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2 Summary 

Summary 

An estimation of the turbulent intensity in a flow is needed when designing hydraulic structures. Not 

taking the turbulent intensity of a flow into account can result in the destruction of otherwise 

correctly designed hydraulic structures. During the preliminary design of loose rock bed protection, 

rules of thumb (e.g. found in the Rock Manual, 2007) are used to take into account the turbulent load 

on the bed protection. However, these rules of thumb only provide very rough estimates. Only a low, 

medium or high value for the effect of turbulence on the bed protection is given. The difference 

between low and high levels of turbulence can result in 8 times heavier rocks. Dissipation of 

turbulence downstream of the hydraulic structure is not incorporated at all in these rules of thumb, 

resulting in one value of turbulence for the whole length of the bed protection. This thesis discusses a 

rapid assessment tool (the ‘ATM’) to estimate turbulent energy in a flow. The rapid assessment tool 

should be able to estimate turbulence in a quick way, more accurately than rules of thumb, and more 

easy to apply than complicated numerical turbulence models. It is the objective of this study to test 

the theoretical and empirical validity of the rapid assessment tool for the flow conditions of a channel 

with a backward facing step (BFS) and to show that the rapid assessment tool can be a viable 

alternative to applying rules of thumb for these flow conditions. 

The ATM assumes that 100% of the mean flow energy loss is converted into turbulent energy. 

Multiple scientific sources state that the reduction of mean flow energy is related to the increase of 

turbulent energy. The literature analysis did not make clear if it is valid to assume that 100% of the 

mean flow energy loss is converted into turbulent energy. Using the turbulent kinetic energy 

equation, it was shown that the production of turbulence is exactly proportional to the reduction of 

mean flow energy under a set of assumptions. However, some of the assumptions made seem 

questionable. The empirical validation elaborates further on the applicability of these assumptions. 

The ATM models turbulence dissipation as a relaxation function. No instances in literature were 

found of modelling turbulence dissipation similar to the ATM. The theoretical validation concludes 

that some principles on which the ATM is build might not represent reality accurately. However, the 

empirical validation shows that despite these assumptions, the ATM is still able to approximate the 

turbulence in a flow. 

The empirical validation showed that the ATM was able to approximate the order of magnitude of the 

turbulence. However, calibrating the ATM made it clear that the ATM has issues modelling the correct 

turbulent energy downstream of the reattachment point. The ATM was able to approximate the 

turbulent energy levels up until the reattachment point reasonably accurate after calibration. 

The empirical validation also showed that turbulence can be produced due to non-uniform flow 

velocity profiles (on top of the turbulence production due to bottom friction). Flow velocity differences 

that still exist downstream of the reattachment point result in internal viscous stresses in the flow; 

internal viscous stresses cause turbulence. Non-uniformity of the flow velocity profile is therefore an 

important factor to take into account when considering mean and turbulent energy in a flow. 

 

The ATM is already usable to estimate the upper limit of turbulence at the reattachment point 

during the preliminary design phase (for subcritical backward facing step flow). Using the ATM 



3 

output results in up to 3 times heavier stones compared to the stone weight design based on the 

experimentally measured turbulence. This is significantly more accurate then applying rules of 

thumb, which results in stone weights up to 80 times heavier. Thus the ATM can be a more accurate 

alternative to using rules of thumb when calculating the effect of turbulence on loose rock bed 

protection. 

The ATM was introduced as a rapid assessment tool that would potentially combine the ease of rules 

of thumb with the more accurate measures of turbulence found using complex turbulence models. 

The results of this thesis indicate that the ATM is not there yet. The ATM has difficulty modelling the 

turbulent energy levels downstream of the reattachment point. The ATM is able to more accurately 

estimate the turbulent energy levels at the reattachment point compared to applying rules of thumb. 

This thesis shows the potential of the ATM to become a rapid assessment tool for turbulence in a flow 

during the preliminary design phase. The ATM does need to be improved in order to accurately  model 

turbulence after the reattachment point. 

 

Contents  
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10 1 Introduction 

1 Introduction 

1.1 Background 

A hydraulic structure is a submerged or partially submerged structure that can be used to divert, 

restrict, stop, or otherwise manage the natural flow of water (Yang & Wang, 2014). A famous 

example of a hydraulic structure (which will be used to introduce the research topic) is the 

Oosterschelde. The Oosterschelde storm surge barrier is a sealable hydraulic structure located in 

the Oosterschelde estuary in the Netherlands. The storm surge barrier functions as a protection 

against flooding of the Zeeland hinterlands. It closes when water heights larger than 3 m +NAP 

are expected. The Oosterschelde storm surge barrier is a prominent hydraulic structure that 

connects the Schouwen-Duiveland and Noord-Beveland isles in Zeeland (Rijkswaterstaat, 2015).  

 
Figure 1 Aerial view of the Oosterschelde Storm Surge barrier (Rijkswaterstaat, 2015) 

 

Hydraulic structures can lead to scour downstream of the structure (Chen & Liew, 2012). Bed 

protection helps to prevent scour from occurring at undesired locations (Schiereck, 2004). The 

Oosterschelde storm surge barrier is an example of a large hydraulic structure that influences the 

hydraulic load on its surrounding bed. When the barrier is partly opened, water is flowing in or out 

of the Oosterschelde. Due to the restricted flow area through the Oosterschelde barrier the water 

velocity through and near the Oosterschelde barrier is increased relative to the depth and width 

averaged flow velocity in the Oosterschelde and North Sea. An increase in flow velocity leads to 

an increase in the hydraulic load on the surrounding bed. When the hydraulic load is too large, 

bed particles are mobilized and scour holes appear near the structure. To prevent scour holes 

from damaging the hydraulic structure, 500 meter of bottom protection up and downstream of 

the Oosterschelde storm surge barrier was constructed. 
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Figure 2 Bottom protection at the Oosterschelde storm surge barrier (Stoutjesdijk et al., 2012) 

 

Figure 2 shows the bottom protection of the barrier. Behind the hydraulic structure, large 

concrete blocks (transition construction) and foundation mats are placed to protect the bed from 

the large hydraulic loads. Further downstream the hydraulic load is reduced and smaller 

protection works (loose rock deposits and block mats) suffice in protecting the bed. Prevention of 

scour behind hydraulic structures by constructing bed protection is an integral part when 

designing any hydraulic engineering solution. Accurate design of bed protection can prevent 

problems later in the hydraulic structure’s lifecycle. As can be seen in figure 2, multiple options 

exist for protecting the bottom against unwanted scour. All bottom protection methods have 

advantages and disadvantages when applied. A number of bottom protection methods are 

discussed in appendix A. 

Forces mobilizing the bottom  

The instantaneous velocity over the bed determines the force acting on the bed, and thus the 

stability of the bed. The instantaneous velocity can be decomposed in several parts. A mean flow 

velocity with a constant size and direction acts on the bed. Waves, when present, result in a to-

and-fro fluctuation of the flow velocity, acting along or against the mean flow velocity. Turbulence 

can be classified as chaotic variations in the flow velocity that result in temporary increases or 

decreases of the instantaneous flow velocity. The average flow velocity results in a drag force that 

can wash away bed protection elements (e.g. loose rocks, asphalt, or placed rocks). The presence 

of waves (e.g. as a result of tides) and turbulence can mobilize the bed protection due to a 

temporarily increase in flow velocity, resulting in a temporarily increased drag force on any 

protruding bed protection elements. A sloping bed will results in a horizontal gravity component 

that also works as a mobilizing force. (The Rock Manual, 2007). Combining above features results 

in the hydraulic load on the bed protection. For accurate design of stable bed protection, the 

hydraulic load need to be quantified. Appendix B gives an overview of how the mentioned forces 

mobilize a grain. 
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Figure 3 Forces acting on a grain on the bed. For an explanation of the forces, see appendix B 

 

Because of its easy application, the most applied method for bed protection is using loose rock 

(Cheng et al., 2014). Because loose rock, by definition, is not fixated on the bed, it can easily be 

mobilized when the hydraulic load acting on the bed is larger than the design load of the bed 

protection. In appendix C a design formula is described that can be used to calculate the required 

stone size for loose rock bed protection under certain hydraulic loads. Among other phenomena, 

the stability of loose rock bed protection is affected by the mean flow velocity, presence of waves, 

and turbulence. This study will focus on the turbulence part of the decomposed instantaneous 

flow velocity affecting bottom stability. 

Turbulence affects all river processes of interest to engineers (Nikora & Smart, 1997). More 

turbulent flows will mobilize larger loose rock bed protection than more laminar flows if all other 

conditions are similar (Pilarczyk, 1995; Hofland, 2005; The Rock Manual, 2007). For steady 

uniform flow conditions experiencing equilibrium turbulence intensities, turbulence is implicitly 

accounted for in the standard design parameters (Pilarczyk, 1995). However, for flows with 

increased turbulence intensities, for example as a result of sharp bends or due to the presence of 

hydraulic structures, the required bed protection is significantly altered. When similar flow 

conditions are considered with the exception of the turbulence intensities, then flows 

experiencing larger turbulence intensities need loose rock bed protection many times heavier 

than of flows without increased turbulence intensities (The Rock Manual, 2007, appendix C). Not 

taking turbulence intensities into account can result in the destruction of the designed bed 

protection. Therefore an accurate estimation of the turbulence intensities in a flow are paramount 

in designing stable loose rock bed protection. 

1.2 Research motivation 

During the preliminary design phase of loose rock bed protection, initial designs (multiple 

alternatives) as well as a construction schedule and cost estimates are made for the project. Bed 

protection is usually designed in different compartments for different hydraulic loads. The number 

of compartments, its contents (stone size, winnowing reduction method etc.), and the length of 

the compartment needs to be determined for each design alternative. A quick estimation of the 

turbulence intensities is therefore needed to achieve an accurate preliminary design of the bed 

protection in each compartment. 

The effect of turbulence on bed protection can be estimated using two different methods: using 

rules of thumb in design manuals as a rough estimation or calculating turbulence intensities 

using complex turbulence models. Using a rule of thumb is a quick method for estimating the 

effect of turbulence. However, design guides (e.g. Pilarczyk, 1990; The Rock Manual, 2007 or 

Bezuijen and Vastenburg, 2012) only provide very rough estimates, stating, for example, a low, 
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medium and high value for the effect of turbulence on the bed protection, where the difference 

between low and high levels of turbulence can result in 8 times (or more) heavier rocks (appendix 

C). Dissipation of turbulence over time is not incorporated at all in these rules of thumb, resulting 

in one value of turbulence for the whole length of the bed protection. Figure 4 graphically depicts 

the problem with rules of thumb not incorporating production and dissipation of turbulence. The 

rule of thumb possibly correctly represents the maximum occurring turbulence. However, even if 

the rule of thumb correctly represents the maximum occurring turbulence, it still overestimates 

the turbulent energy in the flow for most of the downstream area. It is also possible that the rule 

of thumb locally underestimates turbulence (because the maximum occurring turbulent energy is 

larger than the rule of thumb turbulence estimation). This could result in unexpected damages to 

bed protection due to an underestimation of the turbulence. Vice versa an overestimation of 

turbulent energy level can result in an oversized bed protection design, which is undesirable from 

a cost and time perspective. 

 
Figure 4 Turbulent energy downstream of a hydraulic structure according to the rule of thumb versus hypothetical 

occurring turbulent energy levels1 

 

Alternatively, numerical turbulence models like the 𝑘 − 𝜖 model can be used to calculate the 

turbulence intensities. According to Mohammadi and Pironneau (1993) these models are more 

generally applicable and use little assumptions but require more time and expert knowledge to 

apply due to model setup, runtime and complexity. Ideally, a rapid assessment tool would exist 

that combines the ease of use of the rules of thumb with the more accurate measures of 

turbulence found using complex turbulence models. Voortman (2013) designed the Arcadis 

Turbulence Model (ATM) as an alternative model to estimate turbulent energy in a quick way, 

more accurately than the rules of thumb and more easy to apply than complex 𝑘 − 𝜖 models. 

However, the theoretical foundation of the ATM has not been elaborated. The ATM has also not 

been compared with experimental data to test its empirical validity. The ATM models turbulence 

generation and dissipation. A dissipation coefficient in the ATM needs to be determined before 

the ATM can be applied. If the ATM is to be used with confidence as a rapid assessment tool in 

preliminary design practices, the theoretical and empirical validity of the model should be 

determined and guidelines should be made about setting the dissipation coefficient. If the ATM is 

able to estimate turbulence with reasonable accuracy, then a description should also be given 

how the ATM can be used in the preliminary design phase. During the preliminary design phase 

                                                      
1 The exact shape of the actual turbulent energy in a flow depends on the exact flow circumstances and 

does not necessarily have to be similar to the hypothetical shape as depicted in figure 4. 
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only limited data is available. Thus a method should be developed in order to apply the ATM using 

only the data available during the preliminary design phase. 

1.3 Research objectives and questions 

Different flow scenarios are encountered around hydraulic structures. Water flowing out of a 

reservoir through a weir can be schematised as backward facing step flow (figure 6) or weir flow 

(figure 7), depending on the placement of the weir opening (at the bed level or near the surface). 

When water is flowing towards a weir, the toe of the weir can be schematised as a forward facing 

step. Downstream of a sluice, an expansion of the channel is often found. This expansion can be 

schematised as sudden widening of the channel. All above flow scenarios result in a change in 

flow velocity and turbulence. Because this study did not perform any flume experiments of its 

own, obtaining data from other studies was necessary. Therefore, for this study backward facing 

step flow (BFS) is used as the normative flow condition because scientific studies often perform 

flume experiment with a backward facing step (Nakagawa & Nezu, 1987; Xingkui & Fontijn, 1993; 

Kasagi & Matsunaga, 1995; De Gunst, 1999; Hofland, 2005). If the ATM is able to accurately 

approximate the turbulent energy levels in BFS flow, then its field of application could be 

extended to other flow scenarios (e.g. as depicted in the figures below). For each new flow 

scenario, the ATM should first be validated before it is used in practice. 

  
Figure 5 Schematisation of a forward facing step 

(longitudinal section) 

 

Figure 6 Schematisation of a backward facing step 

(longitudinal section) 

 

  
Figure 7 Schematisation of a culvert (flow contraction; 

longitudinal section) 

Figure 8 Schematisation of a widening channel (flow 

widening; top view) 

 

It is the objective of this study to test the theoretical and empirical validity of the ATM as a rapid 

assessment tool for the flow conditions of a wide channel with a backward facing step. Its 

application in the preliminary design phase is also discussed due to the limited data available 

during this phase. 
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To reach the research objective, the following research questions are answered: 

1. What is the theoretical validity of the ATM? 

2. What is the accuracy of the ATM turbulence estimations compare to experimental 

measurements of BFS turbulence? 

3. How can the ATM be applied in the preliminary design phase? 

1.4 Methodology 

Theoretical validation  

The theoretical validity of the ATM is assessed in a number of ways. The principles on which the 

ATM is based are compared to existing literature to show that these principles are partly founded 

in science. The model is also compared to the turbulent kinetic energy (TKE) equation (derived 

from the Navier-Stokes equation). The turbulent kinetic energy (TKE) equation is the equation that 

is used for almost every turbulence model in one form or another. Relating the ATM to the TKE 

equation will make clear in what ways the ATM simplifies reality. The dissipation coefficient of the 

ATM is compared to the present knowledge about the rate of dissipation in turbulent flows to 

check if the dissipation term of the ATM does not conflict with this knowledge. 

Empirical validation  

The empirical validity of the ATM is assessed by comparing the turbulent energy levels that follow 

from the ATM to turbulent energy levels that were measured in experiments. Experimental data 

was collected from literature to validate the ATM output. The experimental data used to run and 

validate the ATM is first analysed. Because the experimental data cannot be put into the ATM 

straight away, a number of methods are discussed to convert the experimental data into ATM 

input data. The empirical validation of the ATM is then performed by comparing the ATM output 

against the measured turbulent energy levels for every input data alternative. This will result in a 

thorough understanding whether the ATM is able to estimate the turbulent energy levels using the 

selected input data. 

Applying the ATM in the preliminary design phase  

Using the results of the theoretical and empirical validation, an assessment is made about the 

applicability of the ATM in the preliminary design of loose rock bed protection. An example 

calculation is made to show how the ATM can be used in the preliminary design phase when little 

information about the BFS flow is available. The benefit of using the ATM instead of rules of 

thumb during the design of loose rock bed protection is then discussed. 
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1.5 Report outline 

 
Figure 9 Schematization of report outline 

Chapter 2 of this report discusses the properties of the mean flow over a BFS. This information is 

then used in chapter 3 to describe the turbulence in a flow over a BFS. Chapter 3 will also 

describe the Arcadis Turbulence Model. The theoretical validation is given in chapter 4. Chapter 5 

introduces the data required for the empirical validation, chapter 6 discussed how this data is 

used to run the ATM and chapter 7 then discusses the results of the empirical validation of the 

ATM. Based on the results of the empirical validation of the ATM, a method is shown how the ATM 

can be used in the preliminary design phase in chapter 8. This thesis is concluded in chapter 9 

where the theoretical and empirical validity are compared and discussed.  
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2 Mean flow characteristics 

2.1 Introduction 

Turbulence is a function of the mean flow conditions (Tennekes & Lumley, 1972). Therefore, in 

order to understand turbulence in a flow, first, the mean flow conditions of a flow should be clear. 

Mean flow characteristics of simple stationary flow are discussed in section 2.2. The more 

complex backward facing step flow is discussed after that. However first two general remarks 

about the flow scenarios in this chapter are given: 

 The flow scenarios discussed in this chapter are schematizations of reality. This means 

that although the flow schematizations approximate the water behaviour as observed in 

reality, they do not represent the water behaviour exactly due to some assumptions made 

in the schematization of the flow. 

 In this chapter, flow patterns are discussed neglecting flow variations in the flume width. 

In fact for this whole study, the world is schematized in 2DV dimensional space because 

flow is expected to behave reasonably uniform in the transverse plane (z direction). In 

chapter 9 this assumption is discussed. 

2.2 Stationary flow over a flat bottom 

Uniform stationary flow over a horizontal plane, without bottom friction 

 
Figure 10 Uniform stationary flow without slope or bottom friction 

 

Figure 10 shows a schematization of uniform stationary flow over a horizontal plane, without 

bottom friction. The term �̿� equals the depth and time averaged flow velocity (m/s) where the flow 

velocity is time averaged to average out any turbulent fluctuations in the flow. The term ℎ equals 

the water depth (m). Water is flowing in and out of the domain with a certain speed �̿� and water 

height ℎ. All water flowing into the domain is also flowing out of it because the water level is 

assumed (modelled) to be stationary. Assuming the width 𝐵 (m) of the schematized channel does 

not change then the mass of the flow in the domain is preserved following: 

 
𝑞 = �̿� × ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.1) 

Where 𝑞 equals the specific discharge (m2/s). Because bottom friction is ignored, the mean flow 

energy in the domain is preserved. Flow energy can be defined using the formula of Bernoulli. 

Given in energy head levels this formula equals: 
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𝐻 = 𝑧 + ℎ +

1

2

�̿�2

𝑔
 (2.2) 

Where 𝐻 equals the energy of a fluid (m), 𝑧 the elevation above a reference plane (m), ℎ the water 

height (m), �̿� the depth and time average flow velocity (m/s), and 𝑔 the gravitational constant 

(m/s2). When it is assumed that no energy is lost2, then the head levels won’t change. In figure 10 

it can be seen that the head level 𝐻 remains constant for the whole domain. Because of the 

horizontal bed and no external forces, the water depth and flow velocity also do not change. 

Stationary flow over a slope, without bottom friction  

When water is flowing over a slope, the flow conditions of the schematization change (figure 11): 

 
Figure 11 Stationary flow over a sloped surface without bottom friction 

 

Formula 2.2 still applies to this flow situation. However, due to the slope, gravity is transforming 

potential energy into kinetic energy. In equation 2.2 this means a reduction of 𝑧 and an increase 

of 
�̿�2

2𝑔
. The change in head level can now be calculated by taking the derivative of the Bernoulli 

equation (derivation given in appendix D): 

 𝑑𝐻

𝑑𝑥
=
𝑑𝑧

𝑑𝑥
+
𝑑ℎ

𝑑𝑥
+ �̿�

𝑑�̿�

𝑑𝑥

1

𝑔
  (2.3) 

Because an equal amount of water is flowing in and out of the domain of figure 11 mass is 

preserved following equation 2.1. Using the conservation of mass, conservation of energy 

(
𝑑𝐻

𝑑𝑥
= 0), and equation 2.3 the change in water height due to the slope can be calculated. 

Rewriting equation 2.3 into an expression of 
𝑑ℎ

𝑑𝑥
 is not part of the scope of this study. For further 

information refer to Tuin et al. (2014) who derived this formula in their paper. For the flow 

situation described in figure 11 the water depth ℎ asymptotically reaches zero when the slope is 

extended indefinitely. Because of conservation of mass, the flow velocity �̿� is then increase until it 

reaches infinity (for ℎ = 0). This peculiar behaviour is the result of neglecting bottom friction. The 

above flow situation cannot occur in reality because in reality, bottom friction always affects the 

flow. 

                                                      
2 In this thesis, it is sometimes stated that energy is preserved or not. When it is stated in this thesis that energy is not 

preserved, it is meant that the mean flow energy is not preserved. Per definition, energy is preserved in the universe, so 

when mean flow energy is lost, this energy is transferred out of the mean flow, and into another energy carrier (e.g. into 

turbulence). 
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Uniform stationary flow over a slope, with bottom friction  

When bottom friction is considered, the flow conditions reach an equilibrium at ℎ > 0 and for the 

flow schematisation, flow conditions are found that better represent reality: 

 
Figure 12 Uniform stationary flow over a sloped surface with bottom friction 

 

When bottom friction is considered, the water level reaches an equilibrium where the conversion 

of potential into kinetic energy due to the sloped bed is cancelled by the loss of (kinetic) energy 

due to bottom friction. Note that the head level is now running parallel with the sloped bed level 

thus energy is not preserved in the flow anymore. For equilibrium stationary flow conditions, the 

slope of the head level now follows 
𝑑𝐻

𝑑𝑥
= −

�̿�2

𝐶2𝑅
 better known as the law of Chezy. Conservation of 

energy and conservation of mass cannot be used anymore to calculate the water depth in figure 

12. However, equation 2.4 can be used to calculate the water depths when bottom friction 

following the law of Chezy is affecting the flow. 

 𝑑𝐻

𝑑𝑥
= −

�̿�2

𝐶2𝑅
=
𝑑𝑧

𝑑𝑥
+
𝑑ℎ

𝑑𝑥
+ �̿�

𝑑�̿�

𝑑𝑥

1

𝑔
  (2.4) 

Where 
𝑑𝐻

𝑑𝑥
 equals the head loss due to bottom friction (-), �̿� equals the depth and time averaged 

flow velocity (m/s), 𝐶 the Chezy coefficient (m1/2/s), and 𝑅 the hydraulic radius (m)3. A method to 

calculate the water height from equation 2.4 is discussed in the paper of Tuin et al. (2014). 

Flow assumptions required to apply the formula of Bernoulli  

Formula 2.2 (and to a lesser extent 2.3 and 2.4) can only be applied when certain assumptions 

are valid. The formula of Bernoulli assumes a steady flow, and can therefore not be applied to 

flow conditions that change in time. The Bernoulli equation also does not take into account 

energy loss (equation 2.4 is an adjusted Bernoulli formula that does take into account energy loss 

due to wall friction). The Bernoulli equation also assumes parallel stream lines. When streamlines 

are not parallel, the hydrostatic pressure distribution might not be correctly represented by the 

water depth ℎ which will result in an incorrect representation of the mean flow energy (by applying 

                                                      

3 Note that for uniform flow conditions, the terms 
𝑑ℎ

𝑑𝑥
= �̿�

𝑑𝑢

𝑑𝑥

1

𝑔
= 0 in equation equation 2.4. Resulting in 

𝑑𝐻

𝑑𝑥
= −

𝑢2

𝐶2𝑅
=

𝑑𝑧

𝑑𝑥
 (Chezy’s law). 
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the Bernoulli equation). The Bernoulli equation also assumes an uniform velocity profile as a 

function of the depth (water velocity at the water surface equals water velocity at the bottom with 

no change in between). A correction parameter 𝛼𝐵𝑒𝑟𝑛 exists when the velocity profile is not 

uniform for the water depth (𝐻 = 𝑧 + ℎ + 𝛼𝐵𝑒𝑟𝑛
1

2

�̿�2

𝑔
). However, the Bernoulli equation is most 

often applied to log-law velocity profiles, which have a water depth velocity profile resulting in a 

𝛼𝐵𝑒𝑟𝑛 ≈ 1, thus 𝛼𝐵𝑒𝑟𝑛 is generally left out of the Bernoulli equation. The Bernoulli equation is also 

not valid when external forces act on the flow like centrifugal forces or propeller machines. The 

above stated limitations of the Bernoulli equation are also discussed in Cruise, et al. (2007). 

Before applying the Bernoulli equation, it is important to check whether the assumptions on 

which it is based are valid. 

2.3 Backward facing step flow 

Flow pattern over a backward facing step  

Figure 13 depicts the channel schematization of a backward facing step for this study. Upstream 

of the step, water is flowing with a certain velocity and depth. For the above schematisation, it is 

assumed that energy loss due to bottom friction is negligible (smooth channel and short flow 

distance from beginning to end of the domain). The smooth slope of the step at the upstream 

location eliminates the energy loss due to flow separation (no wakes) (Greenblatt & Wygnanski, 

2000). Without bottom friction or wakes, energy is preserved up until the end of the step. The 

Bernoulli law can then be used to calculate the flow velocities and water depths up until the end 

of the step using equation 2.3. This study, however, focusses on the area above and downstream 

of the step (study area shown in figure 13) because the flow is decelerated in that region (and no 

experimental data was available for the location upstream of the step). 

 
Figure 13 Schematization of BFS flow 

 

Downstream of the step, the flow is decelerated and a recirculation zone is formed (Nakagawa & 

Nezu, 1987; Xingkui & Fontijn, 1993; Hofland, 2005). The water flow in the recirculation zone has 

a lower speed than the water arriving from the step (Nakagawa & Nezu, 1987; Xingkui & Fontijn, 

1993; Kasagi & Matsunaga, 1995; De Gunst, 1999; Hofland, 2005). Whenever two bodies of 

fluid move along each other with different velocities, a mixing layer will grow between them 

(Schiereck, 2004). This mixing layer continues to grow until the water cross-section is fully mixed. 

After the mixing layer reaches the bed at the reattachment point, the flow starts to develop into a 

new equilibrium flow condition downstream of the reattachment point. However, it can take more 

than 52 step heights before the flow velocity profile (as a function of the water depth) reverts fully 

back to a log-law profile (Nakagawa & Nezu, 1987). 



22 2 Mean flow characteristics 

Using the conservation of momentum to define the backward facing step flow characteristics  

Figure 14 shows the head levels, as it is assumed to occur for a BFS flow. Due to viscous friction 

in the water, decelerating flow causes a decrease in flow energy (Song & Chiew, 2001). Because 

flow energy is lost downstream of the backward facing step, the Bernoulli law can no longer be 

used to calculate the water depths and flow velocities without knowing exactly how much flow 

energy is lost (𝐻𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 = 𝐻𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 − 𝐻𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛). The law of Chezy can be used to find 

the mean flow energy loss due to wall friction. However, energy loss due to internal viscous 

frictions is then wrongfully omitted. In order to find the total mean flow energy loss (wall and 

viscous friction), the conservation of momentum is considered instead of conservation of energy. 

 
Figure 14 Schematization of BFS flow showing mean flow energy levels 

 

Conservation of momentum is defined as follows: For a depth and width averaged flow, the sum 

of forces acting on two cross sections cancel each other out, assuming no external force is acting 

on or in between the cross sections. The formula for momentum in a flow including the 

hydrostatic pressure term is given by (Battjes, 1990): 

 
𝑀 =

1

2
𝜌𝑤𝑔ℎ

2 + 𝜌𝑤𝛽ℎ�̿�
2 (2.5) 

Where 𝑀 equals the momentum (N/m), 𝜌𝑤 equals the density of water (kg/m3), 𝑔 the 

gravitational constant (m/s2), �̿� equals the depth and time averaged flow velocity (m/s) and 𝛽 (-) 

a term that corrects the momentum for non-uniformity of the flow profile �̅� similar to 𝛼𝐵𝑒𝑟𝑛 in the 

Bernoulli equation. 
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Figure 15 Cross sections with unknown force 𝒇𝒔𝒕𝒆𝒑 acting on the water 

 

Initially, one would expect that using the cross sections as depicted in figure 15 is the most 

convenient (to calculate the water depth downstream of the reattachment point using the 

preservation of momentum). However, using the conservation of momentum at the cross sections 

shown in figure 15 in combination with formula 2.5 will be hard. An unknown force 𝑓𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 acts 

on the upstream cross section. The force 𝑓𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 is the result of the elevated bottom of the 

step. The cross sections shown in figure 13 (red lines) are proposed in order to circumvent 

estimating this unknown force. 

Let’s assume the upstream cross section located at an infinitely small distance downstream of 

the step, as shown in figure 16 (and figure 13). 

 
Figure 16 Velocity profile at an infinitely small distance downstream of the step 

 

At the cross section depicted in figure 16, the momentum4 can be defined using the following 

formula: 

 
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 =

1

2
𝜌𝑤(ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + ℎ𝑠𝑡𝑒𝑝)

2
+ 𝜌𝑤ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚�̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

2
 

 
(2.6) 

                                                      
4 Including the hydrostatic pressure term 
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This formula follows from equation 2.5, the assumption that the flow velocity profile and water 

depth just downstream of the step has not changed much (�̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = �̿�𝑏 & ℎ𝑏 = ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 +

ℎ𝑠𝑡𝑒𝑝), and the assumption that the flow velocity in the recirculation zone is negligible small just 

downstream of the step. Because of these assumptions, 𝛽 = 1 in equation 2.6. Formula 2.6 is 

derived in appendix E. 

Between the cross section as shown in figure 16, and the cross section located downstream of 

the reattachment point (see figure 13) the momentum in the flow is preserved. If the flow velocity 

�̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚, the water depth ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and the step height ℎ𝑠𝑡𝑒𝑝 are known, then the momentum 

can be calculated using equation 2.6. If it is assumed that at the downstream cross section 

(figure 13) the flow velocity profile approximates an uniform profile, then 𝛽 ≈ 1 and: 

 
𝑀𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 =

1

2
𝜌𝑤𝑔(ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)

2 + 𝜌𝑤ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚�̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
2   

 
𝑞 = �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 × ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = �̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 × ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚   

 
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = 𝑀𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚   

Gives: 

 

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 =
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 −

1
2
𝜌𝑤𝑔(ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)

2

𝜌𝑤
𝑞2

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
2

 (2.7) 

Where 𝑞 equals the specific discharge (m2/s). Equation 2.7 is derived in appendix F. Equation 2.7 

can be solved analytically or using a computer programme like MathCad. The analytical solution 

of equation 2.7 is not depicted in this thesis because of its complexity (analytical solution is one 

page long). 

Flow assumptions required to apply the conservation of momentum   

Following the method described above, the water height and flow velocity at the reattachment 

point can be calculated using the conservation of momentum. However, there are some 

limitations to applying the conservation of momentum like this. Conservation of momentum using 

equation 2.5 is only applicable when the flow streamlines are parallel and straight (Battjes, 

1990). Figure 13 shows that just downstream of the end of the step and at the reattachment 

point, this is (by approximation) the case. However, the area in between these cross sections 

show diffusive sloped stream lines. In this area, equation 2.5 is not applicable anymore. Thus the 

preservation of momentum can only be used to calculate the water depth at the downstream 

cross section. Because bed friction acts as a force on the flow, momentum is lost in between the 

cross sections as the result of bed friction. For smooth beds or small flow distances, it can be 

assumed that this loss of momentum is negligible (and thus momentum is preserved). A depth 

profile with large variations in the flow velocity is not represented accurately by the depth and 

time averaged flow velocity �̿� when calculating the momentum (Battjes, 1990). By applying the 𝛽 

coefficient (equation 2.5) correctly, the non-uniformity of the velocity profile can be taken into 

account. The validity of calculating the water depth and flow velocity using the conservation of 

momentum is discussed in section 6.5 in more detail by comparing the results to experimentally 

measured data. 
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2.4 Concluding remarks 

This chapter introduced how the flow patterns over a simple sloping bed and a more complex 

backward facing step beds can be schematized. Water levels and flow velocities under uniform 

stationary or BFS flow conditions can be approximated by using flow schematizations and the 

laws of conservation of mass, energy and momentum. Although there are some assumptions 

required when applying the conservation of energy or momentum, we can estimate the 

downstream water depth using the upstream flow variables (water depth, flow velocity profile). 
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3 Characterizing turbulence and introducing the Arcadis Turbulence Model 

3.1 introduction 

Turbulent energy contained within a flow can be measured or approximated. In this chapter, first, 

an introduction is given into turbulence. The generation and dissipation of turbulence for the flow 

scenarios given in chapter 2 are then discussed to introduce the reader in the phenomena 

affecting turbulent energy in a flow. After that, the ATM is introduced as a rapid assessment tool 

for estimating turbulent energy. Finally, it is shown that the Arcadis Turbulence Model can confirm 

with the formula of Hoffmans (1993) for equilibrium turbulence. 

3.2 Quantifying turbulence  

The Reynolds decomposition (e.g. as discussed by Adrian, et al., 2000) defines turbulence as a 

function of the fluctuating velocity component superimposed on the mean velocity of a flow. The 

mean flow velocity is found by time averaging the instantaneous flow velocity, the fluctuating 

velocity component is the difference between the time averaged and instantaneous velocity 

component: 

 
�̃�𝑖 = �̅�𝑖 + �́�𝑖 (3.1) 

Where �̃�𝑖 equals the instantaneous flow velocity (m/s), and �̅�𝑖 equals the time averaged flow 

velocity (m/s). The time averaged flow velocity �̅�𝑖 is averaged over the characteristic turbulence 

duration, so no turbulent eddies are present in the time averaged flow velocity measures 

anymore. The term �́�𝑖 equals the instantaneous deviation from the time averaged flow velocity 

(m/s). The subscript 𝑖 is a free index which can take on the values x, y, and z corresponding to the 

three dimensions5. 

For a certain location, �̅�𝑖 now gives a single time averaged value, whereas �́�𝑖 gives the deviation 

from this time averaged value for each measurement in time and ∑ �́�𝑖 = 0. To get the non-zero 

time averaged value for the velocity fluctuations, the root mean square (RMS) of the turbulent 

fluctuations 𝑢𝑖́  is taken: 

 

𝑢𝑖
′ = √

1

𝑡
∑(�́�𝑖 )

2

𝑡

𝑡=1

 (3.2) 

Where 𝑢𝑖
′ equals the root mean squared velocity fluctuation6 (m/s), �́�𝑖 equals the instantaneous 

velocity fluctuations (m/s) and 𝑡 the number of realisations of �́�𝑖 (-) (or in other words, the number 

of times �́�𝑖 is measured in time at a certain location). 

  

                                                      
5 The Einstein summation convention is used in this thesis when an index variable appears twice in a single 

term (e.g. equation 3.2) (Einstein, 1916) 
6 In the thesis, a variable with a bar on top (e.g. �̅�) indicates a variable that is averaged over a dimension 

(length, time etc.). Therefore, the correct notation of the RMS flow velocity fluctuations would be 𝑢𝑖́̅ . 
However, in order to improve the readability of the presented formulae, 𝑢𝑖́̅  is written as 𝑢𝑖

′ instead. The 

notation �̅�𝑖
′ is used for the RMS depth averaged velocity fluctuations. Also keep in mind that all variables 

are considered to be uniform over the width of the study domain, thus no width averaging bar is shown 

anywhere.  
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Turbulent energy in a flow is defined as: 

 
𝑘 =

1

2
(𝑢𝑖

′)2 (3.3) 

Where 𝑘 equals the turbulent kinetic energy7 (m2/s2), and 𝑢𝑖′ the RMS velocity fluctuation (m/s). 

The turbulent intensity is defined as: 

 
𝑟 =

√𝑘

�̅�
  (3.4) 

Where 𝑟 equals the turbulence intensity (-), �̅� equals the time averaged flow velocity and 𝑘 equals 

the turbulent energy. The turbulence intensity (instead of the turbulent energy) is often used in 

the design of bed protection (The Rock Manual, 2007). 

3.3 Turbulence under different flow scenarios 

Generation of turbulence due to shear stresses   

The generation and dissipation of turbulence depends on the mean flow conditions (Tennekes & 

Lumley, 1972). Whenever two bodies of fluid move along each other with different velocities, a 

mixing layer will grow between them (Schiereck, 2004). Due to shear stresses the velocity 

differences around the mixing layer lead to generation of turbulence (Schiereck, 2004). When 

water is flowing over a bottom or a wall, the shear stresses acting on the water (due to the 

presence of the bottom/wall) also generates turbulence. Turbulence is dissipated due to internal 

viscous friction of the turbulent eddies (Schiereck, 2004).  

 
Figure 17 Example of mixing of two gasses flowing side by side at different velocities (Uchiyama, 2006)  

 

Figure 17 shows a numerical simulation of two gasses flowing side by side at different speeds. No 

walls are present in the above figure. Due to the difference in flow velocity, shear friction acts on 

both gasses. The shear friction results in an unstable flow condition, and as a result the gasses 

start to mix. The generation of a mixing layer goes hand in hand with generation of turbulent 

energy (Schiereck, 2004). In the above figure gasses mix and turbulence is generated, the mixing 

of fluids shows similar behaviour. 

Turbulence in uniform stationary flow over a slope experiencing bottom friction  

For uniform stationary flow over a slope experiencing bottom friction (figure 12) the water level 

and flow velocity are in equilibrium. Due to the water flowing over a rough bed (shear stresses), 

turbulence is constantly generated. Without turbulence dissipation, this would mean turbulence 

grows indefinitely for a slope that continues indefinitely. However, according to Hoffmans (1993), 

under stationary uniform equilibrium flow conditions, turbulent energy is also in equilibrium. This 

means that turbulence needs to be dissipated and generated at an equal rate to reach an 

                                                      
7 The units of turbulent energy as defined in equation 3.3 do not correspond with the units of energy (𝐽 or 

𝑘𝑔 𝑚2/𝑠2). The convention is to leave out the density of water 𝜌𝑤 when calculating the turbulent energy 

because the density is often assumed to be constant. When the density of water is added to equation 3.3, 

the units of turbulent energy equal 𝐽/𝑚3, or in words: energy per volume of water. 



28 3 Characterizing turbulence and introducing the Arcadis Turbulence Model 

equilibrium (and not grow indefinitely). For uniform stationary flow and depth average turbulence 

Hoffmans (1993) formulated a formula describing the equilibrium turbulence intensity: 

 𝑟0 = 1.21
√𝑔

𝐶
 (3.5) 

Where 𝑟0 equals the depth and width averaged equilibrium turbulence intensity (-), 𝑔 the 

gravitational constant (m/s2) and 𝐶 the Chezy coefficient (m1/2/s). This formula describes the 

equilibrium turbulence level found as the result of undisturbed flow experiencing bottom friction. 

