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Motivation

Freight consolidation problem

Our solution approach:

 Markov Decision Process model

 Approximate Dynamic Programming

Numerical results:

 1-way, single terminal, one high-capacity mode

 2-way, single terminal, one high-capacity mode

 1-way, multi-terminal, multiple high-capacity modes

What to remember
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TRANSPORTATION OF CONTAINERS FROM THE 
HINTERLAND TO THE DEEP-SEA PORT
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*Source of artwork: Combi Terminal Twente B.V. www.ctt-twente.nl



FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS
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*Source of artwork: Europe Container Terminals “The future of freight transport”. www.ect.nl



FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS
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 Freights have different 

- Destination

- Release day

- Time-window

 Challenge: To balance daily and future costs when freights 

become known gradually over time.
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FREIGHT CONSOLIDATION IN INTERMODAL NETWORKS
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MARKOV DECISION PROCESS (MDP) MODEL
STOCHASTIC PROCESS UNDER CONTROL

Stochasticity: Arrival of freights and their characteristics:

- Number of freights

- Destinations

- Release day

- Time-window length

Control: Freights to consolidate/postpone every day.

Objective: Minimize the costs over the planning horizon.
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MARKOV DECISION PROCESS (MDP) MODEL
STATE, EXOGENOUS INFORMATION, DECISION, AND STAGES

Today Tomorrow Day-after

?
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High-capacity mode

Truck



Transition: Today’s state depends on (1) yesterday’s state, (2) 

yesterday’s decision, and (3) the realizations of the random 

variables:

MARKOV DECISION PROCESS (MDP) MODEL
TRANSITION BETWEEN STAGES
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Time-window length 

decreases once a 

freight is released.



Objective: Find the policy that minimizes the expected 

costs over the horizon.

Costs: Visiting a subset of destinations with the high-capacity mode 

and using trucks:

MARKOV DECISION PROCESS (MDP) MODEL
COST DEFINITION AND OBJECTIVE
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Using Bellman’s recursion (dynamic programming), which balance 

daily and future costs :

MARKOV DECISION PROCESS (MDP) MODEL
HOW TO FIND THE OPTIMAL POLICY?

All possible realizations 

of the random variables!All possible 

decisions in a state!

All possible states!
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PROS: The MDP model outputs a dynamic decision making function   

that achieves the lowest expected costs over the horizon.

CONS: The MDP model can only be solved (e.g., using the 

Bellman’s recursion) for small instances of the problem.

 However: the building blocks of the MDP model can be used 

within the approximate dynamic programming framework to 

solve the MDP model heuristically for large instances. 

MARKOV DECISION PROCESS (MDP) MODEL

18



APPROXIMATE DYNAMIC PROGRAMMING (ADP)
FRAMEWORK FOR SOLVING LARGE MDP MODELS.1
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.



The post-decision state 𝑺𝑡
𝑛,𝑥 describes the system “estimating” all 

possible realizations of the random variables.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)
THE NEW CONSTRUCTS BASED ON THE MDP MODEL

20

The Value Function Approximation (VFA)  𝑉𝑡
𝑛(𝑺𝑡

𝑛,𝑥)
approximates the future costs of the post-decision state:

RESULT: It is not necessary to consider all realizations of the 

random variables in the new Bellman’s recursion:



We use the concept of basis functions, or post-decision 

characteristics, where the value of a post-decision state is a 

weighted combination of its characteristics:

RESULT: It is not necessary to consider all post-decision states 

(and hence states), since there is a function 𝜙𝑎(𝑺𝑡
𝑛,𝑥) that returns its 

characteristic 𝑎 ∈ 𝒜 and the weights 𝜃𝑎 depend only on the 
characteristic considered.

APPROXIMATE DYNAMIC PROGRAMMING (ADP)
THE VALUE FUNCTION APPROXIMATION 
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Examples of basis functions or post-decision characteristics:

1. Number of freights that are not yet released for transport, per 

destination (i.e. future freights).

