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Abstract

Global warming and the subsequent climate change have led governments to
the pursuit of clean sources of energy. This kind of energy sources are the
so-called renewable energy sources which are naturally replenished in human
timescale. Wave energy, i.e. energy transported through sea masses via wind
waves, can be a sustainable source of energy in the future. Wave energy can
be harnessed by devices called Wave Energy Converters. Many types of Wave
Energy Converters exist. Point Absorbers are one of these types and according
to the author’s opinion the most promising one. Nevertheless, wave energy
conversion is still in R&D phase and far from being commercially applied as
many challenges have to be overcome. In this context, the report studies the
Design Optimization and Modeling Improvement of a Point Absorber.

In terms of Design Optimization, the shape and dimensions of the hull of
the Point Absorber are considered. Three different shapes are evaluated, namely
the Cylinder, the Bullet and the Cone. Each of the three shapes is dimensioned
for deriving the highest Efficiency in power extraction. Specific restrictions re-
garding maximum dimensions of the hull were applied. The dimensioning of
the three shapes is conducted by building a model deriving the average power
extraction of each design in the Frequency Domain. Hydrodynamic input to
the model is provided by a Boundary Element Method (BEM) model using 3D-
Diffraction Theory, namely NEMOH. Once dimensions for the three different
shapes are derived, the three final designs are compared in terms of Efficiency.
For the comparison, a model is built which derives the average power extraction
of the Point Absorber in the Time Domain. NEMOH is used again for hydro-
dynamic input. Additionally, the Computational Fluid Dynamics (CFD) code,
ComFLOW3 is employed for assessing the nonlinear effect of viscous damping.
A CFD model and a methodology are produced for deriving drag coefficients
for any studied design. The methodology makes use of the raw data derived by
ComFLOW3 without adopting linear, non-viscous assumptions. Furthermore,
an alternative approach for estimating the resulting, from viscous damping, drag
force is presented and implemented in the Time Domain model. The Bullet de-
sign was selected as the most efficient. Results showed that the most efficient
Bullet shape design proved to produce less viscous damping for fast oscillations
where viscous damping is more important. Additionally, the Cylinder shape
of the hull was found to produce much larger viscous damping than the other
shapes and reasonably it should be avoided. In any case, it can be argued that
the design optimization of the hull of the Point Absorber is a coupled problem in
terms of shape and dimensions. Additional size restrictions can have significant
influence and they can be a determinant factor.

Regarding Modeling Improvement, two additions are made to the Time Do-
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main model as this was derived by Wellens (2004) and Kao (2014). Final Model
1 is derived for including viscous (drag) force more accurately. Drag force is esti-
mated by adjusting the drag coefficient in a time-step manner. The adjustment
is made by deriving the flow conditions at every time step using the dimension-
less Reynolds and Keulegan-Carpenter numbers. A set of Forced Oscillation
Tests is conducted for parameterizing the behavior of the drag coefficient in
different flow regimes around the body. It was found that the inclusion of drag
force in the Time Domain model can decrease the predicted extracted power
significantly. Additionally, the inclusion of viscous damping shifts the position
of the optimum configuration of the Power Take Off (PTO) device as this was
derived by Wellens (2004). In general, it can be argued that viscous damping
should be included both in the design optimization phase and in any control
strategy applied such the one produced by Kao (2014). Then, Final Model 2
was produced so as to assess the influence of the changing position in the force
exrted on the hull by waves, i.e. the excitation force. In both studies of Wellens
(2004) and Kao (2014), the excitation force was estimated always at equilibrium
position, i.e. the position at which the hull rests in calm water. The excitation
force was divided to two components, namely the Froude-Krylov force and the
Diffraction. The Froude-Krylov force is estimated by integrating the pressure
around the hull without taking into account the wave/hull interaction. The
Diffraction force is estimated by NEMOH runs in various positions and inter-
polation at every time step. The influence of the varying positions of the hull
due was proved to be computationally expensive without adding significant in-
formation to the model. It was concluded that the assumption of estimating
wave forces with the hull always at equilibrium position is valid at least for
relatively large bodies. Finally, validation of the used models for estimation of
forces provided good agreement with forces derived by CFD simulations.
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Chapter 1

Introduction

This MSc thesis report is about the design and modeling of a Wave Energy
Converter-Point Absorber. The research has been conducted by the author,
upon completion of the MSc program of Water Engineering and Management of
the University of Twente. The place of research was at Deltares Inc., Delft, the
Netherlands and the time period extended between September, 2015 and May,
2016. Next, the Background, the Problem Definition, the Research Objectives
and Approach and the Outline of the research are presented.

1.1 Background

1.1.1 Wave Energy

Wave energy is a form of renewable energy. Renewable energy is defined as en-
ergy collected by resources which are naturally replenished on a human timescale
(Wikipedia, 2016a). Other examples of renewable energy are solar, tidal and
wind energy. Wave energy is produced by the interaction of the wind and of
the free surface of sea water masses. Energy by the wind is transferred to wa-
ter through applied shear stress and it is transported in the direction of the
generated wave. These wind generated waves are also called short waves in con-
trast to long waves such as tidal waves. Analogously, wave energy is referring
to energy coming from short waves and not from tides. Consequently, it can
be argued that wave energy and tidal energy are not only renewable but also
endless.

Research, regarding the harnessing of wave energy, is not something new.
The first official patent for wave energy conversion dates back in 1799, in Paris
by Girard and his son (Wikipedia, 2016b). Later and in the next two centuries,
hundreds of different patents were filed especially in the United Kingdom (U.K.).
Increased interest in developing new technologies for wave energy conversion was
usually linked with global energy crises such the oil crisis in 1978. In modern
days, the establishment of the first marine energy test facility, namely European
Marine Energy Centre (EMEC), in Orkney, Scotland, U.K., can be considered
as a milestone. What seems to motivate the extended research for wave energy
conversion in the present, is the worldwide pursuit for cleaner energy on behalf
of the governments. The scenarios of a severe and eminent climatic change as
a result of increased CO2 emissions has led governments to adopting policies
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Figure 1.1: Basic Design of a Point Absorber (Cheng et al., 2014)

favoring renewable energy resources, also beyond the already widely applied
ones such as solar and wind energy. Such a form of renewable energy is wave
energy.

Harnessing of wave energy today is far from being commercially applied.
One of the most serious challenges that wave energy conversion has to overcome
is that wave energy can mainly be harnessed offshore which generally increases
the cost of power transfer to the grid and maintenance. On the other hand,
the huge potential that wave energy presents is a strong motive for continued
research. As offshore harnessing is something almost unavoidable, researchers
have to focus on studying and producing more efficient ways of energy extraction
from waves. Wave energy extraction is achieved by the use of special devices
called Wave Energy Converters (WEC). Optimization of WECs can lead to
more affordable wave energy conversion in the future. This report focuses on the
design optimization and modeling of an offshore WEC-Point Absorber. General
information about WECs and their designs can be found in Appendix A.

1.1.2 Point Absorber

The basic design and functional principles of a Point Absorber are depicted in
Fig.1.1. A rigid floating body (buoy) is attached to the sea bed via a cable
or a pillar. A so-called Power Take Off device (PTO) is placed somewhere
between the sea bed and the floater. Sometimes the PTO device is placed
inside the hull of the floater. Its aim is to capture the wave-induced motion
of the floater and through a mechanical generator (damper), to transform it to
electrical power. Additionally, the PTO device carries a mechanical spring so as
to hold the whole system in-line. It is obvious that the functional direction of
the mechanical generator also determines the direction of the floater’s motion
which is crucial for power production. For Point Absorbers, this is the vertical
motion of the floater, called heave.

According to the author’s opinion, Point Absorbers have specific advantages
comparing to other types of WECs. These advantages can be summarized as:

• Point Absorbers can absorb wave energy coming from all directions. Con-
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sequently, they remain functional for the majority of the time unless ex-
treme wave conditions occur.

• Point Absorbers have simple design, relatively small size and simple func-
tional principles. As a result, they can be more cost effective in terms of
manufacturing, installation and maintenance.

Nevertheless, as promising as the prospect of Point Absorbers might be, their
technology and application are still in R&D phase. Efficient design, operation
and reliable modeling are still a challenge for Point Absorber developers.

Research, regarding the optimization of a Point Absorber, involves mainly
four topics:

1. Design, focusing mainly on the shape of the buoy, set-up issues like an-
choring or PTO position, size of the buoy and of the PTO generator. Such
studies have been conducted by Backer (2009) and Blanco et al. (2012).

2. Modeling, focusing mainly on deriving physically meaningful models for
making reliable predictions of the power outcome of a Point Absorber,
in accordance with its design and the wave climate. Such studies have
been produced by Bhinder et al. (2011) and Thilleul (2013). Modeling is
essential for the planning of a project and investment.

3. Control Strategy, focusing on the study of ways to maximize power ex-
traction through forced resonance and mechanical control of the system.
Relevant studies have been written by Falnes (1997) and Kao (2014).

4. Power Extraction, focusing mainly on studying the efficiency of differ-
ent PTO devices, evaluating their performance and energy losses. Cargo
(2012) has published a quite extensive research on PTO generators for
wave energy conversion.

It should be noted here that these topics, as summarized here, are not indepen-
dent. A Point Absorber is an integrated system and its optimization depends on
the coordinated function of its components. This should be kept in mind during
the research phase of each component and it is mentioned in every applying case
in this report. Nevertheless, intention of the author is the presented results to
be useful also to other researchers studying relevant topics.

1.2 Problem Definition

This research focuses on the topics of Design and Modeling in terms of a hy-
drodynamic assessment of the buoy’s response and of the produced power. It
is conducted in continuation to the studies conducted by Wellens (2004) and
Kao (2014). Wellens (2004) studied the optimization of wave energy extrac-
tion under irregular wave conditions. He derived an optimum configuration for
the mechanical parts (damper and spring) of the Point Absorber per sea state.
Kao (2014) developed a control strategy for maximizing wave energy extraction
by adjusting the configuration of the mechanical parts of the Point Absorber
within discrete time intervals during a sea state. Both studies did not include
in optimization and modeling of the Point Absorber the following topics:
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Influence of shape and optimum dimensions of the buoy
Wellens (2004) and Kao (2014) studied only the case of a vertical cylinder.
A different shape might produce better power extraction. Furthermore,
they did not search for the optimum dimensions leading to maximum
efficiency for power extraction with respect to the studied wave climate.

Influence of viscous effects to power extraction
Both studies modeled the dynamic response of the buoy to waves without
taking into account viscous effects. During the oscillation of the buoy
through the water surface, viscous effects will introduce extra damping to
the buoy’s motion.

Influence of varying position of the buoy for wave force estimation
Both studies assumed that the amplitude of the buoy’s motion is rela-
tively small and so the force induced by waves was always estimated at
equilibrium position of the buoy, i.e. the position at which buoyancy
equals gravity. This approach may introduce inaccurate power extraction
predictions especially for large amplitude oscillations.

1.3 Research Objectives

Relevant to the Problem Definition presented in the previous section, the ob-
jectives of this study can be summarized as:

1. Derivation of an efficient design for the hull of the Point Absorber’s buoy
in terms of shape and dimensions and with respect to the studied wave
climate.

2. Derivation of a simplified model for the Point Absorber including viscous
forces and the influence of the dynamic response of the buoy to the wave
force estimation.

The related research questions, to which this report attempts to give answers,
are :

1. What is the most efficient design?

1.1. How does the shape of the buoy influence power production effi-
ciency?

1.2. How do the dimensions of the buoy influence power production effi-
ciency?

1.3. In what way should different designs be evaluated so as the most
efficient to be chosen?

2. How to improve the Point Absorber’s modeling?

2.1. How viscous effects can be estimated and included in the model?

2.2. How wave force can be estimated more accurately and included in
the model?

2.3. What is the significance of the additions implemented to the model
and how do they influence power production?
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9.5 0 0 0 1 1 0 0 0
8.5 0 0 0 1 1 1 0 0
7.5 0 0 1 2 2 1 1 0
6.5 0 0 2 4 4 2 1 0
5.5 0 1 4 9 7 4 1 0
4.5 0 2 11 19 14 6 2 1
3.5 0 6 27 39 26 10 3 1
2.5 1 17 63 73 40 13 3 1
1.5 3 49 121 99 40 10 2 0
0.5 19 86 94 41 10 2 0 0

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 1.1: Scatter diagram of the sea states in the North Sea

1.4 Research Approach and Tools

The research is conducted under specific conditions both for the Point Absorber
and the study area. The buoy of the Point Absorber is restricted to a single de-
gree of freedom, in heave (displacement in z−direction), as this is the beneficial
motion for wave energy conversion. Restrictions regarding the PTO generator
have not been taken into account and potentially different control strategies
have not been included in the design or the modeling phase. The presented as-
sessment is site specific, referring to the Netherlands Continental Shelf (NCS).
A water depth of 25m is considered as representative of the study area. More-
over, the wave climate is determined by the scatter diagram as this was derived
by Global Wave Statistics (GWS) for the North Sea and it is presented in Table
1.1. Hs stands for the significant wave height, i.e. the average of the highest 1/3
of the waves during a specific sea state. Tz stands for the zero up-crossing period
of the waves, i.e. the average time that takes for the surface elevation to cross
zero level by upward motion twice. Additionally, the frequency of occurrence of
every sea state is given (white cells). The total sum of white cells is 1005. That
means that the rate of occurrence of sea state with Hs = 3.5m and Tz = 6.5s is
equal to 39/1005. For the function of the Point Absorber, only sea states with
significant wave height lower than or equal to 4.5m will be considered. These
sea states represent the 95% of the annual wave climate. Sea states of higher
significant wave height are considered as non-operational. Furthermore, design
restrictions are applied so as to avoid over-dimensioning. The maximum radius
of the Point Absorber is set to 10m. Accordingly to the water depth considered,
the maximum depth that the buoy can reach at equilibrium position is set to
15m. The maximum total length, TD of 15m for the buoy of the Point Absorber
guarantees that the buoy will not hit the sea bottom during large oscillations.
Then, in accordance to the research objectives, the research approach is divided
to two main topics: a) Design Optimization and b) Modeling Improvement.

1.4.1 Design Optimization

Three different shapes for the Point Absorber’s buoy will be evaluated and they
are shown in Figure 1.3. Hence these shapes will be named as: a) Cylinder (Cyl),
b) Bullet (Bul) and c) Cone (Con). The geometrical description for the Cylinder,
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the Bullet and the Cone is given in Figure 1.2. The Design Optimization consists
of two pats: a) Dimensioning and b) Shape Evaluation. Then, the procedure
for deriving the most efficient design can be described as:

a) Dimensioning

The procedure can be summarized as:

Creation of three different sets of designs
For every shape, a set of designs of different dimensions is created by
varying the radius, R and the cylindrical length, CL.

Derivation of the most efficient design within each set
A Frequency Domain model is built so as to derive efficiency estima-
tions for each design. Hydrodynamic input for the Frequency Domain
model is produced by a Boundary Element Method (BEM) model using
3D-Diffraction Theory. Then, the most efficient Cylinder, Bullet and Cone
constitute the three final designs.

b) Shape Evaluation

The procedure can be summarized as:

Assessment of viscous effects for the three final designs
A Computational Fluid Dynamics (CFD) code is employed for creating
a numerical tank. Each of the three final designs is forced to oscillate
in otherwise calm water in the numerical tank. This procedure is the
so-called Forced Oscillation Test. A method is developed for estimating
viscous forces and deriving drag coefficients by Forced Oscillation Tests.
The method calculates the total damping which is partly due to radiation
of waves and partly due to viscous effects. Finally, it estimates the viscous
part and derives the drag coefficients of the viscous (drag) force.

Derivation of an expression for viscous forces
A mathematical expression for the viscous force, also known as drag force,
has to be derived for the case of an oscillating buoy in the presence of
waves.

Comparison of the efficiency of the three final designs
A Time Domain model is developed for assessing the efficiency of the three
final designs including the forces produced by viscous effects. The most
efficient design is qualified.

1.4.2 Modeling Improvement

The Modeling Improvement study of the research is composed of two parts: a)
The inclusion of viscous forces in a simplified model and b) The inclusion of the
varying position of the buoy in the wave force estimation. Two models will be
produced respectively, namely Final Model 1 and Final Model 2.
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Figure 1.2: 2D sketch of the under water part of the studied geometries,
where: CL = the length of the cylindrical part, D = the diameter of the
cylinder, R = the radius of the cylinder and TD = the total draft of the
buoy.

(a) Cylinder (Cyl.) (b) Bullet (Bul.) (c) Cone (Con)

Figure 1.3: Design shapes for evaluation

a) Inclusion of Viscous Forces - Final Model 1

The procedure can be summarized as:

Forced Oscillation Test simulations for the final design
A number of different Forced Oscillation Tests will be conducted for the
final design as this was derived by the Design Optimization part. A drag
coefficient is derived by every simulation.

Drag coefficient parameterization
Based on the results derived by the Forced Oscillation Tests, the drag
coefficient will be parameterized with the aid of the dimensionless Reynolds
and Keulegan-Carpenter numbers.

Implementation of the parameterized drag coefficient in the model
The drag coefficients, as derived by the Forced Oscillation Tests and pa-
rameterization, will be implemented in the Time Domain model for assess-
ing the drag force more accurately. Efficiency estimations in the presence
of drag force are made and the influence of drag forces is derived.

b) Inclusion of varying position of the buoy for wave force estimation
- Final Model 2

The procedure can be summarized as:

Analysis of the total wave force to components
The total wave force will be divided to two components: a) the Froude-
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Krylov force and b) the Diffraction force. The Froude-Krylov force is
derived by the integration of the hydrodynamic part of pressure under
waves around the surface of the buoy. It is calculated as if the body
does not interfere with waves. The Diffraction force is calculated by 3D-
Diffraction Theory and BEM code for assessing the force resulting by the
interference between buoy and waves.

Froude-Krylov force
The Time Domain model will be adjusted for calculating the Froude-
Krylov part of the wave force at every time step.

BEM simulations for estimating the Diffraction force
The Diffraction force is estimated by NEMOH simulations at various posi-
tions of the buoy. The final Diffraction force is calculated by interpolation.

Efficiency estimations
Finally, the model returns efficiency estimations, including the influence
of varying position of the buoy. The influence of the wave force addition
to the model is derived.

1.4.3 Tools

The tools used throughout the report are presented.

Frequency Domain model
Based on the mathematical description of the so-called Linear Mass-
Spring-Damper System, the Frequency Domain model returns rather fast
estimations of the efficiency in power extraction of a design in just a few
seconds. The solution is derived in the frequency domain by superposition
of the dynamic response of the buoy for every frequency component. It
is rather useful when a large number of designs has to be assessed but it
completely neglects viscous effects. The Frequency Domain model is built
in MATLAB.

Time Domain model
The Time Domain is the time-dependent counterpart of the Frequency
Domain model. The solution is derived in the time domain. The Time
Domain is employed as it allows for the inclusion of nonlinear forces as long
as these can be expressed mathematically in a time-dependent manner. In
the absence of nonlinear forces the Time Domain model solution should
match exactly the Frequency Domain solution. The Time Domain model
is built in MATLAB.

Boundary Element Method and 3D-Diffraction Theory
The BEM code, NEMOH is employed for providing hydrodynamic input
for the Frequency and Time Domain models. NEMOH is based on linear
3D-Diffraction Theory. It completely neglects viscous effects as, for 3D-
Diffraction Theory, water is considered as an ideal fluid. Additionally, all
the interactions between the buoy and surrounding water are assumed to
be totally linear. As a result of the model’s linearity, the time needed for
every run does not exceed fifteen minutes.
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Computational Fluid Dynamics
The CFD code, ComFLOW3 is used for assessing viscous effects produced
during the oscillation of the buoy. ComFLOW3 returns a fully viscous so-
lution of the Navier-Stokes Equations. No linear assumptions are adopted
by ComFLOW3 regarding the interactions of the buoy with its surround-
ing water. The main drawback of this model is the rather large time (a
few days) for a simulation of a few seconds.

1.5 Outline

The outline of this report is presented. In chapter 2, the Basic Theory and
Models used are presented and explained. In chapter 3 the study for Design
Optimization is presented both for methodology and derived results. In chap-
ter 4 the study for Modeling Improvement is presented both for methodology and
results. In chapter 5, Validation of the models used is provided. In chapter 6,
further discussion on the derived results is made so as to assist to drawing final
conclusions. Finally, in chapter 7 Conclusions regarding the research questions
are drawn and Recommendations for further research are made.
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Chapter 2

Basic Theory and Models

In this chapter the basic theory and the models used throughout the report are
presented. Detailed derivation of mathematical formulas is beyond the scope of
the report. Whenever it is considered useful, relevant literature is suggested.
The topics which build the theoretical background can be summarized as:

Navier-Stokes Equations
The Navier-Stokes Equations (NSE) are considered to be the mathemati-
cal description of the dynamics of all fluid motions. NSE are the base for
deriving the simplified equations of Linear Wave Theory as for NSE no
analytical solution exists.

