

DYNAMIC MULTI-PERIOD FREIGHT CONSOLIDATION

Arturo E. Pérez Rivera & Martijn R.K. Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

Motivation

- Problem: dynamic multi-period freight consolidation
- Proposed solution:
 - Markov Decision Process model
 - > Approximate Dynamic Programming (ADP)
- • Numerical experiments:
 - Convergence and Policy-performance
- ••• What to remember

TRANSPORTATION OF CONTAINERS FROM THE HINTERLAND TO THE DEEP-SEA PORT

- Long-haul from Hengelo to Rotterdam using *barges* through Dutch waterways.
- Trucks are used/offered as an alternative.
- Approx. 300 containers per day.
- Approx. 14 container terminals in Rotterdam per trip.

Stiller To

Shall a

1

FER

ANNERE MURALE

£

THE BIGGEST COMPLAINT

Combination of terminals have *different waiting times* (e.g., unavailable berths, deep sea vessel arrival, etc.) and managers want barges to be sailing and not waiting!

DYNAMIC MULTI-PERIOD FREIGHT CONSOLIDATION

DYNAMIC MULTI-PERIOD FREIGHT CONSOLIDATION

DYNAMIC MULTI-PERIOD FREIGHT CONSOLIDATION

MARKOV DECISION PROCESS MODEL

STOCHASTIC PROCESS UNDER CONTROL

- Stochasticity in arrival of containers:
 - Number of containers $\mathcal{F} \subseteq \mathbb{Z}^+$ p_f^F
 - Terminals \mathcal{D} p_d^{FD}
 - Release-period $\mathcal{R} = \{0, 1, 2, ..., R^{max}\}$ p_r^{FR}
 - Time-window length $\mathcal{K} = \{0, 1, 2, ..., K^{max}\}$ p_k^{FK}
- Control in which containers to consolidate, and conversely which ones to postpone, every period.
- Objective to minimize the costs resulting from the combination of terminals visited, over a finite number of periods.

MARKOV DECISION PROCESS MODEL

STATE, TRANSITION, DECISION, AND HORIZON

MARKOV DECISION PROCESS MODEL

HOW TO FIND THE OPTIMAL POLICY?

Using Bellman's principle of optimality and backward induction:

APPROXIMATE DYNAMIC PROGRAMMING

ALGORITHMIC APPROACH FOR SOLVING LARGE MARKOV MODELS.¹

Algorithm 1 Approximate Dynamic Programming Solution Algorithm **Require:** $\mathcal{T}, \mathcal{F}, \mathcal{G}, \mathcal{D}, \mathcal{R}, \mathcal{K}, [C_{\mathcal{D}'}]_{\forall \mathcal{D}' \subset \mathcal{D}}, B_d, Q, S_0, N$ 1: Initialize $\bar{V}_t^0, \forall t \in \mathcal{T}$ 2: $n \leftarrow 1$ 3: while n < N do 4: $S_0^n \leftarrow S_0$ 5: for t = 0 to $T^{max} - 1$ do 6: $\hat{v}_t^n \leftarrow \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(S^{M, \boldsymbol{x}}\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) \right) \right)$ 7: if t > 0 then $\bar{V}_{t-1}^{n}(\boldsymbol{S}_{t-1}^{n,x*}) \leftarrow U^{V}(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x*}), \boldsymbol{S}_{t-1}^{n,x*}, \hat{v}_{t}^{n})$ 8: end i 9: $\boldsymbol{x}_{t}^{n*} \leftarrow \arg\min_{\boldsymbol{x}_{t}^{n}} \left(C\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right) + \bar{V}_{t}^{n-1} \left(S^{M, x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right) \right) \right)$ 10:11: $\boldsymbol{S}_{t}^{n,x*} \leftarrow S^{M,x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n*}\right)$ 12: $\boldsymbol{W}_{t}^{n} \leftarrow \operatorname{RandomFrom}\left(\Omega\right)$ $\boldsymbol{S}_{t+1}^{n} \leftarrow S^{M}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n*}, \boldsymbol{W}_{t}^{n}
ight)$ 13:end for 14: 15: end while 16: return $[\bar{V}_t^N]_{\forall t \in \mathcal{T}}$

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

APPROXIMATE DYNAMIC PROGRAMMING

ALGORITHMIC APPROACH FOR SOLVING LARGE MARKOV MODELS.

