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Abstract

We derive dual characterizations of two notions of weak time consistency for concave

valuations, which are convex risk measures under a positive sign convention. Combined

with a suitable risk aversion property, these notions are shown to amount to three

simple rules for not necessarily minimal representations, describing precisely which

features of a valuation determine its unique consistent update. A compatibility result

shows that for a time-indexed sequence of valuations it is sufficient to verify these rules

only pairwise with respect to the initial valuation, or, in discrete time, only stepwise.

We conclude by describing classes of consistently risk averse dynamic valuations with

prescribed static properties per time step. This gives rise to a new formalism for

recursive valuation.

Keywords: convex risk measures; concave valuations; duality; weak time consistency;

risk aversion.

1 Introduction

Consistency of dynamic valuations, or risk measures, addresses the fundamental question

how risk-adjusted valuation depends, or should depend, on degrees of information. We refer

to [1] for a survey of this topic. The two main application areas are in regulation, where

values correspond to capital requirements, and nonlinear pricing.
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The standard notion of strong time consistency, also called dynamic consistency, or

simply time consistency, postulates that two positions with identical conditional value in

every state at some future date, must have the same value today. This guarantees that

values can be determined backward recursively. The notions of weak time consistency that

we consider allow to generalize this standard recursion in a single value per state to a (finite

or infinite dimensional) vector recursion.

The restrictiveness of standard recursion is best visible in a regulatory context. It re-

quires that capital requirements over several periods can be determined backward recursively.

Concretely, if one agrees to use e.g. Tail-Value-at-Risk at 99.5% per year, an example of a

concave valuation, this would result in an overly conservative “TVaR of TVaR” outcome

over two years. This indicates that a conditional requirement in a future state, no matter

how well-chosen, does not provide sufficient information about the conditional position in

that state, if it comes to determining a reasonable capital requirement today. Under weak

time consistency, the accumulation of conservatism can be avoided, as shown in [12].

A common approach in nonlinear pricing is to interpret the outcomes of a concave valu-

ation as bid prices, while ask prices derive from applying the valuation to positions with a

minus sign. Often also a linear pricing operator is considered that generates intrinsic values,

in between bid and ask prices, see e.g. [5, 7] and Section 5. The point of consideration is,

whether a conditional position in a future state should be deemed equivalent to its condi-

tional bid price, in the sense that these two can be interchanged in a position without effect

on its current bid price, as required by strong time consistency. Notice that this equivalence

lets the conditional bid price also play the role of an ask price, even when they differ accord-

ing to the very same conditional valuation. In order to reflect the presence of more than

one type of price more fundamentally, it is a natural idea to allow for a joint recursion in

several prices, and hence adopt weaker forms of time consistency. We refer to [13, Ex. 3.8,9]

for illustrations of our arguments in the context of regulation and nonlinear pricing.

We analyze two forms of weak time consistency that are still strong enough to ensure

uniqueness of updates, i.e., to allow for at most one conditional valuation that satisfies the

imposed consistency condition with respect to a given initial valuation. This means that

these notions do not induce a different update than strong time consistency, but extend the

set of valuations that have one.

The central notion, sequential consistency, simply requires that transitions from accept-

able to unacceptable, or vice versa, should not be predictable. This is precisely the com-

bination of the well-known concepts of (weak) acceptance and rejection consistency, (4.1),

which separately do not induce uniqueness of updates. Conditional consistency serves as

an auxiliary, even weaker notion of time consistency. It prescribes, by definition, a unique

update that is obtained by checking the acceptability of a position restricted to all possible
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events at a future date. The notions of sequential and conditional consistency have been

introduced in [12] in a simple setting, for coherent risk measures on a finite outcome space.

We refer to [13] for a further motivation of these concepts, in a more general setting that

includes non-convex risk measures.

In this paper we translate the main characterizations in [13] to concrete conditions for

dual representations. We first show how dual representations of the unique conditionally

consistent updates naturally arise as densities of measures defined in terms of initial mea-

sures. An extension of the construction addresses the case in which consistent updates fail

to exist. We then give a characterization of sequential consistency, partly based on the

well-known supermartingale condition for acceptance consistency [8, Prop. 4.10].

In the second part of the paper, starting with Section 5, we work under the assumption

that a certain property holds which was called the “supermartingale property” by Detlefsen

and Scandolo [6] and which we refer to as consistent risk aversion. This assumption is quite

intuitive both in a regulatory setting and in a pricing framework, and it greatly simplifies

the analysis. In particular, the notions of conditional consistency and sequential consistency

coincide for consistently risk averse dynamic valuations, and these properties can be char-

acterized by three simple rules in terms of dual representations. Finally, we translate these

rules to a description of the set of valuations with prescribed properties per time step, and

relate the extra flexibility compared to standard recursion to a joint recursion over a range

of risk aversion levels.

In this paper we consider families of valuations that are indexed concordantly with a given

filtration. Time consistency will usually be discussed with respect to two given instants of

time. In Section 6.1 we describe a compatibility property that makes it possible to apply

the main results to time-indexed families of valuations without any difficulties.

2 Setup and notation

The setting that we work in is the same as in for instance in [8] and [9, Chapter 11], extended

to incorporate continuous time. A filtered probability space (Ω,F , (Ft)t∈T , P ) is assumed

to be given, with T ⊂ [0, T ] a discrete or continuous time axis, 0 ∈ T , T ∈ T the finite or

infinite horizon date, F0 = {∅,Ω}, and FT = F . The set L∞ := L∞(Ω,F , P ) is taken as the

universe of all financial positions under consideration. The positions that are determinate

at time t are given by L∞t := L∞(Ω,Ft, P ), and L0
t (R+) denotes the set of Ft-measurable

random variables with values in R+ ∪ {∞}.

All inequalities, equalities and limits applied to random variables are understood in the

P -almost sure sense. The complement of an event F ∈ F is indicated by F c.

We defineQ as the set of all probability measures on (Ω,F) that are absolutely continuous
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with respect to the reference measure P . Following [9], the symbol Qt is used to denote the

set of probability measures that are equivalent to P on Ft, while the collection of probability

measures that coincide with P on Ft is indicated by Pt. To denote the subset of Q consisting

of measures that are equivalent to P , we use the conventional symbolMe(P ) instead of QT .

We use the following notation related to pasting probability measures into another one,

similar to the usage e.g. in [6, Def. 9]. For a given pair Q′ ∈ Q, Q ∈ Qt, the probability

measure Q′Qt ∈ Q is defined by the property

EQ
′QtX = EQ

′
EQt X (X ∈ L∞).

Note that Q ∈ Pt if and only if Q = PQt. We also make use of conditional pasting with

respect to F ∈ Ft: Q′QFt is the probability measure in Q defined by

(2.1) EQ
′QF

t X = EQ
′
(1FE

Q
t X + 1F cEQ

′

t X) (X ∈ L∞).

We consider conditional valuations φt : L∞ → L∞t of the following form:

(2.2) φt(·) = ess infQ∈Qt E
Q
t (·) + θt(Q),

where the threshold function θt : Qt → L0
t (R+) satisfies

(2.3) ess infQ∈Qt
θt(Q) = 0.

As discussed in [9], these are precisely those mappings φt : L∞ → L∞t with the following

five properties (with X,Y,Xn ∈ L∞, C,Λ ∈ L∞t , 0 ≤ Λ ≤ 1): (i) normalization: φt(0) = 0,

(ii) monotonicity : X ≤ Y ⇒ φt(X) ≤ φt(Y ), (iii) Ft-translation invariance: φt(X + C) =

φt(X)+C, (iv) Ft-concavity : φt(ΛX+(1−Λ)Y ) ≥ Λφt(X)+(1−Λ)φt(Y ) and (v) continuity

from above: Xn ↘ X ⇒ φt(Xn)↘ φt(X).

The class of mappings from L∞ to L∞t that satisfy these properties will be denoted by

Ct. We refer to its elements as concave valuations. A mapping φt ∈ Ct is called coherent if it

also satisfies Ft-positive homogeneity, i.e., φt(ΛX) = Λφt(X) for X,Λ ∈ L∞,Λ ≥ 0. These

are precisely the elements of Ct that can be represented by a threshold function θt that only

takes the values 0 and ∞.

Mappings with properties (i)-(iii) are called (conditional) monetary valuations, or, usu-

ally with opposite sign convention, monetary risk measures. Monetary valuations possess

the elementary property of

(2.4) Ft-regularity : φt(1FX) = 1Fφt(X) (F ∈ Ft)

which is a minimal requirement for a meaningful interpretation of the mapping φt as a

normalized valuation at time t.
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The threshold function associated to a given conditional valuation is not determined

uniquely. However, to a given φt ∈ Ct there is a unique minimal threshold function, which

is given by

(2.5) θmin
t (Q) = − ess infX∈At

EQt X

where At denotes the acceptance set that is defined by

(2.6) At = {X ∈ L∞ |φt(X) ≥ 0}.

We call a threshold function θt regular if it satisfies

(2.7) 1FE
Q
t = 1FE

R
t ⇒ 1F θt(Q) = 1F θt(R) (Q,R ∈ Qt, F ∈ Ft).

This property is similar to the regularity property (2.4) for risk measures. It has been

called the “finite pasting property” in [8, after Lemma 3.3], and the “local property” in [11,

Lemma 3.12]. Minimal threshold functions always have this property, and we sometimes

impose (2.7) as a regularity condition when non-minimal thresholds are considered.

A valuation φt ∈ Ct is called sensitive if

(2.8) X � 0 ⇒ φt(X) � 0 (X ∈ L∞),

and strongly sensitivity, or also strictly monotone, if

(2.9) X � Y ⇒ φt(X) � φt(Y ) (X,Y ∈ L∞).