Linear Wave Theory
Linear Wave Theory (LWT) is a simplified description of the dynamics of
fluid motion. It is quite useful as it allows for analytical solutions for the
velocity and pressure field of fluid dynamics.

Wave Energy
It is important to quantify the energy transport under waves for assessing
the power extraction of the Point Absorber. LWT allows for quantification
of wave energy transport with analytical relations.

Linear Mass-Spring-Damper System
The Linear Mass-Spring-Damper System serves as the mathematical de-
scription of the dynamic response of the buoy of the Point Absorber both
for the Frequency Domain and the Time Domain models.

Frequency Domain Model
The Frequency Domain model solves for the dynamic response of the buoy
in the frequency domain. It is a fast model and valuable for deriving
statistics for power extraction.

Time Domain Model
The Time Domain model solves for the dynamic response of the buoy in
the time domain. It is valuable for including time-dependent nonlinear
forces.

10



Boundary Element Method Model
Boundary Element Method (BEM) model is a linear model used for hydro-
dynamic input to the Frequency Domain and the Time Domain models.

Computational Fluid Dynamics Model
Computational Fluid Dynamics (CFD) model returns fully viscous numer-
ical solution for the Navier-Stokes Equations. It assists in determining
nonlinear effects for the wave/buoy interactions.

Dimensionless Parameters
Dimensionless parameters such as Reynolds (Re) and Keulegan-Carpenter
numbers are used for the parameterization of the drag coefficients.

2.1 Navier-Stokes Equations

The Navier-Stokes Equations (NSE) are considered to fully describe the dy-

namics of fluid motion. For an incompressible fluid
(
∂ρ
∂t = 0

)
, which is the case

usually for water and by adopting the Eulerian approach (continuum hypothe-
sis) the NSE are composed of:

Conservation of Mass

~∇ · ~u = 0 (2.1)

Conservation of Momentum

∂~u

∂t
+
(
~u · ~∇

)
~u = −1

ρ
~∇p+ ν ~∇2~u+ Fb (2.2)

Where:
~u = the water particles’ velocity vector equal to (u, v, w) [m/s]

u, v, w = the components of the velocity vector in x−, y−, z−direction
respectively [m/s]

ρ = the water density [kg/m3]
p = the point pressure [N/m2]
ν = kinematic viscosity of water [m2/s]
Fb = the gravity vector equal to (0, 0,−g) [m/s2]
g = the acceleration of gravity [m/s2]

The Conservation of Mass equation for the incompressible case, determines
that the mass and volume of the fluid remain constant. The Conservation of
Momentum equation is simply the representation of Newton’s 2nd law. The
first term on the left hand side is the acceleration of water particles and comes
directly from the Newton’s 2nd law. The second term is the convective part
of the NSE and represents the forces acting normally on the surface of the
fluid element. On the right hand side, the first term represents the pressure
forces acting on the fluid element, exerted by its surrounding fluid conditions.
The second term is the diffusive part of the NSE and physically represents the
shear forces acting on the fluid element. Finally the third term represents the
external forces on the fluid element such as gravity. Solving for the velocity
vector components and point pressure allows for detailed description of the
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Figure 2.1: Sinusoidal wave form

dynamics of the fluid field. Unfortunately, up to date, no analytical solution of
the full NSE has been derived. For that reason, a number of assumptions and
appropriate boundary conditions need to be adopted so as an analytical solution
to be derived. Linear Wave Theory (LWT) is such a case, widely applied and
with significant practical application. For further information on the NSE the
reader can refer to Kundu et al. (2012) and Anderson (1995).

2.2 Linear Wave Theory

Linear Wave Theory (LWT), also known as Potential Theory, is a simplified
version of the NSE. According to LWT, the fluid is considered as ideal and the
diffusive part of Eq. (2.2) is simply neglected. The reasoning for this assumption
is that the kinematic viscosity of water is rather small (O10−6). Then, the water
particles are assumed to be free of rotation (vorticity, Ω = ∇×~u = 0[s−1]) which
allows for the introduction of the velocity potential, φ[m2/s] according to:

∂φ

∂x
= u,

∂φ

∂y
= v,

∂φ

∂z
= w (2.3)

Additionally, LWT allows only for sinusoidal wave solutions of the free sur-
face. For any other shape of the free surface, LWT is not applicable. For a 2D
case ( ∂∂y = 0) in the xz−plane (Figure 2.1), the sinusoidal wave form reads:

ζ(x, t) = ζa · cos(kx− ωt) (2.4)

Where:
ζ(x, t) = the free surface elevation with respect to z = 0 [m]

ζa = the free surface elevation amplitude [m]
k = the wave number [rad/m]
ω = the free surface oscillation angular frequency [rad/s]

Then, another assumption for LWT to be valid, is that the wave height, H =
2ζa is much smaller compared to the wavelength L and water depth h. This
assumption is needed for the linearization of the Bernoulli equation to be valid
and for the gradients of the diffusive part of Eq.(2.2) to be small so as this part
to be neglected. By substituting Eq. (2.3) into Eq. (2.1), (2.2) and by applying
appropriate boundary conditions and assumptions, analytical solutions of the
velocity components, pressure and the characteristic dispersion relationship are
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derived. For the 2D case in the xz−plane and a given water depth h, the
analytical formulas read:

u(x, z, t) =
∂φ

∂x
= ωζa

cosh k(h+ z)

sinh kh
cos(kx− ωt) (2.5)

w(x, z, t) =
∂φ

∂z
= ωζa

sinh k(h+ z)

sinh kh
sin(kx− ωt) (2.6)

p(x, z, t) = −ρgz + ρgζa
cosh k(h+ z)

cosh kh
cos(kx− ωt) (2.7)

ω2 = gk tanh kh (2.8)

Detailed derivation of the expressions of LWT can be found in chapter 5 of
Journée and Massie (2001). Focus now shifts to discussing the limitations of
LWT in wave applications.

The application limits of LWT originate from the adopted assumptions and
they can be summarized as follows:

• LWT is valid only for relatively small waves compared to the wavelength
and water depth. For wave energy conversion, waves with higher ampli-
tudes are of major importance as they carry more energy.

• LWT is based on the consideration of water as an ideal fluid. For lower
waves this is valid. For higher waves and in the presence of a moving
body, vortices and flow separation may occur which are totally neglected
by linear wave theory.

• In offshore environment, waves usually are not sinusoidal, and LWT can
be inaccurate.

Nevertheless, LWT possesses certain, important advantages and this is why it
is so widely applied in wave applications. These advantages can be summarized
as:

• LWT is capable of providing results in rather short time.

• During the first phases of the designing of offshore structures, LWT can
provide reliable rough estimations for comparing different designs.

• During calm wave conditions LWT is usually quite accurate.

2.3 Wave Energy

A wave, in general, is an oscillation accompanied by energy transfer through
space or mass. For sea waves, the energy transfer oscillates the water particles
and this is how wave energy is transmitted. For wave energy conversion, it is
important to capture as much wave energy transfer as possible and turn it to
electrical power. Linear Wave Theory (LWT) allows for quantifying the amount
of energy transfer under sea waves. Two cases are identified. Energy transfer
under regular (sinusoidal) waves and energy transfer under irregular waves as
those observed in reality offshore. The basic energy and energy transfer relations
are presented. Detailed derivation of these relations can be found in chapter 5
of Journée and Massie (2001).
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2.3.1 Energy Transfer under Regular Waves

As regular waves, sinusoidal waves of the form of Eq. (2.4) are implied. Based
on LWT, an expression for the total energy (kinetic and potential) per unit
surface area inside the water column (from −h to 0), averaged over one wave
cycle is derived:

Etot = Ek + Ep =
1

4
ρgζ2

a +
1

4
ρgζ2

a =
1

2
ρgζ2

a =
1

8
ρgH2 (2.9)

Where:
Etot = the total energy per unit wave surface area [J/m2]
Ek = the kinetic energy of the water particles per unit surface area [J/m2]
Ep = the potential energy of the water particles per unit surface area [J/m2]

From the dispersion relation (Eq. 2.8), for any given wave frequency, ω and wa-
ter depth, h, a wave number, k, is calculated which allows for calculating the
wave propagation speed according to:

c =
L

T
=
ω

k
, L =

2π

k
, T =

2π

ω
(2.10)

Where:
c = the wave propagation speed [m/s]
L = the wave length [m]
T = the wave period[s]

This is the propagation speed of an individual wave. In general it is larger than
the speed of energy propagation except in shallow water conditions. The energy,
propagates with the so-called group speed, cg given by:

cg = c · n (2.11)

n =
1

2

(
1 +

2kh

cosh 2kh

)
(2.12)

Finally, the average energy transfer over one wave cycle per unit wave crest,
hence called Power, is calculated by:

P̄w = Etot · cg (2.13)

Where:
P̄w = the average energy transfer over one wave cycle per unit wave crest

[J/s/m] or [W/m]

2.3.2 Energy Transfer under Irregular Waves

In reality, in open sea, all the frequencies exist and monochromatic waves of
the form of Eq. (2.4) are almost never observed. The need for estimating the
energy transfer during sea states composed of a number of wave frequencies led
to the creation of the so-called Wave Energy Spectra. Offshore measurements of
the surface elevation at a certain location were made. By applying a Discrete
Fourier Transformation of the derived elevation signal, it is possible to match to
every discrete frequency of the frequency range, a specific energy contribution
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Figure 2.2: Wave Energy Spectrum (JONSWAP)

to the total energy. What is important, is to describe the statistical and not
the instantaneous elevation or energy transfer properties of the sea state. Then
by superposition principle, the total energy and average energy transfer can be
calculated. LWT allows for this approach.

The statistical properties of the irregular sea state are described by the
frequency-dependent energy density relation, Sζ(ω). Figure 2.2 depicts the en-
ergy density spectrum for a given sea state, Sζ(ω) (red line) plotted against the
range of frequencies according to:

Sζ(ωn) ·∆ω =
1

2
ζ2
an (2.14)

Where:
Sζ(ωn) = the energy density value corresponding to frequency ωn [m2s]

∆ω = the frequency interval [rad/s]
ζan = the wave amplitude corresponding to frequency ωn for the respective

energy contribution [m]
The total energy per unit surface area of the irregular sea state is the area under
the red line in the graph multiplied by ρg.

Etot = ρ · g
∫ ∞

0

Sζ(ω)dω (2.15)

Where:
Etot = the average over one wave cycle energy per unit sea surface area [J/m2]

The average power of the sea state is simply the superposition of the average
power of every of the N frequency components:

P̄w =

N∑
n=1

Etotn · cgn (2.16)
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Where:
P̄w = the average over one wave cycle energy transfer per unit wave crest

[W/m]

It should be noted that the chosen frequency resolution plays an important role
in the previous calculations. A frequency resolution for which the total energy
and power are not converging any more should be adopted. More information
on wave energy spectra can be found in chapter 5 of Journée and Massie (2001).

A number of different Wave Energy Spectra has been used in offshore engi-
neering practice. In this report the so-called JONSWAP spectrum is adopted.
In 1967, the Joint North Sea Wave Project (JONSWAP) was launched in or-
der to conduct extensive wave measurements in the North Sea. Six years after,
Hasselmann et al. (1973) reported that the wave spectrum in the North Sea is
never fully developed. It continues to develop through non-linear, wave-wave
interactions even for very long times and distances. Since then, the derived
JONSWAP spectrum is widely used and adopted as the characteristic wave en-
ergy spectrum for the North Sea but also for other fetch-limited seas around
the world. The formula of the JONSWAP spectrum is given by:

Sζ(ω) = 320
H2
s

T 4
p

ω−5 exp

(
−1950

T 4
p

ω−4

)
γA (2.17)

A = exp

−( ω
ωp
− 1

σ
√

2

)2
 (2.18)

Where:
Hs = the significant wave height i.e. the average of the highest 1/3 of the

wave height record [m]
Tp = the peak period corresponding to the frequency ωp with

the highest energy density [s]
γ = 3.3 (peakedness factor) [-]
σ = a step function of ω: if ω ≤ ωp then: σ = 0.07

a step function of ω: if ω > ωp then: σ = 0.09
ωp = the peak frequency corresponding to the highest energy density

value of the spectrum [rad/s]

In Figure 2.2, the JONSWAP energy spectrum for Hs = 3.5m and Tp = 8.3s is
plotted.

2.4 Linear Mass-Spring-Damper System Model

In offshore and naval engineering, the response of a floating object to waves is
important to be predicted by a model especially during the design phase. The
most widely applied model for the description of motion of floating objects is
the so-called Mass-Spring-Damper System (MSDS). The derivation of MSDS
model is based on the analysis of the forces or moments acting on the floating
object and on certain assumptions to be adopted.

A floating object has potentially six degrees of freedom in total, three trans-
lational and three rotational with respect to x−, y−, z−axis. For clarity, the
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MSDS model will be derived for a single degree of freedom, namely heave (trans-
lational motion in z−direction) but it can be extended up to all six degrees of
freedom. As for wave power extraction by a Point Absorber only heave is im-
portant, the motion of the floater will be restrained to an only up and down
motion. The derivation starts with the analysis of forces (moments do not ex-
ist in restrained heave motion). The forces acting on the floating body can be
described as:

Radiation Force, Frad
Radiation force is exerted on the floating object as a result of its oscillatory
motion through the water surface. This motion results in the creation of
waves radiating from the buoy. The amount of energy of the radiated
waves equals the amount of the energy loss (damping) of the floating
object. As a consequence, a damping force is acting on the body, in
z−direction for the heave case, opposing to the body’s motion. This force
is called the radiation force and hence in this report will be denoted as
Frad.

Added Mass Force, Fadd
As the oscillatory motion of the buoy drives part of its volume in and out of
the water mass, the water particles accelerate around its solid surface. As
a result of this acceleration a net force is exerted on the buoy. This force
is called the added mass force and hence in this report will be denoted as
Fadd.

Restoring Force, Fres
As the the buoy oscillates through the water surface according to Archimedes
law it experiences also a buoyancy force proportionate to the water volume
displaced by the buoy. As it can be expected this force is also oscillatory
as the displaced volume increases or decreases relevant to the buoy’s mo-
tion. This force tends to restore the buoy to its equilibrium position where
buoyancy equals gravity. This is why it is called restoring force. Hence in
this report the restoring force will be denoted as Fres.

Wave Excitation Force, Fexc
As waves approach the buoy, they create disturbance in the pressure field
around the solid surface and pressure deviates from its hydrostatic state.
According to Linear Wave Theory (LWT) and for undisturbed waves this
disturbance is represented by the non-hydrostatic part (second term) of
the right hand side of Eq. (2.7), presented in § 2.2. The hydrostatic
part (first term) has already been accounted in the restoring force, Fres.
The integration of the non-hydrostatic part of the pressure field leads to
the so-called Froude-Krylov force. Additionally, as a result of the buoy’s
presence, the pressure field is disturbed. The result of this disturbance is
the so-called Diffraction force. The sum of Froude-Krylov and Diffraction
forces constitutes the excitation force, denoted by Fexc.

PTO Damping Force, Fpto
As shown in Figure 1.1, the buoy of the Point Absorber is connected to
the damper of the PTO device so as to capture the wave induced motion
and turn it to electrical power. This damper exerts a force on the buoy,
counteracting its velocity, hence called in this report, Fpto.
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Mechanical Spring Force, Fspring
As shown in Figure 1.1, a mechanical spring is also connected to the
buoy and the PTO device so as to keep the whole system in-line. This
mechanical spring exerts a force similar to the restoring force, Fres and
hence it will be called Fspring.

Now that the forces acting on the floating body have been analyzed, certain
assumptions have to be adopted in order to derive the MSDS model. The
assumptions are mainly two:

1. A linear interrelation between body’s response, wave amplitude and induced
forces is valid. Doubling the wave amplitude, doubles the wave force and
accordingly doubles the buoy’s response and the forces connected to its
motion.

2. Superposition of forces and responses is valid. This assumption allows for
the superposition of the forces discussed previously and the superposition
of responses derived by regular frequency components of an irregular sea
state.

Then Newton’s 2nd law is considered for a floating body restrained in heave
motion only. According to it, the sum of the forces, Fnet acting on the body
equals its mass times its translational acceleration (moments are not discussed
here but they obey the same principle):

Fnet = m · z̈b = Fexc + Fadd + Frad + Fres + Fspring + Fpto (2.19)

Where:
Fnet = the sum of the forces acting on the buoy [N ]
m = the mass of the buoy [kg]
z̈b = the net vertical acceleration of the buoy [m/s2]

What is left now is to derive expressions for the force components Frad, Fadd,
Fres, Fspring, Fpto and Fexc of the total force, Fnet so as to be substituted in
the left hand side of Eq. (2.19). The radiation force, Frad as it was already
stated, subtracts energy from the system. For that reason Frad is behaving as
a damper and so it is proportionate to the velocity of the floater according to:

Frad = −b · żb (2.20)

Where:
b = a radiation damping coefficient [kg/s]
żb = the first time derivative of the vertical displacement of the buoy,

i.e. the velocity [m/s]

The added mass force, Fadd, as implied by its name, acts additionally to the
buoy’s absolute mass and so it is taken proportional to the acceleration of the
floater according to:

Fadd = −a · z̈b (2.21)

Where:
a = an added mass coefficient [kg]
z̈b = the second time derivative of the buoy’s vertical displacement z(t),

i.e. the acceleration [m/s2]
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The restoring force, Fres according to Archimedes law of buoyancy, is taken
proportional to the vertical displacement of the buoy according to:

Fres = −c · zb (2.22)

Where:
c = a restoring coefficient [kg/s2]
zb = the vertical displacement of the buoy [m]

Similarly to the restoring force, Fres and the radiation force, Frad the mechanical
spring force, Fspring and the PTO damping force, Fpto will be given by:

Fspring = −ksp · zb (2.23)

Fpto = −β · żb (2.24)

Where:
ksp = a mechanical spring coefficient [kg/s2]
β = the PTO damping coefficient [kg/s]

Substituting Eqs. (2.20) - (2.24) in the left hand side of Eq. (2.19) and after
some rearrangement, results into the MSDS model for a floating object in waves
as:

(m+ a)z̈b + (b+ β)żb + (c+ ksp)zb = Fexc (2.25)

Eq. (2.25) can be solved for the displacement, z(t) of the floating object either
in the time domain or the frequency domain as a result of the superposition
principle. For the solution derivation, it is needed that the three coefficients a,b
and c are known along with the wave excitation force, Fexc. The linear MSDS
model has been found to approximate well the response of any floating body as
long as the response amplitude is relatively small (Journée and Massie, 2001).
It neglects viscous drag exerted either by skin friction or by deformations of the
velocity field of water around the moving object’s surface. When the oscillation
becomes larger, which is usually combined with increased response velocities,
these viscous effects become more important and the MSDS model solutions
deviate from what happens in reality.

