresponds to longer throughput times (Little’s law, see Little,
). Figure .b shows how pipelines influence each other and shows that,
for example, a higher number of backorders for srus at the depot leads to a
higher number of backorders for lrus at a base.

Integrated method for the joint problem 

: lru base

a: sru base

b: lru depot

: sru depot

(a) Computation of the demand

: lru base

a: sru base

b: lru depot

: sru depot

(b) Computation of the pipeline

Figure .: Computation of the demand and the pipeline
Based on Sherbrooke (, Figure -)

The basic metric model considers the mean number of items in the pipeline
only; the vari-metric model, which we use, also considers the variance of
the number of items in the pipeline. A negative binomial distribution is an
approximation for the true distribution of the pipeline, and so vari-metric is
not exact, although the approximation error is known to be small for practically
relevant problem instances. An assumption in the vari-metric model is that
the failure rate is constant. For a fleet of planes at a base, this might be realistic.
If one plane is not available, the other planes will probably make more flight
hours. However, for a radar system on board a ship, this is not realistic, since
no additional failures will occur if it is not available. This is a second reason
why vari-metric is not exact.

For the special case of a single system per operating site, Rustenburg ()
shows that it is better to use the sum of the backorder probabilities for all
lrus at the operating sites (pbo) instead of the sum of the expected number
of backorders (ebo). A drawback is that even for a simple single site, single
indenture system the sum of the pbo is not a convex function of the spare
part stock levels (for low stock levels), whereas this is true for the sum of
the ebo. Due to the limited applicability and the non-convexity problem, we
choose to use the ebo in this thesis. However, using pbo does not fundamentally
change our approach, but it does make implementation more complicated.
Furthermore, if the availability that should be achieved is high, the probability
of having more than  backorder is very low, which means that the ebo is very
close to the pbo.

Because our objective is to minimize the sum of the ebos for all lrus at the
operating sites, the overall spare parts stocking problem is separable in small
subproblems per lru family, assuming that subcomponents are not shared
between lru families, i.e., there is no commonality (see, e.g., Sherbrooke, ,
pp.–). First, we explain how to solve such a subproblem using an example.
Next, we explain how to solve the overall problem given the solutions for each
lru family.

As mentioned in Section ., the pipeline distribution can also be calculated exactly, but this
is computationally intensive.

 Chapter 

c

c c

Resource r

Ind. 

Ind. 

(a) Two-indenture system
structure

Central
depot

Intermediate
depot

Intermediate
depot

Operating
site

Operating
site

Operating
site

Operating
site

(b) Three-echelon repair network

Figure .: Example system structure and repair network

Costs
lru/sru Demand Discard Repair Move Holding
lru (c)     .

sru (c,c)  .   

Table .: Demand and cost data of the components

Figure .a shows the example product structure that we use. It represents
an lru with two subcomponents that all require the same resource for repair.
We give the characteristics of the components in Table .. It can be seen
that failures in lru c are due to a failure in subcomponent c in % of the
cases, and due to a failure in subcomponent c in the other % of the cases.
Resource r has annual costs of ..

Figure .b shows the example three-echelon repair network that we use.
Moving a component to the next higher or lower echelon takes / of a year,
repairing a component takes / of a year, and it takes / of a year before a
newly purchased component arrives if a component is discarded.

Suppose that the lora recommends to locate a resource at the central depot
only and to repair all three components there. Then, notice that the repair time
that we use in the calculations includes the time to move the component to that
repair facility. This means that the repair time of the lru is /+/+/ =
/, whereas the repair time of the srus is /. This is input for the spare
parts stocking analysis.

To find the solution to a subproblem for a single lru, as in our example, we
proceed as follows (see, e.g., Muckstadt, , pp.–):

• Construct an ebo-curve for each of the srus. Since the srus are both
exchanged (replaced in the lru) as well as repaired at the central depot,
stocking them at the central depot is the only sensible option. Adding
one sru at a time leads to a curve that gives the ebo for that sru at the
central depot and the corresponding spares costs. Backorders of the sru
at the central depot may lead to a waiting time for repairs of lrus at the

Integrated method for the joint problem 

central depot. The curves for each of the srus are convex, because these
are simply independent single item, single site problems.

Result: An ebo-curve for each of the two srus, with the backorders of
srus at depot as a function of sru spare parts holding costs.

• Merge the ebo-curves of the two srus using marginal analysis. The idea
of marginal analysis is that adding one spare sru leads to a certain ebo-
reduction per dollar (ebo of the srus, experienced by the lrus at the
central depot). Comparing the ebo-reduction per dollar of adding one
spare sru c to the ebo-reduction per dollar of adding one spare sru c,
we can add that spare that leads to the highest ebo-reduction per dollar
(‘biggest bang for the buck’). This leads to one ebo-curve for the two
srus, with each point on the curve corresponding to a number of spare
srus c and c, costs for these spares, and resulting ebo of srus at the
central depot. Marginal analysis can be applied since each of the two
sru-curves is convex. As a result, it is guaranteed that the ebo-reduction
per dollar keeps decreasing while adding more spares, so that finding the
best ebo-reduction per dollar is guaranteed by looking ahead one step
only. Furthermore, this also means that the curve that is constructed in
this way is also convex.

Result: ebo-curve for the two srus, with the backorders of srus at depot
as a function of the srus spare parts holding costs.

• For each sru investment level from the previous curve (point on the
srus-curve), start adding spare lrus. lrus can be put on stock at each of
the three echelon levels in our example. At operating sites, they decrease
the total lru ebo directly, at higher echelon levels, they do this indirectly;
adding a spare lru at a higher echelon level, leads to a decrease of the lead
time for lrus at the operating sites. Now we enumerate all reasonable
lru stock levels at the central depot. For each of the central depot lru
stock levels, we enumerate all reasonable stock levels at the intermediate
depots. Then for each combination of a central depot lru stock level
and an intermediate depot lru stock level, add lrus at the operating
sites, which leads to one ebo-curve per intermediate depot lru stock level
per central depot lru stock level per sru investment level (point on the
srus-curve). These ebo-curves are convex.

Result: ebo-curve for each intermediate depot lru stock level for each
central depot lru stock level for each sru investment level, with the
backorders of lrus at the operating site as a function of the lru and srus
spare parts holding costs.

• Find the lower envelope of these curves (the efficient points) and remove

Muckstadt (, p.) mentions that “the goal is to select [...] sru stock levels that minimize
the expected lru waiting time for repairs [...]”. In our model, this is exactly the same as selecting
the sru stock levels that minimize the sru ebo, since we include neither repair probabilities (r in
standard metric-notation) nor commonality.

 Chapter 

all non-convex points so that one convex ebo-curve for the lru family
results. This curve gives the relation between total lru backorders at the
operating sites and the minimal spare parts holding costs required to
obtain these backorders levels. Since non-convex points are removed, we
can actually determine the convex hull, using the Graham scan (Graham,
). Each of the points on the curve corresponds to a number of spare
lrus (and their locations), a number of spare srus c and c (necessarily
at central depot), costs for these spares, and resulting ebo of lrus at
operating sites.

Result: ebo-curve for the lru-family, with the backorders of lrus at the
operating site as a function of the lru and srus spare parts holding costs.

To find the solution to the overall problem consisting of multiple lru families,
the ebo-curves of all lrus are merged, using marginal analysis, in the same
way as the curves of the srus were merged. The overall ebo-curve that results
is used to find the first point that achieves the target availability. The ebo-level
that corresponds with this point is optimal for the spare parts holding costs
that correspond to this point. Since maximizing the availability is approxi-
mated only by minimizing the backorders, the corresponding availability is
not necessarily optimal for the given spare parts holding costs (and thus the
lowest total costs, given the lora decisions). Furthermore, since we find the
efficient points only, the achieved availability may be slightly higher than the
target availability (overshoot).

For the total costs in our example (lora costs and spare parts holding costs),
we have to add the costs of the resource and the variable repair and move costs.
In our example, the total ebo of the lrus at the four operating sites will be .,
and total costs will be ., if no spares are stocked (first point on the curve).
The resulting ebo-curve is shown in Figure ..

. Algorithm

Section .. describes the general idea of our algorithm, which is inspired
by that of Alfredsson (). In Section .., we show how this algorithm is
used if all components in one lru family together require at most one resource.
Section .. discusses the general case, in which any number of resources may
be required. In the remainder of this chapter, we take symmetrical spare parts
decisions. This means that if we decide to stock a spare part at one location,
we stock spare parts at each location at that echelon level. This is optimal for
problem instances that are completely symmetrical in the network structure,
costs, et cetera, except for the overshoot problem that was mentioned in the

The Graham scan is used to determine the convex hull of a set of points. We are only interested
in the convexification of the lower envelope, which means that we can stop the scan before we
have the complete hull.
Although we use vari-metric in our implementation, we use metric in this example since

those results are easier to replicate by the interested reader.

Integrated method for the joint problem 

    





Costs

eb
o

Figure .: ebo-curve for one lru family, repair at the central depot

previous section. We assume symmetrical spare parts decisions since it reduces
the running time to solve problem instances. However, our approach is not
restricted to this assumption.

.. General idea

In Section ., we have shown how to determine spare parts stocks, given
repair/discard decisions. A straightforward approach to solve the integrated
problem of lora and spare parts stocking, is to consider all combinations of
repair/discard decisions, stock spare parts for each combination, and determine
the lower envelope. Determining the lower envelope is also done in the metric
type models to find the efficient points over the various lru ebo-curves.

Due to the number of possible combinations to consider, this approach is
only realistic for very small problem instances. However, we can decompose
the problem into subproblems, using an algorithm that is inspired by that of
Alfredsson (). He iteratively decomposes the problem in two ways (we will
refer to them as decomposition type  and  respectively). In our algorithm,
we use the same two ways of decomposing the problem, which we explain in
detail Sections .. and ..:

. Alfredsson decomposes the problem into subproblems per resource. Split-
ting per resource is allowed since the location of one resource does not
influence the location of other resources in the model. This results from
assuming one indenture level only and the assumption that each com-
ponent (lru) requires exactly one resource to be repaired. The author
further decomposes the problem into subproblems per lru, as in the stan-
dard metric type models. In Section ., we have shown how marginal
analysis can be used to merge the results after solving each subproblem.

We also decompose the problem into subproblems per resource in the
special case in Section ... In the general case, it is slightly more com-

 Chapter 

    





Costs

eb
o

No resource Central depot
Intermediate depots Operating sites

Figure .: ebo-curves of one lru, excluding convex overall ebo-curve

plicated, as will be explained in Section ... We further decompose the
problem into subproblems per lru as well.

. Alfredsson decomposes the problem into subproblems by fixating deci-
sion variables. For example, each resource in his model needs to be at
exactly one of the two echelon levels that he assumes. For each resource,
he solves a subproblem in which the resource is at the lower echelon,
and a subproblem in which the resource is at the higher echelon. By
combining the curves that result from each subproblem and finding the
convexification of the lower envelope, the overall results are found.

We also fixate decision variables, thus decomposing the problem into
subproblems. Figures . and . show this idea graphically for the ex-
ample discussed in Section .. In that section, the spare parts stocking
problem was solved under the assumption (lora output) that the re-
source was available at the central depot and that all components were
repaired there. We get four such curves by assuming that the resource is
either available at operating sites, intermediate depots, central depot, or
nowhere. In the first three cases, a further assumption is that all compo-
nents are repaired at the same location, in the latter case, all components
have to be discarded. Figure . also shows the convexification of the
lower envelope.

Notice that in our model, many more valid repair/discard decisions are
possible. For example, the resource may be available both at the operating
sites and at the central depot, so that the lru and sru  are repaired at
operating site, but sru  is repaired at the central depot. It may also
happen that (one of) the srus are discarded, although the resource is
available at at least one echelon level.

