

The new generation high tech equipment for future generations

Welcome

Timo Meinders

Programme

Timo Meinders	Opening
Mark Huijben	Energy
Andries van der Meer	Biomedical Production Technology
Gertjan Koster	Semiconductor Equipment
Sebastian Thiede	Smart Industry
Maarten Bonnema	Systems Engineering
Vinod Subramaniam	Closure

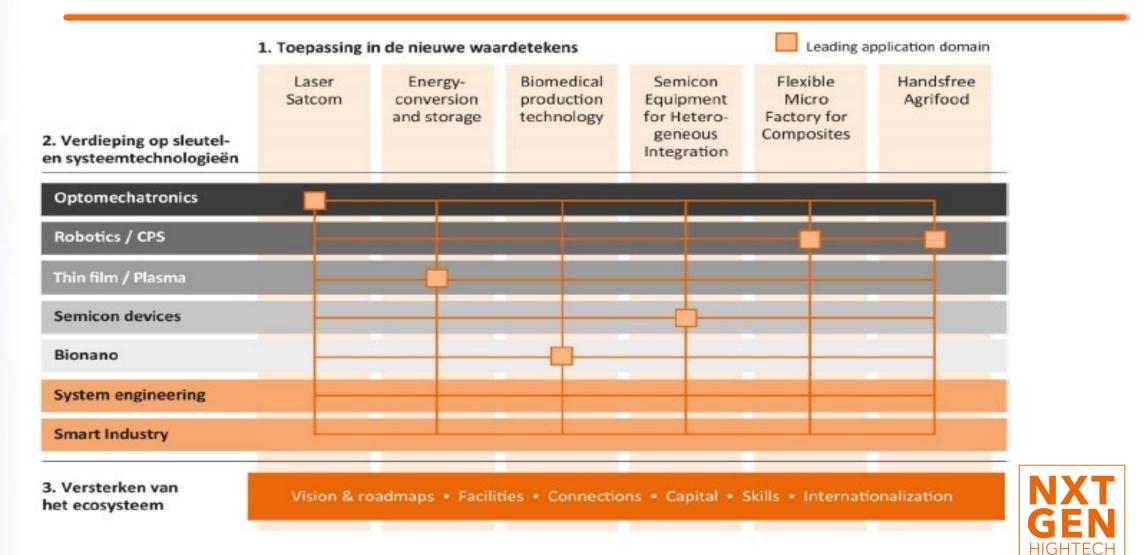
Followed by drinks & bites in Atrium

NGF NXTGEN HIGHTECH

Versterken van het lange termijn verdienvermogen Oplossingen bieden voor maatschappelijke uitdagingen

Groeifondsvoorstel NXTGEN HIGHTECH

Een coherent, wendbaar en internationaal toonaangevend ecosysteem


Toepassingspijler	Verdiepingspijler
Realiseren nieuwe hightech toepassingen	Versterken technologiebasis

Ecosysteempijler

Gerichte interventies voor versterken gehele ecosysteem

NGF NXTGEN HIGHTECH

NGF NXTGEN HIGHTECH

Leading Dutch High Tech Equipment Ecosystem in 2030

- Application pillar
- Knowledge pillar
- Ecosystem Pillar

Subsidy total: 450M€

Domains (incl. involvement UT ~40M€):

- LaserSatcom
- Energy
- Biomedical Production
- Semicon
- Composites
- AgriFood
- Smart Industry

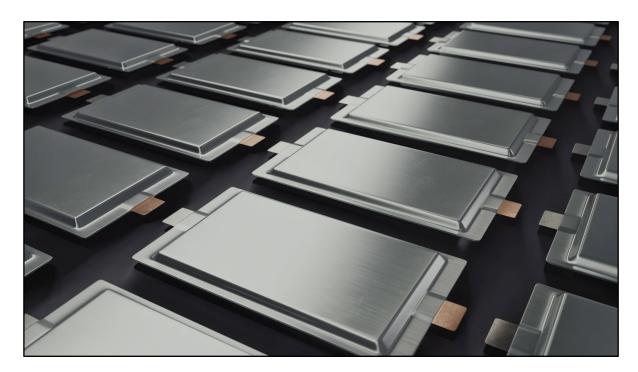
The new generation high tech equipment for future generations

