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Abstract

A common problem at hospitals is the extreme variation in daily (even hourly) workload pressure for nurses. The oper-
ating room is considered to be the main engine and hence the main generator of variance in the hospital. The purpose of
this paper is threefold. First of all, we present a concrete model that integrates both the nurse and the operating room
scheduling process. Second, we show how the column generation technique approach, one of the most employed exact
methods for solving nurse scheduling problems, can easily cope with this model extension. Third, by means of a large num-
ber of computational experiments we provide an idea of the cost saving opportunities and required solution times.
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Keywords: Scheduling; Integer programming; Branch-and-price; OR in health services

1. Introduction

During the last decades, cost pressures on hospi-
tals have increased dramatically. This emphasis on
cost containment has forced hospital executives to
run their organizations in a more business-like man-
ner. The constant challenge is to provide high-qual-
ity service at ever reduced costs. In order to achieve
this purpose, inefficient use of resources should be
identified and actions should be taken to eliminate
these sources of waste. Operations research tech-
niques are increasingly being used to assist in this
complicated task.
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As nursing services account for an important
part of a hospital’s annual operating budget, con-
centrating on this resource can lead to substantial
savings. The situation is exacerbated by an acute
shortage of nurses in all western countries, said to
be 120,000 today and expected to grow to 808,000
by 2020 in the United States alone (USDHHS,
2002). Hence, it is of vital importance that nurses
are used as much as possible at the right time and
at the right place. This goal is hard to achieve
because of two reasons. The first one is inherent in
service organizations for which human resources
outnumber all other types of resources. Unlike
machines, staff schedules are restricted by collective
agreement requirements. These form an important
hindrance for the flexibility with which nurses are
scheduled.
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A second reason is the presence of variability.
One common problem at hospitals is the extreme
variation in daily (even hourly) workload pressure
for nurses. On days when the workload is too high,
the quality of care decreases because it is too costly
to staff for peak loads. On days when the workload
is too low, there is waste. Fortunately, the situation
is not as chaotic as it seems to be at first sight. As
pointed out by Litvak and Long (2000), an impor-
tant amount of the variability can effectively be
managed and reduced by a thorough analysis of
the existing system and by appropriate decision tak-
ing. Special emphasis is put on the operating room
since it is considered to be the main engine and
hence the main generator of variance in the hospital.
It is our belief that integrating the operating room
schedule process into the nurse scheduling process
is a simple yet effective way to achieve considerable
savings in staffing costs.

This paper is organized as follows. In Section 2, a
discussion of the background together with a brief
literature review is given. In Section 3, a general over-
view of the model together with a branch-and-price
solution approach is presented. Section 4 provides
more details on both pricing problems, while a gen-
eral overview of the branch-and-price algorithm is
given in Section 5. In Section 6, some computational
issues are discussed and in Section 7, extensive
computational results are given. Finally, Section §
draws conclusions and lists some topics for further
research.

2. Background and literature review

Nurse scheduling problems are frequently
encountered in the operations research literature.
Excellent surveys on medical staff rostering prob-
lems can be found in Cheang et al. (2003) and Burke
et al. (2004). Several studies in the literature have
utilized mathematical programming techniques to
assist in finding efficient staff schedules (see, e.g.,
Miller et al., 1976; Warner, 1976; Azaiez and Al
Sharif, 2005; Beaumont, 1997; Bard et al., 2003).
These problems typically involve some kind of set
covering or set partitioning formulation. The main
drawback, however, is that these models can have
far more variables than can be reasonably attacked
directly. Therefore, the linear program (LP) is often
solved using column generation (see, e.g., Caprara
et al., 2003; Jaumard et al., 1998; Bard and
Purnomo, 2005a,b; Mehrotra et al., 2000; Mason
and Smith, 1998).

Other successful approaches to deal with real-life
nurse rostering problems include constraint pro-
gramming and heuristic procedures. Constraint pro-
gramming models have been proposed by Okada
and Okada (1988), Darmoni et al. (1995), Weil
et al. (1995), Cheng et al. (1997), Abdennadher
and Schlenker (1999), Meyer aufm Hofe (2001)
and Musliu et al. (2000). Many modern attempts
to solve complex scheduling problems involve tabu
search techniques (Dowsland, 1998; Burke et al.,
1999, 2004, 2006; De Causmaecker and Vanden
Berghe, 2003) and genetic and memetic algorithms
(Burke et al., 2001; Ozcan, 2005).

The surgery scheduling part in this paper uses
integer programming to develop a master surgery
schedule. Examples of integer programming for
operating room scheduling exist in the literature,
but mainly for case mix planning decisions; i.c.,
determining how many operating room time each
surgeon obtains, but not when the surgeons get
operating room time (e.g., Hughes and Soliman,
1985; Rifai and Pecenka, 1989; Robbins and Tun-
tiwongbiboon, 1989; Blake and Carter, 2002,
2003). Blake et al. (2002) propose an integer pro-
gramming model for building a cyclic schedule that
allocates to each surgical group a number of operat-
ing room hours as close as possible to its target
operating room hours, while at the same time keep-
ing the schedule as simple (repetitive) as possible
(see also Blake and Donald, 2002). Belién and Dem-
eulemeester (2006) propose a number of integer pro-
gramming models for building surgery schedules
with leveled resulting bed occupancy. A leveled
bed occupancy leads in many cases to a leveled
workload pattern which on its turn usually leads
to a favorable workload pattern for nurses. How-
ever, since the scheduling of nurses by itself already
entails a lot of constraints, one cannot really judge
the quality of a surgery schedule with respect to
the resulting workload distribution, without explic-
itly taking these constraints into account. Hence,
an integrated approach of both scheduling fields is
required in order to build a high-quality surgery
schedule that aims at a reduction in the staffing
costs. Also heuristic procedures have been used.
For instance, Hans et al. (2005) propose several con-
structive and local search heuristics for the robust
surgery loading problem. On a more detailed level,
patients have to be assigned to nurses. Mullinax
and Lawley (2002) have developed a mathematical
programming approach and heuristic for this
assignment problem that aims at a balanced work-
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load. Punnakitikashem et al. (2005) propose a sto-
chastic programming approach that takes into
account uncertainty.

The methodology presented in this paper has
some similarities with models for integrating the
scheduling of project tasks and employees (Alfares
and Bailey, 1997; Alfares et al., 1999). Although
several authors mention the influence of the surgery
scheduling process on the nurses’ workload (e.g.,
Litvak and Long, 2000; Jun et al., 1999), as far as
we know, no models have been proposed to inte-
grate both areas of decision making.