Integrated method for the joint problem 

    





Costs

eb
o

No resource Central depot
Intermediate depots Operating sites
Convex overall

Figure .: ebo-curves of one lru, including convex overall ebo-curve

.. Special case: at most one resource per LRU-tree

If all components in an lru family together require only one resource, we can
decompose the problem as follows.

• Using a type  decomposition, we decompose the problem into subprob-
lems per resource. For each resource there are |E| scenarios, where E is
the set of echelon levels in the repair network. We get these scenarios
by either installing or not installing the resource at each of the echelon
levels.

• We decompose (type  decomposition) each of the subproblems into a
subproblem per lru family, just as the standard metric type models
do. Each lru family that requires no resource at all, makes up such a
subproblem too.

• We decompose (type  decomposition) each of these subproblems per
lru family by fixating either a repair-location for the lru, or choosing
the discard option. Notice that due to the location of the resource, some
repair options might not be available. For example, if the repair of a
component can only be performed if a certain resource is available, and
that resource is not available at the operating sites, the component cannot
be repaired at the operating sites.

• For the example product structure in Figure .a, let us assume that
we are solving the subproblem in which the resource is available at the
operating sites, and the lru is repaired at the operating sites. Section .
explained that we have to construct an ebo-curve for each of the srus,
merge these, and start adding spare lrus for each of the resulting points

 Chapter 

c

c c

c

Resource r

c

Resource r

c

Resource r

Ind. 

Ind. 

Figure .: Two-indenture product structure

on the srus-curve. However, for each of the srus, there are still two op-
tions: repair it at the operating sites or discard it. Therefore, constructing
the ebo-curve for each of the srus is somewhat more difficult. We de-
compose the problem by fixating the lora decision for the sru (type 
decomposition). That is, we construct one curve assuming that the sru
is repaired at the operating sites, and one curve assuming that it is dis-
carded. We find the convexification of the lower envelope of these two
curves, which leads to one convex ebo-curve for each of the srus. Merging
the curves for the two srus and solving the problem for the lru can now
be done in the same way as it is done in the metric type methods. This
approach can be used recursively if there are multiple indenture levels
in the product structure.

Merging the results of all subproblems means performing marginal analysis for
type  decompositions and finding the convexification of the lower envelope
for type  decompositions.

.. General case: multiple resources per LRU-tree

In general, one component may require multiple resources and components in
one lru family may need various resources. In that case, resources cannot be
considered independent of each other, but form one resource group. Consider
the example product structure in Figure . and a three-echelon repair network
(see Figure .b). To repair lru c, resources r and r are required, and to
repair lru c, resources r and r are required. Therefore, the decision to install
resource r depends on the decision to install resource r and vice versa. It
also depends on the decision to install resource r and vice versa. We say that
resources r, r, and r make up one resource group. Below, we give an exact
definition of a resource group.

In Section .., we showed that for each resource there are eight possible
scenarios in a repair network with three echelon levels (|E|). If we consider all
combinations of resource locations in our example, we get  =  scenarios. In
general, we get |E|

|Rgroup |
scenarios with |Rgroup| being the number of resources

in the resource group.

Since the number of scenarios explodes if the number of interacting resources

Integrated method for the joint problem 

r1

r2

r3

Figure .: Graph of three resources

increases, we decompose the problem into subproblems (type  decomposition).
In our example, we observe that once we know where resource r is located
(which may be at multiple levels in the repair network), resources r and r
can be treated independent of each other (but not indepedent of resource r).
Therefore, we make eight main scenarios in which one or more locations for
resource r are fixated. For each of these main scenarios, there are two sub-
problems: the first consists of resource r and lru families  and , the second
consists of resource r and lru families  and . For each of these subproblems,
there are eight scenarios. This means that for each of the eight main scenarios,
we have to construct eight ebo-curves for each of the subproblems, resulting
in  · (+ ) =  ebo-curves. Notice that in each of the  ebo-curves, we
consider two lrus as opposed to four lrus for each of the  original curves.

In Section .., we explained how to obtain the results for each of the sub-
problems (one resource and two lru families). Using marginal analysis, we
merge the results of the two subproblems to get a result for each main scenario.
Finding the convexification of the lower envelope over the eight main scenarios
leads to the overall ebo-curve for each resource-group.

Now the problem is how to decompose a general problem with shared resources
in independent subproblems so that the total problem can be solved efficiently.
To this end, we represent the interaction between the resources in a graph: a
vertex represents a resource, and an edge between two vertices exists if there
exists an lru family that uses both resources. Figure . represents the graph
for our example. Below, we first give a number of definitions, then we explain
how we use the graph representation of the interaction between the resources.
We assume a familiarity with the basics of graph theory; for further definitions,
we refer to any book on general graph theory, for example, Diestel () or
Godsil and Royle ().

A graph G = (V ,E) consists of vertices v ∈ V and edges between vertices (v,w) ∈
E. If graph G′ = (V ′ ,E′), with V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of
G. A graph is connected if any two of its vertices are linked by a path (the
graph consisting of one vertex is connected as well). A maximal connected
subgraph G′ = (V ′ ,E′) is a subgraph of G = (V ,E), such that adding any more
vertices v ∈ V \V ′ (and edges (v,w) ∈ E \E′) leads to a disconnected subgraph.
In other words, a maximal connected subgraph G′ = (V ′ ,E′) is a connected
graph and a subgraph of G = (V ,E), and there exists no graph G′′ = (V ′′ ,E′′)
so that G′′ is a subgraph of G, G′ is a subgraph of G′′, and G′′ is connected.
A maximal connected subgraph is also called a connected component or just
component; we will use the term ‘graph component’ to avoid confusion. A

 Chapter 

depth first search can be used to identify the graph components in a graph (see,
e.g., Hopcroft and Tarjan, ). A graph is complete if any two vertices are
connected with each other by an edge: if for all vertices v,v ∈ V with v , v
it holds that (v,v) ∈ E, then the graph G = (V ,E) is complete.

We now define a resource group as the set of all resources represented by the
vertices in one graph component. We have already shown that the number of
options for the resources in a resource group is |E|

|Rgroup |
. We also know that

fixating the location(s) for one resource leads to |E| scenarios. Our goal is to
decompose any resource group in such a way that we get the smallest number
of scenarios. Notice that decomposition of the resource group is useful only if
it is represented by a graph component that is not complete. We decompose
the problem using a recursive approach on the graph representation of the
resource group as follows.

. Check whether the graph component, representing a resource group, is
complete. If so, we are done with this graph component and the number
of scenarios is |E|

|Rgroup |
. Otherwise, go to step .

. For each vertex, representing a resource, in the graph component, remove
the vertex from the graph component. Using a depth-first search, find
the graph components in the new graph. For each of the new graph
components, go to step . The total number of scenarios is |E| times the
summation of the number of scenarios in each new graph components.
Go to step .

. Over all the vertices that can be removed, choose the vertex that leads
to the smallest number of scenarios. This vertex represents the resource
that should be fixated.

In this way, we enumerate all possible ways to decompose the problem and
find the best way to do this. Since the number of resources is limited, this
approach takes less than .% of the total running time of the algorithm in our
experiments (less than  second for our case-study at Thales). Hence, it does
not make sense to find a more efficient method for problem decomposition.

. Test results

In this section, we answer three questions:

. What cost reduction can be achieved by using the integrated algorithm,
compared with the iterative algorithm or the sequential approach?

Notice that some scenarios may consist of many lrus, whereas others may consist of a few
lrus only. One might want to incorporate this in the search for the best way of decomposing the
resource group, but for sake of simplicity, we do not do that.
Do not remove a vertex that is connected to one other vertex only, since that does not help in

decomposing the graph component.

Integrated method for the joint problem 

. Which model parameters influence the cost reductions that we achieve?

. Which model parameters influence the running time that we achieve?

The problem instances that we use to answer these questions are generated
using the generator that was presented in the previous chapter (Section ..)
and is described in detail in Appendix E. In Section .., we answer the first
two questions, using both the theoretical problem instances and the case study
at Thales Nederland; in Section .., we answer the third question. For the
iterative algorithm, we use the best variant as found in Section ...: a com-
bination of using a weighted average when updating spare parts holding costs,
with α = ., and decreasing costs when the stopping condition is reached,
using decrease factors % – % – %.

.. Comparison of algorithms

In this section, we answer the first two questions that we posed, so we focus
on the cost reduction that we achieve using the integrated approach compared
with the iterative and sequential approaches and the influence of the various
parameter settings on this cost reduction. To this end, we first study the dif-
ferences between the various approaches for the problem instances that we
generated. Next, we use our integrated approach to find out to which extent
we can improve the solution that we found for the Thales case in Section .
using our iterative approach.

... Numerical experiment

We start with answering question :

 What cost reduction can be achieved by using the integrated algorithm,
compared with the iterative algorithm or the sequential approach?

On the generated problem instances in the three test sets, our algorithm gives
an average cost reduction of almost .% compared with the sequential ap-
proach, with a maximum of almost %. Compared with the iterative method,
we achieve a cost reduction of .% on average, with a maximum of almost
%. This means that the iterative approach works pretty well in most cases.
Still, the maximum cost deviation shows that there are problem instances
on which the integrated method performs significantly better. Furthermore,
we found some problem instances for which the integrated approach yields
higher costs than the iterative approach. Although this seems impossible at
first sight, the explanation is that for those problem instances, the integrated
approach achieves a higher availability than the iterative approach: our inte-
grated method gives us an efficient frontier, so a set of optimal combinations
of total costs and operational availability. We do, however, not find an optimal
solution for an arbitrary value of the operational availability, which is also true
for the standard vari-metric method, and metric type methods in general.

 Chapter 

Achieving a higher availability is called ‘overshoot’, as explained in Section ..
Comparing the operational availability, we see that the iterative approach
finds solutions that are on average closer to the target value of % than the
integrated method, .% and .% respectively (the maximally achieved
availability is .% and .%, respectively). In principle, we can reduce this
issue by accounting for the increase in availability upto the target availability
only in our marginal analysis approach (any additional increase in availability
is ‘useless’), see also Kranenburg (, p.). Another option is to post-process
our solution, and check if we can remove a spare spart, thus reducing the costs,
while still achieving the target availability. Since any additional availability is
expensive if the availability is already quite high, overshoot is expensive, and
it may be worthwhile to lower the overshoot.

Now that we know what cost reductions can be achieved on average, we move
on to answering the second question that we posed:

 Which model parameters influence the cost reductions that we achieve?

We show detailed results in Tables ., . and . for test sets ,  and ,
respectively. We explained above why it can happen that we see small cost
increases, for example in the last row of Table .. The cost reductions that
our integrated model achieves compared with the sequential approach (see
fourth and fifth column in the tables), are in line with the cost reductions
that the iterative model achieves compared with the sequential approach (see
Tables ., . and .). Therefore, we refer to Section ... for a discussion.

Here, we only focus on the cost reduction that the integrated model achieves
compared with the iterative model. In test set , the largest cost reduction on
average is achieved in problem instances with a large number of echelon levels
or small move lead times. An increase in the number of echelon levels leads to
an increase in the possible repair/discard options. Therefore, it is not surprising
that the iterative approach has more problems finding the optimal solution.
On the other hand, we see that the maximum cost reduction that may be
achieved decreases if the number of echelon levels increases. More importantly,
in general if the problem size increases (number of indenture levels, number
of lrus, and number of echelon levels) the maximal cost reduction decreases,
which means that the worst case performance of the iterative method improves
with an increasing problem size.

The influence of the move lead time on the cost reduction that can be achieved
using an iterative algorithm instead of using the sequential approach was
explained in Section ...: the iterative algorithm performs repairs at a
higher echelon level, so that it can use pooling effects of the spare parts. The
reason that the integrated approach performs even better, is that the iterative
approach simply misses some opportunities; the integrated approach performs
even more repairs at higher echelon levels, thus making more use of the pooling
effects of the spare parts, especially if the move lead times are low.

