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Motivation

Problem: dynamic multi-period freight consolidation

Proposed solution:

 Markov Decision Process model

 Approximate Dynamic Programming (ADP)

Numerical experiments:

 Convergence and Policy-performance

What to remember

CONTENTS
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CASE INTRODUCTION
PLANNING PROBLEM BASED IN COMBI-TERMINAL TWENTE (CTT)



 Long-haul from Hengelo to 

Rotterdam using barges 

through Dutch waterways.

 Trucks are used/offered as an 

alternative.

 Approx. 300 containers per 

day.

 Approx. 14 container terminals 

in Rotterdam per trip.

TRANSPORTATION OF CONTAINERS FROM THE 
HINTERLAND TO THE DEEP-SEA PORT
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40 kms



 Combination of terminals have different waiting times

(e.g., unavailable berths, deep sea vessel arrival, etc.) and

managers want barges to be sailing and not waiting!

THE BIGGEST COMPLAINT
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DYNAMIC MULTI-PERIOD FREIGHT CONSOLIDATION

Today Tomorrow Day-after
?
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MARKOV DECISION PROCESS MODEL
STOCHASTIC PROCESS UNDER CONTROL

 Stochasticity in arrival of containers:

- Number of containers

- Terminals

- Release-period

- Time-window length

 Control in which containers to consolidate, and conversely 

which ones to postpone, every period.

 Objective to minimize the costs resulting from the 

combination of terminals visited, over a finite number of 

periods.
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MARKOV DECISION PROCESS MODEL
STATE, TRANSITION, DECISION, AND HORIZON

Today Tomorrow Day-after

?
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𝜋𝑡
∗(𝑺𝑡)



Using Bellman’s principle of optimality and backward induction:

MARKOV DECISION PROCESS MODEL
HOW TO FIND THE OPTIMAL POLICY?

All possible realizations 

of the random variables!All possible 

decisions in a state!

All possible states!
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APPROXIMATE DYNAMIC PROGRAMMING
ALGORITHMIC APPROACH FOR SOLVING LARGE MARKOV MODELS.1
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.



APPROXIMATE DYNAMIC PROGRAMMING
ALGORITHMIC APPROACH FOR SOLVING LARGE MARKOV MODELS.
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We use a weighted combination of post-decision characteristics:

where 𝜃𝑎 is a weight for each characteristic 𝑎 ∈ 𝒜, and 𝜙𝑎(𝑺𝑡
𝑛,𝑥) is the 

“value” of the particular characteristic given the post-decision state 𝑺𝑡
𝑛,𝑥

.

APPROXIMATE DYNAMIC PROGRAMMING
THE APPROXIMATING FUNCTION
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Post-decision characteristics we use:

1. Number of must-go freights

2. Number of may-go freights

3. Number of future freights

4. Number of must-go destinations

5. Number of may-go destinations

6. Number of future destinations



After every iteration 𝑛, we have observed the actual costs we estimated, 

and thus we can improve our approximation:

In our case, 𝑈𝑉 (∙) updates the weights 𝜃𝑎
𝑛 using a recursive least squares 

(LSQ) method for non-stationary data1:

APPROXIMATE DYNAMIC PROGRAMMING
UPDATING THE APPROXIMATING FUNCTION
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.
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NUMERICAL EXPERIMENTS

We carry out two types of experiments:

1. Convergence of the approximation method

Convergence to the optimal value obtained via the Markov model

2. Policy-performance

Decisions using common practice heuristics and the ADP-policy.
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NUMERICAL EXPERIMENTS
CONVERGENCE OF THE APPROXIMATION METHOD

Q=2

Q=5
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State Optimal Heuristic Diff. ADP Diff. Optimal Heuristic Diff. ADP Diff.

