UNIVERSITY OF TWENTE.

DYNAMIC FREIGHT SELECTION FOR REDUCING LONG-HAUL ROUND TRIP COSTS

Arturo E. Pérez Rivera & Martijn Mes

Department of Industrial Engineering and Business Information Systems University of Twente, The Netherlands

VeRoLog 2015 – Vienna, Austria Wednesday, June 10th, 2015

OUTLINE

- Problem definition
- ••• Solution approaches
 - Markov Model
 - > Approximate Dynamic Programming
- Preliminary numerical results
 - Conclusions

MOTIVATION INDUSTRY IN TWENTE

- Transportation of containers to and from Rotterdam.
- Long-haul of the transportation is done using barges through Dutch waterways.
- More than 150k containers per year (more than 300 per day).
- There are around 30 container terminals in Rotterdam.

Shall a

1

ERNORD CENTR

ELEMANINGNER KLADNENALATIN SEXAMINEN KLADNENALET LETAMINENTRIK

-BARREN TERM

AMERICA STREET

MOTIVATION THE PROBLEM IN ROTTERDAM

 Barges spend around two days *waiting and sailing between terminals in Rotterdam* due to changes in appointments (e.g., unavailable berths, deep sea vessel arrival, etc.)

DYNAMIC FREIGHT SELECTION

DYNAMIC FREIGHT SELECTION

DYNAMIC FREIGHT SELECTION

DYNAMIC FREIGHT SELECTION

10

DYNAMIC FREIGHT SELECTION

SOLUTION APPROACH THE OPTIMIZATION PROBLEM

Main Parameters Set **Probabilities** $\mathcal{T} = \{0, 1, 2, \dots, T^{max} - 1\}$ Planning horizon Number of delivery freights $\mathcal{F} \subseteq \mathbb{Z}^+$ $p_f^F \ \forall f \in \mathcal{F}$ Number of pickup freights $\mathcal{G} \subseteq \mathbb{Z}^+$ $p_a^G \ \forall g \in \mathcal{G}$ $p_d^{FD}, p_d^{GD} \; \forall d \in \mathcal{D}$ Last-mile destinations \mathcal{D} $\mathcal{R} = \{0, 1, 2, ..., R^{max}\} \qquad p_r^{FR}, p_r^{GR} \; \forall r \in \mathcal{R}$ Release-days $\mathcal{K} = \{0, 1, 2, \dots, K^{max}\} \qquad p_k^{FK}, p_k^{GK} \; \forall k \in \mathcal{K}$ Time-window lengths

Decision: Which freights to consolidate in the high-capacity vehicle each period of the horizon?

Objective: To reduce the expected total costs over the horizon.

SOLUTION APPROACH

THE MARKOV MODEL

The state S_t is the vector of delivery and pickup freights that are known at a given stage:

$$\boldsymbol{S}_{t} = [(F_{t,d,r,k}, G_{t,d,r,k})]_{\forall d \in \mathcal{D}, r \in \mathcal{R}, k \in \mathcal{K}}, \ \forall t \in \mathcal{T}$$
(1)

The *arriving information* W_t is the vector of delivery and pickup freights that arrived from outside the system between periods t - 1 and t:

$$\boldsymbol{W}_{t} = \left[\left(\widetilde{F}_{t,d,r,k}, \widetilde{G}_{t,d,r,k} \right) \right]_{\forall d \in \mathcal{D}, r \in \mathcal{R}, k \in \mathcal{K}}, \ \forall t \in \mathcal{T}$$
(2)

SOLUTION APPROACH THE MARKOV MODEL

The *decision* x_t is the vector of delivery and pickup freights, which have been released, that are consolidated in the high-capacity vehicle without exceeding its capacity Q:

$$\boldsymbol{x}_{t} = \left[\left(\boldsymbol{x}_{t,d,k}^{F}, \boldsymbol{x}_{t,d,k}^{G} \right) \right]_{\forall d \in \mathcal{D}, k \in \mathcal{K}} \middle| \boldsymbol{S}_{t}, \; \forall t \in \mathcal{T}$$
(3a)

s.t.