3. Model description
3.1. Schematic overview

Fig. 1 contains a schematic overview of the gen-
eral idea outlined in this paper. The input for the
nurse scheduling process (at the right) consists of
the restrictions implied on the individual nurse ros-
ter lines on the one hand and the workload distribu-
tion over time on the other hand. The workload
distribution itself is determined by the master sur-
gery schedule. In order to be able to deduce the
workload from the surgery schedule one also has
to know the workload contributions of each specific
type of surgery. The dotted arrow at the bottom
indicates the feedback that could be given from
the nurse scheduling process to the surgery schedul-
ing process in order to produce more favorable sur-
gery schedules with respect to the resulting
workloads. However, the freedom in modifying
the surgery schedule is limited, since the master sur-
gery schedule itself is restricted by a set of specific
surgery constraints (e.g., capacity and demand
constraints).

Collective
agreement
requirements

Contributions

Surgery
schedule
restrictions

surgery type to
nurse workload

Master

surgery
schedule

Workload Nurse
distribution schedule

Fig. 1. Schematic overview of the general idea.

In what follows we will describe a mathematical
model for implementing this idea. We focus on the
minimization of the total required number of
nurses. The reason for this objective is that it allows
for a quantitative measure of the resulting benefits,
i.e., the decrease in staffing cost. Obviously, this
quantitative benefit can easily be turned into a qual-
itative benefit by employing the saved nurse(s) on
moments when they are most needed. The computa-
tional complexity of combining surgery scheduling
and nurse rostering is, however, not the main obsta-
cle for an integrated approach. The current practice
shows us that nurse rostering is subordinate to sur-
gery scheduling in many hospitals; i.e., surgery
schedules are built first and the result is taken into
account as a preset constraint in a nurse rostering
problem instance. Hence, in order to implement
the proposed model, a structural change in the
way of organization, in the mentality of the sur-
geons will be required.

3.2. The nurse scheduling problem

The nurse scheduling problem (NSP) consists of
generating a configuration of individual schedules
over a given time horizon. The configuration of
nurse schedules is generated so as to fulfill collective
agreement requirements and the hospital staffing
demand coverage while minimizing the salary cost.
An individual’s roster line can be viewed as a
sequence of days on and days off, where each day
on contains a single shift identified by a label such
as ‘day’, ‘evening’ or ‘night’.

Coverage constraints imply how many nurses of
appropriate skills have to be scheduled for each
demand period. For ease of exposition we consider
all nurses equally-skilled throughout the rest of this
paper. To make the model described hereafter suit-
able for the more general case of the skill-dependent
coverage constraints, one would have to generate
the new roster lines separately for each skill type.
Also the operating room scheduling procedure
would have to take into account the differences in
skills between the nurses, however, the structure of
the problem remains unchanged and, hence, can
easily be adapted.

Collective agreement requirements are rules that
define acceptable schedules for individual nurses in
terms of total workload, weekends off and shift
transitions (e.g. a morning shift after a night shift
is not allowed). These rules cannot be violated and
dramatically reduce the set of feasible individual
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roster lines. We make abstraction of differences in
individual, nurse-specific preferences and only con-
sider those restrictions which are stated in the col-
lective agreement rules and consequently apply on
all nurses. The more general case of heterogeneous
nurses would only affect the NSP roster line pricing
problem.

In what follows we state the standard set cover-
ing model, which is often used for this type of prob-
lem. Let J be the set of feasible roster lines j and I be
the set of demand periods i. Let d; € R Vi€ I,
denote the required number of nurses scheduled
during period i. Furthermore, let a; be 1 if roster
line j contains an active shift during period i and 0
otherwise. The general integer decision variable
x; Vj € J, indicates the number of individual nurses
that are scheduled by roster line j. Then, the nurse
scheduling problem (NSP) can be stated as follows:

Minimize ij (3.1)
jeJ

Subject to: Za[jxj = d,’ Viel (32)
jel
x;€{0,1,2,...} VjelJ. (3.3)

3.3. Solution procedure for the nurse scheduling
problem

The integer program (IP) (3.1)—(3.3) is solved by
first solving the linear programming relaxation and
then using a branching scheme to drive the solution
into integrality. As the number of possible roster
lines an individual can work is usually too large to
allow complete a priori enumeration, column gener-
ation is often applied to solve the LP relaxation.
Typically, the pricing step involves the solution of
a dynamic programming shortest path problem
(also called the subproblem) to find the legal column
with the most negative reduced cost. Let 7; Vi € I,
denote the dual price of constraint (3.2). Then, the
reduced cost of a new column (roster line) j is given
by:

1 — Z%‘”b (3.4)

icl

The process of adding new columns continues
until no more columns price out, i.e., no more col-
umns with negative reduced cost can be found.
However, at that point the solution is not necessar-
ily integral and applying a standard branch-and-
bound procedure to the restricted master with its

existing columns will not guarantee an optimal (or
feasible) solution. Therefore, a branching scheme
has to be applied to drive the solution into integral-
ity. After branching, new columns might price out
favorably and hence have to be added to the model.

Barnhart et al. (1998) discuss appropriate branch-
ing strategies for solving a mixed integer program
(MIP) using column generation. Since NSP (3.1)—
(3.3) has identical restrictions on subsets (i.e., there
are no subsets having a separate convexity con-
straint), elaborating a branching scheme is a complex
issue. Conventional integer programming branching
on variables is not effective for reasons of symmetry
and also because fixing variables destroys the struc-
ture of the subproblem. Vanderbeck and Wolsey
(1996) developed a general rule in which one is
branching on the constraints (see also Vanderbeck,
2000). The drawback is that the branching con-
straints cannot be used to eliminate variables and
have to be added to the formulation explicitly.
Hence, each branching constraint will contribute an
additional dual variable to the reduced cost, compli-
cating the pricing problem. Since it does not lie in the
scope of this work to discuss effective branching
schemes for the NSP, we will not go into further
details about this, but instead refer the reader to
the specialized literature.

3.4. The generalized nurse scheduling problem

In the NSP the right-hand side values of the cov-
erage constraints (i.e., the ds in formulation
(3.1)—(3.3)) are considered to be fixed. Nevertheless,
coverage constraints are based on workload estima-
tions that entail the summations of individual
patient workload contributions. An individual patient
workload contribution is determined by the patient
type. The patient type can generally be described
by three dimensions. The first dimension is the type
of surgery the patient has undergone. The second
is the number of periods the patient has already
recovered. The third is the period to which the work-
load applies. For instance, some ailments may
require increased care during nights.

