Producing Joint Decisions and Explanations with CNNs

Luis F. Teixeira
Universidade do Porto / FEUP, INESC TEC

University of Twente - July 1, 2019

PhD

Deep Learning

Machine Learning

MSc Computer Vision

Distributed Multimedia
Systems

ECE - Telecommunications Computer Networks

PhD

"Contributions for the automatic description of multimodal scenes"

Post-Doc Senior Scientist "Assisted Living Solutions"

Assistant Professor
Informatics Engineering Department
Graphics Interaction and Games Group (GIG)
https://dei.fe.up.pt/gig

GIG main research areas:

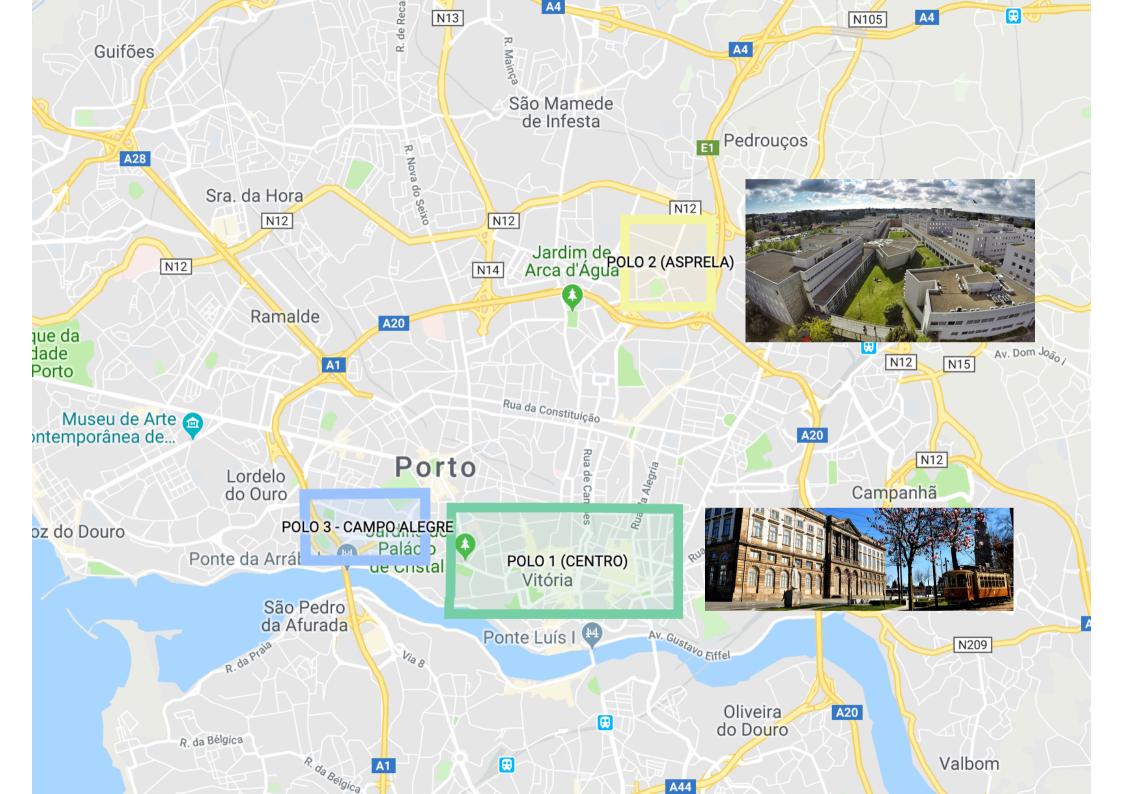
- AR/VR interchangeability
- 360 multimedia
- Serious games
- Procedural 3D modeling

Senior Researcher
Visual Computing and Machine Intelligence

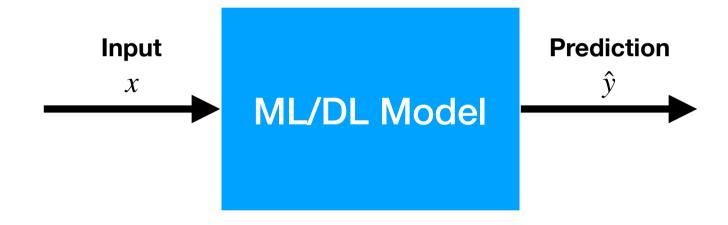
Visual Computing and Machine Intelligence Group (VCMI) https://vcmi.inesctec.pt/ (to be updated)

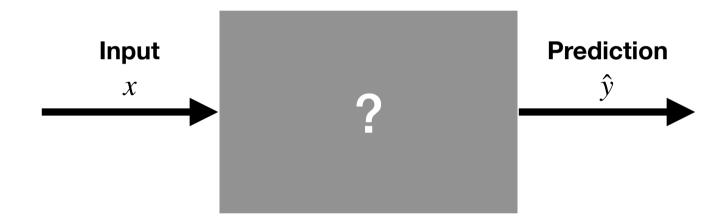
VCMI main areas of research:

- Medical Imaging
- Biometrics
- Machine/Deep Learning



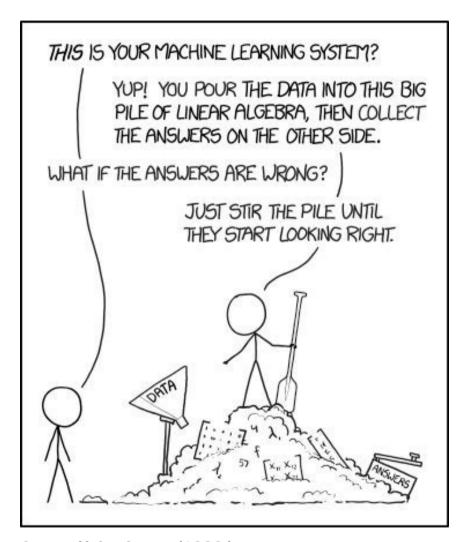
Interpretability + Deep Learning





Most of the cases we don't really know what is happening...

... (or care about)



https://xkcd.com/1838/

Interpretability

Interpretation is the process of giving explanations

To Humans

Explanations

- Explanations are a small (less complex) "model" that focuses on a small portion of the data
- Desirable properties of explanations:
 - Completeness -> susceptible of being applied in other cases where the audience can verify the validity of that explanation
 - Correctness -> generate trust (i.e., be