

ANTICIPATORY FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS USING APPROXIMATE DYNAMIC PROGRAMMING

Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

Motivation

- Freight consolidation problem
- Our solution approach:
 - Markov Decision Process model
 - > Approximate Dynamic Programming
- • Numerical results:
 - > 1-way, single terminal, one high-capacity mode
 - > 2-way, single terminal, one high-capacity mode
 - > 1-way, multi-terminal, multiple high-capacity modes
- What to remember

TRANSPORTATION OF CONTAINERS FROM THE HINTERLAND TO THE DEEP-SEA PORT

*Source of artwork: Europe Container Terminals "The future of freight transport". www.ect.nl UNIVERSITY OF TWENTE.

 Challenge: To balance daily and future costs when freights become known gradually over time.

DYNAMIC MULTI-PERIOD PLANNING

FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS DYNAMIC MULTI-PERIOD PLANNING

Today Day-after Tomorrow High-capacity mode Truck **UNIVERSITY OF TWENTE.** 9

FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS DYNAMIC MULTI-PERIOD PLANNING

Today Day-after Tomorrow High-capacity mode Truck **UNIVERSITY OF TWENTE.** 10

DYNAMIC MULTI-PERIOD PLANNING

FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS DYNAMIC MULTI-PERIOD PLANNING

STOCHASTIC PROCESS UNDER CONTROL

Stochasticity: Arrival of freights and their characteristics:

- Number of freights $\mathcal{F} \subseteq \mathbb{Z}^+$ p_f^F
- Destinations \mathcal{D} p_d^{FD}
- Release day $\mathcal{R} = \{0, 1, 2, ..., R^{max}\}$ p_r^{FR}
- Time-window length $\mathcal{K} = \{0\}$
- $\mathcal{K} = \{0, 1, 2, ..., K^{max}\} \qquad p_k^{FK}$

Control: Freights to consolidate/postpone every day.

Objective: Minimize the costs over the planning horizon.

STATE, EXOGENOUS INFORMATION, DECISIÓN, AND STAGES

MARKOV DECISION PROCESS (MDP) MODEL TRANSITION BETWEEN STAGES

Transition: Today's state depends on (1) yesterday's state, (2) yesterday's decision, and (3) the realizations of the random variables:

$$\begin{split} \boldsymbol{S}_{t} &= S^{M}\left(\boldsymbol{S}_{t-1}, \boldsymbol{x}_{t-1}, \boldsymbol{W}_{t}\right), \; \forall t \in \mathcal{T} | t > 0 \\ \text{s.t.} \\ F_{t,d,0,k} &= F_{t-1,d,0,k+1} - x_{t-1,d,k+1} + F_{t-1,d,1,k} + \widetilde{F}_{t,d,0,k}, \; | k < K^{max} \\ F_{t,d,r,k} &= F_{t-1,d,r+1,k} + \widetilde{F}_{t,d,r,k}, \; | r \geq 1 \\ F_{t,d,r,K^{max}} &= \widetilde{F}_{t,d,r,K^{max}}, \\ \forall d \in \mathcal{D}, \; r \in \mathcal{R}, \; r+1 \in \mathcal{R}, \; k \in \mathcal{K}, \; k+1 \in \mathcal{K} \\ \textbf{Time-window length} \end{split}$$

Time-window length decreases once a freight is released.

COST DEFINITION AND OBJECTIVE

Costs: Visiting a subset of destinations with the high-capacity mode and using trucks:

$$C\left(\boldsymbol{S}_{t},\boldsymbol{x}_{t}\right) = \sum_{\mathcal{D}'\subseteq\mathcal{D}} \left(C_{\mathcal{D}'} \cdot \prod_{d'\in\mathcal{D}'} y_{t,d'} \cdot \prod_{d''\in\mathcal{D}\setminus\mathcal{D}'} (1-y_{t,d''}) \right) + \sum_{d\in\mathcal{D}} (B_{d} \cdot z_{t,d})$$

s.t.
$$y_{t,d} = \begin{cases} 1, & \text{if } \sum_{k\in\mathcal{K}} x_{t,d,k} > 0\\ 0, & \text{otherwise} \end{cases}, \; \forall d \in \mathcal{D}$$
$$z_{t,d} = F_{t,d,0,0} - x_{t,d,0}, \; \forall d \in \mathcal{D} \end{cases}$$