3 Conditional consistency

Conditional consistency for a pair of valuations φs, φt can be expressed compactly as the

requirement that (cf. [13])

(3.1) At = Ats

where At is the acceptance set of φt, see (2.6), and Ats the Ft-restriction of As,

(3.2) Ats = {X ∈ L∞ |φs(1FX) ≥ 0 for all F ∈ Ft}.

A valuation φt that satisfies (3.1) for a given φs, is called the conditionally consistent update

of φs. This update is unique, because conditional monetary valuations are completely

determined by their acceptance set. Below we explain why its existence is not guaranteed.

For coherent risk measures φs, this update is simply obtained by conditioning probability

measures, cf. [12, Thm. 7.1]. In other words, conditional consistency generalizes the notion of
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Bayesian updating. More precisely, assuming sensitivity of φs in order to avoid technicalities,

the conditionally consistent update in Ct of φs is given by (cf. [13])

φt(X) = ess inf{EQt X |Q ∈Me(P ), θs(Q) = 0}.

As observed in [14], outside the coherent class it is not guaranteed that Ats has the property

(3.3) 1FX, 1F cX ∈ Ats ⇒ X ∈ Ats (X ∈ L∞).

Since this is a necessary condition for Ft-regularity (2.4) of φt satisfying (3.1), a conditionally

consistent update is not possible in Ct (and not even in the monetary class) when that

property is not satisfied.

We characterize the existence of a conditionally consistent update of a given φs in terms

of the operator η : Qs ×Ft → L0
s(R̄+) defined by

(3.4) η(Q,A) = − ess inf{EQs (1AX) | 1AX ∈ Ats}.

Nonnegativity of this function follows from the fact that 0 ∈ Ats. It is also clear that η can

only take infinite values where θs(Q) is infinite, because

(3.5) η(Q,A) ≤ − ess inf{EQs X |X ∈ As} = θmin
s (Q) ≤ θs(Q).

The function η can be viewed as a dual representation of Ats, in the sense that

(3.6) X ∈ Ats ⇔ EQs (1AX) + η(Q,A) ≥ 0 for all A ∈ Ft, Q ∈ Qs.

The implication from left to right in the above is obvious from the definition of Ats, while the

reverse implication follows from the fact that X 6∈ Ats implies that EQs (1AX) + θs(Q) 6≥ 0

for some Q ∈ Qs and A ∈ Ft, together with the inequality (3.5).

Proposition 3.1 The valuation φs ∈ Cs admits a conditionally consistent update φt if and

only if for all Q ∈ Qs, the mapping η(Q, ·) is additive, or in other words,

(3.7) η(Q,A ∪B) = η(Q,A) + η(Q,B) for all A,B ∈ Ft, A ∩B = ∅.

If this holds, then EQη(Q, ·) is a measure on Ft that is absolutely continuous with respect to

Q, and its Radon-Nikodym derivative µt(Q) for given Q ∈ Qt equals the minimal threshold

θmin
t (Q) for the update φt.

The proof is in the appendix. We conclude this section by addressing the question how

to define an update in case (3.7) does not hold, and return to the main line in Section 4.
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3.1 The refinement update

The Ft-refinement update φts of a given sensitive Fs-conditional monetary valuation φs

has been introduced in [13] as the smallest Ft-conditional monetary valuation whose accep-

tance set contains the set Ats defined in (3.2). In other words, φts is the conditional capital

requirement for Ats [6, 11]. It is defined as ([13, Def. 4.3])

(3.8) φts(X) = ess sup{Y ∈ L∞t |φs(1F (X − Y )) ≥ 0 for all F ∈ Ft},

and its acceptance set is the closure of Ats under (3.3),

(3.9) Bts = {Σi∈N1Ai
Xi |Xi ∈ Ats, Ai ∈ Ft,∪i∈NAi = Ω, Ai ∩Aj = ∅ for i 6= j} ⊇ Ats.

Sensitivity of φs ensures that the mapping defined above is indeed an Ft-conditional mone-

tary valuation, i.e., it satisfies the first three properties of risk measures in Ct listed in Section

2, cf. [13, Cor. 4.3]. Concavity is preserved as well, i.e., the Ft-refinement update of φs ∈ Cs
is Ft-concave, cf. [3] and [13, Prop. 2.2]. It follows from (3.1) that it must coincide with the

conditionally consistent update, if that update exists. Otherwise, the inclusion in (3.9) is

strict (see [13, Ex. 4.5] for a simple example), and we know from the previous section that

this occurs when the mapping η, as given by (3.4), is not additive in its second argument.

We restrict attention to s = 0 in this section, and consider a valuation φ0 ∈ C0. Per-

haps not surprisingly, the refinement update is closely related to the smallest measure η̄

dominating η, which is given by

(3.10) η̄(Q,A) := sup{
∑
i∈N η(Q,Ai) |

⋃
i∈NAi = A, Ai ∩Aj = ∅ for i 6= j}.

Notice that η̄(Q) need not be finite even for measures Q for which θ0(Q, ·) is finite, as is

illustrated by the following example.

Example 3.2 Take φ0 = min{EP , EQ(·)+θ} with θ > 0. Assume that the space (Ω, P,Ft)

is atomless and that Q is equivalent to P . Also assume that there exists X ∈ L∞ such

that EPt X = 0 and EQt X = −θ. Then not only X ∈ At0, but also 1AX/Q(A) ∈ At0 for all

nontrivial A ∈ Ft. Hence η(Q,A) = θ for all such A, and consequently η̄(Q,F ) =∞ for all

nontrivial F ∈ Ft. It follows that the refinement update is given by EPt .

We prove a representation theorem under the assumption that the update is continuous from

above. The proof is in the appendix.

Proposition 3.3 Let a sensitive concave valuation φ0 ∈ C0 be given, and assume that the

Ft-refinement update φt0 is continuous from above. Then we have that

φt0(X) = ess infQ∈Qt
EQt X + µt(Q)

where µt(Q) is the Radon-Nikodym derivative with respect to Q of η̄(Q, ·) as defined in

(3.10).
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4 Characterization of sequential consistency

We say that the conditional monetary valuations φs and φt are sequentially consistent, or

that φt is a sequentially consistent update of φs, if the following conditions hold (cf. [13]):

φt(X) ≥ 0 ⇒ φs(X) ≥ 0 (X ∈ L∞)(4.1a)

φt(X) ≤ 0 ⇒ φs(X) ≤ 0 (X ∈ L∞).(4.1b)

The term “sequential” is chosen to express that the values of a given position at a sequence

of time instants should not change sign predictably. These two requirements have been

called weak acceptance consistency and weak rejection consistency respectively; we shall use

the terms “acceptance consistency” and “rejection consistency” for brevity. They can be

combined into one implication that characterizes sequential consistency, cf. [13, Lemma 3.2],

(4.2) φt(X) = 0⇒ φs(X) = 0.

This can be viewed as an extension of the normalization condition φ0(0) = 0 that requires a

zero outcome not only for the zero position, but also for every X ∈ L∞ such that φt(X) = 0.

We refer to [13] for a further discussion of this concept. In particular, it is shown in this

reference that sequential consistency implies conditional consistency under the assumption

of strong sensitivity (2.9), so that uniqueness of updates is guaranteed. On the other hand,

sequential consistency is much weaker than the standard notion of strong time consistency,

which requires that

(4.3) φs(X) = φs(φt(X)).

We further discuss this backward recursion in Section 7.

Acceptance consistency has been characterized by a supermartingale condition on thresh-

old functions, see [8, Prop. 4.10]. Adapted to our setting, and with a slight generalization

for non-sensitive risk measures and non-minimal thresholds, the result reads as follows. All

proofs in this section are in the appendix.

Lemma 4.1 Acceptance consistency (4.1a) holds for a pair (φs, φt) with φs ∈ Cs and φt ∈ Ct
if

(4.4) θs(Q
′Qt) ≥ EQ

′

s θt(Q) (Q′ ∈ Qs, Q ∈ Qt)

and only if their minimal threshold functions satisfy this property.

We identify Q ∈ Q with its Radon-Nikodym derivative zQ := dQ
dP , and equip the set Q

with the corresponding L1-topology. The corresponding ε-neighborhood of Q is denoted by

(4.5) Bε(Q) := {Q′ ∈ Q | ‖zQ
′
− zQ‖1 < ε},
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We also will use the union of these sets over probability measures of the form RQt for given

Q ∈ Qt,

(4.6) Bεt (Q) :=
⋃
R∈Q

Bε(RQt).

Theorem 4.2 Let a pair of valuations φs ∈ Cs, φt ∈ Ct be given, and suppose that these

valuations are represented by regular threshold functions respectively θs and θt. The pair

(φs, φt) is sequentially consistent if the following two conditions hold,

ess inf{θs(QQ∗t )− EQs θt(Q∗) | Q ∈ Qs} ≥ 0 (Q∗ ∈ Qt)

(4.7a)

ess inf{θs(Q)− EQs θt(Q∗) | Q ∈ Bεt (Q∗) ∩Qs} ≤ 0 (ε > 0, Q∗ ∈ Qt with θt(Q
∗) bounded)

(4.7b)

and only if these conditions hold for their minimal threshold functions.

From the theorem we immediately obtain sufficiency of the following, simpler criterion.

Corollary 4.3 A pair of valuations φs ∈ Cs, φt ∈ Ct represented resp. by regular θs and

θt is sequentially consistent if for all Q∗ ∈ Qt,

ess inf{θs(QQ∗t )− EQs θt(Q∗) | Q ∈ Qs} = 0.(4.8)

Before we discuss the interpretation, let us first briefly compare the criteria in the corol-

lary and the preceding theorem. The criterion (4.8) is obtained by extending the requirement

in (4.7b) in two respects: to Q∗ with unbounded θt(Q
∗), and not only for ε > 0 but also for

ε = 0. Both extensions are not without loss of generality, as shown by two counterexamples

in Section 9.6 of the appendix.

