
Resource Loading

by Branch-and-Price Techniques

This thesis is number D-45 of the thesis series of the Beta Research School for
Operations Management and Logistics. The Beta Research School is a joint
effort of the departments of Technology Management, and Mathematics and
Computing Science at the Eindhoven University of Technology and the Centre
for Production, Logistics, and Operations Management at the University of
Twente. Beta is the largest research centre in the Netherlands in the field of
operations management in technology-intensive environments. The mission of
Beta is to carry out fundamental and applied research on the analysis, design,
and control of operational processes.

Dissertation committee

Chairman / Secretary Prof.dr.ir. J.H.A. de Smit
Promotor Prof.dr. W.H.M. Zijm

Prof.dr. S.L. van de Velde (Erasmus University Rotterdam)
Assistant Promotor Dr.ir. A.J.R.M. Gademann
Members Prof.dr. J.K. Lenstra (Eindhoven University of Technology)

Prof.dr. A. van Harten
Prof.dr. G.J. Woeginger
Dr.ir. W.M. Nawijn

Publisher: Twente University Press
P.O. Box 217, 7500 AE Enschede
the Netherlands
www.tup.utwente.nl

Cover: branching of the Ohio river (satellite image)
Cover design: Hana Vinduška, Enschede
Print: Grafisch Centrum Twente, Enschede

c© E.W. Hans, Enschede, 2001
No part of this work may be reproduced by print, photocopy, or any other
means without prior written permission of the publisher.

ISBN 9036516609

RESOURCE LOADING
BY BRANCH-AND-PRICE TECHNIQUES

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof.dr. F.A. van Vught,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 5 oktober 2001 te 16:45 uur

door

Elias Willem Hans

geboren op 28 juli 1974

te Avereest

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. W.H.M. Zijm
prof.dr. S.L. van de Velde

en de assistent-promotor:
dr.ir. A.J.R.M. Gademann

Voor mijn ouders
en Hana

vii

Acknowledgements

If you would not be forgotten,
as soon as you are dead and rotten,
either write things worthy reading,

or do things worth the writing.

- Benjamin Franklin (1706-1790)

When, during the final stage of my graduation at the Faculty of Applied
Mathematics at the University of Twente in late 1996, Henk Zijm approached
me to inquire whether I would be interested in becoming a Ph.D. student, I
immediately told him that that was the last thing on my mind. At that time
I was developing a mathematical model of the liberalized electricity market
in Western Europe at the Energy Research Foundation (in Dutch: ECN). Al-
though my interest in developing mathematical models and solution techniques
was sparked, my image of Ph.D. students consisted of people spending all their
time in dusty libraries doing research for four years. Henk quickly persuaded
me. Looking back, nearly five years later, I am very glad I accepted the oppor-
tunity he offered.

Many people contributed to this thesis. I thank them all. I like to thank
the people below in particular.

In the first place I express my gratitude to Henk for giving me the oppor-
tunity to work under his inspiring supervision. I have learned a lot from him,
and his enthusiasm was always a great motivation.

I consider myself very lucky to have had Noud Gademann as my supervisor.
He has an amazing eye for detail, and an unremitting patience for repeatedly
correcting my mistakes. Every meeting was a learnful experience, almost always
yielding fruitful ideas. It has been most pleasant to work with him, and I hope
we will be able to continue this in the coming years.

I thank Steef van de Velde, whose idea of using branch-and-price techniques
for resource loading problems formed the starting point for this research. Al-
though we met less often after he transferred to the Erasmus University, his
ideas and comments contributed a lot to this thesis.

I thank Marco Schutten, who provided some great ideas, and Mark Giebels,
with whom I had many instructive discussions. I also thank Tamara Borra,

viii Acknowledgements

who developed and implemented many resource loading heuristics during her
graduation.

I express my gratitude to prof.dr. A. van Harten, prof.dr. J.K. Lenstra, dr.ir.
W.M. Nawijn, and prof.dr. G.J. Woeginger for participating in the dissertation
committee.

During the last year of my research I became a member of the OMST
department (faculty of Technology and Management) under supervision of Aart
van Harten. I thank all my OMST colleagues for offering a pleasant working
environment, and I hope to be able to make my contribution to the work of
this department in the coming years.

During my time in Twente I met the closest of my friends, with whom I still
spend most of my free time. I thank Wim and Jeroen for the many occasions of
playing pool and eating shoarma. I thank Richard for teaching me how to play
the guitar, and for all the wonderful time singing and playing guitar together.
The ‘Grote Prijs van Drienerlo’: been there, won that! I thank Henk Ernst for
his useful comments on the thesis, and for all his help with the lay-out. I also
thank Marco for all the time we spent after work, in the mensa, at the cinema,
or playing tennis together.

Finally, very special thanks go to my family. In particular I thank my
girlfriend Hana and my parents. I would not have been where I am now without
their unconditional support.

Enschede, October 2001
Erwin Hans

ix

Contents

1 Introduction 1

1.1 Problem description . 1
1.2 A planning framework for make-to-order environments 3

1.2.1 Order acceptance . 7
1.2.2 Resource loading . 8

1.3 Production characteristics . 10
1.3.1 The resource loading problem 10
1.3.2 The rough-cut capacity planning problem 12

1.4 Example . 15
1.5 Current practices . 21
1.6 Outline of the thesis . 23

2 Preliminaries 25

2.1 Introduction to integer linear programming 25
2.2 Branch-and-price for solving large ILP models 29

2.2.1 Method outline . 29
2.2.2 Column generation strategies 31
2.2.3 Implicit column generation 34

2.3 Lagrangian relaxation . 36
2.4 Combining Lagrangian relaxation and column generation . . . 38
2.5 Deterministic dynamic programming 43

3 Model description 47

3.1 Introduction . 47
3.2 Model assumptions and notations 48
3.3 Modeling resource capacity restrictions 51
3.4 Modeling precedence relations 53
3.5 Modeling order tardiness . 56
3.6 Synthesis . 57

4 Branch-and-price techniques for resource loading 59

4.1 Introduction . 59
4.2 Restricted linear programming relaxation 61

x Contents

4.2.1 Basic form . 61

4.2.2 RLP initialization . 64

4.3 Pricing algorithm . 65

4.3.1 Pricing algorithm for δ = 1 67

4.3.2 Pricing algorithm for δ = 0 70

4.4 Branching strategies . 71

4.4.1 Branching strategy . 72

4.4.2 Branch-and-price based approximation algorithms . . . 74

4.5 Lower bound determination by Lagrangian relaxation 75

4.6 Application of heuristics . 76

4.6.1 Stand-alone heuristics 76

4.6.2 Rounding heuristics . 77

4.6.3 Improvement heuristic 78

5 Resource loading computational results 81

5.1 Test approach . 81

5.2 Test instance generation . 83

5.3 Algorithm overview . 86

5.4 Preliminary test results . 87

5.4.1 Preliminary test results for the heuristics 88

5.4.2 Preliminary test results for the branch-and-price methods 90

5.4.3 Conclusions and algorithm selection 96

5.5 Sensitivity analyses . 97

5.5.1 Length of the planning horizon 97

5.5.2 Number of machine groups 99

5.5.3 Operator capacity . 100

5.5.4 Machine group capacity 101

5.5.5 Internal slack of an order 102

5.5.6 Nonregular capacity cost parameters 102

5.5.7 Parameter κ . 103

5.6 Conclusions . 103

6 Rough Cut Capacity Planning 105

6.1 Introduction . 105

6.2 Pricing algorithm . 107

6.2.1 Pricing by dynamic programming 107

6.2.2 Pricing algorithm speed up 111

6.2.3 Pricing by mixed integer linear programming 113

6.2.4 Heuristic pricing algorithm 114

6.2.5 Hybrid pricing methods 115

6.3 Branching strategy . 115

6.4 Heuristics . 116

xi

7 RCCP computational results 119

7.1 Introduction . 119
7.2 Test instances . 120
7.3 Optimization of the initial LP 121

7.3.1 Pricing by dynamic programming 121
7.3.2 Pricing by mixed integer linear programming 124
7.3.3 Heuristic pricing . 125
7.3.4 Comparison of pricing algorithms 126

7.4 Computational results of the branch-and-price methods 126
7.5 Conclusions . 130

8 Epilogue 131

8.1 Summary . 132
8.2 Further research . 134

Bibliography 137

A Glossary of symbols 143

A.1 Model input parameters . 143
A.2 Model ouput variables . 144

Index 145

Samenvatting 149

Curriculum Vitae 151

xii Contents

1

Chapter 1

Introduction

It is easier to go down a hill than up,
but the view is from the top.

- Arnold Bennett (1867-1931)

1.1 Problem description

Many of today’s manufacturing companies that produce non-standard items,
such as suppliers of specialized machine tools, aircraft, or medical equipment,
are faced with the problem that in the order processing stage, order char-
acteristics are still uncertain. Orders may vary significantly with respect to
routings, material and tool requirements, etc. Moreover, these attributes may
not be fully known at the stage of order acceptance. Companies tend to accept
as many customer orders as they can get, although it is extremely difficult
to measure the impact of these orders on the operational performance of the
production system, due to the uncertainty in the order characteristics. This
conflicts with the prevailing strategy of companies to maintain flexibility and
speed as major weapons to face stronger market competition (Stalk Jr. and
Hout, 1988). Surprisingly enough, the majority of the companies in this situa-
tion do not use planning and control approaches that support such a strategy.

A typical example of a way to maintain flexibility in situations with a high
data uncertainty is the cellular manufacturing concept (Burbidge, 1979). In cel-
lular manufacturing environments, each cell or group corresponds to a group
of, often dissimilar, resources. Usually these are a group of machines and tools,
controlled by a group of operators. Instead of planning every single resource,
the management regularly assigns work to the manufacturing cells. The de-
tailed planning problem is left to each individual cell, thus allowing a certain
degree of autonomy. The loading of the cells, the so-called resource loading ,

2 Chapter 1. Introduction

imposes two difficulties. In the first place, the manufacturing cells should not
be overloaded. Although often the cells have flexible capacity levels, i.e., they
may use nonregular capacity, such as overtime, hired staff, or even outsourced
capacity, a too high load implies that the underlying detailed scheduling prob-
lem within the cell can not be resolved satisfactorily. As a result, cells may
not be able to meet the due dates imposed by management, or only at high
cost as a result of the use of nonregular capacity. Performing a well-balanced
finite capacity loading over the cells, while accounting for capacity flexibility
(i.e., the use of nonregular capacity) where possible and/or needed, benefits the
flexibility of the entire production system. In the second place, since products
are usually not entirely manufactured within one cell, parts or subassemblies
may have complex routings between the manufacturing cells. The management
should thus account for precedence relations between product parts and other
technological constraints, such as release and due dates, and minimal durations.

While much attention in research has been paid to detailed production plan-
ning (scheduling) at the operational planning level (short-term planning), and
to models for aggregate planning at the strategic planning level (long-term plan-
ning), the availability of proper (mathematical) tools for the resource loading
problem is very limited. The models and methods found in the literature for the
operational and strategic level are inadequate for resource loading. Schedul-
ing algorithms are rigid with respect to resource capacity but are capable of
dealing with routings and precedence constraints. Aggregate planning models
can handle capacity flexibility, but use limited product data, e.g., by only con-
sidering inventory levels. Hence they ignore precedence constraints or other
technological constraints.

In practice, many large companies choose material requirements planning
(MRP) based systems for the intermediate planning level (Orlicky, 1975). Al-
though MRP does handle precedence constraints, it assumes fixed lead times
for the production of parts or subassemblies which results in rigid production
schedules for parts or entire subassemblies. A fundamental flaw of MRP is that
the lead times do not depend on the amount of work loaded to the production
system. There is an implicit assumption that there is always sufficient capacity
regardless of the load (Hopp and Spearman, 1996). In other words, MRP as-
sumes that there is infinite production capacity. The main reason for the lack
of adequate resource loading methods may be that models that impose both
finite capacity constraints and precedence constraints are not straightforward,
and computationally hard to solve.

Research at a few Dutch companies (Snoep, 1995; Van Assen, 1996; De Boer,
1998) has yielded new insights with respect to the possibility of using ad-
vanced combinatorial techniques to provide robust mathematical models and
algorithms for resource loading. These ideas are further explored in this thesis:
we propose models that impose the aforementioned constraints, and, more im-
portantly, we propose exact and heuristic solution methods to solve the resource

1.2. A planning framework for make-to-order environments 3

loading problem.

The manufacturing typology that we consider in this research is the make-
to-order (MTO) environment. An MTO environment is typically characterized
by a non-repetitive production of small batches of specialty products, which
are usually a combination of standard components and custom designed com-
ponents. The aforementioned difficulties with respect to the uncertainty of
data in the order processing stage are typical of MTO environments. There
is uncertainty as to what orders can eventually be acquired, while further-
more order characteristics are uncertain or at best partly known. Moreover,
the availability of some resources may be uncertain. We present the resource
loading models and methods in this thesis as tactical instruments in MTO en-
vironments, to support order processing by determining reliable due dates and
other important milestones for a set of known customer orders, as well as the
resource capacity levels that are required to load this set on the system. Since
detailed order characteristics are not available or only partly known, we do
not perform a detailed planning, but we do impose precedence constraints at
a less detailed level, e.g., between cells. Once the order processing has been
completed, the resource loading function can be used to determine the available
resource capacity levels for the underlying scheduling problem. Note that in
resource loading capacity levels are flexible, while in scheduling they are not.
Hence resource loading can detect where capacity levels are insufficient, and
solve these problems by allocating orders (parts) more efficiently, or by tem-
porarily increasing these capacity levels by allocating nonregular capacity, e.g.,
working overtime. As a result, the underlying scheduling problem will yield
more satisfactory results.

The remainder of this introductory chapter is organized as follows. In Sec-
tion 1.2 we present a positioning framework for capacity planning to define
resource loading among the different capacity planning functions, and to place
this research in perspective. In Sections 1.2.1 and 1.2.2 we elaborate on the ca-
pacity planning functions order acceptance and resource loading. Subsequently,
in Section 1.3 we discuss the production characteristics of the manufacturing
environments under consideration. In Section 1.4 we illustrate the resource
loading problem with an example. In Section 1.5, we discuss the existing tools
as they occur in practice for the tactical planning level. We conclude this
chapter with an outline of the thesis in Section 1.6.

1.2 A planning framework

for make-to-order environments

The term capacity planning is collectively used for all kinds of planning func-
tions that are performed on various production planning levels. The words
capacity and resources are often used as substitutes in the literature. In this

4 Chapter 1. Introduction

Technological

planning

Company

management

Production

planning

Operational

Strategic

Tactical

Aggregate capacity planning

Resource

loading

Scheduling

Macro process

planning

Micro process

planning

Order

acceptance

Figure 1.1: Positioning framework (from: Giebels et al., 2000).

thesis we make a clear distinction. While resources comprise machines, op-
erators and tools, capacity comprises more, e.g., facilities, material handling
systems, and factory floorspace. Although much research has been devoted
to the topic of capacity planning, there exists no unambiguous definition in
the literature. In this section we define the capacity planning functions, and
position the resource loading function.

To be able to distinguish the capacity planning functions, we propose the
positioning framework in Figure 1.1 (see also Giebels et al., 2000). In this
framework, we vertically distinguish the three levels/categories of managerial
or planning activities as proposed by Anthony (1965): strategic planning, tacti-
cal planning, and operational control (see also, e.g., Shapiro, 1993; Silver et al.,
1998). Horizontally we distinguish three categories of planning tasks: tech-
nological planning, company management, and production planning. In this
section we discuss the managerial and planning decisions in the framework rel-
evant to the production area. Of course these decisions also have important
interactions with other managerial activities, such as product development and
business planning, but these are beyond the scope of this thesis. Furthermore,
the technological planning tasks are not discussed in this thesis. We refer to
Giebels (2000) for an extensive discussion of this subject.

Strategic planning involves long-range decisions by senior management, such
as make-or-buy decisions, where to locate facilities, to determine the market
competitiveness strategy, and decisions concerning the available machining ca-
pacity, or the hiring or release of staff (see, e.g., Silver et al., 1998). The basic

1.2. A planning framework for make-to-order environments 5

function of strategic planning is hence to establish a production environment
capable to meet the overall goals of a plant. Generally, a forecasting module is
used to forecast demand and other market information. This demand forecast,
as well as additional process requirements, is used by a capacity/facility plan-
ning module to determine the need for additional machines or tools. The same
analysis is performed by a workforce planning module to support personnel
hiring, firing or training decisions. Finally, an aggregate planning module de-
termines rough predictions for future production mix and volume. In addition,
it supports other structural decisions, regarding for example which external
suppliers to use, and which products/parts to make in-house (i.e., make-or-
buy decisions, see Hopp and Spearman, 1996). Hence, aggregate planning is
depicted in Figure 1.1 as both a company managerial activity, as well as a
production planning activity. Linear programming (LP) often constitutes a
useful tool that aims to balance resource capacity flexibility against inventory
flexibility. Typically, LP models contain inventory balance constraints, product
demand constraints, staff and machine capacity constraints, and an objective
function that minimizes inventory costs and the costs of staff working overtime
(see, e.g., Shapiro, 1993; Hopp and Spearman, 1996). Workforce planning is
usually performed with LP models with similar constraints, but with an ob-
jective function that for example minimizes the costs of hiring and firing of
staff.

Tactical planning on the medium-range planning horizon, is concerned with
allocating sufficient resources to deal with the incoming demand, or the demand
that was projected in the (strategic) aggregate planning module, as effectively
and profitably as possible. The basic problem to be solved is the allocation
of resources such as machines, workforce availability, storage and distribution
resources (Bitran and Tirupati, 1993). Although the basic physical production
capacity is fixed in the long-term strategic capacity plans, on the tactical plan-
ning level capacity can temporarily be increased or decreased between certain
limits. Typical decisions in resource loading hence include utilization of regular
and overtime labor, hiring temporary staff, or outsourcing parts. We have sep-
arated the tactical planning tasks in a managerial module, the (customer) order
acceptance, and a production planning module: resource loading. Order accep-
tance is concerned with processing the immediate customer demand. On the
arrival of each new customer order, a macro process planning step is executed
to determine the production activities and the way they are performed (Sheng
and Srinivasan, 1996; Van Houten, 1991). Hence, a new production order is
subdivided into jobs, with precedence relations, estimated process times, and,
when applicable, additional production related constraints. Using this analysis
of the order characteristics, and the current state of the production system, or-
ders are accepted or rejected based on strategic or tactical considerations. We
discuss order acceptance in more detail in Section 1.2.1. Resource loading on
the other hand is concerned with loading a given set of orders and determining
reliable internal due dates and other important milestones for these customer

6 Chapter 1. Introduction

orders, as well as determining the resource capacity levels that are needed to
process these orders and their constituting jobs. Resource loading is an impor-
tant planning tool for the order processing, since it can establish the feasibility
and suitability of a given set of accepted orders. In addition it may serve as a
tool for determining reliable customer due dates for order acceptance. Silver
et al. (1998) distinguish two strategies in medium-range planning: level and
chase. For firms that are limited or even completely constrained with regard
to their ability to temporarily adjust resource capacity levels (e.g., when the
production process is highly specialized), inventories are built up in periods
of slack demand, and decreased in periods of peak demand. This strategy is
called level because of the constant workforce size. It is typical for make-to-
stock manufacturers. Other firms that are able to adjust resource capacity
levels (e.g., by hiring staff) and that face high inventory costs or a high risk of
inventory obsolescence, pursue a strategy that keeps inventory levels at a mini-
mum. This strategy is called chase, because production chases, or attempts to
exactly meet demand requirements. Of course these situations are extremes,
and in practice the strategy is usually a combination of the two. The resource
loading methods presented in this thesis have been designed to account for
temporary changes in resource capacity levels (by temporarily using nonregu-
lar capacity) for at least a part of production. The aim is to minimize the use
of nonregular resources, and to meet order due dates as much as possible. We
discuss resource loading in more detail in Section 1.2.2.

Finally, operational planning is concerned with the short-term scheduling
of production orders that are passed on by the resource loading module. Be-
fore scheduling takes place, a micro process planning is performed to complete
the process planning for the products in detail (Cay and Chassapis, 1997), to
provide among other things the detailed data for the scheduling module. The
resource loading module at the tactical level determines the (regular plus non-
regular) operator and machine capacity levels available to scheduling. Baker
(1974) defines scheduling as the allocation of resources over time to perform a
collection of tasks. The resulting schedules describe the sequencing and assign-
ment of products to machines. Scheduling is usually based on deterministic
data. Although many intelligent algorithms have been proposed for the (often
NP-hard) scheduling problems (see, e.g., Morton and Pentico, 1993; Pinedo,
1995; Brucker, 1995; Schutten, 1998), in practice scheduling systems are often
based on simple dispatching rules.

We propose the term capacity planning to comprehend the planning activ-
ities aggregate planning, order acceptance, resource loading, and scheduling
collectively. Hence, capacity planning comprises the utilization and the ex-
pansion or reduction of all capacity, as well as the planning of capacity on all
managerial/planning levels. Although much research attention has been paid
to the strategic level (e.g., facility planning, aggregate planning and workforce
planning) and operational level (scheduling) of planning, the tactical planning
level has remained rather underexposed. We focus entirely on this planning

1.2. A planning framework for make-to-order environments 7

level, and on resource loading in particular. In the next two sections we fur-
ther discuss the two tactical capacity planning functions order acceptance and
resource loading.

1.2.1 Order acceptance

In compliance with the strategic decisions taken in strategic planning, order
acceptance is concerned with accepting, modifying, or rejecting potential cus-
tomer orders in such a way, that the goals of management are met as much as
possible. Although order acceptance is not a subject of research in this thesis,
in this section we point out that the models and methods for resource loading
as presented in this thesis may serve as effective tools in order acceptance.

In order processing the continuously incoming orders can be accepted or
rejected for various reasons. Especially in make- or engineer-to-order man-
ufacturing environments, orders may vary significantly with respect to their
production characteristics. Orders can be initiated in many ways, they may
be customer orders, internal orders, suborders, maintenance activities, or engi-
neering activities. Because of the low repeat rates, small batches, and accompa-
nying high product variety, orders in an order mix may vary significantly with
respect to the planning goals, priorities, and constraints. This makes the exe-
cution of the resource loading and the order acceptance function more complex
and asks for dynamic planning strategies that take the individual characteris-
tics of the orders into account. Giebels et al. (2000) present a generic order
classification model that is used to recognize these order characteristics. The
classification model comprises seven generic dimensions that are of importance
for determining the aims, priorities and constraints in the planning of the in-
dividual orders. An important dimension is, e.g., the state of acceptance (or
progress) of a customer order. An order may, for example, still be in the state
of order acceptance (i.e., the order is being drawn up), and the order prospects
may still be uncertain, or it is already accepted and included in the capacity
plans, or parts of the order have already been dispatched to the shop floor.
Consequently, the state of acceptance shows the ease of cancelling the order or
changing its due date. Another example of an order dimension is the strategic
importance of the order, which, e.g., indicates that this customer order may
result in a (profitable) follow-up order from the same customer.

The majority of the order dimensions concern the feasibility of a customer
order and the impact of an order on the production system. In this context it is
important that order processing is carried out in cooperation with production
control. Ten Kate (1995) analyzes the coordinating mechanism between or-
der acceptance and production control in process industries, where uncertainty
plays a smaller role at the tactical planning level than in make-to-order envi-
ronments. He notes that decisions taken by a sales department with respect
to the acceptance of customer orders largely determine the constraints for the

8 Chapter 1. Introduction

scheduling function. Once too many orders have been accepted, it becomes
impossible to realize a plan in which all orders can be completed in time. This
stresses the need to consider both the actual load and the related remaining
available capacity in order to be able to take the right order acceptance de-
cisions. Hence, in process industries scheduling must provide information on
which the order acceptance can base its decisions. Analogously, in make-to-
order manufacturing environments resource loading must provide information
on which the order acceptance can base its decisions. Resource loading can
serve as a tool to measure the impact of any set of orders on the production
system, by determining the required resource capacity levels and the resulting
nonregular production costs by loading such a set of orders. Not only can such
an analysis be used to determine what orders to accept from an order portfolio,
it can also be used to determine realistic lead times, hence to quote reliable due
dates/delivery dates for customer orders. Ten Kate (1995) distinguishes two
approaches for the coordination mechanism for a combined use of customer
order acceptance and resource loading (or scheduling in process industries).
An order acceptance function and resource loading function that are fully in-
tegrated is referred to as the integrated approach for order acceptance. On the
other hand, in the hierarchical approach these functions are separated, and the
only information that is passed through is the aggregate information on the
workload. In this thesis we focus on resource loading algorithms that do not
contain order acceptance decisions, i.e., these algorithms involve loading a fixed
set of orders. Hence, our algorithms can be used in a hierarchical approach for
order acceptance.

The order classification makes clear that orders can not be treated uniformly
in order acceptance. The seven dimensions proposed by Giebels et al. (2000)
serve as a template to define the objectives and the constraints of the orders
concerned. Ideally, in the resource loading problem all these dimensions are
taken into account. The crux is that some characteristics are hard to quantify,
which is required to impose these characteristics in any quantitative model of
the resource loading problem. The resource loading methods presented in this
thesis are restricted to measuring the impact of a set of orders on the production
system. The methods determine whether a given set of orders can be loaded,
given current resource capacity levels, and determine what additional nonregu-
lar resources are required to do so. Moreover, the methods determine whether
order due dates can be met. In Chapter 8 we outline possible extensions of the
methods in this thesis, to further support other order characteristics in order
acceptance.

1.2.2 Resource loading

As mentioned before, resource loading is a tactical instrument that addresses
the determination of realistic due dates and other important milestones for
new customer orders, as well as the resource capacity levels that are a result

1.2. A planning framework for make-to-order environments 9

of the actual set of orders in the system. These resource capacity levels not
only include regular capacity, but also overtime work levels, outsourcing, or the
hiring of extra workforce. Hence, resource loading can in the first place be used
in the customer order processing phase as an instrument to analyze the trade-off
between lead time and due date performance on the one hand, and nonregular
capacity levels on the other hand. Moreover, once the order acceptance is
completed and the set of accepted orders is determined, resource loading serves
as a tool to define realistic constraints for the underlying scheduling problem.
In the first place it determines the (fixed) resource capacity levels available
to the scheduling module. In addition, resource loading determines important
milestones for the orders and jobs in the scheduling problem, such as (internal)
release and due dates.

So far we have mentioned two important goals of resource loading: the de-
termination of important milestones in time, and the determination of resource
capacity levels. In fact, in resource loading, two clearly different approaches can
be distinguished: the resource driven and the time driven planning (Möhring,
1984). In resource driven planning, the resource availability levels are fixed,
and the goal is to meet order due dates. This can, e.g., be achieved by minimiz-
ing the total/maximum lateness, or by minimizing the number of jobs that are
late. With time driven planning, the order due dates are considered as strict,
i.e., as deadlines, and the aim is to minimize the costs of the use of nonregular
capacity. Since time and costs are equally important at this tactical planning
level, in practice both approaches should be used simultaneously (monolithic
approach), or iteratively with some interaction (iterative approach). A resource
loading tool that uses this approach is an effective tactical instrument that can
be used in customer order processing to determine a collection of orders from
the entire customer order portfolio, with a feasible loading plan, that yields the
most for a firm. After the completion of the customer order processing phase,
the resource capacity levels have been set, as well as the (external) release
and due dates of the accepted collection of orders. These due dates are then
regarded as deadlines in scheduling. In this thesis we present a model that
handles time driven planning and resource driven planning simultaneously. An
advantage of such an approach is that it can be adapted to time driven planning
by regarding order due dates as deadlines, and it can be adapted to resource
driven planning by fixing the resource availability levels.

With respect to the positioning framework discussed in Section 1.2, we re-
mark that in the literaturemuch attention has been paid to scheduling problems
at a detailed (operational) level, and quite some research has been done in the
area of the (strategic) long-term capacity planning. However, the (tactical) re-
source loading problem remains rather underexposed. The main reason for this
is that the LP models that were developed for aggregate planning or workforce
planning are not suitable for resource loading. These LP models were developed
for a higher planning level, where precedence constraints between production
steps, and release and due dates for customer orders are not considered.

10 Chapter 1. Introduction

The second reason for the lack of adequate resource loading methods is the
unsuitability of most scheduling methods for resource loading. These methods
require much detailed data, and it is not realistic to assume that all detailed
data is already known at the time resource loading is performed. Not only is
the progress of current production activities on the shop floor somewhat un-
predictable in the long term, the engineering and process planning data that
is required to provide the detailed routings and processing times has usually
not been generated completely at the time that resource loading should be
performed. Another disadvantage of scheduling methods is that they are in-
flexible with respect to resource capacity levels, which, all things considered,
make them unsuitable for resource loading.

Although resource loading uses less detailed data than scheduling, it uses
more detailed data than (strategic) aggregate planning. While aggregate plan-
ning considers products only, in resource loading the products are disaggregated
into (product) orders, which are further disaggregated in jobs. The jobs are
described in sufficient detail in macro process planning, such that resource
loading can assign them to machine groups or work cells. The jobs may have
mutual precedence relations , minimal duration constraints, and release and due
dates, which makes resource loading problems much more difficult to solve than
aggregate planning models. Ideally, resource loading accounts for as many of
these additional constraints as possible, to ensure that when the jobs are fur-
ther disaggregated (in tasks or operations) for the scheduling task, a feasible
detailed schedule for the given loading solution can still be determined. Hence,
by first performing a resource loading, the scheduling problem is made easier.

In the next section we describe the production characteristics of the manu-
facturing environments under consideration in more detail.

1.3 Production characteristics

1.3.1 The resource loading problem

We primarily address the resource loading problem in an MTO manufacturing
environment. This problem is concerned with loading a known set of orders
onto a job shop in an MTO manufacturing environment. The job shop consists
of several machine groups, and several machine operators. The operators are
capable of operating one or more machine groups, and may even be capable of
operating more than one machine group at the same time. In resource loading
both regular and nonregular capacity can be allocated. Regular operator ca-
pacity can be expanded with overtime capacity, or by hiring temporary staff.
Machine capacity expansions are not allowed. Decisions regarding machine
capacity expansions are assumed to be taken at a higher (strategic) level of
decision making. Since machines are available for 24 hours a day, all available

1.3. Production characteristics 11

1 2 3 4 5

Figure 1.2: Example of linear precedence relations in resource loading.

machine capacity is considered as regular capacity. Machine capacity can thus
not be expanded temporarily - if the available machine capacity limits produc-
tion, the only option to complete all work in time is to outsource. Note that
the use of machine time may be constrained by the limited availability of si-
multaneously needed operators. The costs of the various sources of nonregular
capacity may vary.

The orders are subdivided into jobs. These jobs can later be subdivided
into activities or operations in the underlying detailed scheduling problem.
Jobs have linear precedence relations such as in Figure 1.2. A job may start
processing as soon as its predecessor has completed. A job may have a minimal
duration. A minimal duration of a job is usually a result of technical limitations
of resources, e.g., in a situation when no more than two persons can jointly
perform a certain activity. Optionally a minimum time lag between jobs can
be taken into account. This is, e.g., the case when a manufacturing company
uses a ‘one-job-per-period’ policy, which prescribes that no more than one job
of an order can be processed per period. In this case there is a minimum
time of one period between the jobs of an order. Although this policy is quite
common in practice, it may have a strong negative impact on the order lead
time, particularly when the periods are long.

In the production process jobs require machine and operator capacity at the
same time. The processing times of the jobs are estimates, and assumed to be
determined in a macro process planning that is performed upon arrival of the
order in the customer order processing. The available resource capacity levels
of the operators (regular and nonregular) and the machines are pre-specified.

While at the operational planning level the planning horizon ranges from
an hour to a week, at the tactical planning level the resource loading planning
horizon may range from a week to a year. In this thesis, the planning horizon
of resource loading is divided into time buckets (periods) of one week. Besides
that a higher level of detail is not required at this planning level, it would
probably be impossible to collect all data. Even if so, the resulting resource
loading problem may become too hard to solve. Release and due dates of
orders are specified in weeks, processing times of jobs are specified in smaller
time units (in this thesis: hours). A minimal duration of a job is specified in
weeks. Resource capacity levels are specified in hours per week.

As mentioned in Section 1.2.2, in our approach of the resource loading
problem we adopt the time driven approach and the resource driven approach
simultaneously. We thus aim to minimize the sum of the total cost of the

12 Chapter 1. Introduction

1

2

3

4

5 6

7

8

9 10

Figure 1.3: Example of generalized precedence relations in RCCP.

use of nonregular capacity and the total cost incurred by tardiness of jobs.
The tardiness of a job is defined as the lateness of the job (i.e., the difference
between its completion time and its due date, measured in weeks), if it fails to
meet its due date, or zero otherwise. The job due date is an internal due date,
i.e., it can be calculated from the order due date and the total minimal duration
of the successors of the job. Job due dates may also be imposed externally, e.g.,
to meet certain deadlines on components or parts of an order.

1.3.2 The rough-cut capacity planning problem

A generalization of the resource loading problem in the previous section is ob-
tained by allowing generalized precedence relations such as in Figure 1.3. These
structures typically occur in project environments. The ‘analogon’ of resource
loading in project management is known as the Multi-Project Rough-Cut Ca-
pacity Planning (RCCP) problem (De Boer, 1998). We study this problem as
well, and therefore extend the scope of this thesis from discrete manufacturing
environments to Resource-Constrained Multi-Project Management (RCMPM)
systems. Project management was traditionally applied in situations where
large projects are carried out over a long period of time by several companies.
Examples include the engineering, development and construction of ships, re-
fineries, or military weapons. However, in the last two decades, the popularity
of project management extended its application to smaller tasks as well, such
as the development of software, or the repair and overhaul of ships. In the
context of project management, we speak of projects that consist of activities,
rather than orders that consist of jobs. Project management covers all aspects
of the entire life cycle of a project (Lock, 1988):

• Order acceptance. In this stage, a reliable due date is determined for
each new project. For this purpose, insight must be obtained in the (esti-
mated) capacity requirements for both this new project order, as well as
for the projects that have been accepted already. This information is used

1.3. Production characteristics 13

as an input to make a rough-cut capacity plan. The rough-cut capacity
plan estimates costs, and yields insight with respect to the expected due
dates. It must be used to settle a contract with the customer, that is
executable for the company.

• Engineering and process planning. In this stage, engineering activi-
ties provide more detailed input for the material and resource scheduling
of the next stage.

• Material and resource scheduling. The objective in this stage is to
use scheduling to allocate material and activities to resources, and to
determine start and completion times of activities, in such a way that
due dates are met as much as possible.

• Project execution. In this stage, the activities are performed. Re-
scheduling is needed whenever major disruptions occur.

• Evaluation and service. In this stage, the customer and the organiza-
tion evaluate the progress and the end result, to come closer towards the
customer needs, and to improve the entire process in the future.

We address the rough-cut capacity planning (RCCP) problem in the order
acceptance stage of a project life cycle. In order to position RCCP as a mecha-
nism of planning in project management, we use the framework for hierarchical
planning for (semi)project-driven organizations (see Figure 1.4) as proposed by
De Boer (1998). Hierarchical production planning models are usually proposed
to break down planning into manageable parts. At each level, the boundaries
of the planning problem in the subsequent level are set. Ideally, multiple levels
are managed simultaneously, using information as it becomes available in the
course of time. However, this means that uncertainty in information will be
more important as more decisions are taken over a longer period of time. Pos-
sibly due to this complexity, project planning theory hardly concentrates on
problems at multiple levels. In the hierarchical planning framework in Figure
1.4, vertically we observe the same distinction between strategic, tactical, and
operational planning activities as in the positioning framework in Figure 1.1.
Again, at the highest planning level, the company’s global resource capacity
levels are determined. Strategic decisions are made with regard to machine
capacity, staffing levels, and other critical resources, using the company’s long-
term strategy and strategic analyses like market research reports as the input
of the planning. The planning horizon usually varies from one to several years,
and the review interval depends on the dynamics of the company’s environment.

At the RCCP level, decisions are made concerning regular and nonregular
capacity usage levels, such as overtime work and outsourcing. Also, due dates
and other project milestones are determined. Just as resource loading is a
tool in order acceptance, the RCCP is used as a tool in the bidding and order
acceptance phase of new projects, to:

14 Chapter 1. Introduction

Strategic resource
planning

Rough-cut capacity
planning

Detailed scheduling

Resource-constrained
project scheduling

Strategic

Tactical

Tactical/
operational

Operational

Rough-cut
process planning

Engineering &
process planning

Figure 1.4: Hierarchical planning framework (De Boer, 1998).

• determine the capacity utilization of new and accepted orders,

• perform a due date analysis on new or accepted orders, and/or to quote
realistic due dates,

• minimize the usage of nonregular capacity.

In order to support these analyses, just like in resource loading we distin-
guish two problems in RCCP: resource driven and time driven RCCP. As in
resource loading, with resource driven RCCP, all (non-)regular resource ca-
pacity levels are fixed, and we try to minimize the maximum lateness of the
projects, preferably using regular capacity. The resource driven RCCP is ap-
plicable in the situation where a customer requests a due date quotation for
a project, while the company wants/has to fulfill strict resource constraints.
With time driven RCCP, deadlines are specified for each activity in a project,
while the company is flexible in the resource utilization, in that it may use
nonregular capacity in order to meet the deadlines. In this case, the company
wants to meet all deadlines, in such a way, that the usage of nonregular capacity
is minimized. The input for the RCCP is generated by performing a rough-cut
process planning. Based on customer demands, the rough-cut process planning
breaks up a project into a network (with generalized precedence constraints) of
work packages (such as in Figure 1.3), with estimates on the resource utilization
(number of work hours) and minimal durations. Minimal duration constraints
are a result of technical limitations of resources, e.g., in a situation when no
more than two people can be deployed for a certain activity. Depending on the

1.4. Example 15

project duration, the RCCP should cover a time horizon of half a year or more.

RCCP determines the detailed resource availability profiles for the next
planning level, the resource-constrained project scheduling. Work packages are
broken into smaller activities, with given duration and resource rates, and more
complex precedence relations. The planning horizon varies from several weeks
to several months, depending on the project duration. Resource-constrained
project scheduling determines when activities are performed, and it uses de-
tailed scheduling to determine which operators or machines of a resource group
are assigned to each activity. The planning horizon of detailed planning may
vary from one week to several weeks, and is updated frequently, when distur-
bances occur in the resource-constrained project scheduling plan, or on the
shop floor.