Instead of assuming the demand values to be fixed,
the GNSP considers them to be dependent on the
number and type of patients undergoing surgery
in the hospital at each moment. By manipulating
the master surgery schedule hospital management
can create (and choose between) a number of differ-
ent workload distributions, further referred to as
workload patterns. Let K denote the set of possible
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workload patterns that could be generated by modi-
fying the surgery schedule. These will be obtained by
enumerating all possible ways of assigning operating
blocks to the different surgeons, subject to surgery
demand and to capacity restrictions (for more
details see Section 4.2). Each workload pattern k is
described by a number of periodic demands d; €
{0,1,2,...} Vi € I. Let z; be 1 if the surgery schedule
that corresponds to workload & is chosen and 0
otherwise. Then, the problem can be stated as
follows:

Minimize ij (3.5)
jeJ

Subject to: Za,—,-xj > Zd,-kzk Viel, (3.6)
jes kek
da=1, (3.7)
kek
x;€{0,1,2,...} VjelJ, (3.8)

7z, €{0,1} VkeKk.

3.5. Solution procedure for the generalized nurse
scheduling problem

In this part, we show that the column generation
approach to solve the LP relaxation of NSP can eas-
ily be extended to cope with the GNSP. Similarly to
the roster lines, the number of possible workload
patterns is usually too large to allow for complete
a priori enumeration. Also here the process starts
with a limited subset of workload patterns and
new patterns (columns) are added as needed. There-
fore, a second subproblem has to be solved. The
generation of a new workload pattern boils down
to the construction of a new master surgery sche-
dule. The subproblem is constrained by a set of spe-
cific surgery schedule restrictions. Its objective is the
minimization of the reduced cost of a new workload
pattern. Let y denote the dual price of the workload
pattern convexity constraint (3.7). Then the reduced
cost of a new workload pattern & is given by:

0— b + Znidik.

icl

(3.10)

Obviously, the appropriate solution approach to
price out a new workload pattern strongly depends
on the characteristics of the master surgery sche-
dule. In this paper, the workload pattern pricing
problem is formulated as an IP and solved using a

state-of-the-art optimization package (CPLEX).
More details on this formulation can be found in
Section 4.2.

4. Pricing problems
4.1. Generating a new roster line

Although the generation of a new roster line hap-
pens in a standard way (shortest path problem with
side constraints solved with recursive dynamic pro-
gramming) (see, e¢.g. Caprara et al., 2003) and its
exact implementation is not really necessary for
understanding the general idea of this paper, we
briefly discuss the procedure. First, we summarize
the restrictions that apply to a roster line.

We take into account five types of requirements
when building a new roster line. First of all, a nurse
cannot work more than one shift per day. Second,
the overall number of active days, i.e., days in which
the roster line contains an active shift (day, evening
or night), cannot exceed a certain limit. Third, the
maximum number of consecutive working days is
also constrained. The same holds for the maximum
number of consecutive rest days. A sequence of
working days is further referred to as a block.
Fourth, the number of the so-called unpopular
shifts (night shifts, weekend shifts) is limited per ros-
ter line. Fifth, in a block certain shift transitions are
not allowed. For instance, a nurse cannot switch
from, say, a night shift to a morning shift without
having a rest first.

Generating a new roster line is typically done
using a dynamic programming recursion. To this
aim, we define a table giving the minimum cost that
can be achieved in days 1 to d by a roster line that,
starting from a situation in which on day d a shift s
is scheduled and in which between days d to n a cer-
tain number of active shifts f occurred, a certain
number of unpopular shifts g occurred and a num-
ber of consecutive working or rest days / (including
day d) is assigned. Formally, the entries of the table
are of the form

T(d?f7gﬂs7h)7 (41)

defined ford=1,...,n, f=0,..., foux, 2=0,...,
Gmaxs S €S, h=0,...,hns where n denotes the
number of days in the scheduling horizon, fp.x
denotes the maximum number of working days in
a roster line, g, 1S the maximum penalty in terms
of unpopular shifts, S is the set of shift types (“day,
evening, night, rest”’) and /hy,, 1S the maximum of
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both the maximum number of consecutive working
days () and the maximum number of consecu-
tive rest days (hy™).

The computation of the entries in the table is
done by starting at the beginning of the time hori-
zon and by working forward by considering an
insertion of a shift type s on the next day d of the
roster line associated with an entry already com-
puted. Before starting the recursion all entries of
table ©(d,f,g,s,h) are initialized to 999999999.
The minimal reduced cost of a new roster line can
now easily be calculated by starting the recursion
on day n and minimizing over each shift type. Once
all the calculations are done, the best new roster line
can easily be constructed backward. The overall
space complexity of the dynamic programming
recursion is

O(n - fiax * &max * IS| * Fimax) (4.2)

whereas the time complexity is (in the case that there
are no forbidden shift transitions),

O(n - finax * Gumax * |S|2 “ Pmax) (4.3)

since each entry of the table is updated by consider-
ing up to O(] S|) other entries.

4.2. Generating a new workload pattern

A new workload pattern can be obtained by
building a new surgery schedule. The capacity pre-
served for the different surgeons (or, more generally,
surgery groups) is already determined by the case
mix planning and considered to be fixed in our
application. Elective case scheduling is also left
out of consideration for two reasons. First of all,
the impact of each specific elective case on the work-
load is rather limited. It is the type of surgery that
determines the workload contribution, not the indi-
vidual case. Second, it is very hard to predict the
precise impact of the individual cases on the work-
load contribution at the moment that the nurse ros-
ters have to be built. Often, at that moment, an
important part of the elective surgery scheduling is
still to be done.

This work is concerned with cyclic master surgery
schedules. Cyclic schedules are schedules that are
repeated after a certain time period (referred to as
the cycle time). During such a cycle time there might
be a number of time periods during which surgery
cannot take place. These periods are referred to as
the inactive periods, the others are active. Typically,

cycle times are multitudes of weeks in which the
weekends are inactive periods.