Small A 1182.3 1343.4 13.6% 1330.0 12.5% 1025.2 1052.5 2.7% 1143.2 11.5%

Small B 1845.0 2887.8 56.5% 1920.1 4.1% 1110.5 1127.7 1.5% 1224.1 10.2%

Small C 1351.9 2414.7 78.6% 1465.6 8.4% 940.3 960.9 2.2% 1019.7 8.4%

Small D 2697.8 2773.6 2.8% 3050.9 13.1% 1475.2 1502.5 1.9% 1593.2 8.0%

Small E 1508.0 1602.0 6.2% 1597.3 5.9% 1418.6 1433.1 1.0% 1523.6 7.4%

Small F 2250.3 2990.0 32.9% 3065.6 36.2% 1692.1 1701.0 0.5% 1791.1 5.9%

Small G 2908.0 3002.0 3.2% 2997.3 3.1% 1418.6 1433.1 1.0% 1523.6 7.4%

Small H 2158.0 2252.0 4.4% 2247.3 4.1% 1068.6 1083.1 1.3% 1173.6 9.8%

Small I 1058.0 1152.0 8.9% 1147.3 8.4% 968.6 983.1 1.5% 1073.6 10.8%

Small J 1058.0 1152.0 8.9% 1147.3 8.4% 968.6 983.1 1.5% 1073.6 10.8%

Small K 1758.0 2202.0 25.3% 1847.3 5.1% 1318.6 1333.1 1.1% 1423.6 8.0%

Small L 1658.0 1802.0 8.7% 1747.3 5.4% 1568.6 1633.1 4.1% 1673.6 6.7%

Small M 2008.0 2502.0 24.6% 2097.3 4.4% 1718.6 1733.1 0.8% 1823.6 6.1%

Small N 2708.0 3202.0 18.2% 2797.3 3.3% 1718.6 1733.1 0.8% 1823.6 6.1%

Small O 3408.0 3902.0 14.5% 3497.3 2.6% 1718.6 1733.1 0.8% 1823.6 6.1%

Small P 2775.7 3122.7 12.5% 2857.7 3.0% 1718.6 1733.1 0.8% 1823.6 6.1%

Small Q 2158.0 3152.0 46.1% 2247.3 4.1% 1618.6 1633.1 0.9% 1723.6 6.5%

Small R 3158.0 4152.0 31.5% 3247.3 2.8% 1618.6 1633.1 0.9% 1723.6 6.5%

Small S 3658.0 4652.0 27.2% 3747.3 2.4% 2118.6 2633.1 24.3% 2223.6 5.0%

Small T 3508.0 3852.0 9.8% 3597.3 2.5% 2218.6 2333.1 5.2% 2323.6 4.7%

Average 21.7% Average 7.0% Average 2.7% Average 7.6%

Q=2 Q=5

NUMERICAL EXPERIMENTS
POLICY PERFORMANCE – SMALL INSTANCES

Q=2 Q=5
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State Heuristic ADP Difference Heuristic ADP Difference

Large A 2962.9 2579.4 -12.9% 1723.1 1743.0 1.2%

Large B 9687.9 8729.4 -9.9% 6448.1 5568.0 -13.6%

Large C 5937.9 5579.4 -6.0% 3223.1 2918.0 -9.5%

Large D 1737.9 1754.4 1.0% 1523.1 1543.0 1.3%

Large E 2162.9 1804.4 -16.6% 1523.1 1543.0 1.3%

Large F 1362.9 1254.4 -8.0% 848.1 868.0 2.3%

Large G 1362.9 1254.4 -8.0% 848.1 868.0 2.3%

Large H 2187.9 2079.4 -5.0% 1298.1 1318.0 1.5%

Large I 3585.5 3550.0 -1.0% 1766.3 1782.2 0.9%

Large J 2537.9 2179.4 -14.1% 1523.1 1543.0 1.3%

Large K 3462.9 2979.4 -14.0% 1123.1 1143.0 1.8%

Large L 1778.1 1677.1 -5.7% 1082.4 1101.2 1.7%

Average -8.3% Average -0.6%

Q=4 Q=10

NUMERICAL EXPERIMENTS
POLICY PERFORMANCE – LARGE INSTANCES

Q=4 Q=10
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NUMERICAL EXPERIMENTS
POLICY PERFORMANCE – CTT SIZED INSTANCES

24

State MustGo MayGo Future MustGo MayGo Future Myopic (ILP) ADP %Diff.