After a flow disturbance (e.g. a BFS), a distance downstream of the disturbance the turbulence 

levels revert to equilibrium turbulence levels as defined by equation 3.5. 

Turbulence in backward facing step flow  

For BFS flow, the flow depth is suddenly increased downstream of the step and a recirculation 

zone is formed (figure 13). The water arriving from the step has a larger velocity than the water 

flow in the recirculation zone. As a result a mixing layer is formed that mixes the slow and fast 

flowing water. Due to the interaction between the low velocity and high velocity flows, internal 

viscous stresses act on the flow, and turbulence is generated. At the reattachment point, it is 

assumed that the flow is fully mixed and turbulence is only generated due to the bottom 

roughness. The turbulent energy downstream of the reattachment point is expected to slowly 

revert back to an equilibrium level. 

3.4 The Arcadis Turbulence Model 

Introduction in the Arcadis turbulence model  

“Turbulence (…) can be interpreted as the process that allows the kinetic energy of the main flow 

to dissipate, leaving the system as heat due to viscous friction”(Schiereck, 2004, p. 44). This is 

one of the premises on which the ATM is build.  

The ATM is based on the assumption that depth averaged turbulent energy �̅� can be added to the 

Bernoulli equation. To add the depth averaged turbulent energy to the Bernoulli equation (2.2) it 

is first divided by the gravitational constant 𝑔 to express the kinetic turbulent energy in the right 

units, this results in: 

 
�̂� = 𝑧 + ℎ +

1

2

�̿�2

𝑔
+
�̅�

𝑔
 (3.6) 

Notice that the notation �̂� is used because equation 3.6 no longer represents the head levels as 

defined by the Bernoulli principle, but now represents a new head level that takes into account 

the turbulent energy in the flow. This new head level will be called the ATM head level. The ATM 

head level takes into account the turbulent energy in a flow. The mean flow energy as defined by 

the formula of Bernoulli assumes stationary flow velocities. The mean flow energy as defined by 

the ATM head levels, also assumes stationary flow velocities, but adds the turbulent kinetic 

energy which disappeared in the Bernoulli equation due to time averaging of the flow velocity 

profile. 

Turbulent energy production  

Shear stresses result in production of turbulent energy and dissipation of mean flow energy. The 

energy cascade states that mean flow energy loss is first transformed into turbulent energy 

before being dissipated (Schiereck, 2004). Thus when the mean flow energy is decreased, the 

turbulent energy is increased. The ATM assumes that this conversion is 100% efficient. Taking the 

derivative of equation 3.6 (similar to the derivative performed in appendix D) and rewriting the 
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equation gives an expression how the turbulent energy changes when the mean flow energy 

changes, assuming 100% conversion efficiency: 

 
(
𝑑�̅�

𝑑𝑥
)
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

= −𝑔(
𝑑𝑧

𝑑𝑥
+
𝑑ℎ

𝑑𝑥
+
1

2𝑔
(2�̿�

𝑑�̿�

𝑑𝑥
)) = −𝑔

𝑑𝐻

𝑑𝑥
 (3.7) 

Equation 3.7 states that the production of turbulent energy is proportional to the energy loss of 

the mean flow. Testing the validity of this equation is one of the research goals of this study. Note 

that equation 3.7 does not elaborate on the cause of the mean flow energy loss. This means that, 

in theory, the term 
𝑑𝐻

𝑑𝑥
 incorporates every mean flow energy loss term (e.g. bottom friction, flow 

deceleration, other causes of viscous stress). The exact sources of mean flow energy loss 

incorporated in equation 3.7 depends on the application of the formula. 

Equation 3.7 does not contain a dissipation term but only describes the production of turbulent 

energy. Turbulence dissipation needs to be added to correctly model the energy cascade. If 

turbulent energy dissipation is left out, the turbulent energy will increase up to infinity when the 

mean flow continuously loses energy (e.g. for uniform stationary flow experience bottom friction). 

Turbulent energy dissipation  

It was already discussed that flow looses energy due to bottom friction following the formula of 

Chezy:  

 𝑑𝐻

𝑑𝑥
= −

�̿�2

𝐶2𝑅
 (2.4) 

Rewriting equation 2.3 using flow energy (J/m3) instead of head levels (m) gives: 

 𝑑𝐸

𝑑𝑥
= −

𝑔

𝐶2
𝜌𝑤�̿�

2

𝑅
 (3.8) 

Where 
𝑑𝐸

𝑑𝑥
 equals the energy loss due to bottom friction per unit of distance (J/m4). The term 

𝑔

𝐶2
 in 

equation 3.8 is a dimensionless constant that defines the kinetic energy loss per unit of distance 

due to friction. The energy cascade states that energy loss is first transformed into turbulent 

energy before being dissipated (Schiereck, 2004). The ATM assumes that there exists a constant 

that determines the turbulent energy dissipation per unit of distance, similar to the dissipation of 

flow energy due to bottom friction: 

Dissipation of flow energy: 

 
𝑑𝐸

𝑑𝑥
= −𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×

𝜌𝑤�̿�
2

𝑅
 (3.9) 

 

Dissipation of turbulent energy: 

 
(𝜌𝑤

𝑑�̅�

𝑑𝑥
)
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

= −𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×
𝜌𝑤�̅�

𝑅
 (3.10) 

In equation 3.9, following Chezy, the constant equals 
𝑔

𝐶2
. In equation 3.10, the constant is 

unknown. The turbulent energy dissipation constant in equation 3.10 will be called 𝛼. The 

dissipation of turbulent energy according to the ATM is thus given by: 
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(
𝑑�̅�

𝑑𝑥
)
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

= −𝛼
�̅�

𝑅
 (3.10) 

 

Combining the production and dissipation terms gives the final expression of the ATM for 

turbulence in a flow that will be tested for its validity: 

 𝑑�̅�
𝑑𝑥

=

 

−𝑔
𝑑𝐻
𝑑𝑥

(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)
  

−𝛼
�̅�
𝑅

(𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛)
 

(3.11) 

 

This differential equation models the change in depth averaged turbulent energy as a function of 

the change in head levels, and the turbulent energy itself. Using some assumptions, the ATM can 

be solved analytically. However, the analytical solution for the ATM model is only as valid as the 

assumptions on which it is based. In appendix G the analytical solution for the ATM is given, 

assuming a constant production term 
𝑑𝐻

𝑑𝑥
= 𝐷. 

3.5 The Arcadis Turbulence Model for equilibrium turbulence 

As a rapid assessment tool, the ATM should be applicable to a large number of flow scenarios. For 

BFS flow, the ATM will be validated using empirical data. For stationary uniform flow experiencing 

a rough bottom, it can already be shown the ATM is consistent with the existing formula for 

equilibrium turbulence. 

Hoffmans (1993) formulated an equation describing the turbulence intensity under stationary 

uniform flow conditions (equation 3.5). Under stationary uniform flow conditions turbulent energy 

does not change in the flow direction (Hoffmans, 1993), thus 
𝑑�̅�

𝑑𝑥
= 0. To satisfy no change in 

turbulent energy the production of turbulence should then equal the dissipation8. Applied to the 

ATM, this results in the following equation: 

 𝑑�̅�

𝑑𝑥
= 0 → −𝑔

𝑑𝐻

𝑑𝑥
= 𝛼

�̅�

𝑅
 (3.12) 

 

                                                      

8 Note that 
𝑑�̅�

𝑑𝑥
= 0 is also valid by assuming laminar flow (�̅� ≈ 0). However, it is assumed that the incoming 

flow is turbulent. 
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Figure 18 Uniform stationary flow over a rough bottom with head levels 𝑯 and ATM head �̂� 

 

Under steady uniform flow conditions the flow velocity and water depth do not change. Due to the 

sloping bottom, potential energy is transferred into kinetic energy. Because there is no change in 

flow velocity, the increased kinetic energy is immediately dissipated again due to bottom friction. 

Bottom friction can be described by the Chezy law. The loss in mean flow energy (and thus the 

increase in turbulent energy) due to bottom friction 
𝑑𝐻

𝑑𝑥
= −

�̿�2

𝐶2𝑅
 can be substituted into the ATM 

(equation 3.12) which gives: 

 
𝑔
�̿�2

𝐶2 
= 𝛼�̅� (3.13) 

In equation 3.13 the hydraulic radius 𝑅 appears at both the left and right side of the equation, 

and is thus left out. A known value for the turbulent energy �̅� can be filled in equation 3.13 to find 

a value for 𝛼. Equilibrium turbulent energy under uniform stationary flow conditions can be 

calculated using the formula for equilibrium turbulent intensity 3.6 of Hoffmans (1993). This 

formula can be rewritten into turbulent energy using equation 3.5 for turbulence intensity (see 

appendix H for the derivation): 

 
�̅�𝑒 = �̿�

2𝑐0
2
𝑔

𝐶2
 (3.14) 

Where �̅�𝑒 equals the equilibrium turbulent energy (m2/s2) under the flow conditions specified 

above and 𝑐0 = 1.21. 

Substituting equation 3.14 into 3.13 gives 𝛼 =
1

𝑐0
2 (appendix H). This means the ATM can confirm 

with the formula for equilibrium turbulence as described by Hoffmans (1993), when the 

dissipation coefficient is set at 𝛼 =
1

𝑐0
2. For stationary uniform (in all directions) flow conditions, 

the value for 𝑐0 was determined empirically, so 
1

𝑐0
2 is therefore also empirically determined. This 

gives some initial confidence in the ATM because the formula for equilibrium turbulence of 

Hoffmans (1993) has been used for some time to find equilibrium turbulent energy levels 

(Hoffmans, 2012). 
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3.6 Concluding remarks 

This chapter introduced how turbulence follows from properties of the flow. It was shown how the 

turbulent energy can be calculated using the velocity fluctuations in a flow. Turbulence is 

generated as the result of shear stresses affecting the flow. For uniform stationary flow, the flow 

is only affected by the shear stress between the walls and the flow. For backward facing step flow, 

flow deceleration results in internal viscous stresses on top of the shear stresses due to wall 

friction. To quantify the turbulent energy levels as the result of flow over a BFS, the ATM is 

introduced. The ATM is based on the energy cascade principle. The energy cascade states that 

mean flow energy loss is first transformed into turbulent energy before being dissipated 

(Schiereck, 2004). The ATM assumes that 100% of the mean flow energy loss is first transformed 

into turbulence. For the dissipation of turbulence, the ATM assumes that turbulence is dissipated 

similar to the dissipation of flow energy due to bottom friction. Whether these assumptions 

approximate reality for BFS flow will be studied in the coming chapters. For uniform stationary 

flow over a slope, it was shown that the ATM is at least consistent with the formula of Hoffmans 

(1993) for equilibrium turbulence levels. This gives some initial confidence in the validity of the 

ATM. 
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4 Theoretical validity 

4.1 Introduction 

Now that the ATM is defined, its theoretical validity is examined. First the assumptions made by 

the ATM about turbulence in a flow are discussed by looking at what terms are included and 

excluded in the ATM. The principles on which the ATM is based are compared to existing literature 

to show that these principles are partly founded in science. The ATM is compared to the turbulent 

kinetic energy (TKE) equation to show that the turbulence production term in the ATM follows 

from the turbulent kinetic energy equation when certain assumptions are made. The validity of 

these assumptions are discussed in the empirical validation. The dissipation term of the ATM is 

then compared to the present knowledge about the rate of dissipation in turbulent flows to show 

that the dissipation term of the ATM does not necessarily conflict with this knowledge. 

Table 1 Theoretical validation techniques used and the location where they are discussed 

Validation technique used:  Discussed in: What is discussed? 

Analysing the ATM formula Section 4.2 The implicit assumptions of the ATM 

Comparison of ATM principles to literature Section 4.3 The validity of the principles on which the ATM is build 

Comparing the production term of the ATM to the turbulent 
kinetic energy equation 

Section 4.4 Validity of the production term of the ATM 

Comparing the dissipation term of the ATM to the theory of 
large scale to smaller scale eddy dissipation 

Section 4.5 Validity of the dissipation term of the ATM 

 

4.2 Implicit assumptions of the Arcadis Turbulence Model 

Some of the assumptions implicitly made about turbulence by the ATM can be identified by simply 

looking at the formula of the ATM. 

  

 𝑑�̅�

𝑑𝑥
= −𝑔

𝑑𝐻

𝑑𝑥
− 𝛼

�̅�

𝑅
 

 

(3.11) 

Four assumptions about turbulence made by the ATM are identified: 

1. Turbulent energy can be approximated as a depth and width averaged value 

2. Turbulence is stationary 

3. No advective or diffusive transport of turbulence 

4. Turbulence production is equal to mean flow energy loss and turbulence dissipation is a 

relaxation function 

These assumptions are discussed in more detail below. 

1. The turbulence levels in the ATM can only vary in the 𝑥 direction (no 
𝑑

𝑑𝑦
 or 

𝑑

𝑑𝑧
 terms) so the 

model assumes that turbulent energy can be approximated as a depth and width averaged value, 

or in other words, the ATM is a one dimensional model. 

2. The ATM does not contain a time varying term (e.g. 
𝑑�̅�

𝑑𝑡
). Therefore, stationarity of the turbulence 

levels is assumed. Because turbulence is a function of the main flow (Tennekes & Lumley, 1972), 

stationary mean flow needs to be assumed for stationarity of the turbulence to be valid. Thus the 

ATM is only valid for stationary flow. 
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3. The ATM defined turbulence production and dissipation as a convective process. No additional 

turbulent transport parameters (e.g. diffusion) are present. It is assumed that turbulent energy is 

generated and/or dissipated for each step in space in the flow direction. The ATM does not permit 

for turbulence to be transported in the flow (either advective or diffusive) without a change in the 

turbulence levels. Thus, transport of turbulence in the opposite direction of the flow is also not 

possible. 

4. The ATM states that production of turbulent energy is equal to the loss of mean flow energy 

and dissipation of turbulence is a function of the turbulent energy itself (a relaxation function). 

The validity of these assumptions are discussed more in depth in the coming sections.  

4.3 Comparison to literature 

Although the ATM is a new model, the principles it is based on are mentioned in scientific 

literature. In this section, the ATM production and dissipation term is compared to literature to 

test its validity. 

Turbulence production originating from mean flow energy loss discussed in literature  

Laufer (1954) states that the energy (pressure) loss in pipe flow due to wall friction is partly 

converted into turbulent energy and partly dissipated. No explanation is given for the partial 

conversion of pressure energy into turbulent energy by Laufer (1954). However, a possible 

explanation can be hypothesised. Due to the speed difference between the wall and the flow, 

shear stresses induce turbulence in the flow (similar to figure 17). At the same time, the flow also 

loses flow energy due to the wall friction heating up the pipe. A different study from Klingmann & 

Alfredsson (1989-1993) performed experiments under laminar flow conditions with artificial 

introduced turbulence spots. They hypothesize in their study that the laminar fluid entering the 

turbulent region from upstream is slowed down and its excess mean flow energy is converted into 

turbulent energy. Townsend (1970, p. 13) states that “most free turbulent flows depend for their 

energy supply on converting mean flow energy into turbulent energy by entrainment of non-

turbulent ambient fluid”. Nakagawa and Nezu (1987, p. 86) found for BFS flow that “the decay of 

mean flow energy is balanced with an increase of potential energy and a production or generation 

of turbulent energy”. These results corresponds with the assumption of the ATM that the 

decrease of mean flow energy is inversely proportional to the increase in turbulent energy. 

Schiereck (2004) defined turbulence as the process that allows mean flow energy to be 

dissipated. Mean flow energy is first transformed into turbulence which, due to viscous stresses 

in the Kolmogorov microscales, is then dissipated into heat. George (2013) (among others) 

showed that turbulent energy can only originate from the mean flow energy using the Navier-

Stokes equation. So the assumption that the decrease in mean flow energy is inversely 

proportional to the increase in turbulent energy is supported by literature. However, the 

theoretical validation did not reveal whether it can be reasonably assumed that all mean flow 

energy loss is 100% converted in turbulent energy. The empirical validation will give more insight 

whether assuming all mean flow energy loss is 100% converted in turbulent energy approximates 

reality sufficiently. 

Turbulence dissipation discussed in literature  

The ATM states that turbulence dissipation is a function of turbulence itself. The dissipation 

coefficient 𝛼 determines the rate of dissipation of the present turbulent energy, according to the 

ATM. Multiple ways for measuring and/or estimating turbulence dissipation exists in literature. By 

measuring the relevant velocity fluctuations, the turbulence dissipation rate, as given by the 

turbulent kinetic energy equation (TKE) (equation 4.2 discussed in the following section) can be 
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calculated following: 𝜖 = 𝜈
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 where 𝜖 equals the dissipation rate (m2/s3) and 𝜈 equals the 

kinematic viscosity (m2/s). This term can be physically interpreted as the dissipation of turbulent 

energy due to internal viscous friction (George, 2013). Measuring this term was done by 

Andreopoulos and Honkan (1996). Attempts made during this study to relate the dissipation term 

of the ATM (𝛼
𝑘

𝑅
) to the dissipation term of the turbulent kinetic energy equation (𝜈

𝑑𝑢𝑖
′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
) were 

unsuccessful. It is therefore concluded that the dissipation of turbulence, as modelled by the 

ATM, does not follow from the TKE equation. 

A second method for estimating turbulence dissipation is based on the separation of scales 

producing turbulence and scales dissipating turbulence. The dissipation rate of turbulence is 

primarily determined by the large scale turbulent eddies transferring their energy to smaller scale 

turbulent eddies (George, 2013) (figure 19). The very small turbulent eddies lose their energy 

quickly due to viscosity (transforming kinetic energy into heat). The overall rate of dissipation is 

therefore controlled by the rate of energy transfer from the larger scales to the smaller scales 

(George, 2013). The amount of kinetic energy (per unit mass) in large scale turbulent eddies is 

proportional to 𝑢𝑗
′2 (m2/s2). The rate that large eddies transfer energy to smaller eddies is 

assumed to equal 
𝑢𝑗′

𝑙
 (s-1) where 𝑙 represents the size of the largest eddies (m) (or another 

characteristic length scale) (Tennekes & Lumley, 1972). Because the dissipation rate is limited by 

the supply of energy from the large scale turbulent eddies to the smaller scales, the dissipation 

rate can be estimated as: 

 

𝜖~
𝑢𝑗′

𝑙
𝑢𝑗
′2 =

𝑢𝑗
′3

𝑙
 (4.1) 

This definition of turbulent dissipation is only an approximation. However, it is supported by 

literature as a good approximation ( see for example Tennekes & Lumley, 1972 or George, 2013). 

 
Figure 19 Visualisation of large scale turbulent eddy transferring energy into smaller scale eddies (sketch of ink droplet 

falling into glass of water, Tennekes and Lumley, 1972, p.21) 

 

Dissipation of turbulence is described in numerous other ways, the 𝑘 − 𝜖 model describes the 

dissipative capacity as something that is produced, convected and dissipated similar to the 

turbulence itself (Mohammadi & Pironneau, 1993). A summary of some of the methods to 

describe turbulence dissipation is given by Sheng, Meng, and Fox (2000). One thing that all above 

described turbulence dissipation approximations have in common is that none of them seem to 

closely resemble the turbulence dissipation term as described by the ATM (in section 4.5, it will 

be shown that the turbulence dissipation term in the ATM can confirm to the turbulence 

dissipation as described by equation 4.1). 
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4.4 Comparing the production term of the Arcadis Turbulence Model to the 

turbulent kinetic energy equation 

Introduction  

The ATM assumes that the production of turbulent energy is exactly proportional to the energy 

loss of the mean flow. In this section it is shown what assumptions are needed to let the 

production term of the turbulent kinetic energy equation (TKE) confirm with the ATM production 

term. Because the production of turbulence is related to the mean flow energy loss, the mean 

flow kinetic energy (MKE) equation is introduced alongside the turbulent kinetic energy equation 

(TKE). 

Introducing the turbulent kinetic energy equation  

The Navier-Stokes equation describes the motion of fluids by applying Newton’s second law of 

motion. “It is believed that the solution of time-dependent 3-D Navier-Stokes equations can 

describe turbulent flows completely” (Nallasamy, 1987, p. 152). However, no general solution of 

the Navier-Stokes equation is currently known (a solution is continuously searched for by the 

scientific community) (Moskvitch, 2014). By time averaging the Navier-Stokes equation, the 

Reynolds averaged Navier-Stokes equation is found (George, 2013). The velocity fluctuations that 

describe turbulence can be found by subtracting the Reynolds averaged Navier-Stokes equation 

from the regular Navier-Stokes equation, taking the scalar product with the fluctuating velocity 

itself and then ensemble averaging in time (George, 2013). The resulting turbulent kinetic energy 

equation (TKE) cannot currently be solved as it requires information on the turbulence properties 

that can only come from a direct numerical simulation. The computational cost of solving the TKE 

equation via direct numerical simulations for practical purposes is currently too large 

(Lermusiaux, 2011). The TKE equation is useful for theoretically describing the different 

phenomena affecting turbulence or to calculate turbulence after applying simplification to the 

equation. A step by step guide how to deduce the TKE equation is given by George (2013). 

The ATM is compared to the TKE equation because it is believed that the Navier-Stokes equation 

can describe turbulent flows completely (Nallasamy, 1987) and the TKE equation is needed to 

approximate the turbulence terms in the Navier-Stokes equation (approximate because the 

Navier-Stokes equation has currently not been solved). The TKE equation equals: 

 𝑑𝑘

𝑑𝑡
+ �̅�𝑗

𝑑𝑘

𝑑𝑥𝑗
=

𝑑

𝑑𝑥𝑗
(−

1

𝜌𝑤
 �̅�𝑢𝑖

′𝛿𝑖𝑗 −
1

2
𝑢𝑖
′𝑢𝑖
′𝑢𝑗
′ + 𝑣

𝑑𝑘

𝑑𝑥𝑗
)

− 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 

𝛿𝑖𝑗 {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

(4.2) 

Where 𝑘 equals the turbulent energy in the flow (m2/s2), 𝑡 equals the time (s), �̅�𝑖 equals the time 

averaged flow velocity (m/s), 𝜌𝑤 equals the density of the fluid (kg/m3), �̅� equals the root mean 

squared (RMS) pressure fluctuations (N/m2), 𝛿𝑖𝑗 equals Kronecker delta (-), 𝑢𝑖
′ equals the RMS 

velocity fluctuations (as discussed in section 3.2) (m/s), and 𝑣 equals the kinematic viscosity 

(m2/s). The subscripts 𝑖 and 𝑗 are free indices that can take on the values x, y, and z 
corresponding to the three dimensions. 

The term 
𝑑𝑘

𝑑𝑡
 in equation 4.2 represents the change in turbulent energy over time. This term 

equals zero under stationary conditions. The term �̅�𝑗
𝑑𝑘

𝑑𝑥𝑗
 represents the rate of change of 

turbulent energy due to advection of turbulent energy in the mean flow direction. The term 
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𝑑

𝑑𝑥𝑗
(−

1

𝜌𝑤
 �̅�𝑢𝑖

′𝛿𝑖𝑗) represents the transport of turbulent energy due to pressure fluctuation in the 

three dimensions. The term 
𝑑

𝑑𝑥𝑗
(−

1

2
𝑢𝑖
′𝑢𝑖
′𝑢𝑗
′) represents the transport (diffusion) of turbulent 

energy due to turbulence itself. The term 
𝑑

𝑑𝑥𝑗
(𝑣

𝑑𝑘

𝑑𝑥𝑗
) represents the transport of turbulent energy 

due to viscous stresses. The term −𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
 represents the production rate of turbulent energy 

due to a mean flow velocity gradient and the term −𝑣
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 represents the dissipation of 

turbulent energy due to internal viscous stresses. Above is also discussed in George (2013). Note 

that in equation 4.2 turbulence can only be generated by the production term −𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
. 

Introducing the mean flow kinetic energy (MKE) equation  

The production term −𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
 of the TKE equation is related to the change in the mean flow 

kinetic energy. To better understand the production of turbulent kinetic energy, first the origin of 

the production term −𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
 is discussed. 

Equation 4.2 depicts the kinetic energy of the velocity fluctuations in a flow. Similarly, the kinetic 

energy of the mean flow (MKE) can be found by taking the scalar product of the Reynolds 

averaged Navier-Stokes equation with the mean flow velocity (George, 2013). This results in: 

 𝑑𝐾

𝑑𝑡
+ �̅�𝑗

𝑑𝐾

𝑑𝑥𝑗
=

𝑑

𝑑𝑥𝑗
(−

1

𝜌𝑤
 �̅��̅�𝑖𝛿𝑖𝑗 −

1

2
𝑢𝑖
′𝑢𝑖
′�̅�𝑖 + 𝑣

𝑑𝐾

𝑑𝑥𝑗
)

+ 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑�̅�𝑖
𝑑𝑥𝑗

𝑑�̅�𝑖
𝑑𝑥𝑗

+ 𝑓 

𝛿𝑖𝑗 {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

(4.3) 

Where 𝐾 equals the kinetic energy of the mean flow (𝐾 =
1

2
�̅�𝑖�̅�𝑖) (m2/s2), 𝑡 equals the time (s), �̅�𝑖 

equals the time averaged flow velocity (m/s), 𝜌 equals the density of the fluid (kg/m3), �̅� equals 

the time averaged pressure (N/m2), 𝛿𝑖𝑗 equals Kronecker delta (-), 𝑢𝑖
′ equals the time averaged 

velocity fluctuations (m/s), 𝑣 equals the kinematic viscosity (m2/s), and 𝑓 equals a source or sink 

term for kinetic energy (m2/s3) e.g. gravity adding energy to the flow by transforming potential into 

kinetic energy. The subscripts 𝑖 and 𝑗 are free indices that can take on the values x, y, and z 
corresponding to the three dimensions. 

Equation 4.3 is very similar to equation 4.2 (e.g. similar transport and diffusion terms). One 

important difference between the two equations is the change in sign in front of the production 

term 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
. This means that when the mean flow loses energy following 𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
, the turbulent 

energy increases by an equal amount. This corresponds with the assumption of the ATM that 

turbulence gains its energy as a result of the decrease of mean flow energy. The mean flow can 

also loose energy due to internal viscous stress, which can be seen in the term 𝑣
𝑑�̅�𝑖

𝑑𝑥𝑗

𝑑�̅�𝑖

𝑑𝑥𝑗
. This 

conflicts with the assumption of the ATM that 100% of the mean flow energy loss is converted 

into turbulent energy. 
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Steps taken to relate the TKE production term to the ATM production term 

Four steps are taken in order to relate the TKE production term to the ATM production term: 

1. The TKE and MKE are simplified by assuming stationarity, no additional transport of 

turbulence beside advection and negligible mean flow energy dissipation due to water 

viscosity 

2. The MKE is rewritten using the incompressibility of water and assuming uniformity of flow 

and turbulence in the y and z directions 

3. The Bernoulli equation is differentiated in the x  direction and it is shown that the resulting 

formula equals the MKE equation as defined in step 2 (excluding the turbulence 

production term) 

4. Because the Bernoulli equation can be found in the MKE equation (under certain 

assumptions), and the MKE loss equals the TKE gain (under certain assumptions), it is 

shown that the Bernoulli equation can be used to calculate the production of the 

turbulent energy in the TKE equation. 

The ATM models the production of turbulent energy as a function of the mean flow energy loss 

according to Bernoulli. Following the above steps, it is shown that the TKE equation can confirm 

with the production term of the ATM. The derivation described in these four steps is complex. 

Therefore, only the assumptions required to make the TKE production term confirm with the 

production term of the ATM are presented in this chapter. The mathematical derivation as 

described in these four steps is depicted in appendix I. 

Assumptions required to make the TKE production term confirm with the ATM production term 

The production term of turbulence found in the ATM can be derived from the TKE equation when 

it is assumed that: 

1. Turbulence transport due to pressure fluctuations, turbulence itself, and viscous stresses 

can be neglected 

2. Mean flow energy transportation due to mean flow energy itself and viscous stresses can 

be neglected 

3. Mean flow energy dissipation due to water viscosity can be neglected 

4. The flow is defined by incompressible fluid 

5. Stationarity 

6. The flow is perfectly uniform in the 𝑦 and 𝑧 directions. 

A great number of assumptions are needed before the ATM turbulence production term follows 

from the TKE equation. The empirical validation performed in chapter 7 will show whether the 

ATM assumptions approximate reality sufficiently to accurately model turbulence. 

The third assumption as stated above is discussed here in more detail because this assumption 

is closely related to the assumption of 100% conversion of mean flow energy into turbulent 

energy. In appendix I it is assumed that the mean flow energy dissipation due to water viscosity 

can be neglected at high (local) Reynolds numbers (Burden, 2008). This is true for most of the 

flow, but not for the flow in the boundary layer (flow near the wall) (George, 2013). Very close to 

the boundary, viscous stresses even at high Reynolds numbers result in a drag force of the flow 

on the boundary (and vice versa). The work performed by the flow on the boundary results in a 

mean flow energy loss (energy dissipation due to water viscosity) that is not 100% converted into 

turbulence (according to the TKE and MKE). This means that the assumption of the ATM that 

100% of the mean flow energy loss is converted into turbulence is not strictly valid. However, if 
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the error due to this assumption is small enough, the approximation can still be useful. Whether 

all above stated assumptions about the production of turbulence approximates reality sufficiently 

will be clarified further in the empirical validation. 

4.5 Comparing the dissipation term of the ATM to the turbulent energy transfer to 

smaller scales 

As discussed, in section 4.3, the dissipation of turbulent energy can also be considered to be 

controlled by the rate of energy transfer from the larger scales to the smaller scales. This rate is 

approximated by 𝜖 =
𝑢𝑗
′3

𝑙
. The dissipation term of the ATM equals 𝛼

𝑘

𝑅
. However, the ATM described 

the change in turbulence per unit of distances(
𝑑𝑘

𝑑𝑥
), whereas the dissipation term 𝜖 =

𝑢𝑗
′3

𝑙
 

described the change in turbulence per unit of time(
𝑑𝑘

𝑑𝑡
). To equate to the right units, it is 

assumed that the dissipation of turbulent energy over a certain period of time travels with the 

mean flow velocity �̅�𝑗 at the location the dissipation occurs. This gives: 

 
𝛼
𝑘

𝑅
=
1

�̅�𝑗

𝑢′𝑗
3

𝑙
 (4.4) 

The above equation can be simplified into: 

 
𝛼
1

2

𝑢𝑗
′𝑢𝑗
′

𝑅
=
1

�̅�𝑗

𝑢𝑗
′𝑢𝑗
′𝑢𝑗
′

𝑙
  

 𝛼

2𝑅
=
𝑢𝑗
′

�̅�𝑗

1

𝑙
  

 
𝛼 =

𝑢𝑗
′

�̅�𝑗

2𝑅

𝑙
 (4.5) 

Equation 4.5 depicts 𝛼 as a dimensionless parameter. The value 𝛼, following the derivation 

above, equals the product of the ratio between the fluctuating and the mean flow velocity (
𝑢𝑗
′

�̅�𝑗
) 

and the hydraulic radius and a characteristic length(
2𝑅

𝑙
). Equation 4.1 is supported by many 

studies (e.g. Tennekes & Lumley, 1972; George, 2013) thus modelling turbulence as defined by 

equation 4.1 (4.5) should benefit the validity of the ATM. However, the ATM, as introduced in 

section 3.4 assumes a constant value for the dissipation coefficient 𝛼, whereas equation 4.5 

describes the turbulence dissipation coefficient 𝛼 as a function of the ratio between the 

fluctuating and the average flow velocity. The only way 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 in equation 4.5 is when 

𝑢𝑗
′

�̅�𝑗
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This is almost never the case9 because the flow fluctuations 𝑢𝑗

′ (and thus 

turbulence) can change in a flow where the mean flow velocity �̅�𝑗 remains constant (Nakagawa & 

Nezu, 1987; Xingkui & Fontijn, 1993; Hofland, 2005). Validation of the ATM with empirical data 

will show whether the assumption that 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 will approximate reality sufficiently to model 

turbulent energy levels in BFS flow. 

                                                      

9 𝛼 =
𝑢𝑗
′

𝑢𝑗

2𝑅

𝑙
 can be constant with varying 

𝑢𝑗
′

𝑢𝑗
 when the characteristic length scale 𝑙 varies exactly in the 

opposite direction. This is possible, but very unlikely (Uijttewaal, 2015). The term 
𝑢𝑗
′

𝑢𝑗
 is constant for 

equilibrium turbulent energy levels (section 3.5). 
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4.6 Concluding remarks 

In this chapter, an attempt was made to theoretically validate the ATM using existing literature 

and proven formulae. A literature study showed that multiple authors concluded that the 

reduction of mean flow energy is related to the increase of turbulent energy. The literature 

analysis did not make clear if it is valid to assume that 100% of the mean flow energy loss is 

converted into turbulent energy. Using the turbulent energy equation, it was shown in this chapter 

that the production of turbulence is exactly proportional to the reduction of mean flow energy 

under a set of assumptions. However, this neglects (among other things) the viscous stresses 

between the mean flow and the walls which can result in a mean flow energy loss that is not 

converted into turbulence. Whether the assumptions on which the ATM is based are applicable in 

real life situations is explored in the empirical validation. 

Literature presents multiple ways of modelling turbulence dissipation. No instances in literature 

were found of modelling dissipation as a relaxation term similar to the ATM. If the 𝛼 coefficient in 

the ATM is not assumed to be constant in space, then the dissipation term of the ATM can 

confirm with the dissipation term as described by the theory of large scale to smaller scale eddy 

dissipation. The lack of scientific papers presenting turbulence dissipation as a relaxation 

function is possibly an indication that a constant dissipation parameter for 𝛼 might result in 

inaccurate modelling of turbulence. Comparison with empirical data will give more insight in the 

accuracy of modelling the turbulence dissipation using a constant value for 𝛼 in the ATM. 
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5 Validation data collection 

5.1 Introduction 

To test whether the assumptions discussed in the previous chapter approximate reality 

sufficiently, the ATM is compared to empirical data. This chapter will describe what data is 

required for the ATM to run, what data confirms to these criteria, the quality of these selected 

data, and the uncertainties in the selected data. First, an assessment is made of the required 

data to run and validate the ATM. Using this assessment, experimental data is selected to use in 

the validation. The experimental data is divided into data needed to run the ATM (section 5.3 and 

5.4) and data needed to validate the ATM (section 5.5). The experimental data are presented and 

discussed to get an idea about the experimental circumstances and limitations. An uncertainty 

analysis of the experimental data is made to assess the accuracy of the validation data. 

5.2 Data requirements for the Arcadis Turbulence Model analysis 

Introduction  

To validate the model output of the ATM, the output of the ATM needs to be compared to the 

turbulent energy levels that occurred during experiments (�̅�). In order to gather the right 

experimental datasets, first an assessment is made of the data required to run and validate the 

ATM. Figure 20 shows a schematization of the required ATM input data. The figure also 

schematizes how the ATM is validated using experimental measurements. In the following text, 

the data requirements for validating and running the ATM are treated separately. 

 
Figure 20 Flow chart showing ATM input and validation data10 

 

ATM validation data requirements  

The ATM calculates depth averaged turbulent energy. In order to say something about the 

accuracy of the ATM’s calculated turbulent energy levels, validation data is needed including 

                                                      
10 The hydraulic radius is calculated using the flume width 𝐵 and the water depth ℎ. However, in order to 

preserve the readability of all flow charts, this relation is left out. 
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measured depth averaged turbulent energy levels (�̅�) at multiple locations on top and 

downstream of the BFS. 

Data about the (depth averaged) velocity fluctuations �̅�𝑖
′ are often measured in experiments. This 

data can be used in the formula: 

 
�̅� =

1

2
(�̅�𝑖

′)2 (3.3) 

The resulting �̅� is compared to the ATM output to say something about its validity. 

ATM input data requirements  

The input variables for the ATM can be discerned looking at equation 3.11: 

 the change in head level 
𝑑𝐻

𝑑𝑥
 

 the hydraulic radius 𝑅 

 the dissipation coefficient 𝛼 

 an boundary conditions turbulence value11 𝑘0 

The methods used to calculate the input data are discussed below: 

In order to calculate the change in head level, the flow velocity (�̿�), water depth (ℎ) and elevation 

(𝑧) need to be known for the whole study area of the BFS flow. The head level can then be 

calculated using the formula 2.2: 

 
𝐻 = 𝑧 + ℎ +

1

2

�̿�2

𝑔
 (2.2) 

The hydraulic radius 𝑅 (m) is needed as input into the ATM. The hydraulic radius 𝑅 is calculated 

using: 

 
𝑅 =

ℎ × 𝐵

2 × ℎ + 𝐵
 (5.1) 

Appendix J explains the exact method used to calculate the hydraulic radius (a somewhat 

deviating method is used that can also be applied during the preliminary design phase but still 

accurately approximates the actual hydraulic radii). 

The dissipation coefficient 𝛼 is a calibration coefficient in the ATM. The dissipation coefficient is a 

new coefficient, and therefore, no experimental data contains information about the value of 𝛼 (in 

chapter 6 a number of dissipation coefficient alternatives are proposed that can be used to run 

the ATM). 

  

                                                      
11 Because the ATM only calculates the change in turbulent energy, an upstream boundary 

condition 𝑘0 needs to be known in order for the ATM to find the absolute turbulent energy levels. 
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An upstream boundary turbulence value �̅�0 is needed. Because the output of the ATM is 

compared to measured turbulent energy �̅�, �̅�0 can be found by extracting the measured turbulent 

energy level at the upstream edge of the study area. 

Table 2 summarizes the required flow variables needed to run and validate the ATM. 

Table 2 ATM variables and the section where they are discussed 

Variable Used for: Discussed in: What is discussed? 

𝒉 Calculating the input variable 
𝑑𝐻

𝑑𝑥
 Section 5.3: & 5.4 

Section 5.3: analysis of variable 
Section 5.4: uncertainty in the variable 

�̿� Calculating the input variable 
𝑑𝐻

𝑑𝑥
 Section 5.3: & 5.4 

Section 5.3: analysis of variable 
Section 5.4: uncertainty in the variable 

𝑹 Input variable into the ATM Appendix J 
Approximation of 𝑅 using data available 
during preliminary design phase and 
accuracy of this approximation 

�̅�′ Computing turbulent energy levels �̅� to 
validate the ATM 

Section 5.5 Analysis and uncertainty of the variable 

𝜶 Input variable into the ATM Chapter 6 Possible alternatives 

5.3 Data analysis 

Introduction  

The ATM is validated on experimental data. Because during this graduation assignment, no 

experiments were performed, experimental data to run and validate the ATM was collected from 

literature. A summary of the available data and applicability to the ATM can be found in appendix 

K. Eight experimental datasets were gathered from various sources. The experiments from 

Nakagawa & Nezu (1987) (two different experiments), Xingkui & Fontijn (1993) and Hofland 

(2005) proved usable for the validation procedure. The work of Hofland (2005) was performed 

using the experimental data from De Ruijter (2004), thus information was also extracted from the 

master thesis of De Ruijter (2004). 

