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Abstract 
The performance of junctions is an important part of the performance of a traffic network. 

Therefore, the selection of junctions should be carried out with great care. Currently, most junction 

design rules used to determine the preferred main junction type and lane configuration require 

junction performances as input. Junction performances are obtained through modelling, which is too 

time-consuming to perform for many junction design alternatives. Therefore, a quick selection of 

feasible junction designs is made first, using only the expected traffic demand. This first selection is 

based on operational performance, neglecting other indicators, resulting in well performing junction 

designs being easily eliminated. Therefore, a new set of junction design rules is desired. These new 

rules should be based on a combination of multiple performance indicators, while requiring only the 

traffic demand and available space as input.  

This paper proposes a methodology for the deduction of a new set of design rules. A combination of 

non-compensatory multi criteria analyses and decision tree training is used to derive junction design 

rules using operational, safety and emission performances of 24 different junction designs, for a large 

number of traffic demand patterns. Resulting design rules allow decision makers to make a quick first 

selection of feasible junction designs, showing the overall feasibility of the different designs, together 

with an insight in the performances of the junction types on the different indicators. The design rules 

show an accuracy of 89.9%. 
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Introduction 
Road planners frequently need to determine the best junction design for a specific location. For the 

selection of the junction design, they have junction design rules at their disposal. Most junction 

design rules require junction performances, which need to be obtained through modelling. Modelling 

of junction design performances is time-consuming, with the computation time increasing with a 

larger number of junction designs. Therefore, in order to reduce the overall computation time, a first 

selection of junction designs is made, based on the expected traffic demand pattern and the 

available space. This first selection is based on operational performance only, neglecting other 

indicators such as safety, emissions and noise. As shown by Bezembinder et al. (2016), this results in 

well performing junctions being easily eliminated. A new set of junction design rules is therefore 

desired. The goal of this paper is to propose a methodology for systematically deducing junction 

design rules based on multiple performance indicators. Resulting design rules should allow junction 

designers to quickly select feasible junction types while requiring only the expected traffic demand 

and the available space. 

For the systematic deduction of design rules, a large set of junction performance data is needed. 

Such data can be acquired either through field measurements or by using traffic models. Field 

measurements are expensive, and therefore undesirable if much data is required, and will result in a 

lack of comparison for different junction designs with similar traffic conditions. Therefore, data used 

in this paper is derived from traffic models, which also benefits from consistency in junction designs. 

Performances of 24 different junction designs on 100.000 different traffic demand patterns are used.  

Operational performances of the junctions are derived from the Highway Capacity Manual 2010 

methodology (Transportation Research Board, 2010); safety performances are derived using the 

Highway Safety Manual 2009 methodology (Transportation Research Board, 2009); and emission 

performances are derived with a queue length based emission model using HCM output, as proposed 

by Gasthuis (2015). 

Junction design rules have evolved over time into the rules now being used, instead of being derived 

systematically. Previously, studies have been conducted into systematically deducing junction design 

rules based on a single objective, for instance by Tarko et al. (2010), Vitins and Axhausen (2012) and 

Bezembinder et al. (2015). In all these cases, only the expected traffic demand and/or the available 

space is required as input. Both Tarko et al. (2010) and Bezembinder et al. (2015) have used decision 

tree training to categorise instances based on waiting time to deduce design rules, both with 

accurate results. In all three researches, however, only operational performances have been used as 

objectives for the design rules, neglecting other performance indicators such as safety and 

environmental indicators.  

Deducing junction design rules based on multiple objectives is more complicated.  In case of a single 

objective, the input of decision tree training consists of the junction designs with the best 

performances on the given objective. In case of more objectives, however, determining the best 

design is more difficult. Selecting the best designs for each objective would not necessarily result in 

the overall best design being selected. Weighing the objectives directly is also undesirable, due to the 

nature of the objectives, as it is ethically undesirable to compensate for a loss in traffic safety with an 

increased operational performance. Using Pareto optimality would by definition result in including 

the overall best design in the selection, but it would not necessarily return the full set of most 

feasible junction designs. This leaves multi-criteria decision making methods which do not require 
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compensation among objectives. These so-called non-compensatory methods instead select feasible 

alternatives based on consecutive evaluations of the performances of the individual objectives; 

either through elimination of undesirable designs or through the selection of best performing designs 

on the given performance indicator. Criteria for the evaluations can be selected from existing 

junction design rules. In this paper, different combinations of non-compensatory methods, based on 

current junction design rules, are tested as pre-processing step before the decision tree training.  

In this paper, the possibilities of deducing junction design rules for multiple objectives by combining 

a multi-criteria approach with decision tree training are presented. In the first section, current 

junction design rules, previous studies into junction design rule deduction and the concept of 

decision tree training are described in more detail. This is followed by a description of the models 

used to generate the dataset containing the junction design performances. The following section 

provides the framework used to derive junction design rules. Next, results are presented and 

discussed, followed by concluding remarks and recommendations for further research.  