2. Number of freights that are released for transport and whose 

due-day is not immediate, per destination (i.e., may-go 

freights).

3. Binary indicator of a destination having urgent freights (i.e., 

must-visit destination).

4. Some power function (e.g., ^2) of each state variable (i.e., non-

linear components in costs) .

APPROXIMATE DYNAMIC PROGRAMMING (ADP)
THE VALUE FUNCTION APPROXIMATION
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After every iteration 𝑛, we have observed the costs we estimated in the 

previous, and thus we can improve our approximation:

In our case, 𝑈𝑉 (∙) updates the weights 𝜃𝑎
𝑛 using a recursive least squares 

(LSQ) method for non-stationary data1:

APPROXIMATE DYNAMIC PROGRAMMING (ADP)
UPDATING THE VALUE FUNCTION APPROXIMATION
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

Prediction 

Error

Observed 

Characteristic
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LSQ 

Optimization 
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APPROXIMATE DYNAMIC PROGRAMMING (ADP)
A GRAPHICAL REPRESENTATION OF THE CONSTRUCTS AND THE ALGORITHM
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NUMERICAL EXPERIMENTS
1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Two types of experiments:

A. Convergence of the ADP approach 1

Convergence of the resulting ADP policy costs to the optimal costs 

obtained via the Markov model, for different initial states, in small 

instances. (≈ 3000 states)

B. Performance of the resulting ADP policy 2

Comparison of the resulting ADP policy costs against the costs of a 

benchmark heuristic (myopic optimization), for different initial states, in 

larger instances. (> 8 x 1018 states)
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For the experimental settings:

1. M.R.K. Mes, A.E. Pérez Rivera (2016). Approximate Dynamic Programming by Practical Examples. Beta 

Working Paper 495. 

2. A.E. Pérez Rivera, M.R.K. Mes (2015). Dynamic Multi-period Freight Consolidation. Lecture Notes in 

Computer Science, Volume 9335: 370-385 .



NUMERICAL EXPERIMENTS
CONVERGENCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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NUMERICAL EXPERIMENTS
CONVERGENCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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State 1:

F0,2,0,2 = 1

State 2:

F0,2,0,0 = 1

F0,3,0,0 = 1

F0,2,0,1 = 3

F0,2,0,2 = 1



State Heuristic ADP Difference Heuristic ADP Difference

Large A 2962.9 2579.4 -12.9% 1723.1 1743.0 1.2%

Large B 9687.9 8729.4 -9.9% 6448.1 5568.0 -13.6%

Large C 5937.9 5579.4 -6.0% 3223.1 2918.0 -9.5%

Large D 1737.9 1754.4 1.0% 1523.1 1543.0 1.3%

Large E 2162.9 1804.4 -16.6% 1523.1 1543.0 1.3%

Large F 1362.9 1254.4 -8.0% 848.1 868.0 2.3%

Large G 1362.9 1254.4 -8.0% 848.1 868.0 2.3%

Large H 2187.9 2079.4 -5.0% 1298.1 1318.0 1.5%

Large I 3585.5 3550.0 -1.0% 1766.3 1782.2 0.9%

Large J 2537.9 2179.4 -14.1% 1523.1 1543.0 1.3%

Large K 3462.9 2979.4 -14.0% 1123.1 1143.0 1.8%

Large L 1778.1 1677.1 -5.7% 1082.4 1101.2 1.7%

Average -8.3% Average -0.6%

Q=4 Q=10

NUMERICAL EXPERIMENTS
PERFORMANCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Normal Capacity Large Capacity
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State A has no urgent freights (F0,d,0,0 ) and State L has only urgent freights.



NUMERICAL EXPERIMENTS
PERFORMANCE: 1-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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State MustGo MayGo Future MustGo MayGo Future Myopic (ILP) ADP %Diff.