From the literature we observe that, just as in the case of discrete man-
ufacturing, the focus has been put primarily on a more detailed level, such
as the resource-constrained project scheduling problem RCPSP (e.g., Kolisch,
1995). These techniques work fine at the operational level, but are not suitable
for the tactical planning level, for two reasons. First, the RCPSP is inflexible
with respect to resource capacity levels, which is desirable at the tactical level.
The second reason is that the information that is required to perform resource-
constrained project scheduling is not available at the stage of tactical planning.
Detailed engineering has not been performed yet at the stage of RCCP, so, e.g.,
the exact number of required resources and the precedence relations are not
known in detail at this stage. Recently, some heuristics have been proposed
for RCCP (De Boer and Schutten, 1999; Gademann and Schutten, 2001). In
this thesis we consider exact and heuristic methods to solve time driven and
resource driven RCCP problems.

1.4 Example

Consider a furniture manufacturer, that produces large quantities of furniture
to order. The company has a product portfolio with numerous standard prod-
ucts that can be assembled to order, but it is also capable of designing and
subsequently producing products to order.

The sales department of the company negotiates with the customers (e.g.,
furniture shops and wholesalers) the prices and due dates of the products that
are to be ordered. Using up-to-date information and communication systems,
the sales department is able to quote tight but realistic customer due dates
based upon the latest production information. If a customer order is (partly)
non-standard, a macro process planning is performed to determine the produc-
tion activities and the way they are performed. Each product is then processed
in one or more production departments, in which the following production ac-
tivities are performed:

16 Chapter 1. Introduction

• sawmilling (to prepare the lumber for assembly),

• assembly,

• cleaning (to sand and clean products),

• painting,

• decoration (e.g., to decorate products with glass, metal or soft furnish-
ings),

• quality control.

The production planner breaks down the customer order into jobs, one
for each production activity. He then determines for all jobs in which week
a department should process a job. The head of the production department
is responsible for subsequently scheduling the jobs over the resources in his
department within the week. The processing of a job usually requires only
a fraction of the weekly capacity of the concerned production department.
However, since more workload may be present in the department in the same
week, the production planner gives the head of the production department one
week to complete production of all assigned jobs. Consequently, at most one
job of the same order may be assigned to any particular week. The planner
calculates the lead time of a customer order by counting the number of jobs
(in weeks), and he dispatches the customer order for production accordingly,
to meet the negotiated customer due date.

After determining the order start times, the production planner performs
a capacity check for each production department, to determine if there is suf-
ficient weekly operator and machine capacity to execute his plan. Since the
machines in a department are usually continuously available, the capacity of
the department is mostly limited by operator capacity. The capacity check is
done by simply comparing for each week the capacity of the department with
the sum of the processing times of the assigned jobs (both are measured in
hours).

We illustrate the planning approach of the planner with some example data.
Consider the situation described in Table 1.1, where 7 customer orders are to
be dispatched for production. We have indicated the production activities
sawmilling, assembly, cleaning, painting, decorating, and quality control by
their first letter, i.e., S, A, C, P , D and Q. The production planner calculates
the order start times from the customer due date and the number of jobs of
that order. The resulting start times are displayed in Table 1.2. As mentioned
before, after determining the order start times, the production planner per-
forms a capacity check for each production department, to determine if there
is sufficient weekly operator and machine capacity to execute his plan. In
Figures 1.5 and 1.6 we see the capacity check for the decoration department
(D) and the quality control department (Q) respectively. The bars in the fig-

1.4. Example 17

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9

order1

order2

order3

order4

order5

order6

order7

ho
ur

s

weeks

1

24

5

6
7

Figure 1.5: Loading of department D by production planner.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9

order1

order2

order3

order4

order5

order6

order7

ho
ur

s

weeks

3

1

2
4

5

67

Figure 1.6: Loading of department Q by production planner.

18 Chapter 1. Introduction

customer job (processing time in hours) due date
order 1 2 3 4 5 6 (week)
1 S (37) A (19) C (14) D (32) Q (5) 7
2 S (18) A (12) C (15) P (10) D (14) Q (10) 8
3 S (20) A (21) C (17) Q (8) 5
4 A (10) C (25) D (16) Q (7) 5
5 S (16) A (33) C (14) P (16) D (15) Q (10) 9
6 S (36) A (16) C (20) P (15) D (15) Q (9) 9
7 S (15) A (10) C (15) P (15) D (20) Q (10) 6

Table 1.1: Example customer order data.

customer number due start time
order of jobs date (week)
1 5 7 3
2 6 8 3
3 4 5 2
4 4 5 2
5 6 9 4
6 6 9 4
7 6 6 1

Table 1.2: Customer order start times found by production planner.

ure represent jobs of customer orders assigned to certain weeks, and the bold
line represents the available regular capacity of the department (in hours per
week). By letting operators work in overtime, the department can temporarily
increase the available capacity. The dotted line above the bold line represents
the total available capacity of the department, i.e., the regular capacity plus
the nonregular capacity. Observe that in this example, the available capacity
in the first few weeks is lower than in the other weeks. This typically occurs in
practice when capacity is reserved for (scheduled) orders that are already on
the shop floor, and that may not be shifted in time. In department Q we see
that capacity is insufficient in weeks 5, 8 and 9, and in department D in weeks
6 and 8. This plan is thus infeasible. In general, if the production planner
establishes that available capacity is insufficient, he has four options to come
to a feasible plan:

1. to shift jobs in time, or to split jobs over two or more weeks;

2. to increase the lead time of some customer orders (by decreasing their
start time, or by increasing their due date), and then to reschedule;

3. to expand operator capacity in some weeks by hiring staff;

4. to subcontract jobs or entire orders.

1.4. Example 19

Although there may be excess capacity in other weeks, shifting or splitting
jobs may have a negative effect on other departments. Consider for example
week 9 in department Q, where capacity is insufficient to complete the jobs
of orders 5 and 6. Shifting the job of order 5 to week 7 (in which there is
sufficient capacity) implies that the preceding job of order 5 in department D
must shift to week 6, where capacity is already insufficient. Moreover, the other
preceding jobs of order 5 must shift to week 5 and before, which may result in
more capacity problems in other departments. Splitting the job of order 2 in
department Q over week 7 and 8, implies that the preceding job of order 2 in
department D must shift to week 6, where, as mentioned before, capacity is
already insufficient.

The option to increase customer order lead times is not desirable, since
this may lead to late deliveries, which may result in penalties, imposed by the
customers involved. Moreover, this does not guarantee that no overtime work
or subcontracting is required to complete all orders in time. Since increasing
the lead times often does not lead to feasible plans, this option tends to increase
order lead times more and more, which has several undesirable side effects, such
as an increasing amount of work-in-process.

The remaining options to make a feasible plan involve using nonregular
operator or machine capacity. Assigning nonregular operator capacity enables
the use of machines in nonregular operator time. However, hired staff is often
not readily available. Moreover, some work can not be subcontracted, and
subcontracting a job tends to increase the order lead time.

The example shows that even a small loading problem may be very hard to
solve. The approach of the planner is commonly used in practice. It appears
to be a reasonable approach, since it accounts for important aspects such as:

• the precedence relations between the jobs,

• meeting customer due dates,

• (regular and nonregular) operator and machine capacity availability.

In this thesis we provide tools for solving similar loading problems, and
loading problems that are much larger (with respect to the number of orders
and jobs) and more complex due to additional restrictions on jobs and orders.
We have used one of our methods, which uses all four of the aforementioned
options to come to a feasible plan, to optimally solve the loading problem in
this example. Figures 1.7 and 1.8 display a part of the solution, i.e., the opti-
mal loading for the decoration department and the quality control department
respectively. Observe that in the optimal plan little overtime work is required in
the quality control department to produce all orders in time. Table 1.3 displays
the optimal start times of the customer orders, as well as the completion times
in the optimal plan, in comparison with the (external) order due dates.

20 Chapter 1. Introduction

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9

order1

order2

order3

order4

order5

order6

order7

ho
ur

s

weeks

1

67

7

5

1

2

4

Figure 1.7: Optimal loading of department D.

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9

order1

order2

order3

order4

order5

order6

order7

weeks

ho
ur

s

3

1

2
4

5

6
7

Figure 1.8: Optimal loading of department Q.

1.5. Current practices 21

customer start time completion time due date
order (week) (week) (week)
1 1 7 7
2 1 7 8
3 1 5 5
4 0 5 5
5 4 9 9
6 0 9 9
7 0 6 6

Table 1.3: Optimal customer order start times

1.5 Current practices

The influence of customers on the manufacturing plans has increased enor-
mously during the last two decades. A higher product variety, shorter prod-
uct life cycles, improved delivery performance and stronger competition force
manufacturing organizations to continuously improve their quality and to re-
duce their lead times. In this context, agile manufacturing has become a major
strategy for firms to reduce their lead times and the time-to-market (Van Assen
et al., 1999). Not only does time reduction enable a swifter response to chang-
ing market conditions, the pursuit of time compression also reveals sources of
quality problems and wasted efforts. In addition to time reduction, manufac-
turing companies need to control the operational costs by efficiently allocating
their resources over time. For this purpose, various approaches for production
planning and control have been proposed, partly leading to the development
of automated production control systems. Notable examples are Material Re-
quirements Planning (Orlicky, 1975) and its successor Manufacturing Resources
Planning (Wight, 1981; Vollmann et al., 1988), Hierarchical Production Plan-
ning (Hax and Meal, 1975) and, at the shop floor level, Optimized Production
Technology (Goldratt, 1988). Unfortunately, most systems have not fulfilled
the initial expectations, for various reasons (Zijm, 2000). Manufacturing Re-
sources Planning (MRP II) based systems have specifically been developed for
make-to-stock assembly production, and are primarily administrative systems.
MRP II systems lack intelligent loading algorithms, and can not handle dy-
namic situations, or situations that involve a high data uncertainty. The mate-
rial oriented planning techniques of MRP II systems in fact do not even account
for capacity constraints. The systems use rough-cut capacity planning (RCCP)
at a higher level, while at a more detailed level they use capacity requirements
planning (CRP) to check whether capacity constraints are violated. CRP per-
forms an infinite forward loading (Hopp and Spearman, 1996) to predict job
completion times using fixed lead times (Karmarkar, 1993; Karni, 1982). CRP
compares the loading against available capacity, but does not provide a tool
to resolve capacity problems. Often such an infinite planning procedure yields

22 Chapter 1. Introduction

infeasible plans (Negenman, 2000). Moreover, the feasibility of the plans on
the lower planning levels can not be guaranteed satisfactorily, due to specific
job shop constraints like complex precedence relations that are not considered
on the aggregate planning level. As a result, the fixed lead times in infinite
planning tend to inflate (the so-called ‘planning loop’, see, e.g., Zäpfel and
Missbauer, 1993; Suri, 1994). While MRP II is primarily material oriented,
ideally, the material in the production process and the use of resources are
considered simultaneously in the planning process. To be able to solve the
models satisfactorily, the existing methods for this purpose either have a high
level of aggregation, or are based on repairing a plan that is infeasible with
respect to capacity or precedence constraints (Baker, 1993; Negenman, 2000).
A more detailed description of the major drawbacks of MRP II has been given
by Darlington and Moar (1996).

Hierarchical Production Planning (HPP) on the other hand, is strongly ca-
pacity oriented. In HPP, problems are decomposed by first roughly planning
complete product families and then scheduling individual items. Compared
to a monolithic system, this not only reduces the computational complexity
of the mathematical models, it also reduces the need of detailed data (Bitran
and Tirupati, 1993). As recognized by Schneeweiss (1995), high-level decisions
need to anticipate the effect on future low-level problems. However, since HPP
can not handle complex product structures and product routings, this is hardly
possible. Finally, Optimized Production Technology (OPT) does consider rout-
ing constraints but is primarily shop floor oriented, i.e., it assumes a medium
term loading as given.

Workload control concepts buffer a shop floor against external dynamics
(such as rush orders) by creating a pool of unreleased jobs (Bertrand and
Wortmann, 1981; Wiendahl, 1995). The use of workload norms should turn
the queueing of orders on the shop floor into a stationary process that is char-
acterized by an equilibrium distribution. The development of workload control
systems shows that adequate finite resource loading tools are needed to control
the aforementioned dynamic production situations. However, although work-
load control does yield more reliable internal lead times by not allowing work to
be loaded in the job shop in case of a high load already present, the problem is
shifted to the buffers before the job shops, hence due dates still tend to increase
(Hendry et al., 1998).

The models in the literature as well as the techniques used in the aforemen-
tioned production planning and control systems that explicitly address loading
problems are inadequate in situations that require more flexibility due to un-
certainty in data. Linear programming (LP) is an accepted method in, e.g.,
aggregate planning and workforce planning to decide upon capacity levels (once
a global long-term plan is determined), by considering overwork, hiring and fir-
ing, and outsourcing options (see, e.g., Shapiro, 1993; Hopp and Spearman,
1996). However, modeling complex precedence relations in LP models requires

1.6. Outline of the thesis 23

the introduction of many integer variables, which increases the size of the mod-
els enormously, and makes them computationally hard to solve (Shapiro, 1993).
For this reason, precedence constraints are often omitted in linear programming
approaches (see, e.g., Graves, 1982; Bahl and Zionts, 1987). Although, as ar-
gued in Section 1.1, at the resource loading level product routings should not
be considered in the same level of detail as in shop floor scheduling, it is es-
sential to account for major precedence relations, e.g., with respect to machine
groups, in order to define work packages at the loading level that can indeed be
handled at the shop floor level. In other words: approaches that ignore these
major constraints to reduce complexity may lead to production plans that can
not be maintained at a more detailed level. This holds in particular when
multiple resources (e.g., machines and operators) are needed to simultaneously
process jobs. Dealing with multiple resources without considering job routings
often leads to inconsistencies, when eventually these different resources are not
available at the same time.

Although we use a deterministic approach in this thesis, it is likely that in
future research also stochastic techniques (Kall and Wallace, 1994; Infanger,
1994; Buzacott and Shanthikumar, 1993) will be used for resource loading
(see, e.g., Giebels, 2000). This may particularly be the case for engineer-to-
order (ETO) manufacturing planning, where even more uncertainty in data is
involved than in MTO manufacturing planning. While generally at the tac-
tical planning level in MTO environments processing times are deterministic,
and routings are known, in ETO environments the macro process planning is
generally incomplete at the tactical planning stage. Hence processing times are
uncertain, and even the required machines, tools and materials are uncertain.
A promising approach that deals with such situations is the EtoPlan-concept,
proposed by Giebels (2000).

We conclude this section with a note on the role of material coordination
in resource loading. Compared to assemble-to-order (ATO) environments, in
MTO environments material coordination plays a less significant role. We will
not consider material related constraints. For advanced models for material
coordination under capacity constraints in ATO environments we refer to Ne-
genman (2000).

1.6 Outline of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 we present
some mathematical preliminaries for the analysis in the next chapters. The
discussed techniques include column generation, branch-and-price, Lagrangian
relaxation and deterministic dynamic programming. Some example problems
in Chapter 2 are tailored to the problems in the remainder of this thesis. In
Chapter 3 we discuss the modeling issues of resource loading, and present a
Mixed Integer Linear Programming (MILP) formulation. We present column

24 Chapter 1. Introduction

generation based solution methods for the resource loading problem in Chapter
4. In this chapter we also discuss heuristics that can be used ‘stand-alone’, or
as an integrated part of the column generation based methods. We pose several
branch-and-price techniques to find feasible solutions to the entire MILPmodel.
In Chapter 5 we discuss the results of computational experiments with the
methods proposed in Chapter 4.

In Chapter 6 we present a generalization of the MILP model of Chapter
3, and use it to solve the RCCP problem. The solution method presented in
this chapter is also based on column generation, but we present a generalized
pricing algorithm, that is able to generate schedules for projects, that comply
with the additional constraints of the RCCP problem. In Chapter 7 we discuss
the experiments with, and computational results of the methods proposed in
Chapter 6.

Finally, in Chapter 8, we summarize our experiences with the methodology
presented in this thesis, discuss its strengths and its weaknesses, and propose
topics of further research.

25

Chapter 2

Preliminaries

Only two things are infinite,
the universe and human stupidity

- and I’m not sure about the former.

- Albert Einstein (1879-1955)

2.1 Introduction to integer linear programming

In this thesis we use several combinatorial optimization techniques to solve
the resource loading problem. In this chapter we discuss these techniques,
such as branch-and-bound, column generation, Lagrangian relaxation, and dy-
namic programming. For a more comprehensive overview of combinatorial op-
timization techniques, we refer to, e.g., Wolsey (1998); Johnson et al. (1998);
Nemhauser and Wolsey (1988); Winston (1993).

During the last 50 years, linear programming (LP) has become a well-
established tool for solving a wide range of optimization problems. This trend
continues with the developments in modeling, algorithms, the growing com-
putational power of personal computers, and the increasing performance of
commercial linear programming solvers (Johnson et al., 1998). However, many
practical optimization problems require integer variables, which often makes
them not straightforward to formulate, and extremely hard to solve. This is
also the case for the resource loading problem. The resource loading problem
is formulated in Chapter 3 as a mixed integer linear program (MILP). A MILP
is a generalization of a linear program, i.e., it is a linear program of which some

26 Chapter 2. Preliminaries

of the variables are integer, e.g.:

MILP : min cTx

s.t.
Ax ≥ b
l ≤ x ≤ u
xj integer (j = 1, . . . , p;p ≤ n) .

(2.1)

The input data for this MILP is formed by the n-vectors c, l, and u, by m×n-
matrix A, and m-vector b. The decision vector x is an n-vector. When p = n
the MILP becomes a pure integer linear program (PILP). When the integer
variables are restricted to values 0 or 1, the problem becomes a (mixed) binary
integer linear program (MBILP or BILP). Each ILP can be expressed as a
BILP by writing each integer variable value as a sum of powers of 2 (see, e.g.,
Winston, 1993). A drawback of this method is that the number of variables
greatly increases. For convenience, in the remainder of this chapter we discuss
integer linear programs that are minimization problems with binary variables.

Formulating and solving ILPs is called integer linear programming . Integer
linear programming problems constitute a subclass of combinatorial optimiza-
tion problems. There exist many combinatorial optimization algorithms for
finding feasible, or even optimal solutions of integer linear programming mod-
els (see, e.g., Wolsey, 1998; Johnson et al., 1998). When optimizing complex
problems, there is always a trade-off between the computational effort (and
hence running time) and the quality of the obtained solution. We may either
try to solve the problem to optimality with an exact algorithm, or settle for an
approximation (or heuristic) algorithm, which uses less running time but does
not guarantee optimality of the solution. In the literature numerous heuristic
algorithms can be found, such as local search techniques (e.g., tabu search,
simulated annealing, see Aarts and Lenstra, 1997), and optimization-based al-
gorithms (Johnson et al., 1998).

The running time of a combinatorial optimization algorithm is measured by
an upper bound on the number of elementary arithmetic operations it needs for
any valid input, expressed as a function of the input size. The input is the data
used to represent a problem instance. The input size is defined as the number
of symbols used to represent it. If the input size is measured by n, then the
running time of an algorithm is expressed as O (f (n)), if there are constants c
and n0 such that the number of steps for any instance with n ≥ n0 is bounded
from above by cf (n). We say that the running time of such an algorithm is
of order f (n). An algorithm is said to be a polynomial time algorithm when
its running time is bounded by a polynomial function, f (n). An algorithm is
said to be an exponential time algorithm when its running time is not bounded
by a polynomial function (e.g., O (2n) or O (n!)). A problem can be classified
by its complexity (see Garey and Johnson, 1979). A particular class of ‘hard’
problems is the class of so-called NP -hard problems. Once established that
a problem is NP -hard, it is unlikely that it can be solved by a polynomial
algorithm.

2.1. Introduction to integer linear programming 27

Before considering what algorithm to use to solve an ILP problem, it is im-
portant to first find a ‘good’ formulation of the problem. Sometimes a different
ILP formulation of the same problem requires fewer integer variables and/or
constraints, which may reduce or even increase computation time for some algo-
rithms. Optimization algorithms for NP -hard problems always resort to some
kind of enumeration. The complexity of NP -hard problems is nicely illustrated
by Nemhauser and Wolsey (1988), who show that a BILP (which is proven to
be NP -hard) can be solved by brute-force enumeration in O (2nnm) running
time. For example, a BILP with n = 50 and m = 50 that is solved by complete
enumeration on a computer that can perform 1 million operations per second
requires nearly 90,000 years of computing time. For n = 60 and m = 50 this is
nearly 110 million years.

A generic categorization for exact algorithms for ILP problems is given by
Zionts (1974). He distinguishes three generic optimization methods: construc-
tive algorithms, implicit enumeration, and cutting plane methods.

Constructive algorithms construct an optimal solution by systematically
adjusting integer variable values until a feasible integer solution is obtained.
When such a solution is found, it is an optimal solution. The group theoretic
algorithm is an example of a constructive algorithm (Zionts, 1974).

Implicit enumeration methods enumerate solutions in a highly efficient man-
ner. They generally eliminate subsets of solutions without explicitly enumer-
ating them. In this thesis we use two implicit enumeration methods: dynamic
programming and branch-and-bound. Dynamic programming is a decompo-
sition technique that first decomposes the problem into a nested family of
subproblems. The solution to the original problem is then found by recursively
solving the (generally easier) subproblems. We discuss dynamic programming
in more detail in Section 2.5. Branch-and-bound is structured by an enumera-
tion scheme that involves partitioning the solution space. In the scheme, each
partition is further analyzed and partitioned until a (better) feasible solution is
found or it is determined that the partition does not contain a (better) solution.
The enumeration scheme can nicely be displayed by a branching tree. The root
node of the tree corresponds to the original problem, and has a solution space
that holds all feasible solutions to this problem. As the algorithm progresses,
the solution space is partitioned by adding constraints to the problem in the
root node, forming two or more new problems in the child nodes. This process
of partitioning the solution space, which is called branching, is continued in the
child nodes, which become parent nodes to new child nodes in a subsequent
partitioning of the solution space. A typical example is a branching strategy
based on choosing either a value 0 or 1 for a single binary variable (see, e.g.,
Figure 2.1). Hence in each node the feasible set of solutions is decomposed
into smaller (disjoint) subsets. At each node lower and upper bounds can be
determined on the objective value of that subset. Lower bounds can be ob-
tained, e.g., by relaxations of the original integer linear program. A relaxation

28 Chapter 2. Preliminaries

of an integer linear program is obtained by simplifying the problem. E.g., the
LP relaxation of a BILP is obtained by omitting the integrality restrictions on
the variables (x ∈ B

n), and replacing them by: 0 ≤ x ≤ 1, x ∈ R
n
+. Another

technique to obtain a relaxation is Lagrangian relaxation (see, e.g., Geoffrion,
1974). We discuss Lagrangian relaxation in more detail in Section 2.3. Upper
bounds can be obtained by finding feasible solutions in a node (e.g., heuris-
tically). The upper and lower bounds can be used to fathom certain nodes
from further consideration. A node can be fathomed, if the lower bound in that
node is larger than or equal to the best solution found so far in branching or
before. The best solution found so far is called the incumbent solution. The
ILP problems in child nodes of that node have additional constraints, so the
solutions in these nodes can only become worse, or remain the same. Nodes
can also be fathomed when the problem in a node is infeasible. This process
is called pruning. The branching terminates when all nodes have been evalu-
ated. The incumbent is then the optimal solution. The number of nodes that
are examined in the branching scheme depends on the branching strategy, the
order in which the nodes are examined (e.g., depth first or best first search),
dominance rules (applicable when nodes may be fathomed after other dominant
nodes have been examined), and the quality of the lower and upper bounds.

x
1
=0 x

1
=1

x
2
=1x

2
=0

Figure 2.1: Branch-and-bound tree example.

The third category of exact optimization methods for binary problems are
the cutting plane methods . These methods start from the (generally non-
integer) solution of the LP relaxation of the ILP. The basic idea is then to
add constraints (cutting planes) to the LP relaxation, to cut off a part of the
feasible region of the LP relaxation that includes the optimal LP relaxation so-
lution, and that is not part of the convex hull of the feasible region of the ILP.
These constraints are found by solving the separation problem. The difficulty
in this approach is to describe the convex hull of the feasible region of the ILP.
The research that focuses on finding the equalities that are needed to describe
the convex hull (the so-called facets) is known as polyhedral combinatorics (see
Nemhauser and Wolsey, 1988).

The aforementioned optimization techniques are often used in conjunction

2.2. Branch-and-price for solving large ILP models 29

with each other. For example cutting plane methods are almost always used
in conjunction with branch-and-bound. In these so-called branch-and-cut al-
gorithms, partial descriptions of the convex hull of feasible solutions of the
ILP are used to determine strong lower bounds in the branching scheme (see,
e.g., Hoffman and Padberg, 1985). Branch-and-cut is the technique that most
commercial ILP solvers use to solve (mixed) integer linear programs. In this
thesis we use the column generation method to solve the LP relaxation of the
ILP, a technique very similar to cutting plane methods. Whereas cutting plane
methods add rows to the LP relaxation of the problem, column generation
adds columns to a restricted version of the LP relaxation. The separation
problem in column generation is called the pricing problem. Column gener-
ation can be interpreted as a cutting plane technique on the dual of the LP
relaxation of the ILP (see, e.g., Barnhart et al., 1998; Beasley, 1996; Bixby
et al., 1992). Dantzig and Wolfe (1960) proposed the column generation tech-
nique as a scheme for solving large linear programming problems that have
(exponentially) many variables. Since then it has been applied to a wide vari-
ety of problems. The most well-known is the application to the cutting stock
problem (Gilmore and Gomory, 1963). In more recent research, column gen-
eration has been applied to, e.g., vehicle routing problems with time windows
(Desrosiers et al., 1984; Desrochers et al., 1992) and crew scheduling (Freling,
1997; Desrochers and Soumis, 1989). When column generation is used in con-
junction with branch-and-bound, it is referred to as branch-and-price (see, e.g.,
Savelsbergh, 1997; Vance et al., 1994). In this thesis we use branch-and-price
methods to determine a feasible solution to the ILP from the (fractional) LP
relaxation solution.

In the remainder of this chapter we elaborate on the techniques used in this
thesis. Since branch-and-price plays a central role in this thesis, we discuss this
technique in more detail in Section 2.2. In the branching schemes used in this
thesis, we use Lagrangian relaxation to determine lower bounds. In Section
2.3 we elaborate more on Lagrangian relaxation, and in Section 2.4 we discuss
how to use Lagrangian relaxation in conjunction with column generation. Since
dynamic programming is used in this thesis for optimizing the pricing problem
of the column generation algorithm we discuss this subject in Section 2.5.

2.2 Branch-and-price for solving large integer

linear programming models

2.2.1 Method outline

Successfully solving large integer linear programs often requires LP relaxations
that give a good approximation of the convex hull of feasible solutions (Barn-
hart et al., 1998). Approaches based on this idea that are often used to solve

30 Chapter 2. Preliminaries

large integer linear programs are the aforementioned branch-and-cut approach,
and the branch-and-price approach. Typical ILP problems that are solved by
branch-and-cut have an LP relaxation with too many valid inequalities to han-
dle efficiently. Since many of these valid inequalities are not binding in an
optimal solution anyway, the approach starts by finding a formulation of the
LP relaxation where these valid inequalities are left out. This formulation is the
so-called restricted LP relaxation (RLP). This RLP is then solved to optimality.
A subproblem (the separation problem) is solved to determine if the resulting
optimal solution is feasible to the LP relaxation by identifying violated valid
inequalities. If the solution is not feasible to the LP relaxation, at least one
violated inequality is identified and added to the RLP. This procedure contin-
ues until no more violated inequalities exist. In that case, the optimal solution
to the RLP is also optimal to the LP relaxation. Generally this solution is
fractional, and hence not feasible for the ILP. Branching can be performed in
order to find a feasible solution to the ILP.

The basic idea of branch-and-price is very similar to that of branch-and-cut,
except that it involves column generation, instead of row generation. Typical
ILP problems that are solved by branch-and-price have too many columns
to handle efficiently, and since the basis has a limited dimension, many of
these columns do not play a role in an optimal solution anyway. Analogous to
branch-and-cut, the LP relaxation is solved to optimality by first considering a
restricted LP relaxation (RLP), where many columns are left out. The RLP is
also called the restricted master problem. The solution of the RLP is optimal
for the LP relaxation if all variables of the LP relaxation have non-negative
reduced cost . Since only a subset of the columns of the LP relaxation is explic-
itly available, this can not be checked explicitly. A so-called pricing algorithm
is used to verify optimality. If the solution is not optimal, the pricing algo-
rithm identifies at least one column with negative reduced cost. This column
is added to the RLP, and the procedure continues. The column generation
scheme terminates when no columns with negative reduced cost exist anymore.
The optimal solution to the RLP is then also optimal to the LP relaxation.
This process of adding columns to the RLP when they are needed is called
implicit column generation. In explicit column generation, all columns are gen-
erated in advance and kept in computer memory. Subsets of columns are then
passed to the RLP until a subset is found that contains the optimal solution.

Analogous to branch-and-cut, the optimal solution to the LP relaxation is
generally fractional (i.e., non-integer), and hence not feasible to the ILP, so
branching needs to be performed in order to find a feasible solution to the ILP.
The column pool is partitioned by adding constraints. The type of constraints
that work best for a problem is usually determined by performing experiments.
Usually constraints are used that cut off the fractional (optimal) LP relaxation
solution, or that fix variables. By partitioning the column pool in the parent
node, each child node corresponds to a new LP relaxation. The column pool
must be updated accordingly, and the new LP relaxation is also solved by

2.2. Branch-and-price for solving large ILP models 31

column generation. When the optimal solution to the new LP relaxation is
again fractional, branching continues. A node is explored no further when in
that node a feasible ILP solution is found, or when the LP relaxation in the node
is infeasible, or when the node can be fathomed. A node is fathomed when a
lower bound to the feasible ILP solution in that node has been determined that
exceeds the best ILP solution found this far. Lower bounds can be determined
in each node, e.g., by Lagrangian relaxation (we discuss the application of
Lagrangian relaxation in Section 2.3).

In Figure 2.2 we illustrate the column generation procedure that is per-
formed in each node. The entire branch-and-price procedure is illustrated in
Figure 2.3. In the next section we will elaborate on possible branching strate-
gies and speed ups of branch-and-price algorithms.

Add columns

to RLP

Solve RLP

Solve pricing algorithm

Columns exist with

negative reduced costs?

LP relaxation solved

yes

no

Figure 2.2: Column generation scheme in a node.

2.2.2 Column generation strategies

There are many ways to speed up a branch-and-price algorithm. Most ap-
proaches try to reduce the number of nodes that must be examined to prove
optimality of an integer solution. There is a trade-off between finding a strong
formulation on one hand, by trying to make the difference in the solutions to the
LP relaxation and the integer linear program (the integrality gap) as small as
possible, and the number of nodes to explore in the branch-and-bound tree on
the other hand. The latter aspect is usually done by reformulation. Well-known
reformulation techniques are the preprocessing and probing techniques that fo-
cus on identifying infeasibility and redundancy, improving variable bounds and
coefficients, and fixing variables (Savelsbergh, 1994; Nemhauser et al., 1994;
Wolsey, 1998). These techniques, as well as other reformulation techniques
such as constraint generation, have proven to be very effective in reducing both
the integrality gap, and the size of the branch-and-bound tree (Savelsbergh,

32 Chapter 2. Preliminaries

Generate new nodes

Go to next unexplored

node according to

branching strategy

All nodes

explored?

Apply column generation

on RLP to optimize LP

LP solution better

than incumbent solution?

ILP solution

found

Fathom node

Incumbent solution

is optimal for ILP

yes

Solution fractional?
no

yes

no

yes

no

Formulate a feasible RLP

Feasible RLP exists?

yes

no

Go to root node

Figure 2.3: Branch-and-price scheme.

2.2. Branch-and-price for solving large ILP models 33

1994). Another technique that is used in advance of the branching process
to speed up the algorithm is column management . By generating and stor-
ing many columns in advance without adding them to the RLP, fewer pricing
problems have to be solved. In column management, a pricing strategy pre-
scribes when columns must be added to the pool, and how many. There is not
one ‘best’ pricing strategy for each problem, and hence computational exper-
iments must be performed to provide insight. In the pricing strategy there is
also a trade-off between the number of columns to add in each iteration (hence
the computation time of the pricing algorithm) on one hand and the size of
the column pool (hence the computation time of the RLP) on the other hand.
Moreover, column management may prescribe to delete columns from the pool,
e.g., when columns are redundant in the RLP (i.e., when columns are no longer
in the basic RLP solution).

Another way to improve the speed of the branch-and-price algorithm is to
focus on both improving the lower bound in a node, and on finding good feasi-
ble ILP solutions to the original problem as early as possible in the branching
process. Recall that a node is fathomed if a lower bound to the LP relaxation
in that node exceeds the incumbent. Lower bounds thus apply to a node, and
incumbent solutions apply to the entire branching tree. The stronger the lower
bounds, the fewer nodes have to be examined, in particular when a good feasible
incumbent solution has been found already. However, determining strong lower
bounds may be computationally intensive. In Section 2.3 we discuss Lagrangian
relaxation for determining a lower bound in a node with little additional com-
putational effort every time the RLP is solved in the column generation scheme.
Feasible ILP solutions can be found by solving primal heuristics, or by choos-
ing a branch selection strategy that yields feasible ILP solutions fast (see, e.g.,
Vanderbeck, 2000). Since such feasible solutions are more likely to be found
deep in the tree, a typical selection strategy to find feasible solutions fast is the
depth first strategy. Moreover, depth first requires relatively little computer
memory. Once an incumbent solution is found, the branch selection strategy
may be changed to, e.g., best bound search. In best-bound search all unfath-
omed nodes are examined, and the node that has the smallest lower bound is
selected as the branch node, since it most likely contains a solution that im-
proves the incumbent. Primal heuristics are usually used to find an incumbent
solution in the root of the branching tree. When the heuristic does not require
too much computation time, it can also be used to improve the incumbent
solution in other nodes of the tree. Hence, as to how often a heuristic is used
in the branching scheme, there is always a trade-off between the computation
time of the heuristic and the resulting speed up of the branching algorithm.

One side effect of column generation that affects the speed of the branch-
and-price algorithm is the so-called tailing-off effect, which is due to degener-
acy . What occurs in such an event is that in each column generation iteration
at least one column is found with negative reduced costs, which, after being
added to the RLP, enters the basis with a value zero. As a result, it takes

34 Chapter 2. Preliminaries

many iterations before optimality can be proven, i.e., before column generation
converges. A performance gain can be achieved by detecting tailing-off, such
as for example in an approximation method that terminates column generation
when the difference between the RLP solution (which is an upper bound on
the LP relaxation solution) and a lower bound to the LP relaxation solution is
sufficiently small.

2.2.3 Implicit column generation

Consider the following general integer minimization problem (ILP):

ILP : min zILP = cTx

s.t.
A1x ≥ b1
A2x = b2

xj ∈ Z+ (j ∈ J) ,

(2.2)

where the input data is formed by m1-vector b1, m2-vector b2, n-vector c,
m1×n coefficient matrix A1 and m2 ×n coefficient matrix A2. J is an n-set of
variable indices. We obtain its LP relaxation (LP) by omitting the integrality
constraints xj ∈ Z+ (j ∈ J), and replacing them by xj ≥ 0 (j ∈ J). Hence we
have:

LP : min zLP = cTx

s.t.
A1x ≥ b1
A2x = b2

xj ≥ 0 (j ∈ J)

(2.3)

We show how to use (implicit) column generation to solve LP in a case where
the set of columns in the coefficient matrix is large. More specifically, suppose
the number of columns in ILP is too large to handle efficiently, and hence its
LP relaxation (LP) can not be formulated and solved explicitly. To start the
column generation scheme, we formulate a restricted LP relaxation (RLP) that
contains a subset of the columns in coefficient matrices A1 and A2. For this
purpose, a set of columns is required that forms a feasible basis for LP . For the
moment we assume that such a set of columns is available. These determine
the initial RLP , which can be formulated as follows:

RLP : min z̃RLP = c̃T x̃

s.t.
Ã1x̃ ≥ b1
Ã2x̃ = b2

x̃j ≥ 0
(
j ∈ J̃ ⊆ J

)
.

(2.4)

The restricted LP model (RLP) has the same form as LP , but has a subset J̃

of the variables, with corresponding submatrices Ã1 and Ã2, and cost vector c̃.

2.2. Branch-and-price for solving large ILP models 35

The corresponding dual problem (DRLP) is given by:

DRLP : max z̃DRLP = bT1 u+ bT2 v

s.t. ÃT
1 u+ ÃT

2 v ≤ c̃
u ∈ R

m1

+ , v ∈ R
m2

where u is an m1-vector of dual variables, and v is an m2-vector of dual vari-
ables. Observe that this problem can also be written in a compact form with
an m-vector w of dual variables, where m = m1 +m2, and w = (u, v).

We start the column generation scheme by solving RLP to optimality. Note
that, since RLP has the same constraints as LP , any basic feasible solution
(x̃∗) to RLP forms a basic feasible solution (x∗) to LP , by letting x∗

j = 0

(∀j ∈ J\J̃). However, an optimal solution to RLP is not necessarily optimal
to LP . To determine if an optimal solution to RLP is also optimal to LP , we
use the following result (see, e.g., Wolsey, 1998) from duality theory:

Theorem 2.1 Let x∗ = (x∗1, x
∗
2, . . . , x

∗
n) be a primal n-vector, and w∗ = (w∗

1 ,
w∗
2 , . . . , w

∗
m) a dual m-vector. Then x∗ is an optimal primal solution and w∗ is

an optimal dual solution if and only if x∗ is primal feasible, w∗ is dual feasible
and cTx∗ = w∗T b.

Since any feasible solution to RLP is also feasible to LP , we have the primal
feasibility condition. Moreover, with x̃∗ optimal to RLP and the corresponding
u∗ and v∗ optimal to DRLP , we also have that cT x̃∗ = u∗T b1+v∗T b2 and thus
that cTx∗ = u∗T b1 + v∗T b2. Hence, to determine if an optimal solution x̃∗

to RLP is also optimal to LP , it remains to verify that the corresponding
(optimal) dual solution u∗ and v∗ to DRLP is feasible to the dual of LP
(DLP). The dual solution vectors (u∗, v∗) are feasible to DLP when:

AT
1ju

∗ +AT
2jv

∗ ≤ cj (∀j ∈ J),

or:
cj −AT

1ju
∗ −AT

2jv
∗ ≥ 0 (∀j ∈ J). (2.5)

The term cj −AT
1ju

∗ −AT
2jv

∗ in (2.5) is in fact the reduced cost cj of variable
xj. The reduced cost value cj of a variable xj, indicates the change ∆z̃ in the
objective value z̃, resulting from a change ∆xj in non-basic variable xj:

∆z̃ = cj∆xj

Clearly, cj ≥ 0 for all j ∈ J̃ . Therefore, determining if an optimal solution to
RLP is also optimal to LP boils down to determining if the reduced cost cj of
all variables xj in LP that are not included in RLP , is non-negative. Hence
we can formulate the optimality condition for column generation as follows
(Gilmore and Gomory, 1961):

36 Chapter 2. Preliminaries

Theorem 2.2 Consider an LP model of a minimization problem with column
set J , denoted by LP (J). Let w∗ be an optimal dual solution of problem LP (J̃)

for J̃ ⊂ J , and c∗ the corresponding reduced cost vector. The solution of LP (J̃)

is optimal for problem LP (J) if c∗j ≥ 0 (∀j ∈ J\J̃).

