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MOTIVATION
TRANSPORTATION OF CONTAINERS IN THE HINTERLAND

CTTe=

INTERMODAAL TRANSPORT

3/22



{ MOTIVATION
‘"‘ SYNCHROMODALITY
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‘ {4\ *Source of video: Dutch Institute for Advanced Logistics (DINALOG) www.dinalog.nl
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MOTIVATION
SYNCHROMODALITY

The characteristics of
synchromodality:

= Mode-free booking for all
freights.

= Network-wise decisions at
any point in time.

= Real-time information about
the state of the network.

= Qverall performance in the
network and in time.

J|

\ w *Source of artwork: European Container Terminals (ECT) — The future of freight transport (2011).
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SERVICE AND TRANSFER SELECTION IN A

SYNCHROMODAL NETWORK
PROBLEM DESCRIPTION
Origins Services and transfers Destinations

N
| pllha\
/ y \
\
‘A
a
*/'\\:\\
'§} “‘ ® Intermodal @)
\ —p» Truck + Barge --} Train terminal @ Freight
‘\ \ i N\ J
- Schedule - Origin
- Duration - Destination
- Capacity - Time-window
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SERVICE AND TRANSFER SELECTION IN A

SYNCHROMODAL NETWORK
A SOLUTION EXAMPLE

Legend
—»  Truck D Terminal
—® Barge ® Origins
----p» Train @ Destinations

Plan for the Star freight

(t=1) Star Origin — Terminal 2.
(t=1) Terminal 2 — Terminal 3
(t=2) Waiting at Terminal 3

(t=83) Terminal 8 — Terminal 5
(t=4) Traveling by barge

(t=5) Terminal 5 — Star Destination
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MARKOV DECISION PROCESS MODEL
STOCHASTIC PROCESS UNDER SEQUENTIAL DECISION MAKING

= Stages for sequential decisions: te7 = {0,1,...,7™ — 1}
= Stochasticity in the arrival of freights:

Parameter Notation Probability
Number of freights  fe F CN pi ;
Origin i € NP pgt
Destination d e NP Py,
Release-day reRe=1{0,1,2,... R} pEt

" Time-window length %€ K = {0,1,2,..., K**} F’Et

}

.,
} = Decisions in which service to use for a freight, if any, at

each stage.
",} = Objective to minimize a cost function over all stages.
/
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MARKOV DECISION PROCESS MODEL
STATE AND DECISION AT EACH STAGE

» The state describes all freights known at a stage:
St = [Fj,!d._-r’._kgf}g,i E‘,,.\..-'to J\'tI G'E.-'\f’tD reER ; ke, (l)

» The decision describes all freights assigned to the services at a

stage: N
Iy = [x";’fj?d‘-k?d\?’r('i._j)EAt._G'-E,-"\""PJJEK} (_n‘ci-)
S.t.
[ J
“ Z Tijakt < Fiaors, VieNPUNLdeNP kek, (2b)
‘ » JE.\,}I U{d} . - B
, Lid,d, L3, .t 2 Fm,o,Lg‘;d’t._t: v(i.d) € Ay k€ Ky (2¢)
é} T jdkt =0, Y(i,j) e Ap,d e .;\/;D, ke Kk < M; ;4 + M; g4 (2d)
‘ . . ¢
Z Z Tijdkt < Qi V(i j) € Al (2e)
( de NP kek,
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MARKOV DECISION PROCESS MODEL
EXOGENOUS INFORMATION AND TRANSITION FUNCTION

» The exogenous information describes all freights that arrived
between the previous and the current stage:

—

W, = [ Fido ,\,_ﬁt] N NP Ry ek (3)
» The transition function describes how the system evolves::
S, = SM (S, 1. 201, ) (4a)
. q
‘, Fiidok = Fi—1,id0k+1 — Z Ti—1,ig,dk+1 +Fi14,d,1,k
e (4e)

JEA:|M; ;=1
Vie Nj.de NP k+1€K;

‘!

Y + Z :rt_l:jlzizd-.'l"_‘_ﬂ{j:i!t‘
“

(/

¢
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MARKOV DECISION PROCESS MODEL
TRANSITION FUNCTION — A SMALL EXAMPLE

» The release-day r is relative to the current day t.
» The time-window length k is relative to the release-day r.