For monetary valuations φ that are coherent, so that the minimum threshold only takes

the values 0 and ∞, this condition amounts to the requirement that measures applied at t

(i.e. Q∗ ∈ Qt such that θt(Q
∗) = 0) can be combined into one measure of the form QQ∗t ∈ Q

with zero threshold. This property has been called junctedness in [12]. In the non-coherent

case we can again interpret (4.8) as a junctedness condition, considering θt(Q
∗) as an affine

term added to the conditional expectation of positions. The criterion requires that, for all

conditional affine functionals of the form EQ
∗

t (·) + θt(Q
∗), there exists an initial “junct”

Q ∈ Q that approximately amounts to taking a weighted average of the outcome of this

functional.

5 Risk aversion in concave valuations

In this section we summarize some well-known properties of valuations related to risk aver-

sion. This prepares for our definition of consistent risk aversion in the next section, which
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plays an important role in simplifying the characterizations obtained so far. We refer to [9]

for an extensive introduction to risk aversion, emphasizing its role in axiomatic frameworks

for risk measures.

A valuation φt ∈ Ct is said to exhibit risk aversion at level t with respect to a measure

Q ∈ Q if the inequality φt(X) ≤ EQt X holds for all X ∈ L∞. In terms of the minimal

representation θmin
t of φt, the criterion is simply

(5.1) θmin
t (Q) = 0.

The terminology is taken from the literature on premium principles, although the direction of

the inequality is reversed here due to our different sign convention. An alternative term that

is sometimes used is that there is nonnegative risk loading. In the applications to premium

setting, the measure P is the “physical” (real-world) measure, and the difference EPt (X)−

φt(X) is viewed as a risk margin. A similar interpretation may be given in a regulatory

context, where φ0(X) serves to determine the amount of required capital associated to a

risky position X. Alternatively, one may think of P as a pricing measure and interpret

φt(X) as a bid price for the payoff X; in other words, φt(X) is the price that a trader at

time t is able to get in the market for a contract that obliges the seller to deliver a contingent

payoff X. The corresponding ask price is −φt(−X) [10, 5, 7]; this is the price that a trader

needs to pay to obtain the contingent payoff X. The inequality φt(X) ≤ EPt X implies

EPt X ≤ −φt(−X), so that the “intrinsic value” EPt X lies between the bid price φt(X) and

the ask price −φt(−X). The presence of a martingale measure inducing expected values

that are bracketed by the bid and ask prices associated to a nonlinear valuation φt is a

well-known condition for absence of arbitrage [10, Thm. 3.2]; cf. also the discussion in [13].

It turns out to be convenient to study the risk aversion property in combination with

acceptance consistency (4.1a), which guarantees that, if the most strongly aggregated valu-

ation exhibits risk aversion, then so do its updates.

Lemma 5.1 If a concave valuation φt ∈ Ct is an acceptance consistent update of a condi-

tional valuation φs ∈ Cs that exhibits risk aversion with respect to a measure Q ∈ Qt at level

s, then φt exhibits risk aversion with respect to Q at level t.

Proof From (5.1) it follows that θmin
s (Q) = 0. The supermartingale condition (4.4) implies

that the relation θmin
t (Q) = 0 holds as well, and hence φt ≤ EQt . �

In particular, if we assume that there is a measure P ′ equivalent to the reference measure

P with θmin
0 (P ′) = 0, like in e.g. [15], it follows that not only φ0, but also all its acceptance

consistent updates exhibit risk aversion with respect to P ′. This assumption is hardly

restrictive for sensitive concave valuations, as illustrated by the following lemma.
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Lemma 5.2 A coherent sensitive valuation is risk averse with respect to some P ′ ∈Me(P ).

For a sensitive concave valuation φ0 ∈ C0, there exists for all ε > 0 a sensitive concave

valuation φ′0 ∈ C0 that is risk averse with respect to some P ′ ∈ Me(P ), and satisfies 0 ≤

φ0(X)− φ′0(X) < ε for all X ∈ L∞.

Proof Let θmin
0 denote the minimal representation of φ0 ∈ C0. From (2.3) and (9.12)

it follows that there exists P ′ ∈ Me(P ) with θmin
0 (P ′) < ε. In the coherent case, then

θmin
0 (P ′) = 0. For the general case, take φ′0 the valuation obtained by redefining θmin

0 (P ′) :=

0. Obviousy then 0 ≤ φ0(X) − φ′0(X) < ε for all X ∈ L∞. Sensitivity of φ′0 follows from

φ′0 ≤ φ0, and by (5.1) the claims follow. �

In the sequel we will mainly concentrate on risk aversion with respect to P . This is

without further loss of generality, because formally the only role of the reference measure is

to specify null sets, and hence P can be replaced by any P ′ ∈Me(P ).

6 Consistent risk aversion

The notion of risk aversion can be incorporated in time consistency in a straightforward

way, by imposing upper limits on φs(X) in terms of conditional expected values not only

of X, but also of φt(X). A dynamic valuation is a family (φt)t∈T of conditional valuations

φt : L∞ → L∞t .

Definition 6.1 A dynamic valuation (φt)t∈T is said to exhibit consistent risk aversion

(CRA) with respect to P ′ ∈Me(P ) if φs ≤ EP
′

s φt for all 0 ≤ s ≤ t ≤ T .

For P ′ = P we may omit the phrase “with respect to P ′”. The property of conditional

risk aversion has been introduced in [6] under the name supermartingale property, and it

is motivated there by the argument that the average of risk premiums at a given level of

information should not exceed the risk premium that is required when less information is

available. It should be noted that the sign convention in the cited paper is different from

the one we use here.

Under the CRA condition, various notions of weak time consistency coincide. This is

stated in the following proposition.

Proposition 6.2 Let a dynamic valuation φ = (φt)t∈T be given with φt ∈ Ct for all t ∈ T .

Under the condition that φ satisfies the CRA property with respect to some P ′ ∈ Me(P ),

the following statements are equivalent: (i) φ is acceptance consistent, (ii) φ is conditionally

consistent, (iii) φ is sequentially consistent.
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Proof The implications from (ii) to (i) and from (iii) to (i) hold by definition, even without

the CRA assumption. The CRA property directly implies rejection consistency (4.1b) so

that acceptance consistency is equivalent to sequential consistency under CRA. Finally, to

prove that acceptance consistency implies conditional consistency (3.1), first note that the

inclusion At ⊂ Ats already holds without the CRA assumption, since acceptance consistency

means that At ⊂ As and, by the regularity of φt (2.4), this implies that At ⊂ Ats. To

derive the reverse inclusion, take X ∈ Ats. Then φs(1FX) ≥ 0 for all F ∈ Ft, so that, by

the CRA property, EP
′

s 1Fφt(X) = EP
′

s φt(1FX) ≥ 0 for all F ∈ Ft. Taking in particular

F = {φt(X) < 0}, we find that P ′(φt(X) < 0) = 0; in other words, φt(X) ≥ 0 so that

X ∈ At. �

Recall that conditionally consistent updates are unique by definition, see (3.1), so the

combination of acceptance consistency and CRA is sufficiently strong to rule out ambiguity

of updating. Hence we can also apply the notion of CRA to an initial valuation itself, as

follows.

Definition 6.3 φ0 ∈ C0 is said to exhibit CRA (with respect to a given filtration) if its

conditionally consistent updates exist at all t ∈ T , and form a CRA dynamic valuation.

Below we state a number of conditions that may be imposed on dynamic valuations

in terms of the associated threshold functions. In the theorem below these are shown to

be equivalent to consistent risk aversion of the initial valuation (with respect to P ). The

conditions below are stated for a given dynamic risk measure (φt)t∈T and for all 0 ≤ s ≤

t ≤ T . The proof of the theorem is in the appendix.

Rule 1 : θt(P ) = 0

Rule 2 : θs(Q
′Qt) ≥ EQ

′

s θt(Q) (Q′ ∈ Qs, Q ∈ Qt)

Rule 3 : θs(PQt) = EPs θt(Q) (Q ∈ Qt).

Theorem 6.4 Let a dynamic valuation φ = (φt)t∈T be given with φt ∈ Ct for all t ∈ T .

The following four conditions are equivalent:

1. φ0 exhibits consistent risk aversion, and φt is its conditionally consistent update at t.

2. φ is acceptance consistent and exhibits consistent risk aversion

3. φ is representable by regular threshold functions (θt)t∈T that satisfy Rules 1–3

4. the minimal threshold functions of φ satisfy Rules 1–3.
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6.1 Additional results

Under Rule 3 the reference measure P serves as a universal junct (cf. the discussion at the

end of Section 4), guaranteeing sequential consistency in a straightforward way. Rule 3 also

shows that consistent updating induces a strong link between on the one hand θs
∣∣
Pt

, i.e.,

the threshold functions θs restricted to Pt, and on the other hand θt, whose restriction to

Pt still fully describes φt, cf. (9.3). It is clear that a given threshold function θt at level t

completely determines θs(Q) for Q ∈ Pt. The converse is also true, if one imposes regularity

of θt.

Proposition 6.5 Let φs and φt belong to a dynamic risk measure that satisfies the first

condition of Thm. 6.4. Then φt determines θmin
s

∣∣
Pt

, and vice versa. Moreover, for any

representation θs of φs, the restriction θs
∣∣
Pt

determines a unique regular threshold function

θt for φt that satisfies Rule 3.

Proof We show that under Rule 3 there exists at most one regular threshold function θt.

The second claim then follows directly, and the first claim follows from the fact that Rule 3

holds for minimal (hence regular) threshold functions.

Given a regular threshold function θt, we have θt(PQ
A
t ) = 1Aθt(Q). (Recall that the

notation PQAt is used for conditional pasting of the measures P and Q; see (2.1).) Therefore

Rule 3 is equivalent to

Rule 3′: θs(PQ
A
t ) = EPs 1Aθt(Q) (Q ∈ Qt, A ∈ Ft).

