

PRE- AND END-HAULAGE OPERATIONS IN A MULTI-DEPOT AND MULTI-RESOURCE SYNCHROMODAL NETWORK

Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

Motivation

- Pre- and end-haulage operations in synchromodality
- Proposed planning model and method
- • Preliminary results
- ••• What to remember

UNIVERSITY OF TWENTE.

TRANSPORTATION OF CONTAINERS FROM THE HINTERLAND TO/FROM THE DEEP-SEA PORT

FREIGHT IN A SYNCHROMODAL NETWORK

DYNAMIC, MODE-FREE, NETWORK-WISE DECISION MAKING

"In an intermodal transport chain, the initial and final trips represent 40% of total transport costs."

Escudero, A.; Muñuzuri, J.; Guadix, J. & Arango, C. (2013) Dynamic approach to solve the daily drayage problem with transit time uncertainty. *Computers in Industry*

*Source of artwork: Europe Container Terminals "The future of freight transport". www.ect.nl UNIVERSITY OF TWENTE.

THE BASIC EXPORT/IMPORT (SHIPPER/CONSIGNEE, DRAYAGE) OPERATIONS

I: Import, E: Export

ADDING EMPTY CONTAINERS

I: Import, E: Export

ADDING COMPLETE JOBS (RESOURCE DIFFERENTIATION)

ADDING MULTIPLE INTERMODAL TERMINALS

DECOUPLING (I.E., POSSIBLE TO SPLIT COMPLETE JOBS IN TWO)

DECOUPLING (I.E., POSSIBLE TO SPLIT COMPLETE JOBS IN TWO)

PRE- AND END-HAULAGE SYNCHROMODAL OPERATIONS

CATEGORIZATION OF JOBS (CUSTOMERS)

PLANNING PRE- AND END-HAULAGE OPERATIONS PROPOSED METHODS IN THE LITERATURE

- 1. Wang, X. & Regan, A. C. (**2002**) Local truckload pickup and delivery with hard time window constraints *Transportation Research Part B*
- 2. Jula, H.; Dessouky, M.; Ioannou, P. & Chassiakos, A. (2005) Container movement by trucks in metropolitan

What works well?

- 1. Model enhancements: time-window pre-processing, terminal assignment mechanisms, etc.
- Local-search operators: merging end- and pre-haulage jobs, assigning terminals, etc.

OD Spootrum

- 8. Zhang, G.; Smilowitz, K. & Erera, A. (**2011**) Dynamic planning for urban drayage operations *Transportation Research Part E*
- 9. Braekers, K.; Caris, A. & Janssens, G. (**2013**) Integrated planning of loaded and empty container movements OR Spectrum
- 10. Escudero, A.; Muñuzuri, J.; Guadix, J. & Arango, C. (**2013**) Dynamic approach to solve the daily drayage problem with transit time uncertainty. *Computers in Industry*

11. Nossack, J. & Pesch, E. (**2013**) A truck scheduling problem arising in intermodal container transportation European Journal of Operational Research

UNIVERSITY OF TWENTE.

PLANNING PRE- AND END-HAULAGE OPERATIONS

MODELING JOBS USING MIXED-INTEGER LINEAR PROGRAMMING (MILP)

UNIVERSITY OF TWENTE.

14

PROPOSED SOLUTION: FTPDPTW MODEL

FULL TRUCKLOAD PICKUP AND DELIVERY PROBLEM WITH TIME-WINDOWS (FTPDPTW)

New elements in the FTPDPTW model:

- 1. Additional term in the objective: terminal (long-haul mode) assignment cost
- Two type of arc-constraints: job assignment and flowconservation
- **3. Decoupling constraints:** separation of job-arcs and their time-windows

$$\sum_{j\in \delta'^+(i)} x_{i,j,k} - \sum_{j\in \delta'^-(i)} x_{j,i,k} = 0, \ \forall \ i\in V^C\cup V^D, k\in K$$

(1g)