In our application, a new surgery schedule is
built by solving an integer program. To find a new
workload pattern with minimal reduced cost given
the current set of roster lines and workload patterns,
the objective function minimizes the dual price vec-
tor of the demand constraints (3.6) multiplied by the
new demands. We deal with two types of constraint.
Surgery demand constraints determine how many
blocks must be preserved for each surgeon. Capac-
ity constraints ensure that the number of blocks
assigned during each period do not exceed the avail-
able capacity. Let y, (v €Randt€ T) be the
number of blocks assigned to surgeon r in period ¢
where T represents the set of active periods and R
the set of surgeons. Let ¢, be the number of blocks
required by each surgeon r. Let b, be the maximal
number of blocks available in period ¢ Let
w,i € R denote the contribution to the workload
of demand period i of assigning one block to sur-
geon r in period ¢. Then, the integer program to con-
struct a new surgery schedule (and at the same time
price out a new workload pattern k) is as follows:

Minimize Z idig (4.4)
iel

Subject to: Zyn =gq, VreR, (4.5)
teT
> y.<b VLeT (4.6)
rerR
S Wy, <du Vi€l (4.7)
reR teT
yrt € {0’ 17 27 e 7min(qm bt)}
VreR, VteT, (4.8)
dy€{0,1,2,...} Viel. (4.9)

The objective function (4.4) minimizes the
reduced cost of a new workload pattern. Observe
that the periodic demands dj are now an integral
part of the decision process, whereas these are
merely coefficients in the master problem (3.5)-
(3.9). Constraint set (4.5) implies that each surgeon
obtains the number of required blocks. Constraint
set (4.6) ensures that the number of blocks assigned
does not exceed the available number of blocks in
each period. Constraint set (4.7) triggers the d;’s
to the appropriate integer values. Finally, constraint
sets (4.8) and (4.9) define y,, and dj to be integer.

At first sight, constraint set (4.9) which requires
the periodic demands dj; to be integral seems to be
redundant from a formulation point of view.
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Indeed, due to constraint (3.6) and the fact that
a; € {0,1} and x; € {0,1,2,...} fractional demand
values d;;. would also be covered by the upper inte-
ger number of nurses. The reason why we require
the dj’s to be integral is to improve the computa-
tional efficiency of the overall branch-and-price
algorithm. We come back to this issue in Section
6.1.

5. Overview of the branch-and-price algorithm

Fig. 2 gives a schematic overview of the branch-
and-price algorithm to solve the GNSP.

The algorithm starts with a heuristic in order to
find an initial solution. The heuristic generates only
one workload pattern. This is done by building a
surgery schedule for which the sum of the resulting
quadratic demand values is minimized. The idea is
to level the workload distribution as much as possi-
ble over the time horizon and as such to avoid the
occurrence of peaks in the workload. This approach
turned out to be beneficial for the surgery schedul-
ing problem in which the expected shortage of beds
has to be minimized (see Belién and Demeculeme-
ester, 2006). The surgery schedule is built with a
mixed integer program (MIP) in which the con-
straints are given by (4.5)—(4.8) (replacing the dy’s
by d;’s) and the objective is:

Minimize Zd,z (5.1)
iel

with d; the required number of nurses in period i. To

speed up the heuristic, the d;’s are not required to be

integral. Instead, we round each d; to the next upper
integer after solution of the quadratic MIP. Given

Apply Add
heuristic column

Initial Solve

this workload pattern, new roster lines are added
until the set of roster lines (one nurse scheduled by
each roster line) completely satisfies the coverage
constraints. A new roster line is found by solving ex-
actly the same shortest path problem as in Section
4.1, but replacing the dual prices 7; by the remaining
right-hand side values d;. As such each new roster
line cuts the peaks in the remaining workload pat-
tern until all demand is covered.

After detection of an initial solution, the objec-
tive value is saved as an upper bound and both
the surgery schedule and the nurse schedule are reg-
istered. The columns making up the initial solution
are entered into the master together with a
supercolumn for each coverage constraint, i.e., a
variable having a one for the corresponding con-
straint in the constraint matrix, but also a very large
cost in the objective function. Hence, the supercol-
umns will never be chosen in a final solution, how-
ever, can always be used to find a feasible solution
of the master in each stage of the branch-and-bound
algorithm.

The algorithm starts with the LP optimization
loop in which, iteratively, a number of new roster
lines and one new workload pattern are added until
no more columns price out. Observe that the roster
lines are added until no more lines with negative
reduced cost can be found, whereas only one work-
load pattern is generated, after which the generation
of new roster lines restarts. This approach turned
out to be the most successful, given the generally
larger computation times to price out a new work-
load pattern.

Upon detection of the LP optimum, the solution
is checked for fractional z;’s (workload patterns). If

Generate new

set of master LP

columns

nurse column

Generate new
workload pattern

Generate Add workload
supercolumns pattern

LP solved to
optimality.
Start branching

Fig. 2. Schematic overview of the GNSP branch-and-price algorithm.
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there still are fractional z;’s, branching is applied in
order to drive the solution into an integral z solution
(i.e., with only one z; equal to 1 and all other equal
to 0). The algorithm does not branch until an inte-
gral x; (roster line) solution, because branching
schemes for the x; variables are not straightforward
to implement and significantly complicate the roster
line subproblem. Moreover, it provides no extra
value for the extended model, which is the subject
of this paper. Instead, we report lower and upper
bounds for the required number of nurses to cover
demand. The lower bound is the best possible solu-
tion with exactly one z; equal to 1, however one for
which the x/s are not necessarily integral. Hence,
the solution represented by the lower bound might
not be interpretable in terms of the nurse schedule
(e.g., schedule 2.5 nurses following roster line j).
The upper bound on the other hand is the best
found overall integer solution (with also integrality
of the x;’s), which is fully interpretable.

In order to increase the lower bound as much as
possible, the branch-and-bound tree is traversed in a
best-search way. After each move in the tree, the
master problem is solved with required integrality
on both the x;’s and the z;’s. Because the integral
master problem is often computationally very inten-
sive, the MIP optimizer is interrupted after a speci-
fied time interval (e.g., 10 s). If a better solution is
found, the upper bound decreases and as such the
gap between the lower and upper bound tightens.

This work is only concerned with a branching
scheme for driving the z;’s to integrality and leaves
the x;’s out of consideration. We apply a constraint
branching scheme (Ryan and Foster, 1981) which
works as follows.

First we search for the highest fractional z;. Let
this be zy. Then we select another z; > 0, say zy,
and take the first period i for which d;y # dyr. If
no such period exists, both z,’s represent essentially

Parent
node

Fig. 3. Binary branching scheme in the case of dyy < dyr.

the same workload patterns and hence one of them
can be set to 0 while its fractional value is added to
the other one. Suppose we found period i’ as the
branching period with d;y < dy». Then, we create
two nodes in the branch-and-bound tree. In the left
node, we imply dy; < dy and in the right node we
imply dy = dyp + 1. Fig. 3 visualizes this branch-
ing scheme. Else if d;y > dy we imply dyy < dypr
in the left node and dy; > dyp + 1 in the right node.

6. Computational performance issues

In this section, we present some techniques that
helped to improve the computational efficiency of
the algorithm.

6.1. Integral versus fractional demand values

It has already been mentioned at the end of Sec-
tion 4.2 that we imply the d;;’s to be integral in the
workload pattern pricing problem. Although this is
not necessary from a formulation point of view, it
has a substantially positive impact on the overall
computational efficiency of the algorithm.