Objective: Find the policy $\pi : S_t \to x_t^{\pi}$ that minimizes the expected costs over the horizon.

$$\min_{\boldsymbol{\pi}\in\Pi} \mathbb{E}\left\{ \left. \sum_{t\in\mathcal{T}} C\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}^{\boldsymbol{\pi}}\right) \right| \boldsymbol{S}_{0} \right\}$$

HOW TO FIND THE OPTIMAL POLICY?

Using Bellman's recursion (dynamic programming), which balance *daily* and *future* costs :

PROS: The MDP model outputs a dynamic decision making function that achieves the lowest expected costs over the horizon.

 $\pi: \boldsymbol{S}_t \to \boldsymbol{x}_t^{\pi}$

CONS: The MDP model can only be solved (e.g., using the Bellman's recursion) for small instances of the problem.

 However: the building blocks of the MDP model can be used within the approximate dynamic programming framework to solve the MDP model heuristically for large instances.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)

FRAMEWORK FOR SOLVING LARGE MDP MODELS.¹

Algorithm 1 Approximate Dynamic Programming Solution Algorithm

Require: $\mathcal{T}, \mathcal{F}, \mathcal{G}, \mathcal{D}, \mathcal{R}, \mathcal{K}, [C_{\mathcal{D}'}]_{\forall \mathcal{D}' \subset \mathcal{D}}, B_d, Q, S_0, N$ 1: Initialize $\bar{V}_t^0, \forall t \in \mathcal{T}$ 2: $n \leftarrow 1$ 3: while $n \leq N$ do 4: $S_0^n \leftarrow S_0$ 5: for t = 0 to $T^{max} - 1$ do 6: $\hat{v}_t^n \leftarrow \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(S^{M, \boldsymbol{x}}\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) \right) \right)$ 7: **if** t > 0 then $\bar{V}_{t-1}^{n}(\boldsymbol{S}_{t-1}^{n,x*}) \leftarrow U^{V}(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x*}), \boldsymbol{S}_{t-1}^{n,x*}, \hat{v}_{t}^{n})$ 8: end i 9: $\boldsymbol{x}_{t}^{n*} \leftarrow \arg\min_{\boldsymbol{x}_{t}^{n}} \left(C\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right) + \bar{V}_{t}^{n-1} \left(S^{M, x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right) \right) \right)$ 10:11: $\boldsymbol{S}_{t}^{n,x*} \leftarrow S^{M,x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n*}\right)$ 12: $\boldsymbol{W}_{t}^{n} \leftarrow \operatorname{RandomFrom}\left(\Omega\right)$ $\boldsymbol{S}_{t+1}^n \leftarrow S^M \left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^{n*}, \boldsymbol{W}_t^n \right)$ 13:end for 14: 15: end while 16: return $\left[\bar{V}_t^N\right]_{\forall t \in \mathcal{T}}$

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)

THE NEW CONSTRUCTS BASED ON THE MDP MODEL

The *post-decision state* $S_t^{n,x}$ describes the system "estimating" all possible realizations of the random variables.

 $\boldsymbol{S}_{t}^{n,x} = S^{M,x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right), \; \forall t \in \mathcal{T}$

The Value Function Approximation (VFA) $\bar{V}_t^n(S_t^{n,x})$ approximates the future costs of the post-decision state:

 $\bar{V}_t^n(\boldsymbol{S}_t^{n,x}) = \mathbb{E}\left\{ V_{t+1}\left(\boldsymbol{S}_{t+1}\right) | \boldsymbol{S}_t^x \right\}$

RESULT: It is not necessary to consider all realizations of the random variables in the new Bellman's recursion:

$$\begin{split} \hat{v}_t^n &= \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(\boldsymbol{S}_t^{n, \boldsymbol{x}}\right) \right) \\ &= \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(S^{M, \boldsymbol{x}}\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) \right) \right) \end{split}$$