Energy domain

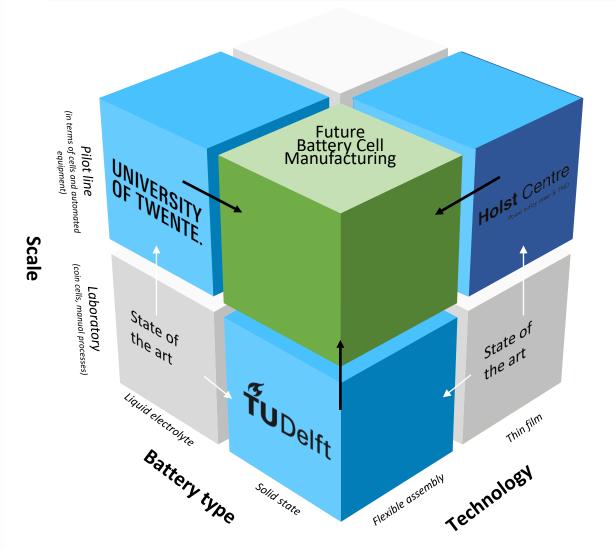
Prof. dr. ir. Mark Huijben

Energy domain

This program focuses on the development of an integrated, scalable production chain for new generation **fuel cells and electrolysers**, **batteries**, and **plasma conversion** that enables a transition towards a more sustainable energy supply and the process industry.


- Energy01 3D battery pilot line production
- Energy02 Next-gen equipment for batteries and battery-materials
- Energy03 Plasma conversion methane
- Energy07 PHOENIX-Alkalina
- Energy08 Third-generation electrolysis
- Energy10 Massa production of ZEF micro-plants for affordable solar fuel
- Total budget: ~ 100M \in , of which ~ 60M \in GF contribution

Energy01 3D battery pilot line production

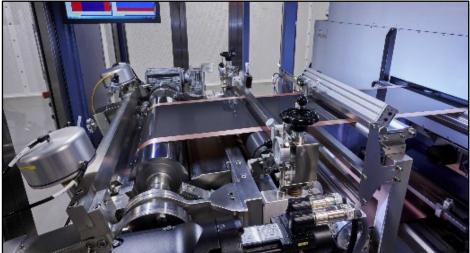

S&T faculty (Mark Huijben)

Scope : **Battery material optimization** as well as **battery cell design**, by detailed post-mortem analysis of the solid-state battery to relate the energy storage performance to the present **degradation processes**.

Energy02 Next-gen equipment for batteries and battery-materials

Goal : to expand the Dutch battery R&D infrastructure for innovative battery cell manufacturing and to generate integral battery material and processing knowledge to be valorised by the ecosystem partners – current and future.

Energy02 Next-gen equipment for batteries and battery-materials


Joint ET faculty (Sebastian Thiede) and S&T faculty (Mark Huijben)

Scope : - Flexible pilot line infrastructure for Battery R&D - Material development and characterization

Open facility for testing new materials, processes and technologies. Typical batch sizes of around 100 battery pouch cells (around 5 Ah and more).

The platform is technology open and allows the implementation of new technologies/materials in a flexible, modular way and testing against a defined reference.

Strong links are given to smart industry topics, e.g. a full digital backbone including a digital twin of the process chain will be established.