Integrated method for the joint problem 

Cost reduction compared with
Time Sequential Iterative

Parameter Setting (s.) Ave. Max. Ave. Max.

indenture levels
  .% .% .% .%

  .% .% .% .%

lrus
  .% .% .% .%

  .% .% .% .%

echelon levels
  .% .% .% .%

  .% .% .% .%

Holding costs
[%, %]  .% .% .% .%

[%, %]  .% .% .% .%

Discard lead time
[/, /]  .% .% .% .%

[/, /]  .% .% .% .%

Repair lead time
[./, /]  .% .% .% .%

[/, /]  .% .% .% .%

Move lead time
[./, /]  .% .% .% .%

[/, /]  .% .% -.% .%

Table .: Cost reduction and optimization time for each parameter setting
(test set )

Cost reduction compared with
Time Sequential Iterative

Parameter Setting (m.) Ave. Max. Ave. Max.

Demand per lru

[., .]  .% .% .% .%

[., .]  .% .% -.% .%

[., .]  .% .% .% .%

[., ]  .% .% .% .%

Component price
[,, ,]  .% .% .% .%

[,, ,]  .% .% .% .%

Resource costs
[,, ,]  .% .% .% .%

[,, ,]  .% .% .% .%

Table .: Cost reduction and optimization time for each parameter setting
(test set )

In test set , the cost reduction that is achieved using the integrated algorithm
compared with the iterative algorithm is mainly determined by the demand
per lru. Although we see a clear difference between the setting [., .]
and the other settings, we are not able to explain these results. Sta In test set ,
none of the parameter settings really influences the cost reductions that can be
achieved.

 Chapter 

Cost reduction compared with
Time Sequential Iterative

Parameter Setting (m.) Ave. Max. Ave. Max.

Component types
  .% .% .% .%

  .% .% -.% .%

Components per resource
[, ]  .% .% -.% .%

[, ]  .% .% .% .%

% res. used by  comp.
%  .% .% .% .%

%  .% .% -.% .%

Table .: Cost reduction and optimization time for each parameter setting
(test set )

Sequential Iterative Integrated




Resource costs

Variable costs

Spares costs

Figure .: Costs for Thales case (normalised)

... Thales case

We solved the case study that we presented in Sections .. and . using our
integrated algorithm. It turns out that  resources form one resource group;
four resources need to be fixated before the remaining graph components
are cliques. However, due to the adapters, many small cliques exist of only
one resource. Still, it takes about two days to solve the case study, which
makes it doubtful whether this method can be used in practice. However, in an
optimized commercial implementation, optimization may be fast enough to
be used in practice. Another option is to use the iterative method a number of
times during the development process, and use the integrated method once at
the end to find the solution that is to be implemented.

Figure . shows the costs that result from using each of the three methods
to solve the case study. A cost reduction of .% is achieved by our integrated
method compared with the sequential method, which is worth millions over
the life time of a sensor system. However we found a cost reduction of .%

using the iterative algorithm in less than one and a half minute (see Section .).
The reason is the overshoot problem that we discussed before (Sections .
and ...): the iterative method achieves an availability of .%, whereas

Integrated method for the joint problem 

0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94

94.6

94.8

95

95.2

95.4 Integrated solution

Iterative solution

Costs (normalised)

A
va

il
ab

il
it
y
(%

)

Figure .: Availability as a function of total costs for the case study

the integrated method achieves an availability of .%. Figure . shows the
availability that the integrated model achieves as a function of the total costs
(all efficient points). We see that the availability is above .% for the costs
of . (the solution of the iterative method), which means that the iterative
solution is indeed below the efficient frontier that is found by the integrated
method. We also see that some parts of the curve are quite dense, whereas
others are not. This means that if we would have aimed for an availability
of, for example, .%, the overshoot would be very low (and the solution
would be very close to optimal). As explained in Section ..., the overshoot
problem of the integrated method may be reduced in general.

.. Running time of the algorithm

In this section, we answer the third question that we posed at the beginning of
Section .:

 Which model parameters influence the running time that we achieve?

Tables ., . and ., used in the previous section, also show the running
times for test sets ,  and  respectively. Notice that the running time is in
seconds for test set , and in minutes for the other two sets. The maximum
running time over all problem instances is near six hours, in test set . Notice
however, that a computation time of six hours need not be problematic for
usage of our algorithm in practice. However, using the iterative algorithm, the
maximum running time is just over ten minutes, see Section ....

In test set , the running time is mainly determined by the number of indenture
levels, lrus and echelon levels. Increasing the number of indenture levels leads
to more components in the product structure, and increasing the number
of echelon levels increases the number of possible repair/discard options.
Therefore, these effects are not surprising. However, an increase in the number
of lrus leads to a decrease in the running time. The reason is that if the number
of lrus increases, the probability of generating problem instances with one
large resource group decreases, since the number of resources, and the number

 Chapter 

Size of largest # occurrences
resource group  lrus  lrus

  
  
  
  
  
  

Table .: Largest resource groups varying the number of lrus

of resource-component relations does not change. Finding the ebo-curve for a
large resource group takes a lot of computation time. Table . shows the size
of the largest resource group for all problem instances with  and  lrus.

In test set , the running time increases sharply with an increasing demand: if
demand increases, the ebo increases, and as a result, more spares need to be
stocked. Due to the fact that we need to calculate more points on the ebo-curves,
the running time increases.

In test set , the running times are mainly determined by the number of
components per resource, and the percentage of components that is used by
one component only. An increase in the number of components per resource,
or a decrease in the percentage of components that is used by one component
only, both lead to more resource-component relations, thus increasing the
complexity of the problem. Therefore, it is not surprising that the average
running time increases as well.

. Conclusions

In this chapter, we presented an algorithm that can be used to solve the joint
problems of lora and spare parts stocking in an integrated way for multi-
indenture, multi-echelon problem instances with very mild restrictions on
the resource-component relations. Our method finds a solution that is op-
timal in the sense that the achieved availability cannot be achieved against
lower costs (an efficient point), and except for the approximation errors in the
vari-metric methods, which are known to be small for practically relevant
problem instances. The reason is that we implicitly enumerate all possible lora
decisions.

We have shown that we can solve real life problems by solving the case study
at Thales Nederland. We can solve the case study and achieve a cost reduction
of almost % compared with solving the lora and spare part stocking problem
sequentially.

We generated problem instances that are realistic in practice and showed that

Integrated method for the joint problem 

we can solve problems consisting of upto  components. We achieve a cost
reduction of .% on average compared with the sequential method, with a
maximum of almost %. Compared with the iterative method, we achieve a
cost reduction of .% on average, with a maximum of almost %. This means
that we are able to state the quality of our iterative approach, which we could
not do in Chapter : the iterative method works pretty well on average, but
is less robust than the integrated method in the sense that the cost difference
compared with the optimum can be significant for specific problem instances.
However, if the problem size increases (number of indenture levels, number
of lrus, and number of echelon levels), the maximal cost reduction decreases,
which means that the worst case performance of the iterative method improves.

Another advantage of the integrated approach is that we find a set of efficient
points at once, so that we gain insight in the relation between the life cycle
costs and the operational availability. To generate a similar curve using the
iterative method, we have to optimize the model many times for different
values of the target operational availability, and this curve need not be smooth
and concave. On the other hand, the iterative method is much faster than
the integrated method, and model generalizations are easier made, since the
iterative method uses two separate building blocks for the lora and spare
parts stocking analysis. Furthermore, the overshoot in the iterative algorithm
is generally smaller.

Chapter 

Conclusions and further
research

In this final chapter, we draw conclusions, discuss how the research may be
applied in practice, and point out opportunities for further research. In Sec-
tion ., we answer the research questions that we formulated in Section .
and we conclude to which extent we reached our research objective. Next
we discuss how this research may be applied in practice in Section .. In
Section ., we point out opportunities for further research; we discuss im-
provements to our lora model and to the models for the joint problem of lora
and spare parts stocking.

. Conclusions

The first research question that we posed in Chapter  is:

() Which methods are available to analyze the lora and spare parts stock-
ing problem, what is required in practice, and what are therefore the gaps
in the literature?

We answered this question in Chapter . First, we concluded that none of
the existing lora models fits well on problem instances in practice. Barros
(), Barros and Riley (), and Saranga and Dinesh Kumar () use
very restrictive assumptions on the resource-component relations, whereas
Brick and Uchoa () assume two indenture levels and one echelon level only.
Aggregating data per echelon level, as Barros (), Barros and Riley (),
and Saranga and Dinesh Kumar () do, leads to suboptimal solutions if the
network structure is unbalanced, but we did not know how large the gap with



 Chapter 

the optimal solution is. We have focused on this question in Chapter  and we
discuss the results below.

Second, we concluded that given the long tradition in spare parts stocking
methods, the current state-of-the-art is sufficient to solve spare parts stocking
problems in practice.

Third, we found only one paper in which an approach is presented for the joint
problem of lora and spare parts stocking (Alfredsson, ), but it considers
one indenture level and two echelon levels only. Besides, the assumptions on
the resource-component relations are very restrictive.

Our main conclusion in Chapter was that it would be best to have one method
to solve the integrated problem for multi-echelon multi-indenture problems
with general restrictions on the resource-component relations. However, since
such a general model does not even exist for the lora problem itself, we stated
the second research question:

() What is a suitable lora model that can be solved in a reasonable amount
of time for problem instances with a size that is realistic in practice?

To answer this question, we formulated two subquestions. The key problem
with the models in the literature is that the assumptions on the sharing of
resources between components are too restrictive. Therefore, our first subques-
tion is:

(a) In what way can we generalize the models that are available in the
literature?

We answered this question in Chapter . We developed a lora model that
generalizes the two pure lora models that existed in the literature (Barros,
; Saranga and Dinesh Kumar, ). We did this by allowing sets of
components that share fixed costs to be arbitrarily defined, instead of assuming
that fixed costs are shared between all components at a certain indenture level
(Barros) or assuming that fixed costs are due to one component (Saranga and
Dinesh Kumar). This generalization was needed to be able to model cases we
found at Thales Nederland. We presented an ip formulation and showed that
the integrality constraints on most decision variables may be removed (without
yielding a fractional solution). Using these results, we were able to show that
all integrality constraints can be removed if the model assumptions of Saranga
and Dinesh Kumar () are used, so that there is no need to solve problem
instances using genetic algorithms, as they do. We also showed that removing
all integrality constraints in the model of Barros () may yield a fractional
solution, contrary to what the author claimed. Furthermore, the model gives
insights into the lora problem in general. For example, we use the model to
show that the lora problem is NP-hard.

Conclusions and further research 

We solved lora problem instances with sizes that are realistic in practice
(Thales Nederland), using cplex. Most problem instances could be solved in a
couple of seconds. The most important factor that influences the computation
time is the number of components in the system. The number of components
in cases at Thales Nederland does not cause a problem, but at other companies
it might do so. The computation time of the general model is up to more
than  times larger than the computation time for models restricted to the
assumptions of Barros or, especially, Saranga and Dinesh Kumar.

However, to be able to model realistic problem instances, the model needs to
be extended, for example by allowing for a probability of unsuccessful repair.
Therefore, the second subquestion is:

(b) How can we model the extensions that may be needed in practice?

To model the extensions, we first reformulated the lora model as a minimum
cost flow model with side constraints in Chapter . This formulation can be
solved much faster than using the basic lora formulation that we developed
in Chapter . Furthermore, the model allows us to explicitly model the repair
network instead of aggregating all information per echelon level, as is often
done in the literature (and in Chapter ). We have shown that with networks
that are unbalanced in the locations, cost reductions of over % can be achieved
by modelling the exact network. If networks are balanced in the locations, then
the maximal costs reductions that can be achieved are only .%, even if the
network is unbalanced in the costs.

Next, in Chapter , we presented the extensions to the lora model:

• A probability of unsuccessful repair.

• A no-fault-found probability.

• Capacitated resources.

• Multiple failure modes per component.

• Outsourcing of repair.