Current junction design rules 
Current junction design rules are regarded both to illustrate the need for better design rules, and to 

find components for the selection of the best junction designs. The goal of this research is to find 

design rules suitable for the Dutch traffic situation; therefore existing Dutch design rules are 

evaluated. Junction design rules are found in a range of publication by CROW (2002, 2008, 2012, 

2015). Although all publications provide designers a set of rules for the selection of the best junction 

design, the rules differ over the publications. In this section, the most important parts of the 

different publications are reviewed. 

Generally, junction design rules can be divided into two categories, depending on the input required 

for the design rules. Most rules require junction performances, to be obtained through modelling; 

others only require the expected traffic demand. Both types of rules can either be used to eliminate 

insufficient junction designs or to select junction designs based on their performance. 

A general rule is that the type of junction needs to be in concordance with the type of roads leading 

to the junction, meaning for instance that when there is a clear distinction in importance between 

the two roads, this must be visible in the design of the junction. (CROW, 2015) 

Most of the rules base the choice of junction design on the operational performance of the junction, 

with constraints for the resulting performance on safety, noise and emissions, for the possibility of 

giving priority and for cost. In the ASVV (CROW, 2012), (static) capacities of different junction types 

are given, though for a limited number of general designs. In “Characteristics for Junctions and 

Roundabouts” (CROW, 2015), it is also expressed that for the choice of junction design, the expected 

traffic demand must be in accordance with the capacity of the junction, though without providing 

concrete capacities for all possible junction designs. A problem with junction capacity is that it 

depends on more than only the total traffic demand. For instance, fractions of left turning traffic and 

the distribution of major and minor traffic also influence the junction capacity. Besides capacity, the 

only specific requirement mentioned regarding operational performance is found in the publication 

“Turbo Roundabouts” (CROW, 2008): junctions are only feasible when the maximum delay on a 

major leg of the junction is below 35 seconds, and the maximum delay on a minor leg of the junction 

is below 50 seconds. 
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Concerning safety, the only specific rule is found in “Manual for Road Design” (CROW, 2002): For 

safety reasons, roundabout are strongly preferred over prioritised junctions, which are again 

preferred over signalised junctions. However, this preference only applies for junction designs which 

show a good enough performance on operational level and other levels. The exact requirements for 

junctions to comply with on other levels are not mentioned. No specific rules regarding emission 

performances are present in the existing manuals.  

From the rules found in the manuals, the waiting time criterion and the preference for main junction 

type seem promising for the selection of the best junction design based on the performance of the 

designs. These criteria are therefore tested on their applicability. 

Junction design rule deduction 
Han et al. (2008), Tarko et al. (2010), Vitins and Axhausen (2012) and Bezembinder et al. (2015) all 

analysed possibilities of deducing junction design rules while only requiring data readily available in 

the junction design process, being traffic demands or related properties (i.e. left turn percentage) 

and available size. In all cases, the data used for the analyses were derived from traffic models. Han, 

Vitins and Axhausen, and Bezembinder all used volume average junction delay, determined using the 

Highway Capacity Manual (Transportation Research Board, 2010); while Tarko used the number of 

stops alongside the average junction delay, determined using VISSIM. The disadvantage of using a 

micro simulation model such as VISSIM is the long calculation times; such a model can therefore only 

be used for a relatively small number of runs. In two researches (Bezembinder et al., 2015; Tarko et 

al., 2010), decision tree training was used to deduce junction design rules, showing promising results. 

These researches show that for junction design rule deduction, the use of decision tree training in 

combination with traffic models such as the HCM are promising methods. 

Research by Bezembinder et al. (2016) has shown the danger of basing the design of a junction on a 

single indicator, which was the case in all of the researches mentioned above. Hradil et al. (2012; 

2014) have systematically executed junction design processes using different objectives (capacity and 

delay, safety, emissions, noise, costs and spatial restrictions) to determine the best junction design. 

They used a multi criteria analysis with two main steps to assess different junction designs on the 

different objectives: first, junction types were eliminated using threshold values, and secondly, the 

remaining junction designs were evaluated based on the performance on different objectives. 

Although they did not deduce junction design rules, they do provide a suitable method for the 

selection of the best junction design, of which the use in junction design rule deduction will be 

analysed in this paper. 

No previous researches are performed in which junction design rules are deduced based on multiple 

objectives. However, from research into junction design rule deduction, promising features are 

obtained, such as decision tree training and the use of the HCM to obtain traffic data. Also, the use of 

elimination and evaluation in a multi criteria approach to obtain the best junction design seems 

promising. 
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Decision trees 
Decision trees are rooted trees which can be used to classify instances based on their characteristics. 

A decision tree has exactly one incoming edge per node, except for the first node, which has no 

incoming edges. A node with outgoing edges has at least two outgoing edges (in case of exactly two 

outgoing edges at each node, the decision tree is called a binary tree), and is called an internal node. 