2.5 Frequency Domain Model

As already mentioned, Eq. (2.25) can be solved for the floater’s response in the
frequency domain. Detailed derivations for the mathematical relations presented
here can be found in chapter 6 of Journée and Massie (2001). The steps for
deriving the frequency domain solution of Eq. (2.25) for a given sea state of
known Wave Energy Spectrum can be summarized as:

1. Derivation of the coefficients and the excitation force appearing in Eq. (2.25)

2. Derivation of the frequency characteristic amplitudes and phase shifts

3. Calculation of the power absorption
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2.5.1 Coefficient and Wave Force Determination

The frequency-dependent coefficients a(ω) and b(ω), in this thesis, are calculated
using the Boundary Element Method (BEM) code NEMOH, developed by Ecole
Centrale du Nantes (Ecole Centrale du Nantes, 2016). More information on
NEMOH code can be found in § 2.7. For a given geometry the results for the
two frequency dependent coefficients are presented in Figure 2.3 and 2.4. Next,
based on Archimedes principle and the balance between weight and buoyancy,
the restoring coefficient is calculated according to:

c = ρgAwl (2.26)

Where:
Awl = the cross-section of the buoy cut by the free surface water line [m2]

These coefficients, as presented here, are valid only for the heave motion of the
floating body. Additionally, the coefficients a, b and c depend uniquely on the
specific geometry studied in every case. Next, attention is drawn to the deter-
mination of the mechanical spring, ksp and PTO damping, β coefficients. These
coefficients will be assumed adjustable and steady per sea state without adopt-
ing any specific control strategy, as applied by Kao (2014). Based on the study
of Wellens (2004), for an irregular sea state of a given Wave Energy Spectrum
the optimum values of ksp and β are calculated as:

ksp = ω2
p [m+ a(ωp)]− c (2.27)

β =

√
b(ωp)2 +

1

ω2
p

(
−(m+ a(ωp))ω2

p + c+ ksp
)2

(2.28)

The above equations when satisfied, guarantee the maximum energy absorption
for the peak frequency, ωp of a sea state for a specific geometry of the buoy. Dif-
ferent geometries will reach a different maximum power absorption for the same
sea state, even if all of them satisfy the above equations. Finally, NEMOH also
produces the frequency-dependent wave excitation force amplitude, Fexc,a(ω)
per unit wave amplitude for the range of frequencies (Figure 2.5)

Figure 2.3: Added mass coefficient, a(ω)
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Figure 2.4: Damping coefficient, b(ω)

Figure 2.5: Excitation force amplitudes, Fexc,a(ω)

2.5.2 Frequency Characteristic Amplitude and Phase Shift

The solution of the MSDS model in the frequency domain provides the frequency-
dependent ratio of the floater’s response over the incoming wave amplitude,
hence in this report called Response Amplitude Operator (RAO) (Figure 2.6a).
The mathematical description for the n-th frequency component of RAO reads:

RAO =
zb,an
ζan

(ωn) =
Fexc,an(ωn)√

[c+ ksp − [m+ a(ωn)] · ω2
n]2 + [b(ωn) + β]2ω2

n

(2.29)

Equally important is the calculation of the frequency-dependent phase shifts be-
tween excitation force, response and incoming wave elevation (Fig.2.6b). These
phase shifts will be used for building the solution of the MSDS model in the
time domain. These phase shifts for the n-th frequency component read:

εFζ(ωn) = arctan

(
b(ωn) · ωn

c− a(ωn) · ω2
n

)
(2.30)

εFz(ωn) = arctan

(
−[b(ωn) + β] · ωn

c+ ksp − [m+ a(ωn)] · ω2
n

)
(2.31)

εzζ(ωn) = εFζ(ωn)− εFz(ωn) (2.32)
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(a) Response Amplitude Operator (RAO) (b) Phase shifts

Figure 2.6: Frequency characteristic response amplitude and phase shifts

Where:
εFζ(ω) = the frequency-dependent phase shift between wave elevation and

wave excitation force [rad]
εFz(ω) = the frequency-dependent phase shift between response and wave

excitation force [rad]
εzζ(ω) = the frequency-dependent phase shift between wave elevation and

response [rad]

Combining Eq. (2.29) - (2.32) with Eq. (2.4) allows for deriving time-dependent
equations for the n-th component of the excitation force, Fexc and the buoy’s
response, zb as:

Fexc(t) = Fexc,an(ωn)ζan cos(knx− ωnt+ εFζ(ωn)) (2.33)

zb(t) = RAO(ωn)ζan cos(knx− ωnt+ εzζ(ωn)) (2.34)

2.5.3 Power Extraction

For the average power absorption of a given geometry and sea state, use will
be made of the derived relations of the previous sections. From physics, Power
equals Force times Velocity. In our case, the force generating electrical power is
the PTO damping force, Fpto. The needed velocity is simply the buoy’s velocity,
leading to the expression for the instantaneous power absorption:

P (t) = Fpto · ż(t) (2.35)

Integrating Eq. (2.35) over a wave cycle using Eq. (2.24) for the force, results
in the expression for the average power absorption for a given geometry and sea
state:

P̄ =

N∑
n=1

1

2
· β(ωn) · ω2

n ·RAO(ωn) · ζ2
an (2.36)

The average extracted power, P̄ is simply the superposition of the average power
of every of the N regular wave components of the irregular sea state. The number
of the frequency components, N depends on the frequency grid resolution and
the range of frequencies accounted.
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2.6 Time Domain Model

Another possibility is to derive the buoy’s response in the time domain as a
time-dependent displacement. The most widely adopted time domain model is
the Cummins equation model. For Point Absorbers, it is useful in case of the
presence of an adjustable mechanical spring and an adjustable PTO damper
as parts of an efficient control strategy under irregular sea states (Kao, 2014).
Because of the adjustable spring and PTO damping coefficients the frequency
domain approach cannot be used. Additionally, the Cummins Equation model
allows for the inclusion in the model of non-linear effects as long as these can
be expressed in a time-dependent manner.

The main idea behind the Cummins Equation (Cummins, 1962) is that a
harmonic displacement, such as the wave induced heave motion of the buoy,
occurring during a time interval ∆t, influences the surrounding fluid not only
during this interval but also for some time after. The system has a form of mem-
ory. Consequently, radiation force, Frad and added mass force, Fadd cannot then
be calculated instantly but only by integrating over a certain time interval in
the past. Note that the notation of hydrodynamic, PTO damping and mechan-
ical spring coefficients changes to capital letters comparing to Eq. (2.25). This
is done so as not to be confused with their frequency dependent counterparts.
The Cummins equation for a heaving Point Absorber reads:

(M+A)z̈b(t)+BPTO żb(t)+

∞∫
0

B(τ)żb(t−τ)dτ+(C+K)zb(t) = Fexc(t) (2.37)

Where:
A = infinite added mass coefficient [kg]
B = retardation function [kg/s]
C = restoring coefficient [kg/s2]

BPTO = PTO damping coefficient [kg/s]
K = mechanical spring coefficient [kg/s2]
M = the solid mass [kg]

Fexc(t) = the time-dependent excitation force [N]
zb(t) = time-dependent heave displacement [m]

The steps for deriving the power output of the Point Absorber by using Cummins
Equation in the time domain, can be summarized as:

1. Generation of time series for the sea surface elevation, ζ(t) and the exci-
tation force, Fexc(t)

2. Determination of the hydrodynamic coefficients and the retardation func-
tion

3. Numerical solution for the buoy’s response and power absorption

2.6.1 Time Series

For every sea state, two time series have to be produced for excitation force and
surface elevation. The time dependent sea surface elevation is derived by using
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the amplitudes of the N regular components of the spectrum as in Eq. (2.14).
The time-dependent sea surface elevation for a given sea state reads:

ζ(t) =

N∑
n=1

ζan · cos(ωnt+ εn) (2.38)

Where:
εn = a random phase shift picked from a uniform distribution on [0, 2π] [rad]

Next, by using the phase shift between wave force and wave elevation calculated
in Eq. (2.30), the time-dependent excitation force reads:

Fexc(t) =

N∑
n=1

(
Fexc,an
ζan

)
ζan cos(ωnt+ εn + εFζ) (2.39)

The excitation force amplitude components in this study are calculated by
NEMOH as also in the frequency domain model. The aim of the time domain
solution is to regenerate the statistical properties of the frequency domain. The
simulation time and subsequently the time series length should thus be long
enough for that purpose. A consequence of building an irregular sea state by
regular wave components is this. The produced wave signal will repeat itself
after a period of 2π

∆ω (Journée and Massie, 2001). So as to simulate a full sea
state, this is the minimum amount of time of simulation.

2.6.2 Hydrodynamic Coefficients and Retardation Func-
tion

Ogilvie (1964), by using frequency dependent added mass, a(ω) and radiation
damping, b(ω) coefficients such as the ones calculated by NEMOH, derived the
following expressions:

B(t) =
2

π

∞∫
0

b(ω)cos(ωt)dω (2.40)

A = a(ω) +
1

ω

∞∫
0

B(τ)sin(ωτ)dτ (2.41)

C = c = ρwgAWL (2.42)

Retardation function, B(t), (Eq. 2.40), also known as Impulse Response Func-
tion (IRF), is plotted against time in Figure 2.7. It denotes the significance of
the past motions to the radiation force, Frad estimation. Usually the duration
of influence is of the order of some seconds, roundabout 10s in Figure 2.7 until
B(t) reaches almost zero. Eq. (2.41) is valid for every ω and so for ω = ∞
resulting in:

A = lim
ω→∞

a(ω) (2.43)

Added mass, A is therefore also called infinite added mass. Both, infinite added
mass and IRF are computed using the BEM code NEMOH in this report.
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Figure 2.7: Impulse Resonse Function (IRF), B(t)

2.6.3 Calculation of Response and Power Absorption

Next, with known coefficients and wave load, Fexc(t), Eq. (2.37) can be dis-
cretized in time, so as to derive a numerical solution of the time-dependent
vertical displacement, zb(t) and velocity, żb(t) of the buoy. Two initial condi-
tion are needed, i.e. żb(t0) and zb(t0). It is proposed that an advanced time
discretization technique such as Improved Euler (Kao, 2014) or Runge-Kutta
(Backer, 2009), is chosen . The final decision to be made, is the time interval
for which the integro-differential, third term of Eq. (2.37) will be evaluated.
This decision has to be made based on the produced IRF. For the IRF in Figure
2.7, it seems that a time interval of 30s is a safe choice for IRF to converge to
zero.

As already mentioned in § 2.6, the Cummins Equation model allows for
the inclusion of nonlinear forces as long as these can be determined in a time-
dependent manner. This way a more realistic estimation for the buoy’s response
is possible. In this report two specific additions will be implemented. A velocity
dependent drag force opposing to the buoy’s motion is implemented. As already
argued, on the contrary to Linear Wave Theory assumption, water does not
behave as an ideal fluid. The drag force, Fdrag addition will assess the influence
of viscous effects on the predicted power absorption. The drag part of the, so-
called, Morison Equation (Journée and Massie, 2001), for an oscillating cylinder
in waves, is usually used in literature as a mathematical expression for the drag
force which reads:

Fdrag(t) = −1

2
ρCdD

∫ Lb

0

|żb(t)− w(t)|(żb(t)− w(t))ds (2.44)

Where:
Cd = a drag coefficient [−]
w = the vertical water particles’ velocity [m/s]
D = the diameter of the cylinder [m]
Lb = the vertical length of the cylinder [m]
ds = the elementary vertical length of the cylinder [m]
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Figure 2.8: 2D cross-section of Cylinder divided into strips for drag force
calculation

So as the above equation to return the total frag force, the vertical cross-section
of the cylinder has to be divided in horizontal strips of known diameter and
center. A representation of a Cylinder divided into strips is shown in Figure
2.8. The water particle’s velocity, w(t) is estimated at the center of each strip
and the velocity of the body, z(t) is found by the step by step solution of the
Time Domain Model. Finally, integration of the drag forces calculated results
to the total drag force, Fdrag(t). Furthermore, the drag coefficient, Cd has to be
determined. The determination of a physically representative drag coefficient
constitutes an important part of this research. More information about the
application of the Morison Equation can be found in chapter 12 of Journée
and Massie (2001). Another addition which can be added to the Time Domain
Model is a time-dependent estimation of the excitation force, Fexc by taking
into account the actual position of the buoy at every time step.

Finally, with the velocity of the buoy calculated by the numerical solution of
the Cummins Equation and with known PTO damping coefficient, as calculated
by Eq. (2.28), the instantaneous power output is given by Eq. (2.35). The
average power output is simply calculated by:

P̄ =
1

Ttot

Ttot∑
t=0

P (t) · dt (2.45)

Where:
Ttot = the total simulation time [s]

2.7 Boundary Element Method Model

The Boundary Element Method (BEM) model used throughout this report is
NEMOH (Ecole Centrale du Nantes, 2016). NEMOH is the first open source
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(a) 3D-geometry
(b) Paneled geometry

Figure 2.9: SALOME 7 design and paneled output for a random geometry

BEM code and it is available to users since January 2014. NEMOH is based on
linear 3D-Diffraction Theory. For detailed description of 3D-Diffraction theory,
the reader can refer to chapter 7 of Journée and Massie (2001). In general,
NEMOH, by taking advantage of Linear Wave Theory (LWT), solves two prob-
lems for every frequency of the chosen frequency grid: a radiation problem and
a diffraction problem.

For the radiation problem, the 3D geometry is assumed to oscillate in still
water. This way the frequency-dependent added mass and radiation damp-
ing coefficients per frequency of the geometry are derived. For the diffraction
problem the, restrained, at equilibrium position, geometry is exposed to waves.
Assuming linear diffraction as a result of wave/body interaction the diffracted
wave field is produced and the wave excitation force amplitude per frequency is
derived. What is important for NEMOH so as to produce these results is a 3D
description of the coordinates of the geometry’s surface.

For providing a detailed geometric description of the different geometries
studied in this report, the 3D-CAD and meshing open source code SALOME
7 (SALOME, 2016) is used. SALOME 7 is only available for Linux operating
systems. In Figure 2.9, the 3D design of a geometry and its meshed surface
are shown. In Figure 2.9b, the surface of the geometry is divided into panels.
The center of every panel has known coordinates which are used as input to
NEMOH. For every panel, the radiation and diffraction problems are solved for
the total range of discrete frequencies. Integration of the pressures calculated
for every panel results to the estimation of coefficients and wave excitation force.
This is why BEM is also called panel method. Finally it should be stated that
the number of panels, as a result of pressure integration, should be large enough
for better accuracy, regarding also the size of the geometry.

2.8 Computational Fluid Dynamics Model

The CFD code used throughout this report is ComFLOW3. It solves for u, v,
w and p using the full Navier-Stokes Equations presented in Eq. (2.1), (2.2).
Additionally, in the presence of a body, ComFLOW3 solves for the dynamic
response of the body by calculating forces by pressure integration. A detailed
description of the mathematical model of ComFLOW3 is beyond the scope of
this report. For further information the reader can refer to (Wellens, 2012).
Focus now, is turned to present the basic characteristics of ComFLOW3 as
these are important in the model setup and results interpretation.
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Figure 2.10: Cell labeling system in ComFLOW (Wellens, 2012). E for
empty cells, F for fluid cells, S for free surface cells and B for body cells.

2.8.1 Computational Grid

ComFLOW3 is a finite volume CFD code, i.e. the computational domain is
divided into control volumes of cell shape. For every volume the pressure is
calculated at the center of the volume while at every cell face three velocity
components are derived. ComFLOW3 uses a structured grid which remains
steady but not necessarily uniform. Stretching of the cell size or coarsening of
the grid at low interest territories of the domain is possible. ComFLOW3 is
using a labeling system for the computational cells as depicted in Figure 2.10.
For every time step, the cells are labeled as Fluid (F) Cells, Surface (S) Cells,
Empty (E) Cells and Body (B) Cells. Whenever a body intersects a cell, the
new apertures of the cell are computed and this is done for every time step.

2.8.2 Free Surface

In CFD wave simulations, the capture of the free surface (S-cells) is of major
importance. In ComFLOW3, an improved Volume of Fluid (VOF) method is
used, comparing to the original as this was derived by Hirt and Nichols (1981).
The two VOF approaches are shown in Figure 2.11. The original method (Figure
2.11a) calculates the water fill ratio of the total cell volume based on the net
mass flux through the faces of every cell. This way, there is the probability
of total water volume loss or gain as a result of over-draining or over-filling
cells. With the improved VOF method used in ComFLOW3, the free surface
is reconstructed by using the gradient of adjacent S-cells calculated by a height
function as depicted in Figure 2.11b.
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(a) Original VOF method (b) Improved VOF method

Figure 2.11: Original and improved Volume of Fluid methods (Wellens,
2012)

2.8.3 Boundary Conditions

At first, the impermeability of the bottom of the domain is reassured by im-
posing ~u · ~n = 0, where ~n is the unit vector perpendicular to the bottom. At
the free surface, the pressure is imposed as p = p0. As the position of the free
surface deviates from the position of the cell center where pressure is calculated
by the code, the pressure for S-cells is calculated by interpolation relatively to
the position of the free surface. The boundary conditions at the lateral sides of
the computational domain can be open or closed. Open boundary conditions
which allow for both energy dissipation and flow through the boundaries are
rather valuable in wave simulations. In ComFLOW3, this kind of boundaries
is implemented as Generating Absorbing Boundary Conditions (GABC). The
goal of GABC is to return as little wave reflection from the boundaries as pos-
sible without the need for using large domains or a numerical beach for wave
energy dissipation. Simultaneously, GABC allow for wave generation at the
boundaries. GABC are set according to the range of frequencies for which wave
energy dissipation should be optimum. The setup involves the determination
of three coefficients, namely a0, a1 and b1. ComFLOW3 is equipped with a
MATLAB function which for a given range of frequencies returns the optimum
combination of these coefficients. In case that only one wave frequency exists
in the computational domain, then a1 and b1 can be set to zero and a0 is given
by:

a0 =

√
tanh kh

kh
(2.46)

The latter configuration corresponds to the so-called Sommerfeld boundary con-
ditions. Detailed mathematical derivation and presentation of the ComFLOW3
boundary conditions are given in chapter 6 of Wellens (2012).

2.8.4 Turbulence Modeling

The turbulence modeling is an important part in every CFD simulation. The
need for turbulence modeling arises from the fact that turbulent phenomena in
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wave simulations occur in a range of scales from rather small (a few mm) to
rather large (meters). For the small scale turbulent phenomena to be captured
by direct solution of the NSE, the grid size resolution has to decrease that much
that only super computers can return results in a sensible amount of time. For
that reason in all CFD codes, extra equation(s) of the water particles’ kinetic
energy are introduced so as to model turbulence in scales smaller than the grid
size resolution. ComFLOW3 uses a Large Eddy Simulation (LES) turbulence
model. With LES model, the turbulence in large scales is predicted by direct
numerical solution of the NSE and only in small scale the LES equations predict
the turbulence kinetic energy. For more information on the various turbulence
models and specifically on the LES model, the reader can refer to Nichols (2001).

2.9 Overview and Comparison of the Models

Four models were presented in the previous sections, namely:

• Frequency Domain Model

• Time Domain Model

• BEM Model

• CFD Model

The first two are used for deriving the power prediction outcomes. The latter
two are used for providing input for the first two. An overview and comparison
between Frequency and Time Domain models and BEM and CFD models is
presented.

2.9.1 Frequency vs Time Domain Model

The Frequency and the Time Domain models are quite similar. The Time Do-
main model, without including any non-linear terms, is just a time-dependent
representation of the Frequency Domain model. Both models are depending
on BEM input and so the linear wave/body interaction is restricting for both
models. The main advantage of the Time Domain model is the possibility for
including nonlinear effects such as viscous damping and adjustable spring and
PTO damping coefficients. This way, part of the BEM and LWT physical re-
strictions can be tackled. The advantage of Frequency Domain model is that it
is computationally cheap. A Frequency Domain simulation takes a few seconds
so as to be made. As for the Time Domain model to provide representative re-
sults, long time series are needed and so the simulation time is longer. A typical
Time domain simulation of 6000-9000 seconds takes about two to three minutes.
If a large number of designs needs to be tested the difference is significant. A
comparison overview is provided in Table 2.1.

2.9.2 BEM vs CFD Model

BEM and CFD models are tools that assist in the modeling of Point Absorbers.
Every output of the BEM code can be reproduced by CFD simulations. The
difference in the output between the two models will be derived by the fact
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Model Viscous Ef-
fects

Wave-Body
Interaction

Accuracy Simulation
Time

Frequency
Domain

No Linear
radiation
and diffrac-
tion (BEM)

Better for
calm sea
states-
Questionable
around
resonance

A few sec-
onds

Time
Domain

Can be in-
cluded

Linear
radiation
and diffrac-
tion (BEM)

Better ac-
curacy
when non-
linearities
are
estimated-
Validation
needed

A few min-
utes

Table 2.1: Frequency vs Time domain model

Model Viscous Ef-
fects

Wave-Body
Interaction

Simulation
Time

BEM No Linear
radiation
and diffrac-
tion (BEM)

A few min-
utes

CFD Fully viscous
solution

Fully non-
linear

A few days

Table 2.2: BEM vs CFD model

that CFD produces a fully viscous solution. On the contrary, BEM considers
water as an ideal fluid. For calm sea states, LWT and BEM have proven to
work quite accurately. The problem for predicting wave energy extraction, is
that higher sea states are of major interest as they carry more energy. In these
conditions power prediction based solely on BEM input has doubtful accuracy.
On the other hand, using CFD model extensively is quite difficult because of
the large time needed for a simulation. A BEM simulation with rather fine
frequency resolution does not last more than fifteen minutes. Some of the CFD
simulations presented in this report lasted more than a week. So a combination
of the two models is needed. A comparison overview is provided in Table 2.2.

