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This paper evaluates the practice of determining staffing requirements in service systems with random cyclic demands by using a series 
of stationary queueing models. We consider Markovian models with sinusoidal arrival rates and use numerical methods to show that the 
commonly used "stationary independent period by period" (SIPP) approach to setting staffing requirements is inaccurate for parameter 
values corresponding to many real situations. Specifically, using the SIPP approach can result in staffing levels that do not meet specified 
period by period probability of delay targets during a significant fraction of the cycle. We determine the manner in which the various 
system parameters affect SIPP reliability and identify domains for which SIPP will be accurate. After exploring several alternatives, we 
propose two simple modifications of SIPP that will produce reliable staffing levels in models whose parameters span a broad range of 
practical situations. Our conclusions from the sinusoidal model are tested against some empirical data. 

anagers of service establishments in which the 
timing of customer demands for service is random 

and cyclic commonly adjust staffing levels in an attempt to 
provide a uniform level of service at all times. Examples 
include staffing of toll plazas (Edie 1954), airline ground 
services (Stem and Hersh 1980, Holloran and Byrne 1986, 
Brusco et al. 1995), tele-retailing (Andrews and Parsons 
1989), banking (Brewton 1989), telecommunications (Segal 
1974, Sze 1984), hospitals (Agnihothri and Taylor 1991), 
police patrol (Larson 1972, Kolesar et al. 1975, Green 
and Kolesar 1984, Taylor and Huxley 1989), and newspa- 
pers (Gopalakrishnan et al. 1993). The 800-number tele- 
phone call centers that increasingly provide a diversity of 
customer service and marketing functions are systems for 
which such staffing issues are important (Brigandi et al. 
1994). 

Developing specific staffing schedules in such service 
systems can also be difficult because implementations must 
take into account complex scheduling constraints. These 
include honoring employees' preferred start times, quitting 
times, and shift lengths; adhering to legal or policy limits 
on the number of consecutive hours and/or days worked; 
restricting the patterns of days off and on duty; providing 
required lunch and coffee breaks, and the like. Good sched- 
ules must also reflect the economic trade-offs that arise 
from shift-pay differentials, part-time pay, and overtime. 
A fundamental requirement is that there be enough staff on 
duty at all times to meet targeted service levels. In applica- 
tions described in the literature, these staffing requirements 

are typically determined by first dividing the workday or 
workweek into "planning periods" such as shifts, hours, 
quarter-hours, etc. Then a series of stationary queueing 
models, most often M/M/s type models, is constructed, one 
model for each planning period. Each of these models is 

independently solved for the minimum number of servers 
needed to meet the service target in that period. We call this 
method of setting staffing requirements the stationary inde- 
pendent period by period (SIPP) approach. The period-by- 
period staffing requirements so derived are then used to set 
actual workforce schedules. In some businesses managers 
do this heuristically while in others these staffing require- 
ments become the right-hand sides of key constraints in 
a large optimization model that derives the actual staffing 
schedule. 

Despite its very widespread use, there is reason to sus- 

pect that the SIPP approach does not always work well. The 

assumptions implicit in using a series of stationary queue- 
ing models to set staffing requirements are that (1) delays 
in consecutive planning periods are statistically indepen- 
dent of one another; (2) within each planning period the 

system achieves steady state; and (3) the arrival rate does 
not change during the planning period. The extent to which 
these assumptions are violated and result in inappropriate 
staffing levels obviously depends on the system parameters 
as well as on how the staffing levels themselves change 
from period to period. Our earlier research, on queueing 
systems in which demand rates are time-varying but staffing 
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remains constant, showed that the accuracy of stationary 
approximation models is strongly dependent on the magni- 
tude of the service rate and on the relative amplitude of the 
arrival rate (Green et al. 1991, Green and Kolesar 1995). 
Therefore, in thinking about systems with variable staffing, 
there was reason to doubt that a period-by-period stationary 
approach would always correctly estimate the number of 
servers needed to achieve desired performance. The results 
described in this paper confirm that these doubts were jus- 
tified. In particular, in ?4 we examine data from an actual 
financial services call center and show that implementing 
the SIPP staffing levels in this facility would result in delay 
probabilities that violate the target in a number of planning 
periods, sometimes quite dramatically. 

While use of the SIPP approach is common in indus- 
try, there has been little published research exploring the 
conditions when using such stationary models of nonsta- 
tionary environments is reasonable. (A few papers have 
tested this approach in specific contexts-see Green and 
Kolesar 1989, Kolesar et al. 1975, and Kwan et al. 1988.) 
The potential problems of using a stationary model for 
a system with time-varying arrivals have been recognized 
by Sze (1984) and by Thompson (1993). Sze (1984) 
explored a specific operator staffing application in which 
demands clustered around the hour and half-hour and 
used a smoothing function to deal with this "lumpy" 
demand pattern. Thompson (1993) proposed the use of 
a "modified" customer arrival rate to compensate for the 
dependency between consecutive planning intervals. This 
modified arrival rate is calculated algorithmically in each 
planning period to estimate the number of customers who 
actually place a demand during the current period. He 
found that this method performs better than the traditional 
SIPP type approach. 

In this paper, we numerically explore several issues 
related to determining staffing requirements in cyclic 
service systems. First, we identify how the system parame- 
ters affect SIPP reliability. Next, we determine specific sit- 
uations in which SIPP is safe to use and those in which 
it is not. We then suggest and test simple modifications 
of SIPP that can improve its performance. Finally, we 
explore the impact of the choice of method on total staffing 
requirements. Our results demonstrate that reliable staffing 
levels can be obtained for a broad range of practical situa- 
tions with the use of just two of these SIPP modifications. 
Because SIPP has been integrated into commercially avail- 
able management support software packages that are used 
"off-the-shelf," our findings have practical implications. 

This work is a continuation of our research on under- 
standing the effects of nonstationarity in queues and on 
how and when to use simple stationary models in manag- 
ing nonstationary systems (Green et al. 1991; Green and 
Kolesar 1991, 1995, 1997). However, whereas our previous 
work only considered queues with constant server staffing, 
this paper focuses on service systems in which the number 
of servers is varied over time in an attempt to better meet 

the changing rate of arrivals. Because our goal is to pro- 
vide general managerial insights, we analyze the following 
somewhat simple scenario: Customer demands are random 
and periodic over a 24-hour day, as is the case in many of 
the applications mentioned above. There are a fixed num- 
ber of equal-length, nonoverlapping planning periods, the 
service rate is constant, and the target level of service per- 
formance remains fixed over the day. We assume that man- 
agement's goal is to minimize the number of staff-hours 
required over the day while meeting the targeted service 
level during each planning period. 

This is the set of assumptions used to determine staffing 
in several actual service contexts including many police 
patrol systems (Green and Kolesar 1989) where police offi- 
cers are assigned to one of three nonoverlapping shifts. 
In other applications where the planning period is shorter, 
e.g., one hour, and work shifts can be overlapping, (Kolesar 
et al. 1975, Segal 1974, etc.) this approach would be 
the first step in constructing work schedules that meet or 
exceed the requirements in every period. More generally, 
our objective is to accurately generate appropriate service 
constraints that could be used in workforce planning and 
scheduling models. 