We showed how to model the first three extensions; the other two extensions
do not require a fundamental change in the model. We tested the former three
extensions by generating problem instances in a way similar to how we did
that in Chapter . We have seen that incorporating a probability of successful
repair leads to a cost increase (compared with neglecting this probability) of
% on average if an unsuccessfully repaired component can only be discarded
at the location where the repair was performed; if we allow a second (and third)
repair attempt at a higher echelon level, the cost increase is % on average. If
the probabilities are equal at all echelon levels, the change in repair strategy
(compared with not incorporating unsuccessful repair) is small. However, if the
probability of unsuccessful repair decreases with an increasing echelon level,

 Chapter 

the repair strategy changes significantly: the resource costs at central depot
increase, wherease they decrease at the lower echelon levels. Incorporating a
no-fault-found probability leads to a reduction of the costs of % on average.
The change in the repair strategy is small. Incorporating capacitated resources
leads to a cost increase of % on average. The maximum optimization time
increases from . seconds if no extensions are included to almost half an hour.
Since repair is more expensive if resources are capacitated, more components
are discarded. Furthermore, resources are located at lower echelon levels. We
conclude that although the repair strategy does not always change significantly
when incorporating the extensions that we modelled, the total costs do.

After having developed a model that can be used to solve the lora problem,
including all kinds of extensions, we are able to solve the total problem of lora
and spare parts stocking, by performing a lora first, and then performing a
spare parts stocking analysis: the sequential approach. However, when solving
both problems sequentially, the lora solution may lead to an unbalanced
overall solution. For example, it may lead to performing many repairs at a
central location, which implies that the installed base faces long repair lead
times, which increases the amount of spare parts inventory. Therefore, we were
not convinced that the sequential approach leads to a good overall solution
and we posed research question :

() What is a suitable method to solve the joint problem of lora and spare
parts stocking?

To answer this question, we formulated two subquestions. The first of which
aims for a method that uses existing building blocks:

(a) How can we iteratively use a lora model and a spare parts stocking
model to solve the joint problem of lora and spare parts stocking?

We presented, in Chapter , an algorithm that uses such an iterative approach
to solve the integrated problem of lora and spare parts stocking analysis for
multi-indenture, multi-echelon problem instances with very mild restrictions
on the resource-component relations. In fact, we used the lora model that we
developed in Chapter  as one building block, and the vari-metric method as
the other building block. By adapting the lora inputs based on the outcome
of vari-metric in a number of iterations, we tend to find a better solution in
terms of total costs (lora and spares parts holding costs) than the sequential
approach does.

We have shown that we can solve real life problems by solving a case study at
Thales Nederland, a manufacturer of naval sensors and naval command and
control systems. We can solve the case study in about one and a half minute
and achieve a cost reduction of almost % compared with performing the
lora and spare part stocking analysis sequentially.

Conclusions and further research 

We generated problem instances that are realistic in practice and showed that
we can solve problems consisting of up to  components in just over ten
minutes at maximum. On average, a cost reduction of over % is achieved, com-
pared with performing the lora and inventory stocking analysis sequentially,
with a maximum of over %.

The major drawback of our approach is that we do not know whether the
solutions that we find are close to optimal. This leads to the second and final
subquestion:

(b) Which method can we use to solve the joint problem of lora and spare
parts stocking in a more robust way, leading to a solution that is close to
optimal?

We answered this question in Chapter , in which we presented an algorithm
that can be used to solve the joint problem of lora and spare parts stocking in
an integrated way under the same assumptions as in Chapter . Our method
finds a solution that is optimal in the sense that the achieved availability
cannot be achieved against lower costs (an efficient point), and except for the
approximation errors in the vari-metric methods, which are known to be small
for practically relevant problem instances. The reason is that we implicitly
enumerate all possible lora decisions.

We have shown that we can solve real life problems by solving the case study at
Thales Nederland. However, we achieve a cost reduction of almost % compared
with solving the lora and spare part stocking problem sequentially, which is
less than the cost reduction that we achieved by using the iterative approach.
The reason is the relatively large overshoot that our integrated algorithm often
has: the achieved availability is higher than the target availability.

We generated problem instances in the same way as we did in Chapter , and
we achieve a cost reduction of .% on average compared with the sequential
method, with a maximum of almost %. Compared with the iterative method,
we achieve a cost reduction of .% on average, with a maximum of almost
%. This means that the iterative method works pretty well on average, but
is less robust than the integrated method in the sense that the cost difference
compared with the optimum can be significant for specific problem instances.

Our research objective, as stated in Section ., is:

To develop a method that companies can use to analyze the joint problem of
level of repair analysis and spare parts stocking for multi-indenture, multi-
echelon problem instances.

We developed two such methods, a comparison of which can be found in
Table .. The key differences are that the integrated method finds a solution
that is optimal in the sense that the achieved availability cannot be achieved

 Chapter 

Characteristic Iterative method Integrated method
Solution value Close to solution value

of integrated solution,
maximum difference is
less than %

Efficient point, except for
the approximation errors
in the vari-metric meth-
ods, which are known to
be small for practically rel-
evant problem instances

Overshoot Small, .% on average
(target = %)

Larger, .% on average
(target = %)

Optimization
speed

Fast (up to ten minutes) Slow (up to six hours in
our experiments, about
two days for the Thales
case)

Generating
a complete
ebo-curve

Possible by solving the
problem a number of time
with increasing availabil-
ity target; the curve is not
necessarily concave

The generation of this
curve is the main charac-
teristic of this method, so
we find this curve at once

Flexibility High; a more advanced
lora or spare parts stock-
ing building block can
easily be included (e.g.,
to include repair proba-
bilities, or to extend to
non-symmetrical lora
decisions).

Medium; extensions influ-
ence the complete model.
Besides, the problem size
and optimization time
may easily explode

Table .: Comparison of iterative and integrated method

against lower costs (an efficient point), and except for the approximation errors
in the vari-metric methods. However, in general, the overshoot is relatively
large and the optimization time is much higher than for the iterative method.
Since any additional availability is expensive if the availability is already quite
high, overshoot is expensive. However, the iterative method does not guarantee
an optimal solution and sometimes finds a solution that is % higher than
the solution of the integrated method. In practice, we recommend using the
iterative method, but if time is no issue, the integrated method should be used.

. Usage in practice

As mentioned in Section ., the research in this thesis is part of the iop-ipcr
project ‘life-cycle oriented design of capital goods’. The goal of the project is

Conclusions and further research 

to develop a set of quantitative techniques that can be used for an integrated
balancing of system availability and life cycle costs (lcc). These techniques are
to be used in the development process of capital goods, to gain insights into
the impact of design decisions on the lcc and the availability of the product.

The methods that we developed in this thesis may be used to support the
development process indeed. They can be used to estimate the upkeep costs for
each product design option. Since there are generally only a few product design
options in the later stages of the product development process, as discussed
in Section ., the upkeep costs of each product design can be compared,
possibly together with other characteristics of each product design. Based
on this comparison, the best product design can be selected. In that way, a
developer can decide, for example, if he should use a more expensive, but more
reliable component, or a less expensive, less reliable component.

Another way to use the research in the product design process is as follows. If
it turns out that there is a component that is relatively unreliable, the mainte-
nance costs of the complete product that result when using that component
may be compared with the maintenance costs that result when using the same
component, but with a mean time between failures (mtbf) that is twice as high.
The decrease in costs is the maximum amount of money that may be invested
to improve the reliability of the component (double the mtbf). This can be
done both before the first product is in the field, using reliability data resulting
from tests in the factory, and when the product is already installed in several
locations, using reliability data that results from actual use.

The research may also be applied in the repair network design process. For
example, a company may wonder what cost reduction will be achieved by
reducing the lead time between the operating sites and the intermediate depots.
If this lead time reduction can be achieved against costs that are lower than
the maintenance costs reduction, this is worthwhile. Another example is the
question how much costs would reduce if outsourced repairs are performed
in half the time it takes at this moment. The third party that performs these
repairs, may be interested to speed up the repair process if it gets half the cost
reduction (by getting a higher price per repair action).

. Further research

In this thesis, we developed methods to solve the lora problem and to solve the
integrated problem of lora and spare parts stocking analysis. In Section ..,
we point out opportunities for further research for the former problem; for the
latter problem, we do this in Section ...

 Chapter 

.. lora problem

For the lora problem, we discuss both improvements in the algorithm, in
Section ..., and model extensions in Section ....

... Algorithm

Due to modelling extensions to the lora problem, see Chapter , we saw an
increase in running time, and especially in memory requirements by cplex
(mainly for the capacitated resources, and, to a lesser extent, the probability of
unsuccessful repair). This is due to an increase in the number of decisions to
take when incorporating extensions. If the problem size increases (e.g., more
components) or multiple extensions are incorporated simultaneously, or the
lora problem is part of an iterative algorithm (as discussed in Chapter ), then
we may require heuristic algorithms to solve the lora problem.

We propose to develop specific heuristics that use the structure of the prob-
lem. For example, a local search heuristic that focuses on the locations of the
resources may yield good results. If a resource is located at the central depot in
one solution, and locating it at the intermediate depot does not reduce costs, it
is unlikely that locating it at the operating sites will reduce the costs. If there
are resources that are used mainly in conjunction (one component requires
both resources), then locating them at two different locations will probably not
be useful. A local search heuristic can easily incorporate such characteristics of
the lora problem.

... Model extensions

The lora model in itself is quite complete; extensions are possible, and may be
required for specific business situations, but based on discussions with people
in industry (e.g., those that participate in the iop-ipcr project), we believe
that we have modelled the most important aspects that we may encounter in
practice. However, one relevant extension that we have not discussed in this
thesis is the choice between resource types. In our model, we assume that we
know which resource we need to repair a component and what the costs of this
resource are. In practice, this does not need to be prespecified. For example, we
can face the decision whether to buy a rather cheap resource that can be used
for the repair of a single component or a more expensive resource that can be
used to repair multiple components. Alfredsson () gives a specific example
for the choice between resources in his model, where a tester can be upgraded
to a more generic tester in several steps. This extension may be included in the
model by adapting the constraint that relates the repair option to the resources
(Constraint .). Still, this specific extension to the model needs to be tested;
the problem size and running time will increase.

Conclusions and further research 

.. Integrated problem of lora and spare parts stocking

We developed two methods to solve the integrated problem of lora and spare
parts stocking analysis. We believe that for usage in practice, the iterative
method is most promising. It is significantly faster and more flexible than the
integrated method. Of course, the integrated method guarantees optimality
(except for the approximation errors in the vari-metric methods), but for
problem instances that are larger than the ones that we used, or if the method is
to be extended with, for example, a probability of unsuccessful repair and non-
symmetrical lora decisions, the optimization time and memory requirements
during optimization may pose limits for practical use. Using heuristics to solve
the problem is not attractive, since that means that the main advantage of the
integrated method (optimality) is gone. Still, extending the integrated method
is useful, since it provides a benchmark for the iterative method

Therefore, we discuss in Section ..., improvements for both algorithms.
For the iterative method, we discuss how the solution quality (relative gap to
the optimal solution) can be improved, whereas for the integrated method, we
discuss technical improvements that maintain the optimality of the method.
Then, in Section ..., we discuss extensions to both methods. A key problem
for extensions in the iterative algorithm is the feedback loop. We discuss that
in a separate section, Section .... We end with Section ..., in which we
discuss one extension that requires a more extensive change in the algorithms:
the inclusion of waiting times for resources (e.g., test equipment and engineers).

... Algorithm

As announced, we first discuss how to improve the quality of the solution of the
iterative method, and then technical improvements to the integrated method.

Iterative method

The variants of the basic method, which we discussed in Section .., improved
the solution significantly. It may be useful to analyze the characteristics of
problem instances for which the variants do not improve the solution compared
with the basic iterative method. This may give insights into how better variants
can be developed. Since our variants are relatively straightforward, but already
improve the solution quite a bit, we believe that this is a promising research
opportunity. We are also still convinced that a good starting solution may help,
but this requires new lines of thought not explored so far.