When columns have non-negative reduced costs, we say the columns price
out. The problem of identifying columns with negative reduced costs is called
the pricing problem. A pricing algorithm either determines that all c∗j ≥ 0,
or it provides at least one column with associated c∗j < 0. Such columns can
be added to RLP . Although more than one such column may exist, it is not
necessary to generate all columns with negative reduced costs. However, adding
more than one negative reduced cost column (called multiple pricing) reduces
the chance of cycling.

The column generation scheme thus solves the RLP and the pricing algo-
rithm successively in each iteration, and terminates when no negative reduced
cost columns can be found in the pricing algorithm. However, since the optimal
solution to LP is usually not integral, and thus not feasible to ILP , we need
to perform branching or to use heuristics in order to find a feasible solution to
ILP .

2.3 Lagrangian relaxation

The basic idea of Lagrangian relaxation is to dualize (i.e., relax) those con-
straints that make a problem hard to solve, in such a way, that good lower
bounds can be obtained for the original problem. The idea of dropping con-
straints is brought about by introducing a Lagrangian multiplier/parameter for
each constraint that is dropped from the problem. These constraints are then
removed from the problem, and put in the objective function, weighted by a
vector of Langrangian multipliers. Again, consider the (general) integer linear
program ILP :

ILP : min zILP = cTx
s.t. A1x ≥ b1 (duals u ∈ R

m1

+)
A2x = b2 (duals v ∈ R

m2

+)
x ∈ Z

n
+

Suppose constraints A1x ≥ b1 are the constraints that make the problem hard
to solve, and X =

{
x|A2x = b2, x ∈ Z

n
+

}
has some computationally convenient

structure not shared by the entire problem. For the Lagrangian relaxation
LILP (λ) of ILP , we dualize constraints A1x ≥ b1, and introduce a vector of
Lagrangian multipliers λ ∈ R

m1

+ to form the following Lagrangian subproblem:

LILP (λ) : min
x

zL,ILP (λ) = cTx+ λT (b1 −A1x)

s.t. x ∈ X.

2.3. Lagrangian relaxation 37

Let z∗L,ILP (λ) be the optimal objective function value of LILP (λ). Let x∗ denote
the optimal solution for ILP . Note that every x that is feasible for ILP is also
feasible for LILP (λ). Therefore:

z∗L,ILP (λ) ≤ cTx∗ + λT (b1 −A1x
∗) ≤ z∗ILP ,

and thus:

Theorem 2.3 z∗L,ILP (λ) is a lower bound on z∗ILP , the optimal solution to
ILP , for any λ ≥ 0, i.e., z∗L,ILP (λ) ≤ z∗ILP (∀λ ∈ R

m1

+).

The Langrangian multipliers λ∗ that provide the best lower bound are found
by solving the so-called Lagrangian dual problem:

z∗L,ILP (λ
∗) = max

λ≥0

{
z∗L,ILP (λ)

}
.

In general, to find strong lower bounds to z∗ILP , it is required to have ap-
propriate Lagrangian multipliers. Common (approximation) techniques for
solving the Lagrangian dual of an integer linear programming problem are
the subgradient method (Held and Karp, 1971) and the bundle method (see,
e.g., Hiriart-Urruty and Lemarechal, 1993), that both involve iteratively up-
dating the Lagrangian multipliers. In general it can not be guaranteed that
z∗L,ILP (λ

∗) = z∗ILP . The difference z∗ILP − z∗L,ILP (λ
∗) is referred to as the La-

grangian duality gap. We refer to Geoffrion (1974) for a more comprehensive
discussion on Lagrangian relaxation techniques.

Another important relation in Lagrangian relaxation theory is that of
z∗L,ILP (λ

∗) with z∗LP , the optimal solution to the LP relaxation (LP) of ILP
(see, e.g., Geoffrion, 1974):

Theorem 2.4 If ILP is an integer linear programming problem, then z∗LP ≤
z∗L,ILP (λ

∗).

Proof

z∗LP = min
x

{
cTx|A1x ≥ b1,A2x = b2, x ≥ 0

}
= min

x

{
cTx| −A1x ≤ −b1,−A2x = −b2, x ≥ 0

}
= max

v,u

{
−uT b1 − vT b2| − uTA1 − vTA2 ≤ cT , u ≥ 0

}
,

where u and v are decision variable vectors (of appropriate length) of the dual
problem of LP . Substituting for u the optimal dual solution vector (u∗) that

38 Chapter 2. Preliminaries

corresponds to constraints A1x ≥ b1 of LP , we have:

z∗LP = max
v

{
−u∗T b1 − vT b2| − vTA2 ≤ cT + u∗TA1

}
= min

x

{
cTx+ u∗T (A1x− b1)|A2x = b2, x ≥ 0

}
≤ min

x

{
cTx+ u∗T (A1x− b1)|A2x = b2, x ∈ Z

n
+

}
= z∗L,ILP (u

∗)

≤ max
λ≥0

{
z∗L,ILP (λ)

}
= z∗L,ILP (λ

∗).

�

In particular, when the integrality constraints in LILP (λ) are redundant
(we then say that the Lagrangian subproblem LILP (λ) possesses the integral-
ity property), all ‘smaller than’-relations in the proof of Theorem 2.4 become
equality-relations, since we have that:

z∗L,ILP (λ) = z∗L,LP (λ) ≤ z∗LP (∀λ), (2.6)

where LLP (λ) is the same as LILP (λ) without the integrality constraints, and
z∗L,LP (λ) is its optimal objective value. Hence, combining (2.6) and Theorem
2.4:

Corollary 2.1 If the Lagrangian subproblem LILP (λ) of integer linear pro-
gramming problem ILP possesses the integrality property, then z∗L,ILP (λ

∗) =
z∗L,ILP (u

∗) = z∗LP .

For integer linear programming problems for which the Lagrangian dual
problem does not possess the integrality property, the optimal dual solution
vector of the dual problem of LP provides a lower bound, since z∗L,ILP (u

∗) ≥
z∗LP (see the proof of Theorem 2.4).

In the next section we apply the results of Theorem 2.4 and Corollary 2.1 to
show how to embed Lagrangian relaxation in a column generation algorithm to
obtain lower bounds in a branch-and-price tree, and to speed up convergence
of the column generation algorithm (i.e., to alleviate the tailing-off effect).

2.4 Combining Lagrangian relaxation and

column generation

It is well known that Lagrangian relaxation can complement column generation
in that it can be used in every iteration of the column generation scheme to

2.4. Combining Lagrangian relaxation and column generation 39

compute a lower bound to the original problem with little additional compu-
tational effort (see, e.g., Van den Akker et al., 2000; Vanderbeck and Wolsey,
1996). The comparison of the Langrangian lower bound to an upper bound for
ILP can be used to fathom nodes in a branch-and-price algorithm, to fix vari-
ables, or to prove convergence of column generation to alleviate the tailing-off
effect of column generation. In this section we demonstrate the use of La-
grangian relaxation on the integer linear programming problem ILP of the
previous section, for a specific constraint set A2x = b2, given by

∑
j∈J(i)

xj = 1

(for i = 1, . . . ,m2, with J =
m2⋃
i=1

J(i), and J(i)∩ J(j) = φ for i �= j). This type

of problem will play an important role in the remainder of this thesis, since it
has the same form as the formulation of the resource loading problem. Hence
we have:

ILP : min zILP = cTx
s.t. A1x ≥ b1∑

j∈J (i)

xj = 1 (i = 1, . . . ,m2)

xj ∈ Z+

(
j ∈ J =

m2⋃
i=1

J(i)

)
.

Note that constraints
∑

j∈J(i)

xj = 1 (∀i) and xj ∈ Z+ imply that x ∈ {0,1}n.

The set of variable indices J is thus partitioned into m2 disjoint sets J(i), of
which precisely one corresponding variable xj (j ∈ J(i)) must be 1. Clearly, if
we dualize A1x ≥ b1, the Lagrangian subproblem has the integrality property.
Moreover, it can be solved greedily by identifying for each subset J(i) one cj
with the smallest value, and setting the corresponding xj to 1. We show how
to use this in addition to column generation.

Suppose J and the subsets J(i) are exponentially large, and we use branch-
and-price to solve the LP relaxation of ILP (LP) to optimality. In each node
of the branching tree we apply a column generation scheme to a restricted LP
relaxation (RLP) of ILP , that has the following form:

RLP : min
x̃

zRLP = c̃T x̃

s.t. Ã1x̃ ≥ b1∑
j∈J̃(i)

x̃j = 1 (i = 1, . . . ,m2, J̃(i) ⊆ J(i), J̃(i) �= φ)

x̃j ≥ 0

(
j ∈ J̃ =

m2⋃
i=1

J̃(i)

)
,

where J̃ is a non-empty subset of the variables, Ã1 is the coefficient matrix and
c̃ the cost vector corresponding to variable vector x̃.

The special structure of this problem implies that we can solve the pricing
problem by solving m2 separate pricing problems, one for each subset J (i). If

40 Chapter 2. Preliminaries

we solve all the separate pricing problems, we identify for i = 1, . . . ,m2 the
variable xj (j ∈ J(i) \ J̃(i)) that has the lowest reduced costs.

Consider problem ILP once again. By relaxing constraints A1x ≥ b1 and
introducing a Lagrangian multiplier vector λ (λ ∈ R

m1

+), we obtain the following
Lagrangian subproblem of ILP :

LILP (λ) : min
x

zL,ILP (λ) = cTx+ λT (b1 −A1x)

s.t.
∑

j∈J(i)

xj = 1 (i = 1, . . . ,m2)

xj ∈ Z+ (j ∈ J) ,

where z∗L,ILP (λ) is the optimal objective value of LILP (λ). We can rewrite
z∗L,ILP (λ) as follows:

z∗L,ILP (λ) = min
x

cTx+ λT b1 − λTA1x

= min
x

(
cT − λTA1

)
x+ λT b1.

Hence we have:

LILP (λ) : min
x

zL,ILP (λ) =
(
cT − λTA1

)
x+ λT b1

s.t.
∑

j∈J(i)

xj = 1 (i = 1, . . . ,m2)

xj ∈ Z+ (j ∈ J) .

(2.7)

The term cT − λTA1 is referred to as the Lagrangian cost term. For a given
vector λ the optimal solution to LILP (λ) can be determined as follows. The

term λT b1 is a constant. We optimize the term
(
cT − λTA1

)
x by finding for

each variable set J(i) the xj (j ∈ J(i)) that has the lowest Lagrangian cost
factor. That xj is set to 1; all other variables xj (j ∈ J(i)) are set to 0.
Hence we may conclude that LILP (λ) possesses the integrality property. From
equation (2.6) and Corollary 2.1 we know that:

z∗L,ILP (λ) ≤ z∗LP = z∗L,ILP (u
∗) = z∗L,ILP (λ

∗) ≤ z∗ILP , (2.8)

where u∗ is the optimal dual solution vector of the dual of LP corresponding
to constraints A1x ≥ b1, and z∗L,ILP (λ

∗) = max
λ

{
z∗L,ILP (λ)

}
. The lower bound

z∗LP on z∗ILP is obtained upon convergence of the column generation scheme
(recall from Section 2.2.3 that upon convergence of column generation we have
that z∗RLP = z∗LP ≤ z∗ILP). In the remainder we show that the advantage of
using Lagrangian relaxation in a column generation scheme is that a solution to
LILP (λ) can easily be found in each iteration of the column generation scheme,
thus providing a lower bound on both z∗LP and z∗ILP in each iteration. This
allows nodes to be fathomed in an earlier stage.

The difficulty of solving LILP (λ) in each iteration of the column generation
scheme is that it requires that all variable sets J(i) are entirely available, as

2.4. Combining Lagrangian relaxation and column generation 41

well as the entire coefficient matrix A1. However, column generation involves
a subset of the variables in an RLP . By rewriting zL,ILP (λ) into a convenient
form, we show that we can determine a lower bound to ILP with little ad-
ditional effort by using the information from a solution to an RLP and the
information provided by solving a pricing algorithm for each variable set J(i)
(i = 1, . . . ,m2) after solving the RLP .

Since
∑

j∈J(i)

xj = 1 is a constraint in LILP (λ), without loss of generality we

can add a term
∑
i

(1−
∑

j∈J(i)

xj)µi (with µi ∈ R) to zL,ILP (λ), so that we have:

z∗L,ILP (λ) = min
x

(
cT − λTA1

)
x+

m2∑
i=1

(1−
∑

j∈J(i)

xj)µi + λT b1

= min
x

(
cT − λTA1

)
x−

m2∑
i=1

µi

∑
j∈J(i)

xj +
m2∑
i=1

µi + λT b1

= min
x

(
cT − µ̃T − λTA1

)
x+

m2∑
i=1

µi + λT b1,

where µ̃ is an n-vector with elements µ̃j =
∑

i∈Rj

µi, where Rj is the set of

row indices that is covered by variable xj in constraint set
∑

j∈J(i)

xj = 1 (i =

1, . . . ,m2). Note that in this example each Rj has one element, thus µ̃j = µi if
j ∈ J(i) (i = 1, . . . ,m2). Hence (2.7) becomes:

LILP (λ) : min
x

zL,ILP (λ) =
(
cT − µ̃T − λTA1

)
x+

m2∑
i=1

µi + λT b1

s.t.
∑

j∈J(i)

xj = 1 (i = 1, . . . ,m2)

xj ∈ Z+ (j ∈ J) .

(2.9)

Substituting the optimal dual solution vectors u∗ and v∗ of the dual of LP
(DLP) for Lagrangian multiplier λ and multipliers µ in (2.9) yields that cT −
µ̃T − λTA1 becomes the (non-negative) reduced cost vector of variable vector

x, and
m2∑
i=1

µi + λT b1 becomes the objective value of the dual of LP .

After optimizing an RLP and m2 subsequent pricing problems we optimize
(2.9) as follows. Constraints

∑
j∈J (i)

xj = 1 and xj ∈ Z+ (j ∈ J) require that we

set exactly one variable xj from each set J(i) to 1 (i = 1, . . . ,m2). The vector(
cT − µ̃T − λTA1

)
with the substituted dual solution becomes the reduced cost

vector for variable vector x. Since RLP is solved to optimality, all variables
xj contained in RLP have non-negative reduced costs. For all other variables
not contained in RLP , and divided over the sets J(i), we use the outcomes of

42 Chapter 2. Preliminaries

the pricing algorithms that were solved to find for each set J(i) the variable
with the lowest reduced cost. Hence, when the pricing algorithm regarding
a set J(i) finds the variable xj with the most negative reduced costs, we set
that xj to 1 (and all other variables in that set to zero). If it finds no such
variable, than an arbitrary variable of that set J(i) contained in RLP with
zero reduced costs is set to 1 (and all other variables in that set to zero).

Finally, the term
m2∑
i=1

µi+λT b1 with the substituted dual solution vectors uRLP

and vRLP is equal to the objective value of DRLP . Since RLP is solved to
optimality, we know from linear programming theory that the dual solution is
equal to the primal solution. Recall that as long as in an arbitrary column
generation iteration columns exist with negative reduced costs that are not
yet added to RLP , the optimal solution to DRLP is not feasible to DLP .
Feasibility is obtained upon convergence of column generation. Hence from
(2.8) we know that the lower bound obtained by using the solution to DRLP
as Lagrangian multipliers in LILP (λ) is a lower bound on LP and ILP , i.e.,
LILP (uRLP) ≤ z∗LP ≤ z∗ILP . Only upon convergence of column generation
we have that z∗L,ILP (uRLP) = z∗L,ILP (u

∗) = z∗LP ≤ z∗ILP . Hence, using the
outcomes of the pricing algorithms, and the objective value of RLP , with
little effort a Lagrangian lower bound on z∗LP and z∗ILP can be obtained each
time an RLP is optimized in branch-and-price. The lower bound obtained by
Lagrangian relaxation is known to zig-zag and converge slowly. However, each
lower bound found in a node of the branch-and-price scheme applies to each
column generation in that node, and to all nodes below that node. In Figure
2.4 we illustrate how to use this lower bound to interrupt the column generation
scheme, to alleviate the tailing-off effect of column generation. In the figure we
observe that when the Lagrangian lower bound meets the RLP upper bound,
column generation has converged. The Lagrangian lower bound can also be
used to fathom a node, if it exceeds the incumbent solution (LB ≥ UB).
Finally, the Lagrangian lower bound can also be used to fix variables. When
the reduced cost of a variable xj is larger than UB − LB (where UB is the
upper bound/incumbent solution, and LB the Lagrangian lower bound), we
know from linear programming theory that xj = 0 in any solution with a
value less than UB. Hence, we can fix that variable in the current node and
in all nodes below that node. The same result can also be applied to remove
columns from the column pool (see, e.g., Freling, 1997). Analogously, when
the reduced cost is smaller than LB − UB then xj = 1 in any solution with a
value less than UB. There are other ways to exploit Lagrangian relaxation in
combination with a column generation algorithm (Van den Akker et al., 2000),
but these are beyond the scope of this thesis.

2.5. Deterministic dynamic programming 43

column

generation

convergence

RLP upper bound

Lagrangian lower bound

column generation iterations

z*
LP

objective

value

Figure 2.4: Alleviation of tailing-off effect in column generation.

2.5 Deterministic dynamic programming

Dynamic programming (DP) is a technique for solving many optimization prob-
lems (Bellman, 1957; Dreyfus and Law, 1977). DP is a decomposition technique
that first decomposes the problem into a nested family of subproblems. The
solutions to the original problem are obtained by either working backward from
the end of the problem to the beginning (backward dynamic programming), or
forward from the beginning to the end (forward dynamic programming). A
distinction can be made between deterministic and probabilistic dynamic pro-
gramming problems. In stochastic or probabilistic DP, the decisions have a
stochastic outcome, and the goal is to determine the decisions that minimize
the expected cost (or maximize the expected reward), while in deterministic
DP, all decision variables yield a deterministic contribution to the objective.
In this thesis we only discuss deterministic DP problems, and hence in this
section we discuss this category of dynamic programming problems only. For
literature concerning stochastic DP we refer to Ross (1983) and Sennott (1999).

Five characteristics can be distinguished that are common to dynamic pro-
gramming applications:

1. The problem can be divided into stages t, with a decision xt required at
each stage.

2. Each stage t has a set of states {it} associated with it. At any stage, a
state holds all the information that is needed to make a decision.

44 Chapter 2. Preliminaries

3. The decision chosen at any stage determines how the state at the cur-
rent stage is transformed into the state at the next stage, as well as the
immediately earned reward or cost.

4. Given the current state, the optimal decision for each of the remaining
stages must not depend on previously reached states or previously cho-
sen decisions. This is the so-called principle of optimality for dynamic
programming (Bellman, 1957).

5. If the states for the problem have been classified into one of T stages, there
must be a recursion that relates the cost or reward earned during stages
t, t+1, . . . , T to the cost or reward earned from stages t+1, t+2, . . . , T .

In a forward DP algorithm, the recursion mentioned in the fifth character-
istic can often be written as:

Ft (it) = min
xt∈St

{ct (it, xt) +Ft−1 (it−1 (it, xt))} , (2.10)

where ct (it, xt) is the cost (or reward in a maximization problem) function
that returns the cost (or reward) for moving from state it−1 (it, xt) to state it
according to decision xt, where it−1 (it, xt) is the state from which it is reached,
given decision xt, and where Ft(it) is the minimum cost (or maximum reward
in a maximization problem) incurred in stages 1,2, . . . , t, given state it in stage
t. Optimal decisions can be made as follows. In the forward DP we assume
there is a desired state we want the system to be in, in stage T (call it iT). We
first compute the F1(i1) for all possible states in stage 1. We then apply (2.10)
to calculate the F2(i2)’s in terms of the F1(i1)’s, and continue in this fashion
until FT (iT) (the desired state iT in T) has been reached. We then determine
the optimal decision in stage T that attains FT (iT). This decision determines a
state iT−1 in stage T −1 from which we arrive to state iT during the last stage.
We then determine the optimal stage T −1 decision, which in turn determines
a state iT−2 in stage T − 2, and continue until the optimal stage 1 decision is
found.

Analogously, in a backward DP algorithm, the recursion mentioned in the
fifth characteristic can often be written as:

Ft (it) = min
xt∈St

{ct (it, xt) + Ft+1 (it+1 (it, xt))} . (2.11)

In a backward DP, we assume that the initial state in stage 1, i1, is given.
We begin by finding the optimal decision for each possible state in the final
stage, and subsequently use the recursion in (2.11) to determine the functions
FT−1(iT−1), . . . , F1(i1) (along with the optimal decisions for each stage). We
then select the optimal decision from the set of decisions attaining F1(i1). This
decision determines a state i2 in stage 2. In stage 2 we then choose any decision
attaining F2 (i2), determining a state i3 in stage 3, and continue until a decision
has been chosen for each stage.

2.5. Deterministic dynamic programming 45

Dynamic programming algorithms are computationally efficient, as long as
the state space does not become too large. E.g., for shortest path problems, dy-
namic programming clearly outperforms enumeration (Dreyfus and Law, 1977).
However, when the state space becomes too large, implementation problems
may occur (e.g., insufficient computer memory), or excessive computational
time may be required to use dynamic programming to solve the problem. In
that case other algorithms (e.g., branch-and-bound algorithms) may be more
suitable.

In this thesis we use dynamic programming to solve pricing problems of
branch-and-price algorithms. We show in Chapter 4 that finding a column
with negative reduced costs can be translated into finding a longest path in
an acyclic network with weights on the nodes. We solve these problems with
forward dynamic programming.

46 Chapter 2. Preliminaries

47

Chapter 3

Model description

A theory has only the alternative
of being right or wrong.

A model has a third possibility:
it may be right, but irrelevant.

- Manfred Eigen (1927-)

3.1 Introduction

In this chapter we formulate the resource loading problem presented in Chapter
1 (Sections 1.2.2. and 1.3.1) as a mixed integer linear programming problem
(MILP), and discuss the difficulties involved when modeling this problem.

The outline of this chapter is as follows. In Section 3.2 we formalize the
problem and discuss the modeling assumptions. In the subsequent two sections
we discuss two aspects of modeling the resource loading problem. First, in
Section 3.3 we discuss modeling the capacity restrictions, which can easily
be modeled with linear constraints and continuous variables. Subsequently, in
Section 3.4 we discuss modeling the precedence relations, which is much less
straightforward and requires the introduction of integer variables. In Section
3.5 we discuss modeling order tardiness. In Section 3.6 we use the observations
of Sections 3.3 to 3.5 to formulate the mixed integer linear programming model
of the resource loading problem that will be used throughout the remainder of
this thesis. We refer to Appendix A for a complete list of the notation that is
introduced in this chapter, and that is used throughout the remainder of this
thesis.

48 Chapter 3. Model description

3.2 Model assumptions and notations

We consider a job shop that consists of m independent machine groupsM1, . . . ,
Mm. Independent in this context means that the machine groups do not share
tools. On these machine groups, a set of n orders has to be loaded. As usual
at the resource loading level, we discretize the planning horizon T into time
buckets of (not necessarily) equal length (index t = 0, . . . , T). In the remainder,
we refer to these buckets as periods. Without loss of generality we assume that
the unit of time is one hour, and that periods have a length of one week.
Each order Jj (j = 1, . . . , n) consists of a chain of nj jobs (B1j , . . . , Bnj ,j).
No job can be started unless all predecessors have been completed. Job Bbj

(b = 1, . . . , nj) needs to be performed on machine group µbj ∈ {M1, . . . ,Mm}
for a given positive time pbj (hours). In the resource loading problem we
regard a machine group as one type of resource, while it may consist of several
machines. We assume that the further disaggregation of a job into operations,
which must be performed on machines, is done at the operational planning
level.

A job Bbj may have a prespecified minimal duration of wbj weeks (wbj

integer). A minimal duration is usually a result of technical limitations of re-
sources, e.g., in a situation when no more than two persons can jointly perform
a certain activity. Each order has a release date rj before which its first job can
not be started and a due date dj (both are expressed in weeks) before which all
its jobs should be completed. From the order release and due dates, and the
minimal duration of the jobs, we calculate for each job Bbj its internal release
date rbj and due date dbj . Preemption of jobs is allowed, i.e., the execution of
any job may be spread over different, not necessarily subsequent, weeks.

For the resource loading problem we consider two types of resource capac-
ities: machine group capacity and operator capacity . Since machine capacity
investments are made at a higher, strategic level of decision making, they are
assumed to be fixed for the resource loading problem. Machine group capacity
is thus considered as regular capacity, that can not be expanded temporarily at
the level of resource loading. We indicate the total capacity of machine group
Mi in week t by mcit. Without loss of generality we assume that machine
operators are fully cross-trained and can thus operate any machine in any ma-
chine group. An operator must be present at the machine group during the
entire processing time. Moreover, we assume that an operator can operate only
one machine at a time. For operators we distinguish regular and nonregular
capacity (i.e., working overtime and hiring staff). Machine groups can thus be
operated in regular and nonregular operator time. The total machine group
capacity mcit of machine group Mi in week t is the machine group capacity
in the sum of regular and nonregular operator time. The capacity of machine
group Mi in week t in regular operator time is indicated by mcit. As a re-
sult, mcit −mcit is the machine group capacity in nonregular operator time.
To elucidate why it is necessary to make a distinction between machine group

3.2. Model assumptions and notations 49

capacity in regular and in nonregular time, consider the situation where a com-
pany lets operators work on a machine group in 1 shift of 8 hours per day, 5
days a week, i.e., mcit = 40. Suppose there are 3 operators, i.e., the operator
capacity (indicated by ct) is 120 hours. The total machine group capacity is
mcit = 100 hours, and the workload to be performed is 50 hours. Although to-
tal operator capacity and total machine group capacity are sufficient to process
the workload (ct = 120 > 50 and mcit = 100 > 50), the machine group can
be operated in regular time for only 40 hours. The remaining 10 hours must
be performed with nonregular operator capacity. In general, if capacity is in-
sufficient to complete all jobs before their due date in regular time, short-term
production capacity may be expanded at extra costs. There are three options
to expand short-term production capacity:

• Working in overtime . Of course, extra labor costs are involved, and it is
assumed that the unit overtime cost is a known constant. Furthermore,
collective labor agreements put an upper bound on the number of over-
time production hours per week. The assigned number of overtime hours
in week t is indicated by Ot.

• Hiring extra operators. It is assumed that the cost per hour of hiring one
extra operator is a known constant. We distinguish hiring operators in
regular operator time and in nonregular operator time. The number of
hired production hours in week t in regular operator time is indicated by
HR

t , and in nonregular time this is indicated by HN
t . Without loss of

generality we assume that the cost of hiring in regular operator time is
the same as the cost of hiring in nonregular operator time. We assume
there is an upper bound on the total hirable operator capacity.

• Outsourcing (subcontracting). While certain jobs can not be outsourced,
other jobs can. It is assumed that the total cost of outsourcing a job is
proportional to the amount of work. The number of outsourced produc-
tion hours for machine group Mi in week t is indicated by Sit.

To specify a feasible resource loading we use the concept of an order plan,
and the concept of an order schedule. The concept of an order plan is cen-
tral in our formulation. An order plan ajπ (π ∈ Πj) for an order Jj (j =
1, . . . , n) specifies for each job Bbj (b = 1, . . . , nj) the weeks in which Bbj

is allowed to be performed. Accordingly, each order plan is a 0-1 vector
ajπ =

(
a1,j,0,π, . . . , a1,j,T,π , . . . , anj ,j,0,π , . . . , anj ,j,T,π

)
, where abjtπ = 1 (b =

1, . . . , nj, t = 0, . . . , T) if job Bbj is allowed to be performed in week t. A
feasible order plan for order Jj is an order plan in which no job is allowed to
be performed before its release date, and in which all precedence relations are
met. We allow jobs to be tardy in the resource loading problem (recall that we
aim to minimize both the use of nonregular capacity and the total tardiness of
jobs), so we do allow jobs Bbj to be performed after their due dates dbj. We
further discuss order tardiness in Section 3.5.

50 Chapter 3. Model description

There are two possibilities to deal with the precedence relations. First,
they can be enforced at the resource loading level by forbidding jobs with
a precedence relation to be processed in the same period. For this purpose
we introduce a parameter δ that indicates the number of weeks between the
completion time of a job, and the start time of its successor. We will only
consider the cases δ = 0 and δ = 1. When δ = 1, we speak of a one-job-per-
week policy . This implies that predecessors (successors) of a job must complete
(start) in the week before (after) this job starts (completes). Although the
one-job-per-week policy is quite common in practice (for instance, the metal
working plant that motivated this research uses this policy), it may have quite
a negative impact on the order lead time, particularly when the time buckets
are quite long compared to the work contents of the jobs. Therefore, we also
consider the case that the first week in which a specific job is allowed to be
performed overlaps with the last week in which its preceding job is allowed to
be performed. The precedence relation then has to be enforced in the detailed
planning. In this case we set δ to 0 weeks. As a result, order plans may
be generated in which a number of jobs of the same order are allowed to be
performed in the same week. This may be possible if these jobs were allowed to
be produced on different machine resources simultaneously. However, it does
not guarantee that these jobs can be performed in succession in the same week.
Hence it does not guarantee that precedence relations between these jobs are
satisfied within the week. For example when three jobs of the same order may
be performed in the same week, and the processing time of each of these jobs
is 40 hours, their total duration is 120 hours. It is unlikely that these jobs can
be produced in succession in the same week. To limit these possibilities, when
δ = 0, we impose an additional restriction that at most κ jobs of the same order
are allowed to be performed in the same week. Either case (δ = 0 and δ = 1)
is easily modeled using order plans, and this is a pro of using the concept. The
con is that there are exponentially many order plans, and hence any such type
of formulation poses a formidable computation challenge.

We consider only order plans ajπ that can not be dominated by other order
plans. This implies that an order plan ajπ has no element abjtπ = 0 that can
be changed to 1 without making the order plan infeasible.

In addition to the order plans, which specify when jobs are allowed to be
performed, we use the concept of an order schedule . An order schedule specifies
a realization of an order plan, i.e., it specifies how many hours of each job are
performed in each week. An order schedule for an order Jj is characterized
by a vector Y =

(
Y1j0, . . . , Y1jT , . . . , Ynjj0, . . . , YnjjT

)
, where Ybjt denotes the

fraction of job Bbj performed in week t. As a consequence, pbjYbjt denotes the
number of hours processing time of job Bbj performed in week t. Obviously we
want to make sure that for each order Jj the order plan and order schedule are
consistent (we come back to this point in our mathematical model formulation
in Section 3.4). A feasible resource loading implies that all order plans are
feasible, and there is sufficient (regular and nonregular) operator and machine

3.3. Modeling resource capacity restrictions 51

group capacity to process all (consistent) order schedules. The aim of the
resource loading model is to find a feasible loading that minimizes the total
costs that result from short-term capacity expansions and the penalties incurred
by tardy orders.

The decision problem that corresponds to the resource loading problem
is NP-complete. This can be proven by reduction to the 3-machine job shop
problem with unit processing times. This problem is proven to be NP-complete
by Lenstra and Rinnooy Kan (1979).

3.3 Modeling resource capacity restrictions

Resource capacity restrictions can easily be modeled in linear constraints. This
is the most straightforward part of our model. To model the capacity con-
straints we use the aforementioned order schedule concept with decision vari-
ables Ybjt (b = 1, . . . , nj , j = J1, . . . , Jn, t = 0, . . . , T), that indicate the fraction
of job Bbj that is assigned to week t. These variables play a key role in resource
loading, since all information concerning production schedules and capacity uti-
lization can be calculated from these decision variables. The order schedules
can be read directly from the Ybjt variables. With respect to the capacity uti-
lization, note that each (partial) assignment of a job Bbj to a week t requires a
matching amount of operator and machine group capacity. With pbj denoting
the required production processing time (in hours) of job Bbj, pbjYbjt yields the
number of hours that job Bbj is processed in week t. By adding the pbjYbjt’s
for a week t we can determine the assigned workload to machine groups and
operators in that week t, and with that the regular and nonregular capacity
that is required to meet the capacity demand in that week. The machine group
and operator capacity restrictions can now be formulated as follows (decision
variables are denoted by capitals):

∑
b,j

pbjYbjt ≤ ct +Ot +HR
t +HN

t +
m∑
i=1

Sit (∀t) , (3.1)

∑
{(b,j)|µbj=Mi}

pbjYbjt ≤ mcit + Uit + Sit (∀i, t) , (3.2)

Uit ≤ mcit −mcit (∀i, t) , (3.3)
m∑
i=1

Uit = Ot +HN
t (∀t) , (3.4)

T∑
t=rj

Ybjt = 1 (∀b, j) , (3.5)

Ybjt ≤
1

wbj
(∀b, j, t) , (3.6)

52 Chapter 3. Model description

Ot ≤ ot (∀t) , (3.7)

HR
t +HN

t ≤ ht (∀t) , (3.8)
m∑
i=1

Sit ≤ st (∀i, t) , (3.9)

all variables ≥ 0. (3.10)

where t = 0, . . . , T, b = 1, . . . , nj , j = J1, . . . , Jn, i = 1, . . . ,m. Constraints
(3.1) stipulate operator capacity restrictions. The left-hand side is the sum of
all assigned workload in a week t, and the right-hand side is the sum of all avail-
able operator capacity: regular (ct), overtime (Ot), hiring staff in regular time
(HR

t), hiring staff in nonregular time (HN
t), and outsourcing capacity (Sit).

Constraints (3.2)-(3.4) form the machine group capacity restrictions. As men-
tioned in Section 3.2 we distinguish machine group capacity in regular operator
time, and machine group capacity in nonregular operator time. Auxiliary vari-
ables Uit indicate the used machine group capacity in nonregular operator time.
Constraints (3.3) restrict variables Uit. The left-hand side of (3.2) is the total
amount of workload assigned to machine group Mi, and the right-hand side
is the sum of the available machine group capacity in regular operator time
(mcit), the used machine group capacity in nonregular operator time (Uit),
and the outsourcing capacity on machine group Mi (Sit). Constraints (3.4)
stipulate that the used machine group capacity in nonregular operator time
is equal to the sum of the overtime capacity (Ot) and the hiring capacity in
nonregular operator time (HN

t). Constraints (3.5) guarantee that all work is
done. Constraints (3.6) guarantee a minimal duration wbj for job Bbj by lim-
iting the fraction Ybjt per week t to 1

wbj
(wbj ≥ 1). The remaining constraints

(3.7)-(3.10) are the variable upper and lower bounds. Note that constraints
(3.9) set an upper bound on the total subcontracted capacity in each week t.
A case where a machine group Mi is unique in that no work assigned to that
machine group can be outsourced is easily modeled by setting an additional
upper bound on outsourcing for this machine group Mi: Sit ≤ 0 (∀t).

Let parameters o, h, and s specify the costs of using one hour of nonregu-
lar capacity (overtime, hiring staff, outsourcing respectively). When we omit
tardiness penalties, the objective function can be formulated as follows:

min
T∑

t=0

(
oOt + h

(
HR

t +HN
t

)
+ s

m∑
i=1

Sit

)
. (3.11)

Objective function (3.11) thus only minimizes the costs of the use of nonregular
capacity. In Section 3.5 we add a term to this objective function to penalize
order tardiness.

Note that so far we have neglected the precedence constraints among jobs.
They will be modeled in the next section, where we discuss the difficulties

3.4. Modeling precedence relations 53

in modeling precedence constraints by analyzing different formulations. Unless
stated otherwise, constraints (3.1)-(3.10) and objective function (3.11) are used
as a basis in all of these formulations.

3.4 Modeling precedence relations

By introducing precedence constraints in the (partial) model of the resource
loading in the previous section, the complexity of the problem is increased enor-
mously. A straightforward formulation is to model the precedence constraints
in terms of an assignment problem. A difficulty is that we allow jobs to be
assigned (partly) to more than one week. To illustrate this, consider the fol-
lowing example formulation for the case where jobs are assigned to one week
only:

T∑
t=rj

Zbjt = 1 (∀b, j) , (3.12)

T∑
t=rj

tZbjt + δ ≤
T∑

t=rj

tZsjt (∀b, s ∈ DSb �= ∅, j) , (3.13)

∑
b,j

pbjZbjt ≤ ct +Ot +HR
t +HN

t +
∑
i

Sit (∀t) , (3.14)

∑
{(b,j)|µbj=Mi}

pbjZbjt ≤ mcit +Uit + Sit (∀i, t) , (3.15)

Uit ≤ mcit −mcit (∀i, t) , (3.16)
m∑
i=1

Uit = Ot +HN
t (∀t) , (3.17)

Zbjt ∈ {0, 1} , Ot,H
R
t ,HN

t , Sit ≥ 0 (∀i, t) , (3.18)

where binary variable Zbjt takes value 1 if and only if job Bbj is assigned to
week t. Constraints (3.12) assign each job Bbj to one week. Constraints (3.13)
make sure that job Bbj is assigned in or before the week to which its direct
successors s ∈ DSb are assigned. A minimum time lag between adjacent jobs
is added as a parameter δ to the left hand side of this constraint. When δ = 1,
two adjacent jobs may not be assigned to the same week (this is the so-called
one-job-per-week policy). When δ = 0, this policy is not imposed. Since the set
DSb may contain more than one job, this formulation thus allows generalized
precedence relations. Analogous to constraints (3.1)-(3.4), constraints (3.14)-
(3.17) form the machine group and operator capacity constraints.

The number of binary variables ((T + 1)
∑

j nj), and the number of con-
straints (

∑
j nj+

∑
b,j |DSb|+(m+1)(T+1)) in this formulation is considerable.