2.10 Dimensionless Parameters

In offshore engineering, the use of dimensionless quantities for parameteriz-
ing the numerous different conditions of wave/body interactions is common.
Throughout this report the following dimensionless quantities are used:

31



Keulegan-Carpenter Number (KC)
The KC number describes the relative importance of the drag forces over
the inertia forces in an oscillatory flow around a still or a floating body.
For large KC numbers the drag forces are dominant while for small KC
numbers the inertia forces are dominant. The KC number can be calcu-
lated according to:

KC =
Vm · T
D

(2.47)

Where Vm is the maximum velocity of the oscillation, T is the period of
oscillation and D is a characteristic length of the structure, in our case
will be the diameter of the buoy.

Reynolds Number (Re)
The Re number describes the relative importance of inertia forces to vis-
cous forces. For low Re the viscous forces are dominant and the fluid
motion is smooth and constant. For high Re, the inertia forces are dom-
inant and eddies, vortices and flow instabilities occur. The Re number is
calculated according to:

Re =
Vm ·D
ν

(2.48)

Where Vm is the maximum velocity of the oscillation, D is a characteristic
length of the structure, the diameter in our case and ν is the kinematic
viscosity of water.
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Chapter 3

Design Optimization

3.1 Dimensioning

The methodology for estimating the optimum dimensions of the three shapes,
namely the Cylinder, the Bullet and the Cone, is presented. The criterion
of Efficiency, based on which the different designs are evaluated, is introduced.
Finally, the results of the proposed methodology are given with comments when-
ever this is considered important.

3.1.1 Methodology

For deriving the optimum dimensions for every design, these designs is needed
to be geometrically described. The geometrical description for the Cylinder,
the Bullet and the Cone is given in Figure 1.2. The Bullet and the Cone are
composed of an upper cylindrical part. The length of this cylindrical part is
denoted by CL. The Bullet has a hemispherical lower part while the Cone has
a conical lower part pointing downwards. The hemisphere’s radius, the cone’s
upper radius and the cone’s height are equal to the cylinder’s radius, R. The
total length (draft) of every design is denoted by TD. For the Cylinder the
total length, TD coincides with the cylinder length, CL.

Based on the previous geometrical description, for every shape, three sets of
designs of variable dimensions are produced. Every set of designs is produced
by varying the radius, R and the cylinder length, CL. As already mentioned
in § 1.2, the maximum radius, R should not exceed 10m and the total length,
TD should not exceed 15m. Taking these restrictions into account the sets of
designs to be tested are presented in Tables 3.1, 3.2 and 3.3. A code and a
number are assigned to every different design, namely Bul, Con, Cyl for the
Bullet, the Cone and the Cylinder respectively plus an assigned number.
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  R[m]
CL[m]

5 7.5 10

5 Bul1 Bul2 Bul3
7.5 Bul4 Bul5
10 Bul6

Table 3.1: Bullet set of designs to be tested

   
   

  R[m]
CL[m]

5 7.5 10

5 Con1 Con2 Con3
7.5 Con4 Con5
10 Con6

Table 3.2: Cone set of designs to be tested

   
   

  R[m]
CL[m]

5 10 15

5 Cyl1 Cyl2 Con3
7.5 Cyl4 Cyl5 Cyl6
10 Con7 Cyl8 Cyl9

Table 3.3: Cylinder set of designs to be tested

As it can be noticed in Table 3.1 and 3.2, some combinations of radius, R
and cylinder length, CL are excluded. The reason for this exclusion is that as
mentioned in § 1.2 the total length, TD of the buoy cannot exceed 15m. For
the Bullet and Cone cases, the total draft is calculated as: R+ CL = TD. For
the excluded combinations the total draft, TD exceeds 15m.

Next, attention is drawn to the criteria of the design evaluation. Designs of
different radii need to be compared. As explained in § 2.3.2, the wave energy
transfer (power) occurs in the direction of wave propagation and it is calculated
per meter wave crest. It is reasonable then, that buoys of larger radii will have
access to larger amounts of wave energy. This way it would be always right
to pursue for the larger radius in several designs. On the other hand, over-
dimensioning the buoy will unavoidably increase its mass. Increase in mass
can subsequently lead to increasing the buoy’s inertia forces and eventually de-
creasing buoy’s velocity and absorbed wave energy. This way, a larger design
although it absorbs more wave energy, compared to a smaller one, it is not as
efficient as the smaller one because it absorbs smaller proportion of the available
wave energy. For that reason, the dimensionless quantity of Efficiency is used
as evaluation criterion for comparing different designs in this report. Efficiency
stands for the ratio of the average absorbed wave energy by the buoy, as calcu-
lated by Eq. (2.36) (2.45), over the average available power per sea state. The
latter is calculated by multiplying Eq. (2.16) with the diameter of the buoy.
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The dimensionless Efficiency (Eff) is then calculated by:

Eff =
P̄

P̄wD
=

P̄

P̄avail
(3.1)

Where:
P̄avail = the average available wave power over one wave cycle [W ]

With the different designs and the evaluation criterion specified, it is left for a
methodology, allowing for Efficiency calculations, to be defined. At this phase
of design dimensioning, a large number of designs needs to be evaluated. For
that reason a fast model providing rough estimations of the Efficiency of every
design will be chosen for comparisons to be made. The Frequency Domain
Model (see § 2.5) aided by NEMOH model (see § 2.7) can return rather fast
estimations of the designs’ Efficiency. The average absorbed power, P̄ and the
average available power, P̄avail will be estimated for the whole scatter diagram
as this was presented in § 1.2. For every design, a NEMOH simulation, with
a rather fine frequency resolution, did not last more than fifteen minutes with
the capacity of running multiple simulations simultaneously. Once the input by
NEMOH is derived it is a matter of a few seconds for the Frequency Domain
Model to return Efficiency estimations for every tested design. Finally, from
every of the three set of designs (Bul, Cyl, Con) the most efficient is chosen.

3.1.2 Results

The Frequency Domain model and BEM code, NEMOH are employed for com-
paring the various designs presented in Table 3.1, 3.2 and 3.3. The frequency
range was set to 0.1−4.0rad/s. The frequency interval, ∆ω was set to 0.001rad/s.
The frequency interval was chosen based on the validation of the Time Domain
model (see chapter 5). Results are presented.

Total Average Available Power, P̄avail [kW ]

The total average available power, P̄avail is proportional to the design radius,
R and it is derived by assessing all the sea states of the scatter diagram. For
the three different radii of the evaluated designs, it is presented in Table 3.4.

R[m] 5 7.5 10
P̄avail[kW ] 202.15 303.23 404.31

Table 3.4: Total average available power, P̄avail per design radius [kW ].

Comments

• The total average available power, P̄avail is linearly proportional to the
design’s radius, R as it was expected.

Total Average Power Extraction, P̄ [kW ]

The total average power extraction, P̄ , assessed for all the sea states, for every
design of the Cylinder, the Bullet and the Cone sets is given in Table 3.5, 3.6
and 3.7.
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Cylinder
````````R[m]

CL[m] 5 10 15

5 46.7 48.3 59.9
7.5 85.5 87.1 90.0
10 124.8 127.5 122.3

Table 3.5: Total average power extraction, P̄ results for Cylinder designs
[kW ]. In green color the design with the highest power extraction.

Bullet
````````R[m]

CL[m] 5 7.5 10

5 46.5 47.5 51.8
7.5 85.4 88.2
10 125.9

Table 3.6: Total average power extraction, P̄ results for Bullet designs
[kW ]. In green color the design with the highest power extraction.

Cone
````````R[m]

CL[m] 5 7.5 10

5 45.5 47.7 48.0
7.5 84.5 84.9
10 124.1

Table 3.7: Total average power extraction, P̄ results for Cone designs
[kW ]. In green color the design with the highest power extraction.

Comments

• Cyl8, Bul6 and Con6 are the three designs from every set with the highest
total average power extraction, P̄ .

• Cyl9, Bul6 and Con6 have the same radius, R.

Total Average Efficiency, Eff [−]

The total average Efficiency, (Eff) results for the various designs of the Cylin-
der, the Bullet and the Cone are presented in Table 3.8, 3.9 and 3.10.

Cylinder
````````R[m]

CL[m] 5 10 15

5 0.23 0.24 0.30
7.5 0.28 0.29 0.30
10 0.31 0.32 0.30

Table 3.8: Average Efficiency results for Cylinder designs. In green color
the design with the highest Efficiency

36



Bullet
````````R[m]

CL[m] 5 7.5 10

5 0.23 0.24 0.26
7.5 0.28 0.29
10 0.31

Table 3.9: Average Efficiency results for Bullet designs. In green color
the design with the highest Efficiency

Cone
````````R[m]

CL[m] 5 7.5 10

5 0.23 0.24 0.24
7.5 0.28 0.28
10 0.31

Table 3.10: Average Efficiency results for Cone designs. In green color
the design with the highest Efficiency

Comments

• Cyl8, Bul6 and Con6 have the highest Efficiency among the three sets of
designs.

• Cyl8, Bul6 and Con6 are depicted with dimensions in Figure 3.1.

Figure 3.1: The most efficient Cylinder (Cyl8), Bullet (Bul6) and Cone
(Con6) with dimensions.
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Average Power Extraction, P̄ per Sea State [kW ]

Cyl8
4.5 6.9 94.4 352.8 686.1 663.4 642.4 629.3 615.1
3.5 4.2 57.1 213.4 415.0 401.3 388.6 380.7 372.1
2.5 2.1 29.1 108.9 211.8 204.8 198.3 194.2 189.8
1.5 0.8 10.5 39.2 76.2 73.7 71.4 69.9 68.3
0.5 0.1 1.2 4.4 8.5 8.2 7.9 7.8 7.6

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.11: Average extracted power, P̄ per sea state for Cyl8 [kW ].

Bul6
4.5 9.5 108.5 364.0 660.3 647.6 631.7 619.8 606.0
3.5 5.8 65.6 220.2 399.5 391.7 382.2 374.9 366.6
2.5 2.9 33.5 112.4 203.8 199.9 195.0 191.3 187.0
1.5 1.1 12.1 40.4 73.4 72.0 70.2 68.9 67.3
0.5 0.1 1.3 4.5 8.2 8.0 7.8 7.7 7.5

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.12: Average extracted power, P̄ per sea state for Bul6 [kW ].

Con6
4.5 36.9 205.3 485.2 563.1 588.1 600.7 602.7 596.5
3.5 22.3 124.2 293.5 340.7 355.8 363.4 364.6 360.8
2.5 11.4 63.4 149.7 173.8 181.5 185.4 189.0 184.1
1.5 4.1 22.8 53.9 62.6 65.3 66.7 67.0 66.3
0.5 0.5 2.5 6.0 7.0 7.3 7.4 7.4 7.4

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.13: Average extracted power, P̄ per sea state for Con6 [kW ].

Average Available Power, P̄avail per Sea State [kW ]

The average available power, P̄avail per sea state is given in Table 3.14. Based
on the scatter diagram in Table 1.1, the contribution of every sea state to the
total available average power presented in Table 3.4, is given in Table 3.15.
Cyl8, Bul6 and Con6 have the same radius (R = 10m) and so they have access
to the same available wave power.
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4.5 808.7 1068.9 1376.5 1706.0 2016.7 2289.1 2520.1 2713.5
3.5 489.2 646.6 832.7 1032.0 1220.0 1384.8 1524.5 1641.5
2.5 249.6 329.9 424.9 526.5 622.4 706.5 777.8 837.5
1.5 89.9 118.8 153.0 190.0 224.1 254.3 280.0 301.5
0.5 10.0 13.2 17.0 21.1 24.9 28.3 31.1 33.5

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.14: Average available power, P̄avail per sea state [kW ].

4.5 0 2.24 15.86 33.98 29.62 14.38 5.30 2.85
3.5 0 4.06 23.55 42.20 33.27 14.50 4.81 1.73
2.5 0.26 5.88 28.04 40.30 26.12 9.62 2.45 0.88
1.5 0.28 6.10 19.39 19.68 9.40 2.66 0.59 0
0.5 0.20 1.19 1.67 0.90 0.26 0.06 0 0

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.15: Contribution of every sea state to the total average power,
P̄avail [kW ]. The red area of the Table represents the 80% of the total
average available power.

Comments

• 80% of the total average available power, P̄avail is located at sea states
with Tz = 5.5s, Tz = 6.5s and Tz = 7.5s.

• Classifying the sea states by Tz leads to the conclusion that the sea states
with Tz = 6.5s are the most energetic ones cumulatively.

Efficiency per Sea State [−]

Cyl8
4.5 0.01 0.09 0.26 0.40 0.33 0.28 0.25 0.23
3.5 0.01 0.09 0.26 0.40 0.33 0.28 0.25 0.23
2.5 0.01 0.09 0.26 0.40 0.33 0.28 0.25 0.23
1.5 0.01 0.09 0.26 0.40 0.33 0.28 0.25 0.23
0.5 0.01 0.09 0.26 0.40 0.33 0.28 0.25 0.23

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.16: Efficiency per sea state for Cyl8. In red color the sea states
with the highest Efficiency.
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Bul6
4.5 0.01 0.10 0.26 0.39 0.32 0.28 0.25 0.22
3.5 0.01 0.10 0.26 0.39 0.32 0.28 0.25 0.22
2.5 0.01 0.10 0.26 0.39 0.32 0.28 0.25 0.22
1.5 0.01 0.10 0.26 0.39 0.32 0.28 0.25 0.22
0.5 0.01 0.10 0.26 0.39 0.32 0.28 0.25 0.22

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.17: Efficiency per sea state for Bul6. In red color the sea states
with the highest Efficiency.

Con6
4.5 0.05 0.19 0.35 0.33 0.29 0.26 0.24 0.22
3.5 0.05 0.19 0.35 0.33 0.29 0.26 0.24 0.22
2.5 0.05 0.19 0.35 0.33 0.29 0.26 0.24 0.22
1.5 0.05 0.19 0.35 0.33 0.29 0.26 0.24 0.22
0.5 0.05 0.19 0.35 0.33 0.29 0.26 0.24 0.22

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.18: Efficiency per sea state for Con6. In red color the sea states
with the highest Efficiency.

Comments

• Cyl8 and Bul6 achieve their highest Efficiency for sea states with Tz = 6.5s
which are the most energetic ones. Con6 achieves its highest Efficiency
for sea states with Tz = 5.5s.

• All the three designs have better Efficiency for sea states with Tz ≥ 5.5s
comparing to sea states with Tz ≤ 4.5s.
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Excitation Force Amplitudes, Fexc,a(ω).

Figure 3.2: Excitation force amplitudes, Fexc,a(ω) per frequency [N ].

Comments

• Con6 appears to be exposed to larger excitation force, Fexc than Cyl8 and
Bul6 especially for relatively high frequencies.

• It is known by literature (Wellens, 2004) that the excitation force, Fexc
increases with decreasing draft, TD of the buoy. It would be expected
that Cyl8 which has smaller draft to be exposed to larger excitation force
but this is not validated by the findings.

Mass, m of the Designs [tonnes]

The masses of the evaluated designs are given in Table 3.19, 3.20 and 3.21.

Cylinder

   
   

  R[m]
CL[m]

5 10 15

5 403 805 1208
7.5 906 1811 2717
10 1610 3220 4830

Table 3.19: Mass of Cylinder designs [tonnes]. In green color the Cylinder
with the largest Efficiency (Cyl8).
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Bullet

   
   

  R[m]
CL[m]

5 7.5 10

5 671 872 1073
7.5 1811 2264
10 3756

Table 3.20: Mass of Bullet designs [tonnes]. In green color the Bullet
with the largest Efficiency (Bul6).

Cone

   
   

  R[m]
CL[m]

5 7.5 10

5 537 738 939
7.5 1358 1811
10 2683

Table 3.21: Mass of Cone designs [tonnes]. In green color the Cone with
the largest Efficiency (Con6).

Comments

• The masses presented, correspond to the under water mass of every design
at equilibrium position.

• For Bullet and Cone sets, the design with the largest mass was also the
design with the largest Efficiency.

• Within all the twenty-one designs, the one with the largest mass was
Cyl9. Cyl9 had 50% larger mass than Cyl8 which was found to be the
most efficient design within the Cylinder set.

• It appears that for every different shape, there is an optimum mass or
equivalently volume which maximizes Efficiency.

• The dimension restrictions, as presented in § 1.2, play an important role.
The maximum Efficiency of Bullet and Cone designs may have been larger,
if they were allowed to attain larger mass.
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Added Mass, a(ω) [tonnes]

Figure 3.3: The added mass coefficient, a(ω) for Cyl8, Bul6 and Con6.

Comments

• Cyl8 has much larger added mass coefficients, a(ω) comparing to Bul6 and
Con6.

• Bul6 has larger added mass coefficients, a(ω) than Con6 for frequencies
larger than 0.75rad/s.

Damping Coefficient, b(ω) [tonnes/s]

Figure 3.4: The damping coefficient, b(ω) for Cyl8, Bul6 and Con6.

Comments
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• Con6 is a better wave maker than Cyl8 and Bul6. As a result of its larger
radiation damping coefficients, b(ω), Con6 radiates more energy than Cyl8
and Bul6 for the same oscillation. The worst wave maker is Cyl8.

• A numerical instability is observed for a frequency of 1.5rad/s, especially
for Con6. This kind of numerical instabilities are quite common for BEM
code simulations. In any case the instability occurs at a frequency where
rather little energy exists according to the JONSWAP spectrum used and
results cannot be influenced significantly.

Restoring Coefficient, c [tonnes/s2]

The restoring coefficient, c for Cyl8, Bul6 and Con6 is the same for all the three
designs as they have the same radius and consequently the same water-line area,
Awl. Their restoring coefficient, c is calculated as:

c = ρgAwl = 3159 tonnes/s2 (3.2)

Spring Stiffness Coefficient, ksp per Sea State [tonnes/s2]

Cyl8
4.5 6691 2687 717 0 0 0 0 0
3.5 6691 2687 717 0 0 0 0 0
2.5 6691 2687 717 0 0 0 0 0
1.5 6691 2687 717 0 0 0 0 0
0.5 6691 2687 717 0 0 0 0 0

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.22: Spring stiffness coefficients, ksp for Cyl8 per sea state
[tonnes/s2]. The red area represents the sea states for which resonance
at the peak frequency, ωp was achieved. The green area represents the
sea states with the highest Efficiency.

Bul6
4.5 6443 2524 623 0 0 0 0 0
3.5 6443 2524 623 0 0 0 0 0
2.5 6443 2524 623 0 0 0 0 0
1.5 6443 2524 623 0 0 0 0 0
0.5 6443 2524 623 0 0 0 0 0

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.23: Spring stiffness coefficients, ksp for Bul6 per sea state
[tonnes/s2]. The red area represents the sea states for which resonance
at the peak frequency, ωp was achieved. The green area represents the
sea states with the highest Efficiency.
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Con6
4.5 4034 1111 0 0 0 0 0 0
3.5 4034 1111 0 0 0 0 0 0
2.5 4034 1111 0 0 0 0 0 0
1.5 4034 1111 0 0 0 0 0 0
0.5 4034 1111 0 0 0 0 0 0

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.24: Spring stiffness coefficients, ksp for Con6 per sea state
[tonnes/s2]. The red area represents the sea states for which resonance
at the peak frequency, ωp was achieved. The green area represents the
sea states with the highest Efficiency.

Comments

• The spring stiffness coefficient, ksp per sea state is calculated by Eq. (2.27).
The equation is satisfied for sea states whose spring stiffness coefficient,
ksp is larger than zero. The spring stiffness coefficient, ksp cannot be
negative in physical terms.

• For the sea states which have positive spring stiffness coefficient, ksp the
buoy is at resonance with the peak frequency, ωp of the sea state. It means
that the so-called natural frequency of the buoy coincides with this peak
frequency, ωp.

• Con6 is at resonance for less sea states than Cyl8 and Bul6 which are
resonating further in the scatter diagram.

• All the three designs achieve their highest Efficiency at sea states where
resonance is not achieved. At Tz = 6.5s for Cyl8 and Bul6 and at Tz =
5.5s for Con6.

• All the three designs achieve their highest Efficency for the sea states
immediately after the resonated part of the scatter diagram. This finding
is also valid for all the twenty-one designs.

• When the buoy is at resonance, its velocities, żb become larger as it
would be expected. This is also validated by statistics derived by the
Frequency Domain model, regarding the significant relative velocity am-
plitudes, Vsign,rel per sea state.
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PTO Damping Coefficient, β per Sea State [tonnes/s]

Cyl8
4.5 24 118 253 587 1618 2601 3496 4365
3.5 24 118 253 587 1618 2601 3496 4365
2.5 24 118 253 587 1618 2601 3496 4365
1.5 24 118 253 587 1618 2601 3496 4365
0.5 24 118 253 587 1618 2601 3496 4365

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.25: PTO damping coefficients, β for Cyl8 per sea state [tonnes/s].