PROPOSED SOLUTION: FTPDPTW MODEL SMALL EXAMPLE

PROPOSED SOLUTION: FTPDPTW MODEL

SMALL EXAMPLE

PROPOSED SOLUTION: MILP ENHANCEMENTS SOME VALID INEQUALITIES EXAMPLES

• Arcs between all terminals: due to the job configurations, there is a maximum number of arcs connecting terminals that can be traveled.

$$\sum_{k \in K} \sum_{i \in V^D} \sum_{j \in V^D} x_{i,j,k} \le M^{DE}$$

Arcs between replicated nodes of a single terminal: due to job configurations and possible terminals, there is a maximum number of arcs between replicated nodes.

$$\sum_{k \in K} \sum_{i \in V^D \cap \mathcal{U}_d} \sum_{j \in V^D \cap \mathcal{U}_d} x_{i,j,k} \le M_d^{DI}, \ \forall \ d \in \mathcal{D}$$

UNIVERSITY OF TWENTE.

PROPOSED SOLUTION: MILP ENHANCEMENTS

)--► b

TIME-WINDOW PRE-PROCESSING EXAMPLE

• Shorter time-windows at depot nodes: due to customer timewindows and replicated depot nodes, time-windows can be tighten.

Example job i: $a \rightarrow$

PROPOSED SOLUTION: LOCAL-SEARCH OPERATORS SOME FIXED-VARIABLE EXAMPLES

- Set of trucks: lower/upper bound in the number of trucks used, indicator of individual trucks to use, etc.
- Job to trucks: lower/upper bound on the number of jobs per truck, individual jobs done by a truck, etc.
- *Fix customer-terminal jobs*: following a "range" criteria such as distance, time-window overlap, costs, etc.
 - *Fix customer-customer jobs*: following a "range" criteria such as distance, time-window overlap, costs, etc., or a "job-configuration" criteria such as number of destinations, number of terminal origins, etc.

PROPOSED SOLUTION: ALNS-BASED HEURISTIC

SOLVING THE FTPDPTW MODEL, DYNAMICALLY, WITH A "WARM" START

PRELIMINARY RESULTS

EXPERIMENT SETTINGS

Instances: Solomon (1987), first 25 customers + CTT typical jobs configuration

- Random (R)
- Clustered (C)
- Short time-windows (1)
- Long time-windows (2)

CTT job configurations:

- 7 second-half end-haulage
- 6 second-half pre-haulage Decoupling:
- 3 complete end-haulage
- 1 complete pre-haulage No Decoupling:
- 4 complete end-haulage
- 3 complete pre-haulage

Goal: shortly explore the performance of MILP enhancements and local-search operators, under different problem settings, and a warm start.

Solver: CPLEX 12.6.3 (via the C API) with limit of 300 seconds.

PRELIMINARY RESULTS: MILP ENHANCEMENTS

LONG TIME-WINDOWS

UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS: MILP ENHANCEMENTS

SHORT TIME-WINDOWS

UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS: LOCAL-SEARCH OPERATORS LONG TIME-WINDOWS

UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS: LOCAL-SEARCH OPERATORS LONG TIME-WINDOWS

UNIVERSITY OF TWENTE.

PRELIMINARY RESULTS: OBSERVATIONS

SOME INSIGHTS INTO OUR FTPDPTW MODEL

- 1. In most cases, a *warm start*, even if expensive or infeasible, helps CPLEX to find a (good) integer solution quicker.
- 2. Of the MILP enhancements tested, the *time-window pre-processing* performed better overall than bounds on arcs between depots, bounds on trucks, and bounds on traveling distance.
- 3. Of the local-search operators tested, *fixing an origin (or destination) for jobs with more than 2 origins (or destinations)* performed better than fixing the use of trucks, fixing the number of jobs per truck, fixing customer-customer pairs.

Synchromodality, in terms of job and terminal flexibility, brings new cost-saving opportunities in pre- and endhaulage operations.

- We propose an FTPDPTW model for the pre- and endhaulage operations in a synchromodal network, and an ALNS-based framework for solving the dynamic problem.
- The benefits of selecting different pre-processing mechanisms and sets of local-search operators for different "states" should be further investigated.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

http://www.utwente.nl/mb/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

TRISTAN IX - Friday, 17th of June, 2016 Oranjestad, Aruba