The complexity increases even more when we allow jobs to be assigned to more

54 Chapter 3. Model description

than one week (recall from Section 3.2 that the number of order plans is ex-
ponentially large). We illustrate this with the following example, in which we
allow jobs to be assigned to more than one week. We introduce binary decision
variables Abjt, that indicate whether a job Bbj may be started in week t. In this
formulation these variables can thus constitute the order plans, i.e., the time
intervals in which the jobs are allowed to be performed. The order schedule is
formed by variable Ybjt that indicates the fraction of job Bbj that is assigned
to week t.

T∑
t=rj

Abjt = 1 (∀b, j) , (3.19)

T∑
t=rj

tAbjt +wbj + δ − 1 ≤
T∑

t=rj

tAsjt (∀b, s ∈ DSb �= ∅, j) , (3.20)

T∑
t=rj

tAbjt +wbj − 1 ≤ dj (∀b, j|DSb = ∅) , (3.21)

Ybjt,Abjt = 0 (∀b, j, t < rj) , (3.22)
T∑

t=rj

Ybjt = 1 (∀b, j) , (3.23)

Ybjt ≤

∑t
τ=rj

Abjτ −
∑t+δ−1

τ=rj
Asjτ

wbj
(3.24)

(∀b, s ∈ DSb �= ∅, j, t) ,

Ybjt ≤

∑t
τ=rj

Abjτ

wbj
(∀b, j, t|DSb = ∅) (3.25)

Abjt ∈ {0,1} (∀b, j, t) . (3.26)

Constraints (3.19) make sure that each job is started. Constraints (3.20) and
(3.21) make sure that job Bbj is completed before its successor s (s ∈ DSb),

and due date dj respectively. In these constraints we use that
∑T

t=rj
tAbjt

is the week in which job Bbj may start. Constraints (3.22) stipulate that
variables Ybjt and Abjt can have nonzero values only for t ∈ [rj , dj]. Con-
straints (3.24) stipulate that job Bbj is not allowed to be performed, once job

Bsj may be started. The term
∑t

τ=rj
Abjτ −

∑t+δ−1
τ=rj

Asjτ has value 1 for

t ∈ [
∑T

τ=rj
τAbjτ ,

∑T
τ=rj

τAbjτ +wbj + δ − 1] (i.e., the week in which job Bbj

is allowed to be performed), and value 0 for other t. Constraints (3.25) form
an upper bound on the Ybjt-variables for jobs Bbj that have no direct succes-
sors. Constraints (3.1)-(3.10) of the previous section must be added to this
formulation to model the capacity constraints. Although this formulation has
the same number of binary variables as the previous example, the number of
constraints has increased drastically ((T + 3)

∑
j nj + (m + 1)(T + 1) in the

3.4. Modeling precedence relations 55

case of path-type precedence constraints). This formulation will demand huge
computational effort, and optimal results for cases of reasonable size are not
likely to be found. Equivalent formulations are possible, e.g., using integer
(non-binary) decision variables that indicate the allowed duration of job Bbj ,
but these lead to formulations of equivalent size and complexity.

Snoep (1995) has tried to model precedence constraints in an LP-formu-
lation for a similar problem by penalizing non-admissable overlap. However,
this approach has the nasty side-effect that a job must always be performed in
the week just before the start time of its successor. Van Assen (1996) has also
made an attempt to model precedence constraints in an LP formulation, by
using slack variables to model precedence relations as ‘soft’ constraints. The
slack variables, that measure the extent in which precedence constraints are
violated, are then added to the objective function with a penalty. This approx-
imation method also did not lead to satisfactory results. The latter research
did, however, lead to the idea to develop a mixed integer linear programming
model that uses binary variables to select a feasible order schedule for each or-
der, thereby minimizing the use of nonregular capacity that is implied by these
order schedules. In our research this idea was further explored, which resulted
in a formulation where we use binary variables to select order plans. While the
number of feasible order schedules is infinite, the number of feasible order plans
is not infinite, yet still exponential. Instead of modeling these order plans in
our formulation by constraints, such as in the example above, we represent the
order plans by binary columns (recall the 0-1 vector ajπ = (abjtπ) introduced
in Section 3.2), and use these columns as input of the model. Since there are
exponentially many order plans, we have opted for implicit column generation.
Thus we work with a subset of all feasible columns, and generate new columns
when they are needed (see Chapter 2 for a discussion on column generation).
This leads to the following formulation:∑

π∈Πj

Xjπ = 1 (∀j) , (3.27)

Ybjt ≤

∑
π∈Πj

abjtπXjπ

wbj
(∀b, j, t) , (3.28)

T∑
t=rj

Ybjt = 1 (∀b, j) , (3.29)

Xjπ ∈ {0,1} (∀j, π ∈ Πj), (3.30)

where binary variableXjπ takes value 1 if order plan ajπ is selected for order Jj
(π ∈ Πj). Constraints (3.27) and (3.30) make sure that exactly one order plan
is selected for each order Jj. Constraints (3.28) make sure that the order sched-
ule (formed by variables Ybjt) and the order plan (formed by

∑
π∈Πj

abjtπXjπ)

are consistent. Constraints (3.29) make sure that all work is done. Constraints

56 Chapter 3. Model description

(3.1)—(3.4) and (3.7)-(3.10) of the previous section must be added to this for-
mulation to model the capacity constraints. Note that in this formulation we
no longer need integer variables to define the time intervals in which jobs are
allowed to be performed. The order plans that define these are represented by
vectors ajπ . In this formulation we have (T +1)

∑
j nj continuous variables,∑

j |Πj| binary variables, and n+ (T +2)
∑

j nj constraints.

3.5 Modeling order tardiness

The lateness of an order or job is the difference between its completion time and
its due date, measured in weeks. The tardiness of an order or job is its lateness
if it fails to meet its due date, i.e., if the lateness is positive, or zero otherwise.
In the literature, there are several commonly used performance measures for
order lateness (see, e.g., Baker, 1974):

• maximum (weighted) order lateness,

• maximum (weighted) order tardiness,

• mean (weighted) tardiness,

• mean (weighted) lateness,

• number of tardy orders.

In our model we choose a strategy that complies with the concept of order
plans. In the objective function we penalize a selected order plan in which jobs
are allowed to be tardy. We thus penalize the possibility of tardiness in an order
plan, rather than the real tardiness in an order schedule. Of course, if in an
optimal solution an order is not tardy in its order schedule, the solution will
not contain an order plan for this order in which tardiness is allowed.

We calculate for each order plan ajπ its tardiness ρjπ , which is defined as
the tardiness of job Bnj ,j in order plan ajπ with respect to the (external) order
due date dj. Thus, when CTbjπ is the last week in which job Bbj is allowed to
be produced in order plan ajπ , the allowed tardiness is given by:

ρjπ = max
{
0,CTnj ,jπ − dj

}
.

The tardiness penalty of order plan ajπ of order Jj is given as ρjπθ, where θ is
a cost multiplier. Using binary variable Xjπ that indicates whether order plan
ajπ of order Jj is selected, we formulate the objective function as follows:

min
T∑

t=0

(
oOt + h

(
HR

t +HN
t

)
+ s

m∑
i=1

Sit

)
+

n∑
j=1

∑
π∈Πj

ρjπXjπθ. (3.31)

3.6. Synthesis 57

3.6 Synthesis

Combining the capacity constraints in Section 3.3, the precedence constraints
in Section 3.4 and the objective function in Section 3.5 yields the following
(mixed) integer linear programming formulation (ILP) of the resource loading
problem:

ILP : z∗ILP =min
T∑

t=0

(
oOt + h

(
HR

t +HN
t

)
+ s

m∑
i=1

Sit

)
+

n∑
j=1

∑
π∈Πj

ρjπXjπθ,

subject to: ∑
π∈Πj

Xjπ = 1 (∀j) , (3.32)

Ybjt −

∑
π∈Πj

abjtπXjπ

wbj
≤ 0 (∀b, j, t) , (3.33)

T∑
t=rj

Ybjt = 1 (∀b, j) , (3.34)

∑
b,j

pbjYbjt ≤ ct +Ot +HR
t +HN

t +
m∑
i=1

Sit (∀t) , (3.35)

∑
{(b,j)|µbj=Mi}

pbjYbjt ≤ mcit +Uit + Sit (∀i, t) , (3.36)

Uit ≤ mcit −mcit (∀i, t) , (3.37)
m∑
i=1

Uit = Ot +HN
t (∀t) , (3.38)

Ot ≤ ot (∀t) , (3.39)

HR
t +HN

t ≤ ht (∀t) , (3.40)
m∑
i=1

Sit ≤ st (∀i, t) , (3.41)

all variables ≥ 0, (3.42)

Xjπ ∈ {0, 1} (∀j, π ∈ Πj ⊂ Π). (3.43)

The linear programming relaxation of this problem (LP) is obtained by re-
placing the integrality constraints (3.43) by Xjπ ≥ 0 (∀j, π ∈ Πj). In the next
chapter we discuss optimizing the ILP by various branch-and-price techniques.
The general idea is that we first optimize the LP by performing column gener-
ation on a restricted linear programming relaxation (RLP) of the LP , in which

for each order Jj we consider a subset Π̃j of all feasible columns Πj for that

order. The pricing algorithm generates columns ajπ for order Jj (π ∈ Πj\Π̃j),

58 Chapter 3. Model description

and adds these columns to Π̃j when they have negative reduced costs. After
optimizing the LP we perform branch-and-bound in conjunction with column
generation to find feasible solutions to the ILP .

59

Chapter 4

Branch-and-price

techniques for resource

loading

Life is what happens to you
while you’re busy making other plans.

- John Lennon (1940-1980)

4.1 Introduction

In this chapter we discuss the branch-and-price techniques that we apply to
solve the mixed integer linear programming model (ILP) of the resource load-
ing problem of Section 3.6. Recall that in Section 2.2 we discussed the basic
elements of the branch-and-price method applied to a large integer linear pro-
gramming model. Figure 4.1 displays the basic steps of a branch-and-price
algorithm. In this chapter we discuss each of these steps in detail for the
branch-and price algorithms for resource loading. The branch-and-price meth-
ods solve the LP relaxation of the ILP (Section 3.6) of the resource loading
problem by column generation. The column generation scheme starts from a
restricted LP relaxation (RLP) that contains at least one order plan for each
order. The order plans for the initial RLP must constitute a primal solution
to the LP relaxation of the resource loading problem, which we find by ap-
plying column generation to a Phase I LP relaxation equivalent to that of the
two-phase simplex method.

The LP is optimized by performing column generation on the RLP . A

60 Chapter 4. Branch-and-price techniques for resource loading

Generate new nodes

Go to next unexplored

node according to

branching strategy

All nodes

explored?

Apply column generation

on RLP to optimize LP

LP solution better

than incumbent solution?

ILP solution

found

Fathom node

Incumbent solution

is optimal for ILP

yes

Solution fractional?
no

yes

no

yes

no

Formulate a feasible RLP

Feasible RLP exists?

yes

no

Go to root node

Figure 4.1: Branch-and-price scheme.

4.2. Restricted linear programming relaxation 61

pricing algorithm determines whether order plans exist that may improve the
solution of the RLP , and, provided that such order plans exist, generates order
plans in each iteration. The column generation scheme terminates when no
order plans exist that may improve the solution of the RLP . In that case, an
optimal solution to the LP has been found.

When an optimal LP solution is found, it is usually not integral, and there-
fore not feasible to the ILP . The methods presented in this chapter exploit
different branch-and-bound strategies to find an optimal or approximate solu-
tion to the ILP . A branching scheme partitions the solution space of the LP in
a node, and hence in each node we consider a new linear program. As a result,
in each node of the branching tree we must perform the column generation
scheme to optimize the new LP relaxation in that node. This leads to so-called
branch-and-price methods.

In addition to the elements of the branch-and-price methods mentioned
above, heuristics can play an important role in these methods. We may use a
heuristic to determine a primal solution to the resource loading problem to start
up the column generation algorithm. We may also use heuristics to determine
or improve the incumbent solution.

Another important element of our branch-and-price methods is the deter-
mination of Lagrangian lower bounds, which are used in conjunction with the
incumbent solution (upper bound) to fathom nodes or terminate the column
generation scheme.

The outline of this chapter is as follows. In Section 4.2 we discuss the basic
form of the RLP . In Section 4.3 we present the pricing algorithm, which is the
primary issue in the implementation of a column generation algorithm. Our
pricing algorithm is a dynamic programming algorithm that may generate more
than one candidate column per iteration. We discuss the issue of which and
how many columns should be added to the RLP in each column generation
iteration. In Section 4.4 we discuss various branching strategies for finding a
feasible solution to the ILP . In Section 4.5 we discuss how to obtain lower
bounds to the ILP by Lagrangian relaxation. In Section 4.6 we present several
heuristics that can be used stand-alone to solve the resource loading problem
(e.g., to find the initial RLP), and heuristics that can be used in conjunction
with the branch-and-price algorithm to improve upper bounds to the ILP .

4.2 Restricted linear programming relaxation

4.2.1 Basic form

The linear programming relaxation of the ILP is obtained by omitting the
integrality constraints on the variables Xjπ. As mentioned before, the ILP ,
and its linear programming relaxation LP have a huge number of columns,

62 Chapter 4. Branch-and-price techniques for resource loading

since the number of order plans for an order Jj (i.e., |Πj|) is exponentially
large. Consider for example an order Jj with nj jobs, release date rj and due
date dj. When we assign all jobs as early as possible, and allow them only to

be performed for their minimal duration, there are dj − rj + 1 −
nj∑
b=1

(wbj + δ)

weeks that remain unassigned for order Jj , where δ = 0 when a job may start
in the week that its predecessor has completed. We refer to these weeks as slack
weeks. If we allow only order plans that are not dominated, we must divide the
slack weeks over the nj jobs. The number of ways to divide k slack weeks over

nj jobs is
(
nj+k−1

k

)
. In combinatorics this counting problem can be translated

into drawing k items from a collection of nj different items (the job numbers),
where repetitions are allowed, and the arrangement of the items is irrelevant.
The result of this problem is known as a redundant combination. Hence, when
an order has nj jobs and k slack weeks, there are

(
nj+k−1

k

)
different feasible

order plans for this order.

In the RLP we consider a subset Π of all feasible columns Π. The general
form of the RLP is as follows:

RLP : z∗RLP =min
T∑

t=0

(
oOt + h

(
HR

t +HN
t

)
+ s

m∑
i=1

Sit

)
+

n∑
j=1

∑
π∈Πj

ρjπXjπθ,

subject to:

∑
π∈Πj

Xjπ = 1 (∀j) , (4.1)

wbjYbjt −
∑
π∈Πj

abjtπXjπ ≤ 0 (∀b, j, t) , (4.2)

T∑
t=rj

Ybjt = 1 (∀b, j) , (4.3)

∑
b,j

pbjYbjt ≤ ct +Ot +HR
t +HN

t +
m∑
i=1

Sit (∀t) ,

∑
{(b,j)|µbj=Mi}

pbjYbjt ≤ mcit +Uit + Sit (∀i, t) ,

Uit ≤ mcit −mcit (∀i, t) ,
m∑
i=1

Uit = Ot +HN
t (∀t) ,

Ot ≤ ot (∀t) ,

HR
t +HN

t ≤ ht (∀t) ,

4.2. Restricted linear programming relaxation 63

m∑
i=1

Sit ≤ st (∀t) ,

all variables ≥ 0,

where the sets Πj are non-empty. Since the constraint
∑

π∈Πj

Xjπ = 1 (∀j) in LP

stipulates that for each order one order plan must be selected, any RLP must
contain at least one order plan for each order. We discuss in Section 4.2.2 how
we obtain these order plans.

A feasible LP solution in general is not integral. Suppose in an LP solution
for an order Jj there are at least two order plans ajπ (π ∈ Πj), for which
Xjπ > 0. We call such an order a fractional order . In contrast, we call order
Jj an integral order if there is a π ∈ Πj with Xjπ = 1. Observe that the order
schedule that corresponds with the selected order plan of an integral order is
by definition feasible. For a fractional order this is usually not the case. For
each order Jj we define an order plan ajπ′ as follows:

Definition 4.1 Consider any order Jj (j = 1, . . . , n) and consider the order
schedule determined by the realization of the Ybjt values. We define the corre-
sponding order plan ajπ′ as follows: abjtπ′ = 1 if Ybjt > 0, else abjtπ′ = 0.

The following Lemma can be used to verify if the order schedule of a frac-
tional order is feasible.

Lemma 4.1 The order schedule for order Jj is feasible if and only if ajπ′ is a
feasible order plan. �

For each order Jj with a feasible order plan ajπ′ we define an order plan
ajπ∗ as follows:

Definition 4.2 Consider any order Jj (j = 1, . . . , n) with a feasible order plan
ajπ′ . We define the corresponding order plan ajπ∗ as follows: extend ajπ′ to
ajπ∗ in such a way, that no elements abjtπ∗ can be changed from 0 to 1 without
making the order plan ajπ∗ infeasible.

Using Lemma 4.1, the following Lemma gives a simple but powerful method
to try to transform an LP solution into a completely integral or less fractional
solution that has the same objective value.

Lemma 4.2 Consider any fractional order Jj (j = 1, . . . , n) with a feasi-
ble order plan ajπ′ , and a corresponding order plan ajπ∗ . The solution ob-
tained by setting Xjπ∗ = 1 and setting Xjπ = 0 for each π ∈ Πj (π �= π∗)
is an alternative optimal solution to LP in which Jj has become an integral
order. �

64 Chapter 4. Branch-and-price techniques for resource loading

Thus if ajπ′ is feasible for all orders Jj (j = 1, . . . , n), then we can transform
the fractional solution to a feasible integer solution to the ILP . Observe that
there generally is no unambiguous way to transform order plan ajπ′ into ajπ∗ .
However, Lemma 4.2 holds for any order plan ajπ∗ that dominates ajπ′ .

Unfortunately in general not all fractional orders can be transformed to
integral orders. We illustrate this by a simple example. Suppose an or-
der Jj consists of two jobs (i.e., nj = 2) where job B1j has to precede job
B2j . Suppose moreover that rj = 0, dj = 2, T = 2, and δ = 0 (i.e., a
job may start in the week in which its predecessor has completed). Recall
from Section 3.2 that an order plan is characterized by a 0-1 vector ajπ =(
a1,j,0,π , . . . , a1,j,T,π , . . . , anj ,j,0,π, . . . , anj ,j,T,π

)
, where abjtπ = 1 (b = 1, . . . , nj ,

t = 0, . . . , T) when job Bbj is allowed to be performed in week t. Suppose we
have two order plans in Πj: aj1 = (1, 1, 1,0,0, 1) and aj2 = (1,0,0, 1, 1,1).
Suppose moreover that both order plans are fractionally selected with a corre-
sponding value Xjπ = 0.5. In that case we have that constraints (4.2) stipulate
for job B1:

Y1jt ≤
1

w1j
, for t = 0,

Y1jt ≤
0.5
w1j

, for t ∈ {1, 2} ,

and for job B2:
Y2jt ≤

1
w2j

, for t = 2,

Y2jt ≤
0.5
w2j

, for t ∈ {0,1}.

As a result, for both jobs and for all weeks Ybjt may be nonzero, for ex-

ample: Ybjt = 1/3
wbj

(b = 1,2, t = 0,1, 2). The corresponding order plan

ajπ′ = (1, 1, 1, 1,1,1) is infeasible. Since this order plan does not satisfy the
precedence constraints we conclude that this order can not be transformed into
an integral order. As a result, in general, a feasible solution to the LP is not
necessarily feasible to the ILP . In the remainder of this chapter we propose
several methods to construct a feasible solution to the ILP from a fractional
LP solution. In Section 4.4 we propose several branch-and-bound strategies,
and in Section 4.6 we propose several heuristics for finding a feasible solution
to the ILP .

4.2.2 RLP initialization

To obtain a feasible RLP of the aforementioned general form in any node of
the branching tree we must find at least one feasible order plan ajπ for each
order, in such a way, that a feasible solution to the RLP exists. One feasible
order plan ajπ per order may not result in a feasible RLP because of the finite
capacity levels of the resources. We may use a primal heuristic for the ILP to
find a feasible set of order plans. Such a heuristic is not guaranteed to succeed.
Note however, that we do not need to find a feasible integer solution, just a
feasible RLP . Since it is easy to find a basic solution to the RLP we can find a

4.3. Pricing algorithm 65

feasible RLP by column generation as follows. The basic idea is equivalent to
Phase I of the two-phase simplex method. The two-phase simplex method is a
technique that is commonly used in situations where a basic feasible solution to
an LP model is not readily available. Phase I of the method involves optimizing
a relaxation of the RLP , which is obtained by adding artificial variables. The
objective of this relaxation is to minimize the sum of all artificial variables.
The solution to the relaxation is feasible to the RLP if all artificial variables
are zero.

The Phase I relaxation of the RLP is obtained by relaxing the work as-
signment constraints (4.3). We do so by adding nonnegative artificial variables
Zbj:

T∑
t=rj

Ybjt + Zbj = 1 (∀b, j) .

As a result, the Phase I relaxation becomes trivially feasible, namely set Xjπ =
1 for some π ∈ Π, Zbj = 1 (∀b, j), and all other variables to 0. The Phase I
relaxation is thus feasible for any set of order plans, provided that at least
one arbitrary feasible order plan is available per order. These order plans can
simply be constructed by, for example, setting the job start times as early as
possible, and allowing the jobs to be performed for the minimal duration.

The Phase I objective function becomes:

min
∑
b,j

Zbj.

We optimize the Phase I relaxation by column generation. We can use the
same pricing algorithm as we use for the original RLP , using the duals of the
Phase I relaxation as input. After termination of the column generation scheme
in Phase I, we evaluate the objective value of the Phase I relaxation. If the
objective function value is zero, the current solution is also feasible to theRLP .
Since the order plans in the Phase I relaxation yield a feasible solution to the
RLP , we remove the artificial variables and restore the objective function of the
RLP , and continue by performing column generation on the RLP . However,
if the objective function is larger than zero, we have proven that no feasible
solution exists to the LP . In that case we may conclude that no feasible solution
exists to the resource loading problem.

4.3 Pricing algorithm

From linear programming theory it is known that a solution to a minimization
problem is optimal if the reduced cost of each variable is nonnegative (see also
Section 2.2). Since an RLP in a column generation scheme contains for each
order only a subset Πj of all feasible order plans Πj , we need to determine

66 Chapter 4. Branch-and-price techniques for resource loading

whether order plans exist with negative reduced cost that are not in Πj. The
reduced cost cjπ of any order plan ajπ (π ∈ Πj , j = 1, . . . , n) in LP is given
by:

cjπ = ρjπθ + αj −

nj∑
b=1

T∑
t=rj

βbjtabjtπ , (4.4)

where αj is the (known) value of the dual variable corresponding to condi-
tion (4.1) and βbjt are the (known) non-negative values of the dual variables
corresponding to conditions (4.2).

To test optimality of the current RLP solution, we determine whether there
exists an order plan ajπ (π ∈ Πj\Πj) for some order Jj (j = 1, . . . , n) with
negative reduce costs, that is, with cjπ < 0. To this end, we solve the pricing
problem of finding an order plan in Π\Π with minimum reduced cost, which
boils down to solving n independent subproblems, one for each order. The
subproblem for order Jj (j = 1, . . . , n) is to minimize:

ρjπθ+ αj −

nj∑
b=1

T∑
t=rj

βbjtabjtπ ,

subject to the release date and due date of order Jj , the minimal duration of its
jobs, the precedence constraints between its jobs, and the minimum time lag
δ. The (binary) decision variables in the pricing problem are the abjtπ ’s that
form the order plan ajπ for order Jj . These variables also determine the values
ρjπ (ρjπ ≥ 0), which denote the number of weeks that an order is allowed to
be tardy. When the order plan ajπ allows order Jj to be tardy by ρjπ weeks,
a tardiness penalty ρjπθ is added to the pricing objective.

Note that an order plan may also be represented by the first and last weeks
in which each job is allowed to be produced. For convenience we speak of the
start and completion times of jobs in the order plan, although the actual start
and completion times in the order schedule may respectively be higher and
lower.

In the pricing algorithm we account for internal release dates (rbj) and due
dates (dbj) of jobs. These may be calculated from the minimal duration of
the jobs, the δ parameter, and the (external) release date and due date of the
order, but these may also be imposed externally, e.g., to meet certain deadlines
on components or parts of an order. Note that since we allow an order to be
tardy, we must also allow jobs to be produced after their internal due date dbj .
We define the job deadline dbj as the last week in which a job is allowed to be
produced. This deadline is thus not externally given. Accordingly, we define
the order deadline dj as the deadline of job nj . By default we set: dj = dbj = T
(b = 1, . . . , nj), however, we may also set dbj to some number smaller than T to
limit the number of feasible order plans, and thus simplify the pricing problem.

We use implicit column generation, i.e., we generate order plans as they
are needed. An explicit column generation approach would require that all

4.3. Pricing algorithm 67

order plans are generated in advance and kept in computer memory. Since
the number of feasible order plans is exponentially large this is not a serious
option. Our pricing algorithm for solving the subproblem for order Jj is based
on dynamic programming and uses a forward recursion. In this chapter we
consider the case of linear precedence relations. In Section 4.3.1 we discuss the
pricing algorithm for δ = 1. As discussed in Section 3.2, in the case δ = 0
we impose an additional restriction that at most κ jobs of the same order are
allowed to be performed in the same week. In Section 4.3.2 we discuss the
pricing algorithm for this special case. In Chapter 6 we present a generalized
pricing algorithm for the case with generalized precedence constraints.

4.3.1 Pricing algorithm for δ = 1

The pricing problem can be translated into finding a longest path (when max-
imizing −cjπ) or shortest path (when minimizing cjπ) in a directed acyclic
network with weights on the nodes. Consider for example an order Jj with 3
jobs, a release date rj = 1, due date dj = 3 and a planning horizon T = 4. The
minimal duration wbj of each job Bbj is 1 week. From these data, we calculate
the release dates and due dates of the jobs as follows:

r1j = rj , and rbj = rb−1j +wb−1j − 1 + δ (b = 2, . . . , nj), (4.5)

dnj ,j = dj , and dbj = db+1j − (wb−1j − 1)− δ (b = 1, . . . , nj − 1).

Hence, for jobs B1j , B2j and B3j the values (rbj, dbj) are (1, 1), (2, 2) and (3,3)
respectively. The corresponding longest path problem can be described using
the network depicted in Figure 4.2. We represent each job Bbj and each week
t in which it is allowed to be performed by a node (b, t). Hence we have nj = 3
sets of T − rj + 1 = 4 nodes. A path through a node (b, t) indicates that job
b is allowed to be performed in week t, which results in a contribution −βbjt

to the reduced cost of the order plan. A path through a node (nj , t), with
t > dnj ,j = dj , contributes a tardiness penalty ρjπθ = (t− dj)θ to the reduced
cost of the order plan, in addition to the contribution −βnjjt for that job. A
source and a target node are added to complete the directed network. A path
from the source to the target node represents a complete order plan (see Figure
4.2).

The reduced cost of the order plan is the sum of αj , the contributions −βbjt

on the longest path, and, if applicable, a tardiness penalty ρjπθ for job nj.

Since we only consider those order plans that can not be dominated by other
order plans (see Section 3.2), in Figure 4.2 we have removed all redundant arcs.
We could have, for example, drawn an arc from node (1,1) to (2,3). However,
a path from (1, 1) to (2,3) via (2,2) or (1,2) will yield as least as much as a
path from (1, 1) directly to (2, 3). Hence, all arcs not involving the source and
target node connect node (b, t) with node (b+ 1, t+ δ) or node (b, t+ 1).

68 Chapter 4. Branch-and-price techniques for resource loading

1,1 3,12,1

3,22,21,2

1,3 3,32,3

src

tar

job 1 job 2 job 3

source

target

3,42,41,4

Figure 4.2: Example pricing problem (δ = 1).

We solve the pricing problem by dynamic programming (DP). Each job Bbj

represents a stage b. Since the information needed to represent an order plan
consists of the allowed start and completion times of the jobs, the decision in
each stage must regard either the start time or the completion time of the job.
Since the pricing problem is symmetric with respect to this decision (a start
time of a job implies the completion time of its predecessor, and vice versa), we
say that a decision in a stage concerns the start time of the job in that stage.
A state (j, b, t) in a stage b describes a completion time t of job Bbj .

Let Fj(b, t) be the minimum reduced cost for all feasible partial order plans
for the jobs B1j, . . . ,Bbj with t the completion time of job Bbj, i.e., t is the
last week in which job Bbj is allowed to be performed (b ≤ nj , rbj +wbj − 1 ≤
t ≤ dbj). Note that t must be at least rbj + wbj − 1 to comply with the
minimal duration constraint. Let ajπ be an order plan in state (j, b, t) with
value Fj(b, t). Then, ajπ must allow Bbj to be performed in weeks s, . . . , t for
some rbj ≤ s ≤ t−wbj+1 (i.e., s and t are the start and completion time of job
Bbj). The start time s can be at most t−wbj +1 to comply with the minimal
duration constraint. Accordingly, the previous state must be (j, b − 1, s − δ)
for some s with rbj ≤ s ≤ t−wbj + 1. Allowing Bbj to be performed in weeks

s, . . . , t contributes −
t∑

u=s
βbju to the reduced cost of the partial order plan of

the previous state (Fj (b− 1, s− δ)).

4.3. Pricing algorithm 69

We now give the dynamic programming recursion to solve the j-th subprob-
lem. The initialization is:

Fj(b, t) =

{
αj, if b = 0,
∞, otherwise.

The recursion for b = 1, . . . , nj, t = rbj +wbj − 1, . . . , dbj is then:

Fj(b, t) = min
rbj≤s≤t−wbj+1

{
Fj (b− 1, s− δ) +∆bjt −

t∑
u=s

βbju

}
. (4.6)

For all other t:
Fj(b, t) =∞.

Where ∆bjt in (4.6) is defined as follows:

∆bjt =

{
(t− dbj)θ, if b = nj and t > dbj
0, otherwise.

(4.7)

Parameter ∆bjt thus adds a tardiness penalty to Fj(b, t). Note that without
loss of generality this pricing algorithm may also be applied in cases where
δ > 1.

Lemma 4.3 The optimal solution to the j-th pricing subproblem is found as:

F∗
j = min

dj≤t≤dj

Fj(nj, t), (j = 1, . . . , n).

�

Lemma 4.4 The optimal solution to the pricing problem is found as:

F ∗ = min
1≤j≤n

F∗
j .

�

Accordingly, if F ∗ ≥ 0, then the current RLP solution is optimal. If F∗ < 0,
then the current RLP solution may not be optimal, and we need to introduce
new columns (order plans) to the problem. Candidates are associated with
those orders Jj for which F ∗

j < 0, and they can be found by backtracking. Note
that the pricing algorithm for the j-th subproblem uses O(njT) space and can
be solved in O(njT

2) time. Hence the pricing problem uses O(max
j

(nj)Tn)

space and can be solved in O(max
j

(nj)T 2n) time. Although the pricing algo-

rithm usually demands little computation time, some speed up can be obtained
by identifying jobs that can not contribute to the reduced cost of the order plan,
that is, jobs Bbj for which βbjt = 0 (∀t). For such jobs, given their state (the

70 Chapter 4. Branch-and-price techniques for resource loading

completion time (b, t)), the corresponding decision (the start time s) is always
chosen as s = t−wbj + 1, where wbj is the minimal duration of the job.

Solving the n pricing problems may give us more than one column with
negative reduced cost. Therefore, we face the issue to decide on the number of
columns to add to the linear program after having solved the pricing problem.
In general, the more columns we add per iteration, the fewer linear programs
we need to solve, but of course the bigger the linear programs become. As long
as the size of the RLP remains manageable, we add all columns (at most one
per order) with negative reduced costs. However, when the computation time
that is required to solve the RLP increases too much, column disposal may
be required. We discuss in Section 4.4 that the growth of the ‘column pool’
depends largely on the branching strategy.

4.3.2 Pricing algorithm for δ = 0

For the case δ = 0 we also use dynamic programming to solve the pricing prob-
lem. The main difference in the pricing algorithm is caused by the additional
restriction that we allow at most κ jobs of the same order to be performed in
the same week. Note that δ = 0, κ = 1 is equivalent to δ = 1. If we would
relax this constraint (κ = 0), we could use the pricing algorithm of the previous
section. Also, if the number of jobs nj of an order Jj is equal to or smaller
than κ, we may use the pricing algorithm of the previous section. Hence, in
the remainder of this section we assume that δ = 0, and nj > κ.

As in the previous section, each job Bbj represents a stage b. Moreover,
the decision in a stage b regards the start time of job Bbj . The additional
restriction that at most κ jobs of the same order are allowed to be performed
in the same week implies that we may only allow a job Bbj to be started in a
week t, when at most κ − 1 predecessors are allowed to be produced in that
week t. Thus to be able to make a decision regarding a start time of a job Bbj ,
the state (j, b, t) must be extended with an additional parameter σ < κ, that
indicates the number of predecessors that are allowed to be produced in week
t. Note that since j is fixed in a pricing problem, the state (j, b, t, σ) is in fact
3-dimensional.

Let ajπ be an order plan in state (j, b, t, σ) with value Fj(b, t, σ), and let
b > 1. To determine from which possible previous states ajπ can be created, we
must distinguish two cases, i.e., σ = 0 and σ > 0. When σ = 0, the predecessor
(Bb−1,j) is not allowed to be performed in week t, so the completion time
of the predecessor must be smaller than t. As a result, π must have been
created by allowing Bbj to be performed in weeks s, . . . , t for some rbj ≤ s ≤
t−wbj +1, and the completion time of the predecessor must be min {t− 1, s}.
Accordingly, the previous state must be (j, b− 1,min {t− 1, s} , σ′) for some s
with rbj ≤ s ≤ t − wbj + 1, and some σ′ < κ. When σ > 0, the completion
time of the predecessor of job Bbj is t. Accordingly, the previous state must be

4.4. Branching strategies 71

(j, b− 1, t, σ − 1).

We now give the dynamic programming recursion to solve the j-th subprob-
lem. The initialization is:

Fj(b, t, σ) =

{
αj , if b = 0,
∞, otherwise.

The recursion for σ = 0, b = 1, . . . , nj , t = rbj +wbj − 1, . . . , dbj is then:

Fj(b, t,0) =

min
rbj≤s≤t−wbj+1

{
min
σ′<κ

{Fj(b − 1,min {t− 1, s} , σ′)}+∆bjt −
t∑

u=s

βbju

}

where ∆bjt is defined as in (4.7). The recursion for 0 < σ < κ, b = 1, . . . , nj ,
t = rbj +wbj − 1, . . . , dbj is then:

Fj(b, t, σ) = min
rbj≤s≤t−wbj+1

{
Fj(b− 1, t, σ − 1) +∆bjt −

t∑
u=s

βbju

}
.

For all other σ, b, t:
Fj(b, t, σ) = ∞.

Lemma 4.5 When δ = 0, and nj > κ, the optimal solution to the j-th pricing
subproblem is found as:

F ∗
j = min

dj≤t≤dj ,0≤σ≤κ
Fj(nj , t, σ), (j = 1, . . . , n).

�

Analogous to the pricing algorithm in the previous section, when F ∗
j < 0,

a candidate order plan can be found by backtracking. The pricing algorithm
for the j-th subproblem uses O(njTκ) space and can be solved in O(njT

2κ2)
time. Hence the pricing problem uses O(max

j
(nj)Tκn) space and can be solved

in O(max
j

(nj)T
2κ2n) time.

4.4 Branching strategies

After termination of the column generation scheme on an RLP we evaluate
the resulting optimal LP solution. If the optimal LP solution is integral with
respect to the Xjπ variables, the solution also forms an optimal solution to the
resource loading problem, and we are done. If the solution is fractional, we
apply the procedure of Lemma 4.2 to try to transform the fractional solution

72 Chapter 4. Branch-and-price techniques for resource loading

rbj dbj

rsj dsj

0 1 2 3 4 5 6 7 8

rbj lb

dsj

0 1 2 3 4 5 6 7 8

job Bbj

job Bsj

job Bbj

job Bsj

lb+δ

weeks weeks

Figure 4.3: Repair of a violated precedence relation (δ = 1)

into an integral solution without changing the objective function. If this is
not possible, i.e., a part of the solution remains fractional, we need a branch-
and-bound algorithm to find an optimal integral solution. In the next sections
we discuss the exact (Section 4.4.1) and heuristic (Section 4.4.2) branching
strategies to find a feasible integral solution from an optimal fractional LP
solution.

4.4.1 Branching strategy

It is well known that a ‘direct’ partitioning of the solution space by fixing or
bounding binary variables is generally not a good strategy, because it tends
to yield an unbalanced branch-and-bound tree (see, e.g., Barnhart et al., 1998;
Vanderbeck, 2000). Hence, instead of branching on the fractional variablesXjπ

of an order Jj, we use a branching strategy (referred to as BS) that aims at
fixing violated precedence relations between jobs of fractional orders. When, in
an RLP solution in any node of the branching tree, an order plan ajπ′ (as de-
fined in Definition 4.1) is not feasible, there is at least one pair of jobs, say jobs
Bbj and Bsj , for which a precedence relation is violated. In BS we alter the
allowed intervals for jobs Bbj and Bsj such that they no longer overlap. We an-
alyze each possible alteration in the child nodes. Recall that job Bbj is allowed
to be performed in interval [rbj, dbj], and job Bsj is allowed to be performed in
the (overlapping) interval [rsj , dsj]. To repair the violated precedence relation
between these jobs, we must alter job deadlines, which were introduced to limit
the number of feasible order plans and thus reduce the pricing problem size, and
job release and due dates as follows. Each child node corresponds to a new dead-
line lb of jobBbj (lb ∈

[
max {rbj +wbj − 1, rsj} ,min

{
dbj, dsj −wsj + 1− δ

}]
).

This is illustrated in Figure 4.3. The values
(
rbj, dbj, dbj

)
for job Bbj thus

become (rbj,min {dbj, lb} , lb), and the values
(
rsj, dsj, dsj

)
for job Bsj become(

max {rbj , lb + δ} , dsj, dsj
)
. Subsequently, we eliminate all order plans ajπ that

do not comply with the updated job release dates, due dates and deadlines. As

4.4. Branching strategies 73

a consequence, the (modified) RLP or even the (modified) LP may no longer
be feasible. To determine whether the modified LP is feasible we apply column
generation to the Phase I LP relaxation of the two-phase simplex method, as
described in Section 4.2.2, and account for the modified job release dates, due
dates and deadlines in the pricing algorithm. When the modified LP is infea-
sible, we prune the node. Otherwise, we continue in this node by performing
column generation on the RLP . When we prune a node, we return to the
parent node in the branching tree.