Another way to improve the iterative algorithm, is as follows. After finding a
solution using the iterative approach, keep only the resource locations, and
use the integrated approach to find the optimal solution, except for the ap-
proximation errors in the vari-metric methods, given these resource locations.
We have seen in Section ... that in some cases, the resource locations are
the same in the sequential and the iterative approach, but still, the iterative

 Chapter 

method leads to lower costs by exploiting pooling effects of the spare parts. In
Section ... we found that the integrated approach sometimes improves on
the iterative method by simply using these pooling effects to a larger extent.
Since solving the integrated problem for a given set of resource locations is
not very time-consuming (the approach is time-consuming since there are so
many combinations of resource-locations), this post-processing of the iterative
solution may be worthwhile.

A third way to improve the iterative solution is by using a number of variants
on the algorithm to solve one problem instance, and then choosing the best
solution that is found by any of the variants.

Finally, a fourth way to improve the iterative solution is by using a kind of
tabu search (see, e.g., Glover, , ). If we find a solution that we cannot
improve upon anymore, then this solution gets into a tabu list, and the last
solution before that solution is restored. The algorithm will now find another
solution, thereby possibly avoiding a local minimum. Instead of going back
to the last solution that was found before the best solution, we can also go
back to a solution that was found earlier. In that case, all later solutions should
be in the tabu list. A point of attention is what should exactly be put in the
tabu list. The total solution, so all lora decisions, will not work. Changing one
repair/discard decision would then lead to a different solution that is allowed.
However, each lora decision individually may not work either. It may be a
good idea to put the location of a couple of important (expensive) resources in
the tabu list, thus requiring that a new solution does not put those resources at
that location anymore.

Integrated method

For the integrated method, we want to improve the optimization time, and
the memory requirements: since many ebo-curves need to be constructed, and
each point on these curves corresponds to certain repair/discard decisions,
a certain amount and allocation of spare parts, and possibly the location of
one or more resources, the integrated approach is both time consuming and
memory intensive.

Reducing the optimization time may be possible by storing ebo-curves that are
calculated for subcomponents. For example, the ebo-curve that is related to
repair of a part at the central depot is constructed a number of times (for the
situation that the sru of which this part is a subcomponent is repaired at the
operating sites, at the intermediate depots, and at the central depot) Storing
these curves in memory will probably not lead to much additional memory
requirements, since all curves for the sru are constructed one after each other,
and then merged. At the moment that these curves are merged, we can remove
the curve for the part (subcomponent of the sru) again.

Except for the move time from the repair location of the parent (e.g., sru) to the repair location
of the child (e.g., part), but this can be added to the ebo-curve after the curve has been constructed.

Conclusions and further research 

Reducing the memory requirements can be done by storing only the locations of
the resources after constructing the ebo-curves. So, while the ebo-curve for one
resource-group is being constructed, we require all repair/discard decisions,
and we need to know how many spare parts we located already. However, if
we have constructed the curve, it is sufficient to know where resources are
located (for each point on the curve). Using that information, the algorithm
can be run again to reconstruct the repair/discard decisions and the locations
and numbers of the spare parts. The running time of the integrated method
is caused by the large amount of possible combinations of resource locations
in each resource-group (up to several thousands in our problem instances).
Solving the problem for one additional combination of resource locations, leads
to a relatively small increase in the optimization time.

... Model extensions

For most model extensions, it holds that the problem in the iterative algorithm
is the feedback mechanism. Therefore, we discuss that in Section .... In the
integrated approach, the problem is mainly that the problem size and running
time increase significantly.

In Section ., we discussed extending the iterative method to non-symmetrical
lora decisions. This requires a change in the lora building block only, which
is not a problem, as we have shown in Chapter .

In Chapter , we presented extensions to the lora model:

• A probability of unsuccessful repair.

• A no-fault-found probability.

• Capacitated resources.

• Multiple failure modes per component.

• Outsourcing of repair.

Each of these extensions can also be included in the integrated problem. For
the probability of unsuccessful repair, it also requires a change in the spare
parts stocking analysis. However, this requires that each component has a
fixed probability r that it can be repaired at a certain location, which is a
standard assumption in the metric type models, see Section ... Multiple
failure modes per component leads to the usage of r as well, in a similar way.
The other extensions do not influence the spare parts stocking analysis. The
extension to failure modes means that we may take various repair/discard
decisions for a certain component depending on the specific failure mode. This,
in turn, means that we require a spare parts holding costs estimate for each
failure mode, which does not change the feedback loop, but it does increase
the problem size. The same holds for the outsourcing of repair option. The
no-fault-found probability neither changes the feedback loop nor increases the
problem size (except for the problem size in the lora building block).

 Chapter 

We can also make changes in the spare parts stocking analysis, by allowing
for additional flexibility. If more than one system is located at each operating
site, we may use cannibalization, which means that if a system needs a spare
component that is not available, a component is disassembled from another
system that is already waiting for a spare part. Two other flexibility options are
emergency shipments directly from a location at a higher echelon level (not
necessarily the next higher echelon level), which leads to a shorter lead time,
but is more expensive, and lateral shipments, which means that if one operating
site requires a spare part, it may be supplied from another operating site.
Alfredsson and Verrijdt () show that the use of emergency shipments and
lateral shipments may lead to significant cost savings. In the iterative algorithm,
such flexibility options can be incorporated without any problem, since it
influences just one building block (not the feedback mechanism). However,
in the integrated algorithm, we can only incorporate these extensions as long
as it results in a convex ebo-curve, which effectively means that we rely on
the use of a greedy approach (marginal analysis). Cannibalization can be
included in a model that can be solved using marginal analysis, see Sherbrooke
(). However, to the best of our knowledge, this does not hold for the other
two flexibility options, which means that they cannot be incorporated in the
integrated method.

... Feedback mechanism

For the extensions that we mentioned in the previous section, the key prob-
lem is the feedback mechanism in the iterative algorithm. We mentioned in
Section . that in our current method, there is one approximation only: we
decompose the spare parts holding costs into spare parts holding costs per
component in the feedback loop in order to get an estimate for the spare parts
holding costs that result from taking a repair or discard decion at a certain
echelon level for a certain component.

If we extend the model to non-symmetrical lora decisions, we have to estimate
the spare parts holding costs at each location, instead of at each echelon. This
increases the number of estimates that we have to make, which means that
we make more errors, and which possibly increases the number of iterations
that we have to make. It may also affect the convergence of the algorithm.
Furthermore, this leads to an additional approximation, since we have to
decompose the total spare parts holding costs into spare parts holding costs
per location (per component) now. See also Section ..

Inclusion of a probability of unsuccessful repair or capacitated resources means
that we have to have a spare parts holding costs estimate for each component
that is related not only to the repair/discard decision at a certain location. but
also to the location of the second repair attempt (if any), or the number of
resources, respectively. Inclusion of these extensions may be quite complicated.

Conclusions and further research 

... Waiting times for resources

As discussed in Section .., it would be very interesting to explicitly model
the waiting time for resources (both equipment and engineers), using a queue-
ing model. However, in Chapters  and  we have seen that the combination of
lora and spare parts is already challenging, and the combination of capacitated
resources and spare parts is also very challenging (without incorporating the
lora decisions), see, e.g., Rustenburg et al. (), Sleptchenko et al. (),
and Zijm and Avşar (). For general multi-indenture, multi-echelon prob-
lem instances, such models are not available yet.

However, for smaller problems, for which such models are available (e.g.,
single-indenture or single-echelon), inclusion of waiting times may be possible
in the iterative algorithm. It only affects the spare parts stocking analysis
and the feedback loop, as discussed in Section .... The running time will
increase, but it may still be practically useful. In the integrated model, an
increase in the running time is more problematic. In principle, inclusion of
waiting times is possible, but due to the optimization time, probably very small
problem instances only can be solved.

Appendix A

Notation

In this appendix, we summarize the notation that we use in this thesis. First,
we define the sets, then the parameters, and finally the decision variables.

Set Meaning
I Indenture levels
C Components
Ci ⊆ C Components at indenture level i (e.g., C consists of the

lrus)
Γc Subcomponents of component c
E = {, . . . , ecen} Echelon levels
L Locations
Le ⊆ L Locations at echelon level e (e.g., L consists of the operat-

ing sites)
Φl Child locations of location l
D Decisions (discard, repair, move)
De (Dl) Decisions possible at echelon level e (location l)
G Set of components sharing fixed costs (G ⊆ C ,G , ∅)
G Set of all G
R Resources
Ωr Set of tuples (c,d): resource r is required if for component c

decision d is taken
V Nodes
V s ⊆ V Source nodes
V d ⊆ V Decision nodes
V t ⊆ V Transformation nodes
A Arcs
Θr,l Set of arcs (v,w) that are enabled by locating resource r at

location l



 Appendix A

Parameter Meaning
λc (λc,l) Annual number of failures in component c over all operat-

ing sites (at location l if l represents an operating site; see
Section ... for the explanation if l does not represent an
operating site)

ecen Highest echelon level (central depot)
vcc,e,d (vcc,l,d) Variable costs if for component c at echelon e (location l)

decision d is chosen
qc,b The fraction of failures in component c that is due to a

failure in subcomponent b ∈ Γc
f cG,e,d Annual fixed costs that have to be incurred in order to

enable decision d at echelon level e for all components in G
f cr,e (f cr,l) Annual fixed costs if resource r is located at echelon level e

(location l)
ov Outflow out of source node v
acv,w Variable costs on arc (v,w)
pv,w Fraction of inflow on node v that flows out on arc (v,w)
hc,r,d Demand (in hours) for resource r per component c for which

decision d is taken
ur Annual number of hours that resource r can be used (capac-

ity of resource r)
gv,w,r Demand (in hours) for resource r if a flow of one goes

through arc (v,w)
hcc Annual costs of holding one spare part of component c
vcs
c,e,d,j Annual spares holding costs (estimate) in the lora inputs

after iteration j for component cif decision d is taken at
echelon level e

Decision variable Type Meaning

Xc,e,d (Xc,l,d) Binary
, if for component c at echelon level e (loca-
tion l) decision d is chosen,
, otherwise

X Set of all decision variables Xc,l,d

YG,e,d Binary
, if for all components in set G at echelon
level e decision d is enabled,
, otherwise

Yr,e (Yr,l) Binary
, if resource r is located at echelon level e
(location l),
, otherwise

Fv,w Real Flow on arc (v,w)
Sc,l Integer The number of spares of component c that

are located at location l
S Set of all decision variables Sc,l

Appendix B

Proof that the lora problem
is NP-hard

We show that the lora problem is NP-hard in general by reducing the unca-
pacitated facility location problem (ufl problem) in polynomial time to the
lora problem as presented in Chapter  (the lora model in Chapter  gener-
alizes the model in Chapter ). The ufl problem is NP-hard, see for example
Cornuejols et al. (), and reduction of an NP-hard problem in polynomial
time to another problem shows that the latter problem is NP-hard as well.

The ufl problem may be stated as follows (Cornuejols et al., ; Daskin,
): there is a set of m clients I = {i, . . . , im} with a given demand for a single
commodity, and a set of n sites J = {j, . . . , jn}where facilities can be located. The
fixed costs of opening a facility at site j are fj , and di,j are the costs of serving
all demand of client i from the facility at site j. The goal is to minimize the
costs that have to be made to serve all customer demands. Let xj =  if facility j
is open and xj =  otherwise; yi,j =  if the demand of client i is satisfied from
facility j and yi,j =  otherwise. The resulting ip formulation is:

minimize
∑
i∈I

∑
j∈J
di,j · yi,j +

∑
j∈J
fj · xj (B.)

subject to: ∑
j∈J
yi,j =  ,∀i ∈ I (B.)

yi,j ≤ xj ,∀i ∈ I ,∀j ∈ J (B.)

xj , yi,j ∈ {,} ,∀i ∈ I ,∀j ∈ J (B.)