 $0 \le x_{t,d,k}^F \le F_{t,d,0,k}, \ \forall d \in \mathcal{D}, k \in \mathcal{K}$ (3b)

$$0 \le x_{t,d,k}^G \le G_{t,d,0,k}, \ \forall d \in \mathcal{D}, k \in \mathcal{K}$$
(3c)

$$\sum_{d \in \mathcal{D}} \sum_{k \in \mathcal{K}} x_{t,d,k}^F \le Q, \tag{3d}$$

$$\sum_{d \in \mathcal{D}} \sum_{k \in \mathcal{K}} x_{t,d,k}^G \le Q, \tag{3e}$$

$$x_{t,d,k}^F, x_{t,d,k}^G \in \mathbb{Z}^+ \tag{3f}$$

SOLUTION APPROACH

THE MARKOV MODEL

The *transition function* S^M captures the evolution of the system from one period of the horizon to the next one:

$$\boldsymbol{S}_{t} = S^{M} \left(\boldsymbol{S}_{t-1}, \boldsymbol{x}_{t-1}, \boldsymbol{W}_{t} \right), \; \forall t \in \mathcal{T} | t > 0$$
s.t.
(4a)

$$F_{t,d,0,k} = F_{t-1,d,0,k+1} - x_{t-1,d,k+1}^F + F_{t-1,d,1,k} + \widetilde{F}_{t,d,0,k}, \quad \left| k < K^{max} \right|$$
(4b)

$$F_{t,d,r,k} = F_{t-1,d,r+1,k} + \widetilde{F}_{t,d,r,k}, \quad r \ge 1$$
 (4c)

$$F_{t,d,r,K^{max}} = \widetilde{F}_{t,d,r,K^{max}}, \qquad (4d)$$

$$G_{t,d,0,k} = G_{t-1,d,0,k+1} - x_{t-1,d,k+1}^G + G_{t-1,d,1,k} + \widetilde{G}_{t,d,0,k}, \quad \left| k < K^{max} \right|$$
(4e)

$$G_{t,d,r,k} = G_{t-1,d,r+1,k} + \tilde{G}_{t,d,r,k}, \quad r \ge 1$$
 (4f)

$$G_{t,d,r,K^{max}} = \widetilde{G}_{t,d,r,K^{max}},\tag{4g}$$

 $\forall d \in \mathcal{D}, \ r \in \mathcal{R}, \ r+1 \in \mathcal{R}, \ k \in \mathcal{K}, \ k+1 \in \mathcal{K}$

SOLUTION APPROACH THE MARKOV MODEL

The cost function $C(S_t, x_t)$ defines the costs at a given period of the horizon as a function of the state and the decision taken:

$$C\left(\boldsymbol{S}_{t},\boldsymbol{x}_{t}\right) = \sum_{\mathcal{D}'\subseteq\mathcal{D}} \left(C_{\mathcal{D}'} \cdot \prod_{d'\in\mathcal{D}'} y_{t,d'} \cdot \prod_{d''\in\mathcal{D}\setminus\mathcal{D}'} \left(1 - y_{t,d''}\right) \right) + \sum_{d\in\mathcal{D}} \left(B_{d} \cdot z_{t,d}\right)$$
(5a)

s.t.

$$y_{t,d} = \begin{cases} 1, & \text{if } \sum_{k \in \mathcal{K}} \left(x_{t,d,k}^F + x_{t,d,k}^G \right) > 0\\ 0, & \text{otherwise} \end{cases}, \ \forall d \in \mathcal{D} \tag{5b}$$

$$z_{t,d} = F_{t,d,0,0} - x_{t,d,0}^F + G_{t,d,0,0} - x_{t,d,0}^G, \ \forall d \in \mathcal{D}$$
(5c)

SOLUTION APPROACH THE MARKOV MODEL

The **objective** is to reduce the total expected costs over the horizon, given an initial state:

$$\min_{\pi \in \Pi} \mathbb{E} \left\{ \left| \sum_{t \in \mathcal{T}} C\left(\boldsymbol{S}_{t}, \boldsymbol{x}_{t}^{\pi} \right) \right| \boldsymbol{S}_{0} \right\}$$
(6)