= Consider ;. freights with k=4 sent from terminal i to terminal |
using a service that lasts 2 days:

t=7 t=8 t=9 t=10 t=11
Monday Tuesday  Wednesday Thursday Friday
¥ ‘ i Fidoa7
?) ] Fidize Fidozo
:" d Fd.d,0011
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MARKOV DECISION PROCESS MODEL
OBJECTIVE AND SOLUTION ALGORITHM

» The objective is to minimize the expected costs in the horizon:

géljl% E Z Cy (x]) = Z Z Cijte Z Z T akt | S0 (‘

teT teT (i,5)eA: dE,-'\"'tD kel

ot
—

» The solution can be obtained using Bellman’s principle of
optimality and backward induction:

Vi (S;) = min | Cy (x]) + Z 117[\‘:‘;)'“rl Vi (Sﬂ’f (Stgéfgaw')) VS €S (6)

T eX;
* U-"?Qt—kl *
All feasible All All states!
decisions in realizations
a state! of the
random
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APPROXIMATE DYNAMIC PROGRAMMING
ALGORITHMIC APPROACH FOR SOLVING LARGE MARKOV MODELS.

Algorithm 1 Approximate Dynamic Programming Solution Algorithm

C' Require: 7,F.G,D, R, K, [Cplypicp ., Ba, Q, So, N

1: Initialize V), V¥t € T

2:n+1

3: while n < N do

4: SE’ «~— Sy

50 fort=0toT™" —1do

6: 0 = mingy (C(SY.2p) + V"1 (SM (87, 2])))

7: if t > 0 then

8: V(8 < UV (VI (ST, 8P o)

9: end if

10: Ty* < argmin,, (C(S7. =)+ vl (SM‘:C (S7. 1))

NPY 11: SP o M (87 an¥)

I 12: W} + RandomFrom (2)
hetsary . 13: St SM (ST, W)

14: end for
15: end while
16: return [I'?N}Vte’r

1. For a comprehensive explanation see Powell (2010) Approximate Dynamic Programming.
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APPROXIMATE DYNAMIC PROGRAMMING
A GRAPHICAL REPRESENTATION OF THE ALGORITHM

Transition
Function of

the MDP

Initialize
state and ™ for n=1fo N

VFA

1

=~ Decision
of the MDP

> for t=0 to T" -z—lv

Exogenous
Information
of the MDP

Make decision

—>
Equation (7) Sample w € (2,

Simulate

Update
Equation(9) | n=n @

t<Tmar -

Value

' Function
\\Approximation

UNIVERSITY OF TWENTE.

n<]\vr

!

Update of the

Value
Function

Approximation

14 /22



APPROXIMATE DYNAMIC PROGRAMMING
DECISIONS BASED ON THE VALUE FUNCTION APPROXIMATION

/= The expected future costs are explained, to a certain extent, by
¢ the post-decision state:

Vi (St) = min | Cy (zf) + Z pi LV (Sf‘"[ (Sp.a].w)) |,VS €S (6)

Ty Te k’t

| WESi 41 I
Vi (S)) = IIliI% (Ct (x]) +) (7)
rFeX:
» Forthe value function approximation we use the traditional
90 basis functions approach (i.e., weighted features of a post-
) decision state):
?: ~5T,M Sq n Z 95 f(ﬁa Sr n, (8)

ac A
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APPROXIMATE DYNAMIC PROGRAMMING
UPDATING THE VALUE FUNCTION APPROXIMATION

/= Ineach iteration, we observe a realization of the future costs
¢ throughout the time horizon.

= We update (i.e., improve) the value function approximation using
a recursive least squares (LSQ) method for non-stationary
data method:

Observed
lFeature
') n—1 | r.n w—n—1 r.n 2
\s Ouns =bar — Hnoa (S;7) (Vt—l (St—'l) - ?:1) (9)
LSQ Prediction
Optimization Error

Matrix
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APPROXIMATE DYNAMIC PROGRAMMING
DECISIONS BASED ON A SECOND TYPE OF VALUE FUNCTION APPROXIMATION

= A second type of value function approximation using basis
functions and sampling future costs of a fixed heuristic:

V(S0 = a3 00 0u (S5 + (1—a) T (S7") (10)
ac A

» The policy resulting from both value function approximations is

the function of the post-decision features with the weights of the
last iteration:

r{ = argmin ( (xf) + Z oN +Da (S ) (11)

ac A(SY)
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" NUMERICAL EXPERIMENTS

Y = Explore the value of our two ADP designs.
,:3 +« " Very small network in a 15 day horizon.
A

\\ ﬁéﬁ}% = Three time-window profiles: (1) long, (2) intermediate and
B0
| #,3*1**3 (3) short.