Experimental conditions 

  
Figure 21 Measurement locations of selected experimental data; 𝒙 = 𝟎 at origin 
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Table 3 Experimental setup of the studies used for turbulence data. Question marks indicate data that were 

unavailable. 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Flume 
properties 

Width (m) 0.4 0.495 0.3 0.3 

 Length (m) 14 20 8 8 

Flow properties hupstream (m) 0.083 0.116 0.037 0.085 

 hdownstream (m) 0.166 ? 0.058 0.106 

 �̿�upstream (m/s) 0.606 0.580 ? ? 

 �̿�downstream (m/s) 0.303 ? 0.142 0.221 

 Discharge (m
3
/s) 0.0201 0.0318 0.0025 0.0070 

 Specific discharge (calculated) (m
2
/s) 0.0503 0.0673 0.0082 0.0234 

 Froudeupstream 0.67 0.56 ? ? 

 Froudedownstream 0.24 ? 0.19 0.22 

 Reynolds 50000 66000 8200 23400 

Step properties BFS height (ℎ𝑠𝑡𝑒𝑝) (m) 0.070 0.067 0.020 0.020 

 Reattachment length 
(𝑥/ℎ𝑠𝑡𝑒𝑝) 

10 12 6.3 5.2 

Bedlayer Grain size downstream of step (m) 0.033 0.0178 smooth smooth 

 Mobility glued moving & glued n.a. n.a. 

 
Step roughness 

smooth flat 
concrete 

wood smooth smooth 

 Chezydownstream (calculated) 27.3 30.6 69.1 76.4 

Measurements 
Equipment used 

Laser Doppler 
Anemometer 

Laser Doppler 
Anemometer 

Laser Doppler 
Anemometer 

Laser Doppler 
Anemometer 

 Location first measurement (𝑥/ℎ𝑠𝑡𝑒𝑝) 0 -0.45 -1 -1 

 Location last measurement (𝑥/ℎ𝑠𝑡𝑒𝑝) 25.7 15.3 12 12 

 Number of measurements 7 11 13 13 

 

Table 3 shows the experimental set up for the different studies that will be used to validate the 

ATM. It is unknown where measurements upstream and downstream were exactly located along 

the flume. However, every study did state that the measurement upstream is located on top of 

the step and the measurement downstream is located downstream of the reattachment point. 

Note that all four experiments were performed under different conditions (e.g. differences in 

discharge, bottom roughness, water height, etc.). The Froude numbers were calculated in the 

papers using the formula: 

 
𝐹 =

�̿�

√𝑔ℎ
 (5.2) 

The Reynolds numbers were calculated in the papers using: 

 

𝑅𝑒 =
�̿�ℎ

𝜈
 (5.3) 

Where 𝜈 equals the kinematic viscosity: 10−6 (m2/s). Note that it does not matter whether 

ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 or ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 and �̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 is used for the calculation of the 

Reynolds number because due to the conservation of mass, and a constant flume width, the 

specific discharge 𝑞 = ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 × �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 = ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 × �̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 (m2/s) is constant. 

For all selected experiments, the Reynolds number is large, thus all selected experiments were 

performed under fully turbulent flows. 
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The Chezy coefficient was not given in the papers. The Chezy coefficient is calculated in this study 

using: 

 

𝐶 =
1

𝑛
ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
1
6⁄  (5.4) 

Where 𝑛 equals the Manning coefficient (s/m1/3), which is either looked up in a table, or 

calculated following the formula of the The Rock Manual (2007): 

 

𝑛 = 0.048𝐷50
1
6⁄  (5.5) 

Where 𝐷50 equals the characteristic sieve size of the stones on the bottom of the flume. For the 

studies of Xingkui & Fontijn (1993) and Hofland (2005) the bottom was covered with grains, and 

equation 5.5 is used to calculate the Manning coefficient. Nakagawa & Nezu (1987) stated that 

the flume is built using flat and smooth walls, it is therefore assumed that the flume consisted of 

smooth plastic, for which the Manning coefficient equals 0.009 (Engineering Toolbox, 2015). 

General remarks about the experimental conditions  

In the study of Nakagawa & Nezu (1987), two flume experiments were performed using the same 

flume setup for two different discharges. These experiments were called ST-1 and ST-3. Both 

experiments are treated separately in this thesis. 

The studies of Xingkui and Fontijn (1993) and Hofland, (2005) measured the velocity profiles at 

only one location in the flumes. In order to get the velocity profiles at varying distances from the 

step, the location of the step was varied. The same uniform subcritical flow conditions were set 

for the varying location of the step. This made sure the velocity profiles correspond to the same 

flow configuration. The error margins in the measured variables due to small differences in flow 

conditions are discussed in the next section. 

The study of Hofland (2005) used a step with a height of 0.12 m. However, downstream of the 

step, the bed grains increased the bottom elevation. The effective step height was reduced to 

0.067 m due to this increased bottom elevation. 

All selected experiments were performed under subcritical flow conditions. Therefore, the ATM will 

be discussed only for subcritical flow conditions. More research is required to say something 

about the ATM under supercritical flow conditions. 

Intermediate measurement locations  

The water depth ℎ and mean flow velocity �̿� are used to calculate the change in head level12 

(
𝑑𝐻

𝑑𝑥
). The papers of the selected experiments presented multiple measurements of these flow 

variables (figure 22). 

                                                      
12 The measurements ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 , ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 , �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and �̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚were not used as input into the 

ATM because the exact measurement locations were unknown for these measurements. 



47 

 
Figure 22 Measurement locations of selected experimental data 

 

Figure 22 shows an approximation13 of measurement location of the water depth (ℎ𝑎,𝑏,… ) and 

the mean (time averaged) and fluctuating velocity profiles (�̅�𝑎,𝑏,…, 𝑢𝑎,𝑏,…
′ ). These intermediate 

measurement locations are extracted from graphs in the different papers of the selected 

experiments. Appendix L gives a description of the method used to extract the water depths, and 

the mean and fluctuating velocity profiles from the graphs in the papers. To illustrate how the 

data is presented in the papers, one of the graphs from the experiment of Xingkui & Fontijn 

(1993) is depicted in figure 23. 

 
Figure 23 Example of graph used to extract flow velocity �̅� and water depth 𝒉 (Xingkui & Fontijn 1993, p. 306) 

 

Missing data  

The study of Hofland (2005) did not present the water depths at the intermediate measurement 

locations in the flume (only values for ℎ upstream and downstream are known). Without water 

depth information, the change in head level cannot be calculated. The missing water depth data 

is therefore computed using the conservation of mass. De Ruijter (2004) stated that the 

experiments were performed using a discharge of 31.8 l/s (measured on top of the step). The 

extracted flow velocities �̅�𝑎,𝑏,… from the graphs of Hofland (2005) are depth integrated. The 

corresponding water depth for each velocity measurement is then found using: 

                                                      
13 Figure 21 only shows an approximation because the actual measurement locations are different for each 

dataset. 
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ℎ𝑎,𝑏,… =

0.0318 

�̿�𝑎,𝑏,… × 𝐵
 (5.6) 

Where 0.0318 is the discharge in the flume in (m3/s), �̿�𝑎,𝑏,… the depth integrated velocity profiles 

extracted from the graphs (m/s), and 𝐵 the width of the flume (m). It is known that the discharge 

actually fluctuated during different velocity profile measurements. The effects of the uncertainty 

within the data due to the assumption of conservation of mass for the Hofland (2005) experiment 

are presented in the next section. 

Extracted data   

The extracted intermediate water depths ℎ𝑎,𝑏,… and mean flow velocities �̿�𝑎,𝑏,… of the selected 

experiments are depicted in this section. The fluctuating flow profiles �̅�′𝑎,𝑏,… are also extracted. 

These will be discussed in section 5.5. 

  

  
Figure 24 Depth integrated flow velocities including trend lines14 

 

Figure 24 shows the extracted, time averaged depth integrated flow velocities. Every selected 

experiment shows a sudden decrease in depth averaged flow velocity downstream of the step. 

The sudden decrease in depth averaged flow velocity is the result of an integration over the whole 

water depth, including the recirculation zone just downstream of the end of the step (figure 25). 

                                                      
14 All graphs depicted in this thesis are normalized by the step size (𝑥/ ℎ𝑠𝑡𝑒𝑝) in order to compare the 

different experimental results. In the graphs, 𝑥 is the distance from the origin (figure 13) and ℎ𝑠𝑡𝑒𝑝 the 

height of the BFS as depicted in table 3. 
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Figure 25 Sudden decrease in depth averaged flow velocity due to presence of a recirculation zone 

 

A trend line is added to figure 24 to show the general trend of the flow velocity graphs after the 

initial sudden decrease. Weak acceleration is found for the experiments of Xingkui and Fontijn 

(1993) and Nakagawa & Nezu (1987) ST-3. On the other hand, weak deceleration is found for the 

studies of Hofland (2005) and Nakagawa & Nezu (1987) ST-115. It is believed that the velocity 

measurements fluctuate within a certain margin. Therefore, the weak accelerations and 

decelerations could also be the result of uncertainty in the measurements. 

The extracted water depth measurements are given below. 

  

  
Figure 26 Water depth at the measurement locations including trend lines 

                                                      
15 Possible phenomena that force water acceleration and deceleration downstream of the step are 

discussed in more detail in section 6.4. 
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Figure 26 shows the measured water depths at the measurement locations. The sudden 

decrease in depth averaged flow velocity is accompanied with a sudden increase in water depth 

for all experiments. The water depth measurements for all selected experiments show a trend of 

increasing water depth after the first sudden jump (even downstream of the reattachment point). 

The increase in water depth after the first jump is most likely related to the mean flow energy 

loss, which is discussed in section 6.4. Note that an increase in water depth should be 

accompanied with a decrease in flow velocity when the mass is preserved (assuming no change 

in flume width). However, figure 24 shows both flow deceleration and acceleration. This seems to 

indicate that the mass was either not preserved during the experiments, or the measurements 

were affected by sources of uncertainty. 

5.4 Uncertainty in the experimental data used as input for the ATM 

Introduction  

Uncertainty in the experimental data is an important factor to consider. As a first indication of the 

uncertainty in the measured variables, the discharge at each measurement location is calculated. 

The fluctuations in the measured discharge will give an idea about the size of uncertainty in the 

measurements. Next possible sources of uncertainty are proposed. A conservative estimate is 

then made about the effect of these sources of uncertainty on the measurements. 

Discharge fluctuations  

To say something about the uncertainty in the measurement data, the discharge is calculated at 

each measurement location using the data from figure 24, 26 and the flume widths (given in 

table 3). The fluctuations in the measured discharge will give an idea about the size of uncertainty 

in the measurements. The discharge fluctuations will also give an indication of the sources of 

uncertainty affecting the measurements. In order to compare the discharge fluctuations for the 

difference selected experiments, the fluctuations are normalized. Normalization is performed by 

dividing the discharge by the explicitly in the papers stated discharge (as depicted in table 3). If 

the measurements are not affected by sources of uncertainty, and the discharge remained 

constant in between measurement locations, than the normalized discharges should equal unity 

at every measurement location. 
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Figure 27 Discharge calculated using extracted water depth and flow velocities. Discharge is normalized by dividing the 

discharge by the explicitly stated discharge in the papers (table 3) 

 

The selected experiments (with the exception of the experiment of Hofland, 2005) show chaotic 

discharge fluctuations of up to 17% of the stated discharge (thus sources of uncertainty most 

likely affected the measurements during the experiments). Also note that all experiments with the 

exception of Xingkui & Fontijn (1993) seem biased. This might indicate that the authors of the 

papers used a different method for finding the discharge during the experiments (different from 

multiplying depth averaged flow velocity with the water depth and flume width to compute the 

discharge). 

The discharge of the experiment of Hofland (2005) does not seem to fluctuate in between 

measurement locations. Because the water depth ℎ was calculated using the conservation of 

mass, the calculated discharge, per definition, does not fluctuate for Hofland (2005). This does 

not mean the measurements were not affected by sources of uncertainty for the experiment of 

Hofland (2005). The hypothesis that measurements are affected by sources of uncertainty for the 

experiment of Hofland (2005) is confirmed by the fact that the calculated discharge (figure 27) 

deviates from the given discharge (table 3). Thus the measurements of all selected experiments 

are most likely affected by measurement errors. 

Sources of uncertainty  

Constant discharge is expected when every measurement of water depth and time and depth 

averaged flow velocity is 100% accurate. Thus, the extracted water depths and flow velocities are 

most likely affected by sources of uncertainty. Several sources of uncertainty are considered: 

1. Uncertainty in the measurement data due to fluctuations in discharge when the 

experiments were performed 
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2. Uncertainty in water depth measurements due to local variations in water depth as a 

result of undulations 

3. Uncertainty in the flow velocity measurements due to incorrect usage of the laser Doppler 

anemometer 

4. Uncertainty in the flow variables due to tracing the graphs in the papers by hand 

In the following text these sources of uncertainty are elaborated. 

1. Uncertainty in the measurement data due to fluctuations in discharge  

Nakagawa & Nezu (1987) stated that the measurements of the instantaneous flow velocity 

satisfied continuity within an error margin of 5%. De Ruijter (2004) who helped conduct the 

experiments of Hofland (2005) stated that during their experiments, their measured discharge 

fluctuated within a margin of 2 l/s. Their discharge on top of the step during their experiments 

equalled 31.8 l/s. This gives a relative fluctuation in discharge of 6.3%. Note that these 

fluctuations in discharge could be a measurement error, or it could be the result of an inability to 

very accurately set the discharge of the pump feeding the flume with water. Xingkui & Fontijn 

(1993) did not mention a fluctuation in discharge during its measurements, however, figure 27 

clearly shows that for the experiment of Xingkui & Fontijn (1993) the measured discharge 

fluctuates. 

The fluctuation in the discharge in between measurements due to an inability to very accurately 

set the discharge of the pump feeding the flume with water is problematic. Figure 28 shows an 

example of measuring water depths when discharges fluctuate between measurement locations. 

Measurements were performed at different locations under a slightly varying discharge. The water 

depth change (ℎ𝑏 − ℎ𝑎) under flow conditions that fluctuated in between measurements will 

show an increase in the water depth that is much larger than the actual increase due to the 

presence of the step (e.g. discharge equals 7 l/s when measuring ℎ𝑏 whereas the previous 

measurement was performed under a discharge of 6 l/s). 

 
Figure 28 Example of wrong measurement due to a change in discharge between measurements 

 

Conservation of mass between the two measurement location is now no longer valid. As a result, 

the change in water depth due to the presence of the step is possibly not accurately represented 

by the change in measured water depths. However, it is very hard to determine whether the 

fluctuations in discharge as depicted in figure 27 is the result of actual change in discharge in 

between measurements, or the result of measurement errors in water depth and flow velocity 
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profiles. Measurement errors in water depth and flow velocity could also result in a fluctuation in 

discharge, while the actual discharge during the experiments remained constant.  

If it is assumed that the pump feeding the flume with water could be accurately set at a constant 

discharge, then it is still possible to find fluctuations in discharge due to measurement error in 

the water depth and flow velocity profiles. The accuracy of the water depth measurements and 

the accuracy of the flow velocity profile measurements using a laser Doppler anemometer are 

therefore discussed. 

2. Uncertainty in water depth measurements due to local variations in water depth  

The accuracy of the water height measurements are estimated to be in the order of magnitude of 

several millimetres by De Ruijter (2004). Moreover, local variations in water depth as a result of 

undulations just downstream of the step could amount to several centimetres of error in the 

water depth measurements. However, figure 26 shows a smooth change in water depth 

measurements without large outliers, thus it is unlikely that the water depth measurements were 

affected by a source of uncertainty that resulted in an independent fluctuation of several 

centimetres. 

3. Uncertainty in the flow velocity measurements due to incorrect usage of the laser Doppler 

anemometer 

The velocity measurements were all performed using a laser Doppler anemometer (LDA). The 

expected measurement error of the LDA depends on its calibration and correct setup of the 

system (Tropea, 1995). No data are available for the uncertainty margins as the result of using 

the LDA for the selected experiments. Tropea (1995) mentioned LDA uncertainty margins in the 

order of magnitude of micrometres, under the conditions that the LDA was setup and calibrated 

correctly. The uncertainty margin of several micrometres is much smaller than the uncertainty 

margins in the water depth measurements. However, the uncertainty margin might be bigger 

when the LDA is incorrectly set up or calibrated. 

4. Uncertainty in the flow variables due to tracing the graphs in the papers by hand  

Because the flow velocity and water depths are extracted from graphs, some uncertainty is 

contained in the extracted variable due to the extraction process itself. The flow velocity profiles 

and water depths were extracted by tracing the graphs in the papers by hand (aided by the 

computer, appendix L). Because the extraction process was performed by hand, human error is 

likely contained in the extracted data. 

Quantifying the uncertainty in the measurements  

Because little data is available to quantify the uncertainty, it is only possible to get a rough 

estimate of the uncertainty in the measurements. The effect of each of the four identified sources 

of uncertainty were estimated using literature. This resulted in a conservative16 estimate of the 

size of the uncertainty. The size of uncertainty in the measurements are quantified in appendix M. 

Table 4 summarizes the uncertainty quantification. 

  

                                                      
16 Conservative because it is assumed that the error in the measurements is not auto-correlated. This 

results in a larger estimation of the uncertainty. 



54 5 Validation data collection 

 

Table 4 Quantification of uncertainty in the measurements 

Author Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Water depth measurements uncertainty ± 6.74% ± 15.36% ± 17.76% ± 9.69% 

Flow velocity measurements uncertainty ± 1.6% ± 1.79%  ± 2.29% ± 2.24% 

Discharge uncertainty ± 9.3% ± 17.32% ± 20.90% ± 12.07% 

 

The quantification of the measurement uncertainty reveals that especially the water depth 

measurements are somewhat uncertain. As a result, the discharge uncertainty is also quite large. 

However, as mentioned above, these uncertainty estimates are conservative. 

When the uncertainty in the water depth and flow velocity measurements is taken into account, 

then it is quite possible that the experiments were performed under more or less constant 

discharge (appendix M) for all experiments except Xingkui & Fontijn (1993). This means that 

uncertainty source 1 might be less of a problem then first anticipated (except for the Xingkui & 

Fontijn, 1993 experiment). Because these uncertainty estimates are considered conservative, the 

measured data is still deemed usable for validating the ATM. However, the uncertainty in the 

input data should be kept in mind when reviewing the ATM results in chapter 7. 

5.5 Turbulent energy measurements and the uncertainty margins 

Introduction  

In this section, an uncertainty analysis is performed on the validation data. First, however, a more 

detailed explanation is given how turbulent energy levels are calculated using flow velocity 

fluctuations in only 2 dimensions. Because depth and width averaged turbulent energy levels 

contain, per definition, the turbulent fluctuations in all three dimensions, a method is introduced 

to approximate the flow velocity fluctuations in the third dimension. The sources of uncertainty 

affecting the flow velocity fluctuations are discussed after that. Finally, the measured turbulent 

energy levels are presented and discussed along with the uncertainty margins of the measured 

turbulent energy levels. This will give an overview of the accuracy of the measured turbulent 

energy levels. 

Calculating the turbulent energy using measured flow velocity fluctuations in only 2 dimensions 

Turbulent energy �̅� for the different studies is calculated using equation 3.3. 

 
�̅� =

1

2
(�̅�𝑖

′)2 (3.3) 

The velocity fluctuation in 𝑥 and 𝑦 direction are given by the selected studies, but not in the 𝑧 

direction (see figure 13 for the definition of the coordinate system). Because the ATM models the 

turbulence as a depth, width and time averaged value, the velocity fluctuations in 𝑧-direction also 

need be taken into account when calculating the measured turbulent energy levels (used to 

validate the ATM). Turbulence isotropy is sometimes assumed to find the velocity fluctuations in 

all directions (Nakagawa & Nezu, 1987; Brodkey, 1995; Wilczek, Stevens, & Meneveau, 2014). 

Anetor, et al. (2011) stated that the 𝜅 −  𝜖 models assume isotropy of turbulence. The velocity 

fluctuations in 𝑧 direction are therefore approximated by the assumption that �̅�𝑥
′ 2~�̅�𝑦

′ 2~�̅�𝑧
′ 2. 

Assuming �̅�𝑥
′ 2~�̅�𝑦

′ 2~�̅�𝑧
′ 2, is true then: 
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�̅�𝑧
′ 2 ≈

1

2
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2) (5.7) 

Or in other words, the flow fluctuations squared in 𝑧 direction approximately equal the average of 

the flow velocities squared in 𝑥 and 𝑦 direction. This reduces equation 3.3 to: 

 

�̅� =
1

2
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2 + �̅�𝑧

′ 2)  

 

�̅� =
1

2
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2 +

1

2
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2))  

 

�̅� =
1

2
(
3

2
�̅�𝑥
′
2
+
3

2
�̅�𝑦
′
2
)   

 

�̅� =
3

4
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2)  (5.8) 

Uncertainty sources affecting the flow velocity fluctuations  

In the previous section the uncertainties expected in the ATM input data were discussed. The 

same sources of uncertainty are considered for the flow velocity fluctuations. 

The following sources of uncertainty will most likely not affect the flow velocity fluctuations: 

1. The flow velocity fluctuations are closely related to the turbulence in a flow. Turbulence in a 

flow is not dependent on the discharge of the flow (chapter 4). Therefore, it is expected that 

(small) fluctuations in discharge will have little to no effect on the flow fluctuations �̅�𝑖
′. 

2. The flow velocity fluctuations are not affected by the measurement uncertainties in the water 

depth. 

The following sources of uncertainty do affect the flow velocity fluctuations: 

3. Incorrect setup of the LDA measurement equipment will affect the instantaneous flow velocity 

measurements. Incorrectly measuring the instantaneous flow velocity will result in incorrect flow 

velocity fluctuation measurements (equation 3.2). 

4. The uncertainty due to extraction of data from graphs also affects the flow velocity fluctuations 

measurements because every value for �̅�𝑖
′ is found by extracting and integrating 𝑢𝑖

′ from a graph 

in the papers. 

Because the measured flow velocity fluctuations are solely used to calculate the measured 

turbulent energy levels, the uncertainty analysis is directly applied to the measured turbulent 

energy levels. The effect of the two sources of uncertainty were estimated similarly to section 5.4. 

In appendix N the size of the uncertainty in the turbulent energy measurements are quantified. In 

the next sections the measured turbulent energy levels including their uncertainty margins are 

presented. 

A source of uncertainty that was not taken into account is the possibility that that the fluctuations 

in 𝑧 direction are not represented accurately by equation 5.8. However, the applicability of 

equation 5.8 is supported by literature (Nakagawa & Nezu, 1987; Brodkey, 1995; Wilczek, 

Stevens, & Meneveau, 2014). Because equation 5.8 is supported by literature, and it is hard to 
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quantify the error resulting from applying equation 5.8, it is assumed that equation 5.8 is correct 

for this study. 

Measured Turbulent energy  

Figure 29 shows the measured turbulent energy (calculated using equation 5.8) for the different 

studies including the uncertainty margins of the measured turbulent energy. The general shape of 

the turbulent energy levels for the different experiments are discussed here. Thereafter the 

implications of the uncertainty limits are discussed. 

  

  
Figure 29 Measured depth averaged turbulent energy for the different selected experiments including the uncertainty 

margin17 

 

In chapter 3 it was proposed that the turbulent energy increases until the reattachment point and 

dissipates further downstream. The experiments of Xingkui & Fontijn (1993) and Hofland (2005) 

roughly show this pattern. The Nakagawa & Nezu (1987) experiments show a less clear pattern. 

Turbulent energy seems to increase until the reattachment point, but no clear dissipation is 

detected downstream of the reattachment point. On the contrary, turbulence seems to increase 

even downstream of the reattachment point for the Nakagawa & Nezu (1987) experiments. The 

reason for the lack of turbulence dissipation for the experiments of Nakagawa & Nezu (1987) is 

                                                      
17 Note that the experiment performed by Xingkui & Fontijn (1993) has very little measurement locations 

(only 7) and that the experiment of Hofland (2005) (performed by De Ruijter, 2004) has a large gap with no 

measurements between 𝑥/ℎ𝑠𝑡𝑒𝑝 = 1 and 𝑥/ℎ𝑠𝑡𝑒𝑝 = 7. 
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most likely related to the continuation of turbulence production downstream of the reattachment 

point. The cause of this is discussed in more detail in the next chapter18. 

Most of the measurements for the selected experiments were performed in or near the 

recirculation zone. This means that the dissipation of turbulent energy, which is expected to 

happen at large distances downstream of the reattachment point (Nakagawa & Nezu, 1987), is 

only partly represented in the measurements depicted here. Figure 29 shows the expected 

equilibrium turbulent energy level downstream of the reattachment point, as calculated using the 

formula of Hoffmans (1993). Assuming the formula of Hoffmans (1993) is correct, then all 

experiments have not yet reached their equilibrium turbulent energy level at the downstream 

edge of the study area. The experiments of Xingkui & Fontijn (1993) and Hofland (2005) do show 

a trend of turbulence levels approaching the equilibrium turbulence level downstream of the 

reattachment point. The Nakagawa & Nezu (1987) experiments probably do not show decreasing 

turbulence levels because the measurement locations were located close to the step, causing the 

production of turbulence to be larger than the dissipation up until the downstream edge of the 

study area. Because little validation data is available that shows decreasing turbulence levels, 

validating how the ATM models dissipation downstream of the reattachment point will be 

challenging. 

Nakagawa & Nezu (1987) experiments contain 10 up to 100 times less turbulent energy 

compared to the other selected experiments. This is most likely related to the fact the other 

experiments were performed in a rough flume, whereas the Nakagawa & Nezu (1987) 

experiments were performed in a flume with smooth walls, which could explain the difference 

between the found absolute turbulent energy values. 

Turbulent energy uncertainty limits  

Figure 29 also shows the uncertainty limits of the measured turbulent energy levels. The 

uncertainty margins of the measured turbulent energy levels are small enough to be able to 

accurately conclude whether the ATM output confirms with the measured turbulent energy levels 

or not. Therefore, the measured turbulent energy levels, as depicted above will be used in the 

validation of the ATM without reserve. 

5.6 Concluding remarks 

Multiple information sources were consulted to gather experimental data that is usable for the 

validation. This resulted in the selection of four experiments that confirmed to the data 

requirements. The analysis of the data extracted from the four experiments indicated that the 

experimental data might have been affected by multiple sources of uncertainty. This led to the 

conclusion that one should keep the uncertainty of the water depth and flow velocity 

measurements in mind when reviewing the ATM results in chapter 7. The uncertainty analysis of 

the validation data showed that the measured turbulent energy values has small uncertainty 

margins. This data is therefore used in the validation of the ATM without reserve.  

                                                      
18 Short explanation: Flow velocity differences (in y direction) that still exist downstream of the 

reattachment point result in internal viscous stresses in the flow; internal viscous stresses cause 

turbulence. 
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6 Arcadis Turbulence Model input alternatives 

6.1 Introduction 

The goal of this chapter is to explain how the experimental data is used to calculate the input 

data that will be used to run the ATM. Multiple methods are considered to calculate the ATM input 

data in this chapter. Figure 20 shows the relations between measured flow variables, input data 

and validation data. 

 
Figure 20 Flow chart showing ATM input and validation data 

 

Figure 30 shows how the input variables relate to the ATM and the BFS. The term �̅�0 can be 

interpreted as a boundary condition, 𝛼 and 𝑅 as constants, and the head levels as a variable 

input. Take note that the turbulent energy depicted in the figure below has different units than the 

head levels and water levels. 

 
Figure 30 Relation between input variables, ATM output and the BFS 
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The dissipation coefficient 𝛼 is a new parameter for which no measurement data is available. 

Therefore, three dissipation coefficient alternatives are suggested that are tested. Next, it is 

described what method is used to calculate the head levels using the measured water depth and 

flow velocities. Thereafter, an alternative method for finding the head level loss downstream of a 

BFS is proposed that uses the conservation of momentum. Finally, two methods are discussed to 

find a value for the incoming upstream turbulent energy �̅�0. Table 5 shows the input variables, 

the number of alternatives that are considered and the section where they are discussed. 

Table 5 ATM input alternatives and the section where they are discussed 

Variable 
Number of 
alternatives 
considered 

Discussed in: What is discussed? 

𝜶 3 Section 6.3 
Three 𝛼 alternatives based on the dissipation coefficient of Hoffmans (1993), no 
dissipation and calibrated dissipation 

𝒅𝑯

𝒅𝒙
 4 Section 6.4: & 6.5 

Section 6.4: Three head level input alternatives based on the measured head levels 
Section 6.5: One head level alternative based on the conservation of momentum 

𝑹 1 Appendix J Formula and accuracy of approximation 

�̅�𝟎 2 Section 6.6 Two �̅�𝟎 alternatives based on measured turbulence and equilibrium turbulence 

 

At the end of this chapter it will be clear what input alternatives are considered for the ATM runs. 

The ATM is then validated by comparing the output of the different runs to the measured 

turbulent energy values in chapter 7.  

In order for the ATM to calculate absolute turbulent energy levels, a method is also required to 

solve the ATM differential equation. Therefore, first a numerical solution for the ATM differential 

equation is given before the input alternatives are discussed in this chapter. 

6.2 Arcadis Turbulence Model numerical solution 

Introduction  

A numerical solution for the ATM is needed because the ATM analytical solution (appendix G) can 

only use constant head level change as input (
𝑑𝐻

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). This section will discuss the 

method used to numerically solve the ATM. 

Forward Euler method  

The Arcadis turbulence model is given by: 

 𝑑�̅�

𝑑𝑥
= −𝑔

𝑑𝐻

𝑑𝑥
− 𝛼

�̅�

𝑅
 

 

(3.11) 

Equation 3.11 is a is a first order linear nonhomogeneous, differential equation. Multiple methods 

for numerically solving this type of equation exists. One of the most simple methods for 

numerically solving equation 3.11 is the forward Euler method. The Euler method is based on the 

fact that a differential equation 
𝑑

𝑑𝑥
 can be approximated by a finite step size 𝑑𝑥 = Δ𝑥 for small 

enough values of Δ𝑥. Applied to the ATM, this results in the following numerical equation: 

 𝑑�̅�

Δ𝑥
= −𝑔

𝑑𝐻

Δ𝑥
− 𝛼

�̅�

𝑅
  

 
𝑑�̅� = (−𝑔

𝑑𝐻

Δ𝑥
− 𝛼

�̅�

𝑅
)Δ𝑥  

 
�̅�𝑛+1 = �̅�𝑛 + 𝑑�̅� = �̅�𝑛 + (−𝑔

𝑑𝐻

Δ𝑥
− 𝛼

�̅�𝑛
𝑅
)Δ𝑥  
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�̅�𝑛+1 = �̅�𝑛 − 𝑔(𝐻𝑛+1 −𝐻𝑛) − 𝛼
�̅�𝑛
𝑅
Δ𝑥 (6.1) 

Where Δ𝑥 is a very small distance (m) and �̅�𝑛+1 is the turbulent energy at a distance Δ𝑥 

downstream from the upstream turbulent energy value �̅�𝑛. 

Determining ∆𝒙  

The step size Δ𝑥 is set at 
1

1000
ℎ𝑠𝑡𝑒𝑝 for all of the selected experiments. In appendix P the 

analytical and numerical solution of the ATM are compared. It is shown that the numerical 

solutions deviates only very little from the analytical solution when using a step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝. 

The numerical ATM was also run using 
1

10000
ℎ𝑠𝑡𝑒𝑝 (to test the applicability of the forward Euler 

method when using non-constant change in mean flow energy ). The difference between ATM 

output using 
1

1000
ℎ𝑠𝑡𝑒𝑝 and using 

1

10000
ℎ𝑠𝑡𝑒𝑝 was negligibly small. 

6.3 Arcadis Turbulence Model dissipation coefficient alternatives  

Introduction  

In order to run the ATM, an assumption is necessary about the dissipation coefficient 𝛼.  

Three different values for 𝛼 are considered: 

1. 𝛼 =
1

1.212
 (dissipation coefficient based on Hoffmans, 1993) 

2. 𝛼 = 0 (no dissipation) 

3. Calibrating 𝛼 using the measured turbulence levels 

Note that all three dissipations coefficient alternatives are constant in time and space. Chapter 4, 

showed that a dissipation coefficient that is variable in space and/or time might approximate 

reality better. The validation of the ATM with empirical data in chapter 7 will show whether the 

assumption that 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 will approximate reality sufficiently to accurately model turbulent 

energy levels in BFS flow. 

The reasons for choosing these three dissipation coefficient alternatives are discussed below. 

1. Dissipation coefficient following the dissipation of Hoffmans (1993)  

The dissipation coefficient 𝑎 =
1

1.212
 follows from the Hoffmans (1993) formula for equilibrium 

stationary uniform turbulence (discussed in section 3.5). This dissipation coefficient alternative is 

based on the assumption that dissipation of turbulence under non-uniform conditions can be 

approximated by the dissipation coefficient under equilibrium flow conditions. 

2. No dissipation  

The dissipation coefficient 𝑎 = 0 results in neglecting dissipation altogether. As was discussed in 

chapter 3 this will result in a never ending increase in turbulence for flows that continuously lose 

energy. This alternative is based on the assumption that the dissipation between the step and the 

reattachment point can be neglected. By neglecting turbulence dissipation, the maximum 

possible turbulence is found, which can then be compared to the measured turbulence to see 

how much the turbulent energy values are affected by turbulence dissipation. Downstream of the 

reattachment point, this model alternative will probably be less applicable for the experiments 

that show a decrease in turbulence downstream of the reattachment point. 



61 

3. Calibrated dissipation  

The dissipation coefficient 𝛼 is also calibrated based on the experimentally measured turbulent 

energy levels. After calibration, the ATM will fit the measured turbulent energy better. By 

comparing the different found values for 𝛼, conclusions can be drawn about the applicability of 

the dissipation coefficient in the ATM. The calibration method and results are discussed in section 

7.5. 

6.4 Determining the head levels using the experimental measurements 

Introduction  

Equation 6.1 needs a value for the head levels 𝐻 at increments of Δ𝑥. To calculate the head 

levels, the flow velocity �̿�, water depth ℎ and elevation 𝑧 are needed at every increment Δ𝑥. This 

section will discuss how, using the measured variables presented in chapter 5, the measured 

head levels19 are calculated. First, the applicability of the formula of Bernoulli to calculate the 

measured head levels is discussed. This discussion reveals that an adjusted Bernoulli formula is 

needed for calculating the head levels of a non-uniform flow velocity profile. An adjusted Bernoulli 

formula is introduced, and the non-uniformity of the flow velocity profiles of all selected 

experiments are discussed. A side step follows, where some questions that were raised in chapter 

5 are answered using the adjusted Bernoulli formula in an example calculation. The 

experimentally measured head levels (calculated using the adjusted Bernoulli formula) are 

presented and discussed thereafter. In order to obtain head level values at increments of Δ𝑥, a 

number of methods are then proposed to interpolate the measured head levels. 

Head levels for non-uniform flow velocity profiles  

The ATM needs the change in head level (
𝑑𝐻

𝑑𝑥
) as input. Head levels are generally calculated using 

the formula of Bernoulli. However, this formula is based on a number of assumptions. In the 

coming text, the applicability of the Bernoulli formula for calculating the experimental head levels 

is discussed. 

In chapter 2 the formula of Bernoulli was introduced to calculate the head levels in a flow: 

 
𝐻 = 𝑧 + ℎ +

1

2

�̿�2

𝑔
 (2.2) 

Because equation 2.2 will be applied to calculate the energy loss between two cross sections, the 

assumption of conservation of mean flow energy is discarded from the start. It is known that 

energy is lost between the step and the reattachment point, and equation 2.2 is applied to value 

how much energy is lost. Equation 2.2 also assumes stationary flow. During all the selected 

experiments, stationary flow was achieved before the measuring commenced, so this assumption 

is also valid. 

In chapter 2 it was already mentioned that the Bernoulli equation also contains a correction 

coefficient 𝛼𝐵𝑒𝑟𝑛 that deviates from 1 depending on how much the flow velocity profile (as a 

function of the depth) deviates from an uniform profile. Assuming a two dimensional flow 

(neglecting deviations in the width of the flume), the correction coefficient 𝛼𝐵𝑒𝑟𝑛 can be 

calculated using the formula (Battjes, 1990): 

                                                      
19 The term measured head levels is used to refer to the head levels found using the measured flow 

variables as discussed in chapter 5. In the next section, the momentum head levels are introduced as an 

alternative to the measured head levels. 
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𝛼𝐵𝑒𝑟𝑛 =

1

ℎ
∫ (�̅�/�̿�)3
ℎ

0

𝑑𝑦 

 

(6.2) 

Where ℎ equals the water depth (m), �̅� the (time averaged) flow velocity in the flow direction (m/s) 

at a certain depth 𝑦, �̿� the time and depth averaged flow velocity (m/s), and 𝑦 the distance from 

the bottom of the flume to the location of �̅� (m). When 𝛼𝐵𝑒𝑟𝑛 ≠ 1 then the head levels are 

calculated using: 

 
𝐻 = 𝑧 + ℎ + 𝛼𝐵𝑒𝑟𝑛

1

2

�̿�2

𝑔
 (6.3) 

Figure 31 shows the measured mean flow velocity (�̅�) as a function of the depth for multiple 

cross section for the experiment of Xingkui & Fontijn (1993). 

 
Figure 31 Flow velocity profile at multiple location in the flume as measured during the experiments of Xingkui & Fontijn 

(1993, p. 306) 

 

Figure 31 shows a log-law (almost uniform) velocity profile on top of the step (first curve from the 

left). The reattachment point was located at cross section 𝑑 for the experiment of Xingkui & 

Fontijn (1993). Note that at this cross section the velocity profile shows an almost triangular 

shape. The velocity profiles of all cross sections downstream of the step show non-uniform 

shapes. Thus the assumption of an uniform velocity profile cannot be made downstream of the 

step and the Bernoulli formula should be adjusted using 𝛼𝐵𝑒𝑟𝑛. The other selected experiments 

show similar non-uniform velocity profiles downstream of the step. Therefore, for all the selected 

experiments, the head levels are calculated using the measured 𝛼𝐵𝑒𝑟𝑛. The found value of 𝛼𝐵𝑒𝑟𝑛 

at each measurement location is given in figure 32. 
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Figure 32 The values for 𝜶𝑩𝒆𝒓𝒏 at the measurement locations for the selected experiments calculated using formula 

6.2 

 

For every experiment, it can be seen that directly downstream of the step (𝑥/ℎ𝑠𝑡𝑒𝑝 > 0) the value 

of 𝛼𝐵𝑒𝑟𝑛 is suddenly increased. This indicates that directly downstream of the step, the flow 

profile is suddenly significantly different from an uniform flow profile. The deviations from the 

uniform flow profile is caused by the presence of the recirculation zone. In the recirculation zone 

(figure 13) the flow velocity significantly differs from the depth average flow velocity on top of the 

step (the recirculation zone includes negative flow velocities). Thus, just after the step, the flow 

velocity profile consists of an upper part very similar to the flow profile on top of the step, and a 

lower (recirculation zone) part that includes negative flow velocities. These profiles together result  

in a non-uniform flow velocity profile (as can be seen starting from cross section 𝑏 in figure 31). It 

can also be seen that at the reattachment point, the value for 𝛼𝐵𝑒𝑟𝑛 is still larger than 1 for all 

selected experiments. 