APPROXIMATE DYNAMIC PROGRAMMING THE APPROXIMATING FUNCTION

We use a weighted combination of **post-decision characteristics**:

$$\bar{V}_t^n(\boldsymbol{S}_t^{n,x}) = \sum_{a \in \mathcal{A}} \left(\phi_a(\boldsymbol{S}_t^{n,x}) \cdot \theta_a \right)$$

where θ_a is a weight for each characteristic $a \in \mathcal{A}$, and $\phi_a(S_t^{n,x})$ is the "value" of the particular characteristic given the post-decision state $S_t^{n,x}$.

Post-decision characteristics we use:

- 1. Number of must-go freights
- 2. Number of may-go freights
 - 3. Number of future freights
- 4. Number of must-go destinations
- 5. Number of may-go destinations
- 6. Number of future destinations

APPROXIMATE DYNAMIC PROGRAMMING

UPDATING THE APPROXIMATING FUNCTION

After every iteration n, we have observed the actual costs we estimated, and thus we can improve our approximation:

 $\bar{V}_{t-1}^{n}(\boldsymbol{S}_{t-1}^{n,x}) \leftarrow U^{V}(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x}), \boldsymbol{S}_{t-1}^{n,x}, \hat{v}_{t}^{n}), \ \forall t \in \mathcal{T}$

In our case, $U^{V}(\cdot)$ updates the weights θ_{a}^{n} using a *recursive least squares* (LSQ) method for non-stationary data¹:

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

We carry out two types of experiments:

1. Convergence of the approximation method

Convergence to the optimal value obtained via the Markov model

2. Policy-performance

Decisions using common practice heuristics and the ADP-policy.

Input Parameter	Small Instances	Large Instances
1. Freights arriving per day (F)	$\{1, 2\}$	$\{1, 2, 3, 4\}$
\rightarrow Probability (p_f^F)	$\{0.8, 0.2\}$	$\{0.25, 0.25, 0.25, 0.25\}$
2. Destinations (D)	$\{1, 2, 3\}$	$\{1, 2, 3, 4, 5, 6, 7\}$
\rightarrow Probability (p_d^D)	$\{0.1, 0.8, 0.1\}$	$\{0.1, 0.2, 0.1, 0.1, 0.3, 0.1, 0.1\}$
 Release-days (R) 	{0}	$\{0, 1, 2\}$
\rightarrow Probability (p_r^R)	{1}	$\{0.3, 0.3, 0.4\}$
 Time-window lengths (K) 	$\{0, 1, 2\}$	$\{0, 1, 2\}$
\rightarrow Probability (p_k^K)	$\{0.2, 0.3, 0.5\}$	$\{0.2, 0.3, 0.5\}$
 Long-haul vehicle Cost (C_D) 	[250, 1000]	[250, 2050]
6. Alternative mode Cost (B_d)	[500, 1000]	[300, 800]

