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\{ ~ INTERMODAL TRANSPORTATION CHAIN
"‘ TWO PROCESSES: DRAYAGE AND LONG-HAUL TRANSPORTATION
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‘ | “Inanintermodal transportation chain, the initial and final

trips represent 40% of total transport costs.” z

Escudero, A.; Mufiuzuri, J.; Guadix, J. & Arango, C. (2013) Dynamic approach to solve the daily |4
drayage problem with transit time uncertainty. Computers in Industry :
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SYNCHROMODALITY

\ WHAT IS SYNCHROMODAL TRANSPORTATION?
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‘ {4\ *Source of video: Dutch Institute for Advanced Logistics (DINALOG) www.dinalog.nl
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EXAMPLE TRADE-OFF
TRANSPORTATION OF CONTAINERS FROM TWENTE TO ROTTERDAM
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| Legend:
U\‘ O Drayage origins O @ Drayage destinations P° @ Long-haul destinations D" [] Terminals H

— p Train — Barge —» Path end-haulage freight ——» Path pre-haulage freight

= Schedule when (and where) to transport each freight to
achieve minimum costs over the network and over time.
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PROBLEM DESCRIPTION

--- A stochastic optimization problem over a finite horizon where:
* Random freights arrive
= Sequential schedules are made
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Legend: —sDrayage freights —sLong-haul freights =—=—4m(Cost information ODa}’ Q Decision
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SCHEDULING DRAYAGE TRANSPORTATION

Full-Truckload Pickup-and-Delivery Problem with Time-Windows
(FTPDPTW) to route trucks and assign terminals:

= Assignment of initial terminal for the long-haul of freights

Scheduling Drayage Operations in
Synchromodal Transport

Arturo E. Pérez Rivera and Martijn RUK. Mes

the th
nodal transport

Keywaords: Draysge operations, synchromod

nsport, matheuristic

» 1 Introduction

During the last years, intermodal transport has received increased attention from
i academic I3 et 0 to potential reductions
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Fig. 2. Example of pre-processing of time windows for a Job Type |

Pérez Rivera, A.E., Mes, M.R.K.
(2017). Scheduling Drayage
Operations in Synchromodal
Transport. Lecture Notes in Computer
Science, Volume 10572, pp. 404-419.
Springer. DOI 10.1007/978-3-319-
68496-3 27
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SCHEDULING LONG-HAUL TRANSPORTATION

Markov Decision Process (MDP) to consolidate freights in daily
barges or postpone their transport:

= Arrival of freight is stochastic and dependent on drayage
decisions

Pérez Rivera, A.E., Mes, M.R.K.
(2016). Anticipatory Freight Selection
in Intermodal Long-haul Round-trips.
Transportation Research Part E:
Logistics and Transportation Review.
Volume 105: pp. 176-194. Elsevier.

DOI 10.1016/}.tre.2016.09.002
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http://www.trucksandbarges.nl/

INTEGRATED SCHEDULING
UNIFIED CONTROL OF DRAYAGE AND LONG-HAUL TRANSPORTATION

The goal is to minimize the total expected network-wide costs,
where the drayage schedule depends on the long-haul policy, and
where the long-haul policy depends on the arrivals from the drayage

schedule.
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HEURISTIC APPROACH
HEURISTICS FOR THE DRAYAGE SCHEDULE AND LONG-HAUL POLICY

= We use a Matheuristic (MH) for
scheduling drayage transportation,
which uses various cuts based on the
‘terminal assignment cost’ resulting
from the long-haul policy.