The new generation high tech equipment for future generations

Biomedical Production Technologies

Andries van der Meer

Biomedical Production Technologies

Lack of sufficiently fast and Point-of-Care diagnostic tests (for healthcare (Covid), food/environmental safety)

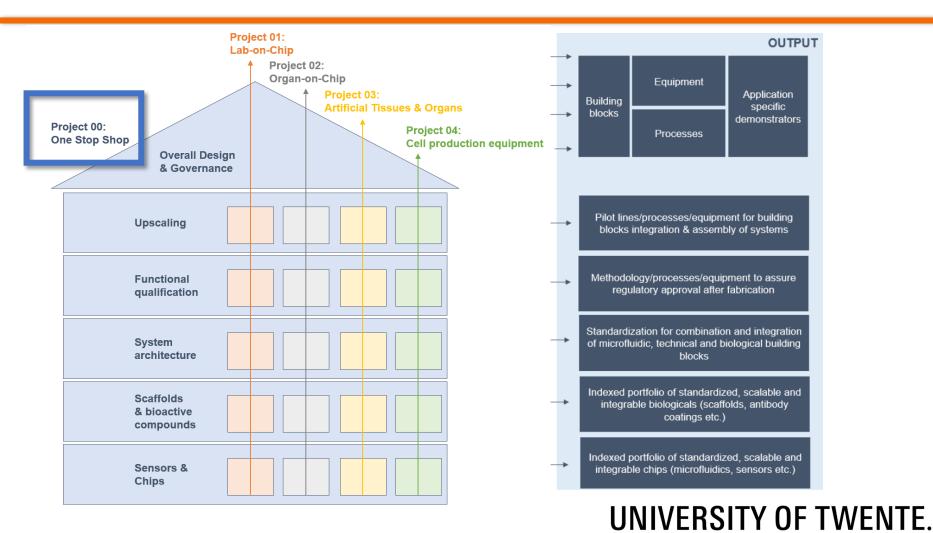
Lack of validated human test systems (drug failure, no personalized medicine, animal use)

Lack of donors and high burden on patient (hemodialysis, kidney failure)

Lack of highly qualified standardized cells/cell products for therapy (viral particles for oncolyticaltherapy, induced pluripotent stem cells) Tec

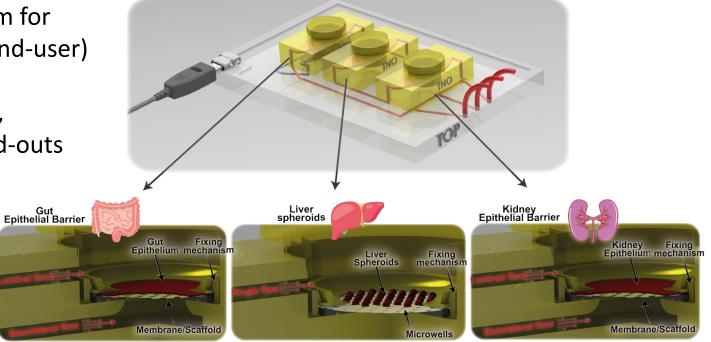
Cell Production Technologies

UNIVERSITY OF TWENTE.



Lab-on-Chip

Organization of the Domain BMPT



Example: Organ-on-a-Chip

Multi-organ cell culture platform for ADME studies (TNO HL&W as end-user)

Living cell culture units ('chips'), microfluidic routing, online read-outs and non-invasive imaging