We describe the model and our methodology in more 
detail in ?1. In ?2, we present findings on how SIPP reli- 
ability depends on the various system parameters, and we 
identify regions in which SIPP will work well and others 
where its performance is clearly unacceptable. Section 3 
examines simple modifications to SIPP that improve its 
reliability, and also identifies best choices for various 
parameter domains based on performance and cost. We 
examine SIPP and its variants using empirical data in ?4 
and offer concluding remarks and directions for further 
research in ?5. 

1. MODEL AND METHODOLOGY 
We study M(t)/M/s(t) queueing systems with A(t), the 
arrival rate at time t given by 

A(t) = A + A sin(2rrt/24), (1) 

where A is the average arrival rate over the period and 
A > 0 is the amplitude. The other model parameters are ju, 
the service rate and s(t), the number of servers on duty at 
time t. We set the period of the sine function at 24 hours 
because of the many practical applications in which a daily 
cycle is evident. Those interested in periods of different 
length can, with modest effort, scale our results as desired. 

Let pn(t) be the periodic steady-state probability that n 
customers are in the system at time t. These functions are 
the foundation of our results and are obtained by numeri- 
cally solving the following standard set of differential equa- 
tions that describe the system; see Gross and Harris (1974): 
P0(t) =-A(t)o(t + lp (t), 

p (t) = (t))n_l (t)+ (n + l)pn+ (t) 

-(A(t) + n,u)pn(t), 

p;(t) = A(t)pn-_(t) + s(t)upPn+ (t) 

-(A(t) + s(t)l)Pn (t), 

1 < n <s(t), (2) 

n > s(t). 



Details on our numerical analysis methods are given in 
Green et al. (1991). We assume that the system operates 
continuously over an infinite time horizon, and we consider 
its long-run behavior. In this paper we focus on the proba- 
bility of delay as the main performance measure of interest. 
Let pD(t) be the instantaneous probability that a customer 
arriving at time t is delayed. This is also the probability 
that all servers are busy at epoch t and is given by 

s(t)-1 

PD(t) = 1- E pn(t) (3) 
n=O 

The principal output from our differential equation solver 
(simulator) is a vector of 288 estimates of pD(t) made at 
5-minute intervals over the cycle. 

The analytic sequence for each scenario is as follows: 
(i) Fix the scenario's exogenous parameters: A, the mean 

arrival rate; ,A, the service rate; and RA = A/A, the rela- 
tive amplitude. Fix the managerial parameters: r, the target 
probability of delay; and PP, the length of the planning 
period. 

(ii) Divide the cycle into nonoverlapping intervals of 
length PP, starting at t = 0. For each planning interval 
compute the average arrival rate by integrating Equation (1) 
over the planning interval. Then use this average arrival 
rate, the service rate, and an iterative version of the Erlang 
delay equation (Cooper 1972, p. 100) to find the mini- 
mum staffing needed in the interval to achieve the target 
delay probability r. This produces a vector of staffing lev- 
els {s(t), t = 1, 24/PP}. 

(iii) Run the simulator with the exogenous parameters 
specified as in (i) and the {s(t)} as determined in (ii). This 

produces the output vector {pD(t)} mentioned above. 
(iv) Using the vector {pD(t)}, compute various summary 

performance measures including the 24-hour average prob- 
ability of delay, the instantaneous (5-minute) maximum 

probability of delay, the maximum of the half-hour average 
probabilities of delay, the number of half-hours in which 
the average probability of delay exceeds the target, and the 
number of half-hours in which the average probability of 

delay exceeds the target by at least 10%. 
Some explanation of the summary choices suggested in 

(iv) is in order. First, we observe that there is no "right 
way" to evaluate SIPP performance relative to the target. 
Essentially, one wishes to compare the actual pD(t) curve 
to the target value. In a good solution the curves will be 
"close." But by what measure? If the performance target 
is taken literally and strictly, the most appropriate measure 
is arguably the number of planning periods in which the 

average of pD(t) doesn't exceed the target. But, there are 
several problems in using such a measure. First, to be able 
to make comparisons of systems with planning periods of 
different lengths, a consistent measure is needed. Second, 
when planning periods are long, e.g., 8 hours, although the 

average probability of delay over the period may be within 
the target, it is possible for pD(t) to exceed the target dur- 

ing a large fraction of the planning period. Moreover, our 
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practical experience suggests that to most managers the tar- 
get is not a strict constraint, it is typically a somewhat 
subjectively chosen "goal." For these reasons, although we 
computed all the summary statistics mentioned in (iv), as 
well the equivalent measures using hours and quarter-hours 
rather than half-hours, we focus primarily on the following 
measure: the number of half-hours in which the target is 
exceeded by at least 10%. We observe that this measure of 
reliability is an intermediate value for comparing systems 
with planning periods ranging from 1/4 hour to 2 hours in 
length. It is also a more conservative choice than one hour 
for measuring reliability in that it is a tougher metric of per- 
formance, and a half-hour appears to be a commonly used 
planning period length in many actual implementations of 
SIPP. 

We analyze models of service systems that span a num- 
ber of actual situations we have experienced personally or 
have encountered in the literature. However, our analysis 
has also been limited by the capabilities of our numerical 
analysis routine and our computing facilities. A scenario 
(model) is characterized by the following five parameters: 

* The service rate, /u 
* The average arrival rate, A 
* The relative amplitude, RA = A/A 
* The target probability of delay, r 
* The length of the planning period, PP 
An important derived measure is p = A/,u, the average 

number of servers that are busy and an important measure 
of system "size." Our core set of models considered ser- 
vice rates starting at a low of Au = 2, that is with average 
service times as long as 30 minutes, doubling up to 64 
(/u = 2, 4, 8, 16, 32, 64). We considered average customer 
arrival rates starting at a low of A = 4 customers per hour 
and doubling up to 4096 (A = 4, 8, 16, 32, 64, 128, 256, 
512, 1024, 2048, 4096.) Not all of the 66 (,u, A) combina- 
tions implied by the above were either computationally fea- 
sible (when A >> A the system of Equations (3) becomes too 
large to solve in any reasonable amount of time) or interest- 
ing (e.g., if p = 1, much of the time there will be only one 
or two servers). So we limited most of our runs to 36 core 

(/,, A) combinations contained in Table 1. Note that this set 
of combinations covers a range of p from 2 to 64 increas- 

ing by doubles. While this set of combinations covers a 

very broad range and contains many practical cases, we do 

Table 1. The core mu and lambda combinations anal- 

yzed. 