Now consider two regular threshold functions θt and θ′t that both satisfy this rule. For given

Q ∈ Qt, apply Rule 3′ to A = {θt(Q) < θ′t(Q)}. One verifies directly that this event has

zero probability, and by an obvious symmetry argument it follows that θt(Q) and θ′t(Q) are

equal. �

The connection provided by the proposition above not only reflects the uniqueness of

consistent updates, which was also proved in [13] for not necessarily concave risk measures

under appropriate sensitivity assumptions, but it also indicates which feature of the aggre-

gated valuation determines the update, or why it may fail to exist. For instance, one of the

consequences of Rule 3′ is that for disjoint A,B ∈ Ft,

(6.1) θmin
s (PQA∪Bt ) = θmin

s (PQAt ) + θmin
s (PQBt )

because otherwise there exists no regular time-t threshold function θt that satisfies Rule 3′.

Remark 6.6 As shown in Prop. 6.2, the difference between conditional and sequential con-

sistency disappears under the CRA property. In Prop. 3.1 we characterized conditional con-

sistency in terms of the operator η defined in (3.4). Under the conditions of the theorem,
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the operator η satisfies

(6.2) η(PQt, A) = EPs 1Aθ
min
t (Q) = θmin

s (PQAt ) (Q ∈ Qt, A ∈ Ft).

This condition determines η completely, because η(Q′Qt, A) = EQ
′

s 1Aθ
min
t (Q) by Prop. 3.1.

From this formula the additivity of η, which characterizes conditional consistency, is obvious.

A closer inspection reveals that if we restrict Rule 3′ to events A that are in a sense “small”,

the rule still guarantees conditional consistency. To be precise, let Fa
t ⊂ Ft denote the

collection of atoms of (Ω,Ft, P ), and for any given δ > 0 define Fδt = {F ∈ Ft |P (F ) < δ}.

Choose δ > 0 and consider the following relaxation of Rule 3′:

Rule 3′′: θs(PQ
S
t ) = EPs 1Sθt(Q) (Q ∈ Qt, S ∈ Fa

t ∪ Fδt )

which reflects a weaker, “local” form of consistent risk aversion. Notice that under Rules 1,

2, and 3′′, the relation (6.2) still holds, and that conditional consistency is preserved. It also

follows that conditionally consistent updates are in fact already completely determined by

the restriction of θs to {PQAt |A ∈ Fa
t ∪ Fδt }. Rule 3′′ is too weak, however, to guarantee

that such updates are sequentially consistent, since the condition (6.1) may be violated for

sets A and B such that A ∪B is not in the collection Fa
t ∪ Fδt .

We conclude this section with a corollary on the characterization of CRA for initial

valuations, Def. 6.3. We make use of a compatibility result which shows that it is sufficient

to verify the conditions of Thm. 6.4 for a limited set of pairs of time instants s, t. Similar

results in [13] make use of sensitivity conditions; under the CRA assumption, these conditions

are not needed.

Proposition 6.7 For a dynamic valuation (φt)t∈T , with φt ∈ Ct, the following statements

are equivalent:

a. The conditions of Thm. 6.4 hold for s = 0 and for all t ∈ T with t > 0.

b. The conditions of Thm. 6.4 hold for all s, t ∈ T with s < t.

In case T = {0, 1, . . . , T} with T finite, these statements are also equivalent to

c. The conditions of Thm. 6.4 hold for all s, t ∈ T with t = s+ 1.

From Thm. 6.4 and the proof of Prop. 6.5, the following result now follows straightfor-

wardly.

Corollary 6.8 Let an initial concave valuation φ0 ∈ C0 be given, represented by threshold

function θ0. The valuation φ0 exhibits CRA if, for all t ∈ T , the (unique) regular threshold

function θt that satisfies Rule 3′ with s = 0 exists, and satisfies Rule 1–2 for s = 0. This

condition is also necessary if θ0 is the minimal representation of φ0.
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7 CRA valuations with prescribed stepwise properties

We assume a discrete, finite time axis T = {0, 1, . . . , T}. Suppose that, for every t ∈ T ′ :=

{0, 1, . . . , T − 1}, a single-period concave valuation ψ̄t : L∞t+1 → L∞t is given. These single-

period valuations can be composed to form a dynamic valuation ψ = (ψt)t∈T , which may

be defined recursively by

(7.1) ψT (X) = X, ψt(X) = ψ̄t(ψt+1(X)) (t = T − 1, . . . , 0).

The dynamic valuation ψ that is obtained in this way is strongly time consistent, i.e., it

satisfies (4.3). The construction as described is in fact a standard method of obtaining

multiperiod strongly time consistent valuations. The given valuations ψ̄t may correspond

to one of the well-known types of static risk measures. Standard examples in the coherent

class are Tail-Value-at-Risk (TVaR) and its generalization to spectral risk measures, and

MINVAR and other variants of distortion measures, introduced in [4] in the context of bid-

ask price modeling, see also Ex. 7.3 below. The prime example in the concave class is that

of entropic risk measures, related to exponential utility.

If in general we write φs,t for the restriction φs|L∞t of a concave valuation φs to L∞t , with

t > s, then the valuation ψ defined by (7.1) satisfies ψt,t+1 = ψ̄t for all t ∈ T ′, and it is in fact

the only strongly time consistent dynamic valuation that has this property. However, there

are in general many weakly time consistent valuations φ that satisfy the same property:

(7.2) φt,t+1 = ψ̄t (0 ≤ t ≤ T − 1).

Across a single time period, these valuations express the same level of conservatism as the

given single-period valuations ψ̄t, but across multiple periods they can avoid the piling up

of conservatism that is inherent in the strongly consistent valuation ψ. In this section, we

discuss the construction of CRA valuations that match a given set of single-period valuations.

In view of Def. 6.3, the matching condition (7.2) can also be interpreted as a prescription of

the stepwise properties of initial valuations φ0.

To simplify the analysis, we restrict attention to valuations with the following additional

property, for pairs s, t ∈ T with s < t:

(7.3) φs(X) ≤ φs(EPt X).

This has a natural interpretation in both a regulatory and a pricing context, with P respec-

tively the real-world and a pricing measure. As shown in the lemma below, the corresponding

extra rule for representations, in addition to the three for CRA, is

Rule 4 : θs(Q) ≥ θs(QPt) (Q ∈ Qs).
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Lemma 7.1 A valuation φs ∈ Cs satisfies (7.3), for given t > s, if it has a representation

θs satisfying Rule 4, and only if its minimal representation satisfies that rule. Furthermore,

θs,t(Q) := θs(QPt) defines a representation of φs,t if θs satisfies Rule 4.

Proof If Rule 4 holds, then φs(E
P
t X) = ess infQ∈Qs

EQPtX+θs(Q) ≥ ess infQ∈Qs
EQPtX+

θs(QPt) ≥ φs(X). For the only-if part, by (2.5), the minimal representation of φs sat-

isfies θmin
s (QPt) = − ess infX∈As E

Q
s (EPt X) = − ess inf{EQs Z |Z = EPt X,X ∈ As} ≤

− ess infZ∈As E
Q
s (Z) = θmin

s (Q). The last inequality is based on (7.3), implying that

EPt X ∈ As if X ∈ As. For the last claim, notice that we can always write φs,t(X) =

ess infQ∈Qs,R∈Qt
EQs X + θs(QRt), because X ∈ L∞t . By Rule 4, we can restrict the domain

to R = P , and the result follows. �

Combining Rule 4 with the matching condition (7.2) yields a fifth rule, requiring that

Rule 5: θt(QPt+1) = ξt(Q) (t ∈ T ′, Q ∈ Qt),

for some regular representation ξt of the to-be-matched ψ̄t, with ξt(P ) = 0. Notice that in

the notation ξt(Q) we identified Q with its restriction to Ft+1. The condition ξt(P ) = 0,

which can be imposed in view of (5.1), ensures that Rule 5 for Q = P is not in conflict with

Rule 1.

Corollary 7.2 A valuation φ0 ∈ C0 exhibits CRA, satisfies the extra requirement (7.3),

and has stepwise properties prescribed by (7.2), if and only if there exist regular threshold

functions (θt)t∈T representing φ0 and its conditionally consistent updates that satisfy Rule

1-5.

We sketch the effect of these rules backward recursively. For the last step, Rule 5 leaves

no freedom, implying θT−1 := ξT−1. Then, at T − 2, the following properties of θT−2 are

prescribed, by resp. Rule 1, 3, and 5, for Q ∈ QT−2:

θT−2(P ) = 0

θT−2(PQT−1) = EPT−2θT−1(Q) = EPT−2ξT−1(Q)

θT−2(QPT−1) = ξT−2(Q)

Rules 2 and 4 both put lower bounds on θT−2, which can be combined into

(7.4) θT−2(Q′QT−1) ≥ ξT−2(Q′) ∨ EQ
′

T−2ξT−1(Q).

If we impose that φ must also satisfy superrecursiveness,

(7.5) φs(X) ≥ φs(φt(X)),

this would lead to another rule, stronger than Rule 2 and 4,
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Rule 6 : θs(Q
′Qt+1) ≥ θs(Q′Pt) + EQ

′
θt(Q),

so that the lower bound derived above would increase to

(7.6) θT−2(Q′QT−1) ≥ ξT−2(Q′) + EQ
′

T−2ξT−1(Q).

The pattern for the remaining steps is the same, and it follows that we can take, resp.

without and with imposing Rule 6,

θt(Q
′Qt+1) = ξt(Q

′) ∨ EQ
′

t θt+1(Q) + θ̂t(Q
′Qt+1)(7.7)

θt(Q
′Qt+1) = ξt(Q

′) + EQ
′

t θt+1(Q) + θ̂t(Q
′Qt+1)(7.8)

with incremental threshold function θ̂t satisfying, besides regularity,

(7.9) θ̂t(Q
′Qt+1) ≥ 0, with equality holding if Q′Pt+1 = P or PQt+1 = P.