We illustrate the branching strategy BS with an example. Consider an RLP
solution in which ajπ′ is infeasible for order Jj, due to a precedence relation
violation of jobs B1j and B2j . Suppose the values

(
rbj , dbj , dbj

)
for jobs B1j

and B2j are (0,2,3) and (1,3, 4) respectively, the minimal duration wbj of each
job is 1 week, and δ = 1. Branching strategy BS imposes in each child node a
deadline l1 for job B1j , with:

l1 ∈
[
max {r1j +w1j − 1, r2j} ,min

{
d1j, d2j −w2j +1− δ

}]
= [max {0,1} ,min {3,3}]

= [1, 3] .

Hence the branching strategy results in 3 child nodes, in which the modified
values

(
rbj, dbj, dbj

)
for jobs B1j and B2j are:

(0, 1, 1) and (2,3, 4) in child node 1,

(0, 2, 2) and (3,3, 4) in child node 2,

(0, 2, 3) and (4,4, 4) in child node 3.

Note that the modified job release dates, due dates and deadlines exclude an
overlap of jobs B1j and B2j in any order schedule.

For the BS method we apply the depth-first node selection strategy. When
we select a violated precedence relation to be repaired in a node, we try to
select a fractional order for which the repair of a precedence relation viola-
tion is most restrictive. We expect that this strategy reduces the depth of the
branching tree. There are probably many intuitive strategies that comply with
this strategy. We select in each node the fractional order Jj that maximizes∑
π∈Πj

(Xjπ(1−Xjπ)). When there are more than one violated precedence re-

lation for this order, we repair the violated precedence relation for which the
concerned pair of jobs has the largest overlap (in weeks).

We may try to find an initial incumbent solution before we start the BS
method by applying a heuristic. This usually enables to fathom nodes at an
early stage in the branching scheme, at the cost of little additional computation
time. We discuss the application of heuristics in Section 4.6. In Section 4.5 we
discuss the application of Lagrangian relaxation for lower bound determination.

74 Chapter 4. Branch-and-price techniques for resource loading

4.4.2 Branch-and-price based approximation algorithms

For large instances, branch-and-bound methods typically require a long compu-
tation time to find an optimal solution, or to prove that the incumbent solution
is optimal. We found that this is also the case for the resource loading problem.
We therefore tested some branch-and-price based heuristics to find a good so-
lution in little time. We use the integrality gap as an indication of the quality
of the solutions of these algorithms.

The first and most straightforward branch-and-price based heuristic we
tested is the truncated BS (TBS), that truncates the BS algorithm of Sec-
tion 4.4.1 after a certain amount of time. The resulting solution of the TBS
method is the incumbent solution at the moment of truncation. The TBS
method enables to test the BS method on large problems.

Another heuristic based on the BS method is the ε-approximation strat-
egy (EAS). In this heuristic we fathom all nodes in which the lower bound
approaches the incumbent (upper bound) within ε% (i.e., LB · (1 + ε) ≥ UB).
On termination of EAS, its incumbent solution differs at most ε% from the
optimal ILP solution. Hence, this method allows us to find a compromise be-
tween the computation time required, and the quality of the solution obtained.

We also tested six variants of an incomplete branching strategy that is not
based on the aforementioned BS method. This branching strategy is based on
selecting one order plan for an order in each layer of the branching tree. Hence
each layer corresponds to an order Jj for which we set one Xjπ variable to 1.
After selecting an order plan for an order in a node of the branching tree, we
apply column generation on the remaining orders (i.e., the orders for which no
order plans have been fixed) to prevent that fixing variables leads to infeasible
RLP s. We use a depth-first node selection strategy to find a feasible solution
as fast as possible.

In the first two variants of this branching strategy we branch on the frac-
tional order that has the highest number of (fractionally) selected order plans
in the current RLP solution. In HBS1 we branch on all order plans that
are available for the selected order in the current RLP . In the second variant
(HBS2) we branch only on those order plans that are (fractionally) selected in
the current RLP solution. Observe that the part of the solution space that is
analyzed by these branching strategies strongly depends on the number of order
plans that are available for each order at the moment the order is branched on.
When an order that is branched on has few order plans available in the current
RLP , a large part of the solution space may be discarded. For this purpose we
implemented variant HBS1+ and HBS2+, which are are the same as HBS1
and HBS2 respectively, except that before branching we add for each order up
to five order plans to the column pool, so that sufficient order plans are avail-
able to branch on. These order plans are found by five stand-alone heuristics
that were proposed by Borra (see Borra, 2000, and Section 4.6.1). Variants

4.5. Lower bound determination by Lagrangian relaxation 75

HBS3 and HBS4 are the same as HBS1+ and HBS2+ respectively, except
that the next order to branch on in each layer is the order that has the most
order plans in the current RLP .

4.5 Lower bound determination by Lagrangian

relaxation

Lagrangian relaxation can complement column generation, in that it can pro-
vide a lower bound to the original problem in every iteration of the column
generation procedure with little computational effort (cf. Section 2.4). We
note that the example ILP model in Section 2.4 has the same basic form as the
resource loading model, where the disjoint sets of variables J(i) ⊂ J in the ex-
ample correspond to the setsΠj ⊂ Π of variablesXjπ . Hence we apply the same
procedure to the resource loading model, and we obtain the Lagrangian relax-
ation of the ILP by relaxing all constraints but constraints

∑
π∈Πj

Xjπ = 1

(∀j) and variable restrictions Xjπ ∈ {0, 1} (∀j, π ∈ Πj ⊂ Π). The resulting
Lagrangian relaxation LILP (λ) possesses the integrality property. Hence, anal-
ogous to the example in Section 2.4, we can obtain a Lagrangian lower bound
to the linear programming relaxation LP each time an RLP has been solved
to optimality, by using the dual solution of the RLP as Lagrangian multipliers,
and by performing a pricing algorithm on all orders. The lower bound can be
determined as follows:

z∗RLP +
∑
j

cjΘj ,

where z∗RLP is the optimal objective value of the RLP , cj is the objective value
of the j-th pricing algorithm (i.e., the lowest reduced cost factor of all order
plans of order Jj), and Θj is a binary variable that is set to 1 when cj is
nonnegative, and set to 0, otherwise.

We apply column generation in each node of the branching tree. Hence,
in each column generation iteration in each node we may determine a lower
bound to the LP relaxation of the resource loading model for that node and for
all nodes below that node (note that the branching changes the LP relaxation
in every node). Hence, when branching downwards in the branching tree, we
must store the best lower bound found so far. We compare the best lower
bound to an upper bound (e.g., an incumbent solution, or a heuristic solution
of the resource loading problem) after every column generation iteration, and
terminate column generation and fathom the node when the best lower bound
exceeds the best upper bound. This also alleviates the tailing-off effect of
column generation.

We also use the Lagrangian lower bound to fix variables. When the reduced
cost of a variable is larger than UB − LB (i.e., the difference between the
upper and lower bound), we fix that variable to 0, since we know from linear

76 Chapter 4. Branch-and-price techniques for resource loading

programming theory that that variable must be 0 in any solution with a value
less than UB. Analogously, we fix each variable with a reduced cost smaller
than LB − UB to 1.

4.6 Application of heuristics

We propose several heuristics to be used as ‘stand-alone’ heuristics that solve
the resource loading problem without using the linear programming model of
the resource loading problem, as well as heuristics that we can use in vari-
ous stages of the branch-and-price algorithm. The latter category of heuristics
aims either at finding an integral solution from a fractional solution (rounding
heuristics), or at improving an existing integral solution (improvement heuris-
tics).

4.6.1 Stand-alone heuristics

Stand-alone heuristics can be used to determine an a priori feasible solution to
the resource loading problem. Such heuristics can also be used in the branch-
and-price algorithm, e.g., to find an initial feasible set of orders for the RLP
in the root or in any node. The heuristic solutions serve as an upper bound to
the solution of the original problem, which, in conjunction with a Lagrangian
lower bound, may reduce the number of nodes to explore in the branch-and-
price algorithm. The heuristic solutions can also be used to evaluate the quality
of solutions found by heuristic branching strategies, such as the truncated BS
method.

The stand-alone heuristics proposed by Borra (2000) are all priority rule
based heuristics, that load the jobs in a sequence determined by the priority
rule, and hereby construct an order schedule. As an example we mention the
earliest due date (EDD) priority rule, that sorts orders or jobs according to
their due dates in an increasing order, and plans the orders or jobs according
to this sequence. Since the objective here is to minimize the costs of extra
capacity, we first try to process each job in regular operator time. If this is not
possible without exceeding its due date, we use whichever type of capacity is
cheaper to complete the job in time. If we still can not meet the due date, then
we subcontract the entire job.

The solution of a stand-alone heuristic determines exactly one feasible order
schedule for each order. When a heuristic solution is used to initialize an RLP
in any node of the branching tree, order plans must be constructed from these
order schedules. We construct the order plans ajπ∗ for each order Jj from
the order schedule for Jj using the method described in Definition 4.2. By
optimizing the initial RLP that only has the order plans ajπ∗ , we find a feasible
resource loading solution that is at least as good as the solution found by the

4.6. Application of heuristics 77

stand-alone heuristic that was used to generate the order plans. Hence, in this
way the RLP model can be used in conjunction with a stand-alone heuristic
to improve its solution without much effort.

4.6.2 Rounding heuristics

We propose four rounding heuristics that are based on constructing an in-
tegral solution from a fractional RLP solution by rounding variables Xjπ

(j = 1, . . . , n, π ∈ Πj). These heuristics may help to speed up the branch-
and-price methods, by trying to find better incumbent solutions (with little
computational effort) in any node of the branching tree. All rounding heuris-
tics attempt to converge to an integral solution in a number of iterations, in
which we round a number of variables (i.e., fix variables Xjπ either to 0 or
to 1), after which we re-optimize the (modified) RLP . In each iteration we
apply the procedure of Lemma 4.2 to try to eliminate fractional orders. Since
we do not add order plans in the iterations, rounding variables may lead to an
infeasible RLP . The rounding heuristics thus do not always lead to a feasible
integral solution.

In the rounding heuristic that we refer to as RH1, we round in each iteration
all variables Xjπ (j = 1, . . . , n, π ∈ Πj) with a value smaller than some positive
threshold ε to 0, and round each variableXjπ with a value larger than 1−ε to 1.
When no variables can be rounded by this strategy, we round the variable Xjπ

with the highest value. The larger we set ε, the faster the heuristic becomes,
however, too many variables may be rounded at once. This usually leads to an
infeasible RLP .

In heuristic RH2 we take into account that order plans that are not (frac-
tionally) selected may for a large part comply with the order schedule (formed
by variables Ybjt) in the current solution. In other words, these non-selected
order plans may for a large part be the same as the order plan ajπ′ (defined
in Definition 4.1). The Xjπ variables thus do not provide much information as
to what order plans are appropriate. We calculate for each order plan of each
fractional order a valueQjπ (that takes a value between 0 and 1) that indicates
to what extent the order plan complies with the order schedule in the current
RLP solution. The value Qjπ is calculated as follows:

Qjπ =

dj∑
t=rj

nj∑
b=1

abjtπYbjt

nj
. (4.8)

We thus sum up all the Ybjt’s that are matched by a corresponding 1 in the
order plan, and divide the sum by the number of jobs. Hence, when the order
plan matches the order schedule, the resulting Q-value is 1. Note that although
an order plan may not be (fractionally) selected, it may still have a high Q-

78 Chapter 4. Branch-and-price techniques for resource loading

value. We use the value Qjπ instead of Xjπ as the rounding variable, and apply
the same rounding strategy as in RH1.

Rounding heuristic RH3 is basically the same as RH2, but in addition it
solves a pricing algorithm in each iteration of the rounding scheme, for all
fractional orders. Hereby we try to prevent that the rounding procedure yields
an infeasible solution after some iterations.

In heuristic RH4 we round in each iteration a fixed number of variables, say
k, until no variables need to be rounded. For this purpose we calculate for each
variable Xjπ that has not yet been fixed the value Q′

jπ = max {Qjπ, 1−Qjπ},
with Qjπ as in (4.8). We then sort the variables on theirQ′

jπ value in decreasing
order, and we round the first k variables to:

1, when Q′
jπ = Qjπ ,

0, when Q′
jπ = 1−Qjπ.

When the first k variablesXjπ are integral, we round the subsequent k variables
as well, until the RLP basis is modified and it needs to be re-optimized. We
choose k to be a small value. The higher the number k the faster the heuristic,
however, the higher the risk of an infeasibility.

4.6.3 Improvement heuristic

In our computational experiments we also use the improvement heuristic pro-
posed by Gademann and Schutten (2001). We refer to this heuristic as IH. IH
starts from a feasible solution and tries to improve the solution by iteratively
changing the start and completion times of the jobs in the order plans of the
solution. Suppose we want to change the start time sbj or the completion time
tbj of job Bbj of order Jj in the time window [sbj , tbj] of that job. There are
four possible cases that result from decreasing or increasing sbj or tbj by one
week:

• a decrease in the start time sbj of job Bbj is allowed when the completion
time of the predecessor Buj may be decreased by one. This condition
holds when (tuj − 1)−suj+1 ≥ wuj , i.e., when the modified time window
for job Buj is at least as large as its minimal duration wuj .

• an increase in the start time sbj of job Bbj is allowed when the modified
time window satisfies tbj − (sbj +1) + 1 ≥ wbj , i.e., when the modified
time window for job Bbj is at least as large as its minimal duration. This
change only makes sense if the completion time of the predecessor Buj

can be increased, i.e., tuj +1 ≤ duj.

• a decrease in the completion time tbj of job Bbj is allowed when the
modified time window satisfies (tbj − 1) − sbj + 1 ≥ wbj , i.e., when the

4.6. Application of heuristics 79

modified time window for job Bbj is at least as large as its minimal
duration. This change only makes sense if the start time of the successor
Bvj of job Bbj can be decreased, i.e., svj − 1 ≥ rvj .

• an increase in the completion time tbj of job Bbj is allowed when the
start time of the successor Bvj of job Bbj can be increased by one. This
condition holds when tvj − (svj + 1) + 1 ≥ wvj .

Each time we change a start or completion time of a job in an order plan,
we determine the corresponding order schedules by solving an RLP that only
contains the order plans of the initial solution. We use the dual solution of
the RLP to evaluate the expected change in the objective function value for
all possible changes in the order plans. Each of the aforementioned changes
in an order plan results in two modified coefficients in the coefficient matrix
of the model. More specific, in Constraints (4.2) one coefficient

∑
π∈Πj

abjtπ of

a variable Xjπ is set from 1 to 0 (for a job Bbj), and one coefficient of the
same variable Xjπ is set from 0 to 1 (for a predecessor or successor Buj). Thus
with βbjt the given non-negative values of the dual variables corresponding to
conditions (4.2), the expected change in the objective value is −βbjt + βujt.

In heuristic IH we evaluate all possible changes in the time windows of all
jobs, and sort these by increasing value of the expected change in the objective
value.

We accept the first change according to this sorting that actually leads to
an improvement. This is checked by reoptimizing the corresponding RLP . We
repeat this procedure until no more improvement is found. Gademann and
Schutten propose several other strategies for accepting changes, each of which
leads to different heuristics. We do not use these other strategies.

We presented the heuristic for the case of linear precedence relations, al-
though the heuristic was originally proposed by Gademann and Schutten for
the case of generalized precedence relations. The only difference in the case of
generalized precedence relations is that when we change the time window of a
job in the aforementioned procedure, it may have more than one successor or
predecessor.

Gademann and Schutten show that the search space is not connected, i.e.,
IH may get stuck in a local minimum. For example, when the time window
of job Bbj in the initial order plan is [sbj, tbj], the optimal time window is
[sbj − 2, tbj], and the expected change in the objective for changing sbj to sbj−1
is positive, we may never find an optimal solution. The outcome of the heuristic
thus depends on the initial feasible solution it starts from. It thus may pay off
to perform this heuristic at various stages of the branch-and-price algorithm.

80 Chapter 4. Branch-and-price techniques for resource loading

81

Chapter 5

Resource loading

computational results

All of life is an experiment.
The more experiments you make, the better.

- Ralph Waldo Emerson (1803-1882)

5.1 Test approach

In this chapter we present the computational results of the algorithms for re-
source loading presented in Chapter 4. All algorithms have been coded and
tested in the Borland Delphi 5.0 C/S programming language on a Pentium
III − 600 MHz personal computer, running Windows NT 4.0. The applica-
tion interfaces with the ILOG CPLEX 7.0 callable library, which we use for
optimizing linear programming models and retrieving the optimization results.

By using different branching strategies and combining branch-and-price al-
gorithms with heuristics, we obtain various algorithms for resource loading. To
test these, we implemented an instance generator that allows us to produce
classes of instances with various parameter settings. Table 5.1 lists the pa-
rameters that characterize the test instances. Each parameter influences the
complexity of the test instances. We aim at generating test instances that are
not too easy to solve with any parameter setting. Some parameters mainly
determine the problem size (e.g., the length of the planning horizon), other
parameters only influence the solution space (e.g., the release and due dates
of the orders determine how much slack the jobs have). Our test approach is
to first perform preliminary experiments in which we test all algorithms on a
small number of instances. For these instances we vary the length of the plan-

82 Chapter 5. Resource loading computational results

n the number of orders.
m the number of machine groups.
nj the number of jobs of order Jj.
T + 1 the length of the planning horizon (in weeks).
rj release date of order Jj.
dj due date of order Jj.
µbj the machine group on which job Bbj must be processed.
pbj the processing time of job Bbj .
wbj minimal duration of job Bbj (in weeks).
δ minimum time lag (0 or 1 week) between adjacent jobs,

to impose a one-job-per-week policy.
mcit total regular capacity of machine group Mi in week t.
mcit capacity of Mi in week t in regular operator time.
ct available regular operator capacity in week t (in hours).
ot available overtime capacity in week t (in hours).
ht available hiring capacity in week t (in hours).
st available subcontracting capacity in week t (in hours).
ot cost of overtime per hour.
ht cost of hiring one extra operator per hour.
st cost of outsourcing one hour of work.
κ maximum number of jobs of the same order that are

allowed to be produced in the same week.

Table 5.1: Test case parameters.

ning horizon, the number of orders to be loaded and the number of available
machine groups. Based on the preliminary test results we aim to select the best
version of the branch-and-price based algorithm for further evaluation. We also
choose an interesting class of instances, which we use for more extensive testing
of various other parameters.

We restrict ourselves to time driven resource loading problems. As a result,
in the test instances, the orders are not allowed to be tardy. The testing of the
algorithms on resource driven resource loading problems is subject of further
research.

The outline of this chapter is as follows. In Section 5.2 we discuss the
test instance generation procedure. In Section 5.3 we give an overview of all
algorithms that we tested. In Section 5.4 we determine the best version of the
algorithm by performing preliminary computational experiments with various
heuristics and branch-and-price methods. Finally, in Section 5.5 we present
the extensive computational results of this algorithm, by performing sensitivity
analyses on various parameters.

5.2. Test instance generation 83

5.2 Test instance generation

In this section we discuss the test instance generation procedure. We categorize
the test instances in classes that correspond to different parameter settings. We
particularly vary the length of the planning horizon T+1, the number of orders
n and the number of machine groups m. We consider the following values for
T and m:

T ∈ {5,10,15,20,25,30} ,

m ∈ {3,5,7, 10} .

We generate the order data by simulating an order arrival process. The first
order arrives in week 1, and the subsequent orders arrive with a Poisson arrival
distribution at a mean rate of λ. This implies that the interarrival times have
an exponential distribution with an average interarrival time of 1/λ weeks.
Furthermore, for the number of orders n we have that E (n) = λ (T +1). The
release date rj of an order Jj is found by rounding the arrival time of the order
to the nearest whole number. We consider the following values for parameter
λ:

λ ∈ {0.5,1, 2} .

The remaining order data for an order Jj is then generated as follows:

• nj ∈ {1, 2, . . . , 10}.

The number of jobs of order Jj (nj) is uniformly drawn from {1,2, . . . ,10}.
Observe that when we solve an instance for δ = 1, orders can have at most
T + 1 jobs.

• pbj ∈ {10,11, . . . , 60}.

We give the jobs a processing time of a similar magnitude as the size of a time
period (i.e., a week). Accordingly, we draw pbj uniformly from {10,11, . . . , 60}
hours.

• µbj ∈ {1,2, . . . ,m}.

A machine group number µbj is uniformly drawn for each job Bbj from
{1, 2, . . . ,m}. Subsequent jobs must have different machine group numbers.

• wbj = 1.

All jobs have a minimal duration wbj of 1 week, so that, when solving the
test instance for δ = 0, varying parameter κ (i.e., the maximum number of
jobs of the same order that are allowed to be produced in the same week) will
generally have significant impact on the solution space.

84 Chapter 5. Resource loading computational results

• dj = rj + nj + k − 1, k ∈ {�0.5 · nj� , �0.5 · nj + 1�}.

The order due date dj must be large enough to allow the order to complete
between the release and due date. For this purpose we first calculate the order
minimal duration, and then add a number of slack weeks to determine the order
due date. Although we solve the test instances for both δ = 0 and δ = 1, for
the determination of the order minimal duration we assume that δ = 1. As a
result, when we solve the test instance for δ = 0 (and κ > 1) instead of δ = 1,
the order will have more slack weeks. Hence, for δ = 1 and wbj = 1 (∀b, j)

the order minimal duration is
nj∑
b=1

wbj − (nj − 1) (1− δ) = nj weeks. The order

due date thus becomes dj = rj + nj + k − 1, where k is the number of slack
weeks that we add. Without adding slack weeks (i.e., k = 0), the planning
of the order would be trivial. To prevent this, we give each order at least 1
week slack. Also, we want orders with a small number of jobs to generally have
fewer slack weeks than orders with more jobs. For this purpose, we relate the
number of slack weeks of an order Jj to its number of jobs nj. Accordingly, we
uniformly draw a value from {�0.5 · nj� , �0.5 · nj +1�}, and round the value to
obtain the number of slack weeks k.

• δ = 0 ⇒ κ ∈ {2,3,10}.

The values we consider for the maximum number of jobs of the same order
that are allowed to be produced in the same week (κ) are {2, 3, 10}. This only
applies when a test instance is solved for δ = 0. Note that, since nj ≤ 10 and
wbj = 1 (∀b, j), we have that when κ = 10, all jobs are allowed to be processed
in the same week.

From the order release date rj and the order due date dj we determine the
internal job release dates rbj and due dates dbj. We perform computational
experiments for δ = 0 and δ = 1 on the same test instances. When δ = 0 and
wbj = 1 (∀b, j) the minimal duration of the order is

⌈nj

κ

⌉
. As mentioned before,

when δ = 0 and κ > 1, the order has more internal slack. Note that δ = 0 and
κ = 1 corresponds to δ = 1.

The number of orders that are allowed to be processed in a week will be
smaller in the first weeks of the aforementioned order arrival process. We
therefore simulate an order arrival process for t = 0, . . . ,60, and discard the
first 30 weeks and consider, for the test instances with parameter T , all orders
that are allowed to be produced in weeks {30, 30 + T}. Each simulation of the
order arrival process generates one test instance for each value of the para-
meter T (T ∈ {5, 10, 15, 20, 25, 30}). When the interval in which a job Bbj is
allowed to be produced (i.e., {rbj , dbj}) falls partly inside the planning horizon
{30, 30 + T}, we consider that job completely if at least half of the interval
{rbj , dbj} falls inside the planning horizon {30,30 + T}.

5.2. Test instance generation 85

For the determination of the various capacity profiles of the resources, we
first measure how much capacity Qit is approximately required per week t
in the given realization of the order arrival process, per machine group Mi

(i = 1, . . . ,m). Note that each job Bbj requires pbj hours of processing time on
machine group µbj in the time window {rbj , dbj}. We calculate Qit as follows:

Qit =
∑

{(b,j)|µbj=Mi}

pbj
dbj − rbj +1

,

where
pbj

dbj−rbj+1 is the average required capacity per week for job Bbj in its

time window {rbj , dbj}. Note that
∑
i
Qit is the approximate required operator

capacity in week t. From Qit we calculate Qi, the average required machine
group capacity from week 30 to week 60 (i.e., corresponding to T = 30) in the

given realization of the order arrival process, i.e., Qi =
60∑

t=30

Qit

31 . For the ex-

periments, unless noted otherwise, we generate instances where the utilization
rate of the total machine group capacity is approximately 80%, and the utiliza-
tion rate of the total machine group capacity in regular time is approximately
100%. Accordingly, we set the machine group capacity in regular time mcit to
Qi and the total machine group capacity mcit to 1.25Qi. Furthermore, for the
experiments we generate instances where the utilization rate of the operators in
regular time is approximately 125%. Accordingly, we set the regular operator
capacity ct to 0.8

∑
i
Qi. The utilization rate of the machine groups in regular

time is thus limited to 80% by the operator capacity. Observe that we do not
vary the values of mcit, mcit, and ct over the time periods t, so these values
are the same for all periods t, regardless of the length of the planning horizon.

We draw the available operator overtime capacity per week ot and hiring
capacity per week ht uniformly from [0, 0.5ct]. We draw the available subcon-
tracting capacity per week st uniformly from [2ct, 5ct], which is sufficiently high
in order to be able to easily obtain an initial feasible solution.

We complete the test instance generation procedure by choosing the non-
regular capacity cost parameters (ot, ht, st, t = 0, . . . , T) as follows:

ot = 1, (∀t) ,

ht = 2, (∀t) ,

st = 3, (∀t) .

In Section 5.4 we discuss the preliminary experiments in which we select
a branch-and-price based algorithm for further evaluation. Subsequently, in
Section 5.5 we discuss various experiments, amongst which experiments with
various combinations of the remaining parameters mcit, mcit, ct, δ and κ (if
δ = 0).

86 Chapter 5. Resource loading computational results

Apply column
generation on the
Phase I RLP

Apply stand-alone
heuristic

Feasible solution
found?

Apply column
generation scheme

Apply improvement
heuristic

yes

no

 Feasible solution
found?

yes

No solution exists
(STOP)

no

Apply branching
method

Apply rounding
heuristics

Figure 5.1: Algorithm scheme.

5.3 Algorithm overview

In this section we give an overview of the algorithms that we use for preliminary
testing. We refer to Sections 4.4 to 4.6 for an extensive description of these
algorithms.

Each branch-and-price algorithm that we tested is executed as a chain of
subalgorithms. Figure 5.1 displays a scheme of the branch-and-price algorithm.
We initialize the RLP in the root of the branching tree with order plans that
constitute a feasible primal solution to the LP relaxation. We try to find
such a feasible solution with a stand-alone heuristic. In all branch-and-price
algorithms we apply the earliest due date heuristic (EDD) for this purpose. If
this heuristic fails to find a feasible solution, we apply column generation on
the Phase I RLP to either find a feasible primal solution to the LP relaxation,
or prove that no such solution exists. In any other node of the branching tree,
we do not use the EDD heuristic, because it tends to fail to find a feasible
solution more often when more constraints are added to the problem in the
branching scheme. Instead, we immediately apply column generation on the

5.4. Preliminary test results 87

Phase I RLP .

Table 5.2 shows the approximate size of the initial RLP for instances with
T ∈ {10,20,30}. It shows that the size of the RLP increases considerably with
T .

T #nonzeros #variables #rows
10 4000 1000 1000
20 11000 2800 2800
30 25000 6500 6500

Table 5.2: Size of the initial RLP .

After initializing the RLP , we apply column generation on the RLP in
order to determine the optimal solution to the LP . Since this solution is
usually fractional, we may use one of the branch-and-price methods to find a
feasible integral solution to the ILP . However, in order to find an incumbent
solution that may fathom many nodes in the branching scheme, we first apply
various rounding heuristics and an improvement heuristic.

The branch-and-price methods use Lagrangian lower bounds (see Section
4.5) to fathom nodes, and use a depth-first node selection strategy.

Table 5.3 gives an overview of the heuristics that we use to determine an
incumbent solution before branching. Table 5.4 gives an overview of all branch-
and-price algorithms that we use for the preliminary testing.

EDD stand-alone heuristic based on the earliest due date priority rule
IH improvement heuristic that uses the EDD solution as an initial

solution
RH1 (ε) rounding heuristic 1 with rounding threshold value 0 < ε < 1
RH2 (ε) rounding heuristic 2 with rounding threshold value 0 < ε < 1
RH3 (ε) rounding heuristic 3 with rounding threshold value 0 < ε < 1
RH4 (k) rounding heuristic 4 with parameter k (k ∈ N)

Table 5.3: Overview of heuristics.

5.4 Preliminary test results

In this section we present the computational results for the preliminary ex-
periments with various combinations of the algorithms on the instance classes
discussed in Section 5.2.

For the preliminary experiments we repeat the order arrival process twice
for each value of parameters m (m ∈ {3, 5, 7,10}) and λ (λ ∈ {0.5,1,2}) to

88 Chapter 5. Resource loading computational results

TBS truncated (after 30 minutes) branching strategy
BS with Lagrangian lower bound determination,

TBS(noLLB) TBS without Lagrangian lower bound,
EAS (ε) TBS with an ε-approximation strategy,
TBS+IH TBS algorithm that solves IH every 3 minutes

to improve the upperbound,
TBS90 same as TBS, but truncated after 90 minutes,
HBS1, . . . ,HBS4 incomplete branching strategies based on selecting

one order plan in each node of the branching tree,
HBS1+,HBS2+ same as HBS1, HBS2, but with additional order

plans available for each order in the initial RLP .

Table 5.4: Overview of branch-and-price methods.

obtain 2 ∗ 12 classes, each containing 6 instances (one for each value of T). We
solve all 144 instances for both δ = 0 and δ = 1. When we solve an instance
for δ = 0, we allow only two jobs of the same order to be produced in the same
week, i.e., in the preliminary experiments we set κ = 2. This parameter setting
comes closest to the parameter setting δ = 1.

In conjunction with the test instances, we generate two feasible order plans
(i.e., for δ = 0 and δ = 1) for each order in each test instance, to form the
initial RLP for a branch-and-price algorithm. For this purpose we use the
EDD heuristic, or, if this algorithm can not find a feasible solution, we apply
column generation on the Phase I RLP .

The outline of this section is as follows. We first test the performance and
speed of the heuristics that are listed in Table 5.3. We present the computa-
tional results of these experiments in Section 5.4.1. Subsequently, we test the
branch-and-price methods that are listed in Table 5.4. We present the compu-
tational results of these experiments in Section 5.4.2. Finally, in Section 5.4.3
we compare all computational results, and choose a branch-and-price algorithm
that we use for more extensive testing in Section 5.5.

5.4.1 Preliminary test results for the heuristics

In this section we compare the performance of the heuristics that are listed in
Table 5.3. IH must start from a feasible solution. Gademann and Schutten
tested IH, as well as various variants of this improvement heuristic, extensively,
and showed that the heuristic performance strongly depends on the initial fea-
sible solution that the heuristic starts from (Gademann and Schutten, 2001).
They showed that IH performs well when it starts from an initial solution in
which the slack of the jobs is divided evenly. Here we use the solution found by
the rounding heuristic RH4(1) as the initial solution for the rounding heuristic
IH. The rounding heuristics each use the columns and the LP solution that

5.4. Preliminary test results 89

are found after solving the LP in the root node via column generation. We test
the performance of the rounding heuristics RH1 (ε), RH2 (ε) and RH3 (ε) for
rounding parameter ε = 0.01, and ε = 0.05, and rounding heuristic RH4 (k)
for parameter k ∈ {1,2,3}. Table 5.5 compares the average and maximum
execution times of the heuristics, tested on all 288 instances (i.e., 144 instances
solved for both δ = 0 and δ = 1). Table 5.5 shows that the rounding heuristics

Heuristic Average Maximum
EDD 0 0.01
IH 132.87 3608.89

RH1 (0.01) 27.14 1116.69
RH1 (0.05) 30.10 1615.72
RH2 (0.01) 31.85 2314.64
RH2 (0.05) 37.98 2314.13
RH3 (0.01) 100.44 7526.77
RH3 (0.05) 103.53 6319.65
RH4 (1) 74.81 5631.74
RH4 (2) 32.78 2108.23
RH4 (3) 27.87 1662.10

Table 5.5: Execution time of heuristics (in seconds).

all require small execution times. For RH4 (k) the computation time drops
significantly when k increases. This may be expected, since a larger value of
k implies that in each iteration more variables are rounded at once, which will
lead to a solution faster. Table 5.5 also shows that the improvement heuris-
tic IH requires significantly more computation time than the other heuristics.
Whether this leads to improved solution values is reflected in Table 5.6. Table
5.6 compares the solution values found by the algorithms. We compare the
number of times (again out of 288) that each heuristic finds the best solution
value among all the heuristic solutions, as well as the number of times it finds
the unique best solution value among all heuristic solutions. The last column
displays the number of times that each heuristic finds a solution value that is
proven to be optimal by one of the complete branching strategies.

Table 5.6 shows that IH finds a better solution value than the other heuris-
tics for the majority of the instances. Its average solution value is significantly
smaller, and it finds the optimal solution for far more instances than the other
heuristics. The additional computational effort for the IH heuristic thus clearly
pays off. We also note that IH almost always improves the solution value of
RH4 (1).

Observe that for k ∈ {2, 3}, RH4 (k) finds a solution for significantly fewer
instances than RH4 (1). The performance also drops for k ∈ {2,3}, so, based
on these aspects, k = 1 is clearly preferred.

There is not much difference in performance between the two parameter set-

90 Chapter 5. Resource loading computational results

Heuristic # Avg. # # # # #
Solutions solution Best Unique Worsta Unique Proven
found value best worst optimal

EDD 288 1094.7 3 1 194 82 2
IH 288 596.5 265 212 0 0 70

RH1 (0.01) 281 826.6 21 0 38 3 16
RH1 (0.05) 279 815.0 21 0 36 4 16
RH2 (0.01) 288 768.6 39 3 5 2 30
RH2 (0.05) 288 773.0 36 0 6 1 30
RH3 (0.01) 288 764.9 41 0 13 1 38
RH3 (0.05) 287 762.3 50 4 20 3 41
RH4 (1) 288 784.0 47 0 20 5 41
RH4 (2) 196 702.4 30 1 96 2 24
RH4 (3) 159 704.5 31 6 135 3 22

aWe subtracted the number of times that the solution found was also the best.

Table 5.6: Comparison of heuristic solutions.

tings for the rounding heuristics RH1 (ε), RH2 (ε) and RH3 (ε). For RH1 (ε)
and RH2 (ε) the CPU-time/solution performance trade-off is best for ε = 0.01.
For RH3 (ε) it is best for ε = 0.05. Finally, the tables show that although the
EDD heuristic requires hardly any computation time, it clearly has the worst
solution performance of all heuristics. The EDD heuristic does perform better
after we translate its order schedules into order plans using the method de-
scribed in Lemma 4.1, and let the initial RLP find the optimal order schedules
along with these order plans. Nevertheless, even with this improvement the
EDD heuristic is outperformed by the other heuristics.

We thus conclude that the rounding heuristics RH1 (0.05), RH2 (0.05),
RH3 (0.01) and RH4 (1) are the best rounding heuristics. In all branch-and-
price based algorithms before we start branching we execute these heuristics in
this order, followed by IH, which uses the solution found by RH4 (1) as the
initial solution.

5.4.2 Preliminary test results for the branch-and-price

methods

In this section we compare the performance of the branch-and-price algorithms
that are listed in Table 5.4. Before the branching starts, we optimize the LP in
the root by performing column generation on the initial RLP (see also Figure
5.1). In other words, we start by solving the LP in the root node. Table 5.7
displays some characteristics of this first column generation iteration. In the
table we compare the CPU-time that is required to solve the LP in the root
node for both δ = 0 and δ = 1, as well as the average number of columns (order

5.4. Preliminary test results 91

plans) that are generated per order in the column generation scheme in order
to solve the LP . The final two columns compare the average LP solution value
for both δ = 0 and δ = 1.

The size of the LP model is largely determined by the number of orders,
as well as the size of the order plans. Since both are closely related to T , we
divide the 144 test instances in 6 classes of 24 instances, each class representing
instances with a different T (T ∈ {5,10,15,20,25,30}).

Avg. CPU- Avg. #columns Avg. LP
T Cases time (sec.) per order solution value

δ=0 1 0 1 0 1
5 24 0.07 0.09 1.62 1.79 269.95 318.19
10 24 0.64 1.28 1.82 2.18 326.42 387.24
15 24 2.55 5.01 1.93 2.53 252.95 338.39
20 24 11.96 22.05 2.08 2.74 176.18 357.57
25 24 21.42 39.09 2.12 2.84 234.94 457.28
30 24 57.80 89.95 2.13 3.09 442.26 740.10

Table 5.7: Computational results of solving the LP in the root node.

Table 5.7 clearly shows that the CPU-time increases with the length of
the time horizon. We note that the average CPU-time in the table is often
increased by a small number of instances in each class that require much more
CPU-time. This is a typical symptom of solving LP problems with the simplex
method. For example, in the class of instances with T = 30 and δ = 0, there are
only 5 instances that require more CPU-time than the average. The maximum
CPU-time of these 5 instances is 335.04 seconds. If we omit the 5 instances of
cycling for T = 30 and δ = 0, the average CPU-time is only 20.26 seconds.

For δ = 0, the jobs of the orders have more slack, and therefore, per def-
inition, the LP solution value for δ = 0 is never larger than the LP solution
value for δ = 1. Table 5.7 shows that the average LP solution value is smaller
for δ = 0 (and κ = 2) than for δ = 1. The difference between the average
LP solution value for δ = 0 and δ = 1 increases non-proportionally with T .
Apparently, the instances with δ = 0 benefit more from considering a longer
planning horizon.

Table 5.7 also shows that only few order plans are generated per order. This
demonstrates the strength of the approach: apparently only few order plans
are needed to be able to find the optimal order schedules of the LP .

The difference between δ = 0 and δ = 1 is also apparent in the average
number of columns that are added per order in the column generation scheme.
This can be attributed to the increase in slack: a dominant order plan for δ = 0
allows more order schedules than an order plan for δ = 1. Thus, in general,
fewer order plans are necessary for δ = 0.

92 Chapter 5. Resource loading computational results

We truncate each branch-and-price algorithm after 30 minutes, except for
TBS90, which is truncated after 90 minutes. We first analyze the general
computational results for these algorithms. Tables 5.8 and 5.9 show the general
computational results for all 288 instances, i.e., 144 instances solved for both
δ = 0 and δ = 1, for all branch-and-price methods, except for TBS90. Since the
computational results may diverge for δ = 0 and δ = 1, we have also compared
the algorithms for both δ = 0 and δ = 1. This, however, leads to the same
conclusions for δ = 0 and δ = 1. Therefore we show the general results for
δ = 0 and δ = 1 combined.