APPROXIMATE DYNAMIC PROGRAMMING (ADP) THE VALUE FUNCTION APPROXIMATION

We use the concept of *basis functions*, or post-decision characteristics, where the value of a post-decision state is a weighted combination of its characteristics:

$$\bar{V}_t^n(\boldsymbol{S}_t^{n,x}) = \sum_{a \in \mathcal{A}} \left(\phi_a(\boldsymbol{S}_t^{n,x}) \cdot \theta_a \right)$$

RESULT: It is not necessary to consider all post-decision states (and hence states), since there is a function $\phi_a(S_t^{n,x})$ that returns its characteristic $a \in \mathcal{A}$ and the weights θ_a depend only on the characteristic considered.

APPROXIMATE DYNAMIC PROGRAMMING (ADP) THE VALUE FUNCTION APPROXIMATION

Examples of basis functions or post-decision characteristics:

- 1. Number of freights that are not yet released for transport, per destination *(i.e. future freights)*.
- 2. Number of freights that are released for transport and whose due-day is not immediate, per destination *(i.e., may-go freights)*.
- 3. Binary indicator of a destination having urgent freights *(i.e., must-visit destination)*.
- 4. Some power function (e.g., ^2) of each state variable *(i.e., non-linear components in costs)*.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)

UPDATING THE VALUE FUNCTION APPROXIMATION

After every iteration n, we have observed the costs we estimated in the previous, and thus we can improve our approximation:

 $\bar{V}_{t-1}^{n}(\boldsymbol{S}_{t-1}^{n,x}) \leftarrow U^{V}(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x}), \boldsymbol{S}_{t-1}^{n,x}, \hat{v}_{t}^{n}), \ \forall t \in \mathcal{T}$

In our case, $U^{V}(\cdot)$ updates the weights θ_{a}^{n} using a *recursive least squares* (LSQ) method for non-stationary data¹:

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)

A GRAPHICAL REPRESENTATION OF THE CONSTRUCTS AND THE ALGORITHM

1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Two types of experiments:

A. Convergence of the ADP approach ¹

Convergence of the resulting ADP policy costs to the optimal costs obtained via the Markov model, for different initial states, in small instances. (≈ 3000 states)

B. Performance of the resulting ADP policy²

Comparison of the resulting ADP policy costs against the costs of a benchmark heuristic (myopic optimization), for different initial states, in larger instances. (> 8×10^{18} states)

For the experimental settings:

- 1. M.R.K. Mes, A.E. Pérez Rivera (2016). Approximate Dynamic Programming by Practical Examples. *Beta Working Paper 495*.
- 2. A.E. Pérez Rivera, M.R.K. Mes (2015). Dynamic Multi-period Freight Consolidation. *Lecture Notes in Computer Science*, Volume 9335: 370-385.

$\bullet \bullet \bullet$

NUMERICAL EXPERIMENTS

CONVERGENCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

CONVERGENCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

PERFORMANCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

	Noi	rmal Capa	city	Lar	ty	
State	Heuristic	ADP	Difference	Heuristic	ADP	Difference
Large A	2962.9	2579.4	-12.9%	1723.1	1743.0	1.2%
Large B	9687.9	8729.4	-9.9%	6448.1	5568.0	-13.6%
Large C	5937.9	5579.4	-6.0%	3223.1	2918.0	-9.5%
Large D	1737.9	1754.4	1.0%	1523.1	1543.0	1.3%
Large E	2162.9	1804.4	-16.6%	1523.1	1543.0	1.3%
Large F	1362.9	1254.4	-8.0%	848.1	868.0	2.3%
Large G	1362.9	1254.4	-8.0%	848.1	868.0	2.3%
Large H	2187.9	2079.4	-5.0%	1298.1	1318.0	1.5%
Large I	3585.5	3550.0	-1.0%	1766.3	1782.2	0.9%
Large J	2537.9	2179.4	-14.1%	1523.1	1543.0	1.3%
Large K	3462.9	2979.4	-14.0%	1123.1	1143.0	1.8%
Large L	1778.1	1677.1	-5.7%	1082.4	1101.2	1.7%
_	\langle	Average	-8.3%		Average	-0.6%

State A has no urgent freights ($F_{0,d,0,0}$) and State L has only urgent freights. UNIVERSITY OF TWENTE.

PERFORMANCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

	# of Freights # of Destinations									
State	MustGo	MayGo	Future	MustGo	MayGo	Future	Myopic (ILP)	ADP	%Diff.	
1	Low	Low	Low	Low	Low	Low	2978.85	2608.10	-12.4%	
2	Low	Low	Medium	Low	Medium	High	5194.60	5146.40	-0.9%	
3	Low	Medium	Low	High	High	Medium	5396.90	2148.10	-60.2%	
4	Low	Medium	High	High	Low	High	7941.40	6365.10	-19.8%	
5	Low	High	Medium	Medium	High	Low	14730.35	7301.40	-50.4%	
6	Low	High	High	Medium	Medium	Medium	12069.95	10206.45	-15.4%	
7	Medium	Low	Medium	High	High	Medium	5868.20	5740.30	-2.2%	
8	Medium	Low	High	High	Medium	Low	13070.95	8839.30	-32.4%	
9	Medium	Medium	Low	Medium	Medium	High	6443.05	6348.10	-1.5%	
10	Medium	Medium	Medium	Medium	Low	Low	9895.95	8432.55	-14.8%	
11	Medium	High	Low	Low	Low	Medium	14567.95	14534.15	-0.2%	
12	Medium	High	High	Low	High	High	13764.55	13636.65	-0.9%	
13	High	Low	Low	Medium	High	High	10173.15	10045.25	-1.3%	
14	High	Low	High	Medium	Low	Medium	10429.00	10286.90	-1.4%	
15	High	Medium	Medium	Low	Medium	Medium	10111.50	10033.90	-0.8%	
16	High	High	Low	High	Medium	Low	9680.75	9667.55	-0.1%	
17	High	High	Medium	High	Low	High	9881.80	9872.05	-0.1%	
								Average Diff	-12.6%	

2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Extension: The high-capacity mode travels in round-trips, delivering some freights and picking-up some others: $S_t = [(F_{t,d,r,k}, G_{t,d,r,k})]_{\forall d \in \mathcal{D}, r \in \mathcal{R}, k \in \mathcal{K}}$

$$C(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}) = \sum_{\mathcal{D}' \subseteq \mathcal{D}} \left(C_{\mathcal{D}'} \cdot \prod_{d' \in \mathcal{D}'} y_{t,d'} \cdot \prod_{d'' \in \mathcal{D} \setminus \mathcal{D}'} (1 - y_{t,d''}) \right)$$
$$+ \sum_{d \in \mathcal{D}} (A_{d} \cdot z_{t,d})$$
$$+ \sum_{d \in \mathcal{D}} \sum_{k \in \mathcal{K}} \left(B_{d} \cdot \left(x_{t,d,k}^{F} + x_{t,d,k}^{G} \right) \right)$$

s.t.

 $y_{t,d} = \begin{cases} 1, & \text{if } \sum_{k \in \mathcal{K}} \left(x_{t,d,k}^F + x_{t,d,k}^G \right) > 0 \\ 0, & \text{otherwise} \end{cases}, \ \forall d \in \mathcal{D}$

 $z_{t,d} = F_{t,d,0,0} - x_{t,d,0}^F + G_{t,d,0,0} - x_{t,d,0}^G, \ \forall d \in \mathcal{D}$