Average Arrival Rate, Lambda 
Service Rate 

Mu 4 8 16 32 64 128 256 512 1024 2048 4096 

2 X X X XXXX 
4 X X X X X X 
8 X X X X X X 

16 X X X X X X 
32 X X X X X X 
64 X X X X X X 

X = an included mu, lambda combination 
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not contend that it covers all regions of possible interest. It 
is also important to note that the scenarios are not spread 
uniformly through the experimental region. In our exami- 
nation of the reliability of SIPP and its variants, we con- 
sidered three relative amplitudes: RA = 0.1, 0.5, and 1.0; 
three probability delay targets: r = 0.05, 0.10, and 0.20; 
and four planning period lengths: PP = 0.25, 0.05, 1.0, and 
2.0 hours. Thus, in evaluating SIPP we considered 1,296 
scenarios. Additional scenarios were used to explore issues 
concerning the effect of the number and timing of planning 
periods and in the early stages of our work. 

2. THE ACCURACY OF THE SIPP APPROACH 

What are the factors that influence SIPP reliability, and 
what is the direction of their influence? When does SIPP 
specify "safe" staffing levels? These are the questions we 
address in this section. 

2.1. An Example Where SIPP Fails 

Before describing the results of our analysis, we present 
some details for a hypothetical situation for which SIPP 
does not produce satisfactory staffing requirements. Con- 
sider an incoming telephone call center that is open 24 
hours a day. The average length of calls is about 4 minutes, 
and the average call rate over the day is 250 calls per 
hour, with a peak of about 500 calls per hour in the early 
afternoon and a drop to almost zero in the middle of the 
night. The call center management uses one-hour planning 
periods and has set a service target of 20% probability of 
delay. This situation could be reasonably approximated by 
one of the models we studied. It has the following parame- 
ters: A = 256,/x = 16, RA = 1, PP = 1, r = 0.2. The stan- 
dard SIPP method for this system suggests staffing levels 
(shown in Figure 1) that result in an actual 24-hour aver- 
age probability of delay of 0.18-which meets the target 
on average. However, the instantaneous peak probability of 
delay is over 0.44, and the service target is exceeded in 
16 of the 48 half-hour planning periods of the day. In 11 
of these periods, the target is exceeded by more than 10%. 
Thus, the actual performance of this system when staffed 
according to SIPP will be considerably worse than desired. 
(See Figure 2 for a plot of the actual probability of delay 
curve.) It is important to note that this example is not a 
"worst case." There are, as we shall see, other parameter 
choices corresponding to practical situations in which SIPP 
performance is far worse. We will return to this example 
later in the paper and discuss alternatives to improve perfor- 
mance. We shall see that some SIPP variants perform well 
here and that this scenario is, in fact, a borderline case for 
which a change in any one of the system parameters could 
significantly improve or further degrade SIPP reliability. 

Figure 1. Arrival rate and SIPP staffing in the sinu- 
soidal model. 
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period. This happens when the period lengths are long 
(relative to the cycle length) or when the relative ampli- 
tude is high. We further hypothesized that particularly for 
short planning periods, the accuracy of the SIPP approach 
should also depend on the same factors that determine the 
accuracy of what we have called the pointwise stationary 
approximation (PSA) for nonstationary queues with a con- 
stant number of servers (Green and Kolesar 1991). The 
PSA models the behavior of the nonstationary queueing 
system at each point in time by a stationary model with the 
arrival rate at that epoch, and thus is related to using the 
SIPP approach. Our previous research showed that two crit- 
ical factors determine the accuracy of the PSA: the service 
rate and the relative amplitude of the arrival process. The 
numerical results we obtained here support these hypothe- 
ses and, in addition, revealed another important factor-p, 
the size of the system. 

Table 2 summarizes the results of the 1,296 simula- 
tions over the parameter domain described above. Note that 
the experimental design is completely balanced in relative 
amplitude, planning period length, service rate, delay tar- 
get, and presented load (p) in that every parameter combi- 
nation is included. For each scenario the table contains our 
main reliability measure-the count of the number of half- 
hours in which the average probability of delay exceeds 
110% of the target. By our standard, SIPP is reliable for a 
scenario-a cell in the table-if that count is zero. 

Figure 2. Probability of delay with SIPP staffing in the 
sinusoidal model. 
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Table 2. SIPP reliability: the number of half-hours in which pD exceeds 11 0% of target. 

Rho, Mu 

2 4 8 16 32 64 

RA Plan Pd Target 2 4 8 16 3264 2 4 8 16 32 64 2 4 8 1632 64 2 4 8 16 3264 2 4 8 16 3264 2 4 8 16 32 

0.1 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

0.5 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

1 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 00 0 0 0 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 00 0 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 00 0 0 0 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 0 0 0 00 0 00 000 0 00 00 0 
0 00 0 00 1 00 0 00 5 00 00 0 
0 0 0 0 00 0 00 000 1 00 00 0 
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7 43 2 22 1485 8 88 19 111087 6 
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4 0 0 0 0 0 4 1 0 0 0 0 17 8 4 4 2 3 
9 64 55 4 14 1212 15 1514 16 1513 1514 13 
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0 00 00 0 
0 00 00 0 
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Overall, we see in Table 2 that SIPP is reliable for 725 
of the 1,296 scenarios (56%). SIPP is reliable in the upper 
left corer of the table; that is, for all models with low 
relative amplitude and low presented loads. SIPP is very 
unreliable in the lower right corer of the table, for mod- 
els with high relative amplitude and high presented loads. 
Moreover, in most of these cases in the lower right corer 
SIPP is very unreliable; it violates the reliability standard 
in 20 or more of the 48 half-hours of the day. Scanning 
the entire table, we can conclude that over this experimen- 
tal domain SIPP is often unreliable and that many practical 
scenarios fall into the unreliable regions. For an example 
of a region of practical concern examine the models with 
relative amplitude of 1.0, presented loads of 16 or more, 
and one-hour-long planning periods, for all of which SIPP 
is quite unsatisfactory. 

By methodical inspection of Table 2, one can discern 
how a particular factor influences SIPP reliability when 
all other factors are fixed. Table 3 summarizes the data in 
Table 2 in a manner that facilitates an examination of the 
influence of each parameter individually while the other 
parameters vary-so-called main effects. It contains for 
each parameter the marginal counts and percentages of the 
number of reliable scenarios from Table 2. Table 4, also 
constructed from Table 2, shows two-way cross-tabulations 
of reliability counts by selected pairs of parameters. This 
table facilitates an examination of some important "inter- 
action effects." 

Now we discuss how each of the parameters influence 
SIPP reliability. To facilitate discussion of our findings, we 
define a "case" for any given parameter to be a set of sce- 
narios in which that parameter varies over its range while 
all other parameters are held fixed. For example, Table 2 
contains 432 "relative amplitude cases," one of which is the 
set RA = 0.1,0.5, 1.0, while PP = 0.5, X = 0.1, ,u = 4 and 
p = 16. Examination of Tables 2 and 3 shows that: 

1. SIPP reliability is always nonincreasing as relative 
amplitude increases-all other parameters being held con- 
stant. This is true for each of the 432 relative amplitude 
cases that are contained in Table 2. The power of this 
influence can be seen in that relative amplitude still has a 
dominant influence even when all other parameters vary. 
Specifically, 89% of the 432 models with relative amplitude 
of 0.1 are reliable, while only 28% of the 432 models with 
relative amplitude of 1.0 are reliable (Table 3). Thus, rela- 
tive amplitude is a dominant influence on SIPP reliability. 