Implying integrality of the d;’s affects the com-
putation time in two ways. On the one hand, there
is a negative impact, because the pricing problem
itself becomes more complex. On the other hand,
there is a positive impact as far fewer columns can
be found with negative reduced cost. Preliminary
results indicate that this positive effect dramatically
exceeds the negative effect. Consequently, the mas-
ter LP is solved much faster when integrality of
the d;’s is implied. Moreover, requiring integral
demand values in the workload patterns makes the
LP optimal solution substantially less fractional in
terms of the x;’s. Hence, finding a global optimum
(with both integrality on the z;’s and on the x;’s)
turns out to be much easier. In our application the
gap between the lower and upper bound becomes
much smaller.

6.2. Upper bound pruning for the workload pattern
pricing problem

Basically, we are no longer interested in finding
the column with the lowest reduced cost from the
moment we know that this reduced cost will be posi-
tive anyway. Hence, we can act as if we already
found a solution with reduced cost 0 by providing
an appropriate upper bound. For the workload
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pattern subproblem, this observation yields dra-
matic time savings.

The reduced cost expression (3.4) consists of a
fixed part and a variable part. By setting the upper
bound equal to the fixed part with reverse sign, we
act as if we found already a new column with
reduced cost equal to 0. The reduced cost of a work-
load pattern is given by 0 —y+ >, ,mdy. Conse-
quently, we provide y as an upper bound in the
integer program (4.4)—(4.9).

Note that, since generating a new roster line is
done with a dynamic programming approach using
backward recursion, upper bound pruning cannot
be applied here. As an alternative, we wrote an enu-
meration algorithm including both dynamic pruning
and pruning based on bound comparisons. Dynamic
pruning occurs if a state has already been visited at
lower cost. For pruning based on bound compari-
sons we need an upper and a lower bound for the
best new roster line. Since the reduced cost of a
new roster line is given by 1 — > ., a;;m;, we can pro-
vide —1 as an initial upper bound. Obviously, this
bound is decreased each time a better roster line is
found. Starting from a certain day, a lower bound
on the minimal cost path could be obtained by
selecting for each remaining day the shift with the
lowest total of corresponding dual prices, i.e.,

MIN{ MIN {idﬂ»},O} vd (6.1)
seS\{rest}

and summing up only the (fm. — f) lowest values
amongst these. In other words, for calculating the
lower bound, we relax all constraints but the not-
more-than-one-shift-per-day constraint and the
maximum number of active days constraint. Preli-
minary tests, however, indicated that this enumera-
tion approach is outperformed by the dynamic
programming approach.

6.3. Two-phase approach for the workload pattern
pricing problem

During the LP optimization loop it is not neces-
sary to find the column with the most negative
reduced cost, any column with negative reduced
cost will do. Again, particularly for the computa-
tionally intensive workload pattern pricing problem,
using this observation dramatically decreases the
computation times. To guarantee optimality of the
LP solution, a two-phase approach is applied for
the workload pattern pricing problem. In the first
phase, a certain time limit is set for the MIP opti-

mizer. Only if no new workload pattern is found
with negative reduced cost within this time limit,
the algorithm enters the second phase. In this phase
the time limit is undone and the optimizer is
required to search until a feasible solution is found
with negative reduced cost or it is proven that such
a column does not exist.

6.4. Lagrange dual pruning

It is well known that Lagrangian relaxation can
complement column generation in that it can be used
in every iteration of the column generation scheme
to compute a lower bound to the original problem
with little additional computational effort (see, e.g.,
Van den Akker et al., 2002; Vanderbeck and Wolsey,
1996). If this lower bound exceeds an already found
upper bound, the column generation phase can end
without any risk of missing the optimum. Using
the information from solving the reduced master
and the information provided by solving the pricing
problem for a new workload pattern k, it can be
shown (see, e.g., Hans, 2001) that a lower bound is
given by 0 + RC,0, where J is the objective value
of the reduced master, RCy, is the reduced cost of a
newly found workload pattern k and 0y, is a binary
variable equal to 1 when RCy is negative and set to
zero, otherwise. This lower bound is referred to as
the Lagrangian lower bound, since it can be shown
that it equals the bound obtained by Lagrange
relaxation.

Obviously, if the pricing procedure finds a nega-
tive reduced cost column during the first phase and
hence does not enter the second phase (see Section
6.3) this lower bound cannot be used, because the
workload pattern pricing problem has not been
solved to optimality.

Using CPLEX, it is very easy to set upper
bounds, time limits and limits on the number of fea-
sible solutions. Moreover, it can easily be verified if
either the problem has been solved to optimality or
optimization has prematurely ended because of an
insufficient time limit.

7. Results
7.1. Test set
To test the algorithm, we started from the same

set as the one introduced in Belién and Demeuleme-
ester (2006) for testing the surgery scheduling level-
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Table 1
Factor settings in surgery scheduling test set

Factor Number of blocks Number of Division of requested Number of patients per LOS
setting per day surgeons blocks surgeon

1 3-6 3-7 Evenly distributed 3-5 2-5
2 7-12 8-15 Not evenly distributed 3-12 2-12

ing algorithms. All surgery scheduling problems in
this set involve a cycle time of 7 days. The last two
days are not available to allocate operating room
time (weekend), which is common practice. The
problems differ with respect to five factors. These
are as follows: (1) the number of time blocks per
day, (2) the number of surgeons, (3) the division of
requested blocks per surgeon, (4) the number of
operated patients per surgeon and finally (5) the
length of stay (LOS) distribution. If we consider
two settings for each factor and repeat each factor
combination three times, we obtain 2° x 3 = 96 test
instances. Table 1 contains the settings for these five
factors. Some of the factor settings require some fur-
ther explanation.

The number of blocks per day is drawn from a
uniform distribution with bounds 3 and 6 in the first
setting and 7 and 12 in the second setting. A block is
defined as the smallest time unit for which a specific
operating room can be allocated to a specific sur-
geon (or surgical group). Note that, due to large
set-up time and costs, in real-life applications the
number of blocks per day in one operating room
is usually 1 or 2, i.e. each surgical group has the
operating room for at least half a day. Hence, con-
sidering more blocks can be seen as a way of consid-
ering more operating rooms as there is no difference
from a computational point of view. The third
factor indicates whether or not the requested blocks
are evenly distributed among all surgeons; e.g., if
there are 20 time blocks and five surgeons, each sur-
geon requires four time blocks in the evenly distrib-
uted case, whereas in the unevenly distributed case
huge differences can occur. For the LOS in factor
5 we used discrete multinomial distributions with
mean dependent on the factor setting and having
the shape of a continuous exponential distribution.
This test set is available from the author’s website
(http://www.econ.kuleuven.be/public/NDBAE13/
GNSP.zip).