The new generation high tech equipment for future generations

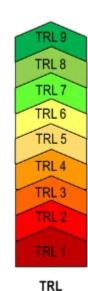
High TRL PLD in Semicon

Gertjan Koster

Semicon-01: Process optimization for high TRL & high MRL PLD

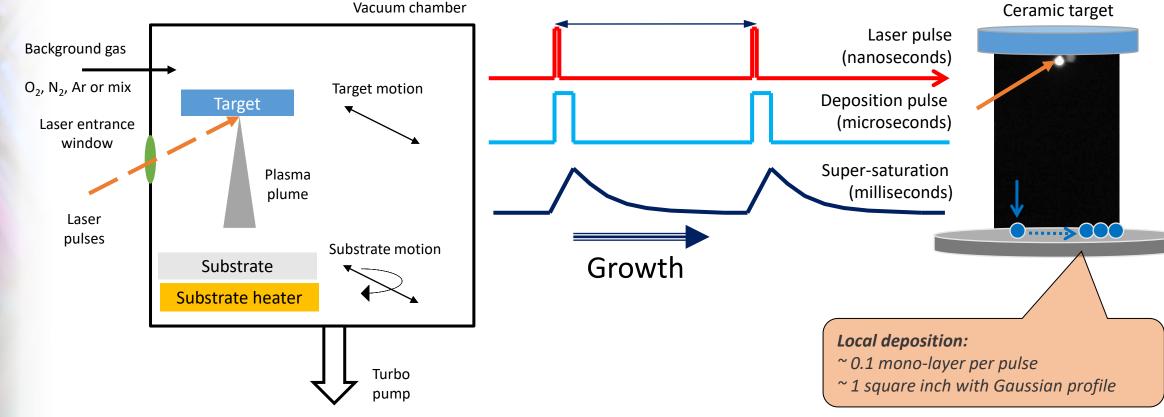
UT participants: Prof. dr. Ir. Gertjan Koster Prof. dr. ing. Guus Rijnders Dr. Minh Nguyen Tobias Nickel, MSc REDEN

UNIVERSITY OF TWENTE.


SUMATES THIN FILM EQUIPMENT A Lam Research Company

Workpackages:

#	Name work package	WP responsibility	Start	End
1	Optics	Reden	Q1 2023	Q4 2028
2	Plasma	Solmates	Q1 2023	Q2 2029
3	Process	University of Twente	Q1 2023	Q4 2028
4	Motion and control	Solmates	Q1 2023	Q2 2029
5	Equipment	Solmates	Q3 2023	Q4 2029


	WP5: E	quipment	
	NT	S	THIN FILM EQUIPMENT ALer Resert Conses
REDEN	THIN FI		ASÉVON
	UNIVE OF TV	ERSITY VENTE.	
WP 1 Optics	WP 2 Plasma	WP 3 Process	WP 4 Motion 8 control

Pulsed Laser Technology

Non-continuous nature of PLD plasma promotes crystal quality of deposited films Localized plasma plume (few centimetres in diameter) requires scanning of plasma over wafer to obtain continuous film

UT: support in process development ScAIN process parameter dependencies Understanding plasma behavior Reden: support in simulations Simulations on particle behavior Beam and plasma stability predictions Masevon: support in hardware development Motions in vacuum

The new generation high tech equipment for future generations

NXTGEN Hightech Smart Industry **Factory 2030** (East NL Industrial Cluster)