Using Bellman's principal of optimality, the Markov model can be solved with the backward recursion:

$$V_{t}(S_{t}) = \min_{x_{t}} \left(C\left(S_{t}, x_{t}\right) + \mathbb{E}\left\{ V_{t+1}\left(S_{t+1}\right)\right\} \right), \forall t \in \mathcal{T} \\ = \min_{x_{t}} \left(C\left(S_{t}, x_{t}\right) + \mathbb{E}\left\{ V_{t+1}\left(S^{M}\left(S_{t}, x_{t}, W_{t+1}\right)\right)\right\} \right) \\ = \min_{x_{t}} \left(C\left(S_{t}, x_{t}\right) + \sum_{\omega \in \Omega} \left(p_{\omega}^{\Omega} \cdot V_{t+1}\left(S^{M}\left(S_{t}, x_{t}, \omega\right)\right) \right) \right) \right)$$

$$(7)$$

SOLUTION APPROACH

APPROXIMATE DYNAMIC PROGRAMMING

Approximate Dynamic Programming (ADP) is an approach that uses algorithmic manipulations to solve large Markov models.¹

Algorithm 1 Approximate Dynamic Programming Solution Algorithm **Require:** $\mathcal{T}, \mathcal{F}, \mathcal{G}, \mathcal{D}, \mathcal{R}, \mathcal{K}, [C_{\mathcal{D}'}]_{\forall \mathcal{D}' \subset \mathcal{D}}, B_d, Q, S_0, N$ 1: Initialize $\bar{V}_t^0, \forall t \in \mathcal{T}$ 2: $n \leftarrow 1$ 3: while n < N do 4: $S_0^n \leftarrow S_0$ 5: for t = 0 to $T^{max} - 1$ do 6: $\hat{v}_t^n \leftarrow \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(S^{M, \boldsymbol{x}}\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) \right) \right)$ 7: if t > 0 then 8: $\bar{V}_{t-1}^n(\boldsymbol{S}_{t-1}^{n,x*}) \leftarrow U^V(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x*}), \boldsymbol{S}_{t-1}^{n,x*}, \hat{v}_t^n)$ 9: end if $\boldsymbol{x}_{t}^{n*} \leftarrow \arg\min_{\boldsymbol{x}_{t}^{n}}\left(\boldsymbol{C}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right) + \bar{V}_{t}^{n-1}\left(\boldsymbol{S}^{M, x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right)\right)\right)$ 10: 11: $\boldsymbol{S}_{t}^{n,x*} \leftarrow S^{M,x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n*}\right)$ 12: $\boldsymbol{W}_{t}^{n} \leftarrow \text{RandomFrom}(\Omega)$ 13: $\boldsymbol{S}_{t+1}^{n} \leftarrow S^{M}(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n*}, \boldsymbol{W}_{t}^{n})$ end for 14: 15: end while 16: return $[\bar{V}_t^N]_{\forall t \in \mathcal{T}}$

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

A *post-decision state* $S_t^{n,x}$ is used as a single estimator for all possible realizations of the random variables.

 $\boldsymbol{S}_{t}^{n,x} = S^{M,x}\left(\boldsymbol{S}_{t}^{n}, \boldsymbol{x}_{t}^{n}\right), \; \forall t \in \mathcal{T}$

A Value Function Approximation (VFA) $\bar{V}_t^n(S_t^{n,x})$ for the post-decision state is used to capture the future costs:

 $\bar{V}_{t}^{n}(\boldsymbol{S}_{t}^{n,x}) = \mathbb{E}\left\{V_{t+1}\left(\boldsymbol{S}_{t+1}\right) | \boldsymbol{S}_{t}^{x}\right\}$