Bul6
4.5 37 156 292 672 1688 2653 3545 4402
3.5 37 156 292 672 1688 2653 3545 4402
2.5 37 156 292 672 1688 2653 3545 4402
1.5 37 156 292 672 1688 2653 3545 4402
0.5 37 156 292 672 1688 2653 3545 4402

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.26: PTO damping coefficients, β for Bul6 per sea state [tonnes/s].

Con6
4.5 110 301 515 1449 2375 3256 4083 4890
3.5 110 301 515 1449 2375 3256 4083 4890
2.5 110 301 515 1449 2375 3256 4083 4890
1.5 110 301 515 1449 2375 3256 4083 4890
0.5 110 301 515 1449 2375 3256 4083 4890

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.27: PTO damping coefficients, β for Con6 per sea state
[tonnes/s].

Comments

• The PTO damping coefficient, β is calculated by Eq. (2.28). As no re-
strictions are applied for the force delivered by the PTO device, Fpto the
equation is satisfied for all the sea states.

• For the sea states where resonance is achieved, the PTO damping co-
efficient, β coincides with the radiation damping coefficient of the peak
frequency, b(ωp). Otherwise, β > b(ωp).

• Within the three final designs, Con6 has the largest PTO damping coef-
ficients, β as it could be expected by the fact that Con6 has also larger
radiation damping coefficients, b(ω).
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• Increasing the PTO damping coefficient will subsequently decrease the
buoy’s oscillation velocities, żb.

3.2 Shape Evaluation

The most efficient dimensions for the Bullet, the Cone and the Cylinder were
derived, based on the predetermined sets of designs evaluated. Next, the three
final designs (Cyl8, Bul6 and Con6) have to be evaluated again so as the most
efficient to be chosen as the final design. Methodology and results are presented.

3.2.1 Methodology

By the Frequency Domain Model a fast estimation of the Efficiency of the three
final designs is already derived. The main issue of this estimation is that it is
completely free of viscous (drag) forces. As shown by Eq. (2.44), this drag force
depends on the velocity of the buoy, the velocity of the surrounding fluid and
the so-called drag coefficient, Cd. In literature, a large number of studies about
the determination of drag coefficients for static or floating structures in waves
can be found. Physical experiments or numerical wave tank tests employing
CFD codes are usually used. In both cases, the method involves the oscillation
of the structure in still water and measurements of the force exerted on the
structure (Bhinder et al., 2011) (Thilleul, 2013) (Cozijn, 2005). Another com-
mon element found in studies about the determination of the drag coefficient is
the dependency of the derived coefficients on the dimensionless parameters of
the Keulegan-Carpenter and the Reynolds number (Chakrabarti, 2005). In this
report, CFD code ComFLOW3 is employed for producing Forced Oscillation
Tests (FOT) of the studied designs in a numerical wave tank. A new approach
for the calculation of the drag coefficient is proposed. Next, the Time Domain
Model (see § 2.6) will be employed for deriving Efficiency estimations, including
a drag force assessment. A Runge-Kutta, fourth order accurate time discretiza-
tion is employed and a method for calculating and comparing the Efficiency of
the Bullet, the Cone and the Cylinder is proposed.

Drag Coefficient Determination

Forced Oscillation Tests (FOT) are setup in a numerical tank in ComFLOW3
(Figure 3.5). For FOT, there is no presence of waves and the water mass is calm
at the beginning of the simulation. The body is forced to oscillate vertically,
through the free surface of water and the position of its center in time is given
by:

zb(t) = aosc · cos(ωosct) (3.3)

Where:
aosc = the amplitude of the oscillation [m]
ωosc = the frequency of the oscillation [rad/s]

Detailed description of the setup of FOT in ComFLOW3 can be found in Ap-
pendix B.

Once the simulation has finished, ComFLOW3 returns the time-dependent
estimation of the force exerted on the oscillating body by integrating the cal-
culated pressures across the area of its surface boundary (Figure 3.6). It is
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Figure 3.5: 3D depiction of the numerical tank in ComFLOW3 for the
Forced Oscillation Test of a Cylinder.

important now, to analyze this derived force as it was done for the case of the
Mass-Spring-Damper System (MSDS) model in § 2.4. Four different forces are
recognized. An added mass force, Fadd similar to the one calculated for the
MSDS model and proportional to the acceleration of the body. A time depen-
dent hydrostatic force, Fhyd exerted by the varying buoyancy as a result of the
varying position of the body in water. It is different than the restoring force,
Fres of the MSDS model as in this case the gravity force is not relevant as a re-
sult of the forced oscillation. A radiation force, Frad exerted on the body by the
radiating waves as a result of its oscillation, proportional to the body’s velocity,
similarly to the MSDS model. Finally and additionally to the forces recognized
in § 2.4, there is a drag force, Fdrag as the one calculated by Eq. (2.44), exerted
on the body by the shear interaction of the body’s surface with water particles.
This drag force has to be discretized from the total force in Figure 3.6 so as an
estimation of the drag coefficient, Cd to be made. For the discretization of the
drag force, initially, the periodic total force signal will be expanded in Fourier
series. Only the first order terms will be kept as the force signal is produced by
a sinusoidal motion of the body and the first order approximation is considered
accurate. The Fourier series of the force signal reads:

F (t) = F0 + Fcos cos(ωosct) + Fsin sin(ωosct) (3.4)

Where:
F0 = the static part of the force [N ]

Fcos = the amplitude of the dynamic part of the force in-phase with the
body’s position and acceleration [N ]

Fsin = the amplitude of the dynamic part of the force in-phase with the
body’s velocity [N ]

By Eq. (2.20), (2.44) of the radiation and drag force respectively, it is clear that
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Figure 3.6: Force in the z-direction as calculated by ComFLOW3 for a
Forced Oscillation Test.

these forces are in-phase with the body’s velocity (damping forces). So these
forces at any moment should constitute the second term in the right hand side
of Eq. (3.4) resulting to:

Fsin sin(ωosct) = Frad(t) + Fdrag(t) (3.5)

With known Fsin and ωosc by Fourier series expansion, the determination of Frad
will lead to the determination of Fdrag and consequently to the determination
of the drag coefficient, Cd by fitting of Eq. (2.44) to the derived drag force.
Although this approach has a reasonable physical background, it also has a
specific problem in its implementation. The problem is that the radiation force
cannot be calculated directly but only in terms of measuring the radiated waves
at a certain position away from the structure position. Consequently, a phase
shift between the force measured and the exerted radiation force on the body
has to be applied. This phase shift has to do with the propagation speed of
the radiated waves. In this report an alternative approach is proposed which
simplifies the process without the need of phase shift calculation. The approach
takes advantage of the relations between force and power.

On the contrary to the sinusoidal signal of force, power can be averaged over
one or multiple wave cycles without providing zero outcome. From physics we
get that:

Power = Force× V elocity

The body’s sinusoidal velocity is known and given by:

żb(t) = −ωoscaosc sin(ωosct) (3.6)

Following these, the instantaneous power produced by the radiation and the
drag forces can be calculated by:

Prad(t) = Frad(t) · żb(t) (3.7)

Pdrag(t) = Fdrag(t) · żb(t) (3.8)
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Figure 3.7: Structure of the computational domain with the use of special
boxes in the xz−plane during a Forced Oscillation Test.

Analogously, the power produced by the part of the force in-phase with the
velocity reads:

Psin(t) = Fsin sin(ωosct) · żb(t) (3.9)

Then, at any moment the following relation should stand:

Psin(t) = Prad(t) + Pdrag(t) (3.10)

Averaging over one or multiple wave cycles leads to the averaged form of Eq. (3.10)
as:

P̄sin = P̄rad + P̄drag (3.11)

Of course, P̄sin is already known. It is needed then, to calculate P̄rad and this
is implemented via an option available in ComFLOW3 called Special Box (SB).

With SB in ComFLOW3, it is possible to derive estimation of pressure, p and
velocity components u, v and w at the center of every cell at a specific horizontal
location of the domain for the total length of the water column. In Figure 3.7
a 2D depiction of the structure of the SB utility is presented. Furthermore,
it should be noted that the radiation waves have circular crests. Care should
be taken for the calculated velocities to be projected on the parallel to the
propagation direction at the selected location. For simplifying calculation, SB
can be located either where x = 0 or y = 0. The size of the boxes coincides
with the size of the computational grid at the selected location. Then, with the
information from the SB gathered, it is possible to calculate the average power,
P̄rad over one wave cycle, which is produced by the radiation force, Frad. This
average power will be equal to the average energy transfer through the SB over
the same amount of time. According to physics:

Power = Pressure×Area× V elocity

Pressure and velocity are calculated at every time step by ComFLOW3 and the
area, A is equal to the area of the lateral face of the SB. For every SB then, the
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instantaneous power is given by:

PSB(t) = p ·A · u (3.12)

Integrating for the whole water column results to the instantaneous radiation
power. Averaging then over one wave cycle returns finally the average radiated
power, P̄rad.

With P̄rad and P̄sin estimated, Eq. (3.11) is rearranged for P̄drag to be
estimated as:

P̄drag = P̄sin − P̄rad (3.13)

Now that an estimation for the average power subtracted by the system because
of drag force exists, focus turns back to the relation of the drag force Fdrag
which produces this power. Eq. (2.44) estimates the drag force for the case
of an oscillating structure in the presence of waves. In the FOT employed in
this research, imposed waves do not exist and so it is assumed that there is no
relative velocity between the body and the water particles. This assumption
allows for using the form of Morison drag force for structures oscillating in still
water (Journée and Massie, 2001) which reads:

Fdrag(t) = −1

2
ρCdAwl|żb(t)|żb(t) (3.14)

Substituting Eq. (3.14) and (3.6) in Eq. (3.8) results to the following relation
for the instantaneous drag power:

Pdrag(t) =
1

2
ρCdAwlω

3
osca

3
osc|sin(ωosct)| sin2(ωosct) (3.15)

Averaging Eq. (3.15) over one period gives:

P̄drag =
1

T

∫ T

0

Pdrag(t)dt (3.16)

The only unknown is the drag coefficient, Cd. It can be derived by fitting the
right hand side of Eq. (3.16) so as the derived P̄drag to match the estimation of
P̄drag from Eq. (3.13).

Drag Coefficient Parametrization

Forced Oscillation Tests and the methodology presented in the previous section
can be used so as to derive drag coefficients, Cd for the three studied designs.
Then, the Time Domain Model, including estimation of the nonlinear drag force,
Fdrag can be employed for Efficiency estimations. The main problem to tackle
now is that the drag coefficients calculated depend on the flow conditions and
the body’s velocity. It is expected that for different frequencies and amplitudes
of oscillation, the Forced Oscillation Tests will provide different drag coefficients.
Parameterization of the drag coefficient derived by FOT is needed.

In § 2.10, the KC and Re numbers were introduced. These numbers have to
be determined for the case of FOT. In FOT the body is oscillated through still
water. As waves are absent, oscillation of water particles due to waves is also
absent. This way the the maximum velocity, Vm appearing in Eq. (2.47) and
(2.48) is replaced by the oscillated body’s maximum velocity as:

Vm = ωosc · aosc (3.17)
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Substituting Eq. (3.17) in Eq. (2.47) results to:

KC =
ωoscaoscT

D
(3.18)

As the motion of the body in FOT is sinusoidal, then the frequency of oscillation
is given by: ωosc = 2π/T . Substituting in Eq. (3.18) leads to the KC number
for FOT as:

KC =
2πaosc
D

(3.19)

Substituting Eq. (3.17) in Eq. (2.48) leads to the expression for the Re number
for FOT as:

Re =
ωoscaoscD

ν
(3.20)

Accordingly, for every FOT, a KC and a Re number can be assigned. So as
to derive the drag coefficient for various conditions, a number of predetermined
FOT can be conducted. Then drag coefficient adjustment can be made by
interpolation.

Drag Force, Fdrag Determination

The drag force, Fdrag in literature is usually calculated according to the strip
method presented in § 2.6.3. An alternative approach is presented here.

The relative velocity, Vrel at the center of the bottom of the buoy is known
at every time step and given by:

Vrel(t) = żb(t)− w(t) (3.21)

The stagnation pressure at the center of the bottom, as presented in chapter 3
of Journée and Massie (2001), is given by:

pst =
1

2
ρV 2

rel (3.22)

The shape of the bottom of the buoy influences the pressure distribution at all
the other points of the bottom. This influence is quantified by the dimensionless
drag coefficient, Cd. Finally, multiplying Eq. (3.22) with the water-line area,
Awl and the drag coefficient, Cd results to the common form of the drag part
of the Morison force for the case of an oscillating vertical cylinder in waves:

Fdrag(t) = −1

2
ρCdAwl|Vrel|Vrel (3.23)

The difference now is that this force includes also the vertical water particles’
velocity, w and the relative velocity approach is satisfied also for oscillating
bodies in waves. Moreover, this approach is much faster than the approach of
dividing the buoy to horizontal strips. At every time step the water particles’
velocity, w is needed to be calculated only at the bottom of the buoy. A test
case for comparing the two approaches is set up.

For the test case, a time series of free surface elevation is produced. The
length of the time series is set to 100s. A Bullet shape buoy is assumed. A ran-
dom drag coefficient, Cd = 1 is chosen for both the approaches. The diameter,
D is set to 20m and the under water length of the cylindrical part, CL is set
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Figure 3.8: Test case for comparing the two different methods for calcu-
lating the drag force, Fdrag.

to 5m (see also Fig.1.2). The Bullet is subjected to a forced oscillation of 1m
with oscillation frequency of 0.97rad/s. Results for the test case are shown in
Figure 3.8. It can be noticed that the two approaches provide a quite similar
drag force. The strip method seems to give some high peaks which are not
found by the method using the stagnation pressure. This probably has to do
with the fact that the motion of the body is forced and irrelevant to the incom-
ing waves which is not physical. The average power produced by the two drag
force signals was calculated. The difference was found to be less than 1%. Nev-
ertheless, the method with the calculation of the stagnation pressure is much
faster and according to the author’s opinion more physically correct, at least
for vertically oscillating bodies in waves. Hence, in this report, the drag force,
Fdrag is calculated using the stagnation pressure method.

Efficiency Comparison

The methodology for adjusting the drag coefficient, presented in the previous
chapter, has a specific drawback. A large number of CFD simulations is needed
so as to provide a representative grid of KC and Re numbers for drag coefficient
determination. It should be noted that for a 12 core Intel Xeon server with 50
GB of RAM, ComFLOW3 needed seven days for completing nine FOT with
the simulation time being of the order of twenty seconds. In this design phase
of comparing the three most efficient designs, providing a representative set
of FOT for every one of the three tested designs with the available resources
would take more than a month. Model accuracy in this phase is considered of
secondary importance. What is more important is to derive a fair Efficiency
comparison between the three designs. Another approach is proposed.

The Bullet, the Cone and the Cylinder will be tested under the same con-
ditions. The frequency of oscillation is set to ωosc = 0.97rad/s. This frequency
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corresponds to the zero-crossing period Tz = 6.5s of the sea states with the
highest average available power in combination with the occurrence rates as
these are described by the scatter diagram. The calculations of the average
available power per sea state have been made with Eq. (2.15). Three different
oscillation amplitudes, aosc are tested for every shape: aosc = 0.5m, aosc = 1m
and aosc = 2m. The drag force, Fdrag depends on the square of the relative
velocity between the buoy and water particles and of course on the drag coef-
ficient, Cd. For applying the values derived by FOT for the Shape Evaluation
in Time Domain model, information about the predicted relative velocity, Vrel
is needed. This information will be different for every design and for every sea
state. Information on the relative velocity can be derived by Frequency Domain
statistics. The significant relative velocity amplitude between the sea surface
and the body, Vrel,sign per sea state can be derived as:

Vsign,rel = 2

√∫ ∞
0

SVrel
(ωn)dω (3.24)

∫ ∞
0

SVrel
(ωn)dω =

N∑
n=1

1

2
V 2
rel,an (3.25)

Vrel,an = ωn

√
(ζa − za cos(εzζ))

2
+ (za sin(εzζ))

2
(3.26)

Where:
Vsign,rel = The significant amplitude of the relative velocity, Vrel between

the sea surface and the buoy [m/s]
Vrel,an = The relative velocity amplitude of the frequency component,

ωn [m/s]
SVrel

= The spectrum of the relative velocities, Vrel [m2]

For sea states with larger Vsign,rel, the drag coefficient derived by FOT with
aosc = 2m will be applied and so on. Detailed setup of the Time Domain Model
is provided in Appendix C.

3.2.2 Results

The three final designs, i.e Cyl8, Bul6 and Con6, were compared so as the most
efficient to be derived. Hence, in this chapter, the three final designs will be
referred to as Cylinder, Bullet and Cone. The results of the drag coefficient, Cd
determination and the Time Domain model are presented.

Drag Coefficients, Cd [−]

Cylinder
aosc[m] ωosc[rad/s] KC[−] Re[−] Cd[−]

2 0.97 0.63 3.98 · 107 0.73
1 0.97 0.31 1.99 · 107 2.95

0.5 0.97 0.16 0.9 · 107 2.85

Table 3.28: Forced Oscillation Tests, KC and Re numbers and the derived
drag coefficients, Cd for the Cylinder.
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Bullet
aosc[m] ωosc[rad/s] KC[−] Re[−] Cd[−]

2 0.97 0.63 3.98 · 107 0.53
1 0.97 0.31 1.99 · 107 1.06

0.5 0.97 0.16 0.9 · 107 2.71

Table 3.29: Forced Oscillation Tests, KC and Re numbers and the derived
drag coefficients, Cd for the Bullet.

Cone
aosc[m] ωosc[rad/s] KC[−] Re[−] Cd[−]

2 0.97 0.63 3.98 · 107 0.63
1 0.97 0.31 1.99 · 107 1.06

0.5 0.97 0.16 0.9 · 107 2.19

Table 3.30: Forced Oscillation Tests, KC and Re numbers and the derived
drag coefficients, Cd for the Cone.

Next, the application of the derived drag coefficients in the Time Domain Model
is discussed. In § 3.2.1, the derivation of the significant relative velocity am-
plitude, Vsign,rel was presented. Based on the derived values by the Frequency
Domain model, one of the derived drag coefficients, Cd is assigned to every sea
state. The exact way the coefficients were assigned is shown in Table 3.31.

Range[m/s] Cylinder Bullet Cone
Vsign,rel ≤ 1 2.85 2.71 2.19

1 ≤ Vsign,rel ≤ 1.5 2.95 1.06 1.06
1.5 ≤ Vsign,rel 0.73 0.53 0.63

Table 3.31: Drag coefficient, Cd assignment to sea states based on signif-
icant relative velocity values derived by Frequency Domain model.

Comments

• The Cylinder provides the largest drag coefficients, Cd for all the three
different oscillations comparing to the Bullet and the Cone. This trans-
lates to larger drag forces, Fdrag acting on the Cylinder. This finding
could also be expected by the larger added mass coefficients, a(ω) of the
Cylinder (Figure 3.3). It is reminded that added mass is connected to the
acceleration of water particles around the surface of the design. Larger
acceleration of water particles is reasonable to produce larger viscous ef-
fects.

• The Cone has smaller drag coefficient, Cd than the Bullet for the low
velocity forced oscillation (ωosc = 0.97rad/s, aosc = 0.5m) than the Bullet.
This could be expected by the larger added mass coefficients, a(ω) of the
Bullet comparing to the Cone (Figure 3.3).

• When the forced oscillations become faster, viscous effects become more
significant. These effects cannot be captured by Frequency Domain mod-
els. For the high velocity forced oscillation (ωosc = 0.97rad/s, aosc = 2m),
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the drag coefficient, Cd of the Cone is 20% larger than the one of the Bul-
let. This translates to 20% larger drag forces, Fdrag.

• The method for applying the derived drag coefficients, Cd and keep them
steady for a whole sea state is an approximation aiming to denote the
difference between the oscillation of different designs at different predicted
velocities. It is obvious from results that the drag coefficient, Cd becomes
smaller for higher oscillation velocities and reversely. Comparison and not
accuracy is the aim.

Time Domain Model

The Time Domain Model as presented in § 2.6, including the drag force, Fdrag as
this was estimated in § 3.2.1, was employed for providing Efficiency estimations
for the three final designs. The Efficiency estimations derived by the Frequency
Domain model did not include any viscous effects and so a more physically ac-
curate evaluation is needed. Detailed setup of the Time Domain model can be
found in Appendix C. A time step of 0.1s was employed for assessing all the sea
states for the three final designs and deriving a total average Efficiency. This
time step was derived as sufficient by the Time Domain model validation (see
chapter 5). With this time step, the simulation time for every design lasted
1h30min. The values of the spring stiffness coefficient, ksp and the PTO damp-
ing coefficient, β were kept the same as for the Frequency Domain simulations.
Results and comments are presented.