1 Low Low Low Low Low Low 2978.85 2608.10 -12.4%

2 Low Low Medium Low Medium High 5194.60 5146.40 -0.9%

3 Low Medium Low High High Medium 5396.90 2148.10 -60.2%

4 Low Medium High High Low High 7941.40 6365.10 -19.8%

5 Low High Medium Medium High Low 14730.35 7301.40 -50.4%

6 Low High High Medium Medium Medium 12069.95 10206.45 -15.4%

7 Medium Low Medium High High Medium 5868.20 5740.30 -2.2%

8 Medium Low High High Medium Low 13070.95 8839.30 -32.4%

9 Medium Medium Low Medium Medium High 6443.05 6348.10 -1.5%

10 Medium Medium Medium Medium Low Low 9895.95 8432.55 -14.8%

11 Medium High Low Low Low Medium 14567.95 14534.15 -0.2%

12 Medium High High Low High High 13764.55 13636.65 -0.9%

13 High Low Low Medium High High 10173.15 10045.25 -1.3%

14 High Low High Medium Low Medium 10429.00 10286.90 -1.4%

15 High Medium Medium Low Medium Medium 10111.50 10033.90 -0.8%

16 High High Low High Medium Low 9680.75 9667.55 -0.1%

17 High High Medium High Low High 9881.80 9872.05 -0.1%

Average Diff. -12.6%

# of Freights # of Destinations



NUMERICAL EXPERIMENTS
POLICY PERFORMANCE – CTT SIZED INSTANCES
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State MustGo MayGo Future MustGo MayGo Future Myopic (ILP) ADP %Diff. ADP %DIFF

1 Low Low Low Low Low Low 2978.85 2608.10 -12.4% 2578.55 -13.4%

2 Low Low Medium Low Medium High 5194.60 5146.40 -0.9% 5139.15 -1.1%

3 Low Medium Low High High Medium 5396.90 2148.10 -60.2% 5297.55 -1.8%

4 Low Medium High High Low High 7941.40 6365.10 -19.8% 7941.40 0.0%

5 Low High Medium Medium High Low 14730.35 7301.40 -50.4% 8503.65 -42.3%

6 Low High High Medium Medium Medium 12069.95 10206.45 -15.4% 10218.75 -15.3%

7 Medium Low Medium High High Medium 5868.20 5740.30 -2.2% 5757.90 -1.9%

8 Medium Low High High Medium Low 13070.95 8839.30 -32.4% 8626.05 -34.0%

9 Medium Medium Low Medium Medium High 6443.05 6348.10 -1.5% 5927.90 -8.0%

10 Medium Medium Medium Medium Low Low 9895.95 8432.55 -14.8% 9127.35 -7.8%

11 Medium High Low Low Low Medium 14567.95 14534.15 -0.2% 14540.20 -0.2%

12 Medium High High Low High High 13764.55 13636.65 -0.9% 13654.25 -0.8%

13 High Low Low Medium High High 10173.15 10045.25 -1.3% 10062.85 -1.1%

14 High Low High Medium Low Medium 10429.00 10286.90 -1.4% 10318.70 -1.1%

15 High Medium Medium Low Medium Medium 10111.50 10033.90 -0.8% 10036.45 -0.7%

16 High High Low High Medium Low 9680.75 9667.55 -0.1% 9671.55 -0.1%

17 High High Medium High Low High 9881.80 9872.05 -0.1% 9880.35 0.0%

Average Diff. -12.6% Average Diff. -7.6%

Approx. for all states# of Freights # of Destinations Approx. per state



We proposed the use of an ADP algorithm to dynamically

consolidate and postpone freights in a long-haul and last-

mile intermodal transportation optimization problem.

There are some problem settings where it pays off to

have a look-ahead policy, and some others where a myopic

policy seems to be the optimal decision-rule.

Our ADP algorithm requires a tailored application in

practice when real-time decision making is required.

WHAT TO REMEMBER
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