For θ̂t chosen zero in (7.8), for all t ∈ T ′, the outcome is ψ. Choosing θ̂t maximal in

(7.7) or (7.8), i.e., infinity where zero is not prescribed, yields the maximum CRA valuation

compatible with (7.2) and (7.3). This corresponds to applying risk aversion only in one

period, i.e., to

(7.10) φ̂ = (φ̂t)t∈T with φ̂t(X) = ess infu∈{t,...,T−1}E
P
t ψ̄u(EPu+1X).

Example 7.3 Let ψ̄αt denote the one-step conditional valuations corresponding to MINVAR(α+

1) with parameter α ∈ R+. For α ∈ N this amounts to taking the conditional expected

value of the minimum of α + 1 trials under the reference measure P , cf. [4]; in particular,

ψ0
t (X) = EPt (X) for X ∈ L∞t+1. Assume α = n ∈ N corresponds to a reasonable level of risk

aversion over one period, and let ψn be the recursive valuation (7.1) with stepwise valua-

tion ψt,t+1 = ψ̄nt . The maximum CRA valuation satisfying (7.2) is given by (7.10), which

amounts to applying MINVAR(n+ 1) in at most one period. The minimum valuation with

the same stepwise properties as ψn is, of course, ψn itself. An example in between these

extremes is obtained by setting a limit on the total number of trials till horizon date T ,1

(7.11) φnt (X) = ess inf{ψ̄nt
t (. . . (ψ̄

nT−1

T−1 (X))...) |nt + · · ·+ nT−1 ≤ n}.

Other examples are obtained by replacing the upper bound n by n(T − t)γ , with γ ∈ [0, 1]

controlling the level of risk aversion over multiple time steps.

It may be noted that for coherent valuations, as the examples just given, superrecur-

siveness (7.5) is equivalent to acceptance consistency (4.1a), and hence is always satisfied

under CRA: acceptance consistency is directly implied by (7.5), and, conversely, (4.1a)

implies that φs(X − φt(X)) ≥ 0 because φt(X − φt(X)) = 0, and by coherence then

φs(X) ≥ φs(φt(X)) + φs(X − φt(X)) ≥ φs(φt(X)).

1The given examples belong to the class of compound dynamic valuations, introduced in [13, Section 6],

which contains an analysis of their consistency properties at a general level.
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7.1 Set-recursive valuation

It may be illuminating to compare the recursive features of φ̂, defined by (7.10), with the

standard recursive property of ψ in (7.1). A backward recursive evaluation of φ̂(X) for given

X ∈ L∞ is quite possible if one keeps track of the outcomes of a “double” value function at

each time t ∈ T , consisting of not only φ̂t, but also EPt :

(7.12) (φ̂t(X), EPt X) = (ψ̄t(E
P
t+1X) ∧ EPt φ̂t+1(X), EPt E

P
t+1X)

This is an example of what we call set-recursion, a generalization of the standard “singleton”

recursion (4.3) in just one Ft-measurable variable at t, as obeyed by ψ in (7.1).

More generally speaking, one may consider valuations φ = (φt)t∈T that are constructed

by means of a recursion of the form

Φt(X) = Ψ̄t(Φt+1(X))(7.13a)

φt(X) = φ̄t(Φt(X))(7.13b)

where the auxiliary quantities Φt(X) take values in the sets L∞t (Ω,F ;Z) of essentially

bounded Ft-measurable functions with values in a suitable normed vector space Z. These

auxiliary quantities are defined recursively by means of the mappings Ψ̄t : L∞t+1(Ω,F ;Z)→

L∞t (Ω,F ;Z), and the actual valuations at the time instants t are produced from Φt(X) by

applying a mapping φ̄t : L∞t (Ω,F ;Z) → L∞t . The idea is that the vector space Z allows

storage of multiple attributes which play a role in valuation. Below we discuss this idea

more concretely in terms of a parametrized family of valuations.

Definition 7.4 A parametrized family of dynamic valuations (φα)α∈A for some index set

A is called set-recursive, or more specifically A-recursive, if the following implication holds

for all X,Y ∈ L∞:

φαt+1(X) = φαt+1(Y ) (α ∈ A) ⇒ φαt (X) = φαt (Y ) (α ∈ A).

In other words, A-recursiveness means that each φα can be recursively specified by (7.13)

with Φt(X) = (φαt (X))α∈A. We will take A ⊂ R, interpreted as a range of risk aversion

levels. For example, if we set φa := φ̂, with a > 0 interpreted as the overall risk aversion

level of φ̂ defined in (7.10), and φ0 = (EPt )t∈T , then (7.12) shows that the pair is A-recursive

for A = {0, a} (and φ0 itself for A = {0}).

Within the context of concave valuations, it is an obvious idea to specify A-recursion in

terms of concave single-step valuations, and to consider, for instance,

(7.14) φαt = ess infα′∈A ψ̄
α,α′

t φα
′

t+1,

Here ψ̄α,α
′

t is a single period valuation that specifies how conservative one can be over

[t, t+ 1], under overall risk aversion level α, in combination with applying risk aversion level
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α′ over the remaining period. We therefore impose that ψ̄α,α
′

t non-increasing in α, and

non-decreasing in α′. We call Ψ̄α
t := (ψ̄α,α

′

t )α′∈A the generator of φα at t, in analogy to

the standard recursive case, in which this operator is independent of α′, and coincides with

φαt,t+1.2

When we take ψ̄α,αt ≤ EPt (on L∞t+1), for all t ∈ T ′, the dynamic valuation φα satisfies

the CRA criterion of Def. 6.1. To obtain the equivalent conditions in Prop. 6.2, so that

φα0 is CRA (Def. 6.3), we also assume that ψ̄α,α
′

= ∞ for α′ > α; the criterion (4.1a) for

acceptance consistency then follows.

This translates to dual representations as follows. Let θα,α
′

t denote a regular represen-

tation of ψ̄α,α
′

t . In order to satisfy the conditions of Thm. 6.4, we set θα,α
′

t (P ) = 0 for all

α′ ≤ α. The matching condition (7.2) takes the form θα,0t = ξαt , cf. Rule 6, with ξαt a regular

representation of the single step valuation that has to be matched by φα. The corresponding

representations θαt of φαt defined by (7.14) are then given by

θαT−1 = ξαT−1

θαt (Q′Qt+1) = ess infα′∈AE
Q′

t θα
′

t+1(Q) + θα,α
′

t (Q′).

We conclude by pointing out the fact that this setting gives rise to a revision of the

very definition of positions. We took starting point in the specification of a position X at

some future moment T , and, correspondingly, we can “artificially” set φαT (X) = X for all

risk-aversion levels we consider. However, in many applications T is a somewhat arbitrarily

chosen horizon date of modeling, and there is no reason to treat T in a different manner

than earlier time instants. So we should allow then for dependency on α of φαT , and hence

of a position X itself, to reflect the sensitivity of X(ω) for risk aversion after T , for each

ω ∈ Ω. In other words, rather than formalizing a position as X : Ω → R, we could take

XA : Ω × A 7→ R as the fundamental object of valuation, with A a suitable range of

risk aversion levels, in which XA is monotone. It is clear that A-recursive valuations then

become recursive in the ordinary sense, and can be locally specificied in terms of the newly

introduced generators.

Example 7.5 The example φn0 in (7.11) is an A-recursive CRA valuation in C0 for A =

{0, . . . , n}, with generator Ψ̄n
t = (ψ̄n−kt )k∈A at t, since we can write,

(7.15) φnt (X) = ess inf{ψ̄n−kt (φkt+1(X)) | k = 0, . . . , n} ≤ EPt (φnt+1(X)).

2The expression (7.14) is not without loss of generality. For instance, it can be shown that the generator

of Sequential TVaR, introduced in [12], takes the form (7.14) with the domain of α′ extended to the set A′

of all Ft+1-measurable variables taking values in [0, α], using an obvious extension of the definition of φα
′
t+1

for α′ ∈ A′.
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To suppress the role of horizon date T , we can use exponential weights βk for parameter

nt+k in (7.11), for some β ∈ [0, 1]. For T large, and with parameters extended to R+, (7.15)

then transforms into

(7.16) φα;βt (X) = ess inf{ψ̄α−βα
′

t (φα
′

t+1(X)) |α′ ∈ A},

with A = [0, α]. This constitutes a recursion in “extended” conditional positions XA
t :=

(φα
′;β
t (X))α′∈A, specified by the generator Ψ̄α;β

t = (ψ̄α−βα
′

t )α′∈A at t. Notice that the

extra parameter β in (7.16) does not affect stepwise properties, and hence can be calibrated

to market prices after α has been tuned to the market at a local time scale.

8 Conclusions

We have given dual characterizations of conditional and sequential consistency of concave

valuations. Under the assumption of consistent risk aversion we have characterized sequential

consistency by three straightforward rules for threshold functions, and we have described

the freedom still left by these rules when valuation per time step is fully prescribed. The

description of set-recursive valuations in terms of generators provides a recursive structure

for tuning levels of risk aversion over long and short time periods. We look upon this topic,

which can be treated only to a very limited extent under strong time consistency, as an

important research theme in the field of dynamic risk measures.

In particular, our analysis eventually led to a refined definition of positions, specifying

their conditional value for an entire range of risk aversion levels in each state, rather than

for just one. For this refined specification of positions, set-recursive valuations regain the

strong intuition and computational advantages of backward recursive valuation, which may

facilitate the incorporation of this extra dimension in existing frameworks for nonlinear

pricing and risk measurement.