2. SIPP reliability is almost always nonincreasing as the 
length of the planning period increases-all other parame- 
ters being held constant. This is true for all but 39 of the 
324 planning period cases contained in Table 2; most of 
these are low service rate scenarios. The planning period 
length still has a dominant influence, even when all other 
parameters vary: 79% of the 324 models with 1/4-hour 
planning periods are reliable, while only 28% of the 324 
models with 2-hour planning periods are reliable (Table 3). 
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service rate increases-all other parameters being held con- 
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contained in Table 2, and most of these 60 cases are mod- 
els with large relative amplitudes and long planning peri- 
ods. Service rate is still a dominant influence, even when 
all other parameters vary: only 32% of the 216 models with 
service rate of 2 are reliable, while 66% of the 216 models 
with service rate of 64 are reliable (Table 3.) 

4. SIPP reliability is almost always nonincreasing as the 
system size (p) increases-all other parameters being held 
constant. This is true for all but 13 of the 216 system size 
cases contained in Table 2. Most (8) of these 13 cases are 
models with 2-hour-long planning periods. Presented load 
is a strong influence, even when all other parameters vary: 
81% of the 216 models with p = 2 are reliable, while only 
31% of the 216 models with p = 64 are reliable (Table 3.) 

5. SIPP reliability tends to decrease as the arrival rate 
increases, but the effect-most evident for large values-is 
not consistent or strong. This, too, is confirmed in Table 3. 

6. There is a weak relationship between the probability 
delay target and SIPP reliability. SIPP is somewhat more 
reliable for less strict targets. (See Table 3). This tendency 
surprised us because we had hypothesized that SIPP would 
be more accurate for tougher targets, such as 0.05, where 
because little queueing occurs, behavior in successive plan- 
ning periods would be more independent. 

Table 4 presents SIPP reliability in a series of two-way 
tables in the key parameters. These illustrate the "first-order 
interaction" effects of the parameters on SIPP reliability. 
Some of these interactions are quite strong. In particular, 
high relative amplitude and long planning periods are a 
deadly combination-all the 108 such models that were run 
were unreliable. This is also true for high relative amplitude 
and low service rate. For high relative amplitude and large 
system size, and for long planning periods and large system 
size, we have similarly strong interaction effects-almost 
all such models are unreliable. 

Before proceeding to interpret these findings we note 
that the directional conclusions listed above are not arti- 
facts of the particular definition of reliability we used. We 
have carried out parallel analyses using counts of target 
exceedences (counts of intervals in which the actual prob- 
ability of delay is larger than the target) in intervals rang- 
ing from 5 minutes to 2 hours in length. (We used both 

simple exceedances and exceedances of more than 110%.) 
The directional results are the same. Moreover, other mea- 
sures such as 24-hour average delays, maximum hourly 
delays, and maximum instantaneous delays move in the 
same direction as our standard reliability measure. Thus, 
we believe that the above results are robust against a par- 
ticular reliability measure. 

2.3. Some Interpretation 
While the theory available for the type of Mt/M/St sys- 
tems studied here does not permit us to confirm the above 
results analytically, theory did lead us to hypothesize a 
number of the above results in advance of the experiments 
and led us to our chosen experimental domains. The theory 
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Table 4. SIPP reliability: important interactions. 

Planning Period (Hours) 

RA 0.25 0.5 1 2 Total 

0.1 2 3 10 31 46 
0.5 23 29 67 96 215 
1 44 63 95 108 310 
Total 69 95 172 235 571 

108 cases in each cell 

Mu 

RA 2 4 8 16 32 64 Total 

0.1 17 7 4 6 6 6 46 
0.5 59 45 32 26 26 27 215 
1 72 65 54 42 37 40 310 
Total 148 117 90 74 69 73 571 

72 cases in each cell 

Rho 

RA 2 4 8 16 32 64 Total 

0.1 0 0 0 0 17 29 46 
0.5 7 24 38 42 49 55 215 
1 35 42 51 57 59 66 310 
Total 42 66 89 99 125 150 571 

72 cases in each cell 

Planning Rho 
Period 
(Hours) 2 4 8 16 32 64 Total 

0.25 3 5 9 13 15 24 69 
0.5 5 8 13 18 21 30 95 
1 10 17 31 32 40 42 172 
2 24 36 36 36 49 54 235 
Total 42 66 89 99 125 150 571 

54 cases in each cell 

also offers plausibility arguments. In Green et al. (1991) 
we showed that for fixed server queueing systems with 
sinusoidal Poisson input streams, the average probability of 
delay is monotone increasing in relative amplitude. Hence, 
we believe that the first two results are attributed to the 
fact that the variability in the arrival rate during a planning 
period increases as either the planning period gets longer or 
as the relative amplitude increases. A higher value of rel- 
ative amplitude can also correspond to a more significant 
violation of the implicit SIPP assumption of independent 
planning periods. This is because the use of the average 
arrival rate can underestimate the actual workload in the 

beginning of the period (and hence at the end of the pre- 
vious period) for periods during which the arrival rate is 

decreasing. In such cases, congestion may carry over from 
the previous planning period that cannot be adequately han- 
dled by the staffing determined by the SIPP model. 

The service rate impacts SIPP reliability in two ways. 
First, it determines the speed with which customers are 
cleared from the system and hence the speed of conver- 

gence to steady state. Second, in service systems with con- 
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stant staffing, the service rate determines the magnitude of 
the lag between the time of the peak arrival rate and the 
time of peak congestion, and hence the degree to which 
the entire delay curve lags the PSA delay curve (which is 
in phase with the arrival rate curve). Although the concept 
of "lag" is not crisply defined for variable staffing systems 
such as studied here, it can be thought of as the amount 
of time during which the arrival rate at a given epoch will 
continue to impact system congestion. In constant staffing 
models, Whitt (1991) showed that as the service rate tends 
to infinity, the actual probability of delay at any time t, 
approaches the PSA for probability of delay at time t, 
and hence the lag approaches 0. Conversely, in Green and 
Kolesar (1995, 1997), we showed that for small values of 
,t such as A, < 2, the lag is significant, e.g., more than a 
half-hour). Thus, we believe that when planning periods are 
short and service rates are low, the congestion originating 
from the arrivals in one period is likely to impact later peri- 
ods and hence invalidate the implicit SIPP assumption of 
independence among periods. Moreover, the resulting con- 
gestion in planning periods following the peak arrival rate 
will be greater for higher relative amplitudes, and hence 
the SIPP approach will be more likely to underestimate the 
required staffing in these situations. 

Higher average arrival rates exacerbate the effect of the 
relative amplitude. As more customers arrive during the 
planning periods near the peak of the cycle, they cause 
increasingly greater congestion than predicted by use of the 
average during that planning period. And because larger 
system size corresponds to higher arrival rates and/or lower 
service rates, it follows that system size will be negatively 
correlated to SIPP reliability. 