1 Low Low Low Low Low Low 2978.85 2608.10 -12.4%

2 Low Low Medium Low Medium High 5194.60 5146.40 -0.9%

3 Low Medium Low High High Medium 5396.90 2148.10 -60.2%

4 Low Medium High High Low High 7941.40 6365.10 -19.8%

5 Low High Medium Medium High Low 14730.35 7301.40 -50.4%

6 Low High High Medium Medium Medium 12069.95 10206.45 -15.4%

7 Medium Low Medium High High Medium 5868.20 5740.30 -2.2%

8 Medium Low High High Medium Low 13070.95 8839.30 -32.4%

9 Medium Medium Low Medium Medium High 6443.05 6348.10 -1.5%

10 Medium Medium Medium Medium Low Low 9895.95 8432.55 -14.8%

11 Medium High Low Low Low Medium 14567.95 14534.15 -0.2%

12 Medium High High Low High High 13764.55 13636.65 -0.9%

13 High Low Low Medium High High 10173.15 10045.25 -1.3%

14 High Low High Medium Low Medium 10429.00 10286.90 -1.4%

15 High Medium Medium Low Medium Medium 10111.50 10033.90 -0.8%

16 High High Low High Medium Low 9680.75 9667.55 -0.1%

17 High High Medium High Low High 9881.80 9872.05 -0.1%

Average Diff. -12.6%

# of Freights # of Destinations



NUMERICAL EXPERIMENTS
2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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Extension: The high-capacity mode travels in round-trips, delivering some 

freights and picking-up some others:



NUMERICAL EXPERIMENTS
2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE

Two types of experiments:

A. Convergence of the ADP approach 3

Convergence of the resulting ADP policy costs to the optimal costs 

obtained via the Markov model, for different initial states, in small 

instances. (≈19000 states)

B. Performance of the resulting ADP policy 3

Comparison of the resulting ADP policy costs against the costs of a 

benchmark heuristic (myopic optimization), for different initial states, in 

large instances. (>> 8 x 1027 states)
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For the experimental settings:

3. A.E. Pérez Rivera, M.R.K. Mes (2015). Anticipatory Freight Selection in Intermodal Long-haul Round-

trips. Beta Working Paper 492. 



NUMERICAL EXPERIMENTS
CONVERGENCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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NUMERICAL EXPERIMENTS
CONVERGENCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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Balanced

Unbalanced

Least in-advance freights

Most in-advance freights

Most urgent freights

Least urgent freights

Instances differ in their distribution of the random variables. 



NUMERICAL EXPERIMENTS
PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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NUMERICAL EXPERIMENTS
1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES
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Extension: There are multiple terminals with freight, and multiple high-

capacity modes:

Decision becomes more complex due to the dynamic number of 

intermediate stops:



NUMERICAL EXPERIMENTS
1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES
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Transition: Multi-period traveling times and stops are captured in the state 

variables:



NUMERICAL EXPERIMENTS
1-WAY, MULTI-TERMINAL, MULTIPLE HIGH-CAPACITY MODES

One type of experiments:

A. Performance of the resulting ADP policy 4

Comparison of cost resulting from two different ADP policies against the 

costs of (1) myopic optimization and (2) sampling, for different initial 

states, in small instances.

ADP 1:

ADP 2:

ADP 1 and 2:
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For the experimental settings:

4. A.E. Pérez Rivera, M.R.K. Mes (2016). Service and transfer selection for freights in a synchromodal 

network. Beta Working Paper 504. 



NUMERICAL EXPERIMENTS
PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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Instances differ in their distribution of the time-window length. 



NUMERICAL EXPERIMENTS
PERFORMANCE: 2-WAY, SINGLE TERMINAL, ONE HIGH-CAPACITY MODE
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We propose an MDP model and ADP approach for dynamic 

and anticipatory decision making in intermodal transportation 

of freight.

Through various VFA designs and problem structures, we 

show that the gap between the ADP and the optimal MDP (or 

other benchmark heuristics) solutions for is heavily 

instance/state dependent.

In all different intermodal settings considered, the ADP 

approach seemed to perform better with more in-advance 

freight information and more complex transport networks.

WHAT TO REMEMBER
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