This phenomena affects the turbulence in the flow downstream of the reattachment point. At the 

reattachment point, the flow velocity profile is still non-uniform. Downstream of the reattachment 

point, the flow velocity profile reverts back to a log-law profile. Due to the change in flow velocity 

profile, the flow experiences internal viscous stresses. Internal viscous stresses cause turbulence 

in a flow. Thus, downstream of the reattachment point, additional turbulence is produced on top 

of the production of turbulence due to wall friction. This deviates from the ideas that practitioners 

have about turbulence production (Voortman, 2015). 

Chapter 5 showed increasing water depths downstream of the reattachment point. By considering 

non-uniform flow velocity profiles in the Bernoulli equation, a physical explanation can be given 

why the water depth rises even downstream of the reattachment point. This is shown with an 

example calculation in the following section. 
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Increase in water depth due to non-uniform flow velocity profile change   

In chapter 5 it was noted that the water depth increased downstream of the reattachment point. 

This was unexpected because it was assumed that downstream of the reattachment point, the 

flow does not decelerate anymore, resulting in a constant water depth. The phenomena of 

increasing water depths downstream of the reattachment point is clarified using the flow 

schematisation in figure 33. 

Let’s assume that a BFS flow has a water depth of 0.1 m, a depth averaged flow velocity of 0.5 

m/s, a specific discharge 𝑞 = 0.05 m2/s and a 𝛼𝐵𝑒𝑟𝑛 𝑓 = 2 at the reattachment point.  

 
Figure 33 Graphical depiction of change in water profile downstream of the reattachment point 

 

The head level can then be calculated using equation 6.3: 

 
𝐻𝑓 = 0.1 + 2 ×

1

2

0.52

𝑔
= 0.1255 𝑚  

Now let’s assume that downstream of the reattachment point no energy is lost, mass is 

preserved, a log-law velocity profile develops that closely resembles 𝛼𝐵𝑒𝑟𝑛 𝑔 ≈ 1 and no change 

occurs from subcritical to supercritical flow or vice versa. The water depth can then be found by 

solving the following equation: 

 

𝐻𝑔 = ℎ𝑔 + 1 ×
1

2

(
𝑞
ℎ𝑔
)
2

𝑔
= 0.1255 𝑚 

 

Where the subscript 𝑔 now indicates a location downstream of the reattachment point where the 

flow has returned to an approximate uniform flow velocity profile, thus 𝛼𝐵𝑒𝑟𝑛 𝑔 ≈ 1. Solving above 

equation for subcritical flow gives ℎ𝑔 = 0.116 m and �̿�𝑔 = 0.431 m/s. Thus, as the result of a 

non-uniform velocity profile reverting to a uniform flow profile, the water depth increases and flow 

velocity decreases (downstream of the reattachment point). 

Internal viscous friction could cause the mean flow to loose energy between location 𝑓 and 𝑔, 

𝐻𝑔 < 0.1255 and as a result, ℎ𝑔 < 0.116 for subcritical flow (Cruise, Sherif, & Singh, 2007). As 

mentioned previously, internal viscous frictions result in the production of turbulence. Thus when 

more turbulence is produced due to the change in flow velocity profile, the water depth is 

increased less. Wall friction could also result in energy loss between location 𝑓 and 𝑔, and thus a 

smaller increase in ℎ𝑔. 
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Using this information, the BFS schematisation is adjusted slightly: 

 
Figure 34 Schematisation of BFS flow including changing water level downstream of the reattachment point 

 

Figure 34 shows the new BFS flow schematisation. In this new schematisation, the relaxation 

zone downstream of the reattachment point shows an increase in water depth due to the flow 

velocity profile reverting back to a log-law velocity profile. The increase in water level downstream 

of the reattachment point depends on the level of non-uniformity of the flow velocity profile at the 

reattachment point (𝛼𝐵𝑒𝑟𝑛). The increase (or decrease) in water level downstream of the 

reattachment point is also dependent on the energy loss of the mean flow (due to bed friction and 

internal viscous stresses). 

The exact location where the flow velocity approximates a log-law profile again (and thus no 

change in water depths occurs due to change in flow velocity profile) is unknown for the selected 

studies. Nakagawa & Nezu (1987) did mention for their experiments that at approximately 20 

step heights, the water level did not change anymore. 

No decreasing levels of turbulent energy were found downstream of the reattachment point for 

the experiments of Nakagawa & Nezu (1987). This study hypothesizes that due to the change 

from non-uniform to a uniform flow velocity profile, internal viscous frictions produce turbulence. 

This production is more or less equal to the dissipation of turbulent energy, resulting in more or 

less constant turbulent energy levels downstream of the reattachment point for the experiments 

of Nakagawa & Nezu (1987). Possibly, the turbulent energy dissipation is related to the bottom 

roughness. This could explain the difference between the turbulence dissipation during the 

Xingkui & Fontijn (1993) and Hoffmans (1993) experiments compared to the turbulence 

dissipation during the Nakagawa & Nezu (1987) experiments. 

Head levels from measurements  

For all selected experiments, the head levels are calculated using equation 6.3. Figure 35 shows 

the head levels for each measurement location of the selected experiments. 
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Figure 35 Head levels calculated using the water depth, flow velocity and 𝜶𝑩𝒆𝒓𝒏 coefficient 

 

Because figure 35 shows the measured head levels, all sources of mean flow energy loss are 

incorporated in these figures (internal viscous stress, bottom and wall friction, etc.). All 

experiments roughly show a pattern of decreasing mean flow energy in the flow direction. This is 

expected because the presence of the step and bottom friction are reducing the mean flow 

energy, resulting in a declining head levels in the flow direction. All experiments show both 

temporary increases and decreases head levels. Especially the increases in mean flow energy  

are not very likely. No phenomena are known that could add energy to the water in the flume 

beside the pump recirculating the water through the flume, which is located much further 

downstream. It is concluded that the head level fluctuations are probably the result of the errors 

in the water depth and flow velocity measurements. The uncertainty in the head levels is 

quantified in appendix Q. This uncertainty analysis conforms that the head levels are affected by 

the uncertainty in the measured flow variables. 

Pay attention to the scale of the measured head levels for the selected experiments. For the 

experiments of Xingkui & Fontijn (1993) and Hofland (2005), the head levels fluctuate in the 

order of magnitude of several centimetres. On the other hand, both experiments performed by 

Nakagawa & Nezu (1987) show head levels that fluctuate in the order of magnitude of only 

tenths of millimetres. This is something to consider when reviewing the results presented in this 

thesis. 
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Head level shapes  

The ATM requires head levels 𝐻 at increments of Δ𝑥. Thus, in between the measurement location, 

the head levels need to be interpolated. However, the measured head levels show a chaotic 

pattern than include many temporarily increases in mean flow energy. Therefore, beside simply 

interpolation in between the measured (raw) head levels, two other interpolation methods are 

considered that smooth out the fluctuations in the head level measurement: 

1. Raw measured head levels 

2. Linear head levels 

3. Polynomial head levels 

  

  
Figure 36 Head level shape interpolation alternatives for the selected experiments 

 

1. Raw measured head levels  

Because a value for the head level is needed at every increments of Δ𝑥, a constant rate of 

change is assumed in between the measured head levels (as was already depicted in figure 35; 

the straight blue lines in between the blue dots). This head level shape is considered because it 

does not force a certain shape on the head levels. However, when put into the ATM, the resulting 

turbulent energy levels should be handled with some reserve because of the unrealistic shape of 

these head levels. 

2. Linear head levels  

Downstream of the step, the flow decelerates and looses energy. The linear head level shape is 

based on the assumption that this energy loss occurs at the same rate up until the downstream 

edge of the study area (located downstream of the reattachment point).  
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3. Polynomial head levels  

The polynomial head level shape is based on the following assumption: The speed differences 

between the water flowing over the step, and the water flow in the recirculation zone is larger 

near the step than further downstream (figure 31). These speed differences in the flow result in 

more viscous friction and thus more mean flow energy loss near the step compared to further 

downstream. After fitting the measured head level data with a polynomial function, all 

experimental data showed this relation except for the Nakagawa and Nezu (1987) ST-1 

experiment, which showed a gradual energy loss at the step, and rapid energy loss near the 

reattachment point. The Nakagawa and Nezu (1987) ST-1 polynomial head level shape is still 

used because it is unclear whether the deviating shape is the result of measurement errors, or if 

the flow during the Nakagawa and Nezu (1987) ST-1 experiment actually showed a different 

energy loss pattern compared to the other experiments. 

A more detailed description of the interpolation methods, is given in appendix S. In this appendix 

it is shown that the polynomial interpolation method best approximates the measured head levels 

for al experiments except Nakagawa and Nezu (1987) ST-1. 

Distinction between the ATM and the head level schematisation  

Note that the ATM does not actually prescribe a method for obtaining the head level change 
𝑑𝐻

𝑑𝑥
. 

The above described alternative head level shapes are not part of the ATM schematisation. If 

accurate measurements of the head levels are available at every increment of ∆𝑥, then no 

assumptions about the shape of the head levels are needed, and a numerical solution for the 

ATM can be found using equation 6.1. Alternatively, if a function of 
𝑑𝐻

𝑑𝑥
 is available, the ATM can 

be solved analytically without the need for the numerical forward Euler method. However, the 

selected experiments did not give a function for 
𝑑𝐻

𝑑𝑥
 or very accurate head levels 𝐻 at every 

increment of ∆𝑥. Therefore assumptions about the shape of the head levels are needed. 

Conclusion  

This section discussed how the measured flow variables (water height, flow velocity) are used to 

calculate the head levels in the flume during the experiment. It was shown that the flow velocity 

profile at the measurement locations downstream of the step are non-uniform. Therefore, the 

adjusted Bernoulli formula is used to calculate the head levels in the flume. The resulting head 

levels showed a chaotic pattern. However, a general trend of decreasing mean flow energy could 

be recognised in this chaotic pattern for all selected experiments. In order to reduce the chaotic 

head level pattern, two smoothing methods were introduced. The ATM will be run using the head 

level alternatives, as schematized in figure 37. 
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Figure 37 shows what data the ATM needs to calculate the turbulent energy, the alternative 

inputs that are discussed thus far, and the data used to validate the ATM. 

 

In appendix Q an uncertainty analysis can be found of the measured head level input. The 

uncertainty analysis confirms that the head levels are affected by the uncertainty in the measured 

flow variables. The measured head levels (raw, linear, polynomial) will be used as input into the 

ATM. However, one should keep in mind that the measured head level input is affected by a 

number of sources of uncertainty, which can affect the accuracy of the ATM. 

6.5 Determining the head levels using the conservation of momentum 

Introduction 

Figure 37 shows that to run the ATM, measured values for the water depth and flow velocities on 

top of and downstream of the step at multiple locations are needed. However, the ATM is 

intended as a rapid assessment tool for finding the depth averaged turbulent energy in a flow. 

The rapid assessment tool is intended to be applied, for example, to calculate depth average 

turbulence as input for the design of bed protection. In such a scenario, it is unlikely that 

measurements of the water depth, flow velocity and incoming turbulence are available for the 

flow situation that the ATM is applied to. Moreover, the uncertainty analysis of the measured flow 

variables (appendix M) indicate that the experimental measurement data contain large 

uncertainties. Therefore, in the following text a method is described to find the mean flow energy 

loss (required as input into the ATM) using as little (uncertain) measurement data as possible. It is 

expected that running the ATM using both the measured head level alternatives as well as 

momentum head level alternative (discussed in this section) will result in more substantiated 

conclusions about the ability of the ATM to estimate turbulent energy levels in a flow. 

 
Figure 37 Schematization of input, output and validation of the ATM 
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In the following text, first an explanation is given how the conservation of momentum will be used 

to calculate the water depth at a downstream location. This discussion will show that that the 

non-uniformity of the flow velocity profile should be taken into account in order to accurately apply 

the conservation of momentum. The water depths and flow velocity at the downstream location, 

calculated using the conservation of momentum, are compared to their measured counterparts. 

This will give insight in what way the two methods for finding the flow variables deviate from one 

another. A short explanation how the momentum head levels are calculated, follows. Then, the 

momentum and measured head levels are compared to each other in order to explain 

dissimilarities between the head levels found using the two methods. Using the conservation of 

momentum will results in only two flow energy levels, one on top of the step and one at the most 

downstream measurement location. After the comparison between the measured and 

momentum head levels, the method used to find the intermediate momentum head levels is 

discussed. Lastly, a short discussion is given about the difference in accuracy between the 

measured and momentum head levels. 

Calculating the water height and flow velocity using the conservation of momentum  

In order to apply the conservation of momentum, two cross sections need to be determined for 

which the momentum can be calculated. Conservation of momentum between the two cross 

sections depicted in figure 34 is therefore assumed. In the following text, it is shown that the 

conservation of momentum between these two cross sections is not applicable for two of the 

selected experiments because of non-uniform flow velocity profiles. Therefore, a more accurate 

method is suggested (similar to the adjusted Bernoulli equation) that takes into account the non-

uniformity of the flow velocity profile. 

To calculate the mean flow energy loss due to the BFS, the conservation of momentum between 

the two cross sections depicted in figure 34 is assumed. Chapter 2 described how the momentum 

at a cross section is calculated: 

 
𝑀 =

1

2
𝜌𝑤𝑔ℎ

2 + 𝜌𝑤𝛽ℎ�̿�
2 (2.5) 

For non-uniform flow velocity profiles, the momentum equation needs a value for 𝛽 to find the 

correct momentum of the flow. In appendix E is it described how the value for 𝛽 can be 

approximated for the cross section at an infinitesimal distance downstream of the step. By 

applying this method, only the water depth, flow velocity (on top of the step) and step height are 

required to calculate the momentum at an infinitesimal distance downstream of the step. 

The cross section located furthest downstream should ideally be located somewhere where 𝛽 ≈

1. This way, no information about the uniformity of the flow velocity profile is needed to calculate 

the momentum at the downstream location. If it is assumed that the flow velocity profile at the 

downstream edge of the study area is approximately uniform (𝛽 ≈ 1), then the water height at 

the downstream edge of the study area can then be calculated by solving: 

 

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 =
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 −

1
2𝜌𝑤𝑔

(ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)
2

𝜌𝑤
𝑞2

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
2

 (2.7) 

Where 𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 equals the momentum just downstream of the step (N/m). Note that the above 

equations assumes that no momentum is lost due to bottom friction or other phenomena. 
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However, figure 32 (𝛼𝑏𝑒𝑟𝑛) already showed that at the downstream edge of the study area, the 

measured flow velocity profile is not approximately uniform for all of the selected experiments20. 

To check the applicability of equation 2.5 and 2.7, the beta coefficient of the flow velocity profiles 

on top of the step and at the most downstream measurement location are presented below. 

Table 6 𝜷 coefficient found for the most downstream measurement location of all selected experiments 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Velocity  
profile  
uniformity 

𝛽𝑠𝑡𝑒𝑝 1.01 1.01 1.03 1.01 

𝛽𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒  1.05 1.24 1.16 1.06 

Location last 

measurement (𝑥/ℎ𝑠𝑡𝑒𝑝) 
25.7 15.3 12 12 

 

Table 6 shows that on top of the step, the flow velocity profile of all experiments are 

approximately uniform (𝛽𝑠𝑡𝑒𝑝 ≈ 1), thus equation 2.5 can be used to calculate the momentum at 

an infinitesimal distance downstream of the step. However, at the most downstream 

measurement location the experiments of Hofland (2005) and Nakagawa and Nezu (1987) ST-1 

show a flow velocity profile with 𝛽𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒 > 1. For these experiments, the assumption of 

an uniform flow velocity profile is not valid. When the most downstream measurement location 

has a non-uniform flow velocity profile, then equation 2.7 cannot be used to calculate the water 

depth at the downstream measurement location. Therefore, an alternative method is proposed to 

calculate the water depth at the most downstream measurement location. This alternative 

method uses the conservation of momentum, conservation of mass, and the 𝛽𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒  

coefficient to compensate for the non-uniformity of the flow velocity profile: 

 

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒 =
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 −

1
2
𝜌𝑤𝑔(ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒)

2

𝜌𝑤𝛽𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒
𝑞2

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑒𝑑𝑔𝑒
2

 (6.4) 

Equation 6.4 is very similar to equation 2.7 but now, the non-uniformity of the flow velocity profile 

at the most downstream measurement location is taken into account. Using equation 6.3, the 

water depth, flow velocity, and head level at the downstream measurement location is calculated. 

These variables are presented next. 

Comparing the measured and momentum water depths and flow velocities  

The differences between the measured flow variables, and the flow variables using the 

conservation of momentum, are discussed in the following text. This will give insight in what way 

the two methods for finding the flow data (water height, flow velocity) deviate from one another. 

To calculate the water heights and flow velocities at the most downstream measurement location 

using the conservation of momentum, the water depth and flow velocity at a certain location 

upstream are needed. It is chosen to simply use the first measured water depth and flow velocity 

as input. These measured variables contain error, as was already discussed in chapter 5, so the 

                                                      
20 On a side note, 𝛽 and 𝛼𝐵𝑒𝑟𝑛 are both very similar expressions of the non-uniformity of the flow velocity 

profile, but 𝛼𝐵𝑒𝑟𝑛 is more sensitive to non-uniformity than 𝛽. Both terms are calculated using the 

formula:[ 𝛼𝐵𝑒𝑟𝑛𝑜𝑟 𝛽 =
1

ℎ
∫ (�̅�/�̿�)𝑖𝑖
ℎ

0
𝑑𝑦]. However, for 𝛽, 𝑖𝑖 = 2 whereas for 𝛼𝑏𝑒𝑟𝑛, 𝑖𝑖 = 3. Thus for the same 

non-uniform flow velocity profile 𝛼𝑏𝑒𝑟𝑛 > 𝛽 > 1. Still for log-law flow velocity profiles, it is often assumed 

that 𝛼𝑏𝑒𝑟𝑛 ≈ 𝛽 ≈ 1. 
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resulting downstream water depths and flow velocities might not be accurately estimated due to 

the uncertainty in the water depth and flow velocity on top of the step. 

Using the conservation of momentum, conservation of mass, the first measured values for water 

depth and flow velocity, and equation 2.5 and 6.4, the following water depths and flow velocities 

are found. 

 

Figure 38 Locations of measured water depth and flow velocity to calculate and validate the conservation of 

momentum 

 

Table 7 Flow variables and head levels measured and calculated using the conservation of momentum. 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Measured variables Measured ℎ𝑎 (m) 0.083 0.087 0.038 0.086 

 Measured ℎ𝑓 (m) 0.162 0.160 0.059 0.106 

 Measured �̿�𝑎 (m/s) 0.689 0.689 0.218 0.282 

 Measured �̿�𝑓 (m/s) 0.312 0.379 0.144 0.236 

 “Measured” 𝐻𝑎 (m) 0.1782 0.1800 0.0606 0.1096 

 “Measured” 𝐻𝑓 (m) 0.1683 0.1722 0.06049 0.1094 

 ∆𝐻 (m) -0.00640 -0.00774 -0.00010 -0.00026 

Conservation of momentum Calculated ℎ𝑓 𝑚𝑜𝑚 (m) 0.165 0.164 0.059 0.106 

 Calculated �̿�𝑓 𝑚𝑜𝑚 (m/s) 0.347 0.370 0.141 0.226 

 Calculated 𝐻 𝑓 𝑚𝑜𝑚 (m) 0.1721 0.1758 0.0603 0.1095 

 ∆𝐻𝑚𝑜𝑚 (m) -0.00608 -0.00422 -0.00032 -0.00017 

 

Table 7 Shows the measured water depths and flow velocities and the calculated water depth 

and flow velocity using the conservation of momentum and mass at the most downstream 

measurement location. The measured versus momentum water depth (ℎ𝑓 , ℎ𝑓 𝑚𝑜𝑚) shows a 

difference of up to 2.5% (up to 4 mm) for the selected experiments. This is quite reasonable 

because, the uncertainty of the depth measurements for the different experiments ranged up to 

18% (table 4). The measured versus momentum flow velocities (�̿�𝑓 , �̿�𝑓 𝑚𝑜𝑚 ) deviate up to 11.2% 

(several cm/s). This is worse than the uncertainty contained within the flow velocity 

measurements (up to 2.3%, table 4). The most likely cause of the deviating flow velocity 

measurements is the fluctuations in discharge contained in the measured data. Equation 6.4 

assumes conservation of momentum and mass, whereas chapter 5 showed that due to 
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measurement errors, the “measured” discharge21 fluctuates. Considering the uncertainty in the 

measured data, the water heights and flow velocities (at the most downstream location) found by 

applying the conservation of momentum are reasonably close to the measured values. 

Comparing the measured and momentum head levels  

The conservation of momentum is used to calculated the water depth and flow velocity at the 

most downstream measurement location. This data is then used to calculate the mean flow 

energy loss, which will be used as input into the ATM. The momentum and measured head levels 

are compared to each other in order to explain dissimilarities between the head levels found 

using the two methods. 

The momentum head levels (𝐻𝑓 𝑚𝑜𝑚) are given in table 7. The momentum head levels are found 

by inserting the momentum water depth and flow velocity ℎ𝑓 𝑚𝑜𝑚 and �̿�𝑓 𝑚𝑜𝑚 in the adjusted 

formula of Bernoulli (6.3). The momentum head level (𝐻𝑓 𝑚𝑜𝑚) is calculated using the measured 

non-uniformity coefficient 𝛼𝐵𝑒𝑟𝑛 at the most downstream measurement location (to take into 

account the non-uniformity of the flow velocity profile there). The total energy loss due to the 

presence of the step (according to the conservation of momentum) can be calculated by 

subtracting 𝐻𝑓 𝑚𝑜𝑚 from 𝐻𝑎, this results in ∆𝐻𝑚𝑜𝑚 as shown in table 7. Table 7 also depict ∆𝐻, 

which is the difference between the first and last measured head level (as shown in figure 36). 

For the experiment of Xingkui & Fontijn (1993), the mean flow energy loss is almost equal when 

using the measured (∆𝐻) or momentum (∆𝐻𝑚𝑜𝑚) head levels. For the experiments of Hofland 

(2005) and Nakagawa and Nezu (1987) ST-3, measured and momentum head level change 

(∆𝐻, ∆𝐻𝑚𝑜𝑚) deviate up to 43% of each other, and for the experiment of Nakagawa and Nezu 

(1987) ST-1, a deviation of 200% is even found. These deviations are not unexpected because as 

discussed earlier, the measurement data contains a certain level of uncertainty. Also, the 

conservation of momentum only takes into account the mean flow energy loss due to flow 

deceleration. Other sources like wall friction are not taken into account. This is most likely the 

reason why the mean flow looses less energy according to the momentum head levels than 

according to the measured head levels. The exception to this rule is the experiment of Nakagawa 

and Nezu (1987) ST-1. However, take in mind that the measured head levels for this experiments 

have a somewhat unrealistic shape. This might explain the deviating results for this experiment. 

It is unclear whether the momentum or measured head levels better approximate the actual 

mean flow energy during the experiments. Therefore both methods are assumed to be equally 

valid measures of the mean flow energy loss (used as input into the ATM). 

Momentum head level shape  

The momentum head levels are only know at two locations, on top of the step (𝐻𝑎) and at the 

most downstream measurement location (𝐻𝑓 𝑚𝑜𝑚). In order to use these head levels as input 

into the ATM, head levels 𝐻 at increments of Δ𝑥 need to be known. Therefore, it is assumed that 

between the step and the most downstream measurement location, the momentum head levels 

have a constant rate of energy loss. The resulting head levels are compared to the measured 

head levels in figure 39. 

 

                                                      
21 Computed using the measured water depth and flow velocity 
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Figure 39 Head levels of the selected experiments following from the measured variables and following from the 

conservation of momentum 

 

In appendix Q it is shown that the momentum head level shapes are contained within the 

uncertainty margins of the measured head levels. 

Note that an infinite amount of other shapes are possible that connect the upstream head level 

(𝐻𝑎) with the downstream momentum head level (𝐻𝑓 𝑚𝑜𝑚). A possible alternative is for example a 

polynomial head level shape (discussed in the previous section), where the mean flow energy loss 

rate initially starts high, but reduces further downstream. However, this shape (or any other 

shape) is not considered for the momentum head levels because of two reasons: First, only the 

head level at the end of the step and at the most downstream measurement location are known. 

An infinite number of polynomials could be drawn through these points that would all have a 

100% match with these momentum head levels. Thus no accurate shape of the (momentum) 

polynomial can be determined without using additional (measurement) data. Second, a great 

number of model alternatives are already considered. Also considering different momentum head 

level shape alternatives is not expected to help answer the research questions of this thesis. 

Accuracy of measured and momentum head levels  

Four head level alternatives are now under consideration: 

1. Raw measured head levels 

2. Linear head levels 

3. Polynomial head levels 

4. Momentum head levels 

The analyses above revealed a difference between the measured and momentum head levels. So 

what method is expected to approximate reality best? The measured head levels are based on 
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multiple measurements in between the top of the step and the most downstream located 

measurement location. All measured head levels show a global decreasing trend. This gives some 

confidence in the measured data because it shows a pattern that is expected to occur for 

decelerating flow. On the other hand, the conservation of momentum is based on some 

fundamental laws of physics and it at least guarantees the conservation of mass in between 

measurement locations. However, it is known that the momentum head levels do not take into 

account the mean flow energy loss due to bottom friction. The head levels following from the 

conservation of momentum will be used as an alternative to the measured head levels as input in 

the ATM because all four alternatives have their advantages and disadvantages. It is currently 

unknown whether the head levels following from the conservation of momentum or the measured 

head levels represent reality more accurately. The results from the empirical validation in the next 

chapter will shed some light on this question. 

Conclusion  

This section introduced an alternative method to calculate the mean flow energy loss for flow over 

a BFS. It was shown that the non-uniformity of the flow velocity profile should be taken into 

account in order to accurately apply the conservation of momentum. The water depth and flow 

velocities found using the conservation of momentum were compared to their measured 

counterparts. This revealed that the momentum flow variables corresponded reasonably well with 

the measured water depths. The momentum head levels underestimated the mean flow energy 

loss when compared to the measured head levels for three out of the four experiments. This is 

most likely related to the fact that the momentum head levels only take into account the mean 

flow energy loss due to flow deceleration. It remains unknown whether the measured or 

momentum head levels more accurately represent reality. Therefore all four head level 

alternatives are considered in the validation of the ATM. 

6.6 Determine the upstream incoming turbulent energy 

Introduction  

In order to calculate the turbulent energy levels following equation 6.1, an initial boundary 

condition for the turbulent energy at the upstream edge of the study area (�̅�0) needs to be known. 

Two alternatives are proposed: 

1. Using the upstream measured turbulent energy 

2. Assuming upstream incoming equilibrium turbulence levels 

Both alternatives are discussed below. 

1. Extracting the upstream incoming turbulent energy from the measured turbulent energy levels  

In chapter 5 it was already discussed that this initial value �̅�0could simply be extracted from the 

measured turbulent energy used to validate the ATM. The experimentally measured turbulent 

energy level at the most upstream measurement location is then used as input into the ATM. 

2. Calculating the upstream incoming equilibrium turbulent energy  

The measured turbulent energy can be used to find a value for the input variable �̅�0. However, 

during the design phase of a hydraulic structure, the incoming turbulent energy might not be 

available. Thus, this energy is also approximated in a different way. 

When no other large flow disturbances (e.g. hydraulic structures) are located closely upstream of 

the BFS, then it can be assumed that the incoming flow is primarily defined by the flow conditions 

of the channel. Moreover, when the flow through the channel upstream of the BFS can be more or 
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less classified as uniform and stationary, then according to Hoffmans (1993), under stationary 

uniform equilibrium flow conditions, turbulent intensity is also in equilibrium. The formula of 

Hoffmans (1993) can then be applied to find the incoming equilibrium turbulent energy (𝑘𝑒). The 

method used to determine the equilibrium turbulent energy 𝑘𝑒 for the selected experiments (as 

depicted in the table below) is discussed in appendix T. 

Table 8 Comparison between measured incoming turbulent energy �̅�𝟎 and equilibrium turbulence �̅�𝒆 following from the 

formula of Hoffmans (1993) 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Incoming 
turbulent 
energy 

�̅�0measured (m
2
/s

2
) 0.00190 0.00110 0.00021 0.00022 

�̅�𝑒 from Hoffmans (1993) (m
2
/s

2
) 0.00190 0.00120 0.00017 0.00021 

 

Table 8 shows the measured incoming turbulent energy and the equilibrium turbulent energy for 

the flow conditions on top of the step. The found equilibrium turbulent energy levels correspond 

very well with the measured turbulent energy levels for all selected experiments. Thus the formula 

of Hoffmans (1993) (and the assumption of equilibrium turbulence) appears to be a good 

alternative to using the measured turbulent energy as input into the ATM. Note that these four 

experiments were al performed under laboratory conditions22. 

6.7 Concluding remarks 

This chapter showed how the experimentally measured data is used to run the ATM. The forward 

Euler method is used to numerically solve the ATM. Three dissipation coefficient alternatives are 

proposed that will all be used in the next chapter to check the accuracy of the ATM in estimating 

the turbulent energy levels. It was shown that the non-uniform flow velocity profiles downstream 

of the step should be taken into account when calculating the mean flow energy levels. The head 

levels that followed from the water depth and flow velocity measurements showed a chaotic 

pattern. In order to get more realistic head levels, two smoothing methods were proposed. These 

smoothing methods ensured that the measured mean flow energy levels showed a pattern that 

better corresponded with the expected change mean flow energy downstream of a BFS. A second 

method for determining the mean flow energy loss downstream of a BFS was proposed using the 

conservation of momentum. All four measured and momentum head levels have their advantages 

and disadvantages. Because it is unknown which of these four head level input alternatives 

represent reality more accurately, all four head level methods will be used in the validation of the 

ATM. 

Figure 40 connects all measured data and input alternatives in one schematisation (including the 

momentum head levels). In the next chapter these input alternatives will be used to run and 

validate the ATM. 

                                                      
22 When applying the formula of Hoffmans (1993) to a real life scenario, uncertainties (for example in 

accurately determining the Chezy coefficient) might result in a less accurate approximation of the incoming 

turbulence. 
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Figure 40 Schematization of input, output and validation of the ATM including the input alternatives when using as 

little measured data as possible23 

 

 

  

                                                      
23 Note that when using the conservation of momentum to calculate the flow variables downstream of the 

reattachment point, the non-uniformity term 𝛼𝐵𝑒𝑟𝑛 downstream of the reattachment point is still taken into 

account. 
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7 Arcadis Turbulence Model empirical validity and sensitivity analysis 

7.1 introduction 

In chapter 5 the data used to validate the ATM was introduced. Chapter 6 explained how this data 

will be used to run the ATM. In this chapter the results of the ATM empirical validation are 

presented and discussed. Because a large number of input alternatives are considered in the 

empirical validation of the ATM, the empirical validation is also a sensitivity analysis. Using the 

results of the empirical validation, the performance of the ATM is judged. Recommendations 

about improving the ATM are then given. However, first a selection is made of all input 

alternatives that will be analysed in the empirical validation because it is not sensible to present 

all possible input alternative combinations as will be explained below. 

7.2 Arcadis turbulence model alternatives for the empirical validation 

Introduction 

In the previous chapter, the input alternatives for the dissipation coefficient, head levels, and 

incoming turbulence were discussed. The following text will explain why it is useful to consider 

cases (instead of every input alternative combination) for the coming sensitivity analysis. 

Investigating every input alternative combination results in 96 model outputs to consider. 

Presenting all 96 alternative combinations will not contribute to answering the research questions 

(as will be explained below). Therefore, three case scenarios are constructed, each with a certain 

goal in mind: 

 A Base case consisting of the input variable combination that is expected to perform best 

a priori 

 A No Dissipation case that assumes turbulence is not dissipated within the study area 

 A Calibrated Dissipation case for which the dissipation coefficient 𝛼 is calibrated using the 

measured turbulent energy levels 

First the schematisation of the cases are discussed using the Base case as an example, the other 

cases are discussed thereafter. This section is concluded with some remarks about using these 

cases to validate the ATM. 

Base case  

The Base case is schematised in the figure below. 

 
Figure 41 Base case alternative schematisation 
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Figure 41 shows the three categories of input variable alternatives. The arrows pointing towards 

the central square indicate that a specific input alternative is considered for that case. Every case 

scenario will be applied to every selected experiment, thus each case will result in at least 4 

different graphs (one for each experiment). 

The Base case is the input combination that is expected to perform best of all cases based on the 

information available before the sensitivity analysis is actually performed (a priori). The input 

alternatives considered for the Base case are expected to perform best because of the following 

reasons: 

The Base case scenario assumes that the dissipation of turbulence under non-equilibrium 

conditions can best be approximated by the dissipation under equilibrium conditions as defined 

by Hoffmans (1993). Because little to no information is available about the dissipation coefficient 

𝛼, 𝛼 =
1

1.212
 (based on the equilibrium turbulence dissipation of Hoffmans, 1993) is initially 

deemed as the best approximation of this coefficient. It is known that turbulence dissipates 

(chapter 4). Thus, the 𝛼 = 0 alternative is expected to perform worse than a dissipation 

coefficient alternative that does take into account turbulence dissipation. The calibrated 𝛼 

alternative will definitely outperform the other two dissipation coefficient alternatives, so initially it 

would be expected that the calibrated 𝛼 alternative is the preferred dissipation alternative for the 

Base case. However, the dissipation coefficient 𝛼 cannot be calibrated without first running the 

ATM, which is in violation with the design philosophy of the Base case: picking the input 

alternatives that are expected to perform best, before actually running the sensitivity analysis. 

Therefore, for the Base case, the dissipation coefficient based on the work of Hoffmans (1993) is 

only considered. 

For the Base case, the initial incoming turbulent energy (upstream of the step) is set at the first 

measured turbulent energy (�̅�0). By doing so, the first calculated turbulent energy output from the 

ATM will show a 100% match with the measured turbulent energy. The alternative, using the 

calculated equilibrium turbulent energy following from the formula of Hoffmans (1993) can 

deviate (slightly) from the measured turbulent energy (table 8). Thus the measured turbulent 

energy �̅�0 is expected to perform best and is therefore chosen for the Base case. 

All four head level alternatives are considered for the Base case. As was mentioned previously, it 

is unknown whether the head levels during the experiments are best represented by the 

measured or the momentum head levels. All four head level alternatives could in theory be the 

best performing. Therefore, all four head level alternatives are considered in the Base case. 

The Base case (as described above) will result in 4 graphs (one for each head level alternative) 

for each of the selected experiments . This results in a total of 16 graphs. In order to balance the 

number of figures, and the readability of these figures, it is chosen to present four figures (one for 

each of the selected experiments) containing four graphs (one for each head level alternative) for 

the Base case. 
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No Dissipation case  

 
Figure 42 No Dissipation case alternative schematisation 

 

Figure 42 shows the No Dissipation case. For this case, instead of the dissipation coefficient 

based on the work of Hoffmans (1993), turbulence dissipation is left out altogether (𝛼 = 0). 

Physically, turbulence is expected to dissipate due to internal viscous stresses. This case however 

neglects this dissipation to find the most extreme turbulent energy levels. The No Dissipation 

case will give the upper limit of the turbulent energy that can be expected in the flow (according to 

the ATM). This upper limit might be useful as an alternative to the flat rules of thumb as 

discussed in chapter 1. 

Calibrated Dissipation case  

 
Figure 43 Calibrated Dissipation case alternative schematisation 

 

The third case calibrates the dissipation coefficient using the measured turbulent energy. After 

calibration, the different ATM’s will fit the measured turbulent energy better. The goal of 

calibrating the dissipation coefficient 𝛼 is to find a relation between the experimental conditions 

and the calibrated dissipation coefficient 𝛼. Based on the results of this case, recommendations 

will be given about setting the dissipation coefficient. The exact calibrated procedure used to 

calibrate the dissipation coefficient 𝛼 will be discussed in section 7.5. 

Unlike the Base case, for the Calibrated Dissipation case the raw measured head levels are 

omitted. It was chosen not the calibrate the raw measured head levels because no useful 
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information would result from this exercise. The raw measured head levels contain locations were 

the mean flow energy is increasing. The ATM models turbulence production as a function of the 

loss of mean flow energy. When the mean flow energy (wrongly) shows an increasing pattern, the 

ATM translates this into a (wrong) destruction of turbulent energy. Thus beside the turbulence 

dissipation due to relaxation, turbulence is also destroyed due to wrong head level input data. 

Therefore, when calibrating the ATM based on this data, lower values of 𝛼 will be found 

(compared to using other head level input data). The resulting 𝛼 coefficients will not result in new 

insights because they are greatly affected by the wrong head level input data. 

Remarks related to the case studies  

Note that none of the cases described above uses the calculated equilibrium turbulent energy �̅�𝑒 

as the initial incoming turbulent energy. In fact, all above cases were also calculated using the 

equilibrium turbulent energy �̅�𝑒 as the initial incoming turbulent energy. However, the resulting 

ATM output did not visually deviate from the ATM output when using the first measured turbulent 

energy level �̅�0 as the incoming turbulent energy. This result is expected because, as table 8 

shows, only very small differences exist between the first measured turbulent energy �̅�0 and the 

equilibrium turbulent energy �̅�𝑒. The equilibrium turbulent energy �̅�𝑒 alternative will therefore not 

be presented or discussed in this thesis. One can assume that �̅�0 and �̅�𝑒 can be used 

interchangeably. 

7.3 Sensitivity and validity of the Arcadis Turbulence model: Base case 

Introduction 

This section will present and discuss the result of the ATM Base case. The setup of this section is 

as follows: First the graphs depicting the ATM results for the case under consideration are 

presented. Then the ATM results are discussed, with a focus on the shape and size of the 

calculated turbulent energy levels24 compared to the measured turbulent energy levels. Lastly, 

conclusions are drawn about the performance of the ATM based on the presented graphs25. 

  

                                                      
24 When the texts refers to the calculated turbulent energy, it refers the ATM output using the specific head 

level input alternative under review. 
25 For your convenience, figure 39 and the coming ATM results are also depicted in appendix U. It is 

suggested to tear appendix U out of this report in order to review the coming graphs side by side with the 

head level alternatives. 
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Base case  

  

  
Figure 44 Comparison between measured turbulent energy and ATM output for the Base case 

 

Figure 44 shows the results of running the ATM using the Base case input. The measured 

turbulent energy is also presented in figure 44 in order to compare the ATM output with the 

experimentally measured turbulence. In the coming text, the ATM results for each head level 

alternative is discussed separately. 

Base case: ATM using raw head level input  

When looking at the ATM results using the raw head levels, a number of things can be noticed. 