Next, we generated some weights w,,; defining the
contributions to the workload of period i of allocat-
ing a block to surgeon r in period ¢. These weights
vary linearly with the number of patients of surgeon

r operated in period 7 that are still in the hospital in
period i. The patient’s workload contribution gener-
ally decreases the longer the patient has already
recovered in the hospital. In our test set the workload
demand periods coincide with the shifts. Further-
more, we set the contribution to a ‘day’ shift two
times as large as the one to an ‘evening’ shift and four
times as large as the one to a ‘night’ shift. Obviously,
although attempting to represent realistic scenarios,
these contributions are chosen somewhat arbitrarily.

Third, we composed a set of collective agreement
rules which apply on individual roster lines. The
scheduling horizon amounted to 4 weeks or 28 days
(= n). The maximum number of days an active shift
could be scheduled (‘day’, ‘evening’ or ‘night’) was
set to 20 (= fumax)- Shifts during the weekends were
marked as unpopular shifts: day and evening shifts
got a penalty of 1, night shifts got a penalty of 2.
The maximum number of consecutive working days
was set to 6 (= 7™ = hpay) and the maximum num-
ber of consecutive rest days was set to 3 (= Ay™).
Furthermore, we distinguished between two scenar-
i0os: a hard constrained scenario and a flexible one.
Collective agreement rules in the hard constrained
scenario differ from those in the flexible scenario
on the following two points:

¢ In the hard constrained scenario there is only one
shift type allowed within each block. In other
words, no shift transitions between different shift
types can occur without scheduling a rest first. In
the flexible scenario all shift transitions are
allowed, except the following three: a ‘night’ shift
followed by a ‘day’ shift, a ‘night’ shift followed
by an ‘evening’ shift or an ‘evening’ shift fol-
lowed by a ‘day’ shift.

e In the hard constrained scenario the maximal
penalty with respect to unpopular shifts is set to
4, whereas in the flexible scenario it is set to 8

(= Zmax)-

The branch-and-price algorithm was coded in
C++ and linked with the CPLEX callable optimiza-
tion library version 8.1 (ILOG, 2002). The tests were
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Table 2
Lower and upper bounds for the NSP and the GNSP

No. Problem Flexible scenario

Hard constrained scenario

NSP GNSP NSP GNSP
Ib ub b ub b ub b ub
1 d00000_0 15 17 13 15 19 19 16 17
2 d00000_1 26 28 25 27 34 35 31 31
3 d00000_2 25 27 23 25 32 32 28 29
4 d00001_0 40 42 39 41 49 50 47 48
5 d00001_1 45 47 44 46 54 54 52 53
6 d00001_2 94 96 92 94 112 113 109 110
7 d00010_0 34 36 32 35 43 43 40 40
8 d00010_1 40 42 38 40 49 50 47 47
9 d00010_2 28 30 26 27 34 35 32 33
88 d11101_0 96 98 94 96 114 115 112 113
89 d11101_1 99 102 97 99 119 120 116 116
90 d11101_2 122 125 119 121 145 146 142 143
91 d11110_0 83 85 80 82 101 102 96 96
92 d11110_1 111 113 109 111 138 139 132 132
93 d11110_2 58 60 56 58 73 74 67 68
94 dI1111_0 252 254 249 252 303 304 296 297
95 dIiiti_1 119 122 116 119 143 144 139 140
96 di1111_2 135 137 131 133 162 163 156 157
Average 70.18 72.43 68.33 70.44 86.07 86.73 81.91 82.61

done on a 2.4 GHz Pentium 4 PC under the Win-
dows XP operating system.

7.2. Savings

Table 2 contains the lower and upper bounds for
both the NSP and the GNSP. In the NSP, a surgery
schedule is generated randomly. The resulting work-
load pattern contains the (fixed) right-hand side val-
ues of the coverage constraints. Then, the NSP is
solved using column generation. In the GNSP new
surgery schedules (and hence resulting workload
patterns) are generated during search if needed.
We distinguish between the flexible and the hard
constrained scenario. To give an idea of the variabil-
ity, the detailed bounds are provided for the first 9
and the last 9 problems of the problem set. The last
line contains the average bounds over the whole set.
Observe that the name of each problem (dijklm_n)
contains the information about the surgery schedul-
ing subproblem: i stands for the setting of the first
factor in Table 1 (0 for the first setting, 1 for the sec-
ond), j for the second one, etc. . ., and #n for the iter-
ation number.

From these results, one may conclude the follow-
ing. First have a look at the upper bounds, which are
after all the solutions that will be worked with.

Although it is not guaranteed that the upper bound
will be better (one might be lucky in the NSP and find
the same or even a better overall integer solution),
the upper bounds for the GNSP are generally better
than those for the NSP. We compared them using a
one-tailed paired 7-test. The extremely small p-val-
ues obtained indicate that the differences are statisti-
cally significant both for the flexible and for the hard
constrained case. The same results are obtained for
the lower bounds. Unlike the upper bounds, the
GNSP lower bounds are of course guaranteed to be
at least as good as the NSP lower bounds.

When comparing the lower bounds for the NSP
with the upper bounds for the GNSP, both scenar-
ios entail different conclusions. The average lower
bound for the NSP is lower than the average upper
bound for the GNSP in the flexible scenario,
whereas the reverse is true in the hard constrained
scenario. Both differences turned out to be signifi-
cant using a one-tailed paired 7-test (again extre-
mely small p-values). This observation can easily
be explained. The stricter the collective agreement
rules, the harder it is to nicely fit the nurse rosters
into the required workload pattern in the NSP. As
the workload pattern can be adapted in the GNSP,
the GNSP includes more possible savings in the case
of severe collective agreement requirements.



J. Belién, E. Demeulemeester | European Journal of Operational Research 189 (2008) 652-668

7.3. Interpretation of the savings

In the previous section, we concluded that inte-
grating the surgery scheduling process with the
nurse scheduling process may yield important sav-
ings in terms of the required nurses to hire. It is rel-
atively easy to identify the shifts during which too
many nurses are working. However, identifying
and quantifying the main cause is much more diffi-
cult. In this paragraph, it is shown how the results
from the integrated approach can be used to quan-
tify the shares of the two types of waste.