= We use an Approximate Dynamic
Programming (ADP) algorithm for

learning a long-haul policy, i.e., Value
Function Approximation (VFA), based
on the observed distributions from a
simulation of the MH.
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\

S HEURISTIC APPROACH
INTEGRATION OF THE TWO HEURISTICS
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Overall drayage
probabilities PP

Sequential
Integration

(A) Define
long-haul
probabilities PL
using I’

\
\

(B) Run ADP

using Pk

CE,VteT,to
use in the MH

A

Convert VFA into

VFA for drayage
and long-haul
scheduling

Tterative Integration

Observed drayage
decisions and
arrival
distribution

(C) Simulate

long-haul (z} )

scheduling.

drayage (xP,) +
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/" NUMERICAL EXPERIMENTS

// au INSTANCES SETUP
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Legend: (O Drayage location @ Long-haul destination [ | Terminal - #»# Train — Barge

?\' Freight demand: Drayage location:
*

& 20 freights per day Random (R) or
4 ; (=Poisson dist.) Clustered (C).
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Drayage type:

Pre-haulage (P) or
End-haulage (E).

Long-haul Destinations:
Balanced (B) or
Unbalanced (V).
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/" NUMERICAL EXPERIMENTS
I~ EXPERIMENTAL PHASES

Yy We divide the experiments in two phases:

lt“ e 1. Calibration phase:
&
\\ H'it‘ *}‘f =  Settings for heuristic parameters.
Loty : "* = Influence in drayage and long-haul schedules.
gy

iy 2. Evaluation phase:
?ﬁ‘f& = Savings with respect to a benchmark approach commonly
% found in practice.
=  Sensitivity to different cost setups.

V

{;

 UNIVERSITY OF TWENTE. 15



000
CALIBRATION PHASE - PARAMETERS FOCUS ON DRAYAGE OR LONG-HAUL
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NUMERICAL EXPERIMENTS
EVALUATION PHASE — NORMAL COST SETUP
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Table 1: Percentage difference with the benchmark in normal drayage-cost setup

Instance R-P-U R-P-B R-E-U R-E-B C-P-U C-P-B C-E-U C-E-B
Long-haulCosts -10%  -14%  -63%  -65%  -14%  -13%  -63% -65%
DrayageCosts 17% 18%  33%  32% 16% 12%  21%  22%
Long-haulUtilization 4% 70 =007 =997 9% 07 -067%  -957%
Pre-haulageClosest — -21%  -27%  -82% 81% -37™% -35% -81% -82%
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) NUMERICAL EXPERIMENTS
g i EVALUATION PHASE - COST SENSITIVITY
b
L] Table 6.5: Percentage difference with the benchmark in high drayage-cost setup
** “‘
I < ‘} t‘j 1 e e e . I P :
\l'» 4\ Tnsts Costs Long-haul  Pre-haulage to
nstance
) #_‘ i;j. Total Long-haul Drayage Utilization closest terminal
’.‘ v
¢ R-P-U 3% -12% 6% 4% 5%
";'%‘:“ R-P-B 5% -5% 7% 0% 4%
R R-E-U 13% -62% 29% -55% -72%
" REBR 9% 63% 30% 55% 74%
C-P-U 9% 50% -20% -30% 18%
C-P-B  -12% 38% -23% 27% 21%
——— 7 =375 9% =31M6 117
C-E-B 3% -64% 18% -55% -73%
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- CONCLUSIONS

<D We proposed the integration of a MH for drayage scheduling
and an ADP for long-haul scheduling through (i) the inclusion
of long-haul assignment costs in drayage decisions, and (ii) an
improved VFA in the long-haul decisions.

® Numerical experiments show that our integrated scheduling
approach performs up to 38% better than separated
scheduling in terms of total network costs, with larger drayage
costs.

' ﬁ; ® ® F[urther research on the integration mechanisms of the MH
< ', and ADP, and their calibration, Is necessary to achieve the
/ most of integrated scheduling in synchromodal transport.

€ U
UNIVERSITY OF TWENTE. 19



UNIVERSITY OF TWENTE. ¥ y

THANKS FOR YOUR ATTENTION!

ARTURO E. PEREZ RIVERA
PhD Candidate
Department of Industrial Engineering and Business Information Systems
University of Twente, The Netherlands
https:.//www.utwente.nl/bms/iebis/staff/perezrivera/

N

Odysseus 2018 - Thursday, June 7t
Cagliari, Iltaly

a.e.perezrivera@utwente.nl

-