2.4. Region of SIPP Reliability 

So, in summary when is SIPP "safe" to use? The answer is 
not simple because, as Tables 2 through 4 show, SIPP accu- 
racy depends upon the values of virtually all the system 
parameters and on interactions between them. Our analy- 
sis suggests that SIPP tends to be safe for systems with 
low relative amplitudes, short planning periods, high ser- 
vice rates, and small size. The converse is also true; SIPP 
tends to be unsafe when one or more of the following is 
true: the system has large relative amplitudes, long plan- 
ning periods, low service rates, or is large. From Table 2, 
we can specify particular regions where SIPP is unsafe as 
well as regions where it is safe. 

* SIPP is unsafe whenever RA = 1 and planning periods 
are 2 hours. All the 108 models with these parameter values 
are unreliable. 

* SIPP is unsafe whenever RA = 1 and ,/ = 2. All 72 
cases for these parameter settings are unreliable. 

* SIPP is almost always unsafe when RA = 0.5 and 
planning periods are 2 hours. The only exceptions occur 
when p = 2. 

* When RA = 0.1, SIPP is safe for planning periods of 
0.25 or 0.5 hour whenever / >? 4; for 1-hour periods it is 
safe whenever Ac > 16. 

* When RA = 0.5, SIPP is safe for planning periods of 
0.25 or 0.5 hour whenever /t > 32. 

One can sharpen these insights for systems typical of 
a particular industry or environment by focussing on the 
appropriate parameter families. As an example we selected 
a set of parameter values that are broadly descriptive of 
many call center operations we have seen-specifically, rel- 
ative amplitude of 1.0, target delay probability of 0.2, and 
1/2-hour planning periods. Table 5 contains results for the 
36 such models contained in our experimental domain (ser- 
vice rates and sizes of 2, 4, 8, 16, 32, and 64.) To provide 
a richer view of SIPP performance, the table contains four 
performance measures: 

* The 24-hour average delay probability 
* The maximum delay probability over the 288 five- 

minute intervals of the day 
* The maximum delay probability over the 48 half-hour 

intervals of the day 
* The number of half-hour periods for which the service 

target is exceeded by more than 10%-our standard mea- 
sure of reliability. 

The shaded region-basically, the upper right section of 
the table-indicates unreliable scenarios. So, in this prac- 
tically important environment, SIPP is safe if the service 
rate is large relative to the size. A specific rule of thumb is 
SIPP is safe for call center models when p/li = A/Iz2 < 1. 

3. ALTERNATIVES TO SIPP 

The results in the previous section identified shortcomings 
of the standard SIPP approach. The problems are serious 
enough to invalidate the use of SIPP in many service sys- 
tems. The next logical question is, "For systems for which 
SIPP is unreliable, are there simple alternatives that do 
better?" In this section, we explore the reliability of three 
alternative SIPP-based approaches for determining staffing 
requirements. All are easy and fast to implement. 

3.1. SIPP Max 

We believe that many of SIPP's reliability problems are 
because of the use of the planning period average A to 
represent the arrival rate over the entire planning period. 
Because this often leads to understaffing, one potential 
improvement is to use the maximum value of A for the 
planning period instead. We call this modification the SIPP 
Max method. We ran the same 1296 scenarios described 
in ?2 using the SIPP Max method. Our numerical results, 
displayed in Table 6 for RA = 0.5 and RA = 1, reveal the 
following: 

* SIPP Max is always as or more reliable than the stan- 
dard SIPP (which we henceforth call SIPP Avg) in that it 
never produces more errors. While SIPP Avg is unreliable 
for 571 of the 1,296 scenarios run, SIPP Max is unreliable 
for 111 scenarios. 

* SIPP Max is safe whenever ,u > 8. 
* When RA = 0.1, SIPP Max is always safe. 
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Table 5. SIPP reliability for some call center models. 

Rho 

Mu 2 4 8 16 32 64 

2 24-hr Avg pD 0.12 0.14 0.16 0.17 0.20 0.25 
Max pD (5 min) 0.28 0.37 0.54 0.60 0.87 0.99 
Max PD (1/2 hr) 0.23 0.31 0.44 0.52 0.82 0.97 
Periods Above 110% of Target 2 8 17 19 24 28 

4 24-hr Avg pD 0.12 0.14 0.16 0.17 0.18 0.21 
Max pD (5 min) 0.23 0.28 0.36 0.39 0.56 0.83 
Max PD (1/2 hr) 0.20 0.23 0.29 0.31 0.43 0.69 
Periods Above 110% of Target 0 1 8 14 20 23 

8 24-hr Avg pD 0.12 0.14 0.16 0.16 0.18 0.19 
Max pD (5 min) 0.21 0.25 0.29 0.30 0.38 0.57 
Max PD (1/2 hr) 0.18 0.20 0.23 0.22 0.27 0.37 
Periods Above 110% of Target 0 0 1 1 10 19 

16 24-hr Avg pD 0.12 0.14 0.16 0.16 0.18 0.19 
Max pD (5 min) 0.21 0.24 0.27 0.27 0.33 0.45 
Max PD (1/2 hr) 0.18 0.19 0.20 0.19 0.22 0.25 
Periods Above 110% of Target 0 0 0 0 0 13 

32 24-hrAvg pD 0.12 0.14 0.16 0.16 0.18 0.19 
Max pD (5 min) 0.22 0.24 0.27 0.28 0.33 0.43 
MaxPD (1/2hr) 0.18 0.18 0.20 0.18 0.20 0.22 
Periods Above 110% of Target 0 0 0 0 0 0 

64 24-hrAvg pD 0.12 0.14 0.16 0.16 0.18 0.19 
Max pD (5 min) 0.23 0.25 0.28 0.30 0.36 0.47 
Max PD (1/2 hr) 0.18 0.18 0.20 0.19 0.20 0.24 
Periods Above 110% of Target 0 0 0 0 0 2 

Models with RA = 1/2, Target = 0.2, Bold type = Unreliable 

* When RA = 0.5, SIPP Max is safe for ,t > 4 when 

planning periods are half-hour or longer. 
Another way of stating the above is that SIPP Max tends 

to be unreliable for low service rates, short planning peri- 
ods, and high relative amplitudes. This is not surprising 
in light of the theory described in the previous section. 
For small service rates such as /u = 2, the lag between the 
arrival rate curve and the delay curve is long enough so 
that the use of the maximum A during the planning period 
will not necessarily capture the demand rate that is respon- 
sible for the congestion during that period. This is particu- 
larly true for shorter planning periods. This deficiency will 

clearly be worse for higher values of relative amplitude. 
Because in every planning period SIPP Max uses the 

same or more staff as SIPP Avg for the same scenario, 
its pD(t) curve will always be lower than or equal to that 
for SIPP Avg. As a consequence, SIPP Max results in a 
smaller value for the maximum epoch probability of delay 
as well as for the 24-hour average probability of delay and 
the other measures we used for comparison. Of course, the 
increased reliability of SIPP Max comes with a cost: higher 
staffing requirements. For the cases we studied, the average 
difference in suggested staffing is 10.6% and the largest 
difference is 15.3%. However, in the cases for which both 
methods are reliable, the maximum difference is about 8%. 
To illustrate these differences, we revisit our opening exam- 

ple in which RA = 1, A = 256, A = 16, r = 0.2, and plan- 
ning periods are 1 hour. As noted previously, this is a case 
for which SIPP Avg performs badly. Figure 3 shows the 

actual PD(t) curve using the SIPP Max method. Note that 

using SIPP Max results in the target being met at all times 

during the cycle. The required staffing relative to SIPP Avg 
in this case is 532 servers vs. 496 servers-an increase 
of 7.25%. 