First, an unfavorable workload pattern may con-
tain many workload demands that slightly exceed
the workforce of x nurses, but that are dramatically
inferior to the workforce of x + 1 nurses. In terms of
the dy’s one could think of many dj’s having a
small decimal part, e.g., 6.1, 8.2, 4.05, etc... This
type of waste is referred to as the waste due to the
workforce surplus per shift. In many hospitals this
kind of waste is taken care of by simply scheduling
x nurses instead of x + 1 nurses during those shifts.
The result is a group of overworked nurses and an
almost certain decrease in the quality of care. This
illustrates how the GNSP approach can also be very
useful for optimizing qualitative instead of quantita-
tive objectives.
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Second, waste also originates from the inflexibil-
ity of the roster lines, due to strict general agreement
requirements. Because of this, no set of roster lines
can be found that perfectly fit with the workload
demand. This source of waste is further referred to
as waste due to the inflexibility of roster lines.

Table 3 gives an overview of the importance of
both sources of waste. We again distinguish between
the flexible scenario and the hard constrained sce-
nario. For each scenario there are three columns.
The first column contains the total waste in terms
of overstaffing in the NSP compared with the
GNSP. These numbers are obtained by subtracting
the upper bounds for the GNSP from those for the
NSP. The second and third columns indicate the
parts of this total waste that are due to the work-
force surplus per shift and to the inflexibility of
roster lines. These numbers can easily be calculated
as follows. First, for both the NSP and the GNSP
we make the sum of the (integral) demands of the
chosen workload pattern. Call this number the
total required workforce (=), ,d; for the NSP
and ), >, xduzi for the GNSP). Next, divide this
number by the workforce per nurse (= fpax In
our application). This gives the minimal number
of nurses that would be needed and can be
obtained in the case of fully flexible roster lines.

Table 3
Interpretation of the savings
No. Problem Total Flexible scenario Total Hard constrained scenario
waste Waste due to Waste due to waste Waste due to Waste due to
workforce inflexibility of workforce inflexibility of
surplus per shift roster lines surplus per shift roster lines
1 d00000_0 2 1.2 0.8 2 1.2 0.8
2 d00000_1 1 1.2 -0.2 4 1.4 2.6
3 d00000_2 1 2 -1 3 1 2
4 d00001_0 1 1.2 -0.2 2 0.6 1.4
5 d00001_1 2 1 1 1 0.2 0.8
6 d00001_2 2 1.6 0.4 3 0 3
7 d00010_0 1 1.4 —-0.4 3 1 2
8 d00010_1 1 1.6 -0.6 3 1.6 1.4
9 d00010_2 1 1.8 —0.8 2 —0.6 2.6
88 d11101_0 2 1.4 0.6 2 0.6 1.4
89 d11101_1 2 1.8 0.2 4 0.2 3.8
90 d11101_2 1 22 -1.2 3 0.2 2.8
91 d11110_0 2 1.6 0.4 6 0.8 5.2
92 d11110_1 2 0.8 1.2 7 0.6 6.4
93 di1110 2 1 2 -1 6 1.8 4.2
94 d11111.0 2 1.2 0.8 7 0.2 6.8
95 ditti 1 2 1.8 0.2 4 -0.6 4.6
96 di1111_2 1 2 -1 6 0.6 5.4
Average 1.58 1.43 0.16 4.11 0.28 3.84
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The difference between these numbers for the NSP
and GNSP is the waste due to the workforce surplus
per shift. The difference between the total waste and
the waste due to the workforce surplus per shift is
the waste due to the inflexibility of roster lines.
Observe that these wastes may be negative (e.g.,
the waste due to workforce surplus per shift for
problem d00000_2 is —1). This situation occurs
when the gain with respect to one source of waste
is so large that the best found solution for the
GNSP includes a limited sacrifice with respect to
the other source of waste.

The results in Table 3 clearly indicate that the
importance of the source of waste strongly depends
on the strictness of the general agreement require-
ments. The stricter these requirements are, the larger
is the share of the waste due to the inflexibility of the
roster lines.

7.4. Computational results

Tables 4 and 5 contain the computational results
for the flexible respectively hard constrained sce-
nario. For the NSP, both the computation time
and the number of generated roster lines are given.
For the GNSP also the number of generated
demand patterns and the number of nodes in the
branch-and-bound tree are provided.

Obviously, the required computation times for
the GNSP exceed those for the NSP. However, tak-
ing into account the explosion of the feasible solu-
tion space for the GNSP compared to the NSP,
the increase in computation time is rather small.
We can conclude that column generation is a viable
technique for solving the GNSP.

If we compare the flexible scenario with the hard
constrained scenario, a couple of things attract our
attention. First of all, observe that for the NSP the
computation times for the flexible scenario surpass
those for the hard constrained scenario, whereas
for the GNSP the computation times for the hard
constrained scenario exceed those for the flexible
scenario. For the NSP this difference is statistically
significant (extremely small p-value for a two-tailed
paired 7-test) and easy to explain. In the flexible
scenario, much more legal roster lines exist and
hence much more roster lines with negative reduced
cost are found during the search process (on average
207.25 versus 106.07). Moreover, the time needed to
price out a new roster line is also larger since the fea-
sible state space contains more legal states.

For the GNSP the difference in computation time
is not statistically significant at the 5% level (p-value
of 0.113 for a two-tailed paired 7T-test). As again the
number of generated roster lines is significantly
smaller (very small p-value for a two-tailed paired

Table 4
Computational results for the flexible scenario
Nr. Problem NSP GNSP
Time (milliseconds) Roster lines Time (milliseconds) Roster lines Workload patterns Nodes
1 d00000_0 43484 150 44,422 183 2 0
2 d00000_1 44063 174 51,000 196 2 0
3 d00000_2 46423 235 45,438 213 2 0
4 d00001_0 44078 173 46,000 221 2 0
5 d00001_1 43829 167 45,172 190 2 0
6 d00001_2 44844 212 48,829 238 3 0
7 d00010_0 45266 211 70,359 274 2 0
8 d00010_1 46311 237 185,623 535 17 8
9 d00010_2 44594 208 166,892 640 32 13
88 d11101_0 44390 213 47,984 243 2 0
89 d11101_1 44953 228 52,031 257 2 0
90 d11101_2 44734 230 56,438 280 2 0
91 d11110_0 46203 252 358,811 555 30 15
92 d11110_1 45265 238 1,765,257 815 128 59
93 d11110_2 47359 200 423,125 507 28 14
94 d11111_0 46360 347 69,266 381 2 0
95 dilit_1 45719 243 59,063 319 2 0
96 di111e.2 45048 237 251,970 512 14 6
Average 44146.04 207.25 99008.57 310.31 5.93 1.95
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Table 5
Computational results for the hard constrained scenario
No. Problem NSP GNSP
Time (milliseconds) Roster lines Time (milliseconds) Roster lines Workload patterns Nodes