A node without outgoing edges is called a leaf. At each internal node, a split of the instance space is 

performed based on a certain criterion (splitting criterion) depending on the characteristics of the 

instances. Each leaf is assigned to the instances found in the instance space of the leaf. A leaf can 

either be assigned explicitly to one class, in which case the decision tree is a crisp classifier, or to a 

vector of probabilities for different classes, in which case the tree is a probabilistic classifier.  

An example of a decision tree is given in Figure 1, in 

this case for the selection of a junction design based on 

waiting time. Here it is shown, for instance, that with a 

through volume of less than 1434.5, in 91.2% of the 

cases, a roundabout with design RA3 has the lowest 

waiting time. A signalised junction only performs best 

in most of the cases with a through volume higher than 

2028.5 and a major through volume higher than 497.5; 

in which case the junction with design SIG8 has the 

lowest waiting time in 59.4% of the cases. 

Decision trees can be created using decision tree 

inducers. A number of inducers are suggested in 

literature, differing in their use of split criteria 

(determining how to split the instance set), use of 

pruning (reducing the tree size after the tree growing 

process) and resulting tree type (binary, with only 

binary splits; or non-binary). The no free lunch 

theorem applies to decision tree inducers, meaning 

that no inducer is superior for all applications, but 

rather depends on the characteristics of the dataset 

used (Rokach and Maimon, 2008). 

The five most used decision tree inducers, according to Rokach and Maimon (2008), are ID3, C4.5, 

CART, CHAID and QUEST. Both ID3 and C4.5 are designed by Quinlan (Quinlan, 1987, 1993), with C4.5 

being an evolution of ID3. Both use information gain as splitting criteria. ID3 does not perform 

pruning, C4.5 performs error-based pruning. CART (Classification And Regression Trees) is developed 

by Breiman et al. (1984). CART constructs binary trees. Splits are selected either with the Twoing 

Criteria or the Gini impurity measure. CART performs pruning with Cost-Complexity Pruning. CHAID 

(Chi-squared Automatic Interaction Detection) was first proposed by Kass (1980). A Pearson chi-

squared test or likelihood ratio test is used to determine splitting criteria. As opposed to CART, CHAID 

uses multi way node splitting instead of binary splitting. No pruning is performed by CHAID. Biggs et 

al. (1991) proposed Extensive CHAID, using a more thorough method for grouping predictor 

categories. QUEST (Quick, Unbiased, Efficient Statistical Tree) was proposed by Loh and Shih (1997). 

Figure 1. An example of a decision tree, from 
Bezembinder et al. (2015) 
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QUEST also constructs binary trees, using Pearson chi-squared test to determine splitting criteria. 

Pruning is done using ten-fold cross-validation. 

A review by Lim et al. (2000) of a number of decision tree inducers for thirty-two datasets has shown 

that from a large number of decision tree algorithms, C4.5, CART and QUEST provide the best results, 

with the remark that C4.5 tends to produce much larger trees than CART and QUEST. In a research by 

Oña et al. (2013) into decision rules for accident prevention, CART, ID3 and C4.5 are used, concluding 

that the applicability of CART is limited due to its binary nature, and that C4.5 tends to generate 

extensive trees, resulting in a large number of rules. An analysis of the applicability of decision trees 

in junction design rule deduction, performed by Bezembinder et al. (2015), has shown that of CART, 

CHAID and QUEST, CART gives the highest accuracy, which is defined as the percentage of cases for 

which the decision tree selects the correct instance. 

For the choice of decision tree inducer, a subsequent analysis is performed, comparing CART, CHAID 

and QUEST with the data used in this paper. The different decision trees resulting from the different 

inducers were assessed on the types of classifications: correct classification, infeasible junction type 

selected (due to an average waiting time above the threshold value of 35 seconds), different main 

junction type selected or different junction design selected. Penalties were assigned to the different 

incorrect classification types: the highest for infeasible junction type, followed by different main 

junction type and the lowest for different junction design. 100.000 random cases were used to 

calculate the sums of the penalties for the different inducers, with the lower the penalty, the better 

the inducer. Of the different inducers, CHAID performed best; therefore, CHAID is used as decision 

tree inducer in this paper. 

Dataset 
The dataset consists of operational performance (average waiting time, maximum waiting time for 

turn flow on major/minor leg), safety performance (expected number of incidents) and emission 

performance (average exhaust of NOx and PM10) for 24 different junction designs (shown in Table 1) 

and 200.000 randomly generated traffic demand patterns (consisting of 12 flows, one for each turn 

direction), with a total flow between 500 and 8000 pcu/h. Each junction design is assigned to a size 

category, depending on the total area occupied by the junction design. The dataset is split randomly 

in a training set, used for decision tree training, and a test set, used to perform the cost-benefit 

analysis, both with 100,000 traffic demand patterns. 
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Table 1. Different junction design types 

Main type Junction 
type 

Major road approaches Minor road approaches Size 
Cat.  Entry lanes Exit lanes Circ. CR Entry lanes Exit lanes Circ. CR 

