

SCHOOL IMPROVEMENT EFFECTS OF A DATA USE INTERVENTION FOR TEACHERS

Cindy Poortman Johanna Ebbeler Kim Schildkamp

AERA, Chicago, April 16th-20st, 2015

UNIVERSITY OF TWENTE.

DATA USE AND SCHOOL IMPROVEMENT EFFECTS

Teachers can use data to determine students' learning needs

 Data: information that is systematically collected and organized to represent some aspect of schools¹, ranging from assessment data to student questionnaire and interview data

⇒ adapt their instruction (and/or parts of the curriculum) accordingly

⇒ school improvement in terms of student learning

INTERVENTIONS AND EFFECTS

However:

- Data not (always) used effectively
- Teachers need PD=> data use interventions
- Are these interventions successful in helping teachers to improve student learning?
- Research²: little systematic research into effects, especially at student achievement-level and mixed results

RESEARCH AIM

- We developed 'the data team[®] procedure' with two goals
 - PD for teachers in data use
 - Help teachers solve educational problem at their school
- Previous research³: effects regarding teacher learning and application of learning
- This study: effects regarding student achievement?

DATA TEAM® PROCEDURE (1)

- Data team: 4-6 teachers and 1-2 school leaders
- Systematic 8-step procedure, with guidance from external facilitator and guidelines

 Meetings every 3-4 weeks, support for 2 years
- Eight steps: problem definition evaluation

Datateam[®] procedure (2)

- Educational problems, e.g.: grade repetition, low student achievement
- Step 1: Problem definition, concrete and measurable
- Step 2: Formulating hypotheses
- Step 3: Data collection
- Step 4: Data quality check
- Step 5: Data analysis
- Step 6: Interpretation and conclusions
- Step 7: Implementing improvement measures
- Step 8: Evaluation

Effects framework

4. Student achievement \rightarrow

3. Applied: <u>Use</u> of improved knowledge & skills

2. *Learnt*: <u>Learning</u> results knowledge,

skills and attitudes

1. Liked: Satisfaction about the intervention -

(Guskey, 1998; 2000; Kirkpatrick, 1996; Desimone, 2009)

School improvement

Teacher professionalization

PREVIOUS RESEARCH(1)

- Level 1 Satisfaction
- Questionnaire:
 - (very) satisfied about support facilitator and guidelines
 - moderately satisfied about completing steps; process and progress
- Interviews: 'good'; 'fun'

Level 2 – Knowledge, skills and attitudes

- Test and survey: Knowledge and skills increased significantly
- Interviews: '*learnt how to use calculations in Excel*'; what + how of qualitative analysis; '*you really need evidence*'

PREVIOUS RESEARCH (2)

Level 3 – Use of learning

Mixed results of survey and interviews, e.g.

- Data use for accountability: increase score data team members not significant; however significantly fewer 'I don't know' post-test
- Examples Data use for instruction, e.g. comparing and discussing exam results and prepare students better for particular exam questions (explanation and practice)

RESEARCH QUESTION

What is the effect of participating in the data team procedure on student achievement in terms of solving the problem that data teams defined?

Method

- 9 (voluntary) data team schools (5-8 team members)
- Data:
 - Step 1: problem definition
 - Step 7: measures
 - Step 8: evaluation of solving problem as defined in Step 1
- Analysis
 - Measures implemented as intended?
 - Problem solved? Compare Step 8-data with Step-1 data
 - Descriptives and (independent/one sample) t-tests

Team that did *not* solve problem

- Step 1 problem statement: Final exam 5.9 and 5.8 geography. Aim: ≥ 6.1 (next school year)
- Step 7 measures:
 - 1) low correlations between grades over the years: implementation formative assessment
 - 2) Students problems with 'productive' questions: more practice
 - 3) Particular group of students scored low on particular final exam questions : more practice and explanations
- Step 8 process evaluation: first two measures only implemented by part of teachers and students' reactions mixed. Measures directed at students who will take their final exam in 1-4 years (so expected result later)
- Step 8 effect evaluation: student achievement not increased

Team that *solved* problem

• Step 1 problem statement:

Final exam (FE) English **5.8**. Aim ≥ **6.0** (in three years)

- Step 7 measures: FE only concerns reading comprehension, which did not receive enough attention in preceding years:
 - (1) Increasing amount of time spent on reading comprehension throughout curriculum, including adjusted assessment program.
 - (2) Reading comprehension test in fourth (pre-exam) year; extra support for low scoring students.
 - (3) Extra reading comprehension test 8 weeks after start of exam year.
- Step 8 effect evaluation: t-test showed that grade increased significantly to 6.5 (S.E. .11), t (604) = 5.38, p<.000).

Conclusions and discussion

- Effects on student achievement: mixed
 - Four teams not (yet)
 - Three teams: in progress => further data collection end of school year
 - Two teams: problem solved=> higher student achievement after support period data teams
- Data team procedure characteristics, e.g. support period and guidelines
- Challenge of link from teacher PD (in data use) to student achievement
 - Line of reasoning effects framework
- Further research: sample (analysis), longer-term results and sustainability

Thank you for your attention

For questions please contact c.l.poortman@utwente.nl

Lai, M. & Schildkamp, K. (2013). Data-based decision making: An overview, in K. Schildkamp, M. Lai & L. (Eds.). *Data-based decision making in education: Challenges and opportunities*. Dordrecht: Springer.
 Marsh, J. A. (2012). Interventions promoting educators' use of data: Research insights and gaps. *Teachers*

College Record, 114(11), 1-48.

3: Ebbeler, J., Poortman, C. L., Schildkamp, K., & Pieters, J. M. (submitted). The effects of a data use intervention in professional development of educators.

AERA 2015, Chicago