3.2. SIPP Mix 

Is there a compromise between SIPP Avg and SIPP Max, 
i.e., a method that has the same reliability as SIPP Max 
but with lower staffing requirements? Because of the lag 
between the arrival rate and the resulting delay, SIPP Avg 
is more likely to understaff when the arrival rate is decreas- 

ing (see, for example, Figure 2). Thus, using the planning 

Figure 3. Probability of delay with SIPP Max staffing 
in the sinusoidal model. 



Table 6. SIPP max reliability: the number of half-hours in which pD exceeds 11 0% of target. 

Rho, Mu 

2 

R-A- Plan Pd Target 

0.5 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

1 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

2 4 8 16 32 64 

4 

2 4 8 16 32 64 

8 

2 4 8 16 32 64 

16 

2 4 8 16 32 64 

32 

2 4 8 16 32 64 
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0 0 0 0 0 0 000 0000 0 00 000 2 00 0 00 2 00 0 00 8 0 
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0 0 0 0 0 0 2 0 0 0 0 0 9 0 0 0 0 0 15 0 0 0 0 0 20 3 0 0 0 0 22 6 
0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 17 0 0 0 0 0 19 0 0 0 0 0 22 6 
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 8 0 0 0 0 0 9 0 0 0 0 0 12 2 
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 9 1 0 0 0 0 12 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 9 0 0 0 0 0 1 1 0 
0 0 0 0 00 0 00 000 3 00 0 00 4 00 0 00 5 00 0 00 6 0 
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period maximum arrival rate should be most cost effective 
for those planning periods in which the arrival rate is either 
strictly decreasing or reaches its maximum value. There- 
fore, we explored what we call SIPP Mix, which uses the 
average planning period arrival rate for periods in which the 
arrival rate is strictly increasing, and the maximum plan- 
ning period arrival rate otherwise. Our results indicate that 
although SIPP Mix is a better choice than SIPP Max in 
some situations, overall it is not as reliable. Specifically: 

* When RA < 0.5, SIPP Mix is almost always as reliable 
as SIPP Max when planning periods are short, e.g., 0.25 or 
0.5 hour. 

* SIPP Mix is much less reliable than SIPP Max for 
longer planning periods, particularly as A and /u increase. 

* When RA = 1, even for shorter periods, SIPP Mix may 
be unreliable for large values of both A and u. 

In Green et al. (1991), we showed that probability of 
delay is monotone increasing in event frequency (as mea- 
sured by both A and A) as well as relative amplitude. Thus, 
the above results can be interpreted as due to the increas- 
ing inadequacy of the use of the average arrival rate to 
estimate actual congestion during any planning period as 
event frequency increases. This inadequacy is compounded 
as the variability of the arrival rate during the period 
increases, i.e., for longer planning periods or higher rela- 
tive amplitude. 

3.3. A Lagged SIPP Approach 
Our results show that SIPP Max is the most reliable of 
the three SIPP methods we explored, i.e., there are no sce- 
narios for which SIPP Max is not reliable and one of the 
others is reliable. Therefore, from Table 6, which gives the 
results for SIPP Max, we see that none of the three SIPP 
methods works for some cases when /. = 2 or 4. This is 

likely the result of the previously described lag between the 
arrival rate curve and the probability of delay curve. Bor- 

rowing from our work on estimating peak congestion in 
service systems with time-varying demands and a constant 
number of servers (Green and Kolesar 1997), we explored 
a fourth method for estimating staffing requirements: Lag 
SIPP. The idea of this method is to estimate L, the actual 

lag that would exist if the number of servers were con- 
stant, by an approximation based on a nonstationary infinite 
server model. Then, instead of basing the staffing during a 

planning period on the average (or maximum) arrival rate 

during the planning period, we use an average (or maxi- 

mum) arrival rate calculated from shifting (advancing) the 

A(t) curve by L units. So, for example, if L = 0.5 hour, the 

average arrival rate used to determine the staffing require- 
ment for a planning period starting at to and one hour in 

length, i.e., [to, to + ], would be calculated using the arrival 
rates during the interval [to -0.5, to + 0.5]. 

For the infinite server model with sinusoidal arrival rate 
and exponential service, Eick et al. (1993) showed that the 

lag (in server occupancy) is solely a function of the service 
rate and is given by 

where y = 27r/24, in our case of a cycle time of 24 hours. 
In Green and Kolesar (1998) we proposed an approxima- 
tion to (4) of L 1//, for infinite server systems and 
showed that the error using this approximation is less than 
1% for values of A > 2 . Using this infinite server lag to 
predict delays in a finite server model introduces another 
source of error. Specifically, for a given service rate, the 
lag predicted by the infinite server model (which has no 
delays) underestimates the actual lag in the finite server 
system and this underestimate increases as the peak prob- 
ably of delay increases. Green and Kolesar (1997) showed 
that a lagged PSA approach for predicting peak probabili- 
ties of delay is quite accurate for small values of ,/ and low 
delay probabilities, when simpler methods are very inaccu- 
rate. More importantly, using the lagged arrival rate almost 
always results in the correct identification of the number of 
servers needed to meet a specified target peak probability 
of delay in these cases. 

We used the "Lag" approach combined with each of the 
three methods described above for calculating the arrival 
rate for each planning period, resulting in what we call the 
Lag Avg, Lag Max, and Lag Mix methods. In virtually all 
cases, the Lag approach results in fewer errors than its non- 

lagged counterpart. In particular, the appropriate choice of 

Lag Avg or Lag Max produces no or few errors when A/ is 

relatively small, hence increasing the domain for which the 
SIPP method is reliable. Specifically, our numerical results 
show: 

* Lag Avg is always reliable when relative amplitude is 
low, i.e., 0.1 or 0.5, and planning periods are short, i.e., 
0.25 or 0.5 hour. 

* Lag Max is reliable when RA = 0.1 and 0.5 regardless 
of the length of the planning period. When RA = 1, Lag 
Max produces no errors whenever /u > 8. 

* Though Lag Max is not perfect for /- = 2 and 4, it 
never results in more than three half-hour periods for which 
the target is exceeded by more than 10%. 

Table 7 shows the numerical results using Lag Max for 
RA = 1. It is important to note that while use of the Lag 
approach doesn't close all the gaps we observed when we 
examined the three nonlagged SIPP methods, there are only 
15 of the 1,296 scenarios for which Lag Max is not reliable. 
Furthermore, 9 of these occur when L. = 2, i.e., the average 
service time is 30 minutes and the planning period is 15 or 
30 minutes. This combination seems to be an unlikely one 
in real applications. 