AWSC AW1 1:  1 - 0.0 1:  1 - 0.0 1 

TWSC TW1 1:  1 - 0.0 1:  1 - 0.0 1 

TW2 1:  1 - 5.0 1:  1 - 0.0 2 

TW3 2:   1 - 0.0 1:  1 - 0.0 2 

TW4 2:   1 - 5.0 1:  1 - 0.0 2 

TW5 2:  1 - 5.0 2:  1 - 0.0 2 
Signalised SIG1 1:   1 - 0.0 1:  1 - 0.0 1 

SIG2 2:  1 - 0.0 1:  1 - 0.0 2 

SIG3 2:  1 - 0.0 2:  1 - 0.0 2 

SIG4 3:  1 - 0.0 2:  1 - 0.0 2 

SIG5 3:  1 - 0.0 3:  1 - 0.0 3 

SIG6 4:  2 - 0.0 2:  1 - 0.0 3 

SIG7 4:  2 - 0.0 3:  1 - 0.0 3 

SIG8 4:  2 - 0.0 4:  2 - 0.0 3 

SIG9 6:  2 - 0.0 4:  2 - 0.0 4 

SIG10 6:  2 - 0.0 6:  2 - 0.0 4 

Roundabout RA1 1:  1 1 0.0 1:  1 1 0.0 3 

RA2 1:  1 2 0.0 1:  1 2 0.0 4 

RA3 2:  1 1 0.0 1:  1 1 0.0 4 

RA4 2:  2 1 0.0 1:  1 2 0.0 3 

RA5 1:  * 1 1 0.0 1:  * 1 1 0.0 3 

RA6 1:  * 1 1 0.0 2: * 1 1 0.0 4 

RA7 2:  2 1 0.0 2:  1 2 0.0 4 

RA8 2:  * 2 2 0.0 3:* 2 2 0.0 4 

 

Junction types 
In Table 1, the 24 different junction types are shown. Four different man junction types are used: all-

way stop controlled junctions (AWSC), two-way stop controlled junctions (TWSC), signalised junctions 

and roundabouts.  Further differentiation is made through the number of entry and exit lanes on 

major and minor approaches, the number of circulating lanes (circ.; in case of roundabouts) and the 

central reservation space (CR). Each junction type is characterised with a size category, depending on 

the total area of the junction: category 1 contains junctions with area up to 400 m2, category 2 up to 

800 m2, category 3 up to 1600 m2 and category 4 contains all junctions with an area greater than 

1600 m2. 

Performance indicators 
The operational performances are modelled using the HCM 2010 methodology (Transportation 

Research Board, 2010). For required parameters other than junction design attributes and flow rates, 

the values suggested in the HCM 2010 are used. Signal control settings were determined using the 

“Quick Estimation Method” from the HCM 2010 (Chapter 31).The model returns the flow average 

delay for each turn, from which the maximum delay for a major direction, the maximum delay for a 

minor direction and the overall average delay are determined. 

Safety performances were modelled using the HSM 2009 methodology (Transportation Research 

Board, 2009). This methodology determines both the number of fatal-and-injury incidents and the 

property-damage-only incidents, requiring only junction characteristics, signal properties and major 

and minor AADT (annual average daily traffic) flows. The AADT flows are derived from the hourly 
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flows (in pcu/h) by multiplying the hourly flow by ten, as derived from CROW (2008). The HSM 

methodology can be used to determine the number of incidents for prioritised junctions and 

signalised junctions. For roundabout junctions, the number of incidents can be calculated from the 

number of incidents on a corresponding prioritised junction (equal number of entry and exit lanes) 

using a conversion factor. For all-way stop controlled junctions, no parameters are given; therefore, 

parameters for prioritised junctions are used to calculate the number of incidents at all-way stop 

controlled junctions. According to the “Sustainable Safe” program in the Netherlands (CROW, 2013), 

the focus in increasing traffic safety lies on decreasing the number of casualties and injuries due to 

traffic incidents. Therefore, the number of fatal-and-injury incidents is used in the multi criteria 

approach. 

The emissions of NOx and PM10 were calculated using the queue length based emission model 

proposed by Gasthuis (2015), using the HCM methodology and Little’s Law to calculate queue 

lengths. For this model, only traffic flows and junction design attributes are required. Not all emission 

substances are modelled; therefore, these emission levels can only be used to compare different 

alternatives. The emission performance used in the multi criteria approach is a weighted 

combination of the emissions of NOx and PM10, using the external costs of the substances as found in 

(CE Delft, 2008) as weight factors. 