9 Appendix

9.1 Auxiliary results

The following lemma contains a standard result that is frequently used in the literature on

dynamic risk measures. Let be given two time instants u, v ∈ T with u ≤ v. A set R ⊂ L∞v
is called directed downwards if for any R, S ∈ R, there exists an M ∈ R with M ≤ R and

M ≤ S. We call R Fv-local if

(9.1) R, S ∈ R ⇒ 1FR+ 1F cS ∈ R (F ∈ Fv).
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Lemma 9.1 If a set R ⊂ L∞v is Fv-local, it is directed downwards. If a set R ⊂ L∞v

is directed downwards, there exists a monotonic sequence {Rn}n∈N in R for which Rn ↘

ess infR, and

EQu ess infR = ess inf{EQu R |R ∈ R} (Q ∈ Qu).

Proof For an Ft-local set R, with R,S also M := 1FR + 1F cS ∈ R for F = {R < S}.

Since M ≤ R and M ≤ S, it follows that R is directed downwards. For the existence of the

monotonic sequence, see e.g. [9, Thm. A.33], or [2, Remark 3.8]. The last claim follows from

monotone convergence. �

From this lemma we obtain the following result, which is used in Thm. 4.2. Recall that

Pt denotes the subset of Qt consisting of measures that are identical to P on Ft.

Lemma 9.2 Let an Ft-conditional monetary valuation φt be given, and assume that φt is

represented by a threshold function θt that satisfies the regularity property (2.7). If X ∈ L∞

is such that φt(X) = 0, then for every ε > 0 there exists a measure Q ∈ Pt such that

(9.2) EQt X + θt(Q) < ε.

Proof Without loss of generality, φt ∈ Ct can be represented as

(9.3) φt(·) = ess infQ∈Pt E
Q
t (·) + θt(Q),

i.e., with probability measures in the representation (2.2) restricted to Pt, see [8, Thm. 2.3].

So φt(X) can be written as ess inf{R |R ∈ R} with R := {EQ
′

t X + θt(Q
′)}Q′∈Pt . Because

θt is regular, the set R has the Ft-local property (9.1). From Lemma 9.1 it now follows that,

if φt(X) = 0, there exists a sequence (Qn)n∈N in Pt with

(9.4) EQ
n

t X + θt(Q
n)↘ 0.

We will show that then for any ε > 0 there exists a measure Q ∈ Pt that satisfies (9.2).

Define Bn := {EQ
n

t X + θt(Q
n) < ε} ∈ Ft, A0 := B0, and An := Bn \ (∪n−1k=1Bk). Due to

(9.4), ∪nk=1Ak = ∪nk=1Bk ↗ Ω, so (An)n∈N is a partition of Ω. Define Zn := dQn/dP , and

Z := Σn∈N1An
dQn/dP . Then Z ≥ 0, and EtZ = Et(Σn∈N1An

Zn) = Σn∈N(1An
EtZn) =

Σn∈N1An
= 1, where for the second last equality we used that EtZn = 1, because Qn ∈ Pt,

for all n ∈ N. So Q ∈ Pt defined by dQ/dP = Z satisfies (9.2).

�

We remark that the claim of the lemma can be derived even more straightforwardly if

regular conditional probabilities exist (cf. also [6, Def. 9]), because this allows us to choose

conditional measures that validate the inequality (9.2) as a function of ω.
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9.2 Proof of Prop. 3.1

We first address the case s = 0. We write At for At0.

As a first step, we prove that η must always satisfy the subadditivity property

(9.5) η(Q,A ∪B) ≤ η(Q,A) + η(Q,B) for all A,B ∈ Ft, A ∩B = ∅,

for all Q ∈ Q. This follows from

−η(Q,A ∪B) = inf{EQ(1AX) + EQ(1BX) | 1A∪BX ∈ At}(9.6)

≥ inf{EQ(1AX) + EQ(1BX) | 1AX ∈ At, 1BX ∈ At}

= inf{EQ(1AX) + EQ(1BX
′) | 1AX ∈ At, 1BX ′ ∈ At}

= −η(Q,A)− η(Q,B).

Necessity of (3.7) is shown as follows. Assume that φt is a conditionally consistent update

of φ0, and let its acceptance set be denoted by At, so At = At. From (3.3), implied by

the regularity property (2.4) of φt, it follows that the domains in the first two lines of (9.6)

coincide (in fact also when A and B are not disjoint), and hence equality must hold in (9.6),

so that (3.7) follows. Sufficiency of (3.7) follows from the fact that then the density of η is

well defined and represents the conditionally consistent update of φ0, as shown below in the

proof of second claim of the proposition.

Concerning the second claim, we first prove that (3.7) implies that η(Q, ·) is a measure

on Ft that is absolutely continuous with respect to Q. For all Q ∈ Q, η(Q, ·) is nonnegative,

and η(Q,A) = 0 for all A with Q(A) = 0, so it remains to prove σ-additivity. For a given

A ∈ Ft, consider a countable partition in Ft of A, given by A =
⋃
i∈NAi with Ai ∈ Ft for

all i and Ai ∩Aj = ∅ for i 6= j, and define

VA := {1AX | 1AX ∈ At}(9.7)

WA := {1AX | 1Ai
X ∈ At for all i ∈ N}.(9.8)

By definition, η(Q,Ai) = − inf(EQ1Ai
X | 1Ai

X ∈ At}, so for all Q ∈ Q,

η(Q,A) = − inf{EQZ |Z ∈ VA}, Σi∈N η(Q,Ai) = − inf{EQZ |Z ∈ WA}.

Clearly VA ⊂ WA, and if equality holds, then η(Q,A) = Σi∈Nη(Q,Ai). We show that

the assumption VA 6= WA leads to a contradiction with the additivity property (3.7). If

VA 6= WA, then there exists X ∈ L∞ such that 1Ai
X ∈ At for all i, while 1AX 6∈ At.

Then EQ(1F 1AX) + θ0(Q) < 0 for some Q ∈ Q and F ∈ Ft; in other words, the position

determined by the restriction of X to F ∩ A is rejected. The same must then also hold for

the restriction of X to F ∩B, where B :=
⋃
i=1,...,nAi with n sufficiently large. For such n

it follows by (3.5) that

0 > EQ(1B∩FX) + θ0(Q) ≥ EQ(1B∩FX) + η(Q,B).
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On the other hand, because X ∈ WA, we have EQ1Ai∩FX + η(Q,Ai) ≥ 0 for all i, and

summation over i = 1, . . . , n shows that η is not additive.

Therefore, (3.7) indeed implies that η(Q, ·) is a measure on Ft that is absolutely con-

tinuous with respect to Q, and its Radon-Nikodym derivative µt(Q) is well-defined for all

Q ∈ Q, up to a null set of Q.

To prove the last claim, still for s = 0, we use that by definition (3.4) of η, for any

Q ∈ Q, it holds that η(Q,A) = EQ(1Aµt(Q)) = − inf{EQ(1AX) | 1AX ∈ At}, and hence

inf{EQ(1A(X + µt(Q))) | 1AX ∈ At} = 0. Since this holds for all A ∈ Ft, it must hold that

ess inf{EQt (X + µt(Q)) |X ∈ At} = 0, so µt(Q) = − ess inf{EQt X |X ∈ At}. From (2.5)

it follows that µt, restricted to Qt, is the minimum threshold function of the conditionally

consistent update φt of φ0. This concludes the proof for the case s = 0.

The generalization of these results to s > 0 is straightforward from the following lemma.

Here φ̄φs denotes the composition of φ̄ and φs, i.e., φ̄φs(X) = φ̄(φs(X)).

Lemma 9.3 Let concave valuations φs ∈ Cs and φt ∈ Ct be given, and let φ̄ be an uncondi-

tional valuation on L∞s that is normalized, monotone and sensitive. Then the pair (φs, φt)

is conditionally consistent if and only if the pair (φ̄φs, φt) is conditionally consistent.

Proof of the lemma.

Let A′ denote the acceptance set of φ′ := φ̄φs, and (A′)t its Ft-restriction, see (3.2). In

view of the definition of conditional consistency (3.1) it is sufficient to prove that

(9.9) (A′)t = Ats,

i.e., φs(1FX) ≥ 0 for all F ∈ Ft if and only if φ̄(φs(1FX)) ≥ 0 for all F ∈ Ft. The forward

implication follows from monotonicity and normalization of φ̄. For the converse implication,

we prove that if φs(1FX) 6≥ 0 for some F ∈ Ft, then φ̄(φs(1GX)) < 0 for some G ∈ Ft.

For such F , consider G := {φs(1FX) < 0} ∈ Fs. Then φs(1GX) = 1Gφs(X) � 0, and

sensitivity of φ̄ implies that φ̄(φs(1GX)) < 0.

End of the proof of the lemma.

By taking φ̄ a sensitive concave valuation in C0 in this lemma, e.g. the linear operator

EP on L∞s , one obtains an unconditional valuation φ′ := φ̄φs ∈ C0, for which a conditionally

consistent update coincides with that of φs. It remains to show that Prop. (3.1) for φs with

s > 0 is equivalent to applying it to φ′. Due to (9.9), the η-function (3.4) corresponding to

φ′ can be written as

(9.10) η′(Q,A) := − inf{EQ(1AX) | 1AX ∈ Ats},

One easily verifies that η′(Q, ·) = EQη(Q, ·), by comparing (9.10) with (3.4), and using

Lemma 9.1, with u = 0, v = s, and R the domain of the essential infimum in (3.4). Now the
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first claim (of Prop. 3.1 for s > 0) follows from the fact that η(Q, ·) is additive iff η′(Q, ·) is

for all Q ∈ Qs, and the rest follows directly.

9.3 Proof of Prop. 3.3

We write At for At0, as before. First we show that for given Q ∈ Q, η̄(Q, ·) is a measure

that is absolutely continuous with respect to Q, so that µt is well defined. Nonnegativity

follows from η̄ ≥ η ≥ 0. Furthermore, η̄(Q, ∅) = 0, and also η̄(Q,F ) = 0 for all F ∈ Ft with

Q(F ) = 0. It remains to show that η̄(Q, ·) is σ-additive. In other words, we have to show

that for a given set A ∈ Ft, with a countable partition (Ai)i∈N in Ft of A,

(9.11) η̄(Q,A) = Σi∈N η̄(Q,Ai).

