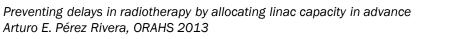
UNIVERSITY OF TWENTE.

PREVENTING DELAYS IN RADIOTHERAPY BY ALLOCATING LINAC CAPACITY IN ADVANCE

Arturo E. Pérez Rivera

Monday 8th of July, 2013 ORAHS 2013, Istanbul, Turkey

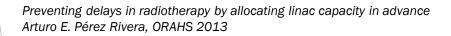


OUTLINE

- Radiotherapy at the Netherlands Cancer Institute
- •• Delays due to 'linac' constraints
- ••• Our heuristic approach
- •••• Preliminary results
 - Conclusions

RADIOTHERAPY AT THE NETHERLANDS CANCER INSTITUTE

Preventing delays in radiotherapy by allocating linac capacity in advance Arturo E. Pérez Rivera, ORAHS 2013


• [2/10]

RADIOTHERAPY AT THE NETHERLANDS CANCER INSTITUTE

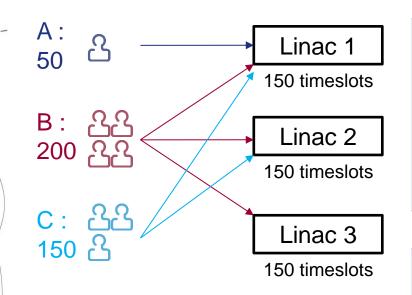
IRRADIATION USING LINEAR ACCELERATORS

- More than 5000 new treatments per year.
- More than 70 care plan types (patient groups).
- A care plan consists from 1 up to 35 daily irradiations.
- Total capacity of 8 linacs.
- Care plans have between 2 and 8 'feasible' linacs.

• [3/10]

DELAYS DUE TO LINAC CONSTRAINTS

Linac 1


Linac 2

Linac 3

Started

Delayed

AND VARIATION IN ARRIVAL OF PATIENT GROUPS

Care Plan \rightarrow	А	В	С	Pat.	Capacity		
Linac 1	50	100	-	150	0		
Linac 2	-	-	150	150	0		
Linac 3	-	100	-	100	-50		
Started	50	200	150	400	-		
Delayed	0	0	0	0	-		
If all 'B' arrive 1 st , 'A' 2 nd and 'C' 3 rd :							
Care Plan \rightarrow	А	В	С		Capacity		

150

50

200

0

0

-50

100

100

-50

Demand = 400 patients Supply = 450 linac-timeslots Demand/Supply Ratio = 89%

150

150

100

400

-100

0

0

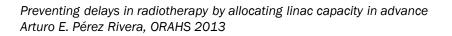
-150

-

Preventing delays in radiotherapy by allocating linac capacity in advance Arturo E. Pérez Rivera, ORAHS 2013

OUR HEURISTIC APPROACH [1/3]

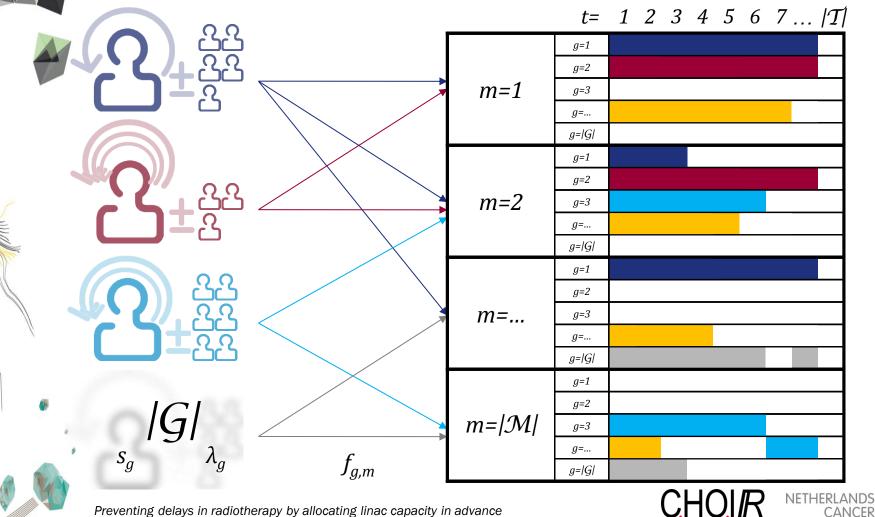
TACTICAL PLANNING



- Allocation is in the form of a *threshold* on the number of patients from a given care plan that can be treated on a given linac on any day.
- Important assumptions:
 - A planner schedules the patient's irradiation immediately upon 'arrival' on the earliest available machine.
 - A patient has to receive all daily irradiation from the same linac.