Research framework 
The research framework, as shown in Figure 2, 

consists of three steps. In the first step, a multi 

criteria assessment is performed to select the set of 

best junction designs for 400.000 different 

combinations of traffic demand pattern and size 

category. If no feasible design is returned in the 

multi criteria approach, the label ‘no feasible design’ 

is assigned. All cases are then used as input for 

decision tree training. This is done for eight different 

multi criteria assessments, resulting in eight 

different decision trees. In the third step, the 

different approaches are analysed using a cost 

benefit analysis and by determining the accuracy of 

the resulting design rules. Of the two datasets 

available, both containing 100.000 traffic demand 

patterns, as previously described in the section 

‘Dataset’, the training set will be used for step 1 and 

2. The test set will be used for step 3.  

 

Step 1. Selection of best junction designs 
For each combination of demand pattern and size category, one or more best junction designs are 

determined using a multi criteria assessment. Three components were used in the different 

approaches, of which two were derived from current junction design rules (in the section “Current 

Figure 2. Research framework 
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junction design rules”): a maximum delay criterion and a selection based on main junction type. 

These first two components are used to eliminate undesirable junction types, but they do not 

compare the performances of the junction types. Therefore, a sequential elimination method is used 

to compare the designs on the three objectives consecutively, resulting in a small set of preferred 

junction designs. Approaches were tested either with or without the delay criterion and main type 

selection, and with either of two sequential elimination methods: Lexicographic Elimination (LE), 

selecting the absolute best junction designs; or Lexicographic Semi-order (LS), selecting all designs 

within a significance level.  

The maximum delay criterion eliminates all alternatives with an average delay on a major approach 

higher than 35 seconds and/or with an average delay on a minor approach higher than 50 seconds. In 

some cases, this results in all possible designs being eliminated, in which case, “no design” is used as 

input for the decision tree training. 

The main junction type selection eliminates designs based on a preference for certain main junction 

types: roundabouts are preferred over other non-signalised junctions, which are again preferred over 

signalised junctions. Therefore, if any roundabout design is still present in the set of feasible junction 

designs, all non-roundabout designs are eliminated. Else, if non-signalised designs (AWSC, TWSC) are 

present in the set of feasible junction designs, then all signalised junction designs are eliminated.  

The sequential elimination methods, LE and LS, both regard the three performance indicators one by 

one. The sequence in which the performance indicators are regarded is: first safety, then operational 

performance and lastly emissions performance; except when a selection based on main junction type 

has been performed (which is based on safety performance of main junction types), in which case 

safety is regarded last.  

In case of LE, the junction designs are sorted based on the performance of the indicator in question, 

and the top n designs are selected (where n is 3 for the first indicator, 2 for the second and 1 for the 

third). When an eliminated design has the exact same performance as a selected design, it is 

nonetheless selected. In case of LS, all junction designs with a performance on the indicator in 

question of more than 10% worse than the best design are eliminated in each step. In some cases, 

more than one best junction design is found, because of small differences between the performances 

of the designs. In that case, all feasible junction designs are used as input for the decision tree. 

With the three components, eight different approaches are formulated, as shown in Table 2. For 

instance, approach 1 first uses the maximum delay criterion, then main junction type selection and 

finally LS; while approach 8 only uses LE. 

Table 2. Multi criteria approaches 

Approach 1 2 3 4 5 6 7 8 

Maximum delay Y Y Y Y N N N N 

Main junction 
type selection 

Y Y N N Y Y N N 

LS/LE LS LE LS LE LS LE LS LE 

Sequence of 
indicators in 
LS/LE 

1. O 
2. E 
3. S 

1. O 
2. E 
3. S 

1. S 
2. O 
3. E 

1. S 
2. O 
3. E 

1. O 
2. E 
3. S 

1. O 
2. E 
3. S 

1. S 
2. O 
3. E 

1. S 
2. O 
3. E 

O=Operational performance, E=Emissions performance, S=Safety performance 
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In the first four approaches, for size categories 1 and 2, no feasible junction designs were found for 

total traffic demands of over respectively 2500 pcu/h and 3500 pcu/h. Therefore, the ranges of total 

traffic demands over 2500 pcu/h for size category 1 and over 3500 pcu/h for size category 2 were no 

longer analysed in the remainder of the research.  

Resulting from this step is, per approach and combination of size category and traffic demand 

pattern, a set of one or more best junction designs or ‘no design’. These results are used as input for 

the next step, the decision tree training. 

Step 2. Decision tree training 
In the decision tree building process, several parameters must be chosen, which influence the size of 

the tree. In order to keep the tree size within limits, the maximum number of levels is set at three, 

the minimum number of parent and child nodes are set at, respectively, 10.000 and 5000. These 

parameters are determined heuristically.  

In the decision tree training, the explanatory variables used to split the instance spaces are based on 

the demand flows of the junction, i.e. total volume, total major volume and through volume, and on 

the fractions of the different flows, i.e. percentage of major volume or percentage of left volume, 

together with size category. The explanatory variables used in the decision tree training are displayed 

in Table 3. All explanatory variables, with exception of size category, are determined using the 

original twelve turn flows. 