1 d00000_0 453 46 66,953 263 8 4

2 d00000_1 500 70 55,359 304 18 6

3 d00000_2 422 64 11,781 111 2 0

4 d00001_0 468 77 609 81 2 0

5 d00001_1 453 74 687 95 3 0

6 d00001_2 672 120 782 127 2 0

7 d00010_0 4250 113 216,064 470 79 43

8 d00010_1 953 113 323,236 448 129 47

9 d00010_2 750 80 201,970 459 102 39
88 d11101_0 2125 122 1656 130 2 0
89 d11101_1 1531 126 2625 146 2 0
90 d11101_2 1610 149 2109 159 2 0
91 d11110_0 1938 123 456,191 439 58 17
92 d11110_1 1500 152 1,228,851 508 92 45
93 di1110_2 5438 101 102,470 310 10 1
94 di1111.0 8000 251 12,265 264 2 0
95 ditita 4859 143 19,359 185 2 0
96 ditite 2 4922 153 1,809,557 600 221 83

Average 1215.52 106.07 153927.85 226.05 28.08 10.81

T-test), the higher computation times for the con-
strained scenario must be produced by the higher
number of generated workload patterns and the
higher number of nodes in the branch-and-bound
tree. The differences in number of generated work-
load patterns and in nodes in the branch-and-bound
tree are found to be significant (very small p-values
for two-tailed paired T7-tests). This can easily be
explained as follows. In the flexible scenario, it is
unlikely that an extra workload pattern improves
the overall solution. Thanks to the flexibility in
the roster lines, an already very good solution can
be found using a limited set of workload patterns.
In the hard constrained case on the other hand,
the inflexibility of the roster lines might obstruct
the detection of a good solution. In this case, it is
far more likely that adding a new workload pattern
improves the overall solution.

The results above suggest that the GNSP is easier
to solve if the collective agreement requirements are
less strict, whereas the reverse is true for the NSP.
However, it must be clear that this only holds for
a specific range of strictness. First of all, observe
that, if there are no collective agreement require-
ments at all, both the NSP and the GNSP will be
straightforward to solve. However, this extreme
case is not realistic. Less strict transition constraints
than the ones in the flexible scenario do not occur in
real life, so it makes no sense to further relax these

constraints. Obviously, a nurse cannot be required
to work every shift in a given time horizon (e.g., a
month). So, a maximum limit on the total number
of active shifts (here, f,.x = 20) must also be taken
into account. In the same reasoning, the maximal
number of consecutive working shifts (=6) cannot
be relaxed either. Given this minimal strictness on
the collective agreement requirements, the required
computation time to price out a new roster line
increases (due to the larger search space), if we relax
any of the other constraints.

The question is, however, whether this time
increase can be compensated by the fact that fewer
columns have to be generated. Our results indicate
that this is not the case for the NSP. For the GNSP,
however, the total computation time decreases pro-
vided that the other constraints are not too much
relaxed. Specifically, further relaxation of the maxi-
mum unpopular shifts penalty decreases the compu-
tation time (as shown in the computational results
of the paper). However, if we combine this relaxa-
tion with more relaxations (e.g., dropping the con-
straint on the maximal number of consecutive rest
days), the further increase in the computation time
needed to price out one column cannot be compen-
sated anymore.

In conclusion, starting from the realistic assump-
tion of a minimum of strictness on the collective
agreement requirements, the NSP is always easier
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to solve the more hard constraints are added (smal-
ler solution space). For the GNSP, however, this is
not always the case.

As a final remark we note that a large part of the
computation time goes to the calculation of an over-
all feasible solution in order to detect an upper
bound after each move in the branch-and-bound
tree in the GNSP and at the end of the column gen-
eration process in the NSP.

8. Conclusions and further research

This paper has presented an integrated approach
for building nurse and surgery schedules. It has been
shown how the column generation technique, often
employed for solving nurse scheduling problems,
can easily be extended to cope with this integrated
approach. The approach involves the solution of
two types of pricing problems, the first one is solved
with a standard dynamic programming approach
using recursion, the second one by means of a
state-of-the-art mixed integer programming opti-
mizer. A constraint branching scheme was proposed
to drive the solution into integrality with respect to
the workload patterns while the integrality of the
roster lines was left out of the scope of this paper.
Finally, some techniques were presented that helped
to improve the computational efficiency of the
branch-and-price algorithm.

Our computational results indicate that consider-
able savings could be achieved by using this approach
to build nurse and surgery schedules. We simulated a
large range of surgery scheduling instances and dis-
tinguished between a flexible and a hard constrained
scenario with respect to the collective agreement
requirements. Our conclusions can be summarized
as follows. First of all, column generation is a good
technique to deal with the extra problem dimension
of modifying surgery schedules. Second, the results
from the integrated approach can be used to quantify
the shares of the two sources of waste: waste due to
the workforce surplus per shift and waste due to the
inflexibility of roster lines. Third, unlike the NSP,
the GNSP turns out to become harder to solve when
the collective agreement requirements are more
strict.

Obviously, in real-life hospital environments it is
not so easy to modify the master surgery schedule.
As the surgery schedule can be considered to be
the main engine of the hospital, it not only has an
impact on the workload distribution for nurses,
but also on several other resources throughout the

hospital. Think for instance about anaesthetists,
equipment, radiology, laboratory tests and consul-
tation. This observation yields a negative as well
as a positive note for the reasoning in this paper.
The negative note is that the possible savings
obtained through integrating the nurse and the sur-
gery scheduling process are in real-life probably
much smaller, due to the smaller flexibility with
which surgery schedules can be modified. The posi-
tive note is that not only savings in nurse staffing
costs are possible, but also in other related resource
types, by integrating the scheduling of these
resources with the surgery scheduling process. This
work clearly shows the benefits of integrating sched-
uling processes in health care environments and
moreover proposes a methodology for implement-
ing the heart of a supporting ICT infrastructure.

Possible topics for further research include the
application of this approach in a real-world envi-
ronment involving a detailed report on the experi-
enced merits and pitfalls. Furthermore, the model
could be further refined, for instance, by taking into
account individual constraints on the nurse rosters.
This might also improve the efficiency of the
approach. Whenever surgery schedules are gener-
ated, they form a set of constraints to be satisfied
for nurses, providing less number of shift patterns
(roster lines) for each nurse, narrowing their domain
(hence, the search space). Finally, it would be inter-
esting to develop similar techniques for one or more
of the other resource types stated above.
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