The approximation of Bellman's equations in ADP:

$$\begin{split} \hat{v}_t^n &= \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(\boldsymbol{S}_t^{n, \boldsymbol{x}}\right) \right) \\ &= \min_{\boldsymbol{x}_t^n} \left(C\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) + \bar{V}_t^{n-1}\left(\boldsymbol{S}^{M, \boldsymbol{x}}\left(\boldsymbol{S}_t^n, \boldsymbol{x}_t^n\right) \right) \right) \end{split}$$

Use a weighted combination of *state-features* for approximating the value of a state (i.e., VFA function).

$$\bar{V}_t^n(\boldsymbol{S}_t^{n,x}) = \sum_{a \in \mathcal{A}} \left(\phi_a(\boldsymbol{S}_t^{n,x}) \cdot \theta_a \right)$$

Where θ_a is a weight for each feature $a \in \mathcal{A}$, and $\phi_a(S_t^{n,x})$ is the value of the particular feature given the post-decision state $S_t^{n,x}$.

Assumption: There are specific characteristics of a post-decision state which significantly influence its future costs!

Examples of state-features:

- 1. Sum of delivery and pickup freights that are not yet released for transport, per destination *(i.e. future freights)*.
- Sum of delivery and pickup freights that are released for transport and whose due-day is not immediate, per destination (*i.e., may-go freights*).
- 3. Binary indicator of a destination having urgent delivery or pickup freights *(i.e., must-visit destination)*.
- 4. Some power function (e.g., ^2) of each state variable *(i.e., non-linear components in costs)*.

The VFA must be *updated* after every iteration *n* with a function $U^V(\cdot)$.

 $\bar{V}_{t-1}^n(\boldsymbol{S}_{t-1}^{n,x}) \leftarrow U^V(\bar{V}_{t-1}^{n-1}(\boldsymbol{S}_{t-1}^{n,x}), \boldsymbol{S}_{t-1}^{n,x}, \hat{v}_t^n), \ \forall t \in \mathcal{T}$

In our case, the weights are updated through a recursive least squares method for non-stationary data¹:

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.

PRELIMINARY NUMERICAL RESULTS

ADP FOR THE DYNAMIC FREIGHT SELECTION IN ROUND-TRIPS

Two preliminary experiments:

- 1. Convergence Test (one freight 19,323 states)
- 2. Policy-performance Test (two freights 8,317,456 states)

Input Parameter	Values
Freights arriving per day (F, G)	$\{1, 2\}$
\rightarrow Probability (p_f^F, p_g^G)	$\{0.8, 0.2\}$
Destinations (D)	$\{1, 2, 3\}$
\rightarrow Probability (p_d^{FD}, p_d^{GD})	$\{0.1, 0.8, 0.1\}$
Release-days (R)	$\{0\}$
\rightarrow Probability (p_r^{FR}, p_r^{GR})	{1}
Time-window lengths (K)	$\{0, 1, 2\}$
\rightarrow Probability (p_k^{FK}, p_k^{GK})	$\{0.2, 0.3, 0.5\}$
Planning horizon (T^{Max})	5
Long-haul capacity (Q)	2

PRELIMINARY NUMERICAL RESULTS

ADP FOR THE DYNAMIC FREIGHT SELECTION IN ROUND-TRIPS

Convergence Test:

PRELIMINARY NUMERICAL RESULTS

ADP FOR THE DYNAMIC FREIGHT SELECTION IN ROUND-TRIPS

Policy-performance Test:

CONCLUSIONS

- "Looking" into future freight consolidation, through a Markov model, pays off when costs depend on the combination of destinations and the transport capacity is limited.
- Approximate Dynamic Programming (ADP) is an appropriate method for solving large Markov models as long as future costs can be estimated accurately.
- ADP can be used to obtain managerial insights in how destination-combination costs and time-windows influence overall performance.

UNIVERSITY OF TWENTE.

THANKS FOR YOUR ATTENTION! ARTURO E. PÉREZ RIVERA

PhD Candidate

Department of Industrial Engineering and Business Information Systems

University of Twente, The Netherlands

http://www.utwente.nl/mb/iebis/staff/perezrivera/

a.e.perezrivera@utwente.nl

VeRoLog 2015 – Vienna, Austria Wednesday, June 10th, 2015