What is the impact of using the Lag approach on staffing 
costs? Use of Lag Avg usually produces better results than 
SIPP Avg while using the same number of staff-hours. 

(On average, Lag Avg saves 0.2% in staff-hours and never 
results in more than a 2% increase over SIPP Avg.) Sim- 

ilarly, Lag Max reduces the number of errors relative to 
SIPP Max. For -- = 2 and 4 where Lag Max is most impor- 
tant, the number of staff-hours is sometimes the same, 
sometimes greater and in a couple of cases, less than when 

using SIPP Max. When it is greater, the difference is less 

L = (cot-'(/ /y))/y, (4) than 5%. 
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Table 7. Lag Max reliability: the number of half-hours in which pD exceeds 110% of target, 
RA= 1. 

Rho, Mu 

16 32 64 

PlanPd Target 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 

0.25 0.05 2 0 0 0 0 0 2 1 0 0 0 0 3 0 0 0 0 0 
0.1 0 0 0 0 0 0 3 0 0 0 0 0 3 1 0 0 0 0 
0.2 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 

0.5 0.05 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 
0.2 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 

1 0.05 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0.1 00 0 0 0 0 0 0 0 0 2 0 0 0 0 0 
0.2 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0.05 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4. AN EXAMPLE USING EMPIRICAL 
DEMAND DATA 

In this section, we examine how well SIPP and its variants 
perform on a model derived from empirical data. Figure 4 
shows a telephone call arrival curve derived from actual 
data provided by a financial services company's incoming 
telephone call center. The figure shows the following broad 
pattern. Call volumes are very low at midnight and stay 
low in the early morning hours, dropping to about 30 calls 
per hour at about 1 a.m. They then rise smoothly until 
about 8:30 a.m., when they peak at about 2,100 calls per 
hour. Call volumes then drop slightly and remain at about 
1,900 calls per hour until about 1 p.m., when they peak 
again at about 2,100 calls per hour. They drop off thereafter, 
smoothly falling back to the low at midnight. This pattern 
is at once similar enough to the pattern seen in Figure 1 to 
reinforce our work with the sinusoidal model, and different 
enough for us to want to test how SIPP and its variants 
work in this particular call center scenario. 

Given our results of ?2, we predicted that SIPP Avg 
would not be reliable for this application, given a RA 
close to 1, long planning periods, and large system size. 
In order to determine how well the sinusoidal model pro- 

Figure 4. A financial services call center: incoming call 
volume by half hour. 
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vides insights on the performance of SIPP and its variants 
for this case, we analyzed this system by running our differ- 
ential equation solver using the empirical arrival rate func- 
tion as well as a sinusoidal approximation to this function. 
For the sinusoidal model we used A = 948, which is the 
24-hour average of the empirical call rate, and RA = 1. The 
other parameters values used in both cases reflect the way 
that the call center actually operated. The historical service 
rate was about 10 calls per hour, 1-hour planning periods 
were used and the service target was about 0.2. 

The staffing levels suggested by SIPP Avg for the empir- 
ical demand curve are shown in Figure 4-a total of 2,511 
staff-hours are deployed over the 24-hour cycle. Figure 5 
is the resulting probability of delay curve. It illustrates that 
the SIPP staffing is clearly very inadequate. This is con- 
firmed by the results in Table 8, which gives our key per- 
formance measures for the empirical model as well as those 
predicted by the sinusoidal model using SIPP Avg and 
the five variants. Focusing on the SIPP Avg column, we 
see that for the empirical demand even the 24-hour aver- 
age delay probability is 28% and that the delay probabil- 
ity target is exceeded by more than 10% in 26 half-hours. 
The sinusoidal model for this case predicted that SIPP Avg 
would result in a 24-hour average delay probability of 24% 

Figure 5. A financial services call center: Probability 
of delay with SIPP Avg staffing. 
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Table 8. Empirical financial services call center model results. 

Method 

Measure L_Avg L_Max L_Mix S_Avg S_Max S_Mix 

Empirical Arrival Rate with Mean of 948, Mu = 10, Target = 0.2, PP = 1 

24-hr Avg pD 0.271 0.075 0.153 0.284 0.082 0.148 
Max pD (5 min) 0.997 0.194 0.997 0.977 0.263 0.977 
Max pD (1/2 hr) 0.637 0.158 0.637 0.629 0.158 0.469 
Half-Hours Above Target 24 0 7 31 0 7 
Half-Hours Above 110% Target 19 0 6 26 0 6 
Staffing Man-Hours 2514 2739 2639 2511 2731 2629 

Sinusoidal Arrival Rate with Mean of 948, RA = 1, Mu = 10, Target = 0.2, PP = 1 

24-hr Avg pD 0.237 0.084 0.164 0.239 0.087 0.147 
Max pD (5 min) 0.823 0.208 0.823 0.824 0.231 0.709 
Max pD (1/2 hr) 0.483 0.186 0.441 0.618 0.186 0.317 
Half-Hours Above Target 23 0 10 31 0 11 
Half-Hours Above 110% Target 22 0 10 25 0 9 
Staffing Man-Hours 2519 2707 2615 2520 2706 2613 

with 25 half-hours exceeding the target by more than 10%. 
These results confirm that the insights developed from the 
sinusoidal model in ?3 are valid for actual demand curves. 

Table 8 also shows that the sinusoidal model correctly 
identifies that both the SIPP Max and Lag Max methods 
are reliable for the empirical case, with SIPP Max being 
slightly more efficient. While the sinusoidal model indi- 
cates a savings of only 1 staff-hour using SIPP Max and 
the empirical results show a savings of 8 staff-hours, in 
both cases the difference in using the two methods could 
be considered negligible at well under 0.5%. As we state in 
our concluding section, we suggest that Lag Max be used 
for these parameter values. Figure 6 shows the pD(t) curve 
for the Lag Max solution for the empirical demand. From 
Table 8, we see that the actual total increase in staff-hours 

using Lag Max instead of SIPP Avg is about 9%, whereas 
the sinusoidal models predicts an increase of about 7.5%. 

We should remark in closing this section that we have 
seen a number of empirical demand curves that had sim- 
ilar characteristics to the curve in Figure 4. These curves 

display: (1) a broad, smooth arrival pattern with a single 
dominant peak not too dissimilar to a sinusoid with rela- 

Figure 6. A financial services call center: Probability 
of delay with Lag Max staffing. 
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tive amplitude of 1; and (2) a subpattern within the work 
day that shows two subpeaks with a plateau in between. 
We take the results of this section as indicating that the 
findings of ??2 and 3 should apply to such scenarios. 