Sebastian Thiede

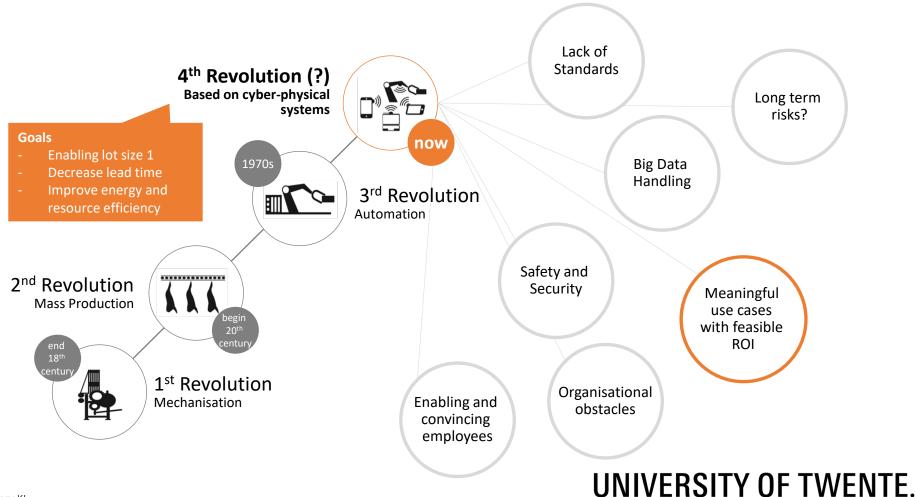
SMART INDUSTRY

דד וו

Configure a devic

+321.089 kV

Write PLC progr

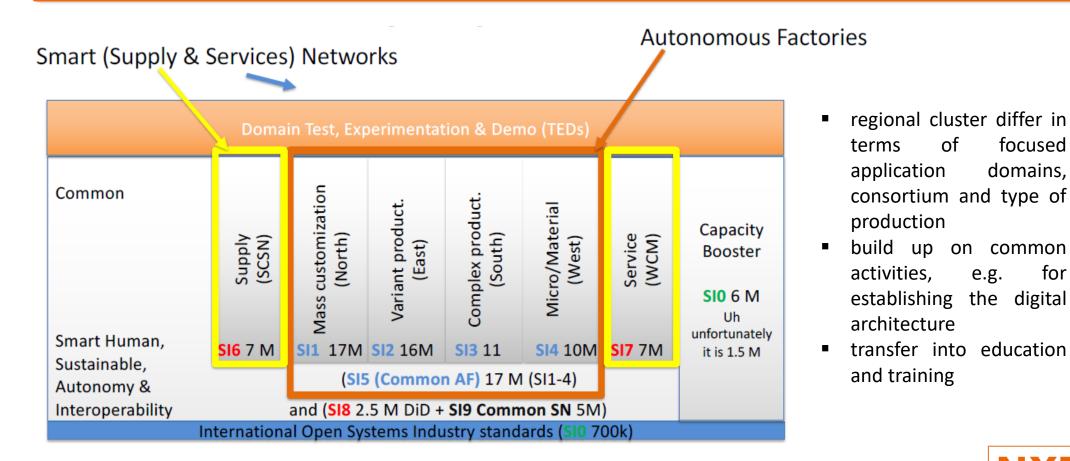

IN IN

SIGNIFICANT PROGRESS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICT), ASSOCIATED WITH TERMS LIKE INDUSTRY 4.0 / SMART MANUFACTURING

POTENTIAL BENEFITS BUT ALSO CHALLENGES

Photo: Siemens AG https://www.thefuturefactory.com/blog/32 https://www.plm.automation.siemens.com/

NXTGEN Smart Industry Projects

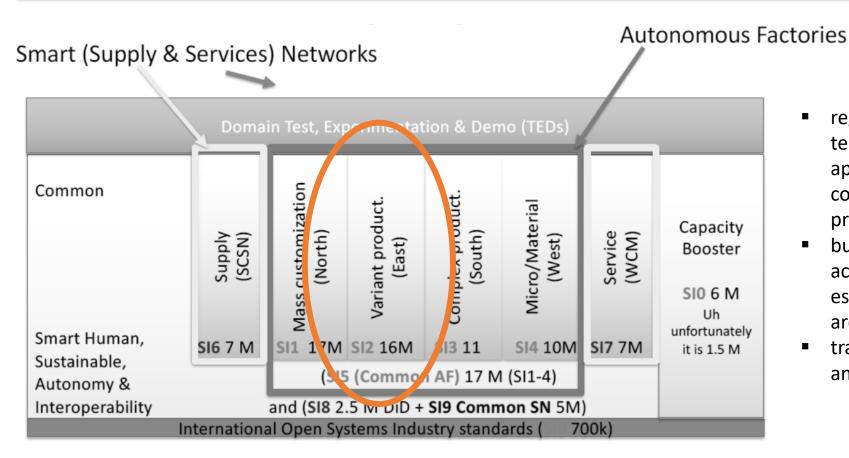


NXT GEN HIGHTECH

DFKI 2011, Smart Factory KL

Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W. (2013). Recommendations for implementing the strategic initiative Industrie 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group, 2013.