The chaotic pattern that is observed in the raw head levels (Figure 36) is translated in a chaotic 

pattern in the calculated turbulent energy. The chaotic pattern of calculated turbulent energy 

conflicts with the laws of physics. All selected experiments show calculated turbulent energy 

levels that contain one or more negative values. This is the result of the ATM modelling 

(additional) turbulence dissipation when the mean flow shows a pattern of increasing energy 

levels. Because turbulence is calculated by taking the square of the flow velocity fluctuations 

(chapter 3), negative turbulent energy levels are not possible. 

Magnitude 

The ATM, using raw head levels, does not show a clear pattern of over or underestimation for the 

selected experiments. The ATM results for the experiments of Hofland (2005) and Nakagawa and 

Nezu (1987) ST-1 show an underestimation of the turbulent energy, whereas to other 

experiments show on average an overestimation. This could be the result of the ATM assumptions 

not approximating reality sufficiently in different ways for the different experiments. The other 

head level alternatives will shed some more light on this. Note that the order of magnitude of the 

turbulence estimation using this head level alternative (and all other head level alternatives) is on 

par with the measured turbulence. 
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Shape 

Beside the absolute values of the calculated turbulent energy levels, the shape of the calculated 

turbulent energy levels is also compared to the shape of the measured turbulent energy levels. 

When using the raw head levels as input, the shapes of the calculated turbulent energy levels are 

chaotic. It cannot be said that the calculated turbulent energy approximate the shape of the 

measured turbulent energy levels. 

Base case: ATM using polynomial head level input  

The ATM Base case results when using polynomial head levels show different patterns. The 

calculated turbulent energy levels are now much smoother due to the smooth polynomial head 

level input. Because of the much smoother head level input, the calculated turbulent energy does 

not show any negative values anymore. 

Shape 

Different shapes of calculated turbulent energy levels are found for the different experiments. The 

calculated turbulent energy levels for the experiments of Xingkui & Fontijn (1993), Hofland 

(2005) and Nakagawa and Nezu (1987) ST-3 show a pattern of increasing turbulent energy up 

until a location upstream of the reattachment point, and a decrease in turbulent energy 

downstream of that. For the experiment of Nakagawa and Nezu (1987) ST-3, the peak is located 

very close to the reattachment point. On the other hand, the calculated turbulent energy levels for 

the experiment of Nakagawa and Nezu (1987) ST-1 shows increasing turbulent energy levels 

without any valleys or peaks. 

All above described calculated turbulent energy level shapes can be explained by looking at the 

shape of the polynomial head levels. First consider the way the ATM calculates the turbulent 

energy levels. The production of turbulent energy is a function of the change in mean flow energy 
𝑑𝐻

𝑑𝑥
. The dissipation of turbulence is a function of the turbulence itself. A flow that is losing energy 

at a constant rate will also increase its turbulent energy. Because the dissipation is a function of 

the turbulence itself, an increase in turbulent energy also results in an increase in the dissipation 

rate. This continues until −𝑔
𝑑𝐻

𝑑𝑥
= 𝛼

𝑘

𝑅
. At this point, assuming the mean flow continues to lose 

energy at a constant rate, the turbulent energy has reached an equilibrium. The size of this 

equilibrium is determined by the rate of energy loss of the mean flow (
𝑑𝐻

𝑑𝑥
) and the dissipation 

coefficient 𝛼. Now consider the results of an ATM run using polynomial head level input (figure 

45).  
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Figure 45 Relation between head level shape, turbulence production and dissipation and the absolute turbulent energy 

levels as calculated by the ATM 

 

Figure 45 shows the relation between the head level shape, the turbulence production and 

dissipation, and the resulting turbulent energy estimation as computed by the ATM. All measured 

polynomial head levels, with the exception of the Nakagawa and Nezu (1987) ST-1 experiment 

show a decreasing rate of mean flow energy loss in the flow direction. At a certain location (at the 

maximum calculated turbulent energy level), the production of turbulence equals the dissipation. 

Downstream of this location, the rate of mean flow energy loss becomes smaller and smaller, 

thus less and less turbulence is produced. However, the absolute turbulent levels are still high, 

thus the turbulent energy dissipation is still large. This results in decreasing turbulent energy 

levels downstream of location of the maximum calculated turbulent energy level. For the 

experiments of Hofland (2005) and Xingkui & Fontijn (1993), the rate of mean flow energy loss 

(and thus the rate of turbulence production) equals the rate of turbulence dissipation upstream of 

the reattachment point. For the experiment of Nakagawa and Nezu (1987) ST-3 the rate of mean 

flow energy loss equals the rate of turbulence dissipation roughly at the reattachment point. For 

the experiment of Nakagawa and Nezu (1987) ST-1, the mean flow first only loses a little energy, 

but the energy loss becomes bigger and bigger, further downstream of the step. The dissipation of 

turbulence is therefore always smaller than the production of turbulence, thus no peaks or valleys 

in the calculated turbulent energy level are found for this head level input. 
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Magnitude 

When using polynomial head levels, the ATM on average underestimates the turbulent energy 

levels for the experiments of Hofland (2005) and Nakagawa and Nezu (1987) ST-1 and 

overestimates on average the turbulent energy levels for the other experiments (similar to the 

results using the raw head levels). This indicates a miss match between the production and 

dissipation of the calculated turbulent energy levels. Some hypothesis about this miss match are 

discussed at the end of this section. 

Base case: ATM using linear head level input   

The ATM Base case when using linear head levels as input, results in smooth calculated turbulent 

energy levels as output. The calculated turbulent energy levels show a pattern of increase 

turbulent energy levels without valleys or peaks for all selected experiments. 

Magnitude  

The ATM using linear head levels underestimates the turbulent energy levels for all experiments 

except Nakagawa and Nezu (1987) ST-3. This is a change in trend because now the results for 

the experiment of Xingkui & Fontijn (1993) also underestimates the turbulent energy, whereas for 

the previous discussed head level alternatives, it consistently overestimated turbulence. This 

could be related to the fact that the linear head level smoothing technique is less accurate in 

approximating the actual measured head levels then the polynomial smoothing technique 

(appendix S). Note that the calculated turbulent energy levels only show increasing turbulence, 

not decreasing turbulence. The reason for this is discussed in the following text. 

Shape 

All calculated turbulent energy levels follow only one pattern, increasing turbulent energy levels 

downstream of the step. No decrease in turbulence are found in the ATM results using this head 

level alternative. The reason for this is easily explained by looking at figure 45. When a constant 

rate of mean flow energy loss is put into the ATM, the turbulent energy levels move to an 

equilibrium value, and then remain constant at this value. When this equilibrium value is greater 

than the starting turbulent energy level, the turbulence is increased until the equilibrium is 

reached. Vice versa, when the equilibrium value is lower than the starting turbulent energy level, 

turbulence levels are decreased until the equilibrium is reached. An initial increase in turbulence 

up to a maximum value and decreasing levels downstream of the maximum, as can be seen in 

the measured turbulent energy levels of the experiment of Xingkui & Fontijn (1993) and Hofland 

(2005) cannot be modelled using the ATM in combination with a constant rate of energy loss and 

a constant dissipation coefficient. This can indicate that the assumption of a constant mean flow 

energy loss rate is incorrect or that the constant dissipation coefficient 𝛼 is incorrect. At the end 

of this section, this observation is discussed further. 

Base case: ATM output using momentum head level input  

The last head level alternative that is analysed for the Base case is the momentum head level 

alternative. As discussed previously, this head level alternative is based on the assumption of 

conservation of momentum and conservation of mass. Because the momentum head levels also 

assume a constant mean flow energy loss, the limitations of the linear head level alternative, as 

discussed above, also apply to this alternative. 

Shape 

The calculated turbulent energy levels using the momentum head levels as input show a shape 

similar to the calculated levels using linear head level: increasing turbulent energy levels for the 

whole flume downstream of the step. However, contrary to the linear head levels, the ATM using 
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momentum head levels does a decent job estimating the turbulent energy levels for the 

experiments of Nakagawa and Nezu (1987). This could indicate that the conservation of 

momentum actually better represent the mean flow energy loss downstream of a BFS than the 

experimentally measured mean flow energy loss for those studies. 

Magnitude 

As mentioned above, the ATM using momentum head levels does a decent job estimating the 

turbulent energy levels for the experiments of Nakagawa and Nezu (1987). However, it still 

underestimates the turbulent energy levels. In fact, the ATM results for all selected experiments 

underestimated the turbulent energy levels when using the conservation of momentum. Two 

causes for this can be hypothesised. First, it is possible that the momentum head levels do not 

accurately enough represent the actual occurring mean flow energy loss. On the other hand, it is 

also possible that the dissipation coefficient based on the dissipation of Hoffmans (1993) is 

incorrect. The Calibrated Dissipation case will shed some more light on this. 

Conclusions 

The ATM output using raw head levels as input resulted in chaotic calculated turbulent energy 

levels both when dissipation was considered and neglected. Moreover the calculated turbulent 

energy levels, using the raw head levels, contained negative values for the turbulent energy which 

is physically impossible. It is believed that due to measurement error, the head levels show this 

chaotic behaviour. The ATM is based (among other things) on the principle that free flowing water 

can only loose energy. The raw head levels are therefore less (not) usable as input into the ATM. 

The smoothed head level input (linear or polynomial) resulted in calculated turbulent energy 

levels that are at least physically possible. However, the shape of the head level input defines the 

ATM output possibilities. When constant mean flow energy loss is assumed (linear and 

momentum head levels), than the ATM in its present form is unable to model both an increase 

and decrease in computed turbulent energy. Using polynomial head levels, it is possible to both 

model increasing and decreasing turbulence levels. However, there still exists a notable 

discrepancy between model and measurement (even when taking into account the measured 

turbulent energy uncertainty26). The calibration of the dissipation coefficient 𝛼 will show whether 

a change in the dissipation coefficient can compensate this discrepancy. 

The ATM output using momentum head levels and the dissipation coefficient of Hoffmans (1993) 

corresponded reasonably well with the measured turbulent energy levels up until the 

reattachment point for the experiments of Nakagawa and Nezu (1987). Calibrating the 

dissipation coefficient will show whether a reasonably fit can also be found for the other 

experiments using the linear or momentum head levels. 

Three head level alternatives show potential as input for the ATM to accurately estimate the 

turbulent energy levels. The ATM results using the momentum head levels already somewhat 

accurately estimate the turbulent energy levels up to the reattachment point for two of the 

selected experiments. After calibration the ATM might also accurately estimate turbulent energy 

levels up until the reattachment point using linear head level input. Therefore, this input 

alternative is also considered. However, because of the assumed constant rate of mean flow 

energy loss for these head levels, these head level alternatives will not result in ATM output with 

both increasing and decreasing turbulent energy levels (figure 45). On the other hand, The ATM 

                                                      
26 The uncertainty in the measured turbulent energy levels were taken into account for the analysis of the 

ATM results. However, in order to preserve readability of the figures, the uncertainty margins of the 

measured turbulent energy are not depicted in the case graphs. 
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output using the polynomial head level alternatives showed the ability to roughly reproduce the 

shape of the measured turbulent energy levels. Using polynomial head levels, a notable 

discrepancy between ATM estimated and measured turbulent energy exists. The calibration of the 

ATM using all three head level alternatives will show whether a change in dissipation coefficient 

can fix the above mentioned limitations. However, first the results of the No Dissipation case are 

presented to show that taking dissipation into account improves the ATM accuracy. 

7.4 Sensitivity and validity of the Arcadis Turbulence model: No Dissipation case 

No Dissipation case results  

For the No Dissipation case, turbulence dissipation is neglected altogether. In the following 

section the accuracy of the ATM when dissipation is neglected is investigated.  

 

 

 

  
Figure 46 Comparison between measured turbulent energy and ATM output for the No Dissipation case 

 

Because most head level alternatives for the No Dissipation case show similar patterns, it is 

chosen not to discuss each head level alternative separately. Instead the general trends and 

noteworthy results are discussed below. 

Raw head levels  

When the dissipation of turbulence is neglected, ATM outputs, with the exception of the ATM 

using raw head level input, show a pattern of increasing or constant turbulent energy levels. The 

ATM using raw head levels as input still show decreasing turbulent energy levels as the result of 

the increase in mean flow energy levels, which ATM incorrectly translates into a decrease of the 

turbulent energy. 

Xingkui & Fontijn (1993), Hofland (2005), and Nakagawa and Nezu (1987) ST-3  

The ATM results of the experiments of Xingkui & Fontijn (1993), Hofland (2005), and Nakagawa 
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and Nezu (1987) ST-3 all overestimate the turbulent energy levels. The calculated turbulent 

energy levels using the linear and momentum head levels show a constant increase in turbulent 

energy, which is inversely proportional to the constant rate of mean flow energy loss. The 

polynomial calculated turbulent energy levels show a pattern of increasing turbulent energy levels 

that flattens out further downstream, which also corresponds to an inversely proportionality with 

the polynomial head levels. Overestimation of the calculated turbulent energy is expected 

because by neglecting the turbulence dissipation, turbulence can only increase in energy, thus 

overestimation is bound to happen. 

Nakagawa and Nezu (1987) ST-1  

The ATM results of the experiments of Nakagawa and Nezu (1987) ST-1 under and overestimate 

the turbulent energy levels depending on the head level alternative used as input. Even when 

neglecting the dissipation of turbulence, the ATM output using linear or polynomial head levels 

underestimates the turbulent energy levels up until the reattachment point, which is in contrast to 

the large overestimation for all other selected experiments. This underestimation is most likely 

the result of the somewhat strange raw head levels that were found for the experiment of 

Nakagawa and Nezu (1987) ST-1. The ATM results using the momentum head levels 

overestimate the turbulent energy levels for all selected studies. This can be beneficial because 

using this approach will at least guarantee (for the selected experiments) that the turbulent 

energy is not underestimated. 

Conclusions 

All selected experiments with the exception of Nakagawa and Nezu (1987) ST-1 showed 

overestimation of the turbulent energy levels when dissipation is neglected, this can indicate that 

either dissipation cannot be neglected, or that production of turbulence is overestimated. 

Moreover, when neglecting turbulence dissipation, the calculated turbulent energy levels can only 

increase in downstream direction, not decrease. The measured turbulent energy levels show both 

increasing and decreasing turbulent energy levels. Therefore it is concluded that, to accurately 

model turbulent energy levels over the whole study area, turbulence dissipation should be taken 

into account. 

7.5 Sensitivity and validity of the Arcadis Turbulence model: Calibrated 

Dissipation 

Introduction 

The goal of calibrating the dissipation coefficient 𝛼 is to review the relation between the 

experimental conditions and the calibrated dissipation coefficient 𝛼 for the different head level 

alternatives. Based on the results of this case, recommendations will be given about setting the 

dissipation coefficient, and how the ATM can be improved. First, the calibration procedure is 

explained. Then the results of the calibrated ATM are discussed per head level input alternative. 

Using the linear and momentum head level alternatives cannot result in both increasing and 

decreasing turbulent energy levels. Therefore, the ATM using these head level inputs is also 

calibrated using only the measured turbulent energy levels up until the found maximum. This will 

illustrate the ability of the ATM to estimate only the increasing part of the turbulent energy levels 

in BFS flow. 

Calibrating the ATM  

The ATM is calibrated for each head level alternative by running the model a number of times. For 

each model run, a different value for the dissipation coefficient 𝛼 is chosen. Each model run is 

than compared to the measured turbulent energy levels to say something about the goodness of 
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fit between the calculated and measured turbulent energy. The goodness of fit is calculated using 

the coefficient of determination. The coefficient of determination is interpreted as the proportion 

of the variance in the measured turbulent energy levels that is predictable from the ATM output 

(StatTrek, 2015; appendix R). The ATM run that showed the best goodness of fit (coefficient of 

determination closest to 1) is selected as the calibrated model. 

The ATM is run for a range of 𝛼 values. The range of 𝛼 values is defined by three constants, the 

smallest 𝛼 to consider, the largest 𝛼 to consider, and the number of intermediate values between 

the smallest and largest 𝛼 value. The smallest value that is considered for the calibration is 

simply set at zero. That way, the No Dissipation case is in consideration when the best fitting 

model is searched for. Negative values for 𝛼 are illogical. This would mean that turbulence is not 

dissipated, but produced even when the mean flow does not lose energy. The largest considered 

𝛼 value is set by running the calibration and looking at the found 𝛼 coefficients. When the best 

goodness of fit is found for an 𝛼 equal to the set maximum value for 𝛼, then the maximum value 

for 𝛼 is increased. This process is repeated until the 𝛼 coefficient corresponding to the calibrated 

ATM is no longer equal to the maximum set value for 𝛼. As much intermediate values as possible 

need to be considered in order to find the best calibrated model. However, there is a limit to the 

number of intermediate values that can be considered due to the required computation time. The 

following range of dissipation coefficients resulted in a good balance between accuracy and 

computation time: 𝛼 = [0, 0.01, 0.02 ⋯5.98, 5.99, 6]. 

For the head level input alternatives that are unable to model both increasing and decreasing 

levels of turbulence (linear and momentum head level input alternatives), an additional 

calibration procedure is used. The ATM for these head levels is also calibrating using only the part 

of the measured turbulent energy levels that show increasing turbulence. This will result in a 

calibrated model that is better able to estimate the turbulence energy levels up to a maximum 

(but unable to accurate estimate the decrease in turbulent energy downstream of this maximum). 
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Calibrated Dissipation case results  

  

  
Figure 47 Comparison between measured turbulent energy and ATM output for the Calibrated Dissipation case 

 

Table 9 All dissipation coefficients 𝜶 after calibration and their corresponding coefficients of determination 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Calibrated using all 
measured 
turbulent energy 
values 

𝛼  polynomial head level input  0.83 0.14 0.04 2.62 

𝑅2 polynomial head level input  -1.93 0.38 0.39 -5.35 

𝛼  linear head level input  0.51 0.12 0.07 1.33 

𝑅2 linear head level input  0.57 0.94 0.81 0.88 

𝛼  momentum head level input  0.29 0.13 0.56 0.53 

𝑅2 momentum head level input  0.62 0.95 0.97 0.93 

 

Calibrated Dissipation case: ATM output using polynomial head level input   

Calibrating the ATM using the polynomial head levels as input resulted in the worst ATM 

performance (compared to the other head level input alternatives). All calculated turbulent energy 

levels (except the Nakagawa and Nezu (1987) ST-1 experiment) show a rapid increase in 

turbulent energy, that peaks before the reattachment point, and an even faster dissipation of 

turbulence downstream of this peak. Although the shape of the turbulent energy using the 

polynomial head level input somewhat resembles the shape of the measured turbulent energy 

levels, for the experiments of Xingkui & Fontijn (1993) and Hofland (2005), the peak is modelled 

more upstream than the measured turbulence peak. The ATM results for the experiment of 

Nakagawa and Nezu (1987) ST-3 also shows a calculated turbulent energy with a peak and rapid 

dissipation downstream of the peak, whereas the measured turbulent energy for this experiment 

does not have a peak. This results in very bad model accuracy. The shape of the ATM output 

using polynomial head level input can be explained using figure 48.  
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Figure 48 Relation between head level shape, turbulence production and dissipation and the absolute turbulent energy 

levels as calculated by the ATM, dashed lines show effect of increasing or decreasing the dissipation coefficient 𝜶 

 

The ATM turbulent energy levels using polynomial head input for the experiments of Xingkui & 

Fontijn (1993) and Nakagawa and Nezu (1987) ST-3 overestimated the turbulent energy levels 

(see figure 44 and 46). In order to find a better model, the dissipation coefficient 𝛼 is increased 

to counteract the overestimation of the calculated turbulent energy levels. However, as figure 48 

shows, an increase in the dissipation coefficient 𝛼 also results in an upstream displacement of 

the turbulent energy peak. Vice versa, when turbulence is underestimated (experiment of 

Hofland, 2005), after calibration the dissipation term is decreased and the turbulence peak is 

moved downstream. Thus after calibration, the magnitude of the modelled turbulence better fits 

the measured turbulence, but the shape of the modelled turbulence is distorted at the same 

time. This is a limitation of the ATM in its present form. Suggestions for improving the ATM in 

order to resolve this limitation are given in section 7.6. 

The results for the Nakagawa and Nezu (1987) ST-1 experiment are different. Due to the shape of 

the polynomial head level input, the production of turbulence is always larger than the dissipation 

(figure 45). This results in the ATM modelling increasing turbulent energy levels, as can be seen in 

figure 47. However, the measured turbulent energy levels for the experiment of Nakagawa and 

Nezu (1987) ST-1 show exactly the reverse pattern: an initial rapid increase in turbulent energy, 

that settles at a constant value further downstream. This results in a bad fit between measured 

and calculated turbulent energy levels. 

Because the calibrated ATM using polynomial head level input showed bad performance, the 

resulting 𝛼 dissipation terms are not analysed any further. 

Calibrated Dissipation case: ATM output using linear and momentum head level input 

The ATM results using linear and momentum head level input are discussed at the same time 

because they both show similar results. 

The calibrated ATM using linear or momentum head level input shows good up to great fit with the 

measured turbulent energy levels (figure 47). The ATM applied to the experiment of Xingkui & 

Fontijn (1993) resulted in the least fitting model. This is the result of the linear head level change 

input being unable to model increasing and decreasing turbulence levels within the same figure. 

All other experiments show only little or no decrease in turbulent energy levels. Thus for those 

experiments it is less of a problem that the head level input does not allow for both an increase 

and decrease in turbulent energy levels. As a result, the calibrated models for the other 

experiment are quite accurate. 

The resulting 𝛼 dissipation terms are not analysed yet for the ATM linear and momentum head 

level alternatives because the used calibration method does not take into account the inability of 
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these models to predict both increasing and decreasing turbulent energy levels. In order to better 

compare the dissipation coefficients found after calibrating the ATM using linear and momentum 

head level input, the different calibration method is first applied (as discussed at the beginning of 

this section). For this calibration method, the ATM is calibrated using the measured turbulent 

energy levels up until the maximum measured energy level. This will make sure that the found 

dissipation coefficients are not distorted because the measured turbulent energy levels show 

both increasing and decreasing turbulent energy levels, whereas the head level input does not 

allow for this behaviour. The new calibration method resulted in the following graphs: 

  

  
Figure 49 Comparison between measured turbulent energy and ATM output for the Calibrated Dissipation case only 

considering the measured turbulent energy levels up until the maximum value 

 

Table 10 All dissipation coefficients 𝜶 after calibration (using only measured turbulent energy levels up until the 

maximum) and their corresponding coefficient of determination 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Calibrated using 
measured 
turbulent energy 
values up until the 
maximum value 

𝛼  linear head level input  0.44 0.10 0.05 1.33 

𝑅2 linear head level input  0.65 0.95 0.77 0.82 

𝛼  momentum head level input  0.21 0.11 0.55 0.53 

 𝑅2 momentum head level input  0.80 0.97 0.96 0.91 

 

By omitting the measured decrease in turbulent energy, the ATM results for the experiment of 

Xingkui & Fontijn (1993) now also shows a reasonably good fit with the measured turbulent 

energy levels up until around the reattachment point. The results in figure 49 indicate that the 

ATM is at least able to accurately approximate the turbulent energy levels up until the 

reattachment point when using linear or momentum head level input. 
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An indication that the ATM correctly approximates the physics behind turbulence generation and 

dissipation would be when the calibrated dissipation coefficient 𝛼 can be related to flow 

properties of the experiments. It is hypothesised that the dissipation of turbulence is related to 

the bed roughness of the flume. The dissipation coefficients found when using linear head level 

input fluctuates without any clear pattern. For example, the studies of Xingkui & Fontijn (1993) 

and Hofland (2005) were both performed with a rough bottom, but the calibrated dissipation 

coefficient of turbulence equalled 0.44 for Xingkui & Fontijn (1993) and 0.10 for Hofland (2005). 

The experiment of Nakagawa and Nezu (1987) ST-1 and ST-3 were performed under similar 

conditions (with the exception of an increase in discharge), but the calibrated dissipation 

coefficient deviate greatly (table 11). Thus the ATM results using linear head level input do not 

show a relation between bottom roughness and the ATM dissipation coefficient. 

The dissipation coefficients found when using momentum head level input does show 

consistency. The studies of Xingkui & Fontijn (1993) and Hofland (2005) were both performed 

using a rough bottom and resulted in calibrated dissipation coefficient of 0.21 and 0.11 

respectively.  The experiment of Nakagawa and Nezu (1987) ST-1 and ST-3 were performed using 

a smooth bottom and resulted in calibrated dissipation coefficients of 0.55 and 0.53 respectively. 

For the rough bottom, much lower dissipation coefficients are found (𝛼 < 0.21) than for the 

smooth bottom (𝛼 > 0.53). This might indicate a relation between bottom roughness and the 

dissipation coefficient in the ATM. However, with only four different experiments, no hard 

conclusions can be made about the relation between the dissipation coefficient 𝛼 and the flow 

conditions of the experiments. When more experiments are available, it is suggested to make a 

scatter plot of various flow variables (e.g. discharge, Reynolds number, bottom roughness, etc.) 

versus the found calibrated dissipation coefficients to find possible patterns between the flow 

conditions and the dissipation coefficients. One thing that can be concluded based on the 

calibrated 𝛼 coefficients, is that it is unlikely that there exists a single value for 𝛼 that can 

approximate the dissipation of turbulence, regardless of the flow conditions. 

Conclusions  

This section discussed the results of calibrating the dissipation coefficient of the ATM using the 

different head level alternatives. This section confirmed that the ATM has a hard time modelling 

both increasing and decreasing turbulent energy levels accurately. The calibrated ATM using 

polynomial head level input resulted in sub optimal model performance due to the model inner 

workings as discussed in figure 48. If the ATM is to be used to accurately model both increases 

and decreases in turbulence, it should first be adjusted. The calibrated ATM using linear and 

momentum head levels results in a better fit with the measured turbulence. This goodness of fit is 

mainly achieved because the area where turbulent energy in the flow is increasing is accurately 

modelled. Smaller dissipation coefficients are found for the experiments performed in a flume 

with a rough bottom compared to a flume with a smooth bottom. This indicates that it is unlikely 

that there exists a single value for 𝛼 that can describe the dissipation of turbulence. 

7.6 Final remarks and recommendations for improving the Arcadis Turbulence 

Model 

Summarizing the results  

In figure 50 the results of most ATM alternatives are plotted in one figure. Figure 50 shows for 

each of the model alternatives how much the ATM estimated turbulent energy levels deviates 

from the measured turbulent energy levels at the reattachment point. Figure 50 is normalized by 

dividing the estimated turbulent energy levels by the measured turbulent energy levels at the 
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reattachment point. Because the raw head levels are defying the laws of physics, the ATM results 

using the raw head levels are not shown in figure 50. 

 
Figure 50 Performance of the ATM estimating the turbulent energy at the reattachment point. Note the log scale of the 

y-axis. 

 

Figure 50 shows that the calibrated ATM using linear and momentum head levels perform best 

overall at estimating the turbulent energy at the reattachment point. 

Goal of the ATM  

The ATM is intended to be used as a rapid assessment tool to estimate turbulent energy at 

multiple locations in a flow. Applying the ATM could be more accurate than using rules of thumb 

because the ATM takes into account the production and dissipation of turbulence in a flow. 

However, in its present form, the ATM is not able to consistently and accurately estimate 

turbulent energy downstream of the reattachment point for the selected experimental data. 

The raw measured head level input data results in unrealistic destruction of turbulent energy due 

to sudden increases in mean flow energy. Therefore, a smoothing method is needed to achieve 

more realistic head level values. The polynomial smoothing function seemed to best represent 

the physics behind mean flow energy loss. The polynomial smoothing function also fitted best 

with the measured head levels. However inserting the polynomial head levels into the ATM 

resulted in less than accurate ATM turbulent energy levels, even when the dissipation coefficient 

was calibrated. When a constant rate of mean flow energy loss (linear and momentum head 

levels) is used as input, the ATM was able to accurately estimate the turbulent energy levels. But 

using a constant rate of mean flow energy loss as input into the ATM results in the ATM being 

unable the model decreasing turbulent energy levels. An important question should now be 

raised: is the inability of the ATM to accurately estimate turbulent energy levels the result of 

inaccurate input data, or the result of the limitations of the ATM in its present form? It is expected 
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that both the input data and the ATM limitations play a role in the unsatisfactory estimated 

turbulent energy levels. 

The ATM dissipation coefficient  

The ATM models dissipation as a relaxation function. The theoretical validation of the ATM 

(chapter 4) showed that the dissipation coefficient of the ATM could confirm with the theory of 

large scale to smaller scale eddy dissipation when: 

 
𝛼 =

𝑢𝑗
′

�̅�𝑗

2𝑅

𝑙
 (4.5) 

For all runs of the ATM depicted in this chapter, it was assumed that 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 over the 

whole flume. Equation 4.5 however, relates the dissipation coefficient 𝛼 to the ratio between the 

flow velocity fluctuations 𝑢𝑗
′ and the mean flow velocity �̅�𝑗. This ratio will fluctuate in space. A 

constant dissipation coefficient was used in ATM runs presented in this chapter to check whether 

the assumption that 
𝑢𝑗
′

�̅�𝑗

2𝑅

𝑙
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 would approximate reality sufficiently. Based on the results 

presented in this chapter, this seems not to be the case. A different definition of the dissipation 

coefficient 𝛼 is therefore needed. It is recommended to use equation 4.5 as a start to formulate a 

new dissipation coefficient for the ATM. The calibration of the dissipation coefficient 𝛼 also 

showed a possible relation between the bottom roughness and the dissipation coefficient. It is 

recommended that in future research this is also taken into account when redesigning the ATM. 

The introduction of two separate dissipation terms might improve the ATM. One dissipation term 

then affects the turbulence produced due to flow deceleration. The other dissipation term affects 

the turbulence produced due to wall friction.  

The ATM production term  

The ATM assumes that 100% of the mean flow energy loss is converted into turbulent energy. 

Chapter 4 already showed that the mean flow can loose energy which is not converted into 

turbulent energy as the result of friction with a wall. Let’s assume for a moment that the ATM 

overestimates the production of turbulent energy. Let’s also assume that the polynomial head 

levels best approximate the actual mean flow energy loss that occurred during the experiments. 

During the calibration of the ATM using polynomial head levels, the overestimation of turbulence 

production is compensated by assuming a larger dissipation coefficient 𝛼. However, the larger 

dissipation coefficient 𝛼 results in the turbulent energy peak moving upstream (figure 48). 

Moreover, the increased dissipation coefficient results in in a very rapid decrease in turbulent 

energy downstream of the turbulent energy peak. The ATM results for three out of the four 

selected experiments showed exactly this pattern in figure 47. A solution would be to adjust the 

ATM to convert less than 100% of the mean flow energy loss into turbulence. More experiments 

are required in order to validate this hypothesis. 

Head level input data  

The measured head levels contained large uncertainty limits (appendix Q). These uncertainty 

limits translated into large uncertainties in the ATM output (appendix V). Conclusions based on 

ATM results using the measured head levels (raw, linear or polynomial) as input should therefore 

be handled with some reserve. However, this chapter did show that the ATM using measured 

head levels as input found turbulent energy levels that were in the same order of magnitude as 

the measured turbulent energy. The large uncertainty in the ATM output should therefore not be a 

reason to reject the ATM results altogether. 
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ATM results using momentum head level input were more certain (appendix V). For the Base 

case, using the conservation of momentum in the ATM resulted in a somewhat accurate 

estimation of the turbulent energy for two out of the four experiments. The calibration of the ATM 

using momentum head level input resulted in dissipation coefficients that could be linked to the 

flume bottom roughness. The uncertainty analysis (appendix V), and the more consistent ATM 

output using momentum head level input gives confidence in the accuracy of the momentum 

head levels representing the actual mean flow energy loss. 

Recommendations about performing new experiments are given in chapter 9. 

Usability of the ATM in its present from  

The ATM is able to reasonably accurately estimate the turbulent energy levels up until the 

reattachment point (figure 50). An approximation of the turbulent energy levels at the 

reattachment point is usable in the preliminary design of hydraulic structures. The next chapter 

gives an explanation how the ATM in its present form can be used in the preliminary design of 

hydraulic structures. 
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8 Applying the Arcadis Turbulence Model in practice 

8.1 Introduction 

Chapter 7 discussed the performance of the ATM. It was revealed that the ATM using momentum 

head level input was able to estimate the turbulent energy levels up until the reattachment point 

with reasonable accuracy after calibration (figure 50). Estimating the turbulent energy at the 

reattachment point can be beneficial in the preliminary design phase. This can give a more 

substantiated estimate of turbulence in a flow compared to a rule of thumb. Moreover, at the 

reattachment the largest turbulence is often found (chapter 5). Therefore, in this chapter, a 

method is discussed how the ATM can be applied in practice to approximate the turbulent energy 

levels at the reattachment point. The method described in this chapter can only be used to 

calculate the turbulent energy levels at the reattachment point downstream of a BFS under 

subcritical flow conditions. 

In the following text, first all formulae are introduced that are needed to calculate the turbulent 

energy at the reattachment point during the preliminary design phase. Because in the preliminary 

design phase, very little measurement data is available, the ATM is run a bit different from 

chapter 7. The results of the ATM turbulent energy levels at the reattachment point are compared 

to the measured values to say something about the accuracy of this application of the ATM. 

Finally, it is shown how the ATM results can be used in the design of loose rock bottom protection. 

8.2 Formulae needed to apply the Arcadis turbulence model in practice 

ATM input data  

The flow situation to which the ATM is applied is defined below. 

 
Figure 51 BFS flow situation for which ATM can be used to calculate turbulent energy levels at the reattachment point 

The ATM is given by : 

 𝑑�̅�

𝑑𝑥
= −𝑔

𝑑𝐻

𝑑𝑥
− 𝛼

�̅�

𝑅
 (3.11) 

In order to run the ATM, information is needed about the hydraulic radius 𝑅, the dissipation 

coefficient 𝛼 and the change in head level 
𝑑𝐻

𝑑𝑥
. Additionally, the incoming turbulent energy �̅�0 is 

also needed (chapter 6). 

The dissipation coefficient 𝛼 is set at 0. This is done in order to get a conservative estimation of 

the turbulent energy at the reattachment point. Figure 50 shows that applying the ATM for the No 
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Dissipation case (𝛼 = 0)  using momentum head level input results in consequent overestimation 

of the turbulent energy in the flow. It is believed that overestimating the turbulence is less 

problematic then underestimating turbulence because an underestimation of the turbulence 

could result in unexpected damages to a hydraulic structure. This reduces the ATM to: 

 𝑑�̅�

𝑑𝑥
= −𝑔

𝑑𝐻

𝑑𝑥
 (8.1) 

Equation 8.1 simply states that the production of turbulence equals the mean flow energy loss. 

No dissipation is considered up until the reattachment point. The hydraulic radius is therefore not 

required in order to run the ATM. 

The incoming turbulent energy �̅�0 can be approximated by the equilibrium turbulent energy level 

�̅�𝑒, as discussed in section 6.6: 

 
�̅�𝑒 = �̿�𝑎

2
𝑐0
2
𝑔

𝐶𝑎
2 (3.14) 

To find the equilibrium turbulent energy levels, the flow velocity �̿�𝑎 and Chezy coefficient on top of 

the step need to be known (𝑐0
2 = 1.212, Hoffmans, 1993). It is assumed that the flow velocity 

�̿�𝑎and water depth ℎ𝑎 on top of the step are known in the preliminary design phase. The Chezy 

coefficient can be calculated using the following formula: 

 

𝐶𝑎 =
1

𝑛
ℎ𝑎
1
6⁄  (5.4) 

It is assumed that the Manning coefficient 𝑛 is known on top of the step in the preliminary design 

phase27. Appendix T shows how the equilibrium turbulent energy levels �̅�𝑒 are calculated using 

equation 3.14 for the selected experiments. 

Approximating the head levels in the flume  

The change in head level 
𝑑𝐻

𝑑𝑥
 is needed as input into the ATM. The head levels in a flow can be 

calculated using the adjusted Bernoulli formula: 

 
𝐻 = 𝑧 + ℎ + 𝛼𝐵𝑒𝑟𝑛

1

2

�̿�2

𝑔
 (6.3) 

The water depth ℎ𝑎 and flow velocity �̿�𝑎 are assumed to be known on top of the step. If it is also 

assumed that the rate of mean flow energy loss downstream of the BFS is constant up until the 

reattachment point, then only the water depth ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ, flow velocity �̿�𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ and the 

reattachment length are needed to calculate the change in head level 
𝑑𝐻

𝑑𝑥
. This is done using the 

conservation of momentum. Because at the reattachment point the flow velocity profile is not 

uniform yet, a value for 𝛼𝐵𝑒𝑟𝑛 at the reattachment point is also needed. The method for finding 

the non-uniformity coefficient 𝛼𝐵𝑒𝑟𝑛 in the preliminary design phase is discussed below. 

Using the conservation of momentum at the reattachment point  

In order to find the water depth ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ and flow velocity �̿�𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ, the conservation of 

momentum and mass is used. The water depth at the reattachment point can be found using the 

following formula: 

                                                      
27 Assuming the upstream incoming turbulent energy is defined by the step roughness. 
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ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ =
𝑀𝑎 −

1
2
𝜌𝑤𝑔(ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ)

2

𝜌𝑤𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ
𝑞2

ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ
2

 (6.3) 

The flow velocity �̿�𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ is then simply found by assuming conservation of mass: 

 
�̿�𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ =

ℎ𝑎 × �̿�𝑎
ℎ𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ

  

Equation 6.3 also needs the momentum 𝑀𝑎 of the flow at an infinitesimal distance downstream 

of the step. This momentum can be calculated using the following formula: 

 
𝑀𝑎 =

1

2
𝜌𝑤ℎ𝑏

2 + 𝜌𝑤ℎ𝑎�̿�𝑎
2
 

 

(2.6) 

Here ℎ𝑏 = ℎ𝑎 + ℎ𝑠𝑡𝑒𝑝. 

Finding the non-uniformity coefficients 𝜶𝑩𝒆𝒓𝒏 and 𝜷𝒓𝒆𝒂𝒕𝒕𝒂𝒄𝒉  

Equation 6.3 requires the non-uniformity coefficient 𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ. The non-uniformity coefficient 

𝛼𝐵𝑒𝑟𝑛is also needed in the Bernoulli formula. A new method is suggested to approximate the 

values of 𝛼𝐵𝑒𝑟𝑛 and 𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ. 

A relation exists between the value for non-uniformity coefficient at the reattachment point and 

the ratio between the water depth on top of the step ℎ𝑎 and the step size ℎ𝑠𝑡𝑒𝑝. This relation can 

be made visible using a scatter plot. 