where $F_{t,d,0,k} = F_{t-1,d,0,k+1} - x_{t-1,d,k+1}^F + F_{t-1,d,1,k} + \widetilde{F}_{t,d,0,k},$ $G_{t,d,0,k} = G_{t-1,d,0,k+1} - x_{t-1,d,k+1}^G + G_{t-1,d,1,k} + \widetilde{G}_{t,d,0,k},$ $\forall d \in \mathcal{D}, \text{ and } k \in \mathcal{K} | k < K^{max} .$ $F_{t,d,0,K^max} = F_{t-1,d,1,K^max} + \widetilde{F}_{t,d,0,K^max},$ $\forall d \in \mathcal{D}.$ $F_{t,d,0,K^max} = G_{t-1,d,1,K^max} + \widetilde{G}_{t,d,0,K^max},$ $\forall d \in \mathcal{D}.$ $F_{t,d,r,k} = F_{t-1,d,r+1,k} + \widetilde{F}_{t,d,r,k},$ $G_{t,d,r,k} = G_{t-1,d,r+1,k} + \widetilde{G}_{t,d,r,k}$ $\forall d \in \mathcal{D}, \ r \in \mathcal{R} | 0 < r < R^{max}, \text{ and } k \in \mathcal{K} .$ $F_{t,d,R^max,k} = \widetilde{F}_{t,d,R^max,k},$ $G_{t,d,R^max,k} = \widetilde{G}_{t,d,R^max,k},$ $\forall d \in \mathcal{D}, \ \text{and } k \in \mathcal{K} .$

 $\boldsymbol{S}_{t} = S^{M} \left(\boldsymbol{S}_{t-1}, \boldsymbol{x}_{t-1}, \boldsymbol{W}_{t} \right), \ \forall t \in \mathcal{T} | t > 0$

UNIVERSITY OF TWENTE.

30

2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Two types of experiments:

A. Convergence of the ADP approach ³

Convergence of the resulting ADP policy costs to the optimal costs obtained via the Markov model, for different initial states, in small instances. (≈19000 states)

B. Performance of the resulting ADP policy ³

Comparison of the resulting ADP policy costs against the costs of a benchmark heuristic (myopic optimization), for different initial states, in large instances. (>> 8 x 10^{27} states)

For the experimental settings:

3. A.E. Pérez Rivera, M.R.K. Mes (2015). Anticipatory Freight Selection in Intermodal Long-haul Roundtrips. *Beta Working Paper 492*.

CONVERGENCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Figure 2: Accuracy of VFA 3 in Instance I_2

Transformer	VF	Ά1	VF	'A 2	VF	A 3
Instance	R^2	Diff.	R^2	Diff.	R^2	Diff.
I ₁	0.63	5.6%	0.69	5.9%	0.55	5.6%
I_2	0.64	6.6%	0.68	7.7%	0.55	6.8%
I_1 -delivery	0.89	16%	0.89	14%	0.89	8%
I_2 -delivery	0.89	8%	0.90	7%	0.90	7%

CONVERGENCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Instances differ in their distribution of the random variables.

PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

able 5: Aver	age cost d	lifference	between t	the ADP	policy and	the com	peting poli
Category	I_3	I_4	I_5	I_6	I_7	I_8	Average
C1	-5.9%	-8.6%	-9.4%	-5.5%	-0.6%	-5.2%	-5.9%
C2 C3	-9.1% -1.9%	-12.3% -6.7%	-4.0% -8.2%	-2.7% -3.1%	-0.6% 1.1%	-11.0% -7.2%	-6.6% -4 3%
C4	-14.9%	-25.5%	-5.2%	-11.8%	-1.5%	-8.0%	-11.2%
C5 C6 C7	-13.1% 1.3% -4.4%	-1.5% -4.5% -3.7%	-9.1% -3.8% -24.2%	-25.9% -10.6% -0.1%	-0.4% -2.0% -11.0%	-9.7% -7.8% -7.3%	-10.4% -4.6% -8.4%
C9	-0.9%	$\frac{16.7\%}{2.3\%}$	<u>2 1%</u> -4.4%	-11.0%	4.7%	-7.6%	-2.8%
Average	-5.9%	-8.6%	-7.9%	-8.6%	-1.2%	-7.5%	-6.6%
Weighted Average	-7.0%	-8.7%	-7.6%	-10.1%	0.3%	-8.0%	-6.9%

1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES

Extension: There are multiple terminals with freight, and multiple high-capacity modes:

$$S_t = [F_{i,d,r,k,t}]_{\forall i \in \mathcal{N}_t^{\mathcal{O}} \cup \mathcal{N}_t^{\mathcal{I}}, d \in \mathcal{N}_t^{\mathcal{D}}, r \in \mathcal{R}_t', k \in \mathcal{K}_t}$$