Table 3. Demand variables 

Total volume Northbound volume 

Major volume Eastbound volume 

Minor volume Southbound volume 

Major through volume Major percentage 

Major left volume Minor percentage 

Minor through volume Major through percentage 

Minor left volume Major left percentage 

Major through & left volume Minor through percentage 

Minor through & left volume Minor left percentage 

Left volume Major through & left percentage 

Through volume Minor through & left percentage 

Major through  & minor left volume Left percentage 

Westbound volume Through percentage 

Size category 
  

Step 3. Performance analysis 
Analysis of the design rules resulting from the decision tree training is difficult. With one objective, 

the performance of the rules can be tested using the performances of the designs chosen in the 

design rules. With more objectives however, the performances on the different objectives cannot be 

compared directly. A possibility is to compare the sets of design rules on the different objectives 

separately, but this does not enable an overall comparison. Weighing the different objectives is 

therefore inevitable. This is done using a cost-benefit analysis, using the external traffic costs of the 

different objectives. The performance of the best performing decision tree is then analysed through 
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its accuracy, defined as the correct classification rate; and the differences in performance in case of 

incorrect classification are mapped. 

Cost benefit analysis 
The decision trees consist of leafs. Each leaf returns for each design the probability of the given 

design being the best design. For this analysis, only designs with a probability higher than 20% are 

regarded for a given leaf. For all combinations of traffic demand patterns and size categories, the 

junction designs resulting from the decision tree are determined. The yearly costs of the resulting 

designs are calculated using the operational, safety and emissions costs, using the external traffic 

costs shown in Table 4. 

The number of fatal-and-injury incidents are converted into fatal, severe and slight injuries using 

proportions of these incidents found in Dutch incident data from 1993-2009 (CROW), distinguishing 

different main junction types (roundabout, signalised and other).  

Table 4. External traffic costs (CE Delft, 2008) 

Objective Indicator  Cost Unit 

Operational Waiting time 8.48 €/hour 

Safety Fatal injury 1,782,000 €/injury 

 Severe injury 236,600 €/injury 

 Slight injury 19,000 €/injury 

Emission NOx 6,600 €/kg 

 PM10 54,500 €/kg 

 

For instance, if the average waiting time for a junction is 10 seconds, with a total hourly flow of 2000 

vehicles, the yearly costs are calculated as 10*2000*8.48*24*365=€1.49*10^10 (14.9 billion euro).  

In case of more than one feasible design per combination of traffic demand and size category, the 

design with the lowest cost is selected. If the decision tree returns no feasible design, then the 

instance is not used in the evaluation. This way, for each of the 400.000 combinations of demand 

pattern and size category, either a cost is returned, or the instance is dismissed, for each of the eight 

approaches. The overall cost of an approach is calculated as the sum of the costs of all instances. The 

number of instances for which a cost is found differs between the approaches; therefore, the 

average costs per instance for the different approaches are compared. The best approach is the 

approach with the lowest average costs. 

Accuracy 
The accuracy of the design rules resulting from the best approach, as determined in the cost benefit 

analysis, is calculated as follows. For each instance (combination of size category and traffic demand 

pattern) in the test set, the set of feasible junction designs is determined using the decision tree. 

Again, only the designs with a probability higher than 20% are taken into account. Also, for each 

instance, the best junction design is determined using the multi criteria approach as described in step 

2. If the best junction design matches one of the feasible junction designs from the decision tree, 

then the instance is accurate; else, the instance is inaccurate. The accuracy of the tree is then 

determined as the percentage of the instances regarded as inaccurate. 
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For each of the inaccurate results, the additional costs are determined, in terms of additional waiting 

time and additional expected number of incidents. For this, the waiting time and expected number of 

incidents of the best junction design are compared with the lowest waiting time and expected 

number of incidents of the designs in the set of feasible junction designs. 

Results 
For 100.000 traffic demand patterns in four size categories, the best junction types were selected 

using eight different multi criteria analyses. This resulted in eight sets of 400.000 best junction 

designs. The sets of best junction designs were used as input for decision tree training, resulting in 

eight different decision trees, one for each multi criteria approach. The resulting decision trees are 

analysed using a cost-benefit analysis. The performance of the best decision tree is studied in more 

detail; its accuracy (correct classification rate) and additional costs for inaccurate instances are 

determined. 

Cost-benefit analysis 
The different decision trees were evaluated with a cost-benefit analysis using the test set (as 

opposed to the training set used in the decision tree training). For each combination of traffic 

demand pattern and size category, the corresponding feasible junction designs were determined 

using the decision trees. With the operational, safety and emission performances of the feasible 

junction designs, the costs of the junctions were calculated. For cases with more than one feasible 

junction design, the junction design with the lowest overall costs was selected (resulting in the 

minimal costs for the given case). In approaches one up to four, the combinations of traffic demand 

and size category for which no junction design passes the maximum waiting time criterion have no 

result. These cases are therefore not used in this analysis. Due to the decision tree training, the 

number of cases with a result differs between the approaches. 

In Table 5, the average cost per junction is shown for the different approaches, along with the 

number of cases for which a feasible junction type was found. For all three indicators applies that a 

lower cost corresponds to a higher performance. 