#Trun- Avg. Avg. #Improve- Avg. last #Proven
cated CPU-time solution ment improvement optimal

(sec.)a value found time (sec.)
TBS 196 44.33 598.85 111 249.6 96

TBS(noLLB) 213 65.59 602.52 83 254.6 81
EAS (0.05) 186 38.88 600.15 102 295.8 83
TBS+IH 193 68.07 597.05 115 273.2 97
TBS90 191 148.31 596.61 118 1068.9 98
HBS1 127 102.91 590.26 250 483.7 87
HBS2 72 120.73 593.06 248 323.6 82
HBS1+ 136 118.80 596.95 252 438.8 85
HBS2+ 72 155.79 595.91 262 355.2 83
HBS3 153 105.98 597.87 240 472.6 82
HBS4 80 154.19 597.63 257 368.5 82

aThese results concern the instances that were not truncated.

Table 5.8: General computational results of the branch-and price methods (1).

The first column of Table 5.8 shows the number of instances (out of 288)
that are truncated after 30 minutes. The second column is the average CPU-
time for the instances that are not truncated. This does not include the CPU-
time required for the heuristics in the root node. The remaining columns in
Table 5.8 indicate the average solution value, and the number of times the
algorithm finds an improvement over the best heuristic solution, the average
last improvement time, and the number of times that the solution found is the
optimal solution. A solution is optimal if this is proven by one of the complete
branching strategies. Table 5.9 shows the number of times the method finds
the best, unique best, worst and unique worst solution value of all methods.

From the first and second column of Table 5.8, the importance of the La-
grangian lower bound determination is clear: TBS is not only truncated less
often than TBS(noLLB), it also solves the non-truncated instances in less
time.

EAS (0.05) shows a small decrease in the number of truncated instances
as compared to TBS, and a decrease in average CPU-time. The approach of

5.4. Preliminary test results 93

#Best #Unique #Worst #Unique
solution best solutiona worst

solution solution
TBS 167 0 61 0

TBS(noLLB) 138 0 96 14
EAS (0.05) 146 3 83 14
TBS+IH 171 0 59 0
TBS90 173 1 55 0
HBS1 178 27 35 0
HBS2 155 11 54 2
HBS1+ 153 9 61 7
HBS2+ 145 12 75 5
HBS3 146 7 69 8
HBS4 141 8 85 7

aWe subtracted the number of times that the solution found was also the best.

Table 5.9: General computational results of the branch-and price methods (2).

cutting off nodes in situations where the lower bound approaches the upper
bound within 5% on the one hand speeds up the branching. On the other
hand, this same approach allows that nodes are discarded, below which a better
solution value may be found. The incumbent solution (upper bound) thus may
improve less often, which slows down the branching. Apparently, with respect
to computation time, the former effect has the upper hand.

TBS+IH calls IH every 3 minutes to improve the current upper bound.
As a result, fewer nodes can be evaluated since the method is truncated after 30
minutes. Table 5.8 shows that the instances that are not truncated, on average
require more CPU-time because of applying IH. However, since TBS+IH does
have a better solution performance, it is preferred over the TBS method.

The TBS90 method truncates 191 instances, which is only 5 instances fewer
than TBS. It finds a better solution value than TBS in 10 of the 288 instances.
In these 10 instances the average solution improvement is 7.27%. The increased
branching time thus hardly pays off.

The six incomplete branching strategies HBS are truncated significantly
less often than the best BS branching strategy TBS+IH. The best HBS
method is HBS1, which finds the most unique best solution values of all meth-
ods (see Table 5.9), and which finds the least number of (unique) worst solution
values among theHBS methods. The solution performance of the other 5HBS
methods diverges much more. On the one hand they find the unique best so-
lution value more often, on the other hand they also find the (unique) worst
solution value more often. Recall from Chapter 4 that HBS1+ and HBS2+
are the same as HBS1 and HBS2, except that before branching, we add up

94 Chapter 5. Resource loading computational results

to 5 additional order plans per order to the column pool. This apparently does
not give any improvement: more instances are truncated, and the solution
performance clearly decreases. In HBS3 and HBS4 we change the selection
criterion for selecting the next order to branch on. This experiment also does
not give any improvements in the solution performance.

The average last improvement time of TBS+IH is approximately 5minutes.
Apparently, TBS+IH either finds a solution in short time, or it branches
for a long time without finding an improvement. HBS1, on the other hand,
keeps improving the solution even after a much longer time. Based on this
observation, we perform an experiment in which we apply TBS+IH, truncated
after 5minutes, followed by HBS1, which we truncate after 10 minutes. HBS1
initially uses the final column pool of TBS+IH. We refer to this method as
Comb1. A drawback of this algorithm is that, unless TBS+IH finds an optimal
solution within 5 minutes, it can never prove that the solution found is optimal.
We therefore also perform an experiment in which we first use HBS1, which
we truncate after 10 minutes, followed by TBS+IH, which we truncate after
5 minutes. TBS+IH thus uses the column pool of HBS1. In this method,
TBS+IH has 5 minutes to improve the solution found by HBS1 (10), or to
prove that the solution found byHBS1 (10) is optimal. We refer to this method
as Comb2. Table 5.10 shows the computational results of these two algorithms,
tested on the 288 instances.

Avg. #Trun- #Better #Same #Unique
solution cated than solution as best
value TBS+IH HBS1 TBS+IH HBS1 method

Comb1 594.87 186 49 53 209 166 13
Comb2 589.56 190 87 40 173 221 5

Table 5.10: Computational results for Comb1 and Comb2.

Table 5.10 shows that Comb2 performs slightly better than Comb1. Since
Comb2 performs just as well, or even better than TBS+IH and HBS1 in
almost all instances, it may be preferred over these methods.

In Table 5.11 we focus on some specific computational results of TBS+IH.
It shows various performance characteristics of this method on 6 classes of
instances, each of which represent 24 instances with a different planning horizon
(T ∈ {5,10, 15, 20, 25, 30}).

The first two columns show that the number of truncated instances increases
with the length of the planning horizon. When T is 15 weeks and larger, less
than half of the instances are solved to optimality. For the majority of the
classes, the instances are truncated more often for δ = 1 than for δ = 0.
On the one hand, δ = 0 offers more flexibility to plan the jobs, which makes
problems easier to solve. As a result, there will be more solutions (i.e., order
schedules) that yield the same objective value. On the other hand, the solution

5.4. Preliminary test results 95

#Trun- Avg. Avg. Avg.
cated #nodesa #cutsa tree deptha

T δ=0 1 0 1 0 1 0 1
5 1 0 190898 - 134878 - 37.0 -
10 13 10 115426 109469 85857 70769 29.4 28.1
15 17 20 56268 59371 42323 40137 40.4 39.4
20 19 23 30826 40006 23181 27637 54.0 46.0
25 21 24 17505 20810 13338 14695 58.1 47.8
30 22 23 10380 14321 8067 10180 60.8 52.1

aThese results only concern the instances that were truncated.

Table 5.11: Computational results for TBS+IH.

space becomes larger, so more branching is required. Table 5.11 shows that the
former effect dominates the latter.

The average number of nodes that are explored generally decreases with T .
This may be expected since the problem size (as well as the LP) increases with
T . For δ = 1 more nodes are cut off. As a result, the number of nodes that
are explored for δ = 0 is usually fewer than for δ = 1. Approximately 70% of
all nodes are cut off (i.e., fathomed or pruned), regardless of the length of the
planning horizon.

The average maximum tree depth significantly increases with the length of
the planning horizon. The table shows that when the tree depth is too large,
although good solutions may have been found, it becomes impossible to prove
that the solution is optimal within 30 minutes. The average tree depth is
significantly smaller for the instances that are solved to optimality, although
in a small number of instances the optimal solution is found even though the
tree depth is large (i.e., up to 61).

The computational results of all methods together show that in 229 in-
stances out of 288, the branching methods either improved the best heuristic
solution, or proved that it is optimal. This clearly demonstrates the contri-
bution of the branching methods. We performed an experiment to analyze the
importance of using heuristics in the root node, for the performance of the
branching methods. For this purpose we tested a variant of TBS+IH in which
we do not use EDD to initialize the RLP . Instead we start from an arbitrary
solution, which may not be feasible. Furthermore, in this algorithm we do
not use the various rounding heuristics and IH before branching. The results
showed that this method finds a worse solution than TBS+IH in 211 out of the
288 instances, and a better solution in 3 instances. The average solution found
by this method is 865.24, which is much larger than the average of 597.05 for
TBS+IH. Finally, the method without the heuristics is also truncated more
often: in 211 versus 193 instances. We conclude that the use of heuristics in

96 Chapter 5. Resource loading computational results

the root node clearly pays off.

The branching methods together solve 116 instances out of 288 to optimal-
ity. For the remaining 172 instances we perform an additional experiment, in
which we use TBS+IH and the best solution found this far as an initial upper
bound. In this experiment, only for one instance optimality is proven. For
the remaining 171 instances we use EAS(ε) to determine the size of the gap
between the optimal solution and the best solution found. EAS (0.05) deter-
mines that for 12 instances the gap is at most 5%, and EAS (0.1) determines
that for 8 instances the gap is at most 10%. For the remaining 151 instances
we are not able to prove within 30 minutes that the gap is less than 10%.

5.4.3 Conclusions and algorithm selection

In Section 5.4.2 we showed that the best branching strategy with respect to the
solution values is the HBS1 strategy. The biggest drawback of this method
is that it is an incomplete branching strategy. Hence, unless there is no gap
between the LP lower bound and the best solution value found, it can not be
proven that the solution that is found by HBS1 is optimal. The TBS+IH
method is the best complete branching strategy. The best algorithm is Comb2,
which combines the computational effectiveness of HBS1 with the possibil-
ity (of TBS+IH) to prove optimality, while the computation times are still
acceptable. We thus use Comb2 for the remaining computational experiments.

The preliminary results show that the larger the number of machine groups
in the instances, the harder the instances are to solve. When the number of
machine groups is smaller, there is more planning flexibility. Also, the smaller
the number of orders in the instances, the harder the instances are to solve. For
example, the computational results (not mentioned in the previous sections)
show that for the instances with λ = 0.5, 26 instances out of 96 are solved to
optimality, as opposed to 32 instances for λ = 1, and 58 instances for λ = 2.
When there are more orders (and jobs) in an instance, the proportional size
of the jobs is smaller with respect to the machine group capacity. As a result,
there is more flexibility to plan the jobs. This is underlined by the fact that
for 53 instances out of the 58 instances that are solved to optimality for λ = 2
there is no gap between the LP lower bound and the optimal solution value.
For λ = 0.5, there is no gap between the LP lower bound and the optimal
solution for only 9 instances out of the 26 that are solved to optimality. Of
course, the larger n, the larger the LP model will become. As a result, when
λ is increased further, the instances will eventually become harder to solve.

Based on the preliminary results we generate a class of instances with λ =
1, m = 5 and T ∈ {5,10,15,20,25,30}. This class appears to be the most
interesting of the instance classes: the instances are not too easy, and not too
difficult. In Section 5.5 we perform various analyses to determine how sensitive
Comb2 is to various parameter settings.

5.5. Sensitivity analyses 97

5.5 Sensitivity analyses

In this section we present the results of various sensitivity analyses on various
parameters in the test instances. Unless noted otherwise, the experiments are
performed on a class of instances with λ = 1 andm = 5, which is determined by
repeatedly simulating an order arrival process. The class contains 120 instances,
i.e., 20 instances for each value of T (T ∈ {5, 10, 15, 20,25,30}). In conjunction
with the test instances, we generate two feasible order plans (i.e., for δ = 0
and δ = 1) for each order in each test instance, to form the initial RLP for a
branch-and-price algorithm. For this purpose we use the EDD heuristic.

When we solve an instance for δ = 0, we allow only two jobs of the same
order to be produced in the same week, i.e., we set κ = 2.

5.5.1 Length of the planning horizon

Table 5.12 displays the computational results of the Comb2 method. The re-
sults are divided into 6 categories, one for each value of T (T ∈ {5,10,15,20,25,
30}). Each category thus contains 20 instances that are solved for both δ = 0
(and κ = 2) and δ = 1.

#Optimal Avg. #nodesa Avg. #cutsa Avg. tree depth
T δ=0 1 0 1 0 1 0 1
5 19 20 49684 - 33533 - 2.3 4.8
10 14 13 183988 143738 127801 94623 11.2 15.7
15 7 2 154986 233463 103510 156342 24.1 28.7
20 2 0 91833 108364 67057 73913 45.6 40.0
25 2 0 39923 39375 28153 27588 55.6 44.6
30 0 0 22792 19233 15355 13084 61.9 43.7

aThese results only concern the instances that were truncated.

Table 5.12: Computational results for various T .

From Table 5.12 we may draw the same conclusions as from Table 5.11 in
Section 5.4.2: the complexity of the instances increases with the length of the
planning horizon. The model size increases with T , and as a result, the required
CPU-time to optimize the LP in each node increases as well. The number of
nodes that are explored thus decreases with T . Also, the larger the problem
becomes, the more violated precedence relations must be repaired. Table 5.12
indeed shows that the average tree depth increases with T .

Table 5.12 shows that in general, instances with a planning horizon of up to
10 weeks, and some instances with a planning horizon of 15 weeks can be solved
to optimality. Instances with a larger planning horizon are usually truncated.
Note that it is questionable whether in practice, resource loading problems

98 Chapter 5. Resource loading computational results

with a planning horizon of more than 10 weeks are very relevant. The longer
the planning horizon, the less accurate the problem data may become, since
disturbances in the production process may occur, or, more likely, changes in
the demand requirements may occur. Hence, from a practical point of view, a
planning horizon of 10 weeks is quite large, and solving instances with a larger
planning horizon is more a mathematical challenge.

Since all instances with a planning horizon of 30 weeks are truncated, we
perform an additional experiment to determine if splitting up the planning
horizon in three, and solving the three ‘easier’ subproblems instead, will im-
prove the overall solution. In other words, in this experiment we split up the
problems with T = 30 in three subproblems, and compare the solution value
of the problem with T = 30 to the sum of the solution values of the 3 sub-
problems. When the interval in which a job Bbj is allowed to be produced (i.e.,
{rbj , dbj}) falls partly inside the planning horizon of one of the subproblems, we
only consider that job in the subproblem if at least half of the interval {rbj , dbj}
falls inside its planning horizon. Table 5.13 and 5.14 display the computational
results of this experiment.

#Trun- Avg. Avg. #Best
cated solution CPU-time solution

value (sec.)
T δ=0 1 0 1 0 1 0 1
30 20 20 588.6 932.1 900 900 12 11

3× 10 9a 17a 897.1 1013.7 496 1086 8 9

aThis is the number of times that at least one of the subproblems was truncated.

Table 5.13: Computational results for splitting up the planning horizon of 30
weeks in three (1).

Avg. Avg. Avg. sub-
operator hiring contracting

overtime (hrs.) (hrs.) (hrs.)
T 0 1 0 1 0 1
30 421.3 584.9 75.5 140.0 5.5 22.4

3× 10 368.0 423.6 175.4 189.9 59.5 70.2

Table 5.14: Computational results for splitting up the planning horizon of 30
weeks in three (2).

Note that splitting up the planning horizon reduces the planning flexibility
of the jobs. Nevertheless, Table 5.13 shows that the sum of the solution values
of the 3 subproblems is smaller than the solution value found for the entire
problem in nearly 50% of the instances. This demonstrates that it is useful to
try to solve the problems to optimality. If we would use overlapping periods

5.5. Sensitivity analyses 99

of 10 weeks, some planning flexibility can be regained. This is a more realistic
approach, which will likely yield even better solutions. The challenge of this
approach is how to connect the solutions for the overlapping periods, and make
them consistent. This experiment is subject of further research.

5.5.2 Number of machine groups

Table 5.15 shows the computational results of four classes of instances, each
containing 60 instances with a different number of machine groups m (m ∈
{3, 5, 7,10}). We solve each instance for δ = 0 and δ = 1. In the table we
compare the number of times the instances are solved to optimality, and the
use of nonregular machine group and operator capacity.

#Proven Avg. Avg. Avg. non- Avg. sub-
optimal operator regular time regular time contracting

overtime (hrs.) hiring (hrs.) hiring (hrs.) (hrs.)
m δ=0 1 0 1 0 1 0 1 0 1
3 45 30 214.0 253.4 1.7 3.8 15.3 38.1 3.5 4.9
5 30 19 223.1 331.9 0.0 1.3 11.9 42.6 1.3 4.7
7 12 12 303.3 362.4 1.0 0.5 44.5 102.7 8.4 40.9
10 10 11 380.6 419.0 0.0 0.2 51.4 140.7 36.0 123.7

Table 5.15: Sensitivity analysis of m.

The table shows that the larger the number of machine groups, the more
difficult it becomes to solve the instances to optimality. The larger m, the
larger the jobs are relative to the machine group capacity. As a result, there is
less flexibility to plan the jobs. For the same reason, also the use of nonregular
machine group capacity increases. The increase in the use of machine group
capacity in nonregular operator time is apparent in Table 5.15 from the increase
in the use of operator overtime, and the use of hiring capacity in nonregular
operator time. Also the use of subcontracting clearly increases. For δ = 0 there
is more planning flexibility, and the machine group capacity can therefore be
utilized more efficiently. As a result, the required nonregular operator and
machine group capacity is lower for δ = 0 in all instances.

We conclude that in general, instances with 3 machine groups, and a large
part of the instances with 5 machine groups can be solved to optimality. In the
instance generation procedure, jobs are assigned to machine groups randomly.
As a result, there is no clear bottleneck. Instead, the instance generation pro-
cedure makes that in fact all machine groups may have capacity problems, and
form bottlenecks. It is likely that in practical situations, only a few machine
groups are bottlenecks. It is likely that such problems, with, e.g., more than 5
machine groups, of which only a few (e.g., 3) are bottlenecks, are computation-
ally easier than when all the machine groups are bottlenecks. This experiment

100 Chapter 5. Resource loading computational results

is subject of further research.

5.5.3 Operator capacity

In this section we analyze various regular operator capacity profiles. We solve
the 120 instances for both δ = 0 and δ = 1. In Table 5.16 we compare the
computational results for these instances with various regular operator capacity
profiles. The first row corresponds to the experiment where the regular operator
capacity per week is 0.7

∑
i

Qi. In the second and third row the regular operator

capacity per week is 0.8
∑
i
Qi and

∑
i
Qi respectively. This corresponds to

operator utilization rates 140%, 125% and 100% respectively. Observe that
increasing the operator capacity per week to more than

∑
i
Qi by definition

makes no sense, since the machine groups can not handle more workload than∑
i

Qi in regular time. We note that the average sum of the processing times of

the jobs in the instances is approximately 3220 hours, i.e., on average:
∑
i
Qi ≈

3220.

Operator # Avg. Avg. Avg. Avg. Avg.
capacity Proven solution operator regular nonregular subcon-
per week optimal value overtime time hiring time hiring tracting

(hrs.) (hrs.) (hrs.) (hrs.)
ct δ=0 1 0 1 0 1 0 1 0 1 0 1

0.7
∑
i

Qi 57 42 444.8 613.4 345.8 383.7 5.5 3.1 38.1 85.3 3.9 17.6

0.8
∑
i
Qi 44 35 263.4 439.6 209.2 299.4 0.2 1.4 23.7 52.6 2.1 10.8∑

i

Qi 35 32 132.8 291.0 112.3 201.0 0.0 0.0 9.4 36.5 0.6 5.7

Table 5.16: Sensitivity analysis of the operator capacity profile.

Table 5.16 shows that the number of instances that are solved to opti-
mality decreases when the available regular operator capacity increases. The
additional operator capacity on the one hand increases the planning flexibility,
which should make the instances easier to solve. On the other hand, the size
of the solution space also increases, which makes it harder to prove optimality.
Since the nonregular capacity usage is much lower for the class of instances
with the highest operator capacity, from a practical point of view, proving
optimality does not yield much.

As may be expected, the use of nonregular capacity decreases when the
available regular operator capacity increases. This is most visible for the av-
erage required operator overtime capacity: the machine groups can be utilized
more in regular time, and as a result, less overtime work is required.

5.5. Sensitivity analyses 101

For δ = 0 there is more planning flexibility, and the operator capacity
can therefore be utilized more efficiently. As a result, the required nonregular
operator and machine group capacity is lower for δ = 0 in almost all instances.

5.5.4 Machine group capacity

Similar to the sensitivity analysis of the regular operator capacity profiles, in
this section we analyze various regular machine group capacity profiles. Table
5.17 shows the computational results for three machine group capacity profiles.
The first row corresponds to the experiment where the machine group capacity
for machine group Mi (i = 1, . . . ,m) in regular operator time per week mcit
is 0.8Qi, and the total machine group capacity per week mcit is Qi. This
corresponds to a utilization rate of 125% for the machine group capacity in
regular time, and a utilization rate of 100% for the total machine group capacity.
The second row corresponds to the experiment in which the utilization rates
are 100% and 80% respectively. Finally, the third row corresponds to the
experiment in which the utilization rates are 80% and 60% respectively. The
operator capacity per week ct in each row is 0.8

∑
i
Qi. Each row corresponds

to 120 instances, which are solved for both δ = 0 and δ = 1.

Machine # Avg. Avg. Avg. Avg. Avg.
group Proven solution operator regular nonregular subcon-

capacity optimal value overtime time hiring time hiring tracting
per week (hrs.) (hrs.) (hrs.) (hrs.)

mcit mcit δ=0 1 0 1 0 1 0 1 0 1 0 1
0.8Qi Qi 25 30 420.1 659.9 307.2 367.6 0.3 0.0 39.1 90.2 11.3 37.3
Qi 1.25Qi 44 35 263.4 439.6 209.2 299.4 0.2 1.4 23.7 52.6 2.1 10.8

1.25Qi 1.66Qi 79 60 200.5 316.8 163.3 228.9 4.2 4.7 13.4 31.8 0.7 5.0

Table 5.17: Sensitivity analysis of machine capacity profiles.

Table 5.17 shows that the number of instances that are solved to optimality
increases with the machine group capacity. In the previous section we observed
the opposite effect with respect to the operator capacity. Since we assume that
operators are generic, the solution space increases more when we increase the
operator capacity than when we increase the machine group capacity. Appar-
ently with respect to machine group capacity this does not make it harder to
prove optimality.

From a practical point of view, a production system where the machine
group capacity utilization in regular time is 125%, is overloaded, which is not
unusual. As may be expected, the average solution value clearly decreases with
the increase of machine group capacity. Also the use of nonregular machine
group capacity and operator capacity decreases when the machine group ca-
pacity increases. We note that the impact of increasing the machine group

102 Chapter 5. Resource loading computational results

capacity on the average solution value is generally smaller than the impact of
increasing the operator capacity.

5.5.5 Internal slack of an order

In this section we analyze the relation between the average slack of the in-
stances, and the solution performance. The average slack of an instance is

calculated as:
∑

j
kj

n
, where kj is the slack of order Jj . We generated 100 in-

stances with λ = 1, T = 10 and m = 5, calculated their average slack, and
categorized the computational results of the instances in Table 5.18.

Average # %Proven Avg.
slack Cases optimal treedepth

(range)
δ=0 1 0 1 0 1

[1, 2) 0 31 - 51.6 - 12.5
[2, 3) 20 53 65.0 45.3 5.4 6.3
[3, 4) 50 15 66.0 53.3 4.7 0.0
[4, 5) 27 1 66.7 100 2.8 1.0
[5, 6) 3 0 66.7 - 0.0 -

Table 5.18: Sensitivity analysis of the average slack of jobs.

Per definition, the average slack is larger for the instances with δ = 0.
Table 5.18 shows that there is no relation between the slack and the number of
instances solved to optimality. Hence, the increase in planning flexibility does
not make it harder to prove optimality.

5.5.6 Nonregular capacity cost parameters

In this section we analyze the nonregular capacity cost parameters. Table 5.19
shows the computational results of 3 different settings of the cost parameters(
o, h, s

)
: (1,1,1), (1, 2,3) and (1, 2,10) respectively. Table 5.19 shows that for

Cost #Proven Avg. Avg. Avg. non- Avg. sub-
para- optimal operator regular time regular time contracting
meters overtime (hrs.) hiring (hrs.) hiring (hrs.) (hrs.)
o h s δ=0 1 0 1 0 1 0 1 0 1
1 1 1 49 36 0.0 0.2 0.0 0.0 0.0 0.3 230.4 378.1
1 2 3 44 35 209.2 299.4 0.2 1.4 23.7 52.6 2.1 10.8
1 2 10 45 35 204.0 282.7 1.2 1.7 23.1 56.6 1.6 8.7

Table 5.19: Sensitivity analysis of the nonregular capacity cost parameters.

5.6. Conclusions 103

the setting
(
o,h, s

)
= (1,1,1), hardly any operator overtime or hiring capacity

is used. Subcontracting capacity is used instead, because it can be used as both
operator and machine group capacity. As soon as the cost of subcontracting
increases, such as for

(
o, h, s

)
= (1, 2, 3), the use of subcontracting capacity

decreases, and the use of nonregular operator capacity increases.

The number of instances that are solved to optimality is slightly larger for(
o,h, s

)
= (1, 1, 1), from a practical point of view this parameter setting is

not realistic. In practice, subcontracting usually is the last option for capacity
expansion, and hiring is usually more expensive than working overtime, because
hired staff is often not readily available.

5.5.7 Parameter κ

Finally, we analyze the parameter κ, which indicates the maximum number of
jobs of the same order that are allowed to produced in the same week. Table
5.20 shows the computational results of the 120 instances, solved for δ = 0 and
κ ∈ {1,2, 3, 10}.

#Proven Avg. Avg. Avg. non- Avg. sub-
κ optimal operator regular time regular time contracting

overtime (hrs.) hiring (hrs.) hiring (hrs.) (hrs.)
1 35 299.4 1.4 52.6 10.8
2 44 209.2 0.2 23.7 2.1
3 49 188.4 0.5 18.6 1.1
10 50 188.3 1.6 17.5 4.3

Table 5.20: Sensitivity analysis of κ.

Table 5.20 shows that the number of times that the instances are solved
to optimality increases with κ. The use of nonregular operator and machine
group capacity usually decreases when κ increases. When κ is larger, there is
more planning flexibility, and the operator and machine group capacity can be
utilized more efficiently.

The value of κ that will most likely be used in practice is 1 or 2. Order
schedules for larger κ may become impracticable when three or more jobs are
assigned to the same week. It may be relevant to use large values of κ further
in the planning horizon.

5.6 Conclusions

The computational results show that in most cases, the branch-and-price meth-
ods improve heuristic solutions. The best branch-and-price method with respect

104 Chapter 5. Resource loading computational results

to the solution performance is Comb2. It embeds the best characteristics of
HBS1 and TBS+IH. HBS1 is a fast branching method, which improves the
solution value even after a longer branching time than the other branching
methods. TBS+IH typically either improves the solution value within short
time (and/or proves that the solution found is optimal), or it branches for a
long time. The computational results show that Comb2 clearly outperforms the
other branch-and-price methods. Also, with respect to solution performance,
the branch-and-price methods also clearly outperform the heuristics. Only the
heuristic IH has a satisfactory performance.

One of the objectives of this thesis is to provide algorithms that can solve
resource loading problems of a size that is typically encountered in practice.
The most important parameters that determine whether an instance can be
solved to optimality are T and m. The computational results show that, in
general, instances with a planning horizon of up to 10 weeks, and some instances
with a planning horizon of 15 weeks can be solved to optimality. Furthermore,
most instances with 3 machine groups and a large part of the instances with 5
machine groups can be solved to optimality. In Section 5.5.2 we argued that the
instance generation procedure makes that in the resource loading instances all
machine groups form bottlenecks. We conclude that with the aforementioned
parameter settings, even large size resource loading problems can be solved to
optimality. From a practical point of view, using a longer planning horizon
(than 10 weeks) hardly makes sense, because the longer the planning horizon,
the less accurate the problem data may become (see Section 5.5.1). It may
be a mathematical challenge to solve instances with a larger planning horizon.
For this purpose we suggest further research into methods that use a rolling
horizon approach (see Section 5.5.1).

105

Chapter 6

Rough Cut Capacity

Planning

Every fact that is learned
becomes a key to other facts.

- Edward L. Youmans (1821-1887)

6.1 Introduction

In Section 1.3.2 we introduced Multi-Project Rough-Cut Capacity Planning
(RCCP) in project management as an analogue of resource loading in make-
to-order production planning. In this chapter we show that with some modifi-
cations we can use the algorithms for resource loading (see Chapter 4) to solve
RCCP problems.

We use basically the same integer linear programming model (presented in
Section 3.6) to formulate RCCP problems, but the terminology is somewhat
different. In the context of project management, we speak of projects subdi-
vided into activities , rather than orders that consist of jobs. While in resource
loading both machine capacity and operator capacity is required simultane-
ously to produce a job, in RCCP each activity is performed by one or more
(renewable) resources. Typical resources in RCCP are labor, machines, equip-
ment, space, and so on. We introduce parameter υbji to indicate the fraction
of activity Bbj of project Jj that is performed on resource Mi (i = 1, . . . ,m).
This yields the following ILP model for RCCP:

ILP : z∗ILP = min s
T∑

t=0

m∑
i=1

Sit +
n∑

j=1

∑
π∈Πj

ρjπXjπθ, (6.1)

106 Chapter 6. Rough Cut Capacity Planning

subject to:

∑
π∈Πj

Xjπ = 1 (∀j) , (6.2)

Ybjt −

∑
π∈Πj

abjtπXjπ

wbj
≤ 0 (∀b, j, t) , (6.3)

T∑
t=rj

Ybjt = 1 (∀b, j) , (6.4)

n∑
j=1

nj∑
b=1

pbjυbjiYbjt ≤ mcit + Sit (∀i, t) , (6.5)

m∑
i=1

Sit ≤ st (∀i, t) , (6.6)

all variables ≥ 0, (6.7)

Xjπ ∈ {0, 1} (∀j, π ∈ Πj ⊂ Π). (6.8)

The objective function (6.1) minimizes the outsourcing costs and the total tar-
diness penalty costs. Constraints (6.2), (6.3) and (6.6)-(6.8) are the same as in
the resource loading model ILP . Constraints (6.5) are the capacity restrictions
for the resources. The term pbjυbjiYbjt in (6.5) is the number of hours that
activity Bbj is performed on resource Mi in week t. Hence, the left hand side of
(6.5) is the total workload assigned to resource Mi in week t. The right hand
side of (6.5) is the sum of the total resource capacity in week t (mcit) and the
subcontracting capacity Sit.

Note that the constraints that provide the duals for the pricing problem in
resource loading are still embedded in the ILP for RCCP. In fact, the only
algorithmic implications are the generalized precedence relations in RCCP (see
Section 1.3.2), which have to be accounted for in the pricing algorithm, as
opposed to the linear precedence relations in resource loading. We therefore
use a generalization (with respect to the precedence relations) of the pricing
algorithm of Section 4.3.1 to solve RCCP problems with the branch-and-price
techniques presented in Chapter 4, as well as two other pricing algorithms.

The outline of this chapter is as follows. In Section 6.2 we present three
pricing algorithms for RCCP problems. In Section 6.3 we discuss the modifi-
cations of the branching strategy, when we use the branch-and-price algorithm
presented in Chapter 4 to solve a RCCP problem. We conclude this chapter
with Section 6.4, where we discuss various existing heuristics for RCCP.

6.2. Pricing algorithm 107

1

2

3

4

5 6

7

8

9 10

Figure 6.1: Example project with 10 activities.

6.2 Pricing algorithm

In this section we describe three pricing algorithms for finding project plans (in
RCCP terminology we refer to an order plan as a project plan) with negative
reduced costs. As in Section 4.3, the pricing problem can be subdivided into n
independent subproblems, i.e., one for each project Jj (j = 1, . . . , n).

The outline of this section is as follows. In Section 6.2.1 we describe a pricing
algorithm that accounts for generalized precedence relations. It is based on a
forward dynamic programming (DP) approach, which is in fact a generalization
of the algorithm of Section 4.3.1. The generalized DP has a multi-dimensional
state space. For larger instances this may lead to computational problems, and
therefore we try to improve the DP based algorithm. In Section 6.2.2 we discuss
various ways to speed up the DP based algorithm. Furthermore, we present two
alternative ways to solve pricing problems. In Section 6.2.3 we discuss a mixed
integer linear programming based pricing algorithm, and in Section 6.2.4 we
discuss a heuristic pricing algorithm. In Section 6.2.5 we conclude this section
with a discussion on how to use a combination of exact pricing algorithms and
heuristics to solve a pricing problem.

6.2.1 Pricing by dynamic programming

The generalized precedence constraints mainly influence the stages and the
state space. Recall that in the DP algorithm of Section 4.3.1 each job repre-
sents a stage, and the state describes the completion time of a job. In Chapter
4, stages were naturally introduced since all jobs must be performed subse-
quently. This is no longer the case with generalized precedence constraints. In
particular, several activities may be performed (partially) in parallel. This is
best illustrated by an example. Consider a project with 10 activities. Figure
6.1 displays an acyclic directed graph representation of the precedence relations
of the activities. Suppose (just as in Section 4.3.1) we would let each activity

108 Chapter 6. Rough Cut Capacity Planning

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

1

2

3

4

5 6

7

8

9 10

Figure 6.2: Example project with 10 activities and 6 stages.

represent a stage, and let each state describe the completion time of an activ-
ity in that state. In stage 2, the optimal decision for activity 2 (concerning its
start time) restricts the completion time of activity 1 in stage 1. Since activity
3 in stage 3 may only start after activity 1 is completed (just like activity 2),
the optimal decision concerning the start time of activity 3 in stage 3 depends
on the previously chosen decision in stage 2. This conflicts with the principle
of optimality for DP, which states that in each stage, the optimal decision for
each of the remaining stages must not depend on previously reached states or
previously chosen decisions (see Section 2.5). Hence the optimal decision for
activity 3 can not be made. We conclude that we must redefine stages and
states in the case of generalized precedence relations.

To define decisions and states properly, we first determine which activities
should be considered in each stage. Hereby we basically have to take into
account that an activity and its successors may never be in the same stage
together. There are several ways to achieve this. We form the stages as follows.
The activities that have no successors form the last stage (stage Γ). For the
remaining activities we determine the length of the longest path to any of
the activities in the final stage, where the length is defined as the number of
activities on the path. Subsequently, we form the other stages by activities that
have the same longest distance to the last stage. This guarantees that a (not
necessarily immediate) successor of an activity is always in a later stage. Hence,
the stage with the longest distance (distance Γ−1) is numbered as stage 1. We
refer to the activities of stage Γ as BΓ (Γ = 1, . . . ,Γ). The example precedence
graph in Figure 6.2 shows this for the aforementioned example project with 10
activities in 6 stages. The 6 stages are formed by activity sets B1 = {B1j},
B2 = {B2j ,B3j}, B3 = {B4j, B5j}, B4 = {B6j, B7j}, B5 = {B8j ,B9j} and
B6 = {B10,j}.

With the aforementioned definition of stages, the decision that is to be
taken for the activities in each stage concerns either the start times or the

6.2. Pricing algorithm 109

completion times of the activities of project Jj. Since the problem is symmetric
with respect to that decision, we choose that the decision xΓ in stage Γ defines
the starting times xΓb of the activities Bbj ∈ BΓ in that stage, i.e., xΓ =
{xΓb|Bbj ∈ BΓ}. In forward dynamic programming, the decision xΓ describes
how state iΓ−1 in stage Γ − 1 is transformed into a state iΓ in stage Γ. The
maximum completion time of an activity follows directly from the earliest start
time of its successors. A decision xΓ in stage Γ determines the maximum
completion times of all immediate predecessors of the activities BΓ in stage
Γ. Note that these predecessors are not necessarily activities in stage Γ − 1,
but these may also be activities from a stage before Γ− 1 (e.g., in Figure 6.2,
activity 1 from stage 1, and activities 4 and 5 from stage 3 are predecessors
of stage 4). Accordingly, we form a state iΓ−1 by the maximum completion
times iΓ−1,b of all activities Bbj in or before stage Γ− 1, that have a successor
in stage Γ or in a stage after Γ. We denote this set of activities as B+

Γ . We
illustrate this with the aforementioned example project in Figure 6.2. The 6
states are formed as follows: i1 = {i11}, i2 = {i21, i22, i23}, i3 = {i31, i34, i35},
i4 = {i44, i46, i47}, i5 = {i58, i59} and i6 = {i6,10}. Hence, B+

1 = {B1j},
B+

2 = {B1j, B2j, B3j}, B
+
3 = {B1j ,B4j ,B5j}, B+

4 = {B4j, B6j, B7j}, B
+
5 =

{B8j, B9j}, and B+
6 = {B10,j}. Note that we included the completion time

of activity B4j in state i4 of stage 4. Activity B4j has immediate successors
in stage 4 (i.e., activity B6j) as well as in stage 5 (i.e., activity B8j). If we
would not include the completion time of activity B4j in state i4, we could not
make an optimal decision for activity B6j. Namely, this decision determines
the completion time of activity B4j , which in turn determines the decision for
activity B8j . This would imply that in stage 5, the optimal decision would
depend on the decision made in stage 4, and would conflict with the principle
of optimality for DP. Consequently, we include the completion time of activity
B4j in state i4 of stage 4, to be able to make an optimal decision in stage 5 that
does not depend on the decision in stage 4. Analogously, due to the precedence
relation between activity B1j and B7j we must include the completion time of
activity B1j in the states of stages 2 and 3.

Let ajπ be a (partial) project plan for project Jj in stage Γ and state iΓ ={
iΓb|Bbj ∈ B+

Γ

}
with value Fj(iΓ). Then ajπ must allow activities Bbj ∈ BΓ

of project Jj to be performed in weeks xΓb, . . . , iΓb for some rbj ≤ xΓb ≤
iΓb −wbj +1. Accordingly, the previous state iΓ−1 =

{
iΓ−1,b|Bbj ∈ B+

Γ

}
must

be defined as follows. When activity Bbj ∈ BΓ−1 has a successor in a stage
after Γ, we have that iΓ−1,b = iΓb. Otherwise, when activity Bbj ∈ BΓ−1 only
has successors in stage Γ, we have that iΓ−1,b = min

s∈DSbj∩BΓ

xΓs−δ, where DSbj

are the immediate successors of activity Bbj of project Jj . Hence in this case
the completion time of the activity is equal to the earliest start time of its
successors, minus δ to comply with the one activity per week policy. We thus

110 Chapter 6. Rough Cut Capacity Planning

have that:

iΓ−1 =
{
iΓ−1,b|Bbj ∈ B+

Γ

}
, where: (6.9)

iΓ−1,b =

{
iΓb, if iΓb ∈ iΓ,

min
s∈DSbj∩BΓ

xΓs − δ, otherwise.