Average Power Extraction, P̄ per Sea State [kW ]

Cylinder
4.5 3.0 59.7 238.2 533.2 616.9 617.9 582.3 581.2
3.5 2.0 39.0 155.2 335.6 376.5 353.8 358.1 355.6
2.5 1.1 21.6 84.6 178.0 194.9 184.2 185.6 183.5
1.5 0.3 6.1 24.5 55.7 67.1 68.1 67.8 66.8
0.5 0.0 0.9 3.6 7.4 7.8 7.8 7.6 7.5

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.32: Average extracted power, P̄ per sea state for the Cylinder
from Time Domain simulation [kW ].

Bullet
4.5 5.5 80.0 275.0 558.3 613.5 612.9 599.5 591.4
3.5 3.5 51.1 175.6 346.7 362.5 366.9 364.9 351.3
2.5 1.9 27.5 93.9 170.3 188.4 182.5 183.3 181.1
1.5 0.7 9.6 33.1 57.2 66.3 67.2 66.9 65.9
0.5 0.1 1.1 3.8 7.3 7.7 7.6 7.5 7.4

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.33: Average extracted power, P̄ per sea state for the Bullet from
Time Domain simulation [kW ].
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Cone
4.5 26.0 163.3 394.1 527.3 568.3 580.9 587.6 584.8
3.5 16.5 102.9 247.5 322.0 340.8 353.4 351.9 350.5
2.5 8.9 54.8 130.7 163.3 171.7 178.5 181.0 180.1
1.5 3.2 19.7 43.0 58.2 62.9 65.0 65.7 65.3
0.5 0.4 2.3 5.4 6.7 7.1 7.3 7.4 7.3

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.34: Average extracted power, P̄ per sea state for the Cone from
Time Domain simulation [kW ].

Efficiency per Sea State [−]

Cylinder
4.5 0.004 0.06 0.17 0.31 0.31 0.27 0.23 0.22
3.5 0.004 0.06 0.19 0.33 0.31 0.26 0.23 0.22
2.5 0.004 0.07 0.20 0.34 0.31 0.26 0.24 0.22
1.5 0.005 0.05 0.16 0.29 0.30 0.27 0.25 0.22
0.5 0.005 0.07 0.21 0.35 0.32 0.27 0.25 0.22

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.35: Efficiency per sea state for the Cylinder by Time Domain
model.

Bullet
4.5 0.007 0.07 0.20 0.33 0.30 0.27 0.24 0.22
3.5 0.007 0.08 0.21 0.34 0.30 0.27 0.24 0.21
2.5 0.008 0.08 0.22 0.32 0.30 0.26 0.24 0.22
1.5 0.007 0.08 0.22 0.30 0.30 0.26 0.24 0.22
0.5 0.007 0.08 0.22 0.35 0.31 0.27 0.24 0.22

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.36: Efficiency per sea state for the Bullet by Time Domain model.

Cone
4.5 0.03 0.15 0.29 0.31 0.28 0.25 0.23 0.22
3.5 0.03 0.16 0.30 0.31 0.28 0.26 0.23 0.21
2.5 0.04 0.17 0.31 0.31 0.28 0.26 0.24 0.22
1.5 0.04 0.17 0.28 0.31 0.28 0.26 0.23 0.22
0.5 0.04 0.17 0.32 0.32 0.29 0.26 0.24 0.22

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.37: Efficiency per sea state for the Cone by Time Domain sim-
ulation.
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Efficiency Losses per Sea State [−]

Cylinder
4.5 -0.005 -0.03 -0.08 -0.09 -0.02 -0.01 -0.02 -0.01
3.5 -0.005 -0.03 -0.07 -0.08 -0.02 -0.03 -0.01 -0.01
2.5 -0.004 -0.02 -0.06 -0.06 -0.02 -0.02 -0.01 -0.01
1.5 -0.005 -0.04 -0.10 -0.11 -0.03 -0.01 -0.01 -0.01
0.5 -0.004 -0.02 -0.05 -0.05 -0.01 -0.01 -0.004 -0.003

��
���

��Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.38: Efficiency loss per sea state for the Cylinder comparing to
Frequency Domain model. The red area represents the sea states for
which resonance was achieved. The green area represents the sea states
with the highest Efficiency.

Bullet
4.5 -0.005 -0.03 -0.06 -0.06 -0.01 -0.01 -0.01 -0.01
3.5 -0.005 -0.03 -0.05 -0.05 -0.02 -0.01 -0.01 -0.01
2.5 -0.004 -0.02 -0.04 -0.06 -0.02 -0.02 -0.01 -0.01
1.5 -0.005 -0.02 -0.05 -0.09 -0.03 -0.01 -0.01 -0.01
0.5 -0.004 -0.02 -0.04 -0.04 -0.01 -0.01 -0.004 -0.003

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.39: Efficiency loss per sea state for the Bullet comparing to
Frequency Domain model. The red area represents the sea states for
which resonance was achieved. The green area represents the sea states
with the highest Efficiency.

Cone
4.5 -0.01 -0.04 -0.07 -0.02 -0.01 -0.01 -0.01 -0.004
3.5 -0.01 -0.03 -0.06 -0.02 -0.01 -0.01 -0.01 -0.01
2.5 -0.01 -0.03 -0.04 -0.02 -0.02 -0.01 -0.01 -0.004
1.5 -0.01 -0.03 -0.07 -0.02 -0.01 -0.01 -0.004 -0.003
0.5 -0.01 -0.02 -0.03 -0.01 -0.01 -0.003 -0.003 -0.002

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 3.40: Efficiency loss per sea state for the Cone comparing to Fre-
quency Domain model. The red area represents the sea states for which
resonance was achieved. The green area represents the sea states with
the highest Efficiency.

Comments

• For all the three final designs, the Efficiency losses are larger for the sea
states where the buoy is at resonance and for the sea states with the
highest Efficiency.
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• The predicted buoy velocities become larger for sea states where the buoy
is at resonance and consequently the drag forces, Fdrag also become larger,
lowering significantly the Efficiency of wave energy extraction.

• The Cone resonates at less sea states than the Cylinder and the Bullet. As
a result, the Efficiency losses predicted for the Cone appear to be smaller
in total.

Total Average Power Extraction, P̄ [kW ]

Design ¯P [kW ]
Cylinder 107.0

Bullet 109.9
Cone 114.1

Table 3.41: Total average power extraction, P̄ of the three final designs
derived by the Time Domain model simulation [−].

Total Average Efficiency, Eff [−]

Design Eff [−]
Cylinder 0.26

Bullet 0.27
Cone 0.28

Table 3.42: Total average Efficiency, Eff of the three final designs de-
rived by the Time Domain model simulation [−].

Comments

• As it would have been expected by the larger drag coefficient, Cd derived,
the total Efficiency loss for the Cylinder is the largest and equal to −0.06
comparing to the prediction made by the Frequency Domain model.

• The Cone now produces the largest total Efficiency within the three final
designs and equal to 0.28. The Bullet produces a total Efficiency equal
to 0.27.

• The optimum damping coefficient, β is still calculated by Eq. (2.28). Only
the radiation damping, as this is expressed by the radiation damping coeffi-
cient, b(ω), is assessed for defining the optimum PTO damping coefficient,
β. The inclusion of the drag force, Fdrag has induced extra damping for
the motion of the buoy. The position of the optimum PTO damping co-
efficient, β has also shifted as a result of the extra damping introduced.
The configuration is not optimum anymore.

Final Design Selection

The Cylinder has the lowest Efficiency within the three final designs. Addi-
tionally, it produces the largest drag forces, Fdrag as derived by the Forced
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Oscillation Tests conducted, comparing to the other two designs. It is safe to
argue that the Cylinder is the least efficient design. Choice has to be made
between the Bullet and the Cone. The Cone’s Efficiency is 0.01 larger than the
Cone’s. On the other hand, the Bullet resonates for more sea states and pro-
duces larger Efficiency losses than the Cone. This fact can be tackled to some
extent by adjusting the PTO damping coefficient, β especially for the sea states
which have large wave energy contribution and large losses (Tz = 5.5 − 6.5s).
It appears that the Bullet has larger margins for PTO optimization than the
Cone. This hypothesis is tested and validated in § 4.1.2. Furthermore, the fact
that the Bullet achieves its highest Efficiency for the sea states with the high-
est energy contribution (Tz = 6.5s) is still an advantage. So the Bullet will be
the final design for deriving a more physically accurate modeling of the Point
Absorber.

3.3 Summary

The methodology and results for Design Optimization were presented. Three
different sets of designs with varying dimensions were formatted one for each of
the three shapes tested. Frequency Domain model was employed for assessing
the power extraction Efficiency of the tested designs and the most efficient was
selected within each set, namely Cyl8, Bul6 and Con6. Next, a CFD model
was developed for assessing the capacity of each of the three final designs for
producing viscous effects and forces. This capacity was quantified by the deriva-
tion of the so-called drag coefficient, Cd. The three final designs were forced to
oscillate in a numerical wave tank under the same conditions. The Cylinder was
found to produce the largest viscous forces for all the different Forced Oscillation
Tests. The Cone produced smaller viscous forces for low velocity oscillations
than the Bullet but higher for high velocity oscillations. For including the drag
force, Fdrag in the Time Domain model, an alternative approach of estimation
was proposed based on the definition of the stagnation pressure. A test case
was setup for comparing the alternative approach to the one usually used in
literature by dividing the cross-section of the buoy to strips. Good agreement
was found. Next, for deriving the Efficiency of power extraction for the three
final designs the derived drag coefficients, Cd were assigned to every sea state
in the Time Domain model based on the significant relative velocity, Vsign,rel
derived by the Frequency Domain model. The Cylinder was found to have the
largest losses due to viscous damping within the three final designs. The losses
for the Bullet and the Cone were more comparable.The Bullet was selected as
the most efficient design as it resonated closer to the most energetic region of
the scatter diagram. Furthermore, with PTO optimization for taking into ac-
count the viscous damping, it was expected that the Bullet could increase its
Efficiency more than the Cone.
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Chapter 4

Modeling Improvement

4.1 Inclusion of Viscous Forces - Final Model 1

Final Model 1 will be developed so as to include viscous (drag) force more
accurately in the Time Domain model. Methodology and results are presented.

4.1.1 Methodology

The determination of the Keulegan-Carpenter (KC) and the Reynolds (Re) num-
bers for the Forced Oscillation Tests was presented in § 3.2.1. Next, the same
dimensionless quantities have to be specified for the case of a Time Domain
Model simulation, under a specific sea state. In this case, additionally to the
buoy’s motion, water particles oscillate as well as a result of the induced waves.
The maximum velocity, Vm used in Eq. (3.17), will now be replaced by the
instantaneous relative velocity, Vrel between the buoy’s velocity, żb and the
undisturbed water particles’ velocity, w.

Vrel(t) = żb(t)− w(t) (4.1)

This way for every time step of the Time Domain simulation, the KC and the
Re numbers can be determined and matched to the FOT results according to:

KC =
VrelT

D
(4.2)

Re =
VrelD

ν
(4.3)

There is some difficulty in determining the period, T for the KC number as the
waves are irregular. For a fast estimation, the zero-crossing period, Tz can be
used. Otherwise, the wave time series, have to be divided to individual waves
and estimate a different period for every one of these waves. The water particles’
vertical velocity, w(t) is estimated at the center of the bottom of the buoy, in
accordance with the method for calculating the drag force, Fdrag. A definition
matter should be discussed here.

With Final Model 1, the drag coefficient, Cd is adjusted at every time step.
This is possible by producing drag coefficients, Cd for various Reynolds (Re) and
Keulegan-Carpenter (KC) numbers. For the Forced Oscillation Tests (FOT)
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conducted in ComFLOW3, Re and KC numbers were determined for the max-
imum velocity, Vm of the buoy during the oscillation. In Final Model 1 the
determination of Re and KC numbers is based on the actual velocity, żb of the
buoy and not the maximum of every oscillation. It is not possible to know the
velocity of a dynamic system beforehand. Nevertheless, the application of Fi-
nal Model 1 for predicting the force for a Forced Oscillation Test in chapter 5
proved that this approach is a good approximation (Figure 5.3).

Once the real-time determination of KC and Re have been made, a series of
FOT for the final design has to be decided. It is crucial to replicate with FOT
the real-time conditions produced during the Time Domain simulations. For
that reason, the standard deviation of KC and Re will be estimated with Time
Domain simulations, under the assumption that KC and Re follow a normal
distribution. The drag coefficient, Cd is kept equal to the value determined at
the design phase of shape evaluation (see § 3.2). The range for KC and Re is
found by the standard deviations calculation.

4.1.2 Results

A number of Forced Oscillation Tests had to be conducted for the Bullet, so as
the drag coefficient, Cd adjustment to be possible. Using the drag coefficients
derived for Shape Evaluation a Time Domain model simulation was run for
the sea state with Hs = 3.5m and Tz = 6.5s. Reynolds (Re) and Keulegan-
Carpenter (KC) numbers were calculated for every time step of the calculation.
The mean value and the standard deviation (std) of KC and Re were derived
and presented in Table 4.1.

Number Mean std
KC 0.26 0.19
Re 1.62 · 107 1.18 · 107

Table 4.1: Mean and standard deviation of KC and Re numbers derived
by Time Domain simulation.

Based on these values, a set of FOT was formed and it is presented in Table 4.2,
along with KC and Re numbers and the derived drag coefficients, Cd. Scatter
diagrams of the derived drag coefficients, Cd against KC and Re numbers are
presented in Figure 4.1 and 4.2.
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aosc[m] ωosc[rad/s] KC[−] Re[−] Cd[−]
0.59 1.14 0.19 1.38·107 1.85
0.56 0.84 0.18 9.60·106 2.18
0.99 0.97 0.31 1.96·107 1.07
1.24 1.14 0.39 2.91·107 0.75
1.21 0.84 0.38 2.07·107 1.07
1.13 0.74 0.35 1.71·107 1.20
1.64 0.97 0.51 3.24·107 0.67
1.41 0.74 0.44 2.14·107 0.92
3.02 0.97 0.95 5.98·107 0.46
2.35 0.97 0.74 4.65·107 0.59
1.68 0.97 0.53 3.32·107 0.72
0.51 0.97 0.16 9.94·106 2.71

Table 4.2: Forced Oscillation Tests conducted in ComFLOW3 for deriv-
ing drag coefficients, Cd for the Bullet.

Figure 4.1: Scatter diagram of the derived drag coefficients, Cd against
KC number for the conducted Forced Oscillation Tests.
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Figure 4.2: Scatter diagram of the derived drag coefficients, Cd against
Re number for the conducted Forced Oscillation Tests.

Comments

• The drag coefficients, Cd show the same dependency both on KC and Re.
For increasing KC and Re, the drag coefficients decrease exponentially.

• As Reynolds number is easier to be defined for every time step, without
calculating the actual period, T of the wave, it is decided to interpolate
the drag coefficients, Cd with this dimensionless quantity for Final Model
1.

Average Power Extraction, P̄ per Sea State [kW ]

4.5 3.3 67.2 252.7 523.0 582.3 589.7 589.4 582.9
3.5 2.3 40.7 156.3 318.6 352.7 358.5 358.7 354.6
2.5 1.3 21.2 79.6 163.7 182.0 185.2 184.9 182.2
1.5 0.6 8.4 29.7 60.5 67.5 67.8 67.3 66.2
0.5 0.1 1.1 3.9 7.5 7.7 7.7 7.6 7.4

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 4.3: Average extracted power, P̄ per sea state for the Bullet as
derived by Final Model 1 [kW ].
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Efficiency per Sea State [−]

4.5 0.004 0.06 0.18 0.31 0.29 0.26 0.24 0.21
3.5 0.005 0.06 0.19 0.31 0.29 0.26 0.24 0.22
2.5 0.005 0.06 0.19 0.31 0.29 0.26 0.24 0.22
1.5 0.006 0.07 0.19 0.32 0.30 0.27 0.24 0.22
0.5 0.008 0.09 0.23 0.35 0.31 0.27 0.24 0.22

���
���

�Hs[m]
Tz [s]

3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

Table 4.4: Efficiency per sea state for the Bullet as derived by Final
Model 1.

Comments

• Efficiency results, as derived by Final Model 1, are more uniform for sea
states with the same Tz comparing to the results derived by the Time
Domain model with steady drag coefficients, Cd.

• As a result of the nonlinear drag force, Fdrag, the Efficiency decreases
with increasing significant wave height, Hs.

Total Average Power Extraction, P̄ [kW ] and Efficiency, Eff [−]

Design P̄ [kW ] Eff [−]
Bullet 104.3 0.26

Table 4.5: Total average power extraction, P̄ and Efficiency, Eff for the
Bullet as derived by Final Model 1.

Comments

• Final Model 1 provided comparable total average Efficiency to the esti-
mation of the Time Domain model with steady drag coefficients, Cd. The
difference was only 0.01 with Final Model 1 predicting smaller Efficiency.

PTO Damping Coefficient Optimization

Finally, with the damping produced by drag forces estimated with higher ac-
curacy, attention is drawn to the PTO damping coefficient, β. It is expected
that by increasing PTO damping coefficient calculated for the Frequency Do-
main model, the Efficiency will also increase as the extra damping will be taken
into consideration. For the Bullet, the largest Efficiency losses are found for
sea states with Tz equal to 4.5, 5.5s and 6.5s. After running the Final Model
1 some times and by trial and error new values are derived for the optimum
PTO damping coefficient of these sea states. Comparative results are provided
in Table 4.6.
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Model
β[tonnes/s]
Tz = 4.5s

β[tonnes/s]
Tz = 5.5s

β[tonnes/s]
Tz = 6.5s

P̄ [kW ] Eff [−]

Frequency
Domain

156 292 672 125.9 0.31

Final Model 1
(Old β)

156 292 672 104.3 0.26

Final Model 1
(New β)

624 730 874 109.8 0.27

Table 4.6: Total average power extraction, P̄ and Efficiency, Eff es-
timations for different values of the PTO damping coefficient using the
Frequency Domain model and Final Model 1.

Comments

• For sea states with Tz = 4.5s and Tz = 5.5s the Bullet is at resonance.
The significance of the damping induced by drag force, Fdrag can be seen
in the large increase of the PTO damping coefficient, β for these sea states.

• For sea states with Tz = 6.5s, by increasing the PTO damping coefficient,
β it was possible to derive an increase of Efficiency equal only to 0.02
although the largest losses were derived for these sea states. It can be
argued that PTO optimization is more important for sea states where
resonance is achieved.

• The same optimized PTO damping coefficient, β was applied equally to
sea states with the same Tz but different Hs. This is not accurate, as
the drag force, Fdrag induced damping has already been found to increase
with the significant wave height, Hs.

• A more thorough investigation for the optimization of the PTO damp-
ing coefficient is needed in the presence of drag force induced damping.
Nevertheless, by selectively optimizing the PTO damping coefficient by
trial and error, it was possible to increase the total average Efficiency for
more than 0.01 and the total average power extraction for 6kW . A more
extensive and detailed research can increase the Efficency even more.

• The drag force, Fdrag induced damping reduced Efficiency around 0.04
and the total average power extraction, P̄ around 16kW with the partial
PTO damping coefficient optimization implemented, comparing to the
prediction of the Frequency Domain model. The differences by retaining
the PTO damping coefficient, β the same as calculated for the Frequency
Domain model are even larger. This fact signifies the inclusion of drag
force, Fdrag induced damping in the assessment of the various control
strategies applied for Point Absorber operation.

4.2 Inclusion of varying position of the buoy for
wave force estimation - Final Model 2

Final Model 2 is developed so as to assess the influence of the varying position
of the buoy to the excitation force determination. Methodology and results are
presented.
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4.2.1 Methodology

In literature, the excitation force, Fexc included in the Frequency Domain and
the Time Domain models is usually calculated using a BEM code such as
NEMOH. NEMOH, for every discrete frequency of the frequency grid, returns
an amplitude and a phase shift between the surface elevation and the excitation
force. For a single frequency, the time dependent excitation force can be written
as:

Fexc(t) = Fexc,a(ω) cos(−ωt+ εFζ) (4.4)

No space dependency exists in Eq. (4.4) although the buoy has finite 3D dimen-
sions. This happens because the excitation force amplitude, Fexc,a(ω), derived
by NEMOH, is integrated for all the panels, to which the buoy has been divided
(see Figure 2.9). This approach can be valid only if the oscillation of the buoy
is assumed small and so the influence of the dynamic response of the buoy is
neglected. The model now is improved by including this influence in the cal-
culation of the excitation force. As a first step, the excitation force, Fexc is
analyzed to its components.

