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 Transportation of containers 

to and from Rotterdam. 

 Long-haul of the 

transportation is done using 

barges through Dutch 

waterways. 

 More than 150k containers 

per year (more than 300 per 

day). 

 There are around 30 container 

terminals in Rotterdam. 
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40km 



 Barges spend around two days waiting and sailing between 

terminals in Rotterdam due to changes in appointments (e.g., 

unavailable berths, deep sea vessel arrival, etc.) 
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The state 𝑺𝑡 is the vector of delivery and pickup freights that are 

known at a given stage: 

The arriving information 𝑾𝑡 is the vector of delivery and pickup 

freights that arrived from outside the system between periods 𝑡 − 1 

and 𝑡 : 
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The decision 𝒙𝑡 is the vector of delivery and pickup freights, which 

have been released, that are consolidated in the high-capacity 

vehicle without exceeding its capacity 𝑄: 
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The transition function 𝑆𝑀 captures the evolution of the system 

from one period of the horizon to the next one: 
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The cost function 𝐶 𝑺𝑡, 𝒙𝑡  defines the costs at a given period of the 

horizon as a function of the state and the decision taken: 
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The objective is to reduce the total expected costs over the horizon, 

given an initial state: 

Using Bellman’s principal of optimality, the Markov model can be 

solved with the backward recursion: 

1 

2 
3 



Approximate Dynamic Programming (ADP) is an approach that uses 

algorithmic manipulations to solve large Markov models.1 

SOLUTION APPROACH 
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming. 



A post-decision state 𝑺𝑡
𝑛,𝑥

 is used as a single estimator for all possible 

realizations of the random variables. 
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A Value Function Approximation (VFA) 𝑉 𝑡
𝑛(𝑺𝑡

𝑛,𝑥) for the post-decision 

state is used to capture the future costs: 

The approximation of Bellman’s equations in ADP: 

 



Use a weighted combination of state-features for approximating the value 

of a state (i.e., VFA function). 

 

 

Where 𝜃𝑎 is a weight for each feature 𝑎 ∈ 𝒜, and 𝜙𝑎(𝑺𝑡
𝑛,𝑥) is the value of 

the particular feature given the post-decision state 𝑺𝑡
𝑛,𝑥

. 
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Assumption: There are specific 

characteristics of a post-decision state which 

significantly influence its future costs! 



Examples of state-features: 

1. Sum of delivery and pickup freights that are not yet released for 

transport, per destination (i.e. future freights). 

2. Sum of delivery and pickup freights that are released for transport and 

whose due-day is not immediate, per destination (i.e., may-go 

freights). 

3. Binary indicator of a destination having urgent delivery or pickup 

freights (i.e., must-visit destination). 

4. Some power function (e.g., ^2) of each state variable (i.e., non-linear 

components in costs) . 
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The VFA must be updated after every iteration 𝑛 with a function 𝑈𝑉(∙). 

 

 

 

In our case, the weights are updated through a recursive least squares 

method for non-stationary data1: 
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1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming. 

1 
2 

3 



Two preliminary experiments: 

1. Convergence Test (one freight - 19,323 states ) 

2. Policy-performance Test (two freights - 8,317,456 states) 

PRELIMINARY NUMERICAL RESULTS 
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 “Looking” into future freight consolidation, through a Markov 

model, pays off when costs depend on the combination of 

destinations and the transport capacity is limited. 

 

 Approximate Dynamic Programming (ADP) is an appropriate 

method for solving large Markov models as long as future costs 

can be estimated accurately. 

 

 ADP can be used to obtain managerial insights in how 

destination-combination costs and time-windows influence overall 

performance. 
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