Decision becomes more complex due to the dynamic number of intermediate stops:

 $\begin{aligned} x_t &= [x_{i,j,d,k,t}]_{\forall (i,j) \in \mathcal{A}_t, d \in \mathcal{N}_t^{\mathrm{D}}, k \in \mathcal{K}_t} \\ & \text{s.t.} \\ \sum_{j \in \mathcal{N}_t^{\mathrm{I}} \cup \{d\}} x_{i,j,d,k,t} &\leq F_{i,d,0,k,t}, \quad \forall i \in \mathcal{N}_t^{\mathrm{O}} \cup \mathcal{N}_t^{\mathrm{I}}, d \in \mathcal{N}_t^{\mathrm{D}}, k \in \mathcal{K}_t \\ & x_{i,d,d,L_{i,d,t}^A, t} \geq F_{i,d,0,L_{i,d,t}^A, t}, \quad \forall (i,d) \in \mathcal{A}_t^{\mathrm{D}}, k \in \mathcal{K}_t \\ x_{i,j,d,k,t} &= 0, \quad \forall (i,j) \in \mathcal{A}_t, d \in \mathcal{N}_t^{\mathrm{D}}, k \in \mathcal{K}_t | k < M_{i,j,t} + M_{j,d,t} \\ & \sum_{d \in \mathcal{N}_t^{\mathrm{D}}} \sum_{k \in \mathcal{K}_t} x_{i,j,d,k,t} \leq Q_{i,j,t}, \quad \forall (i,j) \in \mathcal{A}_t^{\mathrm{I}} \end{aligned}$

$\bullet \bullet \bullet$

NUMERICAL EXPERIMENTS

1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES

Transition: Multi-period traveling times and stops are captured in the state variables:

$$\begin{split} S_{t} &= S^{M}\left(S_{t-1}, x_{t-1}, W_{t}\right) \\ \text{s.t.} \\ F_{t,i,d,0,k} &= F_{t-1,i,d,0,k+1} - \sum_{j \in \mathcal{A}_{t}} x_{t-1,i,j,d,k+1} + F_{t-1,i,d,1,k} + \widetilde{F}_{t,i,d,0,k} \\ &\forall i \in \mathcal{N}_{t}^{\mathcal{O}}, d \in \mathcal{N}_{t}^{\mathcal{D}}, k+1 \in \mathcal{K}_{t} \\ F_{t,i,d,0,k} &= F_{t-1,i,d,0,k+1} - \sum_{j \in \mathcal{A}_{t}} x_{t-1,i,j,d,k+1} + F_{t-1,i,d,1,k} \\ &+ \sum_{j \in \mathcal{A}_{t} \mid M_{j,i,t}=1} x_{t-1,j,i,d,k+M_{j,i,t}}, \\ &\forall i \in \mathcal{N}_{t}^{\mathcal{D}}, d \in \mathcal{N}_{t}^{\mathcal{D}}, k+1 \in \mathcal{K}_{t} \\ F_{t,i,d,0,\mathcal{K}_{t}^{\max}} &= F_{t-1,i,d,1,\mathcal{K}_{t}^{\max}} + \widetilde{F}_{t,i,d,0,\mathcal{K}_{t}^{\max}}, \\ &\forall i \in \mathcal{N}_{t}^{\mathcal{O}}, d \in \mathcal{N}_{t}^{\mathcal{D}}, k \in \mathcal{K}_{t} \\ F_{t,i,d,0,\mathcal{K}_{t}^{\max}} &= F_{t-1,i,d,1,\mathcal{K}_{t}^{\max}} + \widetilde{F}_{t,i,d,0,\mathcal{K}_{t}^{\max}}, \\ &\forall i \in \mathcal{N}_{t}^{\mathcal{O}}, d \in \mathcal{N}_{t}^{\mathcal{D}}, k \in \mathcal{K}_{t} \\ \end{cases}$$

$\bullet \bullet \bullet$

NUMERICAL EXPERIMENTS

1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES

One type of experiments:

A. Performance of the resulting ADP policy ⁴

Comparison of cost resulting from two different ADP policies against the costs of (1) myopic optimization and (2) sampling, for different initial states, in small instances.