Allowing activity Bbj to be performed in the weeks xΓb, . . . , iΓb contributes

−
iΓb∑

u=xΓb

βbju to the reduced cost of the project plan. We now give the dynamic

programming recursion to solve the j-th subproblem. The initialization is:

Fj(iΓ) =

{
αj, if Γ = 0,
∞, otherwise.

The recursion for Γ = 1, . . . ,Γ is then as follows. If ∀Bbj ∈ BΓ, rbj +wbj −1 ≤
iΓb ≤ dbj :

Fj(iΓ) = min
rbj≤xΓb≤iΓb−wbj+1

Bbj∈BΓ

Fj(iΓ−1) +
∑

Bbj∈BΓ

∆bjiΓb
−

∑
Bbj∈BΓ

iΓb∑
u=xΓb

βbju

 ,

(6.10)
otherwise:

Fj(iΓ) = ∞.

Where iΓ−1 in (6.10) is defined as in (6.9), and:

∆bjt =

{
(t − dbj)θbj , if t > dbj
0, otherwise.

Parameter θbj = θ, when tardiness of activity Bbj must be penalized (for
example when the completion time of this activity is considered as a project
milestone), and θbj = 0 for activities that are allowed to be tardy without a
penalty cost. Parameter ∆bjt thus adds a tardiness penalty to Fj(iΓ).

Lemma 6.1 The optimal solution to the j-th pricing subproblem is found as:

F ∗
j = min

dj≤t≤dj

Fj(iΓ), (j = 1, . . . , n).

�

Accordingly, if F ∗ = min
1≤j≤n

F ∗
j ≥ 0, then the current RLP solution is opti-

mal. If F∗ < 0, then the current RLP solution is not optimal, and we need to
introduce new columns (project plans) to the problem. Candidates are associ-
ated with those projects Jj for which F∗

j < 0, and they can be found by back-
tracking. The pricing algorithm for the j-th subproblem uses O(njT

ω) space,

6.2. Pricing algorithm 111

stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

1

2

3

4

5 6

7

8

9 10

Figure 6.3: Example project with redundant activities.

where ω is the maximum number of activities in all states, i.e., ω = max
Γ

∣∣B+
Γ

∣∣.
The pricing algorithm can be solved in O(njT

2ω) time. As can be expected, this
pricing algorithm requires significantly more computation time than the pricing
algorithms in Section 4.3 for instances of a similar size. This is mainly due to
the increase in the number of possible states in each stage. In the next section
we discuss some methods that significantly speed up the pricing algorithm.

6.2.2 Pricing algorithm speed up

In a pricing problem, there may be activities Bbj for which βbjt = 0 (∀t) and
θbj = 0. Such activities will never contribute to the objective function of the
pricing problem. We refer to these activities as redundant activities. Recall
that in each iteration of a column generation scheme a project plan is added
to the RLP , thereby introducing new possibilities to plan the activities. As a
result, typically after a number of column generation iterations the number of
redundant activities increases. We show that without affecting the solution we
may eliminate some redundant activities from the pricing problem and hereby
reduce the problem size. We illustrate this with the example project from
Section 6.2.1 with 10 activities and 6 stages. Suppose in a certain column
generation iteration the activities {1, 2,3,4, 6, 10} are redundant. We have
marked the redundant activities by a cross in Figure 6.3. We distinguish 3
types of redundant activities:

1. Redundant activities to which there is no path from a non-redundant ac-
tivity. These can be planned as early as possible. In the example project
these are activities {1, 2, 3,4}.

2. Redundant activities from which there is no path to a non-redundant ac-
tivity (activity 10 in the example project). These can be planned in

112 Chapter 6. Rough Cut Capacity Planning

5 6

7

9 8

stage 1 stage 3 stage 1stage 2

Figure 6.4: Subnetworks after eliminating redundant activities.

the project plan as late as possible. Note that such redundant activities
do not exist when the lateness of activities at the end of the project is
penalized.

3. The remaining redundant activities (activity 6 in the example project).
These can not be planned as early or as late as possible, since this would
also fix some non-redundant activities. These redundant activities can
thus not be removed from the pricing problem. However, given the state
iΓb (completion time) of such an activity Bbj in a stage Γ, the correspond-
ing optimal decision is always xΓb = iΓb −wbj + 1, i.e., the start time is
the completion time minus the minimal duration of the activity.

Removing activities {1, 2, 3,4,10} from the example project yields two in-
dependent subnetworks in the pricing problem (see Figure 6.4). For each sub-
network we must redefine the sets of activities BΓ and B+

Γ that respectively
form the stages and are involved in the states. The subnetworks can be opti-
mized independently, and the solutions must be brought together to form the
resulting project plan and calculate its reduced cost.

Another speed up of the pricing algorithm can be obtained by discarding
redundant states . A redundant state may occur when certain activities have
exactly the same successors. Suppose for instance that an activity Bbj has a
completion time iΓb in state iΓ, and there are other activities that have the
same successors. In this case, the states in which these activities have the same
completion time as activity Bbj dominate the states in which these activities
have a smaller completion time, unless these activities have a deadline that is
smaller than iΓb. We illustrate this with an example. In the example project in
Figure 6.2 redundant states may occur in stage 4, with respect to activities 6
and 7, and in stage 5, with respect to activities 8 and 9. Suppose for activities 6
and 7 in stage 4 we have release dates r6j = 2 and r7j = 2, deadlines d6j = 5 and
d7j = 6, and minimal durations w6j = 2 and w7j = 1. The possible completion
times for activities 6 and 7 are {3,4,5} and {2, 3,4,5, 6} respectively. The
non-redundant states i4 = {i46, i47} in stage 4 are: {3,3}, {4, 4}, {5,5}, and

6.2. Pricing algorithm 113

{5, 6}. For example state {3,3} dominates state {3, 2}, hence state {3, 2} is a
redundant state. Although activities 6 and 7 do not have the same completion
time in state {5,6}, this state is not redundant, since activity 6 is not allowed
to be completed in week 6.

A similar speed up can be obtained in cases where activities in the same
stage have the same predecessors and the same activity release date. In this
case we may discard all decisions in which these activities have a different
start time. We refer to these decisions as redundant decisions. In the example
project redundant decisions may originate in state 2, with respect to activities
2 and 3.

With the aforementioned procedures we not only try to speed-up the pric-
ing algorithms, we also hope to be able to optimize pricing problems for larger
projects, since the procedures also require less computer memory. We expect
that the network reduction procedure has the largest impact. However, typi-
cally in the first column generation iterations there are only a few redundant
activities, and here the network reduction technique hardly has any effect on
the problem size. In these cases the pricing problem may be too hard to solve
by dynamic programming. To still be able to optimize pricing problems for
large projects, in the next section we propose a pricing algorithm that may be
less efficient (on small pricing problems), but that may be able to solve pricing
problems for large projects.

6.2.3 Pricing by mixed integer linear programming

In this section we present a mixed integer linear programming (MILP) model
of the pricing problem for a project Jj . As in Section 4.3 we use the binary
decision variables abjtπ to form project plan ajπ in the pricing algorithm. We
introduce non-integer variables Sbt and Cbt (Sbt,Cbt ∈ [0, 1]) to define variables
abjtπ as follows:

abjtπ = Sbt +Cbt − 1 (∀b, t) ,

where:

Sbt =

{
1, if t is larger than or equal to the start time of Bbj , and
0, otherwise,

and where:

Cbt =

{
1, if t is smaller than or equal to the completion time of Bbj , and
0, otherwise.

Accordingly, the following constraints must hold with respect to Sbt and Cbt:

Sbt ≥ Sb,t−1 (∀b, t > 0) ,

Cbt ≤ Cb,t−1 (∀b, t > 0) ,

Sbt = 0 (t < rbj) , (6.11)

Cbt = 0
(
t > dbj

)
. (6.12)

114 Chapter 6. Rough Cut Capacity Planning

Thus the variables Sbt and Cbt determine the start and completion times of
the activities Bbj respectively. Observe that Constraints 6.11 stipulate that an
activity may not be performed before its release date rbj, and Constraints 6.12
stipulate that an activity may not be performed after its deadline dbj .

We model the precedence relation between activities Bbj and Bsj (s ∈ DSb)
as follows:

Sst ≤ 1−Cbt (∀b, s ∈ DSb �= ∅, t) .

Furthermore, using variables abjtπ , we model the minimal duration of activity
Bbj as follows:

dbj∑
t=rbj

abjtπ ≥ wbj (∀b) .

We use variables ρbjπ (ρbjπ ≥ 0) to denote the number of weeks that an activity
is allowed to be tardy. This variable is constructed as follows:

ρbjπ ≥ tCbt − dbj (∀b, t ≥ rbj +wbj − 1) .

The objective of the pricing problem for project Jj is to minimize the reduced
cost of the project plan ajπ, i.e.:

min
∑
b

ρbjπθbj + αj −
∑
b,t

βbjtabjtπ .

The resulting MILP has 2nj (T + 1) + nj non-integer variables, nj (T +1) bi-
nary variables and O

(
n2
jT

)
constraints. We use the commercial solver ILOG

CPLEX 7.0. to solve the MILP to optimality.

6.2.4 Heuristic pricing algorithm

The application of the explicit pricing algorithms of Sections 6.2.1 and 6.2.3
do prove on the one hand existence of a project plan with negative reduced
costs and find the best project plan, but may on the other hand be very time-
consuming. Observe that it is not necessary to find the project plan with
the lowest reduced costs in order to improve the RLP and continue a column
generation scheme. Instead a heuristic may be used to find a project plan
with negative reduced costs using little computation time. Obviously, when
a heuristic pricing algorithm does not find such a project plan, the column
generation scheme may not be terminated as we would do with an explicit
pricing algorithm, since there may exist a column with negative reduced costs.

We propose a heuristic pricing algorithm that is based on an improvement
heuristic proposed by Gademann and Schutten (2001). Since this heuristic is
an improvement heuristic (see Section 4.6.3) it requires a start solution, which
in this algorithm is a project plan. Similar to heuristic IH in Section 4.6.3

6.3. Branching strategy 115

it tries to improve the initial solution by iteratively changing the start and
completion times of the activities in the project plan. It evaluates all possible
changes in the time windows of all activities, and sorts these by increasing
value of the expected change in the reduced cost. We accept the first change
according to this sorting that leads to an improvement, i.e., that leads to a
decreasing reduced cost. We repeat this procedure until no more improvement
is found. We may in fact stop when a project plan is found with marginal
negative reduced costs. However, such a project plan can only lead to a small
improvement in the RLP . Since this may lead to many column generation
iterations it seems better to find a project plan with significantly low reduced
costs.

6.2.5 Hybrid pricing methods

With the three pricing algorithms presented in this section we hope to be able
to optimize pricing problems of any reasonable size. We have shown that the
efficiency of the DP based pricing algorithm of Section 6.2.1 depends rather on
the project structure than on the number of activities in the project. Espe-
cially when a project network has a large ω-value (i.e., the highest number of
activities in all states), the DP based algorithm may become less efficient. The
efficiency of the MILP based pricing algorithm Section 6.2.3 rather depends on
the number of activities and the number of precedence relations in the project
network. This pricing algorithm may on the one hand be less efficient, but on
the other hand it may be able to solve larger pricing problems.

In addition to the aforementioned pricing methods we propose a hybrid
pricing strategy that uses the three aforementioned pricing methods in collab-
oration. In this method we take into account that the complexity of the pricing
problem typically changes in each column generation iteration. Also, after ap-
plying the network reduction technique a pricing problem may fall apart into
subproblems of different size and complexity. If the ω-value of the network
in the pricing (sub)problem is not too large, we use the DP based algorithm.
If the ω-value is too large we use the MILP based pricing algorithm. If the
pricing (sub)problem is even too large for this algorithm, i.e., the algorithm
does not find a project plan with negative reduced costs or does not prove that
no such project plan exists within reasonable time, we use the heuristic pricing
method as a final remedy to find a project plan with negative reduced costs. In
Chapter 7 we evaluate the different solution methods for the pricing problem.

6.3 Branching strategy

The branching strategy that we use to construct a feasible ILP solution from
the LP relaxation solution is virtually the same as the BS strategy presented

116 Chapter 6. Rough Cut Capacity Planning

in Section 4.4.1. Recall that this branching strategy fixes a precedence relation
in each node of the branching tree. Since we consider generalized precedence
relations in RCCP problems, usually other activities are involved when fixing a
precedence relation between two activities, and thus some small modifications
are needed to still be able to apply the BS strategy. Suppose in a node of the
branching tree we analyze in each child node a possible repair of the precedence
relation violation of activities Bbj and Bsj . In each child node we modify the
deadline (and if necessary the due date) of activity Bbj and the release date
of activity Bsj in such a way, that these activities can no longer overlap (see
Section 4.4.1). When there are activities that have the same predecessors as
Bsj , without affecting the solution we can modify the release date of these
activities along with the release date rsj of activity Bsj, when these are smaller
than the modified release date rsj of activity Bsj. When a modification in the
release date of one of these other activities is not possible, e.g., due to a minimal
duration restriction or a deadline restriction, we may prune the child node.
Analogously, when there are activities that have the same successors as Bbj ,
without affecting the solution we can modify the deadline (and if necessary the
due date) of these activities along with the deadline dbj of activity Bbj when
dbj is smaller than the existing deadline of these activities. Again, when a
modification in the deadline of one of these other activities is not possible, we
may prune the child node.

6.4 Heuristics

As far as we know, the first heuristics for the type of RCCP problems dis-
cussed in this thesis are presented by De Boer and Schutten (1999). They
have presented various heuristics for time driven RCCP. Their first heuristic,
called ICPA (incremental capacity planning algorithm), starts by sorting all
activities in order of non-decreasing deadlines, and subsequently plans the ac-
tivities in this order in at most two phases. In the first phase each activity
is planned in its time window as much as possible, without using nonregular
capacity. This is repeated for all unplanned activities. In the second phase the
remaining unplanned (parts of) activities are planned in their time window by
assigning nonregular capacity. De Boer and Schutten test two variants of this
heuristic, which result from different criteria for the order in which the activities
are planned. The second heuristic proposed by these authors is an LP-based
heuristic. The LP formulation that is used determines the project schedules
that minimize the use of nonregular capacity. However, the precedence con-
straints between activities are ignored. The heuristic iteratively updates the
release dates and deadlines of activities in order to repair violated precedence
constraints, and re-optimizes the LP model after each change to update the
order schedules. De Boer and Schutten present different variants of the heuris-
tic, which result from different procedures to repair the violated precedence

6.4. Heuristics 117

constraints.

Gademann and Schutten (2001) propose several improvement heuristics,
and several heuristics that start with infeasible solutions and convert these to
feasible solutions. All these heuristics are proposed for time driven RCCP. The
improvement heuristics start from a feasible solution, and try to improve the
solution by iteratively changing the start and completion times of the activities
in the project plans of the solution. The heuristics only differ in the procedure
to obtain an initial feasible solution. We tested these heuristics on resource
loading problems as well as on RCCP problems. For a detailed description of
the heuristic we refer to Section 4.6.3. The other type of heuristics proposed
by Gademann and Schutten are basically variants of the LP based heuristics
proposed by De Boer and Schutten. They differ slightly with respect to the
procedure to repair violated precedence constraints.

118 Chapter 6. Rough Cut Capacity Planning

119

Chapter 7

RCCP computational

results

Get your facts first,
and then you can distort them

as much as you please.

- Mark Twain (1835-1910)

7.1 Introduction

In this chapter we present the computational results for the branch-and-price
methods for RCCP, presented in Chapter 6. As discussed in Chapter 6, we
use basically the same integer linear programming model for RCCP problems,
as for resource loading. The only algorithmic implications are the generalized
precedence relations in RCCP, which have to be accounted for in the pricing
algorithm. In Section 6.2 we proposed three pricing algorithms. The first is
a dynamic programming based pricing algorithm (see Section 6.2.1), which is
basically a generalization of the pricing algorithm for resource loading. The
second is based on a mixed integer linear programming model (see Section
6.2.3). Finally, the third is a heuristic pricing algorithm (see Section 6.2.4),
which is based on IH. We refer to the three pricing algorithms as PDP ,
PMILP and PH respectively.

In Chapter 5 we showed that for resource loading problems, the best branch-
ing strategy is Comb2. It makes no sense to use this branching strategy for
the RCCP test instances, because each test instance holds the data for one
project, as will be explained in Section 7.2. As a result, if we would use the
Comb2 method, we could only branch on the project plans of one project in the

120 Chapter 7. RCCP computational results

HBS1 method (which is embedded in Comb2). We therefore use the TBS+IH
branching strategy with one of the three pricing algorithms proposed in Section
6.2.

Recall that in the TBS+IH method, we initialize the RLP with the EDD
heuristic, or, if EDD does not lead to a feasible solution, we apply column
generation on the Phase I RLP to either find a feasible primal solution to
the LP relaxation, or to prove that no such solution exists. Subsequently, we
apply the rounding heuristics RH1 (0.01), RH2 (0.01), RH3 (0.05), RH4 (1)
and the improvement heuristic IH. IH uses the solution found by RH4 (1) as
initial solution. We use the best solution value found by the heuristics as an
upper bound, and use the branching strategy of TBS+IH. TBS+IH branches
by repairing violated precedence constraints in each node. We truncate the
branching scheme after 30 minutes.

We restrict ourselves to testing only time driven RCCP problems. As a
result, in the test instances discussed in this chapter, the projects are not
allowed to be tardy. The testing of the algorithms on resource driven RCCP
problems is subject of further research.

The outline of this chapter is as follows. First, in Section 7.2 we discuss
the test instances that we use for the experiments. In Section 7.3 we analyze
the computational results of optimizing the initial LP (i.e., the LP in the
root node) with the three pricing algorithms. Subsequently, in Section 7.4
we analyze the computational results of the three pricing methods embedded
in the TBS+IH algorithm. We compare the three versions of the algorithm
mutually, and compare the computational results with results known from the
literature.

7.2 Test instances

As compared to the instance generation procedure for resource loading (Chap-
ter 5), the instance generation procedure for RCCP is even more complicated
due to the general precedence relations between activities in RCCP. For test-
ing and benchmarking of the algorithms for RCCP we use the set of instances
generated by De Boer (1998). De Boer uses a network construction procedure
that was developed by Kolisch et al. (1992) to generate random networks.
Each test instance holds the data for only one project. The test instances are
subdivided into classes, each of which is characterized by the parameters nj

(number of activities in the project), m (the number of resources) and φ (the
average slack). The average slack is defined as:

φ =

nj∑
b=1

(
dbj −wbj − rbj + 1

)
nj

,

7.3. Optimization of the initial LP 121

where dbj −wbj − rbj +1 is the slack of activity Bbj. The parameter values are
displayed in Table 7.1. The test set contains 10 instances for each combination
of the parameters, which comes to a total of 450 instances. The length of the
planning horizon for these instances varies from 12 to 72 periods.

nj 10 20 50
m 3 10 20
φ 2 5 10 15 20

Table 7.1: Parameter values.

Table 7.2 shows the approximate size of the initial RLP for instances with
nj ∈ {10,20,50}. It shows that the size of the RLP increases considerably
with nj .

nj #nonzeros #variables #rows
10 3500 400 600
20 6500 900 1200
50 21000 2400 2900

Table 7.2: Size of the initial RLP .

De Boer considers only time driven RCCP problems, with δ = 1. Gademann
and Schutten use the same instances for their computational experiments. Al-
though our algorithms work for the case δ = 0 and for resource driven problems,
we restrict ourselves to testing the time driven problems for δ = 1. This allows
us to compare the computational results of our algorithm with the computa-
tional results of the existing algorithms from the literature.

7.3 Optimization of the initial LP

In this section we analyze the computational results of optimizing the LP in
the root node. We first analyze the required CPU-time, and the number of
times that the LP is solved to optimality using the pricing algorithms PDP
(Section 7.3.1), PMILP (Section 7.3.2) and PH (Section 7.3.3). Finally, in
Section 7.3.4 we compare the pricing algorithms mutually.

7.3.1 Pricing by dynamic programming

In this section we analyze the computational results of optimizing the initial
LP in the root node using the dynamic programming based pricing algorithm
(PDP). Before we solve a pricing problem we apply the speed up techniques
discussed in Section 6.2.2 to reduce the problem size. The experiments show

122 Chapter 7. RCCP computational results

that when the problem size increases, it becomes more and more difficult to
solve pricing problems with PDP . Particularly when the maximum number
of activities in all states (ω) is large, the pricing problem becomes harder or
even impossible to solve. Without applying the speed up techniques, we are
able to solve pricing problems for projects with up to 20 activities. The speed
up techniques not only allow pricing problems of larger projects to be solved,
they also significantly reduce the average required CPU-time to solve the LP .
Table 7.3 shows the computational results for applying the TBS+IH branching
method on 30 RCCP instances with nj = 20, using the PDP pricing algorithm
both with and without the speed up techniques. Table 7.3 shows that the
average CPU-time required in the root node to optimize the initial LP is much
higher when the speed up techniques are not used. Also the CPU-time required
for branching is much higher when the speed up techniques are not used. The
speed up techniques allow even some pricing problems for projects with 50
activities to be solved. Furthermore, since the speed up techniques reduce
the required CPU-time to solve a pricing problem, much more nodes can be
explored in the branching scheme in the same time span.

speed up avg. CPU- avg. CPU-time
techniques time root node branching

used (sec.) (sec.)
yes 0.1 12.5
no 18.5 52.0

Table 7.3: Computational results PDP with and without the speed up tech-
niques.

Recall from Section 6.2.1 that the pricing problem uses O(njT
ω) space, and

can be solved in O(njT
2ω) time. Without applying the speed up techniques,

the average ω for the instances with nj = 10 is 3.8. For nj = 20 and nj = 50
the average ω is 6.9 and 18.0 respectively. We also measured the average ω
for the problem in the first column generation iteration in the root node, af-
ter applying the speed up techniques. In this case, the average ω is 3.7, 6.3
and 14.7 respectively. The speed up techniques thus have more effect when
the projects have more activities. When applying the speed up techniques,
ω usually decreases in subsequent column generation iterations. Without ap-
plying the speed up techniques, ω remains the same in all column generation
iterations. For example, when applying the speed up techniques, the average ω
during all column generation iterations in the root node is 1.9 for nj = 10, and
2.0 for nj = 20, which is significantly lower than the ω in the first iteration.

In order to prevent computer memory problems that may stop the test-
procedure we skip solving a pricing problem when we observe a priori that the
state space becomes too large to handle in computer memory. As a result,
the column generation scheme may terminate, and the solution found is an

7.3. Optimization of the initial LP 123

upper bound on the optimal LP solution. An important implication for the
branching algorithm is that when a pricing algorithm is skipped, no Lagrangian
lower bound is available for that node. In Table 7.4 we present the number
of times (out of 450 instances) that a pricing problem is solved successfully in
the root node. We categorize the results for nj , m and φ, so each value is the
number of instances out of 10 that a pricing problem is solved successfully in
a node.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 10 10 10 10 10 10 10 10 10
5 10 10 10 10 10 10 8 0 0
10 10 10 9 1 2 2 0 0 0
15 9 8 9 5 7 1 0 0 0
20 10 10 9 0 0 0 0 0 0

Table 7.4: The number of times the pricing problem is solved successfully by
PDP .

Table 7.4 shows that the larger nj and φ, the more often a pricing problem
is skipped in the root node. This may be expected, because the larger nj , the
larger ω generally becomes. As a result, the larger the state space of the pricing
problem becomes. The state space of the pricing problem also becomes larger
for larger φ.

Table 7.5 shows the CPU-time (in seconds) required for solving the LP in
the root node with PDP . We categorize the test instances for nj, m and φ. We
only consider the instances for which the pricing problem is solved successfully,
because the other instances would distort the analysis.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 0.0 0.0 0.1 0.1 0.2 0.1 0.5 0.6 0.7
5 0.1 0.1 0.1 3.2 0.3 0.2 1.6 - -
10 0.1 0.6 1.4 3.0 2.0 10.3 - - -
15 9.8 3.3 5.6 0.6 3.1 23.5 - - -
20 0.4 0.8 5.5 - - - - - -

Table 7.5: Average required CPU-time (sec.) for solving the root LP by PDP .

Table 7.5 shows that the average CPU-time required for solving the LP is
little for small nj and φ, and generally increases with nj and φ. The average
number of column generation iterations required to optimize the LP is 3.2.
The maximum number of iterations of all instances is 29.

We conclude that, from a practical point of view, we are able to solve pricing
problems for projects of quite large size. However, when there is too much slack,

124 Chapter 7. RCCP computational results

the pricing problem often becomes too hard to solve. It is questionable whether
it makes sense to give a project as much slack as φ ≥ 10. It is likely that when
the project due date is made tighter, the pricing problem becomes easier to
solve. We also note that the pricing problems usually become easier to solve
deeper in the branching tree, because more and more constraints are added
to the problem. As a result, the activities will have less slack deeper in the
branching tree.

7.3.2 Pricing by mixed integer linear programming

In this section we analyze the computational results of optimizing the initial
LP in the root node using the mixed integer linear programming based pricing
algorithm (PMILP). The computational results for PMILP show that when
the pricing problem size grows, it becomes harder to solve the pricing problem
using this method. When the solver can not solve the pricing problem within
one minute, we skip the pricing problem. This only occurs in two instances,
both of which concern a project with 50 activities and φ = 20.

Table 7.6 shows the average CPU-time required for solving the LP in the
root node with PMILP . We again categorize the results for nj, m and φ, and
discard the instances for which the pricing problem is skipped.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 0.2 0.1 0.1 0.5 0.6 0.4 5.4 4.4 4.0
5 0.3 0.3 0.3 2.9 3.3 1.3 27.2 66.0 39.7
10 0.8 1.3 1.0 4.0 7.4 8.7 404.4 452.5 1312.4
15 2.2 2.3 2.1 16.6 30.3 21.6 250.3 5194.2 4381.2
20 2.8 4.5 4.2 31.5 81.2 56.6 571.9 1366.4 18796.2

Table 7.6: Average required CPU-time (sec.) for solving the root LP by
PMILP .

Table 7.6 shows that the CPU-time generally increases with nj and φ. In
particular for the instances that could not be solved by PDP the CPU-times are
large. For small nj and φ, PMILP on the one hand requires more CPU-time
than PDP . On the other hand, PMILP solves the LP in far more instances
than PDP , and for larger nj and φ.

We note that the average number of column generation iterations required
to optimize the LP is 10.2. The maximum number of iterations of all instances
is 66.

Just as forPDP , for PMILP the pricing problem becomes harder to solve
for larger nj and φ. We did not implement the speed up techniques for this
pricing algorithm, so some speed up is possible. A faster variant of PMILP can

7.3. Optimization of the initial LP 125

also be obtained by stopping the integer program solver as soon as a solution has
been found that corresponds to a feasible project plan with negative reduced
costs. Such a solution is sufficient to continue the column generation scheme,
however, it may require more column generation iterations to solve the pricing
problem. This method is subject of further research.

7.3.3 Heuristic pricing

In this section we analyze the computational results of optimizing the LP in
the root node using the heuristic pricing algorithm (PH). Table 7.7 shows the
average required CPU-time (in seconds).

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1
5 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1
10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
15 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.7 0.2
20 0.1 0.1 0.1 0.0 0.1 0.1 0.3 0.2 0.2

Table 7.7: Average required CPU-time (sec.) for solving the root LP by PH.

Table 7.7 shows that the average CPU-time is less than one second for all the
classes of instances. This is an advantage of this method. Table 7.8 shows the
solution performance of this pricing algorithm. We categorize the instances for
nj, so each row corresponds to 150 instances. Table 7.8 shows that the difference

Avg. Avg. #Times
optimal LP solution LP

nj solutiona found by PH optimal
10 1005.5 1462.4 46
20 980.8 1657.7 22
50 842.6 1623.4 0

aThis is the average optimal LP solution found by the other pricing algorithms.

Table 7.8: Root LP solution performance of PH.

between the optimal LP solution and the solution found by PH increases
with nj . Furthermore, the number of times that the optimal LP solution is
found by PH decreases with nj. Both effects are similar for parameter φ.
The average number of column generation iterations before termination of the
column generation scheme is 1.6.

We conclude that, although PH is fast, its solution performance is unsat-
isfactory. We recommend it only to be used in cases when both PDP and

126 Chapter 7. RCCP computational results

PMILP can not solve a pricing problem.

7.3.4 Comparison of pricing algorithms

In the previous sections we showed that, when solving the LP for small projects,
PMILP on the one hand requires more CPU-time than PDP . On the other
hand, PMILP solves the LP in far more instances than PDP . PMILP
is therefore favorable for large instances, and PDP is favorable for small in-
stances. In two instances the pricing problem is so large that it can not be
solved by PMILP .

PH never skips a pricing problem, but it may not find a project plan with
negative reduced costs when such a project plan exists. In Section 7.3.3 we
showed that only in 68 of the 450 instances it finds the optimal LP solution.
Even though this number is small, since its execution time is little, an advan-
tage of using PH is that it may allow many more nodes to be explored in a
branch-and-price algorithm, and may thus eventually lead to a better ILP so-
lution. However, an important implication of using PH in a branch-and-price
algorithm is that the Lagrangian lower bound is no longer valid. Hence, fewer
nodes may be fathomed in the branching scheme, which may cancel out the
advantage.

A hybrid approach, in which we would use PDP for small problems,
PMILP for larger problems, and PH for problems that PMILP can not
solve, may be more efficient. We restrict ourselves, however, to using one pric-
ing algorithm per method. The testing of a hybrid pricing approach is subject
of further research.

7.4 Computational results of the branch-and-

price methods

In this section we analyze the computational results for the branch-and-price
methods. As discussed in Section 7.1, we use the three pricing algorithms
PDP , PMILP and PH in the TBS+IH branching method. We refer to the
three branch-and-price methods as BPD, BPM and BPH respectively. We
also test a variant of BPM in which we add 3 project plans to the column
pool before branching. We refer to this branch-and-price method as BPM+.
The 3 project plans are constructed as follows. One project plan is added in
which all activities are allowed to be produced for wbj periods (i.e., as long as
their minimal duration), and as early as possible. Only the activities without
successors are allowed to be produced until the project due date. A similar
project plan is added, in which all activities are allowed to be produced for wbj

periods, and as late as possible. A third project plan is added, in which the

7.4. Computational results of the branch-and-price methods 127

slack is divided evenly over the activities on the critical path. By adding these
3 project plans we try to improve the performance of the rounding heuristics.

Before we start branching we execute the rounding heuristics RH1 (0.01),
RH2 (0.01), RH3 (0.05), RH4 (1) and the improvement heuristic IH. Since
we execute the heuristics in the root node of each of the 4 branch-and-price
methods (each of which may have a different column pool), we get at most 4
solutions for these heuristics. For all heuristics, the best average solution is
obtained in the BPM+ method. In this method, the number of project plans
in the column pool is the largest at the moment the heuristics are applied.
Table 7.9 shows the performance of the heuristics in BPM+. We compare the
solutions with the best known heuristic solutions from the literature. We refer
to the solution data of the best method of De Boer (1998) as DB. We refer
to the solution data of the best method of Gademann and Schutten (2001) as
GS. The bottom row of Table 7.9 shows the best known solutions from all the
methods from the literature. There are no proven optimal solutions available
for these test instances from the literature.

Avg. Avg. # # #
solution CPU-time (sec.) Best Unique Proven

nj=10 20 50 10 20 50 best optimal
RH1 (0.01) 1387.7 1612.8 1632.6 0.1 0.6 8.2 58 0 46
RH2 (0.01) 1387.8 1518.3 1501.9 0.1 0.7 11.8 60 0 42
RH3 (0.05) 1403.7 1520.6 1505.7 3.1 24.3 720.2 65 0 45
RH4 (1) 1379.0 1478.0 1409.5 0.1 0.7 13.2 63 0 42

IH 1316.2 1398.2 1251.7 0.6 2.5 132.2 133 11 83
DB 1435.9 1552.3 1423.1 3.0 8.8 49.0 5 0 5
GS 1305.2 1366.2 1177.4 13.4 104.8 1851.7 423 317 118

best known 1297.9 1360.2 1173.8 - - - - - 126

Table 7.9: Solution performance of the heuristics.

Table 7.9 shows that RH4 (1) is the best rounding heuristic. The execution
times of the rounding heuristics are usually small, because the test instances
contain only one project. As a result, the rounding heuristics converge quickly.
RH3 (0.05) requires significantly more CPU-time when nj increases, because
it solves a pricing problem in each rounding iteration.

On average, IH improves the solution found by RH4 (1) in approximately
half of the instances. The rounding heuristics and IH find the same or a better
solution than the best known solutions from the literature in 137 instances,
and find a proven (by one of the exact branch-and-price methods) optimal
solution in 87 instances. The best heuristic is GS. On average it requires much
CPU-time, but finds the best solution in the majority of the instances. From
a practical point of view, IH may be preferred, because on the one hand it
requires much less CPU-time, while on the other hand it finds solution values

128 Chapter 7. RCCP computational results

that on average require at most 74.3 (for nj = 50) more hours of nonregular
capacity.

Tables 7.10 and 7.11 show the computational results for the 4 branch-and-
price methods. In Table 7.11 we also show the solutions of GS, and best
known solutions from the literature. For the instances where a branch-and-
price algorithm could not solve the LP in the root node, we obtain a solution by
applying IH on the initial RLP solution (i.e., the EDD solution). This allows
us to compare the solution performance of the algorithms in all instances.

#Truncated Avg. #nodesa Avg.
Solutions (×1000) tree depth
found nj=10 20 50 10 20 50 10 20 50

BPD 450 76 114 142 46.7 34.7 10.6 7.2 14.2 32.0
BPM 448 76 119 149 21.9 9.3 1.3 7.2 13.4 18.4
BPM+ 418 78 119 117 16.2 7.1 2.0 7.1 13.0 17.5
BPH 450 97 123 150 34.7 22.8 8.6 7.4 14.5 29.3

aThese results concern the instances that were not truncated.

Table 7.10: Test results of the branch-and-price methods (1).

Avg. Avg. # # # #
solution CPU-time (sec.)a Best UniqueUnique Proven

nj=10 20 50 10 20 50 best worst optimal
BPD 1317.2 1518.9 1532.2 133.2 170.6 632.8 166 6 83 121
BPM 1318.8 1431.2 1252.1 229.1 166.9 444.1 145 3 12 111
BPM+ 1309.7 1397.6 1249.1 226.1 166.1 363.5 172 11 0 117
BPH 1365.6 1541.4 1503.6 167.2 117.5 - 106 0 181 96
GS 1305.2 1366.2 1177.4 13.4 104.8 1851.7 410 253 0 118

best known 1297.9 1360.2 1173.8 - - - - - - 126

aThese results concern the instances that were not truncated.

Table 7.11: Test results of the branch-and-price methods (2).

Table 7.10 shows that BPM+ finds a solution in fewer instances thanBPM .
It also generally explores fewer nodes than BPM . On the other hand, the
solution performance of BPM+ is better than that of BPM .

BPH is truncated more often than the other methods. Only for nj = 50, its
solution performance is better than that of BPD. For nj ∈ {10,20} BPH is
clearly outperformed by the other methods. BPH usually explores more nodes,
however, it does not use Lagrangian relaxation to determine lower bounds.

For instances with nj = 10 the fastest method is BPD. The solution
performance of BPD on these is only outperformed by BPM+. For instances

7.4. Computational results of the branch-and-price methods 129

with nj = 20, BPM+ also has the best solution performance. For instances
with nj = 50, BPM has the best solution performance.

For 126 out of 450 instances optimality could be proven by BPD, BPM
and BPM+. In 7 instances the best known solution from the literature is
improved, and in 174 instances the best solution of the branching methods is
the same as the best known solution from the literature. Table 7.12 shows the
number of instances that are solved to optimality by BPM+. We categorized
the results for nj, m and φ, so each number corresponds to the number of times
out of 10 that the instances are solved to optimality.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 10 10 10 10 10 10 6 2 0
5 10 9 10 6 0 0 0 0 0
10 9 3 4 0 0 0 0 0 0
15 1 0 2 0 0 0 0 0 0
20 1 1 1 0 0 0 0 0 0

Table 7.12: Number of times that an optimal solution is found by BPM+.

Table 7.12 shows that instances with small nj and φ can often be solved
to optimality. Instances with large nj and φ can almost never be solved to
optimality.

Considering the solution performance, BPM+ is the best branch-and-price
method, and GS is the best overall method. Table 7.13 compares the absolute
difference between the solution found by BPM+ and the solution found by
GS. A positive number means that the average solution found by BPM+ is
larger than that of GS. We categorize the results for nj , m and φ.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 −0.8 4.9
5 0.0 0.0 −1.2 1.3 9.5 2.5 9.6 26.5 19.8
10 1.5 1.6 −0.4 8.9 32.9 43.6 22.6 48.0 79.5
15 13.7 13.4 12.6 45.9 32.2 71.7 40.3 109.9 121.8
20 −2.4 7.7 21.6 41.7 103.4 78.5 89.1 223.1 279.8

Table 7.13: Absolute difference between the average solutions of BPM+ and
GS.

Table 7.13 shows that BPM+ and GS perform comparably for small nj or
for small φ. The larger nj and φ, the more GS outperforms BPM+.

In Table 7.14 we show the number of times that BPM+ and GS find the
best solution. We categorize the results for nj , m and φ. For example ”6,8” in

130 Chapter 7. RCCP computational results

Table 7.14 means that BPM+ finds the best solution in 6 out of 10 instances,
and GS in 8 instances out of 10.

nj 10 10 10 20 20 20 50 50 50
φ | m 3 10 20 3 10 20 3 10 20
2 10,10 10,10 10,10 10,10 9,10 10,10 9,8 7,9 6,10
5 10,10 9,10 10,9 5,8 2,9 3,7 0,10 0,10 3,8
10 6,8 8,8 6,8 2,9 1,10 1,9 0,10 0,10 1,9
15 1,8 4,10 5,7 0,10 1,9 2,8 0,10 0,10 0,10
20 1,7 4,6 4,6 1,9 0,10 1,9 0,10 0,10 0,10

Table 7.14: Number of times that BPM+,GS find the best solution.

Just as Table 7.13, also Table 7.14 shows that BPM+ and GS perform
comparably for small nj and small φ. The larger nj and φ, the more GS
outperforms BPM+.