  
Figure 52 Scatter plots of the non-uniformity coefficients at the reattachment point versus the ratio between 𝒉𝒔𝒕𝒆𝒑 and 𝒉𝒂 

 

Figure 52 is constructed using the flow velocity profiles and water depths of the four selected 

experiments (Xingkui & Fontijn, 1993; Hofland, 2005; and Nakagawa & Nezu, 1987). In figure 52, 

the step/water-depth ratio (ℎ𝑠𝑡𝑒𝑝/ℎ𝑎) is plotted against the non-uniformity coefficients. Figure 52 

shows a very clear relation between the step water depth ratio (ℎ𝑠𝑡𝑒𝑝/ℎ𝑎) and the non-uniformity 

coefficients 𝛼𝐵𝑒𝑟𝑛 and 𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ. This relation is caused by the fact that the relative step height 

affects the size of the recirculation zone. The size of the recirculation zone in turn affects the non-

uniformity of the flow at the reattachment point. Because a relation exists between 𝛼𝐵𝑒𝑟𝑛, 

𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ and ℎ𝑠𝑡𝑒𝑝/ℎ𝑎, and both ℎ𝑠𝑡𝑒𝑝 and ℎ𝑎 are assumed to be known during the preliminary 

design phase, it is also assumed that 𝛼𝐵𝑒𝑟𝑛 and 𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ at the reattachment point can be 
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calculated during the preliminary design phase. The relation depicted in the figure above should 

be handled with reserve for (ℎ𝑠𝑡𝑒𝑝/ℎ𝑎) > 1. 

Reattachment length  

Only one variable is left which is needed to calculate the turbulent energy level at the 

reattachment point during the preliminary design phase: the reattachment length. Both 

Nakagawa and Nezu (1987) and Hofland (2005) discussed the relation between properties of the 

flow (Reynolds number, Froude number etc.) and the location of the reattachment point 

downstream of a BFS. However, no clear relation was found by those authors. In engineering 

practice, a reattachment length of 𝑥/ℎ𝑠𝑡𝑒𝑝 = 10 is often used. In the following calculation it is 

assumed that the reattachment length is located at 𝑥/ℎ𝑠𝑡𝑒𝑝 = 10. When a more substantiated 

estimation of the reattachment length is available during the preliminary design phase, it is 

recommended to use the substantiated estimation instead of the engineering practice. 

8.3 Accuracy of the Arcadis Turbulence Model when applied during the 

preliminary design phase 

 Using the above described method, the ATM is used to calculate the turbulent energy at the 

reattachment point. This resulted in in following table: 

Table 11 Comparing measured and ATM calculated turbulent energy at the reattachment point 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Turbulent energy at 
reattachment point 

�̅� measured (m
2
/s

2
) 0.0127 0.0225 0.0009 0.0007 

�̅� ATM calculated (m
2
/s

2
) 0.0231 0.0213 0.0021 0.0016 

 

Table 11 shows that for three out of the four selected experiments, the ATM run as described 

above overestimates turbulent energy up to 130%. Considering that the ATM was run using only 

the water depth and flow velocity on top of the step and turbulence dissipation is neglected, these 

results are reasonably good. For the experiment of Hofland (2005), an underestimation of the 

turbulent energy of roughly 5% was found when using the ATM. This is very close to the actual 

measured turbulent energy  at the reattachment point. An underestimation of 5% is deemed 

small enough to not jeopardize the stability of a hydraulic structure, especially considering that 

applying rules of thumb can result in even larger underestimations of turbulence (Voortman, 

2015). 

Based on the results of table 11, it is concluded that the ATM can estimate the maximum 

occurring turbulent energy levels downstream of a BFS with some accuracy. In the worst case 

scenario (experiment of Hofland, 2005), the ATM underestimates to turbulent energy by only 5% 

(based on the selected experiments). Overestimation of turbulent energy the flow is less 

problematic because an overestimation of the turbulence will most likely not result in an unstable 

designs of hydraulic structures as the result of the inaccurate turbulence estimations28. 

8.4 Using the Arcadis Turbulence Model to design loose rock bottom protection 

Turbulent energy levels are required in the design of loose rock bed protection. Appendix C 

introduces the design formula of Pilarczyk (1995) which is often used to determine the required 

                                                      
28 It was deliberately chosen to minimize underestimation of the turbulence as much as possible (achieved 

by neglecting dissipation). This was done so that the model is biased in its error direction (“often” 

overestimation, but only very little underestimation). Having a model that is biased in its error direction is 

beneficial because it is then known that the actual occurring turbulence in the flow is equal to the estimate 

turbulence; or less. This actually reduces the uncertainty margins of the turbulence estimations. 
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size of the loose rock. In the design formula of Pilarczyk (1995) a correction coefficient 𝑘𝑡
2
 is 

included to take into account the turbulence in the flow. An 100% increase in the correction 

coefficient 𝑘𝑡
2
 results in an 100% increase in the size of the required loose rock. The correction 

coefficient 𝑘𝑡
2
 is calculated in the following way: 

 

𝑘𝑡
2 = (

1 + 3𝑟

1.3
)
2

 (8.2) 

Where 𝑟 equals the depth averaged turbulent intensity (-). Depth averaged turbulent intensity is 

defined as: 

 

𝑟 =
√�̅�

�̿�
  (8.3) 

Using equation 8.2 and 8.3, the 𝑘𝑡
2
 can be calculated. This was done for the ATM estimation of 

turbulence, the actual measured turbulence at the reattachment point and the turbulence levels 

as follow from the rules of thumb presented in the Rock Manual (2007). The results are depicted 

in the table below. 

Table 12 Values for the correction coefficient 𝒌𝒕
𝟐
 measured in the flume at the reattachment point, calculated using 

the ATM and following the rule of thumb given in the Rock Manual (2007) 

Author Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

�̅� measured (m
2
/s

2
) 0.0127 0.0225 0.0009 0.0007 

�̅� ATM calculated (m
2
/s

2
) 0.0231 0.0213 0.0021 0.0016 

𝒓 measured (-) 0.3087 0.3952 0.2154 0.1162 

𝒓 ATM calculated (-) 0.4160 0.3847 0.3245 0.1758 

𝒓 rule of thumb (Rock Manual, 2007) 0.6000 0.6000 0.6000 0.6000 

𝒌𝒕
𝟐
 measured (-) 2.195 2.826 1.603 1.076 

𝒌𝒕
𝟐
 ATM calculated (-) 2.990 2.745 2.305 1.381 

𝒌𝒕
𝟐
 following rules of thumb 4.639 4.639 4.639 4.639 

 

Table 13 Typical turbulence levels according to the Rock Manual (p. 651, 2007) 

 

Table 12 shows the turbulent intensity 𝑟 and turbulence correction factor 𝑘𝑡
2
 as follows from the 

turbulent energy levels calculated by the ATM and measured in the flume. The 𝑘𝑡
2
 factor only 

deviates up to 30% when comparing measured and calculated values. Also note that the ATM 

underestimates the turbulence correction factor by 3% for the experiment of Hofland (2005). 

The Rock Manual (2007) contains a table showing the typical turbulent intensity levels (rules of 

thumb) after a hydraulic structure (table 13). These rules of thumb are currently used in the 
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preliminary design phase in combination with formula 8.2 to calculate the 𝑘𝑡
2
 (Voortman, 2015). 

The Rock Manual (2007) advises to use a turbulence intensity of 0.60 after hydraulic structures. 

The resulting 𝑘𝑡
2
 values are depcited in table 12. 

The ATM overestimated the 𝑘𝑡
2
 values by up to 30% when compared to 𝑘𝑡

2
 calculated using the 

measured turbulence levels. The rules of thumb were also used to calculate 𝑘𝑡
2
 values. 

Compared to the measurements, the rules of thumb overestimated 𝑘𝑡
2
 by up to 330%.  Thus, for 

the experiments studied in this thesis, the ATM is able to significantly more accurately estimate 

the turbulence intensity and 𝑘𝑡
2
 values compared to the rules of thumb. Moreover the method 

described in this chapter is easy to apply and only requires little data. Thus the ATM can be a 

viable alternative to using rules of thumb when calculating the effect of turbulence on loose rock 

bed protection. However, it is advised to perform more research using different experimental 

conditions in order to ascertain that the ATM performance is consistent. 

Figure 53 shows how much difference applying the ATM instead of the rules of thumb can make 

on the required stone weight29 when designing loose rock bed protection. 

 
Figure 53 Normalized required stone weight according to ATM and rules of thumb. Stone weight according to 

measurements is set at unity. 

8.5 Concluding remarks 

This chapter showed how the ATM can be used in the preliminary design phase. The ATM can be 

run using very little measurement data by applying the conservation of mass, conservation of 

momentum and using the relation between the water depth ratio (ℎ𝑠𝑡𝑒𝑝/ℎ𝑎) and the non-

uniformity coefficients (𝛼𝐵𝑒𝑟𝑛 and 𝛽𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ). The resulting turbulent energy levels approximate 

reality within the same order of magnitude (underestimation of 5% up to overestimation of 130%). 

The ATM is already usable to estimate the upper limit of turbulence at the reattachment point 

during the preliminary design phase (for subcritical backward facing step flow). Using the ATM 

output results in up to 3 times heavier stones compared to the stone weight design based on the 

experimentally measured turbulence. This is significantly more accurate then applying rules of 

thumb, which results in stone weights up to 80 times heavier. Thus the ATM could be a more 

accurate alternative to using rules of thumb when calculating the effect of turbulence on loose 

rock bed protection.  

                                                      
29 Assuming the relations: stone weight = (stone size)3 
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9 Conclusion, discussion and recommendations 

9.1 Introduction 

This chapter will conclude the thesis. The conclusions will present the final ideas about the ATM 

and will reflect on the goal of this thesis. Thereafter, a number of issues are discussed. These 

issues were not explicitly discussed in the previous chapters, but are important to mention. 

Finally, recommendations are given for future research. 

9.2 Conclusion 

Research goal and questions  

An estimation of the turbulent intensity in a flow is needed when designing hydraulic structures. Not 

taking turbulence intensities into account can result in the destruction of the designed hydraulic 

structure. The Arcadis Turbulence Model, as discussed in this thesis is intended as a rapid 

assessment tool to estimate turbulent energy in a quick way, more accurately than rules of 

thumb, and more easy to apply than complicated 𝑘 − 𝜀 models. 

The objective of this study was to test the theoretical and empirical validity of the ATM as a rapid 

assessment tool for the flow conditions of a wide channel with a backward facing step. The goal 

was reached by answering the three research questions. 

1. What is the theoretical validity of the ATM?  

The ATM assumes that 100% of the mean flow energy loss is converted into turbulent energy. 

Multiple scientific sources state that the reduction of mean flow energy is related to the increase 

of turbulent energy. This partly validates the assumption of the ATM. The mean flow can lose 

energy due to wall friction which is not completely converted in turbulence. Thus the assumptions 

that 100% of the mean flow energy loss is converted into turbulent energy is questionable. Using 

the turbulent kinetic energy equation, it was shown that the production of turbulence is exactly 

proportional to the reduction of mean flow energy under a set of assumptions. This means that 

the turbulent kinetic energy equation can confirm with the production term of the ATM. However, 

neglecting the mean flow energy loss due to viscous stresses with the boundaries seems 

questionable. Neglecting the mean flow energy loss due to viscous stresses with the boundaries 

can result in overestimation of the produced turbulence (as was hypothesized in the empirical 

validation, section 7.6).  

No instances in literature were found of modelling dissipation as a relaxation term similar to the 

ATM. The dissipation coefficient of the ATM can confirm with the dissipation coefficient as 

described by the theory of large scale to smaller scale eddy dissipation under the assumptions of 

a variable dissipation coefficient 𝛼. However, in this thesis, it was researched whether setting the 

dissipation coefficient 𝛼 at a constant value will approximate reality sufficiently. This seemed not 

to be the case according to the empirical validation (section 7.6). 

2.What is the accuracy of the ATM turbulence estimations compare to experimental 

measurements of BFS turbulence?  

The empirical validation resulted in a number of observations. First of all, the input data to run the 

ATM is not very certain. Without applying smoothing techniques, the input data contains physically 

impossible measurements (e.g. no conservation of mass, figure 27; sudden increases in mean 

flow energy, figure 35). Moreover, the choice of smoothing technique determines the ATM 

outcome. This made it challenging to objectively asses the empirical validity of the ATM using the 

measured input data. Alternatively, ATM input was calculated using the conservation of 

momentum. This resulted in a bit more confidence in the input data. However, the conservation of 
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momentum does not take into account a number of phenomena (e.g. mean flow energy loss due 

to bottom friction and sediment transport). 

When it was assumed that dissipation of turbulence follows the dissipation coefficient of 

Hoffmans (1993), then the ATM was able to approximate the order of magnitude of the 

turbulence. However, there still exists a notable discrepancy between model and measurement 

(figure 44). This could indicate that downstream of a BFS, turbulence is dissipated at a different 

rate than the dissipation coefficient based on the work of Hoffmans (1993). Calibrating the 

dissipation coefficient using the measured turbulent energy levels made it clear that the ATM has 

general issues modelling the right turbulent energy levels and shapes in its present form (figure 

47). The ATM especially has a hard time modelling both increasing and decreasing turbulent 

energy levels accurately. The ATM was able to approximate the turbulent energy levels up until 

the reattachment point reasonably accurate after calibration (figure 49). 

The inability of the ATM to accurately estimate turbulent energy levels over the whole flume is 

concluded to be the result of inaccurate input data and the current way the ATM calculates 

turbulent energy. The results of the empirical validation and the uncertainty analysis indicate that 

the used input data is not perfect. More accurate experimental data is required to make sure that 

the discrepancies between the experimentally measured and ATM calculated turbulent energy 

levels are the result of the limitations of the ATM, and not the result of measurement errors in the 

input and validation data (in the recommendations section, new experiments are proposed). 

Moreover, in its present form, the dissipation and production terms of the ATM cause an inability 

to accurately model turbulent energy peaks at the right location. This will probably be resolved by 

letting go of the assumption of a constant dissipation coefficient 𝛼 in time and space and 

changing the production term to account for mean flow energy loss not being 100% transformed 

into turbulent energy. 

The fact that turbulence can be produced downstream of the reattachment point due to non-

uniform flow velocity profiles (on top of the turbulence production due to bottom friction) is an 

important finding. This could explain why for the study of Nakagawa and Nezu (1987), turbulence 

is not reduced immediately downstream of the reattachment point. Due to the non-uniformity of 

the flow, more energy is contained in the flow than would be found when assuming uniformity. 

Therefore, the non-uniformity of the flow velocity profile is an important factor to take into account 

when considering mean and turbulent energy in a flow. 

3. How can the ATM be applied in the preliminary design phase?  

At the reattachment point downstream of a BFS the largest turbulence is often found (Nakagawa 

& Nezu, 1987; Xingkui & Fontijn, 1993; Kasagi & Matsunaga, 1995; Hofland,2005). In the 

preliminary design phase, the largest value of turbulence is used in the design of hydraulic 

structures. During the empirical validation of the ATM it was shown that the ATM was able to 

estimate the turbulent energy levels at the reattachment point with reasonable accuracy. 

Therefore it can be beneficial to use the ATM in the preliminary design phase. 

The data requirements of applying the ATM in the preliminary design phase are low. Using the 

water depth and flow velocity on top of the step, the turbulence energy at the reattachment point 

can be calculated. The resulting turbulent energy levels approximate reality within the same order 

of magnitude (underestimation of 5% up to overestimation of 130%; table 11). The ATM is usable 

to estimate the upper limit of turbulence at the reattachment point during the preliminary design 

phase. Using the ATM output results in up to 3 times heavier stones compared to the stone 

weight design based on the experimentally measured turbulence. This is significantly more 
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accurate then applying rules of thumb, which results in stone weights up to 80 times heavier 

(figure 53).Thus the ATM can be a more accurate alternative to using rules of thumb when 

calculating the effect of turbulence on loose rock bed protection. However, these results were 

achieved using experimental data not intended for validating the ATM. Therefore these results 

should be handled with some reserve. More research is required before the ATM can be 

confidently used to accurately design loose rock bed protection in, for example, the final design 

phase of a hydraulic structure. 

Objective  

The goal of this thesis is to test the validity of the ATM for the flow conditions of a wide channel 

with a backward facing step. This thesis concluded that the ATM in its present form is able to 

reasonably accurately estimate the turbulent energy levels up until the reattachment point. It also 

showed how the ATM in its present form can be applied in the preliminary design phase to 

estimate the required stone size for loose rock bed protection. The resulting bed protection 

design using the ATM output is more accurate then applying rules of thumb. In chapter 1 the ATM 

was introduced as a rapid assessment tool that would potentially combine the ease of rules of 

thumb with the more accurate measures of turbulence found using complex turbulence models. 

The results of this thesis indicate that the ATM is not there yet. The ATM has a hard time 

modelling the right shape of the turbulent energy levels. The accuracy of the ATM estimations is 

also bad downstream of the reattachment point. The results of this thesis did show the potential 

of the ATM to become a great assessment tool for turbulence in a flow during the preliminary 

design phase. In order for the ATM to become a more accurate rapid assessment tool, more 

research is required though. 

9.3 Discussion 

A number of issues related to this research are mentioned below. 

Measured turbulent energy levels  

It was shown in this thesis that for the depth averaged mean flow energy levels, the non-

uniformity of the flow will affect the found energy levels. The measured turbulent energy levels 

were also depth averaged. Taking into account the non-uniformity of the measured turbulent 

energy levels might result in increased levels of turbulent energy. If it is assumed that the non-

uniformity coefficient of the turbulent energy can be calculated similar to the non-uniformity 

coefficient of the mean flow energy (𝛼𝐵𝑒𝑟𝑛), than non-uniformity coefficients up to 1.25 are found 

for the measured turbulent energy. This is much smaller than the non-uniformity of the mean flow 

energy, but it might still be significant. It is advised that future research takes the non-uniformity 

of the measured depth averaged turbulent energy into account. 

The flow velocity fluctuations (used to calculate the turbulent energy) were measured using a 

Laser Doppler Anemometer (LDA). This measuring device only has a limited measuring resolution. 

Therefore, the flow velocity fluctuations which manifested itself over a distance smaller than the 

LDA measurement resolution are not measured correctly. This means that the measured 

turbulent energy might be somewhat smaller than the actual turbulent energy in the flow because 

the smallest velocity fluctuations are not taken into account. 

Non-uniformity in z-direction  

In this research, uniformity in z-direction was assumed. Some remarks can be made about this 

assumption. The LDA measured flow velocity fluctuations in the centre of the flume. Moreover, it 

only measured the flow fluctuations in x and y-direction. It is therefore unknown how large and 

uniform the flow velocity fluctuations are in the z-direction. The validity of assuming uniformity in 
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z-direction is therefore unknown. It is unlikely that the flow fluctuations are completely uniform in 

the z-direction because the presence of the wall will result in smaller flow velocity fluctuations 

near the wall. However, turbulence isotropy is often assumed in literature (Nakagawa & Nezu, 

1987; Brodkey, 1995; Wilczek, Stevens, & Meneveau, 2014), thus this assumption was also 

made to approximate the fluctuations in z-direction. 

Equilibrium turbulence  

The equilibrium turbulence levels were calculated using the formula of Hoffmans (1993). The 

calculated equilibrium turbulent energy levels approximated the measured turbulent energy on 

the step closely. However, some remarks should be made. It is unknown for which flow scenario’s 

the formula of Hoffmans (1993) is applicable. No terms are present in the formula that take into 

account slope, discharge, water height, flow velocity, Froude number etc. Therefore, the formula 

should be handled with some reserve in practice. 

Bernoulli equation  

The Bernoulli equation, as presented in this thesis, assumed parallel stream lines. However, as 

shown in chapter 6, at certain sections the head level is calculated while the water depth is 

changing. Changes in water depth result in non-parallel stream lines. Thus, the Bernoulli formula 

might not find the correct mean flow energy values at these locations. However, the change in 

water depth is very small, thus it is assumed that the Bernoulli equation, as applied in this thesis 

approximates reality sufficiently. 

Uncertainty analysis  

In the previous chapters, some remarks were made about the uncertainty in the measured data 

and the ATM output. These uncertainties were estimated based on some remarks in the papers 

and some best guesses because data was lacking for more accurate uncertainty estimations. 

Therefore the uncertainty analyses presented in the appendices should be handled with some 

reserve. A number of possible sources of uncertainty (e.g. uncertainty in the non-uniformity 

coefficients, uncertainty in the hydraulic radius, etc.) were also not taken into account. However, it 

is still believed that the uncertainty analyses give a good idea about how the uncertainties 

affecting the ATM input and output. 

Experimental circumstances  

The ATM was tested using the experimental data from the selected experiments. These 

experiments were not performed with the intention to validate the ATM. Moreover, the 

experiments used to validate the ATM lacked a number of flow situations. All experiments were 

performed without a sloping channel and the experiments only contained subcritical flow. It is 

therefore still unclear how the ATM performs for sloped and/or supercritical flow conditions. 

9.4 Recommendations 

Based on the results of the ATM validation as presented in this thesis, and the experience of 

working with the ATM for over half a year, a detailed recommendation can be given for the 

continuation of this research. 

New experiments  

The results of the of the empirical validation and the uncertainty analyses indicate that the used 

input data is not perfect. New flume experiments are needed to obtain accurate and diverse 

experimental data usable to validate and redesign the ATM. This will make sure that the 

discrepancies between the experimentally measured and ATM calculated turbulent energy values 
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are the result of the limitations of the ATM, instead of measurement errors in the input and 

validation data. The following experimental setup is proposed: 

Experiments in larger flumes are preferred in order to minimize the error in measurements that 

are uncorrelated with scale. The instantaneous flow velocity field and the water depth should be 

measured at as much locations as possible and over a long distance in the flume preferably up 

until the point where the turbulence downstream of the reattachment point has reached a new 

equilibrium. The resulting data will give a good idea how turbulence after a BFS reverts back to an 

equilibrium value (this data was lacking in this thesis). By measuring the instantaneous flow 

velocity field and the water depth at many locations, the change in head levels in the flume can 

be accurately calculated. Special attention should be given to the accuracy of the instantaneous 

flow velocity field and the water depth measurements. Preferably, probability density functions 

(PDF’s) should be created for each measurement location. These PDF’s can then be used to say 

something about the uncertainty in the input (head levels) and output of the ATM. It is advised to 

perform multiple experiments that have different flume bottom roughness’s. This will give a 

clearer picture how turbulent energy levels in BFS flow relate to the bottom roughness. This 

information can then perhaps be used to adjust the ATM production and dissipation terms. This 

thesis showed that the uniformity of the flow velocity profile can affect the turbulence production 

and that the step/water-depth ratio is related to the non-uniformity of the flow velocity profile at 

the reattachment point. It is therefore advised that experiments are performed for varying 

step/water-depth ratios in order to say something about the change in turbulent energy levels by 

varying this ratio. The ATM has only been validated in this thesis for subcritical flow conditions. 

Experiments that include supercritical flow conditions should be performed in order so say 

something about the accuracy of the ATM under these conditions. The above described 

experiments can be used to validate and redesign the ATM. Note that the data resulting from 

these experiments are also very usable in many other studies about turbulence. The time and 

money required to perform these experiments will pay itself back because the resulting dataset 

can be used in turbulence research for many years to come. 

Validate and redesign the ATM  

The ATM can be validated and redesigned when all (or just parts) of the experimental data 

described above are available. It is advised to first run the ATM in its present form using the newly 

required input and validation data. If the ATM output then over or underestimates the turbulent 

energy levels (at least up until the reattachment point), the production term of the ATM should be 

adjusted. If the turbulence dissipation downstream of the reattachment point is too small or too 

large, and/or the maximum turbulent energy level according the ATM is located too far up or 

downstream, then the dissipation term of the ATM should be adjusted. After adjusting the ATM, 

and a good fit is found between the ATM and the measured turbulent energy levels for multiple 

experiments, it is then advised to relate the dissipation and production terms to the flow 

properties of the experiments (e.g. discharge, Reynolds number, bottom roughness, etc.). Finding 

relations between the flow properties and the production and dissipation terms of the ATM will 

pave the way for using the ATM in the preliminary design of hydraulic structures during which little 

measurement data is available. 

Finally, the ATM could also be validated for flow situations other than BFS flow, in order to make 

the ATM more generally applicable.  
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Appendix A: Bottom protection alternatives 

Loose rock bed protection  

Loose rock bed protection is one of the most applied and simple to construct methods of bed 

protection. Bed protection using loose rock is very easy to realize and the equipment necessary to 

place the rocks in the river bed are available almost everywhere. Loose rock bed protection will 

need a filter gradient to reduce winnowing of the underlying sediment (Schiereck, 2004). 

 
Appendix figure 1  Loose rock which can function as bed protection (Stenen, 2015) 

 

Fascine mattress  

Fascine mattress are traditionally used in the Netherlands as part of a bottom protection. Fascine 

mattress are made out of willow faggots but they can be made from any vegetation that is flexible 

and strong enough. When the fascine mattresses continuously stay under water during their 

lifetime, they can last up to a hundred years before needing replacement. Winnowing of the 

sediment underneath the mattresses is reduced by placing a reed mat or geotextile under the 

mattress. (Schiereck, 2004). Often, fascine mattresses are applied in combination with loose rock 

bed protection and geotextile for a robust protection of the bottom. 

 

Appendix figure 2 Fascine mattress with a reed mat underneath. Loose rock is put on top the mattress 

(Griendhouthandel, 2015) 
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Placed blocks and asphalt  

Water beds can also be protected by placed blocks or asphalt. Placed blocks are large size 

boulders that are placed tightly against each other with smaller gravel and sand in between to 

keep them in place. This configuration can yield very good protection, provided the elements are 

placed with skill and care (Schiereck, 2004). Water beds under large hydraulic loads can be 

protected from scour by using asphalt. Constructing asphalt scour protection requires special 

equipment and regular inspection for damage is necessary, but a well-designed, constructed and 

maintained asphalt bed protection is very strong and reliable (Schiereck, 2004). Asphalt bed 

protection is used beside the large placed concrete blocks directly downstream of the 

Oosterschelde storm surge barrier. 

 
Appendix figure 3 Placed blocks (basalton) bed protection (Rijkswaterstaat, 2015) 

 

Composite mattresses  

Composite mattresses govern some alternative bed protection designs not discussed above. 

When large areas have to be protected or other factors cause the regular bed protection methods 

to be inadequate, alternative bed protections are designed. Examples are compositions of 

concrete block mats, geotextile and steel slags (Van Noortwijk & Klatter, 1999), or a combination 

of a geometrically closed filters and geotextiles that ascertained lifespan of the bed protection 

larger than the lifespan of geotextiles alone, in combination with the easy of construction of 

geotextiles (Schiereck, 2004). 

 

Appendix figure 4  A combination of a geometrically closed filters and geotextiles (Schiereck, 2004, p. 280). 
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Appendix B: Forces acting on granular bed protection 

The hydraulic load on a grain in general and the forces due to turbulent flow on a grain in 

particular are discussed here. Looking at the horizontal force, vertical force and moment 

equilibrium of a single grain in turbulent flow is also called the Izbash approach (Schiereck, 

2004). This approach, along with additions found in more recent studies are discussed below. 

Mobilizing forces on a grain 

 
Appendix figure 5 forces on single grain, based on Schiereck (2004) 

 

The primary mobilizing forces on a grain under turbulent flow are the drag force 𝐹𝑑, the shear 

force 𝐹𝑠 and the lift force 𝐹𝑙 (Schiereck, 2004; Hofland, 2005; Hoan, 2008; Steenstra, 2014). The 

shear force 𝐹𝑠 is the force acting on the grain as a result of friction (due to speed difference) 

between the flow and the grain. The grain experiences a shear stress due to water flowing over 

the grain. Viscous stresses are the primary driving horizontal force when particle Reynolds 

number 𝑅𝑒∗ is smaller than 3.5 (Hofland, 2005; Hoan, 2008). For Reynolds number larger than 

3.5, the laminar flow separates from the particle and a small wake occurs behind the top of the 

grain. Because of the lower pressure in the wake of the particle compared to the pressure in front 

of the particle, a net force is observed, 𝐹𝑑. At higher Reynolds numbers {𝑅𝑒∗ > 500 (Hoan, 2008) 

or 𝑅𝑒∗ > 1000 (Hofland, 2005)} viscous stresses becomes negligible and the horizontal force on 

the particle is dominated by the drag force. The shear and drag forces are respectively given by: 

 
𝐹𝑠 =

1

2
𝐶𝑠𝜌𝑤�̃�|�̃�|𝐴𝑠 (B.1) 

 
𝐹𝑑 =

1

2
𝐶𝑑𝜌𝑤�̃�|�̃�|𝐴𝑑  (B.2) 

Where 𝐶𝑠 and 𝐶𝑑 are shear and drag coefficients (-), 𝜌𝑤 the density of water (kg/m3), �̃� the 

instantaneous flow velocity near the grain, and 𝐴𝑠 and 𝐴𝑑 the area of the grain affected by shear 

and drag forces respectively (𝐴𝑠 parallel to flow direction, 𝐴𝑑 perpendicular to flow direction). The 

area 𝐴𝑠,𝑑 can be the entire projected area or the exposed part of it (Hofland, 2005). The shear 

and drag coefficients are dependent on the particle Reynolds number, but for large Reynolds 

numbers the coefficient are almost constant (Hofland, 2005). 

The lift force 𝐹𝑙 is the result of the increased flow velocity above the grain relative to the flow 

velocity underneath the grain. The Bernoulli law states that an increase in flow velocity equals a 

reduction of pressure. This results in a lower pressure working on top of the particle compared to 

the bottom of the particle, thus a net lift force. Hofland (2005), simplified the formula of Auton 
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(1987) for the lift force on a sphere in inviscid, rotational flow. This transformation resulted in the 

following familiar equation: 

 
𝐹𝑙 =

1

2
𝐶𝑙𝜌𝑤�̃�

2𝐴𝑙 (B.3) 

Where 𝐶𝑙 is the lift coefficients (-), and 𝐴𝑙 the area of the particle affected by the lift force (parallel 

to the flow direction). 𝐴𝑙 can be the plan area of the stone or a representative area around the 

protruding stone (Hofland, 2005). Different definitions of 𝐴𝑙 result in different lift coefficents 𝐶𝑙. 

“A negative 𝑣 (flow velocity in negative 𝑦 direction, see figure 13) directly creates larger drag 

forces. It can be conceived as that a downward directed flow increases the exposed area of the 

stone, and hence increases the drag force (…) downward directed flow creates negative 

(stabilising) lift forces” (Hofland, 2005, p. 85-86). So the drag force is also affected by the vertical 

flow velocity. However, Hofland (2005) does not propose an adjusted drag formula incorporating 

this. 

Stabilizing forces on a grain  

The force 𝑊 equals the gravitational force of the particle (Schiereck, 2004). Because the particle 

is submerged, the relative weight is used: 

 
𝑊 = 𝑉(𝜌𝑟 − 𝜌𝑤)𝑔 (B.4) 

Where 𝑊 equals the gravitational force (N), 𝑉 equals the volume of the particle (m3), 𝜌𝑟 equals 

the density of the particle (kg/m3) and 𝑔 equals the gravitational constant (m/s2). 

𝐹𝑓 equals the friction force working on the particle due to friction with the underlying particles. 𝐹𝑓 

is a balancing force that counters the mobilizing forces (Schiereck, 2004). The gravitational force 

𝑊 and friction force 𝐹𝑓 are also shown in appendix figure 5. 

Determining the flow velocity affecting the grain  

The mobilizing forces 𝐹𝑠 𝐹𝑑 and 𝐹𝑙 are all a function of the flow velocity squared. However, due to 

the assumption of zero flow velocity at the surface of the grain, it is unclear which flow velocity is 

used to calculate the forces. The flow velocity near the bed has a large vertical gradient making 

the coefficients of the shear, drag and lift forces very sensitive to the choice of the y-coordinate 

(Hofland, 2005). The coefficients depend on the flow pattern around the bed particle and the 

method of estimating �̃� (Hoan, 2008). Several different methods of estimating �̃� have been used. 

Einstein and El-Samni (1949) determined the lift coefficients by measuring the flow velocity at 

0.35 grain diameters above the theoretical wall. Coleman (1972) measured the flow velocity �̃� at 

the centre of the grain (sphere), but noted that: “This definition is slightly in error for a sphere on 

a boundary, because in this case the skin friction forces which make up part of the total drag are 

not symmetrically distributed over the sphere” (Coleman, 1972, p. 17). Patnaik, Pande, and Vittal 

(1992) also calculated �̃� at the centre of the particle and furthermore concluded that: “… among 

the various reference velocities adopted by different investigators in the past, the velocity at the 

centre level of the sphere (…) appears more suitable” (Patnaik, Pande, & Vittal, 1992, p. 401). 
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Force and moment balance 

 
Appendix figure 6, forces and moments on single grain, based on Schiereck (2004) 𝒂𝒅, 𝒂𝒘, 𝒂𝒔and 𝒂𝒍 are the distances 

to the rotation point of the similarly named forces 

 

For a grain to remain stationary on the bed, the net forces and moments of the grain should be 

zero. The horizontal shear and drag forces will be cancelled by the horizontal friction force when 

the grain is stationary. The lift force will be cancelled out by the gravitation force and the vertical 

components of the friction force. The shear and drag forces can also have an vertical component 

that are cancelled by the gravitational force and friction force, assuming the vertical component 

of the shear and drag force is directed to the water surface. Appendix figure 6 also shows the 

rotation point 𝐴 of the grain. The mobilizing forces are expected to generate a clockwise moment. 

This moment is balanced by the gravitational force generating a counter-clockwise moment. In 

formula notation above is given by (assuming no vertical components for the drag and shear 

forces): 

 ∑𝐻 = 0:  𝐹𝑠,𝑑 = 𝐹𝑓

∑𝑉 = 0: 𝐹𝑙 = 𝑊

∑𝑀 = 0 : 𝐹𝑠,𝑑,𝑙 × 𝑎𝑠,𝑑,𝑙 = 𝑊 × 𝑎𝑤}
 
 

 
 

𝜌𝑤�̃�𝑐
2𝑑2 ∝ (𝜌𝑟 − 𝜌𝑤)𝑔𝑑

3 (B.5) 

Where 𝑎𝑠,𝑑,𝑙,𝑤 equals the distance perpendicular to the force towards the rotation point (m), 𝑑 the 

characteristic grain diameter (m) and �̃�𝑐 equals the instantaneous flow velocity for which 𝑓𝑙 = 𝑊 

(m/s). Equation B.5 based on Schiereck (2004, p. 49). 

Equation B.5 states that for a grain that is just stationary, the critical flow velocity is proportional 

to: 

 
𝑢𝑐 ∝ (𝜌𝑟 − 𝜌𝑤)𝑔𝑑 (B.6) 

All formulae on grain stability contain some form of to this proportionality (Schiereck, 2004). 

Variable flow velocity due to turbulence  

The formulas for the shear, drag and lift forces use the velocity measured at a certain location 

above the grain. In turbulent flow, the fluctuation of the flow velocity near the bed can have the 

same order of magnitude as the average flow velocity (Hofland, 2005). The flow velocity near the 

bed can be characterized as containing a mean and a fluctuating part as defined in the main text. 

The formulae for shear, drag and lift can be adjusted to incorporate a mean flow, and the 

deviations from this mean flow. The total mobilizing forces on a grain are than given by: 
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𝐹𝑠,𝑑,𝑙 = �̅�𝑠,𝑑,𝑙 + �́�𝑠,𝑑,𝑙 (B.7) 

Where �̅�𝑠,𝑑,𝑙 equals the forces as the result of the mean flow (N), and �́�𝑠,𝑑,𝑙 the forces as the result 

of the instantaneous velocity fluctuations. Hofland (2005) defined the drag force 𝐹�́� as the result 

of the fluctuating velocity profile: 

 
�́�𝑑 ∝ �̅��́� +

1

2
�́�2 −

1

2
𝜎(�̃�)2  (B.8) 

With �̃� the total instant flow velocity (m/s), 𝜎 the standard deviation, �̅� the time average flow 

velocity (to average out turbulent fluctuations) (m/s) and �́� the fluctuating flow velocity (m/s). 

The lift force 𝐹𝑙́  can be written similarly according to Steenstra (2014): 

 
𝐹𝑙́ ∝ �̅��́� +

1

2
�́�2 −

1

2
𝜎(�̃�)2  (B.9) 

Radecke & Schulz-DuBois (1988) as referenced by Hofland (2005) and Hoan (2008) defined a 

different formula for the fluctuating part of the lift force: 

 
𝐹𝑙́ ∝ 𝑎�̅��́� + 𝑏�̅��́�  (B.10) 

Where �́� equals the deviations of the mean flow in vertical direction (m/s), �́� equals the 

deviations of the mean flow in horizontal direction (m/s), and 𝑎 and 𝑏 are factors for coefficients. 

The first term originates from the linear expansion of equation B.3 using equation 3.1 and 

neglecting the higher order terms. “The second term is due to the fact that the instantaneous flow 

direction does not have to be horizontal like the mean flow. Therefore, the instantaneous force in 

line with the velocity can have a vertical component” (Hofland, 2005, p. 22). 

From formula B.8 and B.9 it follows that the fluctuating part of the flow velocity can exert a 

mobilizing force in the same order of magnitude as the time averaged flow velocity. The 

fluctuation part of the flow velocity is therefore important to consider when studying particle 

mobilization. The forces 𝐹�́� and 𝐹𝑙́  are also called the quasi steady forces (Hofland, 2005; Hoan, 

2008; Steenstra, 2014). 

Accelerating flow  

Beside flow velocity, the acceleration of flow also exerts a net force on a particle due to pressure 

differences, see Appendix figure 7. 

 
Appendix figure 7, Flow acceleration over a single grain, (based on Dessens, 2004) 

 

Due to an increase in flow velocity over the particle, the pressure at the end of the particle is 
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lower than the pressure at the beginning, resulting in a net force in the flow direction. The 

combination of the drag force 𝐹𝑑 on the particle and the force exerted on the particle due to flow 

acceleration is often called the Morison equation (Steenstra, 2014). Dessens (2004) rewrote the 

formula of Morison, Johnson, and Schaaf (1950) in a more general form, the flow acceleration 

force in this general form equalled:  

 
𝐹𝑎 = 𝐶𝑚𝜌𝑤�̅�

𝑑�̅�

𝑑𝑥
 (B.11) 

Where 𝐶𝑚 equals the coefficient that accounts for the effects of flow acceleration. 

It is important to note that turbulence intensities and the Reynolds stress decrease in 

accelerating flow and increase in decelerating flow, when compared with those in uniform flow 

(Song & Chiew, 2001). As was already mentioned by Steenstra (2014), an accelerating flow will 

therefore be accompanied by a reduced fluctuating drag and lift force. Vice versa, a decelerating 

flow (which results in an increased turbulence intensity) will be accompanied by an “acceleration” 

force 𝐹𝑎that is directed in the opposite direction of the drag force 𝐹𝑑, effectively reducing the net 

drag force. This means that flow acceleration as a mobilizing force is always accompanied by a 

decrease in the turbulence mobilizing forces and flow deceleration as a stabilizing force is always 

accompanied by an increase in the turbulence mobilizing forces. Huijsmans (2006) measured 

stone stability under accelerating flow and found results indicating that under certain conditions, 

flow acceleration actually resulted in a more stable bed (possibly due to a decrease in 

turbulence). 