NXTGEN Smart Industry Projects

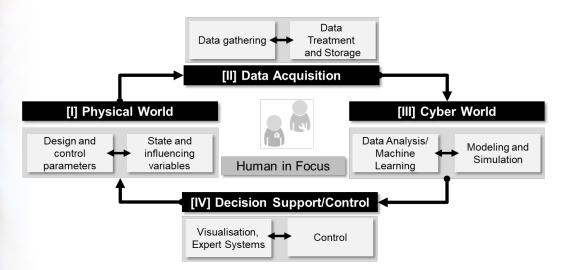

focused

for

domains,

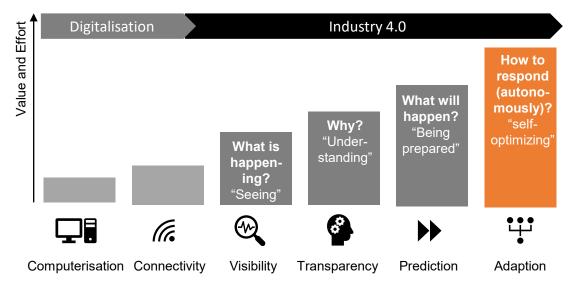
e.g.

NXTGEN Smart Industry Projects



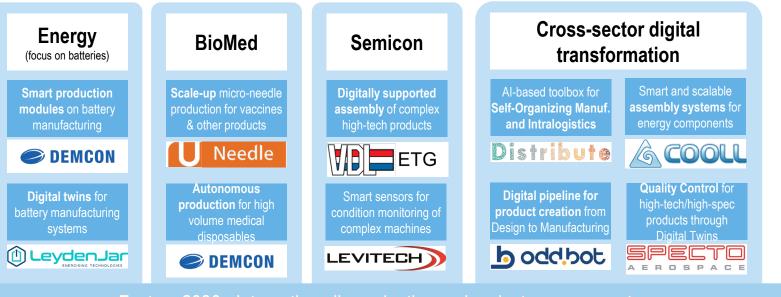
- regional cluster differ in terms of focused application domains, consortium and type of production
- build up on common activities, e.g. for establishing the digital architecture
- transfer into education and training

NXTGEN SMART INDUSTRY SOLUTIONS CPPS FOR AUTONOMOUS FACTORIES


Cyber physical (production) systems

- smart manufacturing asks for system approaches
- combination of (ICT) technologies and related methods/tools for use case on different levels (from process to whole factory or beyond), connected to Digital Twin concept

Thiede, S. (2018): Environmental sustainability of cyber physical production systems, Procedia CIRP, 69, 644-649, Elsevier Schuh et al. (2017): Industrie 4.0 Maturity Index. Managing the Digital Transformation of Companies (acatech STUDY)


Capabilities and maturity levels

 autonomous factories ask for advanced capabilities that include understanding and prediction but also decision making and execution, variety of use case possible

FACTORY 2030 (EAST NL CLUSTER) INNOVATIVE USE CASES IN FOUR CLUSTERS

Factory 2030 - Integration, dissemination and project management

SI Capability Booster – educational/training program

SI Common Autonomous Factory - development of generalizable technologies, e.g. the necessary digital stack

SI Programme Management - coordination, communication

UNIVERSITY OF TWENTE.

R&D support from University of Twente and NLR

(nlr

UNIVERSITY OF TWENTE.

NNOVATION PLATFORM

- some F2030 internal cross-cutting activities to ensure coherence/ synergies
- additional strong link to overarching Smart industry projects – e.g. building up on digital stack/architectures
- links to pilot lines in energy (battery) and biomed domain

FACTORY 2030 (EAST NL CLUSTER) EXAMPLE ENERGY/BATTERY DOMAIN

Digital twin of electrode (anode)	Smart production modules for battery
manufacturing process	manufacturing (cell assembly)
CONCEPTION DE LE CONSTING BATTERY ENERGY WITH PURE SILICON ANODES	
Embedment into digital battery ma	anufacturing simulation platform
Connection to pile	ot line activities
	UNIVERSITY OF TWENTE.