Subadditivity of η̄(Q, ·) is inherited from the same property of η. That the right hand side in

(9.11) is bounded from above by the left hand side follows from (3.10), and from the fact that

the countable collection of partitions (Aki )k∈N of Ai (underlying the supremum in the i-th

term of the right-hand side) can be combined to one countable partition of A =
⋃
i,k∈NA

k
i .

Next observe that φt0 ∈ Ct, because, by assumption, φt0 is continuous from above, and we

already mentioned after (3.8) that it satisfies the other properties that characterize Ct. Define

φt := φt0, with acceptance set At = Bt0 ⊇ At, and let θmin
t denote the corresponding minimal

threshold function. Define the related measure η′ by η′(Q′Qt, A) := EQ
′
(1Aθ

min
t (Q)), with

Q′ ∈ Q and Q ∈ Qt, so that η′(Q,A) = − inf{EQ1AX | 1AX ∈ At} for all Q ∈ Q. Com-

paring this with the definition (3.4) of η makes clear that η′ dominates η. Because η̄ is the

smallest measure with this property, η̄ ≤ η′, and hence µt ≤ θmin
t . On the other hand, µt

represents a valuation (call it φ̃t) with acceptance set containing At, which can be seen as

follows. For X ∈ At, also 1AX ∈ At for all A ∈ Ft. So, by definition of η, for all A ∈ Ft
and Q ∈ Q,

EQ1AX ≥ −η(Q,A) ≥ −η̄(Q,A) = −EQ1Aµt(Q),

and hence EQ1A(EQt X + µt(Q)) ≥ 0, which means that φ̃t(X) ≥ 0. Now φ̃t must dominate

φt, because the latter is the capital requirement of At, so that µt ≥ θmin
t . It follows that

θmin
t = µt is the minimal representation of the refinement update.

9.4 Proof of Lemma 4.1

In the case in which the given valuations φs and φt are sensitive, the statement follows from

[8, Prop. 4.10], combined with [8, Cor. 3.6], which states that sensitive valuations in Ct are

representable by equivalent probability measures,

(9.12) φt(·) = ess infQ∈Me(P )E
Q
t (·) + θt(Q).
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Without the assumption that φs is sensitive, the sufficiency of (4.4) can be shown as follows:

φt(X) ≥ 0⇔ EQt X + θt(Q) ≥ 0 (Q ∈ Qt)

⇔ EQ
′

s (EQt X + θt(Q)) ≥ 0 (Q′ ∈ Qs, Q ∈ Qt)

⇔ EQ
′Qt

s X + EQ
′

s θt(Q) ≥ 0 (Q′ ∈ Qs, Q ∈ Qt)

⇒ EQ
′Qt

s X + θs(Q
′Qt)) ≥ 0 (Q′ ∈ Qs, Q ∈ Qt)

⇔ φs(X) ≥ 0.

The implication in the penultimate step follows from (4.4), and for the final equivalence we

used the fact that Qs = {Q′Qt |Q′ ∈ Qs, Q ∈ Qt} for s, t ∈ T with s ≤ t.

Necessity of (4.4) for minimal threshold functions follows exactly as in [8, Prop. 4.10].

9.5 Proof of Thm. 4.2

The pattern of the proof is similar to that of Thm. 7.1.2 in [12], in a setting in which Ω is

finite and risk measures are coherent. Throughout the largest part of the proof we assume

s = 0. The case s > 0 is reduced to s = 0 at the end of the proof.

First we show that the criterion is sufficient, using the characterization of sequential

consistency (4.2). From the first condition (4.7a), which is nothing else than a reformulation

of the criterion for acceptance consistency in Lemma 4.1, it follows that

(9.13) φt(X) = 0⇒ φ0(X) ≥ 0 (X ∈ L∞).

The reverse inequality is implied as well, which can be seen as follows. Let X ∈ L∞ be such

that φt(X) = 0. From Lemma 9.2, which relies on the regularity of θt, we obtain that for

all ε′ > 0 there exists a measure Q∗ ∈ Pt such that

(9.14) EQ
∗

t X + θt(Q
∗) < ε′.

Notice that by definition (4.6), the density zQ of any Q ∈ Bεt (Q∗) can be written as

(9.15) zQ = zRQ
∗
t + ∆ for some R ∈ Q,∆ ∈ L1 with E|∆| < ε,

which implies that

(9.16) EQ(X + θt(Q
∗)) ≤ EREQ

∗

t (X + θt(Q
∗)) + bε < ε′ + bε

with b := ‖X + θt(Q
∗)‖∞ ≥ 0. From (9.14) it is obvious that b < ∞, and also that θt(Q

∗)

is bounded. The criterion (4.7b) now implies that for all ε > 0,

φ0(X) = inf{EQ(X + θt(Q
∗)) + θ0(Q)− EQθt(Q∗) |Q ∈ Q}

≤ inf{EQ(X + θt(Q
∗)) + θ0(Q)− EQθt(Q∗) |Q ∈ Bεt (Q∗)}

≤ inf{ε′ + bε+ θ0(Q)− EQθt(Q∗) |Q ∈ Bεt (Q∗)}

≤ ε′ + bε.
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We find that φ0(X) ≤ ε′ + bε for all ε, ε′ > 0, and hence φ0(X) ≤ 0. Together with (9.13)

this implies (4.2). This concludes the part of the proof in which we show that the criterion

stated in the proposition is sufficient for sequential consistency for s = 0.

The necessity of criterion (4.7a), for minimal thresholds, is already proved by Lemma

4.1 (in fact also for the case s > 0, which we treat later on). It remains to prove that also

(4.7b) is necessary for sequential consistency. If it would not hold true, then there would

exist a measure Q∗ ∈ Qt with θt(Q
∗) ≤ c for some c ∈ R+, ε > 0 and m > 0 such that

(9.17) inf{θ0(QQ∗t )− EQθt(Q∗) | Q ∈ Bεt (Q∗)} > m.

Under this condition, we derive that there exists a position X ∈ L∞ for which the implication

(4.1b) does not hold. Analogous to the definitions (4.5) and (4.6), we define the open sets

in L1 that contain respectively Bε(Q∗) and Bεt (Q
∗),

(9.18) V ε(Q) := {z ∈ L1 |E|z − zQ| < ε}, V εt (Q) :=
⋃
R∈Q

V ε(RQt).

Similarly to (9.15), it holds that z ∈ V εt (Q∗) if and only if

(9.19) z = zRQ
∗
t + ∆ for some R ∈ Q and ∆ ∈ L1 with E|∆| < ε.

Define the set

(9.20) Y := {(z, θ) | z ∈ V εt (Q∗), θ ≤ E(zθt(Q
∗)) +m}.

Because of (9.17), this is disjoint from the epigraph of θ0,

Z := {(z, θ) | z = zQ, Q ∈ Q, θ ≥ θ0(Q)}.

For the application of the separating hyperplane theorem, see e.g. [9, Thm. A.55], we

have to prove that Z and Y are convex sets, and that Y contains an interior point. Convexity

of Z is obvious from minimality of θ0. To see that Y is convex, we first show that V εt (Q∗) is.

Consider z, z′ in V εt (Q∗), and write z = zRQ
∗

+ ∆, z′ = zR
′Q∗ + ∆′ for some R,R′ ∈ Q and

∆,∆′ as in (9.19). Then z′′ := λz+ (1−λ)z′ = zR
′′Q∗ + ∆′′ with R′′ := λR+ (1−λ)R′ ∈ Q

and ∆′′ = λ∆ + (1 − λ)∆′, and by (9.19) hence z′′ ∈ V εt (Q∗). Convexity of Y itself now

readily follows from the linearity of the restriction in (9.20).

Next we prove that Y contains an interior point of the form (zPQ
∗
t , θ′) with θ′ sufficiently

low. As θt(Q
∗) ≤ c, for any z ∈ V ε(PQ∗t ) we can derive the lower bound E(zθt(Q

∗)) ≥

E(θt(Q
∗)) − cε. Now take θ′ = E(θt(Q

∗)) + m − 2cε, so that θ′ + cε ≤ E(zθt(Q
∗)) + m

for all z ∈ V ε(PQ∗t ). Then (zPQ
∗
t , θ′) is an interior point, because (z, θ′ + δ) ∈ Y for all

z ∈ V ε(PQ∗t ) and −cε < δ < cε.

Now the separating hyperplane theorem guarantees the existence of a nonzero continuous

linear functional ` on L1×R such that `(y) ≥ `(z) for all y ∈ Y, z ∈ Z. Consequently there
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exist X ∈ L∞ (already continuous under the weak*-topology on L∞) and k ∈ R, not both

zero, such that

EQX + kθ ≥ 0 ((zQ, θ) ∈ Z)(9.21)

EQX + kθ ≤ 0 ((zQ, θ) ∈ Y).(9.22)

First we address the case k 6= 0. The inequality (9.22) implies that, for any Q ∈ Q,

EQQ
∗
tX + kθ ≤ 0 for all θ ≤ EQθt(Q

∗) + m, in particular for all θ < 0, hence k > 0. By

replacing X by X/k, we can rescale to k = 1. Then (9.21) implies that φ0(X) ≥ 0. On the

other hand, from (9.22) it follows that for all Q ∈ Bε(QQ∗t ), EQX + EQθt(Q
∗) ≤ −m. In

particular, QQ∗t ∈ Bε(QQ∗t ) for all Q ∈ Q, and hence EQEQ
∗

t (X + θt(Q
∗)) ≤ −m for all

Q ∈ Q. This can only be true if EQ
∗

t (X + θt(Q
∗)) ≤ −m. Therefore φt(X) ≤ −m, while

φ0(X) ≥ 0, so that rejection consistency (4.1b) is violated.