Turbulence wall pressure  

Beside the steady forces due to mean flow and the quasi steady forces due to fluctuating flow, a 

third force generating mechanism is affecting a grain under turbulent flow, the turbulence wall 

pressures (Hofland, 2005). Within the boundary layer, flow over either rough or smooth walls is 

turbulent when the flow outside of the boundary layer is turbulent (Blake, 1970; Kim, Kline, & 

Reynolds, 1971). Turbulent flow can be described in terms of individual events or streamline 

patterns, for example by defining turbulence as a large set of vortices (Hunt, Wray, & Moin, 1988). 

Generation of wall pressure fluctuations is associated with the streamwise vortices in the vicinity 

of the wall (Kim, Choi, & Sung, 2002). The temporal changes in flow speeds as a result of 

turbulent vortices change the pressure on the wall following Bernoulli’s law. Turbulence wall 

pressure fluctuations, when integrated over a stone, will result in net forces on the stone 

(Hofland, 2005).  

 
Appendix figure 8, Change of the integrated force on a stone due to a convected frozen pressure field (Hofland, 2005, 

p. 101) 
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The figure above shows the resulting net force on a particle as a vortex moves over the particle. A 

vortex is transported along with the average flow direction, causing the vortex to influence a 

particle according to the 8 steps shown above. The force vector covers all directions, including the 

direction where it generates the largest moment around the rotation point of the stone (Hofland, 

2005). Thus, the turbulence wall pressure theoretically has the ability to act as a mobilizing force. 

For an explanation of how vortices result in an extra drag and lift force on the particle, refer to 

Hofland (2005, p. 94-100). Hofland (2005) found that the turbulence wall pressure becomes 

more important for particles that are only little exposed to flows but where the flow is highly 

turbulent, whereas the quasi steady forces discussed above are more important for more 

exposed particles. 

Dominant forces for the initiation of granular scour  

The mobilizing forces described above can all initiate granular scour. However, the relative size of 

the mobilizing forces described above differ. At higher Reynolds numbers {𝑅𝑒∗ > 500 (Hoan, 

2008) or 𝑅𝑒∗ > 1000 (Hofland, 2005)} viscous stresses becomes negligible (Burden, 2008) and 

the horizontal force on the particle is dominated by the drag force. Thus the shear force is not 

relevant for the initiation of granular material under high Reynolds numbers but the drag force is. 

The lift force showed similar magnitudes as the drag force according to Hofland (2005) but the lift 

force can become negative under certain flow conditions. This results in larger drag forces but 

also a stabilizing lift force. It is concluded that the lift and drag force are important forces to 

consider in granular scour, but the effects of the lift forces are less straight forward than the drag 

forces. 

In turbulent flow, the fluctuation of the flow velocity near the bed can have the same order of 

magnitude as the average flow velocity (Hofland, 2005). Therefore, the fluctuating components of 

the drag and lift forces are relevant forces when considering the initiation of granular scour. 

The extra force due to acceleration appears to be of the same order as the force due to the flow 

velocity. Therefore, when looking at the stone stability in an accelerated flow, it is important to 

take the force generated by the acceleration into account (Dessens, 2004). 

Hofland (2005) found that the turbulence wall pressure becomes more important for particles 

that are only little exposed to flows but where the flow is highly turbulent, whereas the quasi 

steady forces are more important for more exposed particles. Exposed grains are most likely to 

initiate movement due to a larger area 𝐴𝑑,𝑙 on which the drag and lift forces work. Therefore, for 

the initiation of granular scour, turbulence wall pressure is less relevant to consider because it is 

only important for particles that are only little exposed to flows, whereas the first grains to start 

moving are the most exposed ones. 
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Appendix C: The adjusted Shields parameter leading to bed protection 

design 

To assess the stability of loose rock as bed protection, the Shields parameter (Shields, 1936) is 

most often used. The Shields parameter is defined as the ratio between shear stress and the 

submerged weight and characteristic sieve size of the sediment (The Rock Manual, 2007). 

 
Ψ =

𝜏

(𝜌𝑟 − 𝜌𝑤)𝑔𝐷
 (C.1) 

Where Ψ is the Shields parameter (-), 𝜏 the bed shear stress (N/m2), 𝜌𝑟 and 𝜌𝑤 the density of the 

stone and water respectively (kg/m3), g the gravitational constant (m/s2), and 𝐷 the characteristic 

sieve size of the sediment (m).  

The Shields parameter is based on a simplification of reality. Critical phenomena effecting loose 

rock transport that are not taken into account are: a changing depth or velocity profile, turbulence 

amplification, wave amplification, non-horizontal bed slope (The Rock Manual, 2007), flow 

acceleration, dynamic drag, and lift forces (Hofland, 2005). Multiple factors were developed to 

adjust the Shields parameter to take into account some of the above mentioned phenomena. A 

factor was introduced to incorporate the effects of waves on the mobility of stones based on the 

work of Bijker (1967). A factor was introduced to incorporate a sloping bed reducing the 

stabilizing forces of gravity on the bed protection, based on the work of Soulsby (1997). A factor 

was introduced to incorporate effects of turbulent flow on the mobility of bed protection. Also, a 

factor was introduced to incorporate effects of depth velocity profiles on the mobility of bed 

protection (The Rock Manual, 2007). This resulted in the following formula including all 

adjustment factors discussed above: 

 �̿�2/2𝑔

Δ𝐷
= 𝑘𝑠𝑙𝑘𝑡

−2𝑘𝑤
−1ΛℎΨ𝑐𝑟 (C.2) 

Where �̿� equals the depth and time averaged flow velocity (m/s), g the gravitational constant 

(m/s2), Δ the relative buoyancy 
𝜌𝑟−𝜌𝑤

𝜌𝑤
 (-), 𝐷 the characteristic sieve size of the sediment (m), 𝑘𝑠𝑙 

the slope reduction factor (-), 𝑘𝑡 the turbulence amplification factor (-), 𝑘𝑤 the wave amplification 

factor, Λℎ the depth of velocity profile factor (-), and Ψ𝑐𝑟 the critical Shield parameter (-) (The Rock 

Manual, 2007). 

Equation C.2 has been used as the basis for stability formulae to help design granular bed 

protection, see for example Pilarczyk (1995) or Maynord, (1995). A number of adjusted critical 

Shields formulae have been suggested by various authors, most of them only suitable for the 

design of loose rock bed protection, and they tend to give quite different results in terms of 

required stone size (The Rock Manual, 2007). As an example, the design formula of Pilarczyk 

(1995) is discussed, which has been used extensively for the design of bed protection under 

current attack (The Rock Manual, 2007). Pilarczyk (1995) defined the following formula: 

 
𝐷 =

𝜙𝑠𝑐
Δ

0.035

Ψ𝑐𝑟
𝑘ℎ𝑘𝑠𝑙

−1𝑘𝑡
2 �̿�

2

2𝑔
 (C.3) 

Where D equals the characteristic size of the protection element (m), 𝐷 = 𝐷50 for armourstone, 

𝜙𝑠𝑐 equals a stability factor (-), and �̿� equals the depth and time averaged flow velocity. 

Pilarczyk (1995) uses the following formula to determine 𝑘𝑡 
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𝑘𝑡 =

1 + 3𝑟

1.3
 (C.4) 

Where 𝑟 equals the relative turbulence intensity (-). 

The Rock Manual (2007) advises 𝑘𝑡
2 = 1 for normal turbulence, 𝑘𝑡

2 = 2 for sharp outer bends, 

and 𝑘𝑡
2 > 2 for the additional turbulence as the result of propeller jet velocities. When assuming 

that all other factors remain the same, than the effect of the different turbulence levels can easily 

be found using equation C.3. For a flow situation with an sudden increase in turbulence (and 

ceteris paribus) the required stone diameter is increased by 100%. An increase of 100% in stone 

diameter results in an increase of 800% in required stone mass (mass ∝ diameter3). 
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Appendix D: Differentiating the Bernoulli formula 

The Bernoulli formula is given by: 

𝐻 = 𝑧 + ℎ +
1

2

�̿�2

𝑔
 

Differentiating in the flow direction gives 

𝑑𝐻

𝑑𝑥
=
𝑑𝑧

𝑑𝑥
+
𝑑ℎ

𝑑𝑥
+
𝑑

𝑑𝑥
(
1

2

�̿�2

𝑔
) 

Assume �̿�2 = 𝐽, then by applying the chain rule: 

𝑑

𝑑𝑥
(
1

2

�̿�2

𝑔
) =

1

2𝑔

𝑑

𝑑𝑥
(𝐽) 

1

2𝑔

𝑑

𝑑𝑥
(𝐽) =

1

2𝑔

𝑑𝐽

𝑑�̿�

𝑑�̿�

𝑑𝑥
 

𝑑𝐽

𝑑�̿�
=
𝑑�̿�2

𝑑�̿�
= 2�̿� 

Which gives: 

𝑑𝐻

𝑑𝑥
=
𝑑𝑧

𝑑𝑥
+
𝑑ℎ

𝑑𝑥
+
1

𝑔
�̿�
𝑑�̿�

𝑑𝑥
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Appendix E: Calculating the momentum just downstream the step 

In this appendix, a method will be described how the momentum at an infinitesimal distance 

downstream of a BFS can be approximated. 

The formula for momentum in a (horizontal) flow is given by (Battjes, 1990): 

𝑀 =
1

2
𝜌𝑤𝑔ℎ

2 + 𝜌𝑤𝛽ℎ�̿�
2 

Where 𝑀 equals the momentum (N/m), 𝜌𝑤 equals the density of water (kg/m3), 𝑔 the 

gravitational constant (m/s2), �̿� equals the depth and time averaged flow velocity (m/s) and 𝛽 a 

coefficient that corrects the momentum for non-uniformity of the flow profile (-). 

The 𝛽 coefficient for a 2 dimensional flow (neglecting variations in the width) is given by: 

𝛽 =
1

ℎ
∫ (�̅�/�̿�)2
ℎ

0

𝑑𝑦 

Where ℎ equals the water depth (m), �̅� the (time averaged) flow velocity (m/s) at a certain depth 

𝑦, �̿� the time and depth averaged flow velocity (m/s), and 𝑦 the distance from the bottom of the 

flume (m). 

Assume water flowing over a BFS as depicted by appendix figure 9. Because of the log-law flow 

velocity profile of �̅�1 (on top of the step), �̿�1 ≈ �̅�1(at any depth) and therefore 𝛽 ≈ 1 (on top of the 

step). Just downstream of the step, the flow velocity profile above the step has not yet adjusted to 

the increased water depth. It is hypothesized that just downstream of the step, the flow profile �̅� 

remain intact (and equal to �̅�1) for the water flowing above (but downstream of) the step (step 

part of the cross section). The water in the recirculation zone just downstream of the step is 

affected by the presence of the walls. Therefore, in practice it is often assumed that very close the 

step, the water is standing still in the recirculation zone, thus �̅�1 ≈ 0 in the recirculation zone part 

of the cross section. 

 
 

Appendix figure 9 Velocity profile at an infinitely small distance downstream of the step 

 

For the flow situation described above, the momentum at the (red) cross section can be 
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calculated. First, the 𝛽 coefficient needs to be determined for the cross section. The flow velocity 

field at the cross section in appendix figure 9 is defined mathematically as: 

�̅�𝑐 = {
0, 𝑦 < ℎ𝑠𝑡𝑒𝑝
�̿�1, 𝑦 ≥ ℎ𝑠𝑡𝑒𝑝

 

Where �̅�𝑐 is the time averaged flow velocity (m/s) (at the cross section) at a certain depth 𝑦, with 

𝑦 = 0 at the bottom of the flume, 𝑦 = ℎ2 at the water surface (m). The term �̿�1 is the depth and 

time averaged flow velocity on top of the step (m/s). The depth and time averaged profile is used 

because it is assumed that the flow velocity on top of the step is roughly uniform, thus �̿�1 ≈ �̅�1. 

The depth and time averaged value for �̅�𝑐 then equals: 

�̿�𝑐 =
(ℎ𝑠𝑡𝑒𝑝 − 0) × 0 + (ℎ2 − ℎ𝑠𝑡𝑒𝑝) × �̿�1

ℎ2
= (1 −

ℎ𝑠𝑡𝑒𝑝
ℎ2

) × �̿�1 

The formula for the 𝛽 coefficient is given by: 

𝛽 =
1

ℎ2
∫ (�̅�/�̿�)2
ℎ2

0

𝑑𝑦 

Filling in �̿�𝑐 and �̅�𝑐 gives: 

𝛽 =
1

ℎ2
∫ (�̅�𝑐/�̿�𝑐)

2
ℎ2

0

𝑑𝑦 

First solve �̅�𝑐/�̿�𝑐: 

�̅�𝑐/�̿�𝑐 =

{
 

 
0, 𝑦 < ℎ𝑠𝑡𝑒𝑝

�̅�𝑐

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

) × �̿�1

, 𝑦 ≥ ℎ𝑠𝑡𝑒𝑝 

�̅�𝑐 = �̿�1 for 𝑦 ≥ ℎ𝑠𝑡𝑒𝑝thus: 

�̅�𝑐/�̿�𝑐 =

{
 

 
0, 𝑦 < ℎ𝑠𝑡𝑒𝑝

1

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

, 𝑦 ≥ ℎ𝑠𝑡𝑒𝑝 

Squared gives: 

(�̅�𝑐/�̿�𝑐)
2 =

{
 
 

 
 0, 𝑦 < ℎ𝑠𝑡𝑒𝑝

1

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)
2 , 𝑦 ≥ ℎ𝑠𝑡𝑒𝑝 

Filling above formula into the equation for 𝛽 gives: 

𝛽 =
1

ℎ2
(∫ (�̅�𝑐/�̿�𝑐)

2
ℎ𝑠𝑡𝑒𝑝

0

𝑑𝑦 + ∫ (�̅�𝑐/�̿�𝑐)
2

ℎ2

ℎ𝑠𝑡𝑒𝑝

𝑑𝑦) 
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𝛽 =
1

ℎ2

(

 
 
[0]0

ℎ𝑠𝑡𝑒𝑝 +

[
 
 
 
 

𝑦

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)
2

]
 
 
 
 

ℎ𝑠𝑡𝑒𝑝

ℎ2

)

 
 

 

𝛽 =
1

ℎ2

(

 
 
0+

ℎ2 − ℎ𝑠𝑡𝑒𝑝

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)
2

)

 
 

 

𝛽 =

ℎ2 − ℎ𝑠𝑡𝑒𝑝
ℎ2

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)
2  

𝛽 =
(1 −

ℎ𝑠𝑡𝑒𝑝
ℎ2

)

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)
2 

𝛽 =
1

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

 

The 𝛽 coefficient is now inserted into the formula of momentum in a flow: 

𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤𝛽ℎ2�̿�𝑐
2
 

𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤
1

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

ℎ2�̿�𝑐
2
 

The term �̿�𝑐 was defined as: 

�̿�𝑐 = (1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

) × �̿�1 

Thus: 

𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤ℎ2
1

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

((1 −
ℎ𝑠𝑡𝑒𝑝

ℎ2
) × �̿�1)

2

 

𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤ℎ2

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

)

(1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

) × �̿�1
2
 

𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤ℎ2 (1 −
ℎ𝑠𝑡𝑒𝑝
ℎ2

) × �̿�1
2
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𝑀 =
1

2
𝜌𝑤𝑔ℎ2

2 + 𝜌𝑤(ℎ2 − ℎ𝑠𝑡𝑒𝑝) × �̿�1
2
 

Or in words, the momentum just downstream of the step is defined by a hydrostatic part 
1

2
𝜌𝑤𝑔ℎ2

2
 

that acts over the whole water depth ℎ2 and a kinetic part 𝜌𝑤(ℎ2 − ℎ𝑠𝑡𝑒𝑝) × �̿�1
2
 that is only 

present in the upper water column (ℎ2 − ℎ𝑠𝑡𝑒𝑝 see appendix figure 9). 
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Appendix F: Calculate the water depth using the conservation of 

momentum 

Assume that the momentum of a flow at location 1, 𝑀1 is known. For a location 2, down or 

upstream of location 2, the momentum is then given by: 

𝑀2 =
1

2
𝜌𝑤𝑔(ℎ2)

2 + 𝜌𝑤ℎ2�̿�2
2
 

The conservation of mass is given by: 

𝑞 = �̿�1 × ℎ1 = �̿�2 × ℎ2 

If the momentum is preserved than: 

𝑀1 = 𝑀2 

This gives: 

𝑀1 −
1

2
𝜌𝑤𝑔(ℎ2)

2 − 𝜌𝑤ℎ2�̿�2
2
= 0 

𝑀1 −
1

2
𝜌𝑤𝑔(ℎ2)

2 = 𝜌𝑤ℎ2�̿�2
2
 

𝑀1 −
1
2𝜌𝑤𝑔

(ℎ2)
2

𝜌𝑤�̿�2
2 = ℎ2 

Inserting conservation of mass: 

𝑀1 −
1
2𝜌𝑤𝑔

(ℎ2)
2

𝜌𝑤
𝑞2

ℎ2
2

= ℎ2 

Above formula can be solved analytically, or using a program like Mathcad or Matlab. The solution 

is not depicted here because of its complexity. 
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Appendix G: Finding an analytical solution for the Arcadis Turbulence Model 

The ATM is used with the assumption of a constant turbulent energy production term: 

𝑑�̅�

𝑑𝑥
= −𝑔𝐷  − 𝛼

�̅�

𝑅
 

Because the ATM is a nonhomogeneous differential equation, the homogenous and particular 

part are solved separately. 

The homogeneous part 

𝑑�̅�

𝑑𝑥
= −𝛼

�̅�

𝑅
 

1

�̅�
𝑑�̅� =

−𝛼

𝑅
𝑑𝑥 

ln �̅� =
−𝛼

𝑅
𝑥 + 𝑇 

Where 𝑇 equals an integration constant. 

�̅� = 𝑒
−𝛼
𝑅
𝑥+𝑇

 

�̅� = 𝑒𝑇𝑒
−𝛼
𝑅
𝑥
 

�̅� = 𝐴𝑒−
𝛼
𝑅
𝑥
 

Where 𝐴 is the rewritten integration constant 𝐴 = 𝑒𝑇 

Particular part 

Trial solution: 

�̅�(𝑝𝑎𝑟𝑡) = 𝐵 

Gives: 

𝐵

𝑑𝑥
= −𝑔𝐷  − 𝛼

𝐵

𝑅
 

0 = −𝑔𝐷 −  𝛼
𝐵

𝑅
 

𝑔𝐷 = −
𝛼

𝑅
𝐵 

−
𝑔𝐷𝑅

𝛼
= 𝐵 

Total solution 

Combining the homogeneous and particular solution gives: 
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�̅� = 𝐴𝑒−
𝛼
𝑅
𝑥 −

𝑔𝐷𝑅

𝛼
 

The integration constant 𝐴 can be solved by assuming an initial value for 𝑘 

Assume that 𝑘(0) = �̅�0 then: 

�̅�0 = 𝐴𝑒
−
𝛼
𝑅
0 −

𝑔𝐷𝑅

𝛼
 

�̅�0 = 𝐴 −
𝑔𝐷𝑅

𝛼
 

�̅�0 +
𝑔𝐷𝑅

𝛼
= 𝐴 

Thus the total solution is given by: 

�̅� = (�̅�0 +
𝑔𝐷𝑅

𝛼
)𝑒−

𝛼
𝑅
𝑥 −

𝑔𝐷𝑅

𝛼
 

Following are some checks to make sure the solution is correct: 

Filling in 𝑥 = 0 gives: 

�̅� = (�̅�0 +
𝑔𝐷𝑅

𝛼
)𝑒−

𝛼
𝑅
0 −

𝑔𝐷𝑅

𝛼
 

�̅� = (�̅�0 +
𝑔𝐷𝑅

𝛼
)1 −

𝑔𝐷𝑅

𝛼
 

�̅� = 𝑘0 

Differentiating �̅� gives: 

𝑑�̅�

𝑑𝑥
=
𝑑

𝑑𝑥
(�̅�0 +

𝑔𝐷𝑅

𝛼
)𝑒−

𝛼
𝑅
𝑥 −

𝑑

𝑑𝑥

𝑔𝐷𝑅

𝛼
  

𝑑�̅�

𝑑𝑥
= −

𝛼

𝑅
(�̅�0 +

𝑔𝐷𝑅

𝛼
)𝑒−

𝛼
𝑅
𝑥  

−
𝑅

𝛼

𝑑�̅�

𝑑𝑥
−
𝑔𝐷𝑅

𝛼
= (�̅�0 +

𝑔𝐷𝑅

𝛼
)𝑒−

𝛼
𝑅
𝑥 − 

𝑔𝐷𝑅

𝛼
 

−
𝑅

𝛼

𝑑�̅�

𝑑𝑥
= 𝑘 +

𝑔𝐷𝑅

𝛼
 

𝑑�̅�

𝑑𝑥
= −

𝛼

𝑅

𝑔𝐷𝑅

𝛼
−
𝛼

𝑅
�̅� 

𝑑�̅�

𝑑𝑥
= −𝑔𝐷 −

𝛼

𝑅
�̅� 

Thus a correct solution was found  
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Appendix H: Reducing the Arcadis Turbulence Model to the model of 

Hoffmans 

The ATM is given by: 

𝑑�̅�
𝑑𝑥

=  −𝑔
𝑑𝐻
𝑑𝑥
 − 𝛼

�̅�
𝑅

 
 

Under stationary uniform turbulent flow with a gradual sloping bed turbulence reaches an 

equilibrium where it does not change as a function of the distance anymore. Due to the 

turbulence flowing into the study area 𝑘 > 0. This gives: 

−𝑔
𝑑𝐻

𝑑𝑥
= 𝛼

�̅�

𝑅
 

Under stationary uniform flow under a slope, the change in head levels equals the bottom friction 

due to Chezy: 

−𝑔
𝑑𝐻

𝑑𝑥
= 𝑔

�̿�2

𝐶2 
 

Thus: 

𝑔
�̿�2

𝐶2 
= 𝛼�̅� 

�̅� =
1

𝛼

𝑔

𝐶2 
�̿�2 

 

Turbulence intensity is given by: 

𝑟 =
√�̅�

�̿�
 

Equilibrium turbulence intensity under stationary, uniform flow is given by (Hoffmans,1993): 

𝑟0 = 𝑐0
√𝑔

𝐶
 

Where 𝑐0 = 1.21. Rewriting equilibrium turbulence intensity into equilibrium turbulent energy 

(combining the above two equations): 

𝑘𝑒 = (𝑟0�̿�)
2 

𝑘𝑒 = (𝑐0
√𝑔

𝐶
)

2

�̿�2 

𝑘𝑒 = 𝑐0
2
𝑔

𝐶2
�̿�2 

𝑘𝑒 = 𝑐0
2
𝑔

𝐶2
�̿�2 
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Under stationary uniform flow under a slope the ATM is reduced to: 

�̅� =
1

𝛼

𝑔

𝐶2 
�̿�2 

Equilibirum turbulence levels according to Hoffmans (1993) are given by: 

𝑘𝑒 = 𝑐0
2
𝑔

𝐶2
�̿�2 

Thus 𝑘 = 𝑘𝑒when 𝛼 =
1

𝑐0
2 
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Appendix I: Deriving the ATM production term using the TKE 

This appendix describes under what assumptions the production of turbulence according to the 

TKE confirms with the production of turbulence according to the ATM. The derivation presented in 

this appendix is divided into 5 steps: 

1. Introduction of the turbulent and mean flow kinetic energy equations 

2. Simplifying the TKE and MKE 

3. Rewriting and simplifying the MKE 

4. Linking the Bernoulli equation to the MKE equation 

5. Relating the MKE to the TKE and to the production term of the ATM 

1. Introduction of the turbulent and mean flow kinetic energy equations 

The turbulent kinetic energy equation (TKE) is given by: 

 𝑑𝑘

𝑑𝑡
+ �̅�𝑗

𝑑𝑘

𝑑𝑥𝑗
=

𝑑

𝑑𝑥𝑗
(−

1

𝜌𝑤
 �̅�𝑢𝑖

′𝛿𝑖𝑗 −
1

2
𝑢𝑖
′𝑢𝑖
′𝑢𝑗
′ + 𝑣

𝑑𝑘

𝑑𝑥𝑗
)

− 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 

𝛿𝑖𝑗 {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

(I.1) 

Where 𝑘 equals the turbulent energy in the flow (m2/s2), 𝑡 equals the time (s), �̅�𝑖 equals the time 

averaged flow velocity (m/s), 𝜌𝑤 equals the density of the fluid (kg/m3), �̅� equals the root mean 

squared (RMS) pressure fluctuations (N/m2), 𝛿𝑖𝑗 equals Kronecker delta (-), 𝑢𝑖
′ equals the RMS 

velocity fluctuations (as discussed in section 3.2) (m/s), and 𝑣 equals the kinematic viscosity 

(m2/s). The subscripts 𝑖 and 𝑗 are free indices that can take on the values x, y, and z 
corresponding to the three dimensions. 

Equation I.1 depicts the kinetic energy of the velocity fluctuations in a flow. Similarly, the kinetic 

energy of the mean flow (MKE) can be found by taking the scalar product of the Reynolds 

averaged Navier-Stokes equation with the mean flow velocity (George, 2013). This results in: 

 𝑑𝐾

𝑑𝑡
+ �̅�𝑗

𝑑𝐾

𝑑𝑥𝑗
=

𝑑

𝑑𝑥𝑗
(−

1

𝜌𝑤
 �̅��̅�𝑖𝛿𝑖𝑗 −

1

2
𝑢𝑖
′𝑢𝑖
′�̅�𝑖 + 𝑣

𝑑𝐾

𝑑𝑥𝑗
)

+ 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑�̅�𝑖
𝑑𝑥𝑗

𝑑�̅�𝑖
𝑑𝑥𝑗

+ 𝑓 

𝛿𝑖𝑗 {
0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 

(I.2) 

Where 𝐾 equals the kinetic energy of the mean flow (𝐾 =
1

2
�̅�𝑖�̅�𝑖) (m2/s2), 𝑡 equals the time (s), �̅�𝑖 

equals the time averaged flow velocity (m/s), 𝜌 equals the density of the fluid (kg/m3), �̅� equals 

the time averaged pressure (N/m2), 𝛿𝑖𝑗 equals Kronecker delta (-), 𝑢𝑖
′ equals the time averaged 

velocity fluctuations (m/s), 𝑣 equals the kinematic viscosity (m2/s), and 𝑓 equals a source or sink 

term for kinetic energy (m2/s3) e.g. gravity adding energy to the flow by transforming potential into 

kinetic energy. The subscripts 𝑖 and 𝑗 are free indices that can take on the values x, y, and z 
corresponding to the three dimensions. 

2. Simplifying the TKE and MKE   

The production term 𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
 in the TKE equation is assumed to be approximated by −𝑔

𝑑𝐻

𝑑𝑥
 in the 

ATM. To give credibility to this assumption, the ATM is compared to the TKE equation. Because 
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the production of turbulent energy in the TKE equation is related to the loss of kinetic energy in 

the MKE equation, the MKE equation is also needed in the comparison. 

The turbulent energy and mean flow energy equations can be rewritten to resemble the ATM. The 

ATM assumes stationarity and no additional transport beside advection is considered. When the 

same assumptions are applied to the TKE equation (I.1), the equation is reduced to:  

 
�̅�𝑗
𝑑𝑘

𝑑𝑥𝑗
= −𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 (I.3) 

Equation I.3 states that the change in turbulent energy per unit of distance is dependent on the 

production of turbulence (equal to the dissipation of mean flow energy) and the dissipation of 

turbulent energy due to viscous stresses. 

Similarly the MKE equation is reduced to: 

 
�̅�𝑗
𝑑𝐾

𝑑𝑥𝑗
= 𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

−
𝑑

𝑑𝑥𝑗
(
1

𝜌𝑤
 �̅��̅�𝑖𝛿𝑖𝑗) + 𝑓 (I.4) 

The pressure transport term −
𝑑

𝑑𝑥𝑗
(
1

𝜌𝑤
 �̅��̅�𝑖𝛿𝑖𝑗) is left into the equation for the mean flow energy. 

This is done to retain an explanation for the transfer from kinetic into potential energy. Note that 

the viscous dissipation of the kinetic energy is left out here. This is done because the viscous 

dissipation of the kinetic energy of the mean flow is negligible at high (local) Reynolds numbers 

(Burden, 2008) and turbulent flows are accompanied by high Reynolds numbers (Hofland, 2005). 

3. Rewriting and simplifying the MKE  

Equation I.4 can be rewritten into the energy per volume of water per second by multiplying it with 

the density of water 𝜌𝑤. For the left hand side equation I.4 then becomes: 

 
𝜌𝑤 (�̅�𝑗

𝑑𝐾

𝑑𝑥𝑗
) = 𝜌𝑤�̅�𝑖�̅�𝑖

𝑑�̅�𝑗

𝑑𝑥𝑗
 

 

(I.5) 

The right hand side of equation I.4 (after multiplication with the density of water 𝜌𝑤) is written as: 

 
𝜌𝑤𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝜌𝑤
𝑑

𝑑𝑥𝑗
( 
1

𝜌𝑤
�̅��̅�𝑖𝛿𝑖𝑗) 

 

(I.6) 

The whole equation can now be written as: 

 
𝜌𝑤�̅�𝑖�̅�𝑖

𝑑�̅�𝑗

𝑑𝑥𝑗
+
𝑑( �̅��̅�𝑖𝛿𝑖𝑗)

𝑑𝑥𝑗
= 𝜌𝑤𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

 

 

(I.7) 

Here the source or sink term for kinetic energy 𝑓 is assumed to be zero.  

In equation I.7 the pressure term can be simplified. Expanding the pressure term in equation I.7 

gives: 

 𝑑( �̅��̅�𝑖𝛿𝑖𝑗)

𝑑𝑥𝑗
= �̅�

𝑑( �̅�𝑗)

𝑑𝑥𝑗
+ �̅�𝑗

𝑑( �̅�)

𝑑𝑥𝑗
 

 

(I.8) 
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�̅�
𝑑(�̅�𝑗)

𝑑𝑥𝑗
= 0 due to the assumption of incompressible flow (George, 2013). Equation I.7 can then 

be rewritten into: 

 
𝜌𝑤�̅�𝑖�̅�𝑖

𝑑�̅�𝑗

𝑑𝑥𝑗
+ �̅�𝑗

𝑑�̅�

𝑑𝑥𝑗
= 𝜌𝑤𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

 (I.9) 

Note that equation I.9 still represents the mean flow kinetic energy for a stationary flow, 

neglecting transport of energy due to other velocity fluctuations or viscous effects. Under these 

assumptions, the production term of turbulent energy 𝜌𝑤𝑢𝑖
′𝑢𝑗
′ 𝑑�̅�𝑖

𝑑𝑥𝑗
 (right hand side of equation I.9) 

is still related to the change in mean flow energy (left hand side of equation I.9). 

The ATM relates the production of turbulence to the mean flow energy loss. The ATM only 

considers the mean flow energy loss and turbulence production in the flow direction. Thus, 

uniformity is assumed in the y and z direction. For equation I.9 this mean 𝑖 = 𝑗 = 𝑥. Under the 

assumption of uniformity in the y and z direction, equation I.9 reduces to: 

 
𝜌𝑤�̅�𝑥�̅�𝑥

𝑑�̅�𝑥
𝑑𝑥

+ �̅�𝑥
𝑑�̅�

𝑑𝑥
= 𝜌𝑤𝑢𝑥

′ 𝑢𝑥
′
𝑑�̅�𝑥
𝑑𝑥

 (I.10) 

The left side of equation I.10 is a rewritten version of the Bernoulli equation as will be shown 

below. 

4. Linking the Bernoulli equation to the MKE equation  

The formula of Bernoulli for an infinitely small particle along a streamline is given by: 

 
𝐸 = �̅� +

1

2
𝜌𝑤�̅�𝑥�̅�𝑥 (I.11) 

Where 𝐸 equals the flow energy (J/m3) for this particle. Note that equation I.11 is only time 

averaged, and not depth (or width) averaged. The Bernoulli equation assumes no energy is lost 

and thus 𝐸=constant. 

The formula of Bernoulli is rewritten into the same units as the MKE (equation I.10). This is 

achieved by differentiating equation I.10 in space (similar to appendix D) and multiplying it with 

the time averaged flow velocity: 

 
�̅�𝑥
𝑑𝐸

𝑑𝑥
= �̅�𝑥

�̅�

𝑑𝑥
+ 𝜌𝑤�̅�𝑥�̅�𝑥 (

𝑑�̅�𝑥
𝑑𝑥

) (I.12) 

The right hand side of equation I.12 now exactly equals the left hand side of the one dimensional 

MKE (equation I.10). So 𝜌𝑤𝑢𝑥
′ 𝑢𝑥

′ 𝑑�̅�𝑥

𝑑𝑥
 can be calculated using  the change in mean flow energy 

according to Bernoulli: 

 
�̅�𝑥
𝑑𝐸

𝑑𝑥
= 𝜌𝑤𝑢𝑥

′ 𝑢𝑥
′
𝑑�̅�𝑥
𝑑𝑥

 (I.13) 

The derivation up until this point showed that the MKE can be reduced to the Bernoulli equation 

under certain assumptions. This is expected because both formulas describe the mean flow 

energy, however, the MKE is more inclusive. 

5. Relating the TKE to the production term of the ATM  

Equation I.3 states that under certain assumptions turbulent energy can be defined as: 
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�̅�𝑗
𝑑𝑘

𝑑𝑥𝑗
= −𝑢𝑖

′𝑢𝑗
′ 𝑑�̅�𝑖
𝑑𝑥𝑗

− 𝑣
𝑑𝑢𝑖

′

𝑑𝑥𝑗

𝑑𝑢𝑖
′

𝑑𝑥𝑗
 (I.3) 

When only considering the production of turbulent energy in equation I.3  and assuming 

uniformity in x and y direction, then equation I.3 is written as: 

 
�̅�𝑥
𝑑𝑘

𝑑𝑥
= −𝑢𝑥

′ 𝑢𝑥
′
𝑑�̅�𝑥
𝑑𝑥

 
(I.14) 

Substituting equation I.13 into I.14 gives 

 
�̅�𝑥
𝑑𝑘

𝑑𝑥
= −�̅�𝑥

1

𝜌𝑤

𝑑𝐸

𝑑𝑥
 (I.15) 

Rewritten in head level notation and dividing by �̅�𝑥 this gives: 

 𝑑𝑘

𝑑𝑥
= −𝑔

𝑑𝐻

𝑑𝑥
 (I.16) 

Which is exactly the turbulence production term in the ATM, quod erat demonstrandum. 

Remark about flow over a slope  

The source term 𝑓 for kinetic energy of the mean flow is assumed to be zero in the above 

derivation. A possible source of kinetic energy is the transfer of potential energy into kinetic 

energy, e.g. water flowing down a slope. The horizontal gravity component then adds energy to the 

flow. Under this situation, the elevation above a reference plane 𝑧 (m) should be added to the 

head level 𝐻 to correctly depict the change of potential into kinetic energy. 
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Appendix J: Calculating the hydraulic radius 

The thesis stated that the hydraulic radius is calculated using the following formula: 

𝑅 =
ℎ × 𝐵

2 × ℎ + 𝐵
 

This definition for the hydraulic radius is inconvenient because it requires the water depth at each 

location where 𝑅 needs to be known. This complicates the ATM calculations. Moreover, in the 

preliminary design phase, the exact water depths after the BFS is unknown. Therefore, the 

hydraulic radius was in fact approximated in this thesis in the following way: 

𝑅 =

{
 
 

 
 

ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 × 𝐵

2 × ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + 𝐵
, 𝑥/ℎ𝑠𝑡𝑒𝑝 ≤ 0

(ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + ℎ𝑠𝑡𝑒𝑝) × 𝐵

2 × (ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + ℎ𝑠𝑡𝑒𝑝) + 𝐵
, 𝑥/ℎ𝑠𝑡𝑒𝑝 > 0

 

Where ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 equals the water depth on top of the step (m), ℎ𝑠𝑡𝑒𝑝 equals the BFS step height 

(m) and 𝐵 equals the flume width. Using this definition, the hydraulic radius is assumed to be 

constant on top of the step and constant downstream of the step. This definition of the hydraulic 

radius does not take into account the increase in water depth downstream of the step due to 

mean flow energy loss. 

The mean flow has lost the most energy at the most downstream measurement location. For 

subcritical flow, mean flow energy loss results in an increase in the water depth (Cruise, Sherif, & 

Singh, 2007). At the most downstream measurement location the actual water depth will 

therefore deviate the most from the assumed water depth ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + ℎ𝑠𝑡𝑒𝑝. Thus the hydraulic 

radius approximation will deviate most from reality at the most downstream measurement 

locations. The hydraulic radius approximation and the hydraulic radius calculated using the actual 

most downstream measured water depth are depicted in the table below.  

Appendix Table 1 Comparison between hydraulic radius approximation and the actual hydraulic radius at the most 

downstream measurement location 

Author Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

𝑹𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎 =
𝒉×𝑩

𝟐×𝒉+𝑩
  0.0897 0.0970 0.0423 0.0621 

𝑹𝒂𝒑𝒑𝒓𝒐𝒙𝒊𝒎𝒂𝒕𝒊𝒐𝒏 =
(𝒉𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎+𝒉𝒔𝒕𝒆𝒑)×𝑩

𝟐×(𝒉𝒖𝒑𝒔𝒕𝒓𝒆𝒂𝒎+𝒉𝒔𝒕𝒆𝒑)+𝑩
  0.0867 0.0953 0.0418 0.0619 

 

Appendix Table 1 shows that even at the most downstream measurement location, the 

approximated hydraulic radius confirms reasonably well with the actual hydraulic radius. It is 

therefore concluded that the hydraulic radius can be approximated using the method described 

above. 
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Appendix K: Selection of experimental data usable to validate the ATM 
Appendix Table 2 Experimental data available to this study 

Author Procurement Flow situation Usable Reason 

Nakagawa & Nezu (1987) Data extracted from paper BFS flow Yes 
All data needed are 
available 

Xingkui & Fontijn (1993) Data extracted from dissertation BFS flow Yes 
All data needed are 
available 

Hofland (2005) Data extracted from paper BFS flow Yes 
All data needed are 
obtainable by assuming 
conservation of mass 

Hofland2 (2005) Data obtained from author (DVD's) Uniform flow No No BFS flow 

De Gunst (1999) 
Data extracted from paper and 
downloaded from the internet 

BFS flow No 
Experiment performed with a 
rigid lid 

Jongeling et al. (2003) 
Data obtained from Remco Steenstra 
(via email) 

BFS flow (special) No Sloped BFS 

Kasagi & Matsunaga (1995) Data extracted from paper BFS flow No 
Experiment performed with a 
rigid lid 

Hoan (2008) Data extracted from paper Widening channel No No BFS flow 

 

A total of 8 experimental datasets were considered to use in the validation of the ATM. Out of the 

8 experiments, only 3 experiments were usable to validate the ATM with. 