HIGHTEC

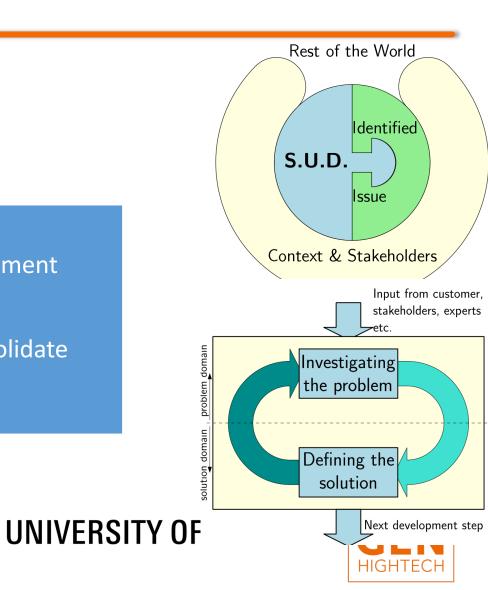
The new generation high tech equipment for future generations

Comprehensive Systems Engineering

Maarten Bonnema

NXTGEN Key Technology: Systems Engineering

Systems engineering is an <u>interdisciplinary</u> field of <u>engineering</u> and <u>engineering management</u> that focuses on how to design, integrate, and manage <u>complex systems</u> over their <u>life cycles</u>. At its core, systems engineering utilizes <u>systems</u> thinking principles to organize this body of knowledge.

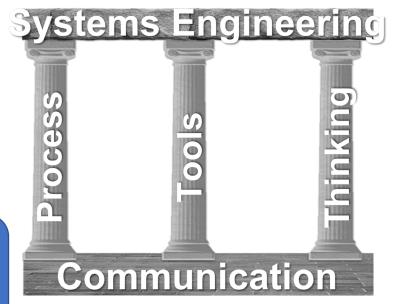

Systems Engineering

Netherlands is quite good at SE:

- ASML
- Canon PP
- Thales
- Vanderlande
- Rijkswaterstaat
- and more...

However:

- Room for improvement
- Share
- Strengthen&consolidate
 - Promote



Challenges

- Products → Systems
- Sustainability
- Increasing complexity
- Increasing multidisciplinarity (beyond engineering)

Increasing demand for Systems Engineering Systems Engineers

SE seen as promising approach

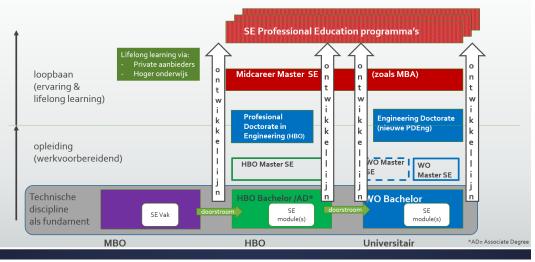
NXTGEN and SE

Use SE in all projects

Create "Dutch School of SE"

Use SE in all projects

- Representatives of all projects to be trained in SE (masterclasses)
- Milestones with SE deliverables


	1. Application in new value chains				Leading application domain	
2. Advancing key and system technologies	Laser Satcom	Energy- conversion and storage	Biomedical production technology	Semicon Equipment for Hetero- Geneous Integration	Flexible Micro Factory for Composites	Handsfree Agrifood
Optomechatronics	— —					
Robotics / CPS					-	
Thin film / Plasma						
Semicon devices						
Bionano			_ _			
System engineering						
Smart Industry						
3. Strengthening the ecosystem	Vision	9 roadmaps • Fa	cilities • Connect	ions • Capital •	Skills • Internati	onalization

Comprehensive SE Education

- TU/e, TUD, UT, Fontys
- Holland Innovative
- ASML, Thales

Doorlopende ontwikkellijn SE

HIGHTE

The new generation high tech equipment for future generations

"We will rock you"

Vinod Subramaniam