Table 5. Average junction cost per approach 

  Approach 

  1 2 3 4 5 6 7 8 

total cost (m€) 4,6 4,4 2,7 5,8 17,5 17,1 17,6 16,1 

operational cost (m€) 4,4 4,3 2,5 5,6 17,2 16,8 17,3 15,9 

safety cost (m€) 0,12 0,12 0,11 0,12 0,15 0,15 0,13 0,13 

emission cost (m€) 0,030 0,029 0,018 0,039 0,123 0,122 0,127 0,109 

number of cases with 
result 216705 203298 198028 212299 273731 273731 273731 273731 

 

The results for approaches 5 up to 8 are significantly worse than for approaches 1 up to 4. This can 

be explained by the fact that no upper limit for waiting time was used in approaches 5-8, resulting in 

very high operational costs. In practice, this would render the decision makers a set of junction 

designs, all unfit for the given design problem. This makes approaches 5-8 undesirable.  
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The operational costs of all approaches are significantly higher than the costs for the other 

objectives. The added value of a comparison between the approaches based on the total costs is 

therefore small. However, approach 3 performs best on all three indicators.  

The number of cases showing a result differs for approaches 1-4. The cases for which no feasible 

design is found (due to excessive waiting times) are mostly the cases with the highest total traffic 

demand, and therefore usually with the highest cost, as all three indicators are positively correlated 

to the total traffic demand. The fact that approach 3 shows the lowest average cost could therefore 

be due to the fact that approach 3 has the lowest number of cases rendering a result. Therefore, an 

analysis is performed using only the cases which provide a solution for all four approaches. The 

results of this analysis, seen in Table 6, show again that approach 3 performs best on all performance 

indicators.  

Table 6. Average junction cost per approach, for cases with a solution for all approaches, with 178708 cases 

  Approach 

  1 2 3 4 

total cost (m€) 1,46 1,48 1,36 1,55 

operational cost (m€) 1,35 1,38 1,26 1,45 

safety cost (m€) 0,102 0,101 0,094 0,095 

emission cost (m€) 0,0081 0,0077 0,0075 0,0085 

 

There is a big difference in the total costs between Table 5 and Table 6. This difference can be 

explained by the fact that the cases with no solution in one or more approaches all have high traffic 

demands; and therefore high operational costs.  

For the different approaches, the cases with no solution are not the same. Comparing the result from 

the decision tree (feasible or not feasible) with the original best junction design (feasible or not) gives 

one of four results: A feasible design is returned in the decision tree for a case whose original costs 

show a feasible design (‘true true’), the decision tree returns a feasible design, but the original costs 

do not (‘false true’), a decision tree does not return a feasible design, but the original costs do 

(‘wrong false’) or neither the decision tree nor the original costs return a feasible design (‘true false’). 

The results of this analysis are shown in Table 7.  

Table 7. Classification of feasibility according to decision tree and original dataset 

  Approach 

  1 2 3 4 

True true 60% 62% 62% 59% 

Wrong false 8,6% 6,4% 6,1% 9,7% 

Wrong true 3,6% 5,2% 4,7% 4,4% 

True false 28% 26% 27% 27% 

 

Approach 3 has the highest rate of correct classifications (‘true true’ and ‘true false’), closely 

followed by approaches 1 and 2. It has the lowest number of ‘wrong falses’, but has a significantly 

larger portion of ‘wrong trues’. It is debatable which of the two categories is the least preferable: a 
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wrong false would mean that a design is sought for in a higher size category, resulting in higher 

construction costs; a wrong true could result in the construction of an insufficiently performing 

junction, but only if not properly checked. 

The previous analyses have shown that overall, approach 3 scores best. However, it could be that in 

certain areas regarding the total traffic demand and/or for different objectives, other approaches 

score better than approach 3. Therefore, the performances of the different approaches against the 

total traffic demand are compared. The patterns found in operational performance and emissions 

performance were very similar; therefore only the operational and safety performance are regarded. 

All statements regarding operational performance also apply to emission performance. 

In Figure 3 and Figure 4, the average operational (note: logarithmic scale) and safety performances 

(linear scale) for all cases within steps of 100 vehicles per hour are shown. It is shown that for size 

category 3 and 4, approach 3 performs best on operational level, and as well as the other approaches 

on safety level. In size category 1 and 2 however, approach 3 performs worse on operational 

performance with low total traffic demand. The safety performance of approach 3 in those regions, 

however, is significantly better than the performance of the other approaches.  Therefore, approach 

3 is deemed the overall best approach. 

When regarding the different components of the approaches, there is no clear preference visible. It 

would be logical that either LS (used in approaches 1 and 3) or LE (approaches 2 and 4) would 

perform better and including (approaches 1 and 2) or excluding (approaches 3 and 4) main junction 

type preference would result in better results. It would therefore be logical, with approach 3 

performing best, that the opposite of approach 3, being approach 2, would perform worst. However, 

this is not the case; it seems that the performances of the different components of the approaches 

influence each other. Therefore, no conclusions can be drawn concerning the performances of the 

isolated components. 