Constraint B. guarantees that the demand of every client is satisfied; Con-
straint B. guarantees that clients are supplied only from open locations.



 Appendix B

j j j j

i i

(a) Original problem

i1

j2j1 m

j3 j4

i2

j2j1 m

j3 j4

(b) As lora problem

Figure B.: The ufl problem as lora problem

The ufl problem can be modelled as a single-indenture lora problem consist-
ing of m components (number of clients in the ufl problem). Every facility in
the ufl problem is modelled as a possible repair or discard option at one of the
echelon levels in the lora problem. This means that there is an even number
of options. If there is an odd number of facilities in the ufl problem, one of the
possible repair-discard options should get very high costs associated to it, so
that that option will never be chosen. As a result, the repair network consists
of dn/e echelon levels (number of facilities divided by  and rounded up). The
costs of supplying client i from facility j, di,j , are equal to the variable costs of
repair option j for component i (move has zero costs). The annual demand per
component is .

Components may only choose repair options that are enabled. This is equiv-
alent to the constraint in the ufl problem that only facilities may be used
that are opened. Therefore, we model one set of components sharing fixed
costs G consisting of all components. If any of the components uses a certain
repair-discard option, fixed costs related to this option are incurred, so the
corresponding YG,e,d = , which costs f cG,e,d . This is equivalent to opening a
facility j in the ufl problem, which costs fj . All f cG,e,move = .

We showed in Section .. that exactly one repair-discard option j will be
chosen in a lora for failures in any component i, so exactly one facility j is
chosen to supply client i in the ufl problem. The reduction as we have shown
can be performed in polynomial time.

Figure B.a shows an example of a ufl problem with two clients and four pos-
sible sites where facilities can be located. Figure B.b shows the corresponding
lora problem. There are two components in which failures occur: i and i,
representing the two clients that need to be supplied from exactly one location.
There are two echelon levels in the repair network, which means that there are
four possible repair-discard options for each component (besides the ‘interme-
diate’ option m representing move from echelon level  to ): repair at echelon
level  which represents facility j, discard at echelon level  representing
j, repair at echelon level  representing j, and discard at echelon level 
representing j. The set of components sharing fixed costs G = {i, i}.

Appendix C

Experimental design for the
basic lora model

In this appendix, we explain in more detail how we generate the problem
instances that are used in Chapter  (and in Chapter  to compare the flow
model with the basic lora model).

As explained in Section .., our problem instance generator receives as
inputs the number of components (|C|), the number of indenture levels (|I |),
the number of echelon levels (|E|), the number of fixed costs sets (|G|), and the
maximum number of fixed costs sets in which each component will be (smax).
For each number of fixed costs sets s |  ≤ s ≤ smax, a percentage Ps has to
be specified, such that

∑smax

s= Ps = %. Ps is the percentage of components
that will be in s sets of components sharing fixed costs. For example, if the
components may be at maximum in  fixed costs set (smax = ), P is the
percentage of components that will be in no set at all and P is the percentage
of components that will be in  fixed costs set. These percentages should add
up to %.

For every component, we draw a random number to decide in how many fixed
costs sets the component will be. We draw that number of sets, with every set
having equal probability. The component will be in all of these sets. Notice that
the number of components per set will in general not be the same for all sets.

Depending on the number of components and indenture levels, we calculate
how many children every parent component should have approximately; we
call this value a. This a should be such that

∑|I |
i= a

i = |C| (or (a− a|I |+)/(− a) =
|C|). For I ≥  this cannot be solved exactly. Therefore, we use an approximation
(for simplicity, we also use the approximation for I < ): First, we determine an

In our model, we use sets of components that share fixed costs (G ∈ G). We call these sets fixed
costs sets.



 Appendix C

auxiliary variable a′ such that (a′)|I | = |C|. Then we calculate:

a = a′ · |C|
|C|+ 

|I | ·
(∑|I |

i=

[
(a′)i

]
− |C|

)
For |C| = , and |I | = , this means that a′ =  and a ≈ .. This in turn
means that

∑|I |
i=(a

′)i = , and
∑|I |
i= a

i = ,.. This last value is very close
to |C|, which was our goal.

To determine the number of components at indenture level i (|Ci |), we draw a
random number from a uniform distribution ranging from 

a to a and we
multiply this value by the number of components at the next lower indenture
level (|Ci−|, notice that |C| = , the complete system). We initialize cavailable =
|C| and for every i > , we subtract |Ci | from Cavailable. If cavailable < |Ci |, we set
|Ci | = cavailable. The number of components at the highest indenture level (i = |I |)
is not drawn, but is equal to cavailable after we have drawn the values for all the
lower indenture levels. Notice that it can happen that |C|I || = , which would
mean that the system effectively consists of |I | −  indenture levels.

For each of the components b ∈ Ci , we draw with an equal probability any
one of the components c ∈ Ci−. This c is the parent component of b. Notice
that in general, the number of children per parent will not be the same for all
parents at a certain indenture level. Notice also that at indenture level , so the
subsystem level, no father component needs to be drawn.

The last inputs are the minimum and maximum values for vcc,e,d , f cG,e,d , and
λc. The actual values for the vcc,e,d , f cG,e,d , and λc are drawn from a uniform
distribution ranging from the provided minimum to the provided maximum.
Starting at the components with the one but highest indenture level and ending
with the components with indenture level , the value of all λc is then changed
to λc+

∑
b∈Γc λb. We do this, since in practice the demand for a parent component

will generally be about the same as the demand for all its child components.
In the same way, the variable costs of discard for all its child components are
added to the costs of discard for the parent component.

Appendix D

Experimental design for the
lora flow model

In this appendix, we describe the random generator that we use to generate
the problem instances that we use in in our numerical experiments in Sec-
tion .... We explain how we generate product structures, failure rates
and cost factors. Generating the repair network structure is explained in Sec-
tion .... In that section, we also explain how costs can be unbalanced in
the network.

In all tests, the system structure consists of  components at the first indenture
(subsystems),  at the second level and  at the third level. Every second
and third indenture component is randomly attached to a lower indenture
component, so a first indenture component can have zero subcomponents. The
demand per subsystem (first indenture) is drawn from a uniform distribution
on the interval [., ]. The percentage of demand for a parent that is due to a
failure in a specific child is drawn from a uniform distribution on the interval
[./(number of children), ./(number of children)], with a maximum of .

For each component, we draw a net price, excluding the costs of the children,
from a shifted exponential distribution with shift factor , and rate param-
eter /(,− ,). In this way, on average .% of the components get a
value larger than ,. We draw a new price for these components to avoid
odd problem instances. The reason for our choice is that most systems have a
large diversity of items in price, but there are considerably more cheap items
than expensive items. The cheapest items (in our case with a price below ,)
are usually omitted from a regular lora, because they are discarded by default.

Using these prices, we calculate the variable costs as follows:

• Repair costs as a fraction of the net price are drawn from a uniform
distribution on the interval [., .].



 Appendix D

• We recursively add the price of each child to its parent to get the gross
item price. We do this after calculating the repair price, since repair of
a parent means replacement of the child that was defective and taking
a decision for the child, thus incurring costs for the child. Discarding
or moving a parent does not lead to a decision, and thus costs, for the
children.

• The discard costs as a fraction of the gross item price, including children,
are drawn from a uniform distribution on the interval [., .]. %

would be just the costs of replacing a defective component by a new one.
However, on the one hand there may be disposal costs, on the other hand,
some parts of a defective component can be recycled or re-used.

• The move costs are always % of the gross item price.

We also need to take spare part costs into account. If we neglect the spare
parts costs, we see that resources are typically bought at the central depot. The
explanation is that if a resource is used at the central depot, only one resource
needs to be bought. However, multiple resources are needed if it is used at a
lower echelon level, since one resource needs to be bought at every location at
that echelon. In practice, repairing everything at the central depot means that
the availability of the systems goes down, which should be compensated for by
buying spare parts.

Integrating spare parts optimization into the lora is interesting future research,
but it does not fit in the scope of this paper. However, there are multiple
approaches for adding spare parts costs in a basic way. The approach that we
have chosen is based on the difference in lead times for the different options
that can be chosen for each component. We assume that repair at the operating
site or at the intermediate depot takes a month, whereas repair at the central
depot takes three months. Discard (and buying a new item) has a lead time
of half a year. Moving a component to a higher echelon leads to an additional
lead time of half a month. Using these lead times, we estimate spare parts
costs by multiplying the demand for the component, the lead time, a safety
factor of , the price of the component and holding costs of %. A correct
item approach would use the standard deviation of the demand instead, but
this would make our model non-linear. A correct system approach, such as the
metric-like approaches (see, for example, Sherbrooke, ), would be even
more problematic. We tested other approaches and other safety factors, but
this approach leads to reasonable results.

The price of each resource is drawn from a shifted exponential distribution
with shift factor , and rate parameter /(,,− ,) in the same
way as described above for the prices of the components. As a result, prices vary
between , and ,,. We randomly assign components to resources,
such that the percentage of components that needs ,  and  resources are
%, % and % respectively in the first case, and %, % and % in the
second case.

Appendix E

Experimental design for the
joint model

In this appendix, we explain how we generate the problem instances that we
use in our experiments in Chapters  and . The problem instances are divided
into three test sets, each with its own focus. We vary in each test set:

. Sizes of the product structures and network structures, lead times, and
holding costs.

. Annual demands and costs of components and resources.

. Component-resource relations.

For each parameter that we use to generate these instances, we use the default
setting in the text. Some values are set to a certain value, others are drawn from
a given range. These drawn values are the same for all settings of the other
parameters. Table E. (E.) summarizes for all parameters that do not vary (do
vary) their default setting, the alternative setting that we use, and the test set
in which that alternative setting is used. We use a full factorial design and we
generate  problem instances for each combination of parameters to decrease
the risk of basing conclusions on one odd problem instance. As a result, test
set , , and  consist of ,, , and  problem instances, respectively.
Since the default value for each parameter is used in each test set, each test set
contains the same ten ‘default’ problem instances.

Our problem instances are completely symmetrical in the network structure,
the cost factors, the demand rates, and the throughput times. The repair net-
work consists of three echelon levels, with a central depot, two intermediate
depots, and ten operating sites.

The product structure consists of three indenture levels, with  lrus, and two
subcomponents per component on average. All subcomponents are randomly



 Appendix E

assigned to one of the components, which means that in general the number
of subcomponents per component differs for the various componentss. In our
tests, the annual demand for a component is equal to the annual demand of its
subcomponents. We achieve this by drawing the annual demand of each part
from a uniform distribution on the interval

[./(#subcomp. per comp.),./(#subcomp. per comp.)]

and recursively calculating the annual demand of the srus and lrus. The
demand for srus or lrus without subcomponents is drawn from the same
interval as the demand for parts.

For each component, we draw a net price, excluding the costs of its subcompo-
nents, from a shifted exponential distribution with shift factor , and rate
parameter /(,− ,). In this way, on average .% of the components
get a value larger than ,. We draw a new price for these components to
avoid odd problem instances. The reason for our choice is that most products
have a large diversity of components in price, but there are considerably more
cheap components than expensive ones. The least expensive components (in
our case those with a price below ,) are usually omitted from a regular
lora, because they are discarded by default.

Using these prices, we calculate the variable costs as follows:

• Repair costs as a fraction of the net component price are drawn from a
uniform distribution on the interval [., .].

• For the discard, move and holding costs, we recursively add the costs of
each subcomponent to its parent to get the gross component price for the
parent. We do this since, for example, discarding a component should
be more expensive than discarding all its subcomponents. However,
repairing a component means replacement of the subcomponent that
was defective and taking a decision for the subcomponent, thus incurring
costs for that subcomponent. Therefore, we should not add the costs of
repairing a subcomponent to the costs of repairing its parent.

• The discard costs as a fraction of the gross component price, are drawn
from a uniform distribution on the interval [., .]. % would be
just the costs of replacing a defective component by a new one. However,
on the one hand, there may be disposal costs, on the other hand, some
parts of a defective component may be recycled or re-used.

