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MOTIVATION: LOGISTIC SERVICE PROVIDER IN TWENTE
TRANSPORT OF CONTAINERS TO/FROM THE HINTERLAND
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*Source of artwork: Combi Terminal Twente (CTT) www.ctt-twente.nl



MOTIVATION: EFFICIENCY OPPORTUNITIES
DRAYAGE COSTS IN INTERMODAL/SYNCHROMODAL TRANSPORT COSTS
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*Source of artwork: Europe Container Terminals “The future of freight transport”. www.ect.nl

“In an intermodal transport chain, the initial and final trips 

represent 40% of total transport costs.”
Escudero, A.; Muñuzuri, J.; Guadix, J. & Arango, C. (2013) Dynamic approach to solve the daily 

drayage problem with transit time uncertainty. Computers in Industry



DRAYAGE OPERATIONS
THE BASIC CASE: EXPORT/IMPORT FULL-CONTAINER JOBS
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DRAYAGE OPERATIONS
ADDING EMPTY-CONTAINER JOBS
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DRAYAGE OPERATIONS
ADDING COMPLETE JOBS
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DRAYAGE OPERATIONS
ADDING MULTIPLE TERMINALS (AND FLEXIBLE JOBS)
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DRAYAGE OPERATIONS
DECOUPLING (I.E., POSSIBLE TO SPLIT COMPLETE JOBS IN TWO)
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DRAYAGE OPERATIONS
DECOUPLING (I.E., POSSIBLE TO SPLIT COMPLETE JOBS IN TWO)
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DRAYAGE OPERATIONS IN SYNCHROMODAL TRANSPORT
CATEGORIZATION OF JOBS
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MODELING DRAYAGE OPERATIONS
MODELING JOBS USING MIXED-INTEGER LINEAR PROGRAMMING (MILP)
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Jobs as nodes Jobs as arcsExample job

1

2

…
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MODELING DRAYAGE OPERATIONS: FTPDPTW BASE
FULL TRUCKLOAD PICKUP AND DELIVERY PROBLEM WITH TIME-WINDOWS (FTPDPTW)
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New elements in the FTPDPTW model:

1. Additional term in the objective: terminal (long-haul mode) 

assignment cost

2. Two type of arc-constraints: job assignment and flow-

conservation

3. Decoupling constraints: separation of job-arcs and their 

time-windows



MODELING DRAYAGE OPERATIONS
A GRAPHICAL EXAMPLE OF THE MILP MODEL
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MODELING DRAYAGE OPERATIONS
A GRAPHICAL EXAMPLE OF THE MILP MODEL
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MODELING DRAYAGE OPERATIONS: IMPROVEMENTS
TIME-WINDOW PRE-PROCESSING EXAMPLE
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(1) Valid Inequalities 

(2) Tighter time-windows at replicated depot nodes

Example job i:

Ei Li

Ea La

Eb Lb

Ea La

Sa Tai Sa Tai

Si TibSi Tib

Eb Lb

time



SOLVING THE MODEL: A MATHEURISTIC APPROACH
ITERATIVELY SOLVING A CONFINED VERSION OF THE MILP MODEL
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Overall idea : confine the solution space of the MILP model using 

operators ℳ and ℱ, based on an incumbent solution 𝒳𝐶, for a number of 

iterations 𝑁.

Step 0. Get 𝒢 𝒱,𝒜 , 𝒢′ 𝒱,𝒜′ and 𝒳𝐶 .
Step 1. For 𝑛 = 1,2, … , 𝑁

Step 1a. Define ℱ and ℳ.

Step 1b. Fix 𝑥𝑖𝑗𝑘 according to ℱ and ℳ.

Step 1c. Solve MILP and store solution.

Step 2. Return best solution found.

Static version (𝓜): fix arcs randomly, based on job configuration.

Dynamic version (𝓕 and 𝓜): fix ‘promising’ routes and fix arcs (which 

are not in the promising routes) randomly, based on job configuration.