According to 3D Diffraction Theory (chapter 7 of Journée and Massie (2001)),
Fexc results from the superposition of two components. The so-called Froude-
Krylov Force and the so-called Diffraction Force. The Froude-Krylov Force
results from the pressure field of the undisturbed wave as this is calculated by
Eq. (2.7). From NEMOH the coordinates of the center of every panel are known
and so is the area of the panels. In a Time Domain simulation, at every time
step the coordinates of the centers of the panels have to be updated and a new
pressure, p is calculated for every panel. Integration results to the total Frooude-
Krylov Force at every time step. Next, attention is drawn to the estimation of
the Diffraction Force.

Time step calculation of the Diffraction Force is quite cumbersome. The
reason is that the complexity of the mathematical relations, estimating the
Diffraction Force with 3D Diffraction Theory, it makes it impossible to include
these relations in a Time Domain simulation. The simulation time needed would
be enormous. For that reason another approach is adopted in this report. A
NEMOH simulation is run for the studied buoy at eleven different positions,
with the body deviating from equilibrium position. The time needed for these
simulations is no more than two hours. Then, the same way the time-dependent
excitation force, Fexc(t) was calculated in Eq. (4.4), the Diffraction Force is cal-
culated. NEMOH provides both the amplitudes and the phase shifts for every
frequency component of the Diffraction force. Finally, for every different posi-
tion of the buoy, the time-dependent Diffraction Force is found by interpolation
between the simulated positions.

4.2.2 Results

Final Model 2 is built as described in § 4.2.1. Now, Final Model 1 is expanded
so as to take into account the actual position of the buoy for the calculation of
the excitation force, Fexc. The setup of Final Model 2 is kept the same as Final
Model 1 without changing the PTO damping coefficient. The simulation time
for only a sea state with a time step of 0.1s lasted almost seven hours. For this
reason only one sea state was simulated so as to derive the differences to Final
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Model 1. The sea state with Hs = 3.5m and Tz = 6.5s was used. Comparative
results are presented below.

Model P̄ [kW ] Eff [−]
Final Model 1 318.6 0.31
Final Model 2 327.2 0.31

Table 4.7: Comparison of the average power extraction, P̄ and Efficiency,
Eff for sea state with Hs = 3.5m and Tz = 6.5s as derived by Final
Model 1 and Final Model 2.

Figure 4.3: Excitation force, Fexc comparison between Final Model 1 and
Final Model 2.

Comments

• Final Model 1 underestimated the average power extraction P̄ by 9kW
comparing to Final Model 2. Considering that the average available power,
P̄avail for the simulated sea state is equal to 1032kW the estimated dif-
ference in Efficiency is less than 0.01.

• Final Model 2 proved to be computationally expensive without deriving
significant differences in Efficiency of power extraction comparing to Final
Model 1.

• The force estimation was found to be almost identical between Final Model
1 and Final Model 2. It appears that the estimation of the excitation
force, Fexc at equilibrium position is a rather accurate and computation-
ally cheap method, at least for large buoys as the Bullet. For smaller buoys
where the inertia forces are not so large and the amplitudes of oscillation
are larger, more significant differences might be derived.
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4.3 Summary

The methodology and results for Modeling Improvement were presented. At
first the inclusion of viscous forces in the model with a time-step adjustment of
the drag coefficient, Cd was implemented. A set of Forced Oscillation Tests were
conducted for deriving drag coefficients, Cd for the Bullet. Dimensionless quan-
tities, Reynolds and Keulegan-Carpenter numbers were employed for parame-
terizing the drag coefficient under various flow conditions around the buoy. The
assumption to adjust the drag coefficient in Final Model 1 based on the actual
and not the maximum velocity of the oscillation in irregular waves was made.
The Bullet was found to produce an average Efficiency of 0.26 reduced by 0.05
comparing to the prediction of the non-viscous Frequency Domain model. Af-
ter selective PTO damping coefficient optimization, it was managed to increase
the predicted Efficiency by more than 0.01 and the predicted average power
extraction by more than 6kW . Next, Final Model 2 was built for assessing the
influence of the varying position of the buoy to the excitation force estimation.
The model was adjusted so as to calculate the separately the Froude-Krylov
and the Diffraction force in a time step manner. Final Model 2 proved to be
very expensive in computational effort without providing significant additional
information to the final power prediction.

69



Chapter 5

Model Validation

It is important to provide validation of the models used for deriving the results
presented in the previous chapters. Validation will be implemented in two steps.
First, the Time Domain model without including drag force, Fdrag will be com-
pared to the Frequency Domain model. These are supposed to be identical in
the absence of Fdrag. Next, Final Model 1 will be validated. Two test cases will
be built in ComFLOW3 and the model’s force prediction will be compared to
the force outcome of ComFLOW3.

5.1 Time Domain Model vs Frequency Domain
Model

The two models will be compared by their prediction of the buoy’s position.
For the Time Domain model the buoy’s position is part of the numerical so-
lution. For the Frequency Domain model, the buoy’s position for a specific
time period has to be calculated based on the frequency characteristics derived
in § 2.5.2. The Response Amplitude Operator (RAO) (Eq.2.29) and the phase
shift between the incoming wave and the buoy’s response (Eq.2.32) are used.
The time-dependent buoy’s vertical position, as calculated by the Frequency
Domain model is given by:

zb(t) =

N∑
n=1

RAO(ωn) · ζa(ωn) · cos(ωnt+ εn + εzζ) (5.1)

Three choices had to be made. The frequency range was decided to be equal
to 0.1 − 4rad/s so as to be as large as possible. The frequency interval, ∆ω
was set to an initial value of 0.01rad/s. Finally, the time step for the numerical
solution of the Time Domain model which was set to an initial value of 0.1s. In
Figure 5.1, the comparison of the predicted buoy’s position by the two models
is presented.
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Figure 5.1: Comparison between the buoy’s position calculated by the
Frequency Domain model and the Time Domain model with a frequency
interval of 0.01rad/s and a time step of 0.1s.

As it can be noticed the agreement between these two calculations is quite bad
although both the models predicted almost the same power extraction. The
first idea to tackle this problem was the decrease of the time step to 0.01s.
No improvement was derived. Next, attention was drawn to the frequency
interval, ∆ω. It was expected that especially for the Impulse Response Function
(IRF) the decrease of the frequency interval would produce higher accuracy.
A frequency interval of 0.001rad/s was chosen. The comparative results are
shown in Figure 5.2. A perfect match between the two solutions is achieved.
The important conclusion is that for shifting from the Frequency Domain to the
Time Domain a high frequency resolution is needed, especially for the estimation
of the IRF. Furthermore, it is found that a time step of 0.1s provides sufficient
accuracy. The fourth order accurate scheme of Runge-Kutta allows for larger
time step. This is quite important because the frequency interval dictates also
the duration of the simulation time. As the irregular sea surface is constructed
by the superposition of harmonic waves, the produced wave signal is supposed
to repeat itself every 2π

∆ω seconds. For a frequency interval of 0.001rad/s the
minimum simulation time is equal to 6283s.

71



Figure 5.2: Comparison between the buoy’s position calculated by the
Frequency Domain model and the Time Domain model with a frequency
interval of 0.001rad/s and a time step of 0.1s.

5.2 Final Model 1

Final Model 1, as presented in chapter 4, is now validated. It has already
been shown that the assumption of calculating the excitation force, Fexc at
equilibrium position is valid. Final Model 1 and Final Model 2 produce highly
comparable results. For that reason Final Model 1 will be used for validation. It
is reminded that in Final Model 1 a step-by-step drag coefficient, Cd adjustment
was implemented. For this validation, comparison will be made between the
total force calculated by the model and ComFLOW3. For the first case the
buoy oscillates in otherwise still water, as in the case of the Forced Oscillation
Tests presented in § 3.2.1. The amplitude of oscillation, aosc is set to 0.59m.
The frequency of oscillation, ωosc is set to 1.14rad/s The forces acting on the
buoy are repeated here:

• Radiation force, Frad

• Added mass force, Fadd

• Drag force, Fdrag

• Hydrostatic force, Fhyd

The sum of the forces reads:

Fnet = Fhyd + Frad + Fdrag + Fadd (5.2)

Comparative results are presented in Figure 5.3. A rather good agreement is
found between the two force calculations. It can be deducted that the calculation
of the linear added mass force, Fadd and linear radiation force, Frad with values
calculated by NEMOH is a good approximation at least for oscillations of this
magnitude.
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Figure 5.3: Comparison between the total force calculated by the Final
Model 1 and ComFLOW3 for the case of a Forced Oscillation Test.

Next, another test case is considered. A forced oscillation of the buoy is again
imposed. The amplitude of oscillation, aosc is set to 1m and the frequency of
oscillation, ωosc is set to 0.97rad/s. Additionally, a regular wave is imposed.
The wave height, H of the wave is set to 1m and the frequency of the wave, ω is
set to 0.97rad/s. Complementary to the sum of forces assessed for the previous
test case, an excitation force, Fexc is also present. The new sum of the forces
reads:

ΣF = Fhyd + Fexc + Frad + Fdrag + Fadd (5.3)

Comparative results are presented in Figure 5.4. A relatively good agreement
has been found between the two models, although not as good as in the pre-
vious case. This can be attributed mainly to two reasons. The Linear Wave
Theory used for the calculation of the excitation force, Fexc in Final Model 1 is
probably the main source of inaccuracy. The second can be the superposition
principle used for the forces summation in the presence of waves. Neverthe-
less, the difference in the peak force as this is estimated by the two models
is only 3%. Considering that the ComFLOW3 simulation for producing this
force signal lasted six days, it can be argued that Final Model 1 has a high
practical value with a quite acceptable accuracy. Finally, the analysis made is
based on the assumption that the CFD code ComFLOW3 returns by definition
a more physically realistic solution. It should be noted here that CFD codes
are also subjected to a large variety of inaccuracies. Reflection on the numerical
boundaries and numerical instabilities are the most common.
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Figure 5.4: Comparison between the total force calculated by the Final
Model 1 and ComFLOW3 for the case of a Forced Oscillation Test under
wave forcing.

5.3 Summary

The solution for the position of the buoy was derived both by Frequency and
Time Domain model without drag force. It was found that a rather fine fre-
quency resolution of 0.001rad/s was needed for deriving good agreement be-
tween the two solutions. Next, Final Model 1 was used so as to estimate the
total force exerted on the buoy during a Forced Oscillation Test. The estima-
tion of Final Model 1 was compared to the one derived by ComFLOW3. Rather
good agreement was derived. Finally, Final Model 1 was used so as to estimate
the total force of an oscillating buoy in the presence of a regular wave. The
estimation of Final Model 1 was again compared to the one derived by Com-
FLOW3. Good agreement was derived but not as good as the one derived for
the case without waves. In any case the difference in the peak force was found
to be less than 3% which can be considered satisfactory.
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Chapter 6

Discussion

In this chapter, aspects of the adopted methodology and results are further
discussed.

6.1 Methodology

An important part of this study is the determination of drag coefficients, Cd
by Forced Oscillation Tests (FOT). The method used and presented in § 3.2.1,
measured the energy transfer of waves generated by the oscillation of the buoy.
Journée and Massie (2001) propose a method for deriving the radiation damping
coefficient, b(ω) by similar tests. This is implemented by measuring the wave
height of the radiated waves and by applying the energy relations of Linear Wave
Theory (LWT). With radiation damping coefficient, b(ω) defined, the radiation
force, Frad can be calculated by Eq. (2.20). This method has a number of
drawbacks. It assumes that the radiated wave is purely sinusoidal so as to
make use of the energy relations of LWT. It was found that especially for the
faster FOT conducted, the shape of the radiated waves deviated from sinusoidal
shape. The radiated waves due to non-linearities assessed in wave propagation
by ComFLOW3, had smaller troughs and higher crests. Moreover, the final
radiation force is estimated by Eq. (2.20), which is also a linear approximation of
the radiation force. Applying LWT for the determination of the drag coefficient,
Cd discards valuable information which can be derived by ComFLOW3. The
method proposed in this report used raw data derived by ComFLOW3 without
applying LWT assumptions. Still, the method’s accuracy is limited by two
factors. The first factor is the assumption that no wave attenuation took place
between the point the radiated wave was generated and the point the wave
energy transfer was measured. The second factor is the fitting method used so
as to derive the final drag coefficient, Cd (see § 3.2.1). In any case the method
proved to be consistent through the various FOT conducted using as much as
possible data of the fully viscous solution provided by ComFLOW3.

Another important implementation had to do with the estimation of the
drag force, Fdrag. The strip method, which divides the buoy in strips and then
integrates over the whole length of the buoy is usually proposed in literature
(Journée and Massie, 2001), (Chakrabarti, 2005). This method is mainly pro-
posed for calculating the in-line drag force, Fdrag, i.e. the force in the direction
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of wave propagation. For the case of the Point Absorber, the vertical force is
needed. In that case, it cannot be argued that every horizontal strip is indepen-
dent on the other. The velocity field of one strip is influenced by the velocity
field of neighboring strips. The method proposed in this report provides a more
physical meaningful approach for calculating the drag force, Fdrag based on the
relation for the stagnation pressure (Eq. 3.22). This way, the drag coefficients,
Cd calculated by FOT without water particles’ motion due to waves can be used
so as to satisfy the relative velocity, Vrel approach also for an oscillating buoy in
waves without dividing the buoy in strips. Furthermore, this method is cheaper
in computation time.

Finally, before continuing with the discussion about the derived results, it
is important to remark a number of limitations to which all the models used in
this report are subjected . These limitations can be summarized as:

• In all models, the calculation of the excitation force, Fexc is based on
Linear Wave Theory (LWT). For high and/or steep waves the calculation
can be rather inaccurate.

• LWT and DiffractionTheory is also employed for calculating the radiation
coefficient, b(ω), the added mass, a(ω) and the Impulse Response Function,
(IRF).

• The PTO device was assumed to deliver damping force to the system in a
completely linear manner. In reality, this will never be the case and losses
due to the PTO device will always be present. The same stands also for
the spring stiffness coefficient, ksp.

• The waves considered via the JONSWAP spectrum are unidirectional
without spreading.

6.2 Design Optimization

Three different shapes with predetermined dimensions for the buoy of the Point
Absorber were evaluated. For every shape the most efficient dimensions were de-
rived (Cyl8, Bul6, Con6). There is no guarantee that the derived most efficient
designs have the optimum dimensions in terms of wave power extraction. Nev-
ertheless, valuable experience was gained by studying the results of the various
designs tested.

A general goal for optimizing the dimensions of a certain shape is to derive
the dimensions which maximize the average power extraction for sea states with
the highest available energy through the year. Cyl9 was found to have a total
average Efficiency equal to 0.30. Its highest Efficiency was derived for sea states
with Tz = 7.5s. These sea states have less available energy than sea states with
Tz = 6.5s. Cyl8, which proved to be the most efficient design (Eff = 0.32)
within the Cylinder set, had its highest Efficiency for these sea states. With the
general goal of dimensioning defined it is interesting to discuss how optimum
dimensions for a certain shape can be derived.

First, the properties of wave energy extraction are discussed. An optimum
configuration of a specific design for the spring stiffness coefficient, ksp and the
PTO damping coefficient, β is given by Eq. (2.27) (2.28). Optimum configura-
tion of the device for a specific sea state does not mean that the design is the
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optimum for wave energy extraction by this sea state. This is highlighted by
the fact that the highest Efficiency of every design is achieved for sea states
where the resonance condition (Eq.2.27) is not satisfied. So as to interpret this
finding, the equation of instantaneous power extraction is repeated here.

P (t) = Fptożb = βż2
b

The wave power extraction depends on the PTO damping coefficient and buoy’s
velocity, żb. The optimum PTO damping coefficient, β is calculated by Eq. (2.28).
It depends partially on the radiation damping coefficient, b(ω) and partially on
the achievement of resonance. On the other hand, the buoy’s velocity, żb inter-
acts with all the features of the system. It increases with resonance, it decreases
with increasing PTO damping coefficient, β and it decreases with increasing ra-
diation damping coefficients, b(ω). The system is highly complex, especially
when the response to irregular waves is assessed. It is better to derive a more
physical, rather than mathematical, explanation to the fact that for every de-
sign the highest Efficiency is achieved for sea states for which the optimum
configuration is not satisfied at least for Eq. (2.27). Falnes (1997) described the
process of optimum wave energy extraction as a phenomenon of optimum wave
destructive interference between incoming and radiated waves. It is not possible
to predict this optimum wave destructive interference for the case of irregular
sea states and even more to calculate which design can create it. Nevertheless,
this perspective gives a reasonable explanation to why for every design the high-
est Efficiency is achieved for sea states where the velocities are not enhanced
by resonance. For the given wave energy spectrum used (JONSWAP) and its
energy distribution, resonance and higher buoy velocities cannot coincide with
optimum radiation damping.

Now that the mechanism of wave energy conversion has been interpreted,
the next step of the analysis is to examine how the dimensions of the buoy can
influence power extraction. For the reasons of this examination the Cylinder
set of designs will be used. The two examined dimensions are the total length
(draft) of the Cylinder, TD and its radius, R. Cyl2, Cyl5 and Cyl8 will be
used as they have the same length (TD = 10m) and different radii, R = 5m,
R = 7.5m and R = 10m respectively, for examining the influence of the radius,
R . For examining the influence of the draft, TD of the Cylinder, Cyl4, Cyl5
and Cyl6 will be used. Comparative figures are presented.

Figure 6.1: Added mass, a(ω) for Cyl2, Cyl5 and Cyl8 with their radius
equal to 5m, 7.5m and 10m respectively.
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Figure 6.2: Damping, b(ω) for Cyl2, Cyl5 and Cyl8 with their radius
equal to 5m, 7.5m and 10m respectively.

Figure 6.3: Excitation force, Fexc(ω) for Cyl2, Cyl5 and Cyl8 with their
radius equal to 5m, 7.5m and 10m respectively.

Figure 6.4: Added mass, a(ω) for Cyl4, Cyl5 and Cyl6 with their draft
equal to 5m, 10m and 15m respectively.
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Figure 6.5: Damping, b(ω) for Cyl4, Cyl5 and Cyl6 with their radius
equal to 5m, 10m and 15m respectively.

Figure 6.6: Excitation force, Fexc(ω) for Cyl4, Cyl5 and Cyl6 with their
radius equal to 5m, 10m and 15m respectively.

The following conclusions can be drawn:

• Added mass, a(ω) increases with radius, R. For increasing draft, TD the
added mass is increased only for frequencies larger than 0.5rad/s.

• Damping, b(ω) increases with radius, R and decreases as the buoy’s draft,
TD increases.

• The excitation force, Fexc(ω) increases with radius, R and decreases with
draft, TD.

A general goal for the dimensioning of the buoy has been discussed. Locating
the highest Efficiency at the sea states with the highest energy contribution is
the most obvious and reasonable choice regardless of achieving resonance or
not. Then the influence of radius, R and draft, TD of the buoy was analyzed in
terms of the hydrodynamic coefficients, a(ω) and b(ω) and the excitation force,
Fexc. Next step would be to derive an optimization process for the dimensions
of a certain shape, different to the evaluation of a predetermined set of designs
used in this study. As already shown, wave energy extraction is a complicated
procedure and every change in dimensions has a multiple impact on the system’s
components. Based on this, it is advised to handle the dimensioning process
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by optimizing one dimension at the time. As already shown, the significance
of the radius, R of the buoy is high, as it determines the average available
energy, P̄avail to the buoy. Radius, R influences both the parts which determine
Efficiency. A steady average draft, TD can be considered and various radii can
be tested. Once the most efficient radius, R is derived then several different
drafts, TD of the buoy can also be tested. Mass or equivalently volume can be
a guide for further optimization. Keeping the mass/volume close to the value of
the most efficient design derived by radius, R and draft, TD optimization, can
help deriving an even more efficient design by alternating both these dimensions.
The process can be indefinite without providing any definitive design. As shown
by (Wellens, 2004), a maximum Efficiency of 40% is difficult to be exceeded for
a specific sea state. Deriving an Efficiency of this magnitude for the target sea
states can be a stopping criterion for optimizing dimensions. Cyl8 and Bul6
achieved this Efficiency for the most energetic sea states (Tz = 6.5s).