CONVERGENCE OF THE APPROXIMATION METHOD

POLICY PERFORMANCE – SMALL INSTANCES

			Q=2					Q=5		
State	Optimal	Heuristic	Diff.	ADP	Diff.	Optimal	Heuristic	Diff.	ADP	Diff.
Small A	1182.3	1343.4	13.6%	1330.0	12.5%	1025.2	1052.5	2.7%	1143.2	11.5%
Small B	1845.0	2887.8	56.5%	1920.1	4.1%	1110.5	1127.7	1.5%	1224.1	10.2%
Small C	1351.9	2414.7	78.6%	1465.6	8.4%	940.3	960.9	2.2%	1019.7	8.4%
Small D	2697.8	2773.6	2.8%	3050.9	13.1%	1475.2	1502.5	1.9%	1593.2	8.0%
Small E	1508.0	1602.0	6.2%	1597.3	5.9%	1418.6	1433.1	1.0%	1523.6	7.4%
Small F	2250.3	2990.0	32.9%	3065.6	36.2%	1692.1	1701.0	0.5%	1791.1	5.9%
Small G	2908.0	3002.0	3.2%	2997.3	3.1%	1418.6	1433.1	1.0%	1523.6	7.4%
Small H	2158.0	2252.0	4.4%	2247.3	4.1%	1068.6	1083.1	1.3%	1173.6	9.8%
Small I	1058.0	1152.0	8.9%	1147.3	8.4%	968.6	983.1	1.5%	1073.6	10.8%
Small J	1058.0	1152.0	8.9%	1147.3	8.4%	968.6	983.1	1.5%	1073.6	10.8%
Small K	1758.0	2202.0	25.3%	1847.3	5.1%	1318.6	1333.1	1.1%	1423.6	8.0%
Small L	1658.0	1802.0	8.7%	1747.3	5.4%	1568.6	1633.1	4.1%	1673.6	6.7%
Small M	2008.0	2502.0	24.6%	2097.3	4.4%	1718.6	1733.1	0.8%	1823.6	6.1%
Small N	2708.0	3202.0	18.2%	2797.3	3.3%	1718.6	1733.1	0.8%	1823.6	6.1%
Small O	3408.0	3902.0	14.5%	3497.3	2.6%	1718.6	1733.1	0.8%	1823.6	6.1%
Small P	2775.7	3122.7	12.5%	2857.7	3.0%	1718.6	1733.1	0.8%	1823.6	6.1%
Small Q	2158.0	3152.0	46.1%	2247.3	4.1%	1618.6	1633.1	0.9%	1723.6	6.5%
Small R	3158.0	4152.0	31.5%	3247.3	2.8%	1618.6	1633.1	0.9%	1723.6	6.5%
Small S	3658.0	4652.0	27.2%	3747.3	2.4%	2118.6	2633.1	24.3%	2223.6	5.0%
Small T	3508.0	3852.0	9.8%	3597.3	2.5%	2218.6	2333.1	5.2%	2323.6	4.7%
	<	Average	21.7%	Average	7.0%		Average	2.7%	Average	7.6%

POLICY PERFORMANCE – LARGE INSTANCES

		Q=4			Q=10	
State	Heuristic	ADP	Difference	Heuristic	ADP	Difference
Large A	2962.9	2579.4	-12.9%	1723.1	1743.0	1.2%
Large B	9687.9	8729.4	-9.9%	6448.1	5568.0	-13.6%
Large C	5937.9	5579.4	-6.0%	3223.1	2918.0	-9.5%
Large D	1737.9	1754.4	1.0%	1523.1	1543.0	1.3%
Large E	2162.9	1804.4	-16.6%	1523.1	1543.0	1.3%
Large F	1362.9	1254.4	-8.0%	848.1	868.0	2.3%
Large G	1362.9	1254.4	-8.0%	848.1	868.0	2.3%
Large H	2187.9	2079.4	-5.0%	1298.1	1318.0	1.5%
Large I	3585.5	3550.0	-1.0%	1766.3	1782.2	0.9%
Large J	2537.9	2179.4	-14.1%	1523.1	1543.0	1.3%
Large K	3462.9	2979.4	-14.0%	1123.1	1143.0	1.8%
Large L	1778.1	1677.1	-5.7%	1082.4	1101.2	1.7%
		Average	-8.3%		Average	-0.6%

POLICY PERFORMANCE – CTT SIZED INSTANCES

		# of Freights # of Destinations								
	State	MustGo	tGo MayGo Future		MustGo	MayGo	Future	Myopic (ILP)	ADP	%Diff.
	1	Low	Low	Low	Low	Low	Low	2978.85	2608.10	-12.4%
	2	Low	Low	Medium	Low	Medium	High	5194.60	5146.40	-0.9%
	3	Low	Medium	Low	High	High	Medium	5396.90	2148.10	-60.2%
	4	Low	Medium	High	High	Low	High	7941.40	6365.10	-19.8%
•	5	Low	High	Medium	Medium	High	Low	14730.35	7301.40	-50.4%
	6	Low	High	High	Medium	Medium	Medium	12069.95	10206.45	-15.4%
	7	Medium	Low	Medium	High	High	Medium	5868.20	5740.30	-2.2%
	8	Medium	Low	High	High	Medium	Low	13070.95	8839.30	-32.4%
	9	Medium	Medium	Low	Medium	Medium	High	6443.05	6348.10	-1.5%
	10	Medium	Medium	Medium	Medium	Low	Low	9895.95	8432.55	-14.8%
	11	Medium	High	Low	Low	Low	Medium	14567.95	14534.15	-0.2%
	12	Medium	High	High	Low	High	High	13764.55	13636.65	-0.9%
	13	High	Low	Low	Medium	High	High	10173.15	10045.25	-1.3%
	14	High	Low	High	Medium	Low	Medium	10429.00	10286.90	-1.4%
	15	High	Medium	Medium	Low	Medium	Medium	10111.50	10033.90	-0.8%
	16	High	High	Low	High	Medium	Low	9680.75	9667.55	-0.1%
	17	High	High	Medium	High	Low	High	9881.80	9872.05	-0.1%
	Average Diff									-12.6%

NUMERICAL EXPERIMENTS POLICY PERFORMANCE – CTT SIZED INSTANCES

		# of Freights			# of Freights # of Destinations			Approx.	per state	Approx. for all states		
St	ate	MustGo	MayGo	Future	MustGo	MayGo	Future	Myopic (ILP)	ADP	%Diff.	ADP	%DIFF
	1	Low	Low	Low	Low	Low	Low	2978.85	2608.10	-12.4%	2578.55	-13.4%
	2	Low	Low	Medium	Low	Medium	High	5194.60	5146.40	-0.9%	5139.15	-1.1%
_	3	Low	Medium	Low	High	High	Medium	5396.90	2148.10	-60.2%	5297.55	-1.8%
Г	4	Low	Medium	High	High	Low	High	7941.40	6365.10	-19.8%	7941.40	0.0%
	5	Low	High	Medium	Medium	High	Low	14730.35	7301.40	-50.4%	8503.65	-42.3%
	6	LOW	High	High	Iviedium	Iviearum	iviedium	12069.95	10206.45	-15.4%	10218.75	-15.3%
	7	Medium	Low	Medium	High	High	Medium	5868.20	5740.30	-2.2%	5757.90	-1.9%
	8	Medium	Low	High	High	Medium	Low	13070.95	8839.30	-32.4%	8626.05	-34.0%
	9	Medium	Medium	Low	Medium	Medium	High	6443.05	6348.10	-1.5%	5927.90	-8.0%
	10	Medium	Medium	Medium	Medium	Low	Low	9895.95	8432.55	-14.8%	9127.35	-7.8%
	11	Medium	High	Low	Low	Low	Medium	14567.95	14534.15	-0.2%	14540.20	-0.2%
	12	Medium	High	High	Low	High	High	13764.55	13636.65	-0.9%	13654.25	-0.8%
	13	High	Low	Low	Medium	High	High	10173.15	10045.25	-1.3%	10062.85	-1.1%
	14	High	Low	High	Medium	Low	Medium	10429.00	10286.90	-1.4%	10318.70	-1.1%
	15	High	Medium	Medium	Low	Medium	Medium	10111.50	10033.90	-0.8%	10036.45	-0.7%
	16	High	High	Low	High	Medium	Low	9680.75	9667.55	-0.1%	9671.55	-0.1%
	17	High	High	Medium	High	Low	High	9881.80	9872.05	-0.1%	9880.35	0.0%
									Average Diff.	-12.6%	Average Diff.	-7.6%

We proposed the use of an *ADP algorithm to dynamically* consolidate and postpone freights in a long-haul and lastmile intermodal transportation optimization problem.

There are some problem settings where it pays off to *have a look-ahead policy*, and some others where a myopic policy seems to be the optimal decision-rule.

Our ADP algorithm requires a *tailored application in practice* when real-time decision making is required.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

http://www.utwente.nl/mb/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

ICCL 2015 - Thursday, September 24th Delft, The Netherlands