• The move costs as a fraction of the gross component price are %.

• The annual costs of holding one spare part of a component are % of the
gross component price.

The discard time, so the time it takes to buy and receive a new component, is
drawn from a uniform distribution on the interval [/, /]. Both the discard
and the repair times vary over the components, but are the same at all echelon
levels for each component. The replenishment lead time from one echelon to

Experiments joint problem 

Default Test Additional
Parameter value set value
Echelon levels   
Central depots  — —
Intermediate depots  — —
Operating sites  — —
Indenture levels   
lrus   
Subcomponents per parent component  — —
Resources  — —
Component types   
% Resources used by  component %  %

Table E.: Fixed values

Default Test Additional
Parameter range set value(s)

Annual demand of lru [.; .] 
[.; .]
[.; .]
[.; ]

Net cost of component [,; ,]  [,; ,]
Discard costs [.; .] — —
Repair costs [.; .] — —
Move costs [.; .] — —
Annual holding costs [.; .]  [.; .]
Annual cost of resource [,; ,]  [,; ,]
Discard time (in years) [/; /]  [/; /]
Repair time (in years) [./; /]  [/; /]
Move time (in years) [./; /]  [/; /]
Components per resource [; ]  [; ]

Table E.: Values that vary over a range

the next is drawn from a uniform distribution on the interval [/, /].
This value varies over the echelon levels, but is the same for all components.
For each component, we draw a repair time from a uniform distribution on the
interval [/, /]. This time does not vary over the echelon levels.

There are ten resources and their annual costs are drawn from a shifted expo-
nential distribution with shift factor , and rate parameter /(,−
,). % of the resources will be used by one component only, the other
% will be used by  to  components. We distinguish  ‘component types’,
for example electronic versus mechanical components. Each resource and each
lru family is randomly assigned to one of the component types. The result is
that resources of one component type do not interact with resources of another
component type, which is realistic in practice.

Bibliography

AberdeenGroup (). The Service Parts Management Solution Selection Report.
SPM Strategy and Technology Selection Handbook. Service Chain Management.
Featured Research Series.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (). Network flows. Theory,
algorithms, and applications. Prentice Hall, Englewood Cliffs (NJ).

Alfredsson, P. (). Optimization of multi-echelon repairable item inventory
systems with simultaneous location of repair facilities. European Journal of
Operational Research, :–.

Alfredsson, P. and Verrijdt, J. (). Modeling emergency supply flexibility in
a two-echelon inventory system. Management Science, ():–.

Asiedu, Y. and Gu, P. (). Product life cycle cost analysis: State of the art
review. International Journal of Production Research, ():–.

Barros, L. L. (). The optimization of repair decisions using life-cycle
cost parameters. IMA Journal of Mathematics Applied in Business & Industry,
:–.

Barros, L. L. and Riley, M. (). A combinatorial approach to level of repair
analysis. European Journal of Operational Research, :–.

Basten, R. J. I. (). Baselinestudy Thales Nederland. University of Twente,
Enschede (the Netherlands). Confidential report.

Basten, R. J. I., Kutanoglu, E., Van der Heijden, M. C., and Schutten, J. M. J.
(a). An optimal approach for the joint problem of level of repair analysis
and spare parts stocking. beta working paper . Submitted for publication.

Basten, R. J. I., Schutten, J. M. J., and Van der Heijden, M. C. (b). An
efficient model formulation for level of repair analysis. Annals of Operations
Research. In press.

Basten, R. J. I., Van der Heijden, M. C., and Schutten, J. M. J. (). A
minimum cost flow model for level of repair analysis. beta working paper
. Submitted for publication.





Basten, R. J. I., Van der Heijden, M. C., and Schutten, J. M. J. (c). An
iterative method for the simultaneous optimization of repair decisions and
spare parts stocks. beta working paper . Submitted for publication.

Blanchard, B. S. (). System Engineering Management. Prentice Hall, Engle-
wood Cliffs (NJ), second edition.

Blanchard, B. S. and Fabrycky, W. J. (). Systems Engineering and Analysis.
Prentice Hall, Upper Saddle River (NJ), third edition.

Brick, E. S. and Uchoa, E. (). A facility location and installation or resources
model for level of repair analysis. European Journal of Operational Research,
():–.

Brown, R. G. (). Statistical Forecasting for Inventory Control. McGraw-Hill,
New York (NY).

Candas, M. F. and Kutanoglu, E. (). Benefits of considering inventory
in service parts logistics network design problems with time-based service
constraints. IIE Transactions, ():–.

cnet news (). California power outages suspended–for now. http://news.
cnet.com/--.html, last checked on  September .

Cohen, M. A., Agrawal, N., and Agrawal, V. (). Winning in the aftermarket.
Harvard Business Review, ():–.

Cohen, M. A., Zheng, Y.-S., and Agrawal, V. (). Service parts logistics: a
benchmark analysis. IIE Transactions, :–.

Cornuejols, G., Nemhauser, G. L., and Wolsey, L. A. (). The uncapacitated
facility location problem. In Mirchandani, P. B. and Francis, R. L., editors,
Discrete location theory, chapter , pages –. John Wiley & Sons, New
York (NY).

Daskin, M. S. (). Network and discrete location. Models, algorithms, and
applications. John Wiley & Sons, New York (NY).

Daskin, M. S., Coullard, C. R., and Shen, Z.-J. M. (). An inventory-location
model: Formulation, solution algorithm and computational results. Annals
of Operations Research, :–.

Deloitte (). The service revolution in global manufacturing industries.

Diestel, R. (). Graph Theory. Springer, Heidelberg (Germany), third edition.

Downtime Central (). TDC – real examples of downtime cost. http:

//www.downtimecentral.com/Examples.shtml, last checked on  Septem-
ber .

edcas (). http://www.tfdg.com/edcas.php, last checked on May .

http://news.cnet.com/2100-1017-251167.html
http://news.cnet.com/2100-1017-251167.html
http://www.downtimecentral.com/Examples.shtml
http://www.downtimecentral.com/Examples.shtml
http://www.tfdg.com/edcas.php

Bibliography 

Ferrin, B. G. and Plank, R. E. (). Total cost of ownership models: An
exploratory study. Journal of Supply Chain Management, ():–.

Franssen, R. (). Life Cycle Cost Analysis. For Baggage Handling Systems of
VanderLande Industries. Technische Universiteit Eindhoven, Eindhoven (the
Netherlands). Confidential report.

Gabor, A. F. and Van Ommeren, J. C. W. (). An approximation algorithm
for a facility location problem with stochastic demands and inventories.
Operations Research Letters, :–.

Gademann, N. and Schutten, M. (). Linear-programming-based heuristics
for project capacity planning. IIE Transactions, :–.

Gershenson, J. and Ishii, K. (). Life-cycle serviceability design. In Ku-
siak, A., editor, Concurrent Engineering. Automation, Tools, and Techniques,
chapter , pages –. John Wiley, New York.

Glover, F. W. (). Tabu search–Part I. orsa journal on computing, ():–
.

Glover, F. W. (). Tabu search–Part II. orsa journal on computing, ():–.

Godsil, C. and Royle, G. (). Algebraic Graph Theory. Springer, New York
(NY).

Graham, R. (). An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, ():–.

Graves, S. C. (). A multi-echelon inventory model for a repairable item
with one-for-one replenishment. Management Science, ():–.

Guldemond, T. A., Hurink, J. L., Paulus, J. J., and Schutten, J. M. J. ().
Time-constrained project scheduling. Journal of Scheduling, ():–.

Gupta, Y. P. (). Life Cycle Cost Models and Associated Uncertainties, vol-
ume F of nato asi Series, pages –. Springer, Berlin (Germany).

Gutin, G., Rafiey, A., Yeo, A., and Tso, M. (). Level of repair analysis and
minimum cost homomorphisms of graphs. Discrete Applied Mathematics,
():–.

Hopcroft, J. and Tarjan, R. E. (). Efficient algorithms for graph manipula-
tion. Communications of the ACM, ():–.

Jeet, V., Kutanoglu, E., and Partani, A. (). Logistics network design with
inventory stocking for low-demand parts: Modeling and optimization. IIE
Transactions, ():–.

Kranenburg, B. (). Spare Parts Inventory Control under System Availability
Constraints. PhD thesis, beta research school, Eindhoven (The Netherlands).



Little, J. D. C. (). A proof for the queuing formula: L = λW . Operations
Research, ():–.

Melo, M. T., Nickel, S., and Saldanha-da-Gama, F. (). Facility location
and supply chain management - a review. European Journal of Operational
Research, :–.

Meutstege, G. J. H. (). Life cycle cost analysis at PANalytical. Analyzing and
modelling the cost components throughout a products life cycle. Master’s thesis,
University of Twente, Enschede (the Netherlands).

Mladenović, N. and Hansen, P. (). Variable neighborhood search. Comput-
ers & Operations Research, ():–.

Muckstadt, J. A. (). A model for a multi-item, multi-echelon, multi-
indenture inventory system. Management Science, ():–.

Muckstadt, J. A. (). Analysis and Algorithms for Service Parts Supply Chains.
Springer, New York (NY).

Murthy, D. N. P., Solem, O., and Roren, T. (). Product warranty logistics:
Issues and challenges. European Journal of Operational Research, :–.

nu.nl (). Saab doet ultieme poging om de gripen te slijten. http://www.
nu.nl/algemeen//, last checked on May , in Dutch.

Oliva, R. and Kallenberg, R. (). Managing the transition from products to
services. International Journal of Service Industry Management, ():–.

Patterson, D. (). A simple way to estimate the cost of downtime. http:
//roc.cs.berkeley.edu/talks/pdf/LISA.pdf, last checked on  Septem-
ber .

price hl (). http://www.pricesystems.com/products/price_hl.asp,
last checked on  July .

Rustenburg, W. D. (). A System Approach to Budget-Constrained Spare Parts.
PhD thesis, beta research school, Eindhoven (The Netherlands).

Rustenburg, W. D., van Houtum, G.-J. J. A. N., and Zijm, W. H. M. (). Spare
parts management at complex technology-based organizations: An agenda
for research. International Journal of Production Economics, :–.

Rustenburg, W. D., van Houtum, G.-J. J. A. N., and Zijm, W. H. M. (). Exact
and approximate analysis of multi-echelon, multi-indenture spare parts
systems with commonality. In Shanthikumar, J. G., Yao, D. D., and Zijm,
W. H. M., editors, Stochastic Modelling and Optimization of Manufacturing
Systems and Supply Chains, pages –. Kluwer, Boston (MA).

Saranga, H. and Dinesh Kumar, U. (). Optimization of aircraft mainte-
nance/support infrastructure using genetic algorithms — level of repair
analysis. Annals of Operations Research, :–.

http://www.nu.nl/algemeen/1950278/
http://www.nu.nl/algemeen/1950278/
http://roc.cs.berkeley.edu/talks/pdf/LISA.pdf
http://roc.cs.berkeley.edu/talks/pdf/LISA.pdf
http://www.pricesystems.com/products/price_hl.asp

Bibliography 

Sherbrooke, C. C. (). metric: A multi-echelon technique for recoverable
item control. Operations Research, ():–.

Sherbrooke, C. C. (). vari-metric: Improved approximations for multi-
indenture, multi-echelon availability models. Operations Research, :–
.

Sherbrooke, C. C. (). Optimal inventory modelling of systems. Multi-echelon
techniques. Kluwer, Dordrecht (The Netherlands), second edition.

Silver, E. A., Pyke, D. F., and Peterson, R. (). Inventory Management and
Production Planning and Scheduling. John Wiley & Sons, Hoboken (NJ), third
edition.

Slay, M. (). vari-metric: An approach to modelling multi-echelon resupply
when the demand process is poisson with a gamma prior. Technical report,
Logistics Management Institute, Washington D.C. Report AF-.