 

Figure 3. Average operational performance per junction per total traffic demand 
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Figure 4. Average safety performance per junction per total traffic demand 

 

Accuracy 
The accuracy of the decision tree resulting from approach 3 is determined by comparing the results 

from the decision tree for approach 3 with the original best junction designs. For each leaf in the 

decision tree, all junction designs with a share higher than 20% are used in this evaluation. For each 

case, the corresponding leaf is determined: if the best design from the original dataset is found in the 

leaf, then the case is accurate; otherwise, the case is not accurate. The accuracy of the tree is then 

the percentage of cases which were found to be accurate. The accuracy of the tree is 89.9%.  

For the non-accurate cases, the average extra waiting time per case is 17.8 seconds, which is a 

substantial increase. However, the average extra waiting time is as high as it is because of a small 

number of cases with extreme waiting times, all with a high total traffic demand. In 60% of the cases, 

the extra average waiting time is lower than 2 seconds. The highest increases in waiting time are 

found in cases with high traffic demand, where differences in waiting time between junction designs 

are substantial. On the other hand, safety mostly increases in case of non-accurate cases: on average 

the best performing junction design from the decision tree has 0.44 incidents per year less than the 

original best junction design. This shows that in cases with high traffic demand, the decision tree is 

less reliable than in cases with less traffic demand. 

In Figure 5 and Figure 6, the performances (delay and safety) of the junction designs resulting from 

the decision tree in approach 3 are shown against the performances of all junction designs in size 

category 4. The results show that with total traffic demand below 4500 pcu/h, the junction designs 

performs well on safety and also relatively well on delay. Above 4500 pcu/h, the junction designs 

which perform well on safety are eliminated based on average waiting times exceeding the limits 

posed. Therefore, junction designs with better operational performance are chosen, resulting in an 

increase in operational performance and decrease in safety. Similar patterns are found in other size 

categories. 
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Figure 5. Junction average delay, for cases in size category 
4 

 
Figure 6. Average number of incidents on junction, for 
cases in size category 4 

 

In Figure 7, the part of the decision tree for size category 3, for approach 3 is shown. Each leaf 

contains, for each junction design, the share of best junction designs and the normalised 

performances on the three indicators. A value of 0 indicates that the junction design consistently 

shows the worst performance, a value of 100 indicates a consistent best performance. This addition 

enables decision makers to incorporate their preferences regarding the different indicators in their 

choice of potential junction designs. 

 

Figure 7. Decision tree for size category 3 
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The abbreviations used in the decision tree correspond to the names in Table 1. SIG corresponds to 

signalised junctions, RA corresponds to roundabouts.  

With the resulting decision tree, a designer can select from the leaf corresponding to his case the 

feasible junction types based on the first column, containing the shares of best performing designs. 

The normalised performances show the designer an indication of the performances on the different 

objectives. These indications are also useful when the designer has a strong preference for one of the 

objectives. Ultimately, the decision tree renders the designer a set of most feasible junction types, 

from which he can make his final selection. 

Conclusions and recommendations 
The goal of this research was to propose a method for the systematic deduction of junction design 

rules, based on the junction performance regarding safety, throughput and emissions. The resulting 

design rules could only require the expected traffic demand and the space available for the junction, 

in order for the design rules to be usable without the need for additional modelling. Therefore, the 

possibilities of using different combinations of decision tree and non-comparative multi criteria 

analysis to create junction design rules were explored. The effects of the combination of different 

analyses on the performance of the resulting design rules were compared. It is found that the use of 

a threshold value for waiting time strongly increases the performance of the resulting design rules. 

The design rules resulting from the best approach showed an accuracy of 89.9%. Non-accurate 

results showed, as expected, a higher average waiting time, but also a decrease in the number of 

incidents. 

The resulting design rules provide decision makers a quick method for the first selection of feasible 

junction types, requiring only available data. The design rules incorporate performances on multiple 

objectives, and also provide an insight in the relative performance of the different junction types on 

the different objectives. This renders the designers the option of selecting feasible junction types not 

only on the overall performance, but also on the performances of the individual objectives, which is 

useful if the designer has a strong preference for a certain performance indicator.   

In this research, an existing decision tree inducer is used. However, all decision tree algorithms found 

in literature aim to isolate instances in the end nodes of trees. In the application of junction design 

rules however, further analyses will be performed with the results of the design rules. It is therefore 

less important that a single design results from the design rules; on the contrary, as a small set of 

feasible designs enables designers to adapt the junction to the preferences applying for the location 

in question. As no inducers are available which seek to group more than one design per end node, it 

may be worth to further investigate the possibilities for such an algorithm. 

Furthermore, this research has made a start into investigating which components are needed to 

produce suitable junction design rules, but no exhaustive research has been performed into 

identifying all possible components. For instance, network characteristics are not taken into account; 

further research into suitable components of junction design rules is therefore recommended. 
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