ADP 1:
$$\overline{V}_{t}^{x,n}\left(S_{t}^{x,n}\right) = \sum_{a \in \mathcal{A}} \theta_{a,t}^{n} \phi_{a}\left(S_{t}^{x,n}\right)$$

$$\begin{aligned} \text{ADP 2:} \quad \overline{V}_{t}^{x,n} \left(S_{t}^{x,n} \right) &= \alpha \sum_{a \in \mathcal{A}} \theta_{a,t}^{n} \phi_{a} \left(S_{t}^{x,n} \right) + \left(1 - \alpha \right) \overline{C}_{t}^{n} \left(S_{t}^{x,n} \right) \\ \text{ADP 1 and 2:} \quad x_{t}^{\pi} &= \arg \min \left(C \left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}^{\pi} \right) + \sum_{a \in \mathcal{A}} \theta_{a,t}^{N} \phi_{a} \left(\boldsymbol{S}_{t}^{x} \right) \right) \end{aligned}$$

For the experimental settings:

4. A.E. Pérez Rivera, M.R.K. Mes (2016). Service and transfer selection for freights in a synchromodal network. *Beta Working Paper 504*.

PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Instances differ in their *distribution of the time-window length.*

$Q_{2,3}=2$ F (0.11.0.07.0.07.0.10.0.11)	p_k^{K}				
$2 \qquad \qquad P_{f} = \{0.14, 0.27, 0.27, 0.18, 0.14\}$	k	I_1	I_2	I_{3}	
	0	0	0	0	
$p_4 = 0.2$	1	0	0.05	0.4	
	2	0	0.05	0.3	
	3	0	0.2	0.2	
$Q_{1,3}=3$ $p_5^D=0.2$	4	0	0.3	0.05	
$1 \qquad \begin{array}{c} 1 \\ L_{1,3}^{A} = 2 \\ L_{1,3}^{A} = 2 \end{array} \qquad \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	5	1	0.4	0.05	
$p_6^{D}=0.6$					

PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

	Table 1: Results for Instance I_1								
State	Total	Freights $k < 3$	$k \ge 3$	Benchmark	ADP 1	ADP 2	Sampling		
1	4	2	2	12221	-13.6%	-33.9%	-43.3%		
2	$\overline{7}$	3	4	14684	-12.8%	-32.7%	-39.9%		
3	5	2	3	13042	-13.1%	-27.5%	-41.5%		
4	6	3	3	13863	-12.3%	-25.9%	-39.0%		
5	6	2	4	13863	-12.0%	-30.0%	-42.3%		
6	6	2	4	13863	-10.4%	-31.3%	-42.9%		
7	5	2	3	13042	-12.6%	-23.4%	-41.5%		
8	4	3	1	12221	-14.7%	-25.0%	-38.9%		
9	2	1	1	10579	-14.9%	-29.9%	-42.4%		
10	5	3	2	13042	-11.2%	-32.9%	-40.6%		

Table 2. Average results for finstance 12 and 13	Table 2:	Average	results	for	Instance	I_2	and I_3
--	----------	---------	---------	-----	----------	-------	-----------

	Instance	Benchmark	ADP 1	ADP 2	Sampling
_	I_{2}	11078	-5.2%	-9.8%	-31 2%
ſ	I_3	12874	2.9%	0.4%	-3.3%

We propose an MDP model and ADP approach for dynamic and anticipatory decision making in intermodal transportation of freight.

- Through various VFA designs and problem structures, we show that the gap between the ADP and the optimal MDP (or other benchmark heuristics) solutions for is heavily instance/state dependent.
- In all different intermodal settings considered, the ADP approach seemed to perform better with more in-advance freight information and more complex transport networks.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

http://www.utwente.nl/mb/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

Research Seminar - Friday, 20th of May, 2016 Erasmus Research Institute of Management Rotterdam, The Netherlands