Sleptchenko, A., Van der Heijden, M. C., and Van Harten, A. (). Effects of
finite repair capacity in multi-echelon, multi-indenture service part supply
systems. International Journal of Production Economics, :–.

Ullman, D. G. (). The Mechanical Design Process. McGraw-Hill, New York,
second edition.

United Kingdom Ministry of Defence (a). Integrated Logistic Support. Part
: Application of Integrated Logistic Support (ils) (Issue ).

United Kingdom Ministry of Defence (b). Integrated Logistic Support. Part
: Logistic Support Analysis (lsa) and Logistic Support Analysis Record (lsar)
(Issue ).

United States Department of Defense (). MIL-STD--A Logistics
Support Analysis (Notice ).

United States Department of Defense (). MIL-HDBK- Acquisition
Logistics.

VMetric (). http://www.tfdg.com/vmetric.php, last checked on May
.

Vrij Nederland (). JSF: weg met dat vliegtuig. http://www.vn.nl/

Binnenland/ArtikelBinnenland/JSFWegMetDatVliegtuig.htm, last
checked on May , in Dutch.

Zijm, W. H. M. and Avşar, Z. M. (). Capacitated two-indenture models
for repairable item systems. International Journal of Production Economics,
-:–.

http://www.tfdg.com/vmetric.php
http://www.vn.nl/Binnenland/ArtikelBinnenland/JSFWegMetDatVliegtuig.htm
http://www.vn.nl/Binnenland/ArtikelBinnenland/JSFWegMetDatVliegtuig.htm

Samenvatting

Het onderwerp van dit proefschrift is het inrichten van het onderhoudssysteem
voor kapitaalgoederen. Voorbeelden van kapitaalgoederen zijn radarsystemen,
vliegtuigen, industriële installaties en mri-scanners. Kapitaalgoederen zijn
kostbaar en technisch complex. Verder zijn de kosten van het niet-beschikbaar
zijn van kapitaalgoederen hoog: het niet-functioneren van een radarsysteem
op een schip in oorlogsgebied betekent dat het schip kwetsbaar is voor vijan-
dige aanvallen. Het uitvallen van een industriële installatie leidt vaak tot een
verminderde productie en inkomstenderving. Een goed ingericht onderhouds-
systeem is daarom van groot belang.

Aangezien beschikbaarheid zo belangrijk is, worden kapitaalgoederen in de
regel gerepareerd door niet-functionerende componenten te verwisselen, de
zogenaamde repair by replacement. Deze component kan vervolgens gerepa-
reerd worden, of hij kan worden afgestoten waarna een nieuwe component
gekocht wordt. Wanneer een component gerepareerd wordt, gebeurt dit door
uitwisseling van een subcomponent of de component kan direct gerepareerd
worden. Een eventuele subcomponent kan ook weer afgestoten of gerepareerd
worden. We hebben zo een multi-indenture productstructuur. Omdat in veel
gevallen apparatuur nodig is voor de reparatie van componenten, worden
reparaties niet per se op de locatie van het kapitaalgoed uitgevoerd. In veel
gevallen bestaat het onderhoudsnetwerk uit meerdere echelons (niveaus in
het netwerk), waarbij te denken valt aan regionale onderhoudscentra en een
centraal onderhoudscentrum. Dit betekent dat ook bepaald moet worden op
welk echelon-niveau reparaties uitgevoerd dienen te worden. Een voorwaarde
is dat de benodigde apparatuur op die locaties aanwezig is. De level of repair
analysis (lora) is een wiskundig optimalisatiemodel dat antwoorden geeft op
al deze vragen. Het doel is om de kosten te minimaliseren.

In de wetenschappelijke literatuur bestaan nog nauwelijks goede modellen
voor de lora. Wij hebben twee nieuwe modellen ontwikkeld. Het basismodel,
in hoofdstuk , lijkt in aanpak vrij sterk op de bestaande modellen, maar is
algemener, zodat een bredere klasse van problemen kan worden opgelost. Het
verbeterde model, in hoofdstuk , is op een compleet nieuwe manier aangepakt
(geformuleerd als een minimum cost flow model with side constraints). Dit model
is weer iets algemener en we laten zien dat deze nieuwe aanpak efficiënt is, dus





weinig rekentijd vraagt. Verder is het model zeer flexibel; allerlei uitbreidingen
die in verschillende praktijksituaties relevant zijn, kunnen eenvoudig in dit
model worden opgenomen. In hoofdstuk maken we hier gebruik van door
zulke uitbreidingen te modelleren. We staan daar bijvoorbeeld toe dat reparatie
slechts in een bepaald percentage van de gevallen succesvol is en dat reparatie-
apparatuur maar een beperkte capaciteit heeft.

De lora beantwoordt echter niet alle vragen. Er moeten ook nog reserve-
onderdelen in het onderhoudsnetwerk neergelegd worden zodanig dat een
bepaalde beschikbaarheid van de kapitaalgoederen gegarandeerd kan worden.
De wetenschappelijke literatuur over spare parts inventories (voorraden reser-
ve-onderdelen) is zeer uitgebreid. Er bestaan ook verschillende commerciële
softwareproducten die gebruikt kunnen worden om te bepalen waar, en in
welke hoeveelheden, voorraden neergelegd moeten worden zodanig dat tegen
de laagst mogelijke voorraadkosten een bepaalde beschikbaarheid van de kapi-
taalgoederen bereikt wordt (bijvoorbeeld %). De de facto standaardmethode
op het gebied van kapitaalgoederen is vari-metric.

In de praktijk worden de lora en vari-metric sequentieel uitgevoerd zoals hier-
boven beschreven. Dat wil zeggen, eerst wordt bepaald welke componenten bij
falen gerepareerd en welke vervangen moeten worden, waar reparaties uitge-
voerd moeten worden en waar reparatie-apparatuur geïnstalleerd moet worden.
Hierbij worden verschillende kosten meegenomen, zoals transportkosten, werk-
uren van onderhoudsmonteurs, kosten van nieuw gekochte componenten en
afschrijvingskosten van apparatuur. De beschikbaarheid van het kapitaalgoed
wordt echter niet meegenomen. Dit gebeurt pas als vervolgens vari-metric
wordt toegepast om te bepalen welke investering in reserve-onderdelen nodig
is om een bepaalde beschikbaarheid van het kapitaalgoed te realiseren.

In de case-studie die we hebben uitgevoerd bij Thales Nederland, een produ-
cent van militaire sensoren (o.a. radarsystemen) en command- en controlsyste-
men, bedragen de kosten voor reserve-onderdelen meer dan % van de totale
relevante kosten gedurende de levenscyclus. Omdat de kosten van de reserve-
onderdelen niet worden meegenomen in de lora, worden soms beslissingen
genomen die niet kosteneffectief zijn. In de lora betekent centraal repareren
dat dure reparatie-apparatuur slechts op één locatie wordt neergezet, maar de
transportkosten relatief hoog zijn. Direct bij de kapitaalgoederen repareren
betekent dat de transportkosten nul zijn, maar dat mogelijk dure reparatie-ap-
paratuur op verschillende locaties aangeschaft dient te worden. Aangezien de
transportkosten relatief laag zijn ten opzichte van de kosten van reparatie-ap-
paratuur, wordt vaak besloten centraal te repareren. Dit betekent echter wel
dat de reparatie-doorlooptijden langer worden, omdat tijd nodig is voor het
vervoer van componenten naar de centrale locatie. Dit heeft zijn weerslag op
het aantal benodigde reserve-onderdelen: een langere reparatieduur zorgt in
beginsel voor meer benodigde reserve-onderdelen omdat meer componenten
in het reparatieproces zitten.

In hoofdstuk  en  ontwikkelen we daarom methoden waarmee het totale

Samenvatting 

probleem van lora en voorraden reserve-onderdelen aangepakt kan worden.
De iteratieve methode in hoofdstuk maakt gebruik van twee bouwblokken: het
lora-model dat we hebben ontwikkeld in hoofdstuk  en , en vari-metric.
Na één iteratie van lora en vari-metric koppelen we de resultaten van vari-
metric terug naar de lora. Het resultaat is dat de lora informatie krijgt
over de kosten van reserve-onderdelen die samenhangen met de verschillende
beslissingen (repareren of afstoten, op verschillende echelon-niveaus). Na een
aantal iteraties gaat de lora daarom een oplossing kiezen die kosteneffectief
is (inclusief kosten voor reserve-onderdelen). Deze methode blijkt tot een
kostenreductie van gemiddeld meer dan % en in een enkel geval meer dan
% te leiden ten opzichte van de sequentiële methode. Realistische problemen,
zoals in de case-studie bij Thales Nederland, blijken opgelost te kunnen worden
in minder dan tien minuten. In deze case-studie bereiken we een kostenreductie
van meer dan %, wat over de levensduur van de twaalf sensorsystemen in de
case-studie equivalent is met een besparing van enkele miljoenen euro’s.

In hoofdstuk  ontwikkelen we een tweede methode die een curve van optimale
oplossingen vindt. Deze geïntegreerde methode is aanmerkelijk langzamer dan
de iteratieve methode, tot zes uur op onze test-instanties en bijna twee dagen
voor de Thales-case, maar we weten wel zeker dat we de optimale oplossing
vinden. Daarom is deze methode ook zeer geschikt om andere methoden mee
te vergelijken, zoals onze iteratieve methode. Uit deze vergelijking blijkt dat
de iteratieve methode het erg goed doet. Gemiddeld zijn de kosten van haar
oplossingen slechts .% hoger dan die van de oplossingen van de geïntegreerde
methode, met een maximum van bijna %.

About the author

Rob Basten was Born in Boxmeer, the Netherlands (NL), on  November .
He completed his pre-university education at the Gymnasium Bernrode in
Heeswijk-Dinther (NL) in . In the same year, he started studying Indus-
trial Engineering and Management at the University of Twente in Enschede
(NL), with finance as specialism. In , he carried out his final project at
Keypoint Consultancy in Enschede and he obtained his ingenieur’s degree (Ir.,
equivalent to Master of Science, MSc) in Industrial Engineering and Manage-
ment. In addition, he studied Computer Science at the same university from
 to , with human media interaction as specialism. Rob carried out his
final project at the Deutsches Forschungszentrum für Künstliche Intelligenz in
Saarbrücken, Germany, which led to obtaining his ingenieur’s degree in Com-
puter Science. In , he started in a PhD project at the University of Twente,
School of Management and Governance, Department of Operational Methods
for Production and Logistics, under supervision of Henk Zijm, Matthieu van
der Heijden, and Marco Schutten. Part of the research has been carried out
during a five-month stay at the University of Texas at Austin (United States),
in cooperation with Erhan Kutanoglu.



	Introduction
	Motivation
	Level of repair analysis and spare parts stocking
	Example
	Literature
	Contribution
	Outline of the thesis

	Literature and research challenges
	Requirements in practice
	Level of repair analysis
	Spare parts stocking
	Joint problem of lora and spare parts stocking
	Conclusions

	Basic lora model
	Model
	Improved model
	Computational experiments
	Conclusions

	Flow model for the lora problem
	Model assumptions and input data
	Minimum cost flow model
	Computational experiments
	Conclusions

	Extensions to the lora flow model
	Motivation of model extensions
	Model formulation of extensions
	Computational experiments
	Conclusions

	Iterative method for the joint problem of lora and spare parts stocking
	Model
	General approach
	Algorithm
	Computational experiments
	Case study at Thales Nederland
	Extension to non-symmetrical lora decisions
	Conclusions

	Integrated method for the joint problem of lora and spare parts stocking
	vari-metric: the marginal approach
	Algorithm
	Test results
	Conclusions

	Conclusions and further research
	Conclusions
	Usage in practice
	Further research

	Notation
	Proof that the lora problem is NP-hard
	Experimental design for the basic lora model
	Experimental design for the lora flow model
	Experimental design for the joint model
	Bibliography
	Samenvatting
	About the author