The Hofland (2005) experimental data extracted from his dissertation lacked detailed information 

about the measured water heights during the experiments. This data was obtained by assuming 

conservation of mass during his experiments. 

A second dataset was obtained from Bas Hofland. This dataset contained the raw measurements 

performed for flow over a flat rough bottom. This data was not used because it did not contain 

BFS flow data. 

The studies of Kasagi & Matsunaga (1995) and De Gunst (1999) were performed in a flume 

containing a rigid lid. This made sure the water level during the experiments remained constant. 

One of the variables needed as input into the ATM is the change in head level (
𝑑𝐻

𝑑𝑥
). For 

experiments performed using a rigid lid, the change in mean flow energy (
𝑑𝐻

𝑑𝑥
) cannot be found 

using the change in flow velocity and water depth. Instead, the change in pressure on the rigid lid 

now gives value to the mean flow energy loss. Regrettably, both experiments did not present the 

pressure on the rigid lid as a function of the flow distance. Moreover, rigid lid will result in some 

additional mean flow energy loss due to friction with the lid. This makes it hard to compare ATM 

results using rigid lid data sets and ATM results using free surface data sets. Therefore, these 

data sets were not used to validate the ATM. 

A BFS flow experiment was performed by Jongeling et al. (2003). However, for this experiment the 

end of the step was not followed by a sudden deepening of the flume. A more gradual slope (1: 3) 

was used as transition between the step and the downstream flume bottom. This results in a 

reduction (disappearance) of the recirculation zone downstream of the step. Comparison between 

the ATM results using the data of Jongeling et al. (2003) and the ATM results using the other 

datasets would be hard due to the different BFS setups. Therefore, this dataset was not used in 

the validation. 

The dataset of Hoan (2008) was not used because the experiment was not performed for BFS 

flow.  
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Appendix L: Extracting velocity data from papers 

The following papers were used to extract data from: 

 Nakagawa & Nezu (1987) 

 Xingkui & Fontijn (1993) 

 De Ruijter (2004) & Hofland (2005)  

All studies gave flow velocity data (mean �̅�𝑖 and fluctuating 𝑢𝑖
′) as a function of the distance 𝑥 

from the step and the height 𝑦 from the bottom of the flume, with 𝑦 = 0 at the bottom of the 

flume downstream of the step. Depth averaged data is required as input for the ATM. The process 

of extracting and depth averaging the data from the graphs presented in the papers is discussed 

below. The water depth measurements were extracted from the papers using a method similar to 

the method described below. 

Appendix figure 10 shows, as an example, the velocity fluctuations graph of the study of Xingkui & 

Fontijn (1993). To find the average flow velocity for each cross-section (A-G) a computer program 

was designed using Matlab. This program aided in the extraction process. 

 
 

Appendix figure 10 Distribution of velocity fluctuations from the study of Xingkui & Fontijn (1993, p. 306) 

 

The extraction process for each graph consisted of the following steps: 

1. Determine how many pixels correspond with a certain measure of velocity in the graph 

2. Determine how many pixels correspond with a certain measure of height in the graph 

3. Measure the area of the velocity graph 

4. Measure the water depth corresponding to the area measured in step 3 

5. Divide the area by the water depth  

6. Repeat step 1-5 three times to minimize measurement error 
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Appendix figure 11 Steps for the extraction of data from graphs 

After step 6, the mean of the found depth averaged flow velocity is taken to find the final 

measurement at the cross section under consideration. 
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Appendix M: Quantifying the uncertainty in the experimental data used as 

ATM input 

In section 5.4 several sources of uncertainty were identified. The size of uncertainty in the 

measurements are quantified in the following text. Because little data is available to quantify the 

uncertainty, the quantification is performed based on a simple principle: Each measurement is 

assumed to have a certain uncertainty margin. The actual value of the variable (ℎ, �̿�) that was 

measured, is located within this uncertainty margin. Appendix figure 12 visually depicts the idea 

behind the uncertainty margins. The uncertainty margins will give an idea about how certain the 

measured variables actually are. 

 
Appendix figure 12 Schematization of uncertainty limits of the measured variable 

 

Because multiple sources of uncertainty can affect the same variable (ℎ, �̿�), uncertainty margins 

of different sources add up. In order to clearly define how the total uncertainty margins of each 

variable are calculated, a schematization of the total uncertainty margins is given in appendix 

figure 13. 

1. Uncertainty in the measurement data due to fluctuations in discharge  

The uncertainty in the measured variables as the result of fluctuations in the discharge in 

between measurement locations are hard to quantify. However, it will be shown below that, when 

all other sources of uncertainty are taken into account, the discharge fluctuations as shown in 

figure 27 can simply be the result of the uncertainty margins of the water depth and mean flow 

velocities. Therefore, it is hypothesized that this source of uncertainty is the result of the other 

sources of uncertainty. 

2. Uncertainty in water depth measurements due to local variations in water depth  

De Ruijter (2004) stated an expected measurement error of several millimetres up to several 

centimetres for the water depth measurements. However, figure 26 shows a smooth change in 

water depth measurements without large outliers, thus it is unlikely that the water depth 

measurements contained uncertainty margins several centimetres wide. As a worst case 

scenario, it is assumed that every water depth measurement has an uncertainty margin of 

± 10 𝑚𝑚 due to the accuracy of the water depth measurements. 

3. Uncertainty in the flow velocity measurements due to incorrect usage of the laser Doppler 

anemometer  

Tropea (1995) mentioned LDA uncertainty margins in the order of magnitude of micrometres, but 

only when the LDA is properly setup. For the extracted and integrated velocity measurements �̿� 

and �̅�𝑖
′, an uncertainty margin of ± 1% is assumed. The size of this uncertainty margin is based 

on the remark of Tropea (1995) that improper setup of the LDA measuring system can result in 

increased error in the measurements. The uncertainty margin of 1% is a best guess and is mainly 

set to investigate the effects of an uncertainty margin on discharge fluctuations. Larger or smaller 
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uncertainty margins than this 1% are quite possible, but the study limits itself to the assumption 

of this 1%.  

4. Uncertainty in the flow variables due to tracing the graphs in the papers by hand  

Appendix L describes the method used to extract data from the graphs in the papers. At each 

measurement location, the water depth and flow velocity (both mean and fluctuating) is extracted 

by hand. This procedure is repeated four times. The definitive value of the measurement under 

consideration is determined by taking the average of the four repeated measurements. The 

human measurement uncertainty margin due to tracing the graphs by hand, is determined to 

equal the minimum and maximum extracted value (where the minimum is set as the lower limit of 

the uncertainty margin, and the maximum is set as the upper limit of the uncertainty margin). This 

results in a measured value and its uncertainty limits, for each variable (ℎ, �̿�, �̅�𝑖
′), at each 

measurement location.  

1,3,4. Uncertainty due to applying the conservation of mass  

The water depths for the experiment of Hofland (2005) were found by using the conservation of 

mass. The accuracy of the calculated water depth is dependent on the accuracy of the 

assumption that during the whole experiment, the discharge in the flume was actually equal to 

the stated 31.8 l/s. De Ruijter (2004) stated that the discharge was measured with an accuracy 

of 2 l/s. De Ruijter (2004) also stated that the discharge fluctuated in between measurements up 

to 2 l/s. this gives a total possible discharge fluctuation of ±4 l/s. Moreover, the uncertainty 

margin in the mean flow velocity measurements affects the uncertainty margin in the calculated 

water depths (using the conservation of mass). The following formula describes the uncertainty 

margin in the calculated water depths (using the conservation of mass) for the experiment of 

Hofland (2005): 

 

ℎ𝑎,𝑏,… =
0.0318 ± 0.004 

(�̿�𝑎,𝑏,… ± 𝑒𝑟𝑟) × 𝐵
 (M.1) 

Where ℎ𝑎,𝑏,… is the calculated water depth (m) at a certain measurement location, 0.0318 is the 

discharge in the flume in (m3/s), 0.004 the possible discharge fluctuation (m3/s) due to 

measurement errors or the inability to accurately set the pump discharge, �̿�𝑎,𝑏,… the depth 

integrated velocity profiles as extracted from the graphs (m/s), 𝑒𝑟𝑟 the error in the mean flow 

velocity measurements due to the extraction process and the 1% assumed LDA error (m/s) and 𝐵 

the width of the flume (m). Note that the lower uncertainty limit of ℎ𝑎,𝑏,… is found by filling into 

equation M.1 ℎ𝑎,𝑏,… =
0.0318−0.004 

(�̿�𝑎,𝑏,…+𝑒𝑟𝑟)×𝐵
 and the upper uncertainty limit is found by filling in ℎ𝑎,𝑏,… =

0.0318+0.004 

(�̿�𝑎,𝑏,…−𝑒𝑟𝑟)×𝐵
. 
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Schematisation of uncertainty margins  

 
Appendix figure 13 Schematization of determining uncertainty margins for the extracted variables 
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Graphs of water depth and flow velocity uncertainty limits  

The extracted water depths and flow velocities, including the uncertainty limits are presented 

below. 

  

  
Appendix figure 14  Depth integrated flow velocity profiles including uncertainty limits, as described in appendix figure 13 

  

  



150 Appendix M: Quantifying the uncertainty in the experimental data used as ATM input 

  

  
Appendix figure 15 Water depth at the measurement locations including uncertainty limits, as described in appendix 

figure 13 

 

Appendix figure 14 and 15 show the uncertainty limits of the measured water depths and flow 

velocities. The uncertainty in the water depth measurements are relatively larger than the 

uncertainty in the depth integrated water velocity measurements. This is expected because the 

water depth measurement error is set at a flat 10 mm, which is quite large compared to the 1% 

expected error in the LDA measurements. Even including the uncertainty limits, the changes in 

water depth and flow velocity remain clearly visible. However, the uncertainty limits of especially 

the water depth measurements indicate that the measured variables are not that certain. This 

should be taken into account when reviewing the ATM results in chapter 7. 

Graphs of discharge uncertainty limits  

Using the uncertainty limits of the mean flow velocities and water depths, the uncertainty margins 

of the discharge can be calculated. The upper and lower limits of the discharge are found by 

multiplying the upper and lower limits of the water depths with the upper and lower limits of the 

flow velocities respectively. Figure 27 (normalized discharge fluctuations) showed that the 

discharge fluctuated in between measurements. However, this could simply be the result of the 

uncertainty margins in the measurements. If the uncertainty margins in the discharge give the 

possibility that the discharge during every measurement was actually constant, then it’s at least 

possible that the discharge fluctuations are not the result of a change in discharge in between the 

measurements. The discharge fluctuations, including the uncertainty margins are given below. 
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Appendix figure 16 Discharge calculated using extracted water depth and flow velocities including the uncertainty 

limits, normalized by dividing the discharge by the explicitly stated discharge in the papers (table 3). Shaded area 

indicates the area in between the uncertainty limits where the discharge can be constant over the whole experiment. 

 

The results of appendix figure 16 show that it is quite possible that the experiments were 

performed under more or less constant discharge when the uncertainty in the discharge (other 

than actual fluctuations in discharge in between measurement locations) is taken into account. 

The experiments of Nakagawa & Nezu (1987) and Hofland (2005) contain a large range in 

between which the discharge could have been constant for the whole experiment. The shaded 

area of the experiments of Xingkui & Fontijn (1993) is constructed after omitting the most 

upstream located discharge measurement. Even after omitting this measurement, the shaded are 

of the Xingkui & Fontijn (1993) experiment is still much smaller than the other experiments. This 

makes it less likely that the experiment of Xingkui & Fontijn (1993) was actually performed under 

constant discharge. The validation of the ATM using the Xingkui & Fontijn (1993) data (chapter 7) 

should therefore be reviewed with some more reserve.  
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Appendix N: Quantifying the uncertainty in the measured turbulent energy 

levels 

In the following text, it is explained how the uncertainty margins in the flow velocity fluctuations 

were determined. Thereafter, uncertainty margins of the turbulent energy levels are calculated 

using the flow velocity fluctuations uncertainty margins. The method for finding the uncertainty 

margins in the measured turbulent energy levels is also schematized in appendix figure 17. 

4. Uncertainty in the flow variables due to tracing the graphs in the papers by hand  

Every measurement for �̅�𝑖
′ was extracted from a graph. The flow velocities are extracted using the 

same method as the extraction process for the mean flow (appendix L): the extraction is 

performed 4 times (by hand), the mean of the found velocity �̅�𝑖
′ is set as the actual velocity, the 

minimum and maximum values found during the integration are set as the limits of uncertainty. 

3. Uncertainty in the flow velocity measurements due to incorrect usage of the laser Doppler 

anemometer  

Because all flow velocity measurements were done using a LDA, it is assumed that every 

measurement of the flow fluctuation �̅�𝑖
′ contains an uncertainty margin due to the possible 

incorrect setup and usage of the LDA. As a worst case scenario the flow fluctuations �̅�𝑖
′ are 

expected to contain a maximum error of 1% in either direction (�̅�𝑖
′ ± 1%). As was discussed the 

previous section, this value is a best guess. 

The turbulent energy uncertainty margin following from the uncertainty in the flow fluctuations �̅�𝑖
′ 

is then found using the formula: 

 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ ± 0.01�̅�𝑥
′ )2 + (�̅�𝑦

′ ± 0.01�̅�𝑦
′ )
2
) (N.1) 

Solving equation N.1 (Appendix O) gives: 

 
�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠  = �̅� ±

1

50
�̅� (N.2) 

The upper and lower uncertainty limits of the measured turbulent energy are calculated by adding 

or subtracting 
1

50
𝑘 from the respectively the maximum and minimum value of the extracted and 

integrated turbulent energy level �̅�. Appendix figure 17 visually depicts how the measured 

turbulent energy, and its uncertainty margins are found. 

 
Appendix figure 17 Visual depiction of calculation of measured turbulent energy 𝒌 and its upper and lower limit 

uncertainty margin 
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Appendix O: Deriving the Uncertainty margins of the turbulent energy 

Assuming the depth averaged flow velocity fluctuations �̅�𝑖
′ are affected by a measurement 

uncertainty of 1% and �̅�𝑥
′ 2~�̅�𝑦

′ 2~�̅�𝑧
′ 2, then the depth averaged turbulence uncertainty margins 

can be described in the following way: 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ ± 0.01�̅�𝑥
′ )2 + (�̅�𝑦

′ ± 0.01�̅�𝑦
′ )
2
) 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ ± 0.01�̅�𝑥
′ )(�̅�𝑥

′ ± 0.01�̅�𝑥
′ ) + (�̅�𝑦

′ ± 0.01�̅�𝑦
′ )(�̅�𝑦

′ ± 0.01�̅�𝑦
′ )) 

Assume “±” equals “+” and reintroduce “±” when derivation is finished 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ 2 + 2�̅�𝑥
′ 0.01�̅�𝑥

′ + (0.01�̅�𝑥
′ )2) + (�̅�𝑦

′ 2 + 2�̅�𝑦
′ 0.01�̅�𝑦

′ + (0.01�̅�𝑦
′ )
2
)) 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ 2 + �̅�𝑦
′ 2) + (2�̅�𝑥

′ 0.01�̅�𝑥
′ + (0.01�̅�𝑥

′ )2 + 2�̅�𝑦
′ 0.01�̅�𝑦

′ + (0.01�̅�𝑦
′ )
2
)) 

(0.01�̅�𝑥
′ )2 = 0.0001�̅�𝑥

′ 2 ≪ �̅�𝑥
′  

(0.01�̅�𝑦
′ )
2
= 0.0001�̅�𝑦

′ 2 ≪ �̅�𝑦
′  

Thus: 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ 2 + �̅�𝑦
′ 2) + (2�̅�𝑥

′ 0.01�̅�𝑥
′ + 2�̅�𝑦

′ 0.01�̅�𝑦
′ )) 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
((�̅�𝑥

′ 2 + �̅�𝑦
′ 2) + (0.02�̅�𝑥

′ 2 + 0.02�̅�𝑦
′ 2)) 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 =
3

4
(�̅�𝑥

′ 2 + �̅�𝑦
′ 2) +

3

4
(0.02�̅�𝑥

′ 2 + 0.02�̅�𝑦
′ 2) 

Reintroduce “±” and �̅�: 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 = �̅� ±
3

4
(±0.02�̅�𝑥

′ 2 ± 0.02�̅�𝑦
′ 2) 

Worst case scenario : 

±
3

4
(±0.02�̅�𝑥

′ 2 ± 0.02�̅�𝑦
′ 2) = ±

3

4
(0.02�̅�𝑥

′ 2 + 0.02�̅�𝑦
′ 2) 

Thus: 

�̅�𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛𝑠 = �̅� ±
3

4
(0.02�̅�𝑥

′ 2 + 0.02�̅�𝑦
′ 2) 
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Appendix P: Validation of step size ∆𝒙 used for numerical Arcadis 

Turbulence Model 

This appendix uses an ATM case to validate the numerical step size ∆𝑥. For an explanation of the 

ATM cases, see section 7.2. 

In chapter 6 it was explained that the ATM differential equation is solved using the forward Euler 

method and a ∆𝑥 of 
1

1000
ℎ𝑠𝑡𝑒𝑝. To check the validity of applying the forward Euler using a step size 

of 
1

1000
ℎ𝑠𝑡𝑒𝑝, equation 6.1 is compared to the analytical solution of the ATM (appendix G). To 

compare the numerical and analytical solution of the ATM, the ATM needs to be run for a case 

that can be solved using both the analytical and numerical solution method. The following case 

adheres to this criteria: 

 
Appendix figure 18 Case description used to validate the forward Euler method 

 

Appendix figure 18 shows the case that will be used to validate the forward Euler method. The 

linear and momentum head level input alternatives both model the mean flow energy loss at a 

constant rate (
𝑑𝐻

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). The analytical solution given in (appendix G) is also based on the 

assumption of a constant change in head level. Therefore both the analytical and numerical 

solution methods of the ATM can be used to calculate turbulent energy for the case described 

above. The polynomial head level input alternative has varying values for 
𝑑𝐻

𝑑𝑥
, and can therefore 

not be used to compare the numerical and analytical ATM models (because the analytical solution 

can only be applied for 
𝑑𝐻

𝑑𝑥
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡).  

The found turbulent energy levels of the Euler ATM confirmed almost exactly with the found 

turbulent energy levels of the analytical ATM when a step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝 is used (root mean 

square error equalled 5.14 × 10−7 (m2/s2)). Thus, the step size used in the forward Euler method 

is small enough to accurately approximate the analytical solution. No graph is presented of the 

results of both ATM solution methods because when plotted, the resulting turbulent energy levels 

(from the Euler ATM and the analytical ATM) did not visually deviate from one another, so 

presenting the graphs is pointless. 

A second method was used to check whether the numerical step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝 sufficiently 

approaches the analytical solution. For a number of model input alternatives, the ATM was run 
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using a step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝 and 

1

10000
ℎ𝑠𝑡𝑒𝑝. The resulting turbulent energy levels were 

compared. The difference between running the model using a step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝 or 

1

10000
ℎ𝑠𝑡𝑒𝑝 

was very small (±0.01%), thus it is concluded that the numerical step size of 
1

1000
ℎ𝑠𝑡𝑒𝑝 is 

sufficiently small. 
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Appendix Q: Uncertainty analysis of the measured and momentum head 

levels 

This appendix will show how the uncertainty in the measured flow velocity and water depth is 

translated into an uncertainty into the measured head levels. 

The uncertainty margins of the measured head levels are calculated by inserting the upper and 

lower limits of the water depth and flow velocity measurements as depicted in appendix figure 14 

and 15 into de Bernoulli equation (equation 6.3). This results in the following uncertainty margins: 

  

  
Appendix figure 19 Measured raw head levels including the uncertainty margins 

 

Appendix figure 19 shows the upper and lower limits of the measured head levels. Assuming that 

the uncertainty margins set in chapter 5 are correct, than the actual head levels (that occurred 

during the experiments) are located in between the measured uncertainty margin as depicted in 

the above figure. Note that all head level alternatives (linear, polynomial and momentum) are 

located within the uncertainty margins of the measured head levels. Thus all head level 

alternative can potentially accurately represent the actual head levels as they occurred during the 

experiments. 

Appendix figure 19 does make one thing clear, the shape and absolute values of the measured 

head levels are not very certain. For the experiments of Nakagawa and Nezu (1987) the shapes 

of the head level alternatives are barely visible anymore because of the large uncertainty 

margins. The uncertainty margins in the head level shapes of Xingkui & Fontijn (1993) and 

Hofland (2005) are relatively smaller. The cause of the large uncertainty in the Nakagawa and 

Nezu (1987) experiments is related to the assumed fixed uncertainty margin in the water depth 

measurements. It is assumed that, as a worst case scenario, the water depth was measured with 

an accuracy of ± 1 cm. This fixed 1 cm is relatively much larger for the experiments of Nakagawa 
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and Nezu (1987) (which measured water depths up to 11 cm) than for the other experiments 

(which measured water depths up to 16 cm). However, it is assumed that the ± 1 cm uncertainty 

margin in the water depth measurements is justified for all experiments because of the following 

reason: because the water depth measurements are assumed to be collected by hand (e.g. by 

using a Pitot tube), the uncertainty margins due to human error are likely to be independent of 

the experimental conditions, which justifies the used uncertainty margin. 

The large uncertainty margin of the measured head levels do not mean that the measured head 

levels are not usable anymore. The uncertainty margins were found using the most extreme water 

depth and flow velocity uncertainty margins. Appendix figure 19 shows that for this worst case 

scenario, the head level uncertainty margins are quite big. However, the chance that theses 

extreme head level values actually occurred during the experiments is not very large because 

these are the uncertainty limits. Ideally, a probability density function is constructed for the water 

depth, flow velocity and head level measurements to say something about the data confidence 

interval. However, data is lacking to create a probability density function. The measured head 

levels (raw, linear, polynomial) were used as input into the ATM, but the resulting turbulent energy 

levels should be considered with the uncertainty margins of the measured head levels in mind. 
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Appendix R: Coefficient of determination or R2 

The coefficient of determination is interpreted as the proportion of the variance in the dependent 

variable that is predictable from the independent variable (StatTrek, 2015). In civil engineering, 

the coefficient of determination is often used to assess the predictive power of hydrological 

models. The coefficient of determination is then called the Nash–Sutcliffe model efficiency 

coefficient. 

The coefficient of determination is calculated in the following way: 

Assume a depend variable 𝑦 and an independent variable 𝑥. The independent variable 𝑥 tries to 

model the dependent variable 𝑦. 

The Total Sum of Squares (TSS) of 𝑦 is given by: 

𝑇𝑆𝑆 =∑(𝑦𝑖 − �̅�)
2

𝑖

 

Where 𝑖 equals the number of realisations of 𝑦 and �̅� the mean of 𝑦𝑖. 

The Sum of Squares of Residuals (SSR) (deviation of 𝑦𝑖 from 𝑥𝑖) is given by: 

𝑆𝑆𝑅 =∑(𝑥𝑖 − 𝑦𝑖)
2

𝑖

 

The coefficient of determination is then given by: 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑇𝑆𝑆
 

The coefficient of determination (𝑅2) can range from 1 (perfect fit) down until – infinity. A number 

of characteristics values of 𝑅2 exists. 𝑅2 = 1 indicates a perfect relation between dependent and 

independent variables. 𝑅2 = 0 indicates that the independent variable 𝑥 is only able to predict 

the mean of the dependent variable 𝑦. 𝑅2 = −1 indicates a perfect inverse relation between 𝑥 

and 𝑦, or in other words, when 𝑥 decreases, 𝑦 relatively increases by the same amount. 
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Appendix S: Interpolation of head level data 

Interpolation method  

In order to smooth out the chaotic fluctuations in the measured (raw) head levels, two 

interpolation methods were used. The linear shape of the head levels was found by fitting a 

polynomial with power 1 to the measured head levels. The optimal (straight) line was found by 

minimizing the square error between line and the raw head levels (Weisstein, 2015). Similarly the 

polynomial shape of the head levels was found by fitting a polynomial with power 2 to the 

measured raw head levels. Here, the optimal (polynomial) line was also found by minimizing the 

square error.  

Adjusting the polynomial head level shape  

The polynomial interpolation method (figure 36) results in a small increase in head level for the 

last few measurements (located furthest downstream from the step) for all experiments except 

Nakagawa and Nezu (1987) ST-1. This is caused by the fact that a second degree polynomial 

cannot predict a constant value, thus after it finds a minimum, the head levels increase again. 

This is solved by fixing all polynomial head levels downstream of the minimum head level value at 

the minimum. This results in a constant head level after the minimum polynomial value is found. 

Appendix figure 20 depicts an example of the difference between the calculated polynomial 

(brown line) and the flattened polynomial (green line). To make the difference more clearly visible, 

the area between the lines is shaded yellow. The polynomials depicted in figure 36 are already 

flattened. 

 
Appendix figure 20 Example of flattened polynomial (experiment of Hofland, 2005). Difference between regular and 

flattened polynomial is depicted by the yellow shaded area. 

 

Goodness of fit of interpolation methods   

In order to say something about the quality of the interpolation methods, the goodness of fit 

between measured raw head levels and interpolated head levels are discussed. The goodness of 

fit is calculated using the coefficient of determination. 

Appendix Table 3 shows the coefficient of determination for the linear and (flattened) polynomial 

interpolation method compared to the measured raw head levels. For further into about the 

coefficient of determination, see appendix R. 
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Appendix Table 3  Coefficient of determination (𝑹𝟐) for the interpolation methods 

Author 
 

Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Interpolation method Linear (-) 0.732 0.303 0.242 0.546 

 Polynomial (-) 0.952 0.360 0.178 0.777 

 

The coefficients of determination in appendix figure 3 show some interesting results. The general 

ability of the interpolation method to model the measured head levels is dependent on the size of 

the fluctuations in the measured head levels. The experiments of Xingkui & Fontijn (1993) and 

Nakagawa and Nezu (1987) ST-3 show the smallest fluctuations in head levels, and therefore 

have the best fitted interpolated head levels. The experiments of Hofland (2005) and Nakagawa 

and Nezu (1987) ST-1 show a much more chaotic pattern in the measured raw head levels and 

therefore also have much smaller goodness of fit. Note that the point of applying the interpolation 

methods is to achieve a more gradual decreasing head level shape without sudden fluctuations, 

thus coefficients of determination smaller than 1 (but larger than 0) are still acceptable. For all 

selected experiments except Nakagawa and Nezu (1987) ST-1, the polynomial interpolated head 

levels fit the measured head level better than the linear interpolated head levels. This indicates 

that for these experiments, the rate of mean flow energy loss is probably largest near the step, 

and is reduced further downstream. The measured head levels of the experiment of Nakagawa 

and Nezu (1987) ST-1 showed a bad fit with both the linear and polynomial interpolation 

methods. Due to the large irregular fluctuations in head level, it is hard to say anything about the 

shape of mean flow energy loss for this study beside that it has a general decreasing trend 

(downstream of an initial increase in mean flow energy). 

The analysis of the coefficients of determination shows that for 3 out of the 4 selected 

experiments, the polynomial interpolation method outperforms the linear interpolation method. 

Thus, some change in the rate of mean flow energy loss is expected to occur between the step 

and the last measurement performed downstream of the step. 
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Appendix T: Calculating the equilibrium turbulence levels on top of the step 

Appendix H gave the following formula for equilibrium turbulence (based on equation 3.5: the 

formula of Hoffmans,1993): 

𝑘𝑒 = 𝑐0
2
𝑔

𝐶2
�̿�2 

The equilibrium turbulence levels, as depicted in table 8, were calculated using this formula. 

To calculate the value of 𝑘𝑒, a value for the Chezy coefficient 𝐶 and the depth averaged flow 

velocity �̿� needs to be known. The depth averaged flow velocity (�̿�) in the above formula was 

simply set at the most upstream measured depth averaged flow velocity �̿�𝑎 as depicted in figure 

24. To find a value for the Chezy coefficient, equation 5.4 was used: 

 

𝐶 =
1

𝑛
ℎ
1
6⁄  (5.4) 

The formula for the Chezy coefficient requires a water depth ℎ and a value for the Manning 

coefficient 𝑛. The water depth ℎ was simply set at the most upstream measured water depth ℎ𝑎 

as depicted in figure 26. The Manning coefficient was determined using the description in the 

papers about the BFS roughness. The papers stated the following BFS roughness’s: 

Appendix Table 4 the BFS roughness and used Manning coefficients 

Author Xingkui, 1993 Hofland, 2005 Nakagawa ST1, 1987 Nakagawa ST3, 1987 

Stated step roughness’s 
smooth flat 

concrete 
wood smooth smooth 

Determined Manning coefficients 0.011 0.009 0.009 0.009 

Using this information and Engineering Toolbox (2015), the Manning coefficient for the BFS of the 

selected experiments were determined. For the experiment of Hofland (2005), it was assumed 

that the wooden step was laminated, resulting in a Manning coefficient for smooth plastic. 

Note that the roughness’s as depicted in appendix table 4 are different from the roughness’s of 

the flume bed downstream of the BFS. This is caused by the fact that the grains placed on the 

bottom of the flume for the experiments of Xingkui & Fontijn (1993) and Hofland (2005) were not 

placed on top of the step, only downstream of the step. This results in a different Manning 

coefficient on top of the step compared to downstream of the step for these experiments. 
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Appendix U: Head levels and ATM results 

The graphs in this appendix are a copy of the graphs presented in the thesis. When reading the 

results in chapter 7, it is convenient to have a copy of the head levels and ATM results at hand. 

Therefore the results are printed here. Instructions: 1 Tear these pages out; 2 Read chapter 7. 

  

  
Figure 39 Head levels of the selected experiments following from the measured variables and following from the 

conservation of momentum 
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Figure 44 Comparison between measured turbulent energy and ATM output for the Base case 

  

  
Figure 46 Comparison between measured turbulent energy and ATM output for the No Dissipation case 
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Figure 47 Comparison between measured turbulent energy and ATM output for the Calibrated Dissipation case 

 

  

  
Figure 49 Comparison between measured turbulent energy and ATM output for the Calibrated Dissipation case only 

considering the measured turbulent energy levels up until the maximum value 
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Appendix V: Uncertainty analysis of the Arcadis Turbulence Model 

Introduction 

In appendix Q the uncertainty margins of the head levels were discussed. These margins are used 

as the basis to get an idea of the uncertainty margins in the ATM output. The uncertainty in the 

ATM output is defined by minimum and maximum turbulent energy levels that follow from the 

uncertainty in the head level input. In the following text first the head level input that will be used 

in the uncertainty analysis is discussed. The ATM output resulting from the uncertain measured 

head level input is then discussed. The uncertainty of the ATM output as the result of uncertain 

momentum head level input is discussed thereafter. 

Head level input used  to calculate the uncertainty in the ATM  

The measured head level uncertainty margins from appendix Q are repeated below with some 

additions. 

  

  
Appendix figure 21 Uncertainty limits of measured head levels. Shaded area indicates the region where constant head 

levels are possible. 

 

Appendix figure 21 shows the uncertainty limits of the measured head level input. Two additions 

to figure appendix figure 21 are made (compared to appendix figure 19). First, the area where it’s 

possible that no change occurred in the head levels is shaded. Second, the most extreme mean 

flow energy loss possible within the uncertainty margins of the measured head levels is depicted 

in the figure above. The two additions are related to the minimum and maximum uncertainty 

margin of the ATM output respectively. The minimum of the ATM output uncertainty margin is 

discussed using the shaded area in the figure above. The maximum of the ATM output uncertainty 

margin is discussed using the most extreme mean flow energy loss possible. 

The head level input used to find the minimum ATM uncertainty margin  

Within the shaded area in Appendix figure 21, it is possible to draw a straight horizontal line at 
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any height, without crossing the uncertainty limits of the measured head levels. These straight 

lines represent head level inputs that give the possibility that no mean flow energy is lost when 

water flows over the BFS (
𝑑𝐻

𝑑𝑥
= 0). Two hypothetical head level input alternatives that show no 

change in mean flow energy are depicted in appendix figure 22 (red lines). Physically, it is 

expected that downstream of a BFS mean flow energy is lost due to flow deceleration. However, 

the uncertainty margins of the measured head levels do allow for the possibility that no mean 

flow energy is lost. Therefore this assumption is used as input into the ATM for the minimum 

uncertainty limit. When no mean flow energy loss is put into the ATM, turbulence is only 

dissipated. If dissipation of turbulence is also assumed to be large, than the incoming turbulent 

energy will quickly be reduced to zero. This gives the lower limit of the ATM turbulent energy 

uncertainty margin. When it is assumed the mean flow does not lose any energy, and turbulence 

is dissipated, than the turbulent energy over the whole study is by approximation equal to zero for 

the minimum uncertainty margin. 

 
Appendix figure 22 Example of possible head level curves (red lines) that adhere to no change in mean flow energy 

 

The head level input used to find the maximum ATM uncertainty margin  

Appendix figure 21 depicts a line (for each experiment) that connects the maximum upper limit of 

the head level uncertainty margin with the minimum lower limit of the head level uncertainty 

margin. This line represents to most extreme case of mean flow energy loss possible within the 

set uncertainty margins of the measured head levels. In this most extreme case, the measured 

incoming mean flow energy was underestimated and actually equalled the mean flow energy level 

at the upper uncertainty margin. Vice versa the measured outgoing mean flow energy level was 

greatly overestimated, and actually equalled the lower limit of the uncertainty margin. The total 

mean flow energy loss in this scenario will be as large as possible within the uncertainty margins 

of the measured head levels. This extreme mean flow energy loss is used to calculate the upper 

uncertainty margin of the ATM output. For the upper uncertainty margin, it is also assumed that 

no turbulence is dissipated. This will give the most extreme ATM output possible using the head 

level input. 
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The ATM uncertainty margins  due to measured head level uncertainty  

The methods described above are used to calculate the minimum and maximum uncertainty 

margins of the ATM. This resulted in the following figures: 

  

  
Appendix figure 23 Uncertainty limits of the ATM as a result of uncertainty in the measured head level input 

 

Appendix figure 23 shows the maximum uncertainty limit for the ATM output as the result of the 

uncertainty in the ATM head level input. The minimum ATM uncertainty limit is not explicitly 

depicted in appendix figure 23. The minimum is simply located at �̅� = 0 because turbulence is 

not produced and it is assumed that the incoming turbulent energy is quickly dissipated. The 

measured turbulent energy levels, and the No Dissipation case turbulent energy levels using 

linear head level input are also depicted in the figure above to get an idea of the scale of the 

uncertainty limits for the ATM output. Note that the maximum uncertainty limit is overestimating 

the turbulent energy levels in varying degrees of magnitude. Especially the ATM runs for the 

Nakagawa & Nezu (1987) experiments are greatly overestimated. This indicates that the results 

ATM results for the Nakagawa & Nezu (1987) experiments are not very certain when using 

measured head level input. 

The maximum uncertainty limit for the ATM output greatly overestimate the actually measured 

turbulent energy levels. This was of course expected. The extremely large mean flow energy loss 

used as input into the ATM results in extremely large turbulent energy levels as output. The 

uncertainty limit of the ATM as depicted in appendix figure 23 assumes a constant rate of mean 

flow energy loss. This does not necessarily have to be the case. As the most extreme scenario, it 

can be assumed that the mean flow losses all of its energy (maximum possible head level change 

in appendix figure 21) the moment it reaches the end of the BFS. Using this assumption, the ATM 

uncertainty margin can be depicted as an area. It is assumed that due to the uncertainty in the 

head level input, the ATM output can fluctuate freely inside this area. 
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Appendix figure 24 Uncertainty limits of the ATM as a result of uncertainty in the measured head level input assuming 

all turbulence is produced at 𝒙/𝒉𝒔𝒕𝒆𝒑 = 𝟎 

 

The shaded area in appendix figure 24 gives an indication of the ATM output uncertainty limits 

when the uncertainty margins of the measured head levels and the uncertainty of the head level 

shape are considered. The shaded area in appendix figure 24 is quite large in comparison to the 

measured turbulent energy levels used to validate the ATM. The reason for this is the large 

uncertainty margins of the head level input. Conclusions based on ATM results using the 

measured head levels (raw, linear or polynomial) as input should therefore be handled with some 

reserve. However, chapter 7 showed that the ATM using measured head levels as input found 

turbulent energy levels that were in the same order of magnitude as the experimentally measured 

turbulent energies. Thus the extreme uncertainty in the ATM output as depicted in appendix figure 

24 is at least not reflected in the actual ATM output. The large uncertainty margins depicted in 

appendix figure 24 should therefore not be a reason to reject the ATM results altogether30. 

The ATM uncertainty margins  due to momentum head level uncertainty  

The uncertainty in the ATM results due to the uncertainty in the momentum head level input are 

found in a different way. 

The water depth and the flow velocity at the downstream edge of the study area are calculated 

using the conservation of momentum: 

                                                      
30 As an one time reward for reading all the way up to this appendix, a Snickers is available for every 

member of the graduation commission that asks for it. When no remark is made about the Snickers reward 

by the graduation commission during my colloquium, sadly, they will not be distributed. 
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ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 =
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 −

1
2
𝜌𝑤𝑔(ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚)

2

𝜌𝑤
𝑞2

ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚
2

 (2.7) 

Where 𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 equals the momentum at an infinitesimal distance downstream of the step. 

𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 is calculated using the following formula: 

 
𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 =

1

2
𝜌𝑤(ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 + ℎ𝑠𝑡𝑒𝑝)

2
+ 𝜌𝑤ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚�̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

2
 

 
(2.6) 

The only measurement data required to calculate 𝑀𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 is the water depth ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and the 

flow velocity �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 at the end of the step. The uncertainty in calculated downstream 

waterdepth ℎ𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 and flow velocity �̿�𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 is therefore only dependent on the 

uncertainty in those measurements. 

The uncertainty area of the ATM output as the result of the uncertainty in the momentum head 

level input is calculated in the following way: The mean flow energy loss, as the result of the BFS 

is calculated using the momentum water depths and flow velocities at the downstream location, 

as discussed in section 6.5. This process is repeated for a number of values for ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and 

�̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 (values for ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 chosen within their uncertainty margins). The 

combination of ℎ𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 and �̿�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 that resulted in the largest mean flow energy loss was then 

choses as the momentum head level input into the ATM. The resulting turbulent energy level are 

depicted in the appendix figure below. 

  

  
Appendix figure 25 Uncertainty limits of the ATM as a result of uncertainty in the momentum head level input assuming 

all turbulence is produced at 𝒙/𝒉𝒔𝒕𝒆𝒑 = 𝟎 

 

As can be seen, the uncertainty in the ATM output as the result of the uncertainty in the 

measured input is much smaller when momentum head levels are used. This gives a little bit 
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more confidence in the ATM results using the momentum head level input. However, keep in 

mind that that the conservation of momentum does not take into account the momentum loss 

due to bottom friction. Thus, some additional uncertainty in the ATM results using momentum 

head level input is expected. 

Note in the both uncertainty analyses presented above, the uncertainties in the non-uniformity 

coefficients 𝛼𝐵𝑒𝑟𝑛 and 𝛽 were not taken into account. Uncertainty in these coefficients will 

enlarge the uncertainty margins of the ATM output. 