In case k = 0, X is nonzero. The inequality (9.21) implies that EQX ≥ 0 for all Q ∈ Q

with θ0(Q) < ∞, so φ0(λX) ≥ 0 for all λ ≥ 0. The inequality (9.22), for k = 0, implies

that for all Q ∈ Q, EQQ
∗
tX + E∆X ≤ 0 for all ∆ ∈ L1 with E|∆| < ε, cf. (9.19). Because

X 6= 0, there exists such ∆ with E∆X > ε′ > 0. So EQQ
∗
tX < −ε′ for all Q ∈ Q, and hence

EQ
∗

t X < −ε′. Take λ = (c+ 1)/ε′, then φt(λX) ≤ EQ
∗

t λX + θt(Q
∗) ≤ −1. So also in case

k = 0, rejection consistency (4.1b) is violated.

The generalization to s > 0 is straightforward on the basis of the following lemma, which

is analogous to Lemma 9.3.

Lemma 9.4 Let φs ∈ Cs and φt ∈ Ct be given, and let φ̄ be a strongly sensitive, normalized,

monotone valuation on L∞s . The following conditions are equivalent.

1. (φs, φt) is sequentially consistent

2. (φ̄φs, φt) is sequentially consistent

3. (ESφs, φt) is sequentially consistent for all S ∈ Q

Proof of the lemma. To see that the first condition implies the second one, assume that

(φs, φt) is sequentially consistent, and consider X such that φt(X) = 0. From (4.2) then

φs(X) = 0, and hence also φ̄(φs(X)) = 0, so by the same criterion (4.2), the second condition

follows. Analogously, the third condition follows from ES(φs(X)) = 0 for all S ∈ Q.

Conversely, assume (φ̄φs, φt) is sequentially consistent, and again consider X such that

φt(X) = 0. Then also φt(1FX) = 0 for all F ∈ Ft, in particular for all G ∈ Fs, so by (4.2)

φ̄(φs(1GX)) = φ̄(1Gφs(X)) = 0 for all G ∈ Fs. Because φ̄ is strongly sensitive, it follows

that φs(X) = 0, and hence (φs, φt) must be sequentially consistent. So the second condition

implies the first one. Applying the same argument taking φ̄ = ES with S ∈ Qs shows that

also the third condition implies the first one.
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End of the proof of the lemma.

The lemma implies that φs, φt is sequentially consistent iff (4.7a) and (4.7b) hold for

all pairs (ESθs, θt) with S ∈ Qs, and θs, θt minimal, since ESθs is the minimum threshold

function of ESφs if θs is minimal. This yields

inf{ES [θs(Q)− EQs θt(Q)] |S ∈ Qs, Q = QQ∗t ∈ Q} ≥ 0 (Q∗ ∈ Qt)

inf{ES [θs(Q)− EQs θt(Q)] |S ∈ Qs, SQs ∈ Bεt (Q∗)} ≤ 0 (ε > 0, Q∗ ∈ Qt, θt(Q∗), bounded)

Since, by definition of Bεt , it holds that SQs ∈ Bεt (Q∗) iff Q ∈ Bεt (Q∗), these requirements

are equivalent to resp. (4.7a) and (4.7b) for θs and θt.

9.6 Two counterexamples related to Corollary 4.3

We first give an example of a sequentially consistent pair φ0, φ1 that does not satisfy (4.7b)

extended to unbounded θ1(Q∗). Let Ω consist of pairs (v, j) with v ∈ N, j ∈ {u, d},

let the reference measure P be defined by P (v) = 2−v, P (u|v) = P (d|v) = 1
2 . Take

φ1(X)(v) = min{EP (X|v), EQ
∗
(X|v) + v}, with Q∗ defined by Q∗(v) = P (v) (so Q∗ ∈ P1)

and Q∗(u|v) = 1
4 ; we wrote EP (X|v) for (EP1 X)(v), etc. The minimal representation θ1

of φ1 has θ1(P ) = 0 and θ1(Q∗)(v) = v. Take φ0(X) = inf EP1 (X), which has minimal

representation θ0 given by θ0(Q) = 0 for Q of the form Q = SP1 with S ∈ Q, θ0(Q) = ∞

otherwise.

Sequential consistency is derived from the criterion (4.2), as follows. Assume φ1(X) = 0.

Then for all v ∈ N, (i) EP (X|v) = 0 or (ii) EQ
∗

1 (X|v) = −v. Because (ii) cannot hold for

v > ‖X‖∞, (i) holds for such v, and hence φ0(X) = 0. So (4.2) holds true.

However, the inequality in (4.7b) is not satisfied for Q∗. This follows from the fact

that the set of all Q for which θ0(Q) < ∞, described above, is disjoint from Bε1(Q∗) for ε

sufficiently small (in fact already for ε = 1
2 , because for S,R ∈ Q, ∆ := zSP1 − zRQ∗1 is given

by ∆(v, u) = (S(v)− 1
2R(v))2v, ∆(v, d) = (S(v)− 3

2R(v))2v, so E|∆| ≥ E(1u∆)−E(1d∆) =

1
4 + 1

4 = 1
2 ).

The second example shows that also when all threshold functions are bounded, the

criterion (4.8) is not necessary, i.e., criterion (4.7b) cannot be imposed for ε = 0 without

loss of generality.

In the same setting as the previous example, now consider φ0(X) = min{inf EP1 , E
Q∗X+

h} with h = 1 and Q∗ given by Q∗(v) = 2−v, Q∗(u|v) = 1/2(1 − f(v)), with f(v) := 2−v

(crucial is that f(v) → 0 and f(v) > 0 for all v). That the threshold h is minimal follows

from EQ
∗
X = −1 for X ∈ A given by X(1) = (2,−2), X(v) = 0 for v > 1, cf. (2.5). For

φ1 we take φ1(X) = EP1 X ∧ (EQ
∗

1 X + f), so that f̄ := EQ
∗
f = Σ∞v=12−2v = 1/3 (crucial is

that EQ
∗
f = f̄ < h, and lim f(v) = 0).
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Notice that (4.8) is not satisfied for Q∗, since the domain of the infimum is just the

singleton Q∗, and the outcome is h − f̄ = 2/3 > 0. Nevertheless, the pair is sequentially

consistent (and hence satisfies the criterion of the theorem), which we prove by deriving

(4.2). Consider X with φ1(X) = 0. It is clear that φ0(X) ≥ 0. So for all v, EP1 X(v) = 0

or EQ
∗

1 X(v) = −f(v). If there is a v with EP1 X(v) = 0, then also φ0(X) = 0. But also

if EP1 X > 0, if follows from EQ
∗

1 X = −f that limv E
P
1 X(v) ↘ 0, and also in this case

φ0(X) = 0 is implied. This proves that the pair is sequentially consistent.

9.7 Proof of Thm. 6.4

To prepare for the proof, define ψs ∈ Cs by ψs := EPs φt. Applying Lemma 9.1 in a similar

way as in the proof of Lemma 9.2 yields that

ψs(X) = EPs (ess inf{EQt X + θt(Q) |Q ∈ Qt})(9.23)

= ess inf{EPQt
s X + EPs θt(Q) |Q ∈ Qt}

So ψs is represented by θψs defined by

(9.24) θψs (Q) = EPs θt(Q) for Q ∈ Pt, θψs (Q) =∞ for Q 6∈ Pt.

The equivalence 1⇔ 2 follows directly from Def. 6.3 and Prop. 6.2.

The implication 3 ⇒ 2 is derived as follows. According to Lemma 4.1, Rule 2 implies

acceptance consistency. Rule 3, in combination with (9.23), implies that

ψs(X) = ess inf{EPQt
s X + θs(PQt) |Q ∈ Qt}.

It follows that ψs ≥ φs, which is precisely the CRA property for φ.

Next we prove the implication 2 ⇒ 4. It follows directly from Lemma 4.1 that the

collection of threshold functions (θt)t∈T satisfies Rule 2. CRA, i.e., the requirement φs ≤ ψs,

implies that θmin
s ≤ θψs , so that (9.24) induces Rule 3. We already saw that CRA also implies

Rule 1. The proof is completed by noting that the implication 4⇒ 3 is trivial.

9.8 Proof of Prop. 6.7

It is clear that b implies a and, in case T is finite and discrete, c. That c in that case

implies a follows from the law of iterated expectations. It remains to prove that a implies

b. Under assumption a, there exist regular threshold functions θt of φt for all t ∈ T (e.g.,

their minimal ones) that satisfy Rules 1–3 for all pairs s, t ∈ T with 0 = s < t. We prove

that the same rules must then apply to these threshold functions for all 0 < s < t.

For a given measure Q ∈ Qt, define G ∈ Fs by G := {θs(PQt) < EPs θt(Q)}. Suppose

that P (G) > 0. Because θt is regular, we then have θs(PQ
G
t ) � EPs 1Gθt(Q). This implies
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that EP θs(PQ
G
t ) < EP θt(PQ

G
t ), while Rule 3 with s = 0 requires that both sides are equal

to θ0(PQt). Consequently, we must have P (G) = 0. Analogous reasoning applies when the

inequality in the definition of G is reversed. It follows that Rule 3 holds for s > 0.

In a similar way, we prove that Rule 2 holds for s > 0. For given measures Q′ ∈ Qs and

Q ∈ Qt, define G ∈ Fs by G := {θs(Q′Qt) < EQ
′

s θt(Q)}. Again, suppose that P (G) > 0.

We then have θs(R) � ERs θt(R) where R is defined by R = R′PG
c

t with R′ := Q′Qt. Taking

unconditional expected values under P on both sides of the inequality, and using Rule 3

with s = 0, we obtain that θ0(PRs) � EPRsθt(R). This violates Rule 2 for s = 0. It follows

that P (G) = 0, which means that Rule 2 holds for s > 0.
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