SOLVING THE MODEL: STATIC MATHEURISTIC
THREE MATHEURISTIC OPERATORS (MHO)
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MHO 1 : Remove all but two job arcs for 𝑁M1 random jobs.

MHO 2 : Fix the ‘cheapest’ arc between a job Type 2 and Type 7, for a 

𝑁M2 random job-pairs.

MHO 3 : Fix the ‘cheapest’ job arc for a 𝑁M3 random jobs.



SOLVING THE MODEL: DYNAMIC MATHEURISTIC
TWO FIXING CRITERIA (FC)
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FC 1 : Fix the 𝑁F1 routes from the current (before re-planning) schedule 

𝒳𝐶 that have the largest number of jobs.

FC 2 : Fix the 𝑁F2 routes from the current schedule 𝒳𝐶 that have the 

shortest traveling time.



PROOF-OF-CONCEPT EXPERIMENTS
EXPERIMENTAL SETUP
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Instances: VRPTW from 

Solomon (1987) + Dutch LSP 

typical job-configuration ratios 

and three terminals.

Benchmark: Job-pairing with 

cheapest insertion heuristic 

similar to the one of Caris and 

Janssens (2009).

Solver: CPLEX 12.6.3 with a 

limit of 300 seconds.

• Test the effect of improvements 
and MHOs in the MILP.

• MHO settings are based on the 
number of jobs.

• All jobs for a day are known.

Static Matheuristic

• Test the FCs + Static Matheuristic.

• Jobs reveal dynamically in 5 
stages (5x re-planning) during the 
first half of the day.

Dynamic Matheuristic



Instances BH MILP VIs TWPP MHO1 MHO2 MHO3

C1 77,960     77,926     77,960     76,924     76,829     77,926     75,189     

C2 52,904     52,882     52,904     52,049     51,841     52,078     50,802     

R1 111,087   111,078   110,904   107,649   107,254   107,647   107,736   

R2 50,500     50,435     50,500     50,497     50,255     50,500     50,378     

Instances BH MILP VIs TWPP MHO1 MHO2 MHO3

C1 77,960     77,926     77,960     76,924     76,829     77,926     75,189     

C2 52,904     52,882     52,904     52,049     51,841     52,078     50,802     

R1 111,087   111,078   110,904   107,649   107,254   107,647   107,736   

R2 50,500     50,435     50,500     50,497     50,255     50,500     50,378     

PROOF-OF-CONCEPT: STATIC MATHEURISTIC
PERFORMANCE OF THE MHOS PER INSTANCE FAMILY

21

Clustered (C) and Random (R) locations; Short (1) and Long (2) time-windows

Largest cost Lowest cost 

Observations:

1. TWPP helps more the MILP than the Vis.

2. MHO 3 is the best for clustered locations and MHO 1 for random 

locations.

3. MHO 2 is worse than the TWPP.

4. Savings of around 4% in all instance categories except R2.



PROOF-OF-CONCEPT: DYNAMIC MATHEURISTIC
PERFORMANCE OF THE FCS AT RE-PLANNING STAGE 5 (END OF THE DAY)
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Observations:

1. Savings compared 

to the BH are in the 

range of 3% to 8%.

2. Best FC varies per 

instance category.



PROOF-OF-CONCEPT: DYNAMIC MATHEURISTIC
PERFORMANCE OF THE FCS PER RE-PLANNING STAGE
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Observations:

1. ‘No’ differences 

between FCs in 

some stages.

2. In C1, the gap 

between the FCs 

and the BH widens 

in late stages.



We developed a MILP model and a dynamic matheuristic to 

schedule drayage operations in synchromodal transport with 

various job categories and integrated decisions.

Through numerical experiments, we studied the performance 

of our approach and observed that its gains over a benchmark 

heuristic were dependent on problem characteristics such as 

customer dispersion and re-planning stage .

Further research about the matheuristic operators is 

necessary in (i) tuning with respect to problem attributes and 

(ii) adapting with previous iterations and solutions.

WHAT TO REMEMBER
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