5. SUMMARY, CONCLUSIONS AND 
FURTHER RESEARCH 

The findings in this paper have important implications for 
the design and management of many types of service sys- 
tems. First, our results on the reliability of the standard 
SIPP approach show that managers should be cautious 
when using this method for determining staffing require- 
ments. In many cases the standard SIPP method will sug- 
gest staffing levels that result in actual delays that exceed 

targeted levels. Of course, the degree to which actual per- 
formance will be as bad as indicated by our results depends 
on how the proposed staffing requirements are translated 
into actual work schedules, as well as on how rigidly 
worker behavior adheres to the suggested schedules. For 

example, when SIPP-based staffing requirements are used 
in an LP-based scheduling model, the model's schedule 

frequently adds staff (slack) in some periods because of 
other constraints. However, it is far from certain that such 
slack would be added where needed most to compensate 
for SIPP's shortcomings. 

Second, our proposed modifications of SIPP provide 
practitioners with good alternatives which are simple to 

implement in those cases in which SIPP is unreliable. 
Table 9 shows the "best method" to use among the six we 
examined based on reliability, efficiency, and simplicity of 
the methodology. This table was produced by applying the 

following rule to each scenario: If all six methods are unre- 
liable, the outcome is 0; else, select the winner from all 
the methods that have 0 errors (as defined previously) that 
uses the least staff-hours. In case of ties, select the winner 

according to the following priority order: SIPP Avg, SIPP 



Table 9. Winning SIPP method. 

Rho, Mu 

2 4 8 16 32 64 

RA PP Targ 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 

0.1 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

0.5 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 

1 0.25 0.05 
0.1 
0.2 

0.5 0.05 
0.1 
0.2 

1 0.05 
0.1 
0.2 

2 0.05 
0.1 
0.2 
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444 
447 
474 
444 
474 
744 
444 
744 
444 
444 
444 
444 
444 
447 
477 
477 
444 
744 
744 
777 
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444 
444 
747 
747 
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774 
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777 
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744 
685 
5 55 
665 

7 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
7 
4 
4 
4 
7 
5 
4 
4 
7 
7 
4 
4 
4 
7 
5 
4 
4 
5 
5 
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7 7 
44 
44 
44 
44 
44 
44 
44 
44 
44 
44 
44 
44 
44 
47 
44 
44 
44 
44 
44 
7 7 
5 5 
44 
44 
7 7 
74 
44 
44 
44 
44 
5 5 
44 
44 
5 5 
5 5 
5 5 
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477 
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444 
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444 
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6 8 5 
666 
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7 7 7 
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668 
666 
664 
6 5 8 
5 5 5 
655 
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7 7 4 
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7 7 4 
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4 7 4 
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7 4 4 
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8 5 8 
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4 44 
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588 
588 
888 
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Codes of Winning SIPP Variant: 0 = No Method Feasible, 4 = SIPP Avg, 5 = SIPP Max, 6 = SIPP Mix, 7 = Lag Avg, 8 = Lag Max, 9 = Lag Mix 
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Max, Lag Avg, Lag Max, SIPP Mix, and Lag Mix. As 
illustrated by this table, there are no rigid, simple rules that 
describe which method is best across all potential choices 
of parameters. However, our findings suggest the following 
guidelines for 24-hour service systems: 

(1) SIPP Avg can be reliably used when relative ampli- 
tude is low, i.e., RA < 0.5; planning periods are short, 0.25 
or 0.5 hours; and the service rate is high, i.e., / >, 32. 

(2) Lag Avg is reliable and efficient when relative ampli- 
tude is low and planning periods are short. 

(3) For large relative amplitude or long planning periods, 
SIPP Max or Lag Max will assure reliability. SIPP Max can 
be reliably used for ,/ > 8. In some of these cases, SIPP 
Mix is equally accurate and will save staff-hours. Lag Max 
is safer when /u < 8. 

As a simple guideline for practitioners, we recommend 
that Lag Avg be used for low values of RA and short plan- 
ning periods, and Lag Max be used for all other situations. 
Of course, SIPP Max or Lag Max typically will use more 
staff-hours, and a manager may want to consider the trade- 
off between higher labor costs and what may be small vio- 
lations of a target service level. In situations in which even 
a small percentage increase in staff-hours may be consid- 
ered too costly, managers would be well advised to closely 
examine the trade-offs between using the Lag Avg and Lag 
Max methods. The methodology described in this paper 
could be easily adapted to assess almost any real situation 
involving a 24-hour cyclic system and, with appropriate 
scaling, any continuously operating system with a different 
cycle length. 

Though the findings described in this paper are based 
on sinusoidal arrival rates, we believe that the directional 
results are quite general. Our results with the empiri- 
cal model described in ?4 reinforce this judgment. These 
results indicate that the regions of reliability identified for 
each method using a sinusoidal arrival rate are fairly robust 
with respect to other 24-hour cyclic systems. 

We should note that our findings are based on probabil- 
ity of delay performance targets. Of course, there are many 
other possible performance measures including expected 
delay and the probability that the delay exceeds a speci- 
fied duration. We worked with probability of delay for sev- 
eral reasons. First, probability of delay metrics are used 
in the majority of actual implementations with which we 
are familiar, as well as in the literature on these problems. 
Because computation of probability delay was technically 
feasible given our approach of numerical solution of the 

system's differential equations. Finally, the use of a sin- 

gle parameter performance metric simplifies the analysis 
and clarifies the findings. Because the other possible per- 
formance measures are closely correlated to probability of 

delay, we believe that the directional findings cited here 
will hold for these measures as well. We also note that our 

findings on the reliability of our proposed alternatives to 
SIPP do not depend on the magnitude of the performance 
target. 
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While this research greatly clarifies a number of the 
issues involved in the staffing of cyclic queueing systems 
and makes practical proposals for improved practice, it is 
not the last word. A number of important questions are still 
on the table for future research. Among these we include 
the following: 

1. Setting optimal staffing levels. The family of SIPP- 
based methods studied here attempts to produce minimal 
feasible staffing levels. They do so by segmenting the prob- 
lem into planning periods. Clearly, this is not optimal in 
general. What is not at all clear is how to actually deter- 
mine an optimal cover without resorting to an extensive 
trial-and-error approach. This is the problem addressed by 
Thompson (1997) for one set of situations. 

2. The SIPP-based models used here and, more impor- 
tantly, in industry, assume that the system parameters are 
known. Empirical data available to us show that this is not 
always a reasonable assumption, particularly for the cus- 
tomer arrival rates. The deviations from forecast in every 
data set we have examined have exceeded those allowed by 
the Poisson process model. Thus, it is of interest to build 
staffing models that explicitly incorporate forecast error. 

3. The family of models studied here is assumed to oper- 
ate continuously over time. While many real-world service 
systems do so, there are also many that open up, operate 
over a segment of the day, and then shut down-until they 
start up again on the next day. The behavior of such lim- 
ited operating horizon systems is probabilistically different 
from those studied in this paper. Because managers of some 
of these systems also employ SIPP methods, it is impor- 
tant to explore SIPP's reliability in this setting. We are well 
into a research agenda on these models. Our initial findings 
on SIPP reliability in these limited operating horizon sit- 
uations confirm the directional results we obtained in this 
paper's study of continuous systems. However, the ranges 
of SIPP reliability appear to be smaller, and additional the- 

ory is needed to guide the choice of good alternatives when 
SIPP fails. 
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