7.5 Conclusions

The heuristic pricing method PH performs unsatisfactorily. Research into al-
ternative heuristic pricing methods is therefore recommended. A hybrid pricing
approach, in which we would use PDP for small problems, PMILP for larger
problems, and PH for problems that PMILP can not solve, may be the most
efficient pricing method. The testing of a hybrid pricing approach is subject of
further research.

The computational results show that the branch-and-price methods are suit-
able for solving RCCP problems with nj ≤ 20, and with φ ≤ 10. For larger
RCCP problems, the branch-and-price method BPM+ performs satisfactorily,
but heuristics like GS are preferred. With respect to the solution performance,
the best branch-and-price method is BPM+. The absolute difference between
the average solution values of BPM+ and GS is usually less than 50, which is
quite small from a practical point of view.

The speed up techniques have not been implemented for PMILP . Hence,
the performance of BPM+ may be improved further by using the speed up
techniques to split up the ILP model of the pricing problem whenever this is
possible. This extension is subject of further research.

131

Chapter 8

Epilogue

There never seems to be enough time to do the things
you want to do once you find them.

- Jim Croce (1943-1973)

The main objective of the research described in this thesis is to develop
models for resource loading problems with finite capacity constraints and com-
plex precedence and routing constraints, and, more importantly, to propose
exact and heuristic solution methods to solve such models. The models and
techniques used were highly motivated by recent insights regarding the use of
advanced combinatorial methods for these types of problems. Another motiva-
tion of this research originates from shop floor scheduling research. Shop floor
scheduling algorithms are rigid with respect to resource capacity. Without the
use of resource loading tools to determine the required resource levels and the
(possible) size of the workload to be scheduled, shop floor scheduling problems
may become too hard to solve and solutions may become unacceptable.

We propose resource loading methods that support shop floor scheduling
by determining the resource capacity levels available to the scheduling level, as
well as important milestones for the orders and jobs in the scheduling problem,
such as (internal) release and due dates. Resource loading can also be used to
support order acceptance. It can be used as an instrument to make trade-offs
between lead time and due date performance on the one hand, and nonregular
capacity levels on the other hand.

In this final chapter we give an overview of our results. In Section 8.1 we
give a summary of this thesis. We conclude this thesis in Section 8.2 with
suggestions for further research.

132 Chapter 8. Epilogue

8.1 Summary

The main contribution of this thesis is twofold. First, we propose a modeling
approach that offers a generic framework to formulate various types of resource
loading and RCCP problems as ILP models. Second, we propose various algo-
rithms that can solve problems of reasonable size, i.e., typically encountered in
practice, to optimality.

We position resource loading between strategical capacity planning (aggre-
gate planning) and operational capacity planning (scheduling) as a tactical
capacity planning problem. Resource loading has been rather underexposed
both in the literature and in practice. As a tactical instrument it benefits the
flexibility of the entire production system for various reasons. It serves as a tool
in the customer order processing stage, which, in make-to-order manufacturing
environments, is typically characterized by much uncertainty. On the demand
side there is uncertainty as to what orders can eventually be acquired, while
furthermore order characteristics are uncertain or at best partly known. On
the supply side there is uncertainty in the availability of the resources. In these
situations, a resource loading tool can be used to match production capacity
and customer demand, while minimizing the cost of customer order tardiness
and the use of nonregular capacity. Resource loading analyses can thus be used
to accept/reject orders, or to quote reliable due dates. Resource loading can
also serve as a tool to define realistic constraints for the underlying scheduling
problem. The resource capacity levels and important milestones (such as re-
lease and due dates) are usually supposed to be fixed in scheduling. Resource
loading can detect when and where difficulties will occur in scheduling at an
early stage, and allocate orders or order parts more efficiently, and, if neces-
sary, properly adjust resource capacity levels (by assigning nonregular capacity)
and/or milestones.

In this thesis we propose a deterministic approach for modeling and solv-
ing resource loading problems. In order to smooth out the aforementioned
uncertainty in resource loading problems we formulate resource loading at a
higher level of aggregation than scheduling problems (i.e., the tactical level vs.
the operational level). In resource loading problems we distinguish (customer)
orders that consist of jobs. Jobs are in fact work packages at a higher level
of aggregation. In the underlying shop floor scheduling problem, jobs may be
further disaggregated into operations or tasks.

The difficulty of formulating the resource loading problem as an integer lin-
ear programming model is that modeling precedence relations is not straight-
forward, and the resulting formulations are often extremely hard to solve. We
propose a modeling approach that offers a generic framework for modeling var-
ious resource loading problems. The proposed model can handle a large variety
of practical aspects, such as generalized precedence constraints, various forms of
capacity flexibility, tardiness penalties, and minimal duration constraints. The

8.1. Summary 133

model can handle resource driven resource loading and time driven resource
loading simultaneously, which allows making trade-off analyses between due
date performance on the one hand, and nonregular capacity levels on the other
hand. In this modeling approach we make a distinction between order plans
and order schedules. Order plans indicate in which periods a job of an order is
allowed to be processed. Order schedules indicate which (part of the) jobs of
the order are actually processed in each period. We propose a mixed-integer
linear programming (MILP) model of the resource loading problem with an
exponential number of integer variables. A relatively small and fixed part of
these variables determine the required nonregular capacity usage per resource
per period. The remaining variables are binary variables that correspond to
selecting an order plan for an order. The order plans are thus columns of the
coefficient matrix of the model, which are feasible with respect to precedence
constraints and order release and due date constraints. The MILP model se-
lects precisely one order plan per order, and determines order schedules that
are consistent with these order plans. The model determines the nonregular
capacity usage from the order schedules.

The precedence relations and release and due date constraints thus do not
have to be applied to the order schedules by the model, since they are embedded
in the order plans. However, since there are exponentially many feasible order
plans, an explicit model of a problem of regular size is impossible to formulate
and solve. We therefore propose various exact and heuristic solution methods,
which are all based on first solving the linear programming (LP) relaxation
of this formulation by column generation. The pricing problem comprises the
determination of feasible order plans with negative reduced costs. The idea of
a column generation scheme is that only a small set of variables are required
to determine the optimal solution of the LP. It starts from a restricted LP
formulation (RLP), which has at least one order plan per order. After each
RLP optimization, order plans with negative reduced costs are added to the
RLP. The column generation scheme terminates when no order plans with
negative reduced costs exist. The optimal solution of the LP is then found.

Clearly, if the optimal solution of the linear programming relaxation hap-
pens to be integral, we have found an optimal solution for the resource loading
problem. Otherwise, we apply a branch-and-price algorithm to determine an
optimal solution. We propose various exact and heuristic branching strategies.
Furthermore, we propose various approximation techniques that are based on
the column generation approach, such as approximation algorithms that pro-
ceed by judiciously rounding the linear programming solution to obtain a fea-
sible solution for the original problem.

Computational experiments with the resource loading methods show that
large resource loading problems with a planning horizon of up to 15 weeks and
5 machine groups can usually be solved to optimality. For larger problems, the
branch-and-bound methods usually have to be truncated. Various sensitivity

134 Chapter 8. Epilogue

analyses show that adding planning flexibility in some cases makes cases easier
to solve, and in other cases makes it harder to prove optimality. The best
resource loading method is a combination of two branching strategies. This
(exact) method generally outperforms all approximation methods.

In resource loading problems we assume linear precedence relations. We
also propose extensions of the algorithms that are able to deal with generalized
precedence relations. This allows us to use the same model and solution meth-
ods to solve Multi-Project Rough-Cut Capacity Planning (RCCP) problems,
for which some heuristics have already been proposed in the literature. The
main algorithmic implication of the generalized precedence constraints is the
generalization of the pricing algorithm. The pricing problem becomes much
harder to solve, especially when the project size increases. We propose three
different pricing algorithms, so that pricing problems of many sizes can be
solved. We propose branch-and-bound algorithms that use one of these pricing
algorithms to solve the linear program. We also propose approximation tech-
niques, such as the rounding heuristics that we proposed for resource loading
problems, and an improvement heuristic, which tries to improve an existing
feasible solution.

Computational experiments with the branch-and-bound methods show that
RCCP problems for projects of reasonable size can be solved to optimality. For
larger problems, the branch-and-bound methods compete with the heuristics
from the literature. For RCCP problems with very large projects solving the
pricing problem often becomes too computational intensive. As a result, for
large RCCP problems the branch-and-bound methods are outperformed by the
heuristics from the literature. We note that, from a practical point of view, it
is questionable whether it makes sense to solve such large problems to optimal-
ity, since information regarding resource availability and project characteristics
are usually uncertain in the long term. Solving RCCP problems with a long
planning horizon is thus more a mathematical challenge.

8.2 Further research

An important question remains as to what extent a resource loading plan is
consistent with the next planning stage, i.e., the scheduling stage. Resource
loading tools give an indication of the resource usage and important milestones
of customer orders at a more aggregated level. As with other planning prob-
lems, the data for a resource loading problem (especially problems with a long
planning horizon) will become less accurate towards the end of the planning
horizon. Disturbances in the production process may occur, or, more likely,
changes in the demand requirements may occur (e.g., rush orders may arrive).
Since long-term orders usually have less detailed (i.e., more aggregated) spec-
ifications than short-term orders, ideally they are not treated uniformly by
the resource loading. As a result, resource loading preferably has a planning

8.2. Further research 135

horizon with various non-decreasing levels of aggregation, corresponding to the
actual capacity flexibility. In such an approach we could, for example, consider
periods of a day in the first two weeks of the planning horizon, periods of a
week in the subsequent weeks, and perhaps even periods of a month after that.
This would allow a more detailed loading for orders in the short term, and a
rough planning in the long term. Not only could we then distinguish orders of
various levels of aggregation; this would also bring the resource loading prob-
lem closer to the underlying scheduling problem. In this thesis we make no
such distinction of aggregation levels in the planning horizon, since we consid-
ered planning horizons that consist of periods of equal size (i.e., a week). As
a result, we would ignore any available data for the short term that is at a
lower level of aggregation. It is likely that this will affect the consistency of
the resource loading plan and the scheduling stage. This would be avoided if a
resource loading method would be used that uses a more detailed loading in the
short term, and non-decreasing levels of aggregation for the remainder of the
planning horizon. Since there exist no proper resource loading methods even
within our problem definition, this is perhaps the logical next step in further
research.

An approach in which the size of the planning periods increases during the
planning horizon can easily be adapted by the branch-and-price techniques pro-
posed in this thesis. In fact the only implication is that the planning horizon
must be extended, and redefined. When, for example, we would consider peri-
ods of a day in the first week of the planning horizon, and periods of a week in
the subsequent 10 weeks, we could redefine the planning horizon (t = 0, . . . , 10
weeks) as follows: t = 0, . . . , 6 days, t = 7, . . . 16 weeks. An important impli-
cation of this extension is that the size of the entire model increases, and may
become harder to solve. Whether this extension leads to a higher consistency
between resource loading and scheduling is subject of further research. An al-
ternative approach that may be more appropriate for this extension is to split
up the planning horizon in parts that partly overlap, and that have an appro-
priate level of aggregation. Instead of solving the entire problem we could solve
the problem in each part of the planning horizon, and connect the overlapping
plans. The question as to whether this leads to a better solution than when we
would solve the problem in its entirety, is subject of further research.

In this research we primarily deal with resource loading problems from the
supply side (i.e., the demand is given): we consider the timing and coordina-
tion of the resources in order to load a predetermined set of orders. In practice,
especially when the planning horizon is long, it is often possible to reject or
postpone orders, possibly with additional costs. Further research is there-
fore recommended into resource loading tools that support order acceptance or
postponement decisions.

An ideal environment to test resource loading tools would be a simulation
model of an order processing environment. A simulation model allows a pro-

136 Chapter 8. Epilogue

duction system to be studied with a long time frame in compressed time, or
alternatively to study the detailed workings of a system in expanded time (Law
and Kelton, 1991). It can be adapted easily, which allows experiments with
different factory layouts and operating policies. We could model the production
system that we used throughout this thesis for resource loading problems (see
Section 1.3.1). The simulation model could generate customer order arrivals
at irregular intervals. These orders may have various characteristics, such as
size, several possible delivery dates (and corresponding prices), etc. A resource
loading tool can be embedded to aid a customer order processor to determine
possible delivery dates, and corresponding capacity usage, and (nonregular)
capacity costs. Based on some decision criteria, such as costs or profit, the
customer order processor may then accept or reject a customer order. If the
order is accepted, and the delivery date is agreed upon, the same resource load-
ing tool may be used to load the new order, and adjust the capacity levels if
necessary. Various online planning aspects must then be dealt with, such as
the question how to deal with existing orders after a new order is accepted,
i.e., whether they should be fixed or reloaded. A scheduling tool can also be
embedded in the simulation model to determine the short-term capacity plans.
This allows the consistency of the resource loading plans with the scheduling
plans to be studied.

The computational results for the three pricing algorithms for RCCP in
Chapter 7 show that each pricing algorithm is suitable for pricing problems of
a specific size. Since, because of the speed up techniques, the size of the pricing
problems vary significantly during the branch-and-price scheme, we believe that
a hybrid pricing approach may be more efficient. The testing of a hybrid pricing
approach for RCCP problems, which selects one of the three pricing algorithms
dependent on the pricing problem size, is subject of further research.

In this thesis we studied resource loading problems in a make-to-order man-
ufacturing environment. We argued in Chapter 1 that many manufacturing
companies that produce non-standard items are faced with the problem that in
the order processing stage, order characteristics are still uncertain. This uncer-
tainty can be even more eminent for engineer-to-order manufacturers. These
manufacturers even perform product design activities to order. Giebels (2000)
proposes a stochastic resource loading model, which uses stochastic variables
to model the start and processing times. The optimization of such a stochastic
model for resource loading, perhaps using some of the techniques proposed in
this thesis, is subject of further research.

137

Bibliography

Aarts, E.H.L. and J.K. Lenstra (Eds.) (1997). Local Search in Combinatorial
Optimization. John Wiley & Sons, Chichester, UK.

Anthony, R.N. (1965). Planning and Control Systems: A Framework for
Analysis. Harvard University Graduate School Of Business, Boston,
Mass.

Bahl, H.C. and S. Zionts (1987). Multi-item scheduling by Benders’ decom-
position. Journal of the Operational Research Society 38 (12), 1141—1148.

Baker, K.R. (1974). Introduction to Sequencing and Scheduling. Wiley, New
York.

Baker, K.R. (1993). Requirements Planning. Logistics of Production and In-
ventory. North-Holland, Amsterdam.

Barnhart, C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P. Vance (1998). Branch-and-price: Column generation for solving huge
integer programs. Operations Research 46, 316—329.

Beasley, J.E. (1996). Advances in Linear and Integer Programming. Oxford
Lecture Series in Mathematics and its Applications. Clarendon Press,
Oxford.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bertrand, J.W.M. and J.C. Wortmann (1981). Production Control and In-
formation Systems for Component Manufacturing Shops. Elsevier.

Bitran, G.R. and D. Tirupati (1993). Hierarchical Production Planning, Vol-
ume 4 of Logistics of Production and Inventory, Handbooks in Operations
Research and Management Science. North-Holland, Amsterdam.

Bixby, R.E., J.W. Gregory, I.J. Lustig, R.E. Marsten, and D.F. Shanno
(1992). Very large-scale linear programming: A case study in combining
interior point and simplex methods. Operations Research 40, 885—897.

Borra, T. (2000). Heuristic methods for the resource loading problem. Mas-
ter’s thesis, University of Twente, Faculty of Applied Mathematics.

Brucker, P. (1995). Scheduling Algorithms. Springer-Verlag, Berlin.

138 Bibliography

Burbidge, J.L. (1979). Group Technology in the Engineering Industry. Me-
chanical Engineering Publications LTD.

Buzacott, J.A. and J.G. Shanthikumar (1993). Stochastic Models of Manu-
facturing Systems. Prentice Hall, Englewood Cliffs.

Cay, F. and C. Chassapis (1997). An IT view on perspectives of computer
aided process planning research. Computers in Industry 34, 307—337.

Dantzig, G.B. and P. Wolfe (1960). Decomposition principles for linear pro-
gramming. Operations Research 8, 101—111.

Darlington, J. and C. Moar (1996). MRP Rest in Peace. Management Ac-
counting (UK).

De Boer, R. (1998).Resource-Constrained Multi-Project Management - A Hi-
erarchical Decision Support System. Ph. D. thesis, University Of Twente.

De Boer, R. and J.M.J. Schutten (1999). Multi-project rough-cut capacity
planning. In Flexible Automation and Intelligent Manufacturing: Pro-
ceedings of the Ninth International FAIM Conference, pp. 631—644. Cen-
ter for Economic Research (CentER): Begell House Inc., New York.

Desrochers, M., J. Desrosiers, and M. Solomon (1992). A new optimization
algorithm for the vehicle routing problem with time windows. Operations
Research 40, 342—354.

Desrochers, M. and F. Soumis (1989). A column generation approach to the
urban transit crew scheduling problem. Transportation Science 23, 1—13.

Desrosiers, J., F. Soumis, and M. Desrochers (1984). Routing with time
windows by column generation. Networks 14, 545—565.

Dreyfus, S.E. and A.M. Law (1977). The Art and Theory of Dynamic Pro-
gramming. Academic Press, Inc. Ltd.

Freling, R. (1997). Models and Techniques for Integrating Vehicle and Crew
Scheduling. Ph. D. thesis, Erasmus University Rotterdam.

Gademann, A.J.R.M. and J.M.J. Schutten (2001). Linear programming
based heuristics for multi-project capacity planning. Working paper
TBK01W-004 OMST-002, University of Twente.

Garey, M.R. and D.S. Johnson (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, San Francisco.

Geoffrion, A.M. (1974). Lagrangian relaxation for integer programming.
Mathematical Programming Study 2, 82—114.

Giebels, M.M.T. (2000). EtoPlan: A Concept for Concurrent Manufacturing
Planning and Control. Ph. D. thesis, University of Twente.

Giebels, M.M.T., E.W. Hans, M.P.H. Gerritsen, and H.J.J. Kals (2000,
June). Capacity planning for make- or engineer-to-order manufacturing;
the importance of order classification. Stockholm. 33rd CIRP Manufac-
turing Systems Conference.

139

Gilmore, P.C. and R.E. Gomory (1961). A linear programming approach to
the cutting stock problem. Operations Research 9, 849—859.

Gilmore, P.C. and R.E. Gomory (1963). A linear programming approach to
the cutting stock problem: Part II. Operations Research 11, 863—888.

Goldratt, E.M. (1988). Computerized shop floor scheduling. International
Journal of Production Research 26 (3), 433—455.

Graves, S.C. (1982). Using Lagrangian techniques to solve hierarchical pro-
duction planning problems. Management Science 28 (3).

Hax, A.C. and H.C. Meal (1975). Hierarchical Integration of Production
Planning and Scheduling. Studies in Management Sciences, Vol. 1, Lo-
gistics. North Holland TIMS.

Held, M. and R.M. Karp (1971). The traveling salesman problem and mini-
mum spanning trees: Part II. Mathematical Programming 1, 6—25.

Hendry, L.C., B.G. Kingsman, and P. Cheung (1998). The effect of workload
control (WLC) on performance in make-to-order companies. Journal of
Operations Management 16, 63—75.

Hiriart-Urruty, J.B. and C. Lemarechal (1993). Convex Analysis and Mini-
mization Algorithms, Volume I and II. Springer Verlag, Berlin.

Hoffman, K. and M. Padberg (1985). LP-based combinatorial problem solv-
ing. Annals of Operations Research 4, 145—194.

Hopp, W.J. and M.L. Spearman (1996). Factory Physics - Foundations of
Manufacturing Management. IRWIN, Boston.

Infanger, G. (1994). Planning under Uncertainty. The Scientific Press.

Johnson, E.L., G.L. Nemhauser, and M.W.P. Savelsbergh (1998).
Progress in linear programming based branch-and-bound algo-
rithms: An exposition. submitted to INFORMS J. on Com-
puting . Available for download at Savelsbergh’s webpage:
http://tli.isye.gatech.edu/faculty/savelsbergh.cfm.

Kall, P. and S.W.Wallace (1994). Stochastic Programming. Wiley, New York.

Karmarkar, U.S. (1993). Manufacturing Lead Times, Order Release and Ca-
pacity Loading. Logistics of Production and Inventory (Chapter 6). North-
Holland, Amsterdam.

Karni, R. (1982). Capacity requirements planning - a systematization. In-
ternational Journal of Production Research 20 (6), 715—739.

Kolisch, R. (1995). Project Scheduling under Resource Constraints: Efficient
Heuristics for Several Problem Classes. Physica-Verlag, Heidelberg.

Kolisch, R., A. Sprecher, and A. Drexl (1992). Characterization and gener-
ation of a general class of resource-constrained project scheduling prob-
lems: Easy and hard instances. Technical Report 301, Manuskripte aus
den Instituten fuer Betriebswirtschaftslehre.

140 Bibliography

Law, A.M. and W.D. Kelton (1991). Simulation Modeling and Analysis.
McGraw-Hill Inc, New York.

Lenstra, J.K. and A.H.G. Rinnooy Kan (1979). Computational complexity
of discrete optimization problems. Annals of Discrete Mathematics 4,
121—140.

Lock, D. (1988). Project Management (4th ed.). Gower House.

Möhring, R.H. (1984). Minimizing costs of resource requirements in project
networks subject to a fixed completion time. Operations Research 32,
89—120.

Morton, T.E. and D.W. Pentico (1993). Heuristic Scheduling Systems: With
Applications to Production Systems and Project Management. Wiley, New
York.

Negenman, E. (2000). Material Coordination Under Capacity Constraints.
Ph. D. thesis, Eindhoven University of Technology.

Nemhauser, G.L., M.W.P. Savelsbergh, and G.S. Sigismondi (1994).
MINTO, a Mixed INTeger Optimizer. Operations Research Letters 15,
47—58.

Nemhauser, G.L. and L.A. Wolsey (1988). Integer and Combinatorial Opti-
mization. Wiley, New York.

Orlicky, J. (1975). Material Requirements Planning. McGraw-Hill, London.

Pinedo, M. (1995). Scheduling: Theory, Algorithms, and Systems. Prentice
Hall, Englewood Cliffs.

Ross, S. (1983). Introduction to Stochastic Dynamic Programming. Academic
Press.

Savelsbergh, M.W.P. (1994). Preprocessing and probing for mixed integer
programming problems. ORSA Journal on Computing 6, 445—454.

Savelsbergh, M.W.P. (1997). A branch-and-price algorithm for the general-
ized assignment problem. Operations Research 45, 831—841.

Schneeweiss, C. (1995). Hierarchical structures in organizations: A concep-
tual framework. European Journal of Operational Research 86, 4—31.

Schutten, J.M.J. (1998). Practical job shop scheduling. Annals of O.R. 83,
161—177.

Sennott, L.I. (1999). Stochastic Dynamic Programming and the Control of
Queueing Systems. Wiley, New York.

Shapiro, J.F. (1993). Mathematical Programming Models and Methods for
Production Planning and Scheduling. Logistics of Production and Inven-
tory. North-Holland, Amsterdam.

Sheng, P. and M. Srinivasan (1996). Hierarchical part planning strategy for
environmentally conscious machining. Annals of the CIRP 45 (1), 455—
460.

141

Silver, E.A., D.F. Pyke, and R. Peterson (1998). Inventory Management and
Production Planning and Scheduling (3rd ed.). Wiley, New York.

Snoep, M. (1995). Produktiebesturing en -beheersing in Machinefabriek
Noord-Oost Nederland (in Dutch). Master’s thesis, University of Twente,
Faculty of Mechanical Engineering.

Stalk Jr., G. and T.M. Hout (1988). Competing against time: How time-
based competition is reshaping global markets.Harvard Business Review ,
41—51.

Suri, R. (1994, November). Common misconceptions and blunders in imple-
menting quick response manufacturing. SME AUTOFACT ’94 Confer-
ence.

Ten Kate, H.A. (1995). Order Acceptance and Production Control. Ph. D.
thesis, University of Groningen.

Van Assen, M.F. (1996). Produktiebesturing van semi-autonome produktie-
teams bij Urenco Nederland B.V. (in dutch). Master’s thesis, University
of Twente, Faculty of Mechanical Engineering.

Van Assen, M.F., E.W. Hans, and S.L. Van de Velde (1999). An agile
planning and control framework for customer-order driven discrete parts
manufacturing environments. International Journal of Agile Management
Systems 2 (1).

Van den Akker, M., H. Hoogeveen, and S.L. Van de Velde (2000). Combining
column generation and Lagrangian relaxation. submitted to INFORMS
Journal on Computing .

Van Houten, F.J.A.M. (1991). PART: A Computer Aided Process Planning
System. Ph. D. thesis, University of Twente.

Vance, P.H., C. Barnhard, E.L. Johnson, and G.L. Nemhauser (1994). Solv-
ing binary cutting stock problems by column generation and branch-and-
bound. Computational optimization and applications 3, 111—130.

Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer program-
ming and ways to perform branching in a branch-and-price algorithm.
Operations Research 48 (1), 111—128.

Vanderbeck, F. and L.A. Wolsey (1996). An exact algorithm for IP column
generation. Operations Research Letters 19, 151—159.

Vollmann, T.E., W.L. Berry, and D.C. Whybark (1988). Manufacturing
Planning and Control Systems (2nd ed.). IRWIN, Homewood, Illinois.

Wiendahl, H.-P. (1995). Load-Oriented Manufacturing Control. Springer Ver-
lag, Berlin.

Wight, O. (1981). MRP II: Unlocking America’s Productivity Potential. CBI
Publishing, Boston.

Winston, W.L. (1993). Operations Research: Applications and Algorithms
(3rd ed.). International Thomson Publishing.

142 Bibliography

Wolsey, L.A. (1998). Integer Programming. Wiley, New York.

Zäpfel, G. and H. Missbauer (1993). New concepts for production planning
and control. European Journal of Operations Research 67, 297—320.

Zijm, W.H.M. (2000). Towards intelligent manufacturing planning and con-
trol systems. OR Spektrum 22, 313—345.

Zionts, S. (1974). Linear and Integer Programming. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey.

143

Appendix A

Glossary of symbols

A.1 Model input parameters

n the number of orders (index j = 1, . . . , n).
m the number of machine groups (index i = 1, . . . ,m).
nj the number of jobs of order Jj (index b = 1, . . . , nj).
T the end of the planning horizon (index t = 0, . . . , T weeks).
Bbj the b-th (b = 1, . . . , nj) job of order Jj.
µbj the machine group on which job Bbj must be processed.
vbji the fraction of Bbj that must be performed on resource Mi (RCCP).
pbj the processing time of job Bbj .
Π the set of all feasible order plans.
Πj the set of feasible order plans for Jj (index π = 1, . . . ,Πj).
ajπ π-th order plan for order Jj, with elements abjtπ .
mcit total regular capacity of machine group Mi in week t.
mcit capacity of machine group Mi in week t in regular operator time.
ct regular operator capacity in week t.
ot upper bound on the number of overtime hours in week t.
ht upper bound on the number of hirable hours in week t.
sit upper bound on the number of production hours

that can be outsourced in week t.
ot cost of overtime per hour.
ht cost of hiring one extra operator per hour.
st cost of outsourcing one hour of work.

continued on next page

144 Appendix A. Glossary of symbols

continued from previous page

wbj minimal duration (weeks) of job Bbj (wbj ≥ 1).
δ minimum time lag (0 or 1 week) between adjacent jobs,

to impose a one-job-per-week policy.
rj release date of order Jj .
dj due date of order Jj .
dj deadline of order Jj .
rbj internal release date of job Bbj .
dbj internal due date of job Bbj.
ρjπ tardiness of order plan ajπ for order Jj.
θ penalty cost for one week of order tardiness.
κ maximum number of jobs of the same order that are

allowed to be produced in the same week.

A.2 Model ouput variables

Ot number of overtime hours in week t.
HR

t number of hired hours in week t in regular operator time.
HN

t number of hired hours in week t in nonregular operator time.
Sit number of outsourced production hours in week t for

machine group Mi (i = 1, . . . ,m).
Uit number of hours on machine group Mi in week t in nonregular

operator time.
Xjπ 0-1 variable that assumes the value 1 when order plan ajπ is

selected for order Jj.
Ybjt the fraction of job Bbj processed in week t.

145

Index

A
activity . 12, 105
aggregate planning 5
assemble-to-order23

B
branch-and-bound 27
branch-and-cut 29, 30
branch-and-price.29, 30
branching strategy . 28, 72, 73, 115

best bound 33
best first28
depth first 28, 33
epsilon approximation.74
heuristic 74
truncated 74

bundle method 37

C
capacity

hiring .49
machine group . 11, 48, 51, 101
nonregular . 10, 14, 48, 51, 116
operator 10, 48, 51, 100
outsourcing 49
overtime 49
regular9, 10, 48, 51
restrictions 51

capacity planning.6
framework 4
infinite 2, 21

chase strategy 6
column generation 30

convergence39
explicit . 30
implicit 30, 34

optimality condition 35
column management 33, 70
completion time 66
complexity.26, 51
computational results

RCCP . 119
resource loading 81

constructive algorithm. 27
cutting plane methods 28

D
deadline 9, 14, 66, 116

job . 66
order . 66

degeneracy . 33
dual problem 35
due date 9, 48, 49, 56, 116
dynamic programming.27, 43, 107,

110, 121
backward 43
forward . 43
priciple of optimality . . 44, 108
recursion 44, 69, 71, 110

E
earliest due date.76
engineer-to-order7, 23

H
heuristic

algorithm 26
earliest due date 76
improvement78
pricing 114, 125
rounding. 77
stand-alone 76

146 Index

hierarchical production planning22

I
implicit enumeration 27
incumbent solution 28
integer linear programming 26
integrality

constraints 34
gap . 31
property 38, 40

J
job . 5, 11
job shop . 10, 48

L
Lagrangian

cost term 40
dual problem 37
duality gap 37
lower bound. 61, 75
multiplier 36
relaxation28, 36, 38, 75
subproblem 36

lateness. 12, 56
level strategy . 6
linear programming 5, 22, 25
LP relaxation 28, 29, 57

M
machine group 10, 48
macro process planning 5
make-to-order 3, 7, 10, 23
minimal duration10, 48, 52, 83
MRP . 2, 21
MRP II. .21, 22

N
NP hard . 26, 51

O
one-job-per-week policy.50
operational planning 2, 6
operator . 10
operator time

nonregular . . 19, 48, 49, 52, 99
regular 48, 49, 52, 76, 85

order . 5, 11
acceptance.1, 5, 7, 12, 13
classification model 7, 8
fractional 63
integral . 63
plan 49, 50, 55
processing 1, 3, 6, 7, 135
schedule.50, 55

P
planning horizon 11, 48, 135
precedence relations . 10, 23, 53, 55

generalized 12, 106, 107
linear 11, 67

preemption . 48
pricing

algorithm 30, 65, 107
hybrid . 115
multiple 36
problem 29, 33, 36, 66—68, 106
speed up.111
strategy33, 115

project . 12, 105
life cycle 12
management 12
plan . 107
schedule 116

R
reduced cost 30, 35, 66, 70, 75, 115
redundant

activity 111
decision.113
state. .112

release date . 48
resource 4, 10, 51

capacity .2, 6, 9, 11, 13, 14, 51
driven 9, 11, 14, 15, 82

resource loading 1, 5, 7—10, 23
example 15

restricted LP relaxation30, 61
restricted master problem 30

147

rough-cut capacity planning12, 13,
105

rough-cut process planning 14

S
scheduling2, 3, 6, 9, 10
separation problem 28, 30
slack weeks . 62
start time . 66
strategic planning 2, 4, 7
subgradient method 37

T
tactical planning 5, 6, 8
tailing-off effect 33, 75
tardiness. . .12, 56, 66, 82, 106, 110

penalty 56, 66, 67, 69
test instance generation83, 120
time driven 9, 14, 15, 82
two-phase simplex method.65

W
workforce planning 5
workload control 22

148 Index

149

Samenvatting

Het resource loading probleem is een middellange termijn capaciteitsplannings-
probleem, waarbij een job shop met verschillende resources, zoals machines
en operators, een aantal klantorders moet verwerken. We richten ons in dit
onderzoek op het resource loading probleem in de make-to-order (MTO) pro-
ductieomgeving. Deze productieomgeving wordt gekenmerkt door een niet-
repetitieve productie van kleine batches van klantspecifieke producten, die
worden samengesteld uit bestaande componenten en speciaal voor de klant
ontworpen componenten. Bij de klantorderverwerking worden MTO bedrijven
doorgaans geconfronteerd met een grote mate van onzekerheid. Er is onzeker-
heid over welke orders uiteindelijk verworven zullen worden, en bovendien zijn
klantorderkarakteristieken vaak niet of slechts gedeeltelijk bekend. Daarnaast
is de beschikbaarheid van machinecapaciteit en personeel op deze middellange
planningstermijn vaak niet gegarandeerd.

Het doel van dit onderzoek is het ontwikkelen van wiskundige modellen
en algoritmen die als tactische instrumenten de klantorderverwerking onder-
steunen bij het bepalen van betrouwbare levertijden, en benodigde machine-
en personeelscapaciteit om de klantorders te produceren binnen de gestelde
levertijden. Omdat gedetailleerde orderkarakteristieken vaak onzeker zijn en
gedetailleerde inputgegevens voor de resource loading daarom meestal niet
beschikbaar zijn, voeren we geen gedetailleerde planning of scheduling uit, maar
een planning op een hoger aggregatieniveau. Hierbij houden we wel rekening
met complexe technologische restricties, zoals routeringen en lineaire volgor-
derelaties tussen machinegroepen. Bij de resource loading is de capaciteit van
machines en personeel flexibel door het toestaan van overwerken, inhuren van
tijdelijk personeel, en uitbesteden. Na de klantorderverwerking kan een re-
source loading instrument worden ingezet om de capaciteitsniveaus vast te
stellen voor het onderliggende korte termijn schedulingsprobleem, waarin de
capaciteitsniveaus niet meer flexibel zijn, en als gegeven worden verondersteld.
Resource loading biedt daarom inzicht in waar capaciteitsniveaus onvoldoende
zijn, en kan oplossingen bieden door efficiënte allocatie van klantordercom-
ponenten en niet-reguliere capaciteit. Dit vereenvoudigt het onderliggende
schedulingsprobleem.

We positioneren het onderzoek in een raamwerk voor capaciteitsplanning
functies, en analyseren bestaande instrumenten voor de resource loading

150 Samenvatting

(Hoofdstuk 1). Terwijl er in de literatuur veel aandacht is besteed aan de
korte termijn productieplanning (scheduling) op het operationele niveau, en de
geaggregeerde lange termijn planning op het strategische niveau, is de beschik-
baarheid van modellen en algoritmen voor de tactische planning zeer beperkt.
Onderzoek bij een aantal Nederlandse bedrijven heeft nieuwe inzichten opge-
leverd met betrekking tot het gebruik van geavanceerde combinatorische tech-
nieken (Hoofdstuk 2) voor de resource loading. Deze ideeën worden verder
uitgewerkt in dit proefschrift. We ontwikkelen een geheeltallig lineair program-
meringsmodel van het resource loading probleem (Hoofdstuk 3), en presen-
teren verschillende exacte methoden en approximatiemethoden (heuristieken)
voor het oplossen van dit probleem. Het gepresenteerde model maakt een op
kosten gebaseerde afweging tussen levertijd-performance enerzijds, en het ge-
bruik maken van niet-reguliere capaciteit anderzijds. Hierbij houdt het model
rekening met de eerdergenoemde complexe technologische restricties.

De moeilijkheid van het formuleren van het resource loading probleem als
een (geheeltallig) lineair programmeringsmodel is dat de volgorderelaties niet
rechtstreeks zijn te modelleren. De resulterende modellen zijn door hun om-
vang niet of nauwelijks oplosbaar. Onze aanpak is gebaseerd op een geheeltallig
lineair programmeringsmodel met een exponentieel aantal geheeltallige varia-
belen. We lossen de lineaire programmeringsrelaxatie van dit model op met
een kolomgeneratiealgoritme, dat een dynamisch programmeringsalgoritme ge-
bruikt voor het oplossen van het corresponderende pricing probleem (Hoofdstuk
4). Wanneer de oplossing van de lineaire programmeringsrelaxatie geheeltallig
is, hebben we een optimale oplossing gevonden van het resource loading pro-
bleem. In het andere geval passen we een branch-en-bound algoritme toe, om
de optimale oplossing te vinden. Naast enkele exacte methoden presenteren we
enkele approximatiemethoden die gebaseerd zijn op het zoeken van geheeltal-
lige oplossingen uit de fractionele oplossing van de lineaire programmerings-
relaxatie.

Terwijl de eerder genoemde algoritmen uitgaan van lineaire volgorderela-
ties, presenteren we tevens een generalisatie van de algoritmen, zodat deze om
kunnen gaan met generieke volgorderelaties (Hoofdstuk 6). Deze algoritmen
zijn geschikt voor het oplossen van middellange termijn capaciteitsplannings-
problemen in projectomgevingen, i.e., de zogenaamde rough-cut capacity plan-
ning (RCCP) problemen. Gebleken is dat instanties van een redelijke omvang
optimaal zijn op te lossen, echter grote instanties vergen te veel tijd om opti-
maliteit van de oplossing te bewijzen.

We presenteren rekenresultaten voor zowel de resource loading algoritmen
(Hoofdstuk 5) als de RCCP algoritmen (Hoofdstuk 7), en vergelijken de reken-
resultaten met die van bestaande heuristieken.

151

Curriculum Vitae

Erwin Hans was born on July 28, 1974 in Avereest, the Netherlands. In 1992
he obtained his Atheneum diploma at De Nieuwe Veste in Coevorden. From
August 1992 to October 1996 he studied Applied Mathematics at the University
of Twente, and specialized in mathematical programming and combinatorial
optimization. From January 1996 until October 1996 he did his graduation
assignment at the Energy Research Foundation in Petten, under supervision
of prof.dr. J.J. Bisschop. In November 1996 he graduated after completing his
Master’s thesis, entitled ‘ELMA - model of a liberalized electricity market’.

In January 1997 he started as a Ph.D. student under the supervision of
prof.dr. W.H.M. Zijm, prof.dr. S.L. van de Velde, and dr.ir. A.J.R.M. Gade-
mann. He started on a research project called ‘Capacity Planning and Material
Coordination in Complex Manufacturing Systems’. The project resulted in this
thesis, entitled ‘Resource Loading by Branch-and-Price Techniques’. From Jan-
uary 2001 he is employed as an assistant professor at the University of Twente.

152 Curriculum Vitae