DN 5
A (2,5=2 F b
O : ~10.14,0.27,0.27,0.18,0.1
‘f‘ - >~ p?:O.Q 0 0 0 0
< ) 1 0 0.05 0./
2 0 0.05 0.3
_ s 3 0 02 0.2
Q, -3 p5=0.2 J 0 0.3 0.05
| LA — 5 1 0.4 005
K, Ly=2 p6=0.6
\
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" NUMERICAL EXPERIMENTS

Y = Simulation study using 10 different initial states per instance.
,;?w » Four different planning policies:
| ,»;E;}}ﬁﬁ = Benchmark: balance between consolidation and
\\ g“‘iﬂi postponement using _“s_avings” o_f int_ermodal services in the
N7 shortest path from origin to destination.
wﬂ'f,_, = ADP 1: weighted features using traditional learning of
"“‘fi weights.

= ADP 2: weighted features using sampling while learning at
early iterations.

= Sampling: using Monte Carlo simulation to estimate future
costs of all feasible decisions.

. UNIVERSITY OF TWENTE. 19/22
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" NUMERICAL EXPERIMENTS

Table 1. Results for Instance [

Stato Total Benchmark ADP 1 ADP 2 Sampling
Freights Solution Time (s) Solution Time (s) Solution Time (s) SW Time (s)

0.0 A ) Q \OZ 0 (A W1

2 0.94 -12.8% 52.06 -32.7% )

3 5 13042 0.92 -13.1% 31.68 -27.5% 81.44 —41.0% 827 15
4 6 13863 0.94 -12.3% 32.99 -25.9% 81.4F -39.0% \832.67
5 6 13863 0.91 -12.0% 108.62 -30.0% 111.2}) -42.3% 1356.80
6 6 13863 0.94 -10.4% 102.12 -31.3% 67.58 -42.9% I317.73
7 5 13042 0.94 -12.6% 40.26 -23.4% 81.99 -41.5% [893.59
8 4 12221 0.92 -14.7% 37.44  -25.0% 7841 -38.9% [547.66
9 2 10579 0.94 -14.9% 31.72 -29.9% 45.13\ -42.4% [ 611.18
10 5 13042 1.01 -11.2% 30.81 -32.9% 42.92 \-40.6%/ T27.28
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~ NUMERICAL EXPERIMENTS
// .
: Table 2. Average results for Instance I and I3
v,
i
W ‘ Benchmark ADP 1 ADP 2 Sampling

Ry sl Instance : : : : : : : :
Xa ‘f Solution Time (s) Solution Time (s) Solution Time (s) Solution Time (s

I 11078 0.88  -5.2% 10.52 §-9.8% 13.89 -31.2% 217.19
Is 12874 1.01 2.9% 3.19 0.4% 231 -3.3% 36.95

_ Pk
gﬁf”f pi={0.14,0.27,0.27,0.18,0.14}
2,83—

koo
0 0
s 1 0 0.05 0.4
f:ﬁ 2 0 0.05 0.3
| _ g 0 02 0.2
Q1y=3 40 03 0.05
. E A9 5 1 04 0.05
&) |
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“« WHAT TO REMEMBER

D We developed an MDP model and ADP algorithm to select
services for freights in a synchromodal network that
consider stochastic freight arrival and performance over time.

® The policy performance of the weighted features is
Improved using sampling during the learning phase of
e the ADP algorithm.

® ® [or realistic networks, further research in the value function
Y approximation and decision making within the ADP
ﬁ\' algorithm is necessary for guaranteeing the best policies.
é -

¢

€ U
UNIVERSITY OF TWENTE.

22122



Q/’I' =
UNIVERSITY OF TWENTE. ‘94q) DINALOG ¢

for Advanced Logistics

THANKS FOR YOUR ATTENTION!

ARTURO E. PEREZ RIVERA
PhD Candidate
Department of Industrial Engineering and Business Information Systems
University of Twente, The Netherlands
https:.//www.utwente.nl/bms/iebis/staff/perezrivera/

N

ICCL 2016 - Friday, September 9!
Lisbon, Portugal

a.e.perezrivera@utwente.nl

-