6.3 Modeling Improvement

Final Model 1 signified the importance of the drag force, Fdrag inclusion in the
model. The most interesting finding is the large increase of the optimum PTO
damping coefficient, comparing to the one calculated for Frequency Domain
model, especially for sea states where the Point Absorber is at resonance with
the peak frequency, ωp. This is clearly seen in Table 4.6. It is certain that the
position of the optimum PTO damping coefficient, β has shifted as a result of the
extra damping induced by drag force, Fdrag. With selective PTO optimization
implemented, the loss of average power extraction comparing to the Frequency
Domain model was 16kW and the Efficiency loss was equal to 0.04. A loss of
power extraction of more than 10% cannot be ignored and it is reasonable to
argue that drag force should be included also in the design phase of the buoy.
The main problem to tackle is the parameterization of the drag coefficient, Cd
applying for different designs.

Regarding the dimensions of the buoy, it is not expected that the drag co-
efficients are much influenced by the draft, TD of the buoy. The radius, R
influences both the Re and KC numbers as these are dependent on the buoy’s
diameter. An analysis on how different radii influence the drag coefficients, Cd
and the drag force, Fdrag is made. Three Forced Oscillation Tests are set for
three different Bullet designs. Three different radii are considered, i.e. R = 5m,
R = 7.5m and R = 10m. The length of the cylindrical part of these designs is
set to CL = 10m, CL = 7.5m and CL = 5m respectively, so as all the designs
to have the same draft, TD. The oscillation amplitude is set to aosc = 1.30m
and the oscillation frequency is set to ωosc = 0.97rad/s. Drag coefficient results
are presented in Table 6.1. The drag force produced for every design during
oscillation is given in Figure 6.7.
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R[m] KC[−] Re[−] Cd[−]
5 0.82 1.3 · 10−7 0.61

7.5 0.54 1.9 · 10−7 0.77
10 0.41 2.6 · 10−7 0.81

Table 6.1: Drag coefficient results for Bullet designs of R = 5m, R = 7.5m
and R = 10m.

Figure 6.7: Drag force, Fdrag produced during oscillation for Bullet de-
signs of radius, R = 5m, R = 7.5m and R = 10m.

It is noticed in Table 6.1 that the for increasing Reynolds numbers the drag co-
efficients, Cd also increase which is the opposite pattern comparing to when the
FOT were conducted for the same design (Figure 4.2). On the other hand, the
derived drag coefficients decrease with increasing Keulegan-Carpenter numbers
as it also happened for the FOT presented in chapter 4. The newly derived
drag coefficients are fitted into Figure 4.1. In Figure 6.8, it is observed that
although two of the new derived drag coefficients, correspond to Bullet designs
of different diameter, the fitting is quite good. More tests should be made for a
safe conclusion but it seems that the Keulegan-Carpenter number can be used
for the parameterization of the drag coefficients of designs with the same shape
but different diameters. Assuming that a way to parameterize the drag coeffi-
cient, Cd for different designs has been derived, the dimensioning process can be
supplemented with the Time Domain estimation of damping induced by drag
forces at least for the target sea states.
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Figure 6.8: Drag coefficients plotted against Keulegan-Carpenter num-
bers. The red circles correspond to the results of the FOT conducted for
the Bullet as presented in chapter 4. The blue circles correspond to the
FOT presented in this chapter.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

The objectives of this study were presented in § 1.3. They were summarized as:

1. Derivation of an efficient design for the hull of the Point Absorber’s buoy
in terms of shape and dimensions and with respect to the studied wave
climate.

2. Derivation of a simplified model for the Point Absorber including viscous
forces and the influence of the dynamic response of the buoy to the wave
force estimation.

Relative to these objectives, research questions and sub-questions were format-
ted and they were presented in 1.3. Answers on these questions based on the
conducted study are presented.

What is the most efficient design?
Within the twenty-one different designs evaluated, Bul6 was chosen as the most
efficient design. The reasons for this choice can be summarized as:

• Bul6 achieved its highest Efficiency for sea states with the highest energy
contribution.

• Bul6 produced less drag forces, Fdrag for fast oscillations through the
water surface, comparing to Cyl8 and Con6.

It is not possible to argue that Bul6 is the most efficient design in general. As
it is already discussed, the derivation of the most efficient design is a rather
tedious task. Nevertheless, Bul6 achieved a total average Efficiency of 0.31 for
the Frequency Domain model and an Efficiency of 0.27 after the drag force,
Fdrag was included and modeled in detail by Final Model 1. It can be argued
that the predicted overall performance of Bul6 is satisfactory.
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How does the shape of the buoy influence power production Effi-
ciency?
The shape of the buoy determines its added mass, a(ω), its radiation damping
coefficient, b(ω) and the excitation force, Fexc(ω). It is important for the dy-
namic response of the buoy as it influences the resonance properties of the buoy
and its wave making capacity. The most significant influence of the shape can
be argued that it is its potential in producing viscous effects. It was found that
the Cylinder designs tend to produce larger drag forces, Fdrag and reasonably
should be avoided.
How do the dimensions of the buoy influence power production Effi-
ciency?
The dimensions of the buoy influence its resonance properties (Eq.2.27). The
radius, R and the draft, TD determine the mass of the buoy. It has been ob-
served that there is connection between the mass or equivalently the underwater
volume of the buoy and the region of the scatter diagram for which the Point
Absorber achieves its highest Efficiency. Furthermore, the dimensions of the
buoy also influence its radiation damping coefficient, b(ω) and the excitation
force, Fexc(ω). Additionally, it has been shown that the drag force, Fdrag in-
creases with increasing radius, R. It is not possible to decouple the influence
of dimensions from the influence of the shape of the buoy. For different shapes
different optimum dimensions are derived.

In what way should different designs be evaluated so as the most ef-
ficient to be chosen?
Power extraction Efficiency is a coupled optimization problem both for the
shape and the dimensions of the buoy. Moreover, the presence of size, physical
or operational restrictions is a third factor to be accounted in the optimiza-
tion problem. At first, the various shapes to be evaluated are chosen. Then
for every different shape, the dimensions which maximize its Efficiency have
to be derived. A procedure, as described in § 6.2 can be followed. It is im-
portant to include in the optimization process the influence of the drag force,
Fdrag by Time Domain simulations. The method for deriving drag coefficient,
Cd, presented in § 3.2.1, can be used for for deriving drag coefficients for the
design. Furthermore, dimensionless numbers such the Keulegan-Carpenter and
the Reynolds numbers can be used for applying drag coefficients to designs with
different dimensions as shown in § 6.3. Finally, once the evaluated shapes are
optimized in dimensions, their Efficiency can be compared by simulations with
a model such Final Model 1.

How to improve the Point Absorber’s modeling?
In order to improve modeling for Point Absorbers, the main goal is to describe
the physical processes of the wave/buoy interaction in a physically accurate
manner. An important aspect of the modeling process is the time needed by
model so as to return Efficiency estimations. Final Model 1 was derived in
order to assess the influence of the drag force, Fdrag which is neglected by the
Frequency Domain model. The simulation of a full sea state lasted less than two
minutes. It can be argued that Final Model 1 increased the physical accuracy
of the Point Absorber’s modeling in a quite affordable, in computational effort,
manner. On the other hand, Final Model 2 was derived so as to assess the influ-
ence of changing position of the buoy for the calculation of the excitation force,
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Fexc. It was found that for the studied case the predicted Efficiency difference
was less than 0.01. Final Model 2 needed around six hours so as to simulate a
full sea state. It can be argued then that Final Model 2 produced small addi-
tional physical information comparing to the huge increase of the computation
effort.

How viscous damping can be estimated and included in the model?
Viscous damping is produced by the influence of viscous effects to the pressure
field around the buoy. It is quantified by a drag force, Fdrag acting opposite to
the buoy’s velocity, żb. A method for calculating this drag force was presented
in § 3.2.1. The method is based on the definition of stagnation pressure, pst.
Drag coefficients, Cd for a range of different flow and oscillation regimes can be
estimated via Forced Oscillation Tests conducted in a numerical computation
basin with the aid of a CFD code such ComFLOW3. The drag force, Fdrag
calculation was included in Final Model 1 by adjusting the drag coefficient,
Cd for every time step. The validation of the model presented in chapter 5
provided satisfactory agreement between the force prediction of the model and
ComFLOW3.

How wave force can be estimated more accurately and included in the
model?
With Final Model 2 the influence of changing position of the buoy to the cal-
culation of the excitation force, Fexc was assessed. The force was split in two
parts. The Froude-Krylov force and the Diffraction force as explained in 4.2.1.
Linear Wave Theory and 3D-Diffraction Theory were used again but in a time
step assessment. It was found that the difference to the excitation force, Fexc
assessment between Final Model 1 and Final Model 2 was not significant while
the time needed for simulations with Final Model 2 was rather large. It can
be concluded that the assumption of calculating the excitation force, Fexc at
equilibrium position is a rather accurate assumption at least for large buoys as
the ones studied in this report. Finally, it should be noted that with also the
position influence of the buoy assessed, Linear Wave Theory cannot provide
any more physical accuracy in the calculation of the excitation force, Fexc. It
might be important to assess the behavior of the excitation force, Fexc via fully
viscous and nonlinear simulations as the ones produced by ConFLOW3.

What is the significance of the additions implemented to the linear
model and how do they influence power production?
As already discussed, the two additions implemented in this study were the in-
clusion of drag force, Fdrag and the time step evaluation of the excitation force,
Fexc. The latter proved to have minor influence in the Efficiency prediction for
the Point Absorber. On the other hand, the influence of the drag force, Fdrag
was found to be quite important. The viscous damping produced by Fdrag
reduced the power extraction more than 10% compared to the prediction by
Frequency Domain model. Additionally it was shown in chapter 4, the position
of the optimum configuration of the PTO damping coefficient, β (Eq.2.28) shifts
to larger values as a result of the extra damping induced to the buoy’s motion.
This shift was larger for sea states where the natural frequency of the buoy
coincided with the peak frequency, ωp of the sea state. It can be concluded that
viscous damping is important to be assessed both for Efficiency predictions and
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in any control strategy applied for maximizing the power extraction of the Point
Absorber.

7.2 Recommendations

Based on the knowledge acquired during this study, a number of recommenda-
tions regarding further research for Point Absorbers is discussed.

Excitation Force Estimation
With Final Model 2 the varying position of the buoy was included in
the estimation of the excitation force, Fexc. Linear Wave Theory and
3D-Diffraction Theory cannot provide any more accuracy. It would be
important to make a nonlinear assessment of the excitation force without
the inherent assumptions of Linear Wave Theory. Especially for the case
of irregular waves of variable steepness, the linear approximation of the
excitation force may be quite inaccurate. Computational Fluid Dynamics
codes provide the potential for conducting such experiments with low cost
and in relatively short time.

Radiation and Restoring Forces
In this study, a linear approximation of the radiation force, Frad and the
restoring force, Fres was made. For large amplitude oscillations, especially
during resonance, linear approximation can be a source of significant in-
accuracy in the prediction of the dynamic response of the buoy. System
Identification Theory and numerical experiments with a Computational
Fluid Dynamics code can be used for developing a dynamic model mim-
icking the nonlinear behavior of the radiation and restoring forces. Such
studies have been presented by Perez and Fossen (2009) and Taghipour
et al. (2008).

PTO Device
In this study the PTO device was modeled as a linear damper. In reality,
this cannot be valid and the inclusion of power losses due to the PTO
device will always be present. The PTO device has to be modeled more
accurately. Cargo (2012) made an extensive study for the modeling of
the PTO device and his results can be used for further improvement of
the Point Absorber’s modeling. Furthermore, in this study, no restrictions
regarding the size and subsequently the delivered force by the PTO device
were applied. This approach can lead to an uneconomic design for the
Point Absorber. Dimensioning of the buoy should be made in combination
to a PTO device size which can maximize the economic benefit of power
extraction.

Multiple Point Absorbers
A way to sustain Point Absorber -wave energy conversion more profitable
is to create at selected locations farms of closely spaced Point Absorbers.
In this case, modeling should be extended so as to include the hydrody-
namic interaction of the Point Absorbers operating closely. Furthermore,
it would be important to include the directional spreading of waves which
was neglected in this study.
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Appendix A

The term, WEC, applies to a large variety of structures of different designs,
whose aim is to turn the wave energy into electrical power. In general, the
function of a WEC relies on taking advantage of the pressure variations, hor-
izontal or vertical, produced by the varying sea surface of waves. A generator
connected to the WEC device turns the produced motion into electrical power.
According to Drew et al. (2009), despite of the large variation of designs, WECs
are usually categorized by location and type.

In terms of location, WECs are characterized as onshore or offshore devices.
Onshore devices exist close or attached to shoreline and they are assumed to
function under shallow water conditions while offshore devices are positioned
further away from the shore and they are assumed to function under deep water
conditions. The advantages of onshore type of WECs are the cheaper construc-
tion and maintenance costs, the smaller danger of damage as a result of extreme
wave conditions and the proximity to the electrical network comparing to the
offshore WEC. The significant disadvantage is the lower energy that waves carry
close to the shore as a result of wave attenuation in the surf zone. Also the tidal
range is important for onshore WECs. On the other hand, offshore devices
are capable of harnessing larger amounts of wave energy but installation and
maintenance are difficult and costly.

The type classification is presented according to The European Marine En-
ergy Centre Ltd. (EMEC)(EMEC Website). Eight general types of WEC de-
vices are identified:

1) Attenuator:
An attenuator is a floating device which operates parallel to the direction
of wave propagation and effectively rides the waves. These devices capture
energy from the relative motion of their arms as the wave passes by them
(Fig.8.1). An example of an installed attenuator is the Pelamis Wave
Energy Converter, first time connected to the UK grid in 2004.

2) Point absorber:
A point absorber is a floating structure which absorbs energy from all
directions through its movements at/near the water surface. It converts
the motion of the buoyant top relative to the base into electrical power.
The power take-off system may take a number of forms, depending on the
configuration of displacers/reactors (Fig.8.2). Examples of installed point
absorber are the PowerBuoys manufactured by Ocean Power Technology
in Pennington, New Jersey.

3) Oscillating wave surge converter (OWSC):
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Oscillating wave surge converters extract energy from wave surges and
the movement of water particles within them. The arm oscillates as a
pendulum mounted on a pivoted joint in response to the movement of
water in the waves (Fig.8.3). The first OWSC prototype, Oyster1 was
installed by Aquamarine Power in 2009 at EMEC in Orkney, UK and
delivered electric power to the grid.

4) Oscillating water column (OWC):
An oscillating water column is a partially submerged, hollow structure. It
is open to the sea below the water line, enclosing a column of air on top of
a column of water. Waves cause the water column to rise and fall, which
in turn compresses and decompresses the air column. This trapped air is
allowed to flow to and from the atmosphere via a turbine, which usually
has the ability to rotate regardless of the direction of the airflow. The
rotation of the turbine is used to generate electricity (Fig.8.4). LIMPET
at the Isle of Islay in Scotland is an example of installed OWC device. It
was installed in 2001.

5) Overtopping/terminator device:
Overtopping devices capture water as waves break into a storage reservoir.
The water is then returned to the sea by passing through a conventional
low-head turbine which generates power. An overtopping device may use
”collectors” to concentrate the wave energy (Fig.8.5). The Wave Dragon
device is an example of overtopping devices firstly installed in 2003 in
Denmark.

6) Submerged pressure differential (SPD):
Submerged pressure differential devices are typically located near shore
and attached to the seabed. The motion of the waves causes the sea
level to rise and fall above the device, inducing a pressure differential in
the device. The alternating pressure pumps fluid through a system to
generate electricity (Fig.8.6). Archimedes Wave Swing is an example of
an SPD device successfully tested for the first time in 2004 off the coast
of Portugal.

7) Bulge wave:
Bulge wave technology consists of a rubber tube filled with water, moored
to the seabed heading into the waves. The water enters through the stern
and the passing wave causes pressure variations along the length of the
tube, creating a ‘bulge’. As the bulge travels through the tube it grows,
gathering energy which can be used to drive a standard low-head turbine
located at the bow, where the water then returns to the sea (Fig.8.7). The
Anaconda Wave Energy device is an example of a Bulge Wave which is
still in development phase.

8) Rotating mass:
Two forms of rotation are used to capture energy by the movement of
the device heaving and swaying in the waves. This motion drives either
an eccentric weight or a gyroscope causes precession. In both cases the
movement is attached to an electric generator inside the device (Fig.8.8).
An example of a rotating mass device is the Penguin by Wello tested
between 2011 and 2014 at EMEC, Orkney,UK.
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Figure 8.1: Attenuator device Figure 8.2: Point absorber device

Figure 8.3: Oscillating wave
surge device

Figure 8.4: Oscillating water col-
umn device

Figure 8.5: Overtopping termina-
tor device

Figure 8.6: Submerged pressure
differential device

Figure 8.7: Bulge wave device Figure 8.8: Rotating mass device
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Appendix B

The setup of the Forced Oscillation Tests (FOT) in ComFLOW3 is presented.
Specifically, the structure of the computational domain and boundary conditions
are discussed.

All the buoys simulated by ComFLOW3 were axisymmetric. This fact al-
lowed for the implementation of two symmetry planes as boundary conditions
for decreasing the size of the computational domain and subsequently decreas-
ing the total time of simulation. Specifically, an xz− symmetry plane was
implemented at y = 0 and a yz− symmetry plane was implemented at x = 0.
Furthermore, three different grid size layers were implemented. Close to the
structure, a fine grid size was implemented for achieving increased accuracy in
the interaction between water and the surface of the buoy. The size of the com-
putational cells close to the buoy was set to dx = dy = dz = 12.5cm. A ×2
coarsening of the grid size was implemented for the other two grid size layers
leading to dx = dy = dz = 25cm and dx = dy = dz = 50cm respectively. An
overview of the computational domain is presented in Figure 8.9.

(a) Top view of the computational
domain (xy−plane)

(b) Side view of the computational
domain (xz−plane)

Figure 8.9: Overview of the computational domain implemented in Com-
FLOW3 for the Forced oscillation Tests conducted.

Next, the rest of the boundary conditions implemented are discussed. Two
Generating Absorbing Boundary Conditions (GABC) had to be implemented.
Dissipation of the energy of the radiated waves had to be achieved so as to
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avoid reflections by the boundaries. The frequency of the radiated waves coin-
cides with the frequency of the forced oscillation of the buoy, ωosc. Optimum
dissipation had to be achieved for this wave frequency. Sommerfeld boundary
conditions were implemented for the boundaries at x = 25m and y = 25m ac-
cording to Eq. (2.46). The wave number, k was calculated according to the dis-
persion relationship of Linear Wave Theory (Eq. 2.8). The boundary condition
for the free surface was implemented so as pressure, p to equal the atmospheric
pressure, p0. Finally, a no leak condition (~u · ~n = 0) was implemented for the
bottom of the computational domain.
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Appendix C

The setup of the Time Domain model is discussed. Specifically, the fourth order
accurate, Runge-Kutta time discretization which is used to derive the solution
to the Cummins equation is explained. The Cummins equation in the absence
of drag force is repeated here.

(M +A)z̈b(t) +BPTO żb(t) +

∞∫
0

B(τ)żb(t− τ)dτ + (C +K)zb(t) = Fexc(t)

For notation convenience, the integro-differential term of the Impulse Response
Function is denoted as IRF . For every step of the solution this term is recal-
culated based on the last estimation of the buoy’s velocity, żb and the vector of
buoy’s velocities at previous time steps. Then, the solution vector and its first
time derivative read:

q =

[
q1

q2

]
=

[
żb
zb

]
, qt =

[
żb
zb

]
t

=

[
z̈b
żb

]
(8.1)

Solving Eq. (2.37) for the matrix components of qt leads to:

z̈b =
1

M +A
Fexc −

1

M +A
BPTOq1 −

1

M +A
IRF − 1

M +A
(C +K) q2 (8.2)

żb = q1 (8.3)

In operator notation the above equations read:

qt =

[
z̈b
żb

]
= −L(q, t) (8.4)

L(q, t) =

[
− 1
M+AFexc(t) + 1

M+ABPTOq1 + 1
M+AIRF (t) + 1

M+A (C +K) q2

q1

]
(8.5)

The final time discretization Runge-Kutta scheme reads:

k1 = ∆tL(qn, tn) (8.6)

k2 = ∆tL
(
qn −

1

2
k1, tn +

1

2
∆t

)
(8.7)

k3 = ∆tL
(
qn −

1

2
k2, tn +

1

2
∆t

)
(8.8)
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k4 = ∆tL (qn − k3, tn + ∆t) (8.9)

qn+1 = qn −
1

6
(k1 + 2k2 + 2k3 + k4) (8.10)

For the solution to be derived, the excitation force, Fexc(t) should also be esti-
mated at half time step locations. The same principle applies also for the drag
force Fdrag(t) and of course, for the Impulse Response Function (IRF).
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