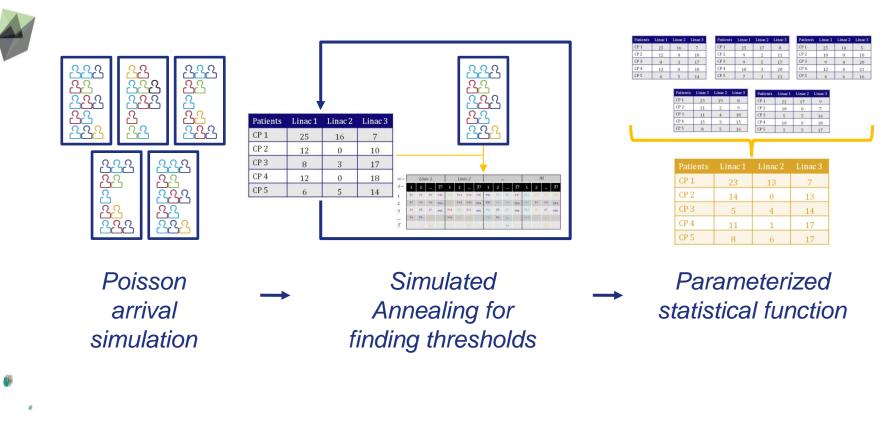
Care plan	Linac 1	Linac 2	Linac 3
Prostate	16	25	7
Breast	12	0	10
Bone Met.	15	3	17
Lung	12	0	18

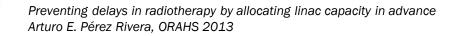
Example threshold table



OUR HEURISTIC APPROACH [2/3]

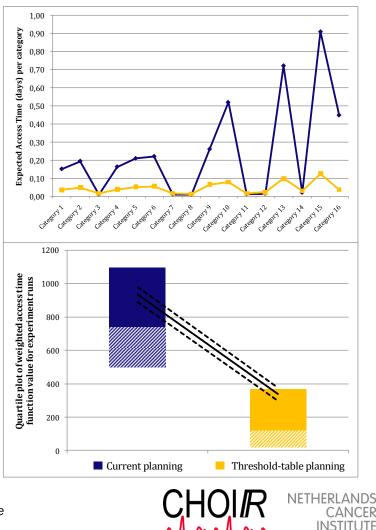
INPUT AND OUTPUT




Arturo E. Pérez Rivera, ORAHS 2013

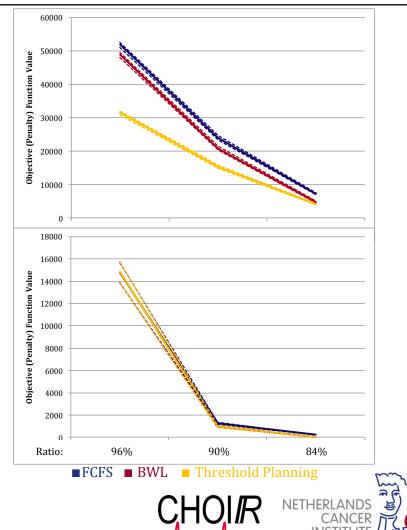
OUR HEURISTIC APPROACH [3/3]

ARRIVAL SIMULATION + LOCAL SEARCH + OUTPUT FUNCTION



••• [7/10]

PRELIMINARY RESULTS


SIMULATION STUDY OF THE NETHERLANDS CANCER INSTITUTE

- Important factors:
- All levels:
- 16 categories
- 8 linacs
- On the normal level:
- Linac feasibility of 63%
- Demand/Supply ratio of 89%
- Patient-fraction distribution of 2x15%,4x10%,10x3%

PRELIMINARY RESULTS SIMULATION STUDY OF THEORETICAL HOSPITALS

- 'Critical' radiotherapy center:
 - Patients can be treated, on average, in 50% of the linacs.
 - 80% of the total fractions given are to 20% of the care plans.
- 'Relaxed' radiotherapy center:
 - Patients can be treated, on average, in 75% of the linacs.
 - All care plans have the same total fractions given.

CONCLUSIONS

- For 'critical' and large radiotherapy departments, using our threshold planning reduces access time for critical patient groups.
- On average, linac-capacity is not the bottleneck in our hospital (access time is of 0,24 days). Nevertheless, allocating it in-advance can decrease access times (down to 0,05 days).
- Further logistical research in the entire chain of radiotherapy operations can is necessary for a faster start of treatment.

UNIVERSITY OF TWENTE.

QUESTIONS?

Arturo E. Pérez Rivera

CHOIR, University of Twente Department of Radiation Oncology, Netherlands Cancer Institute E: a.perez@nki.nl T: +31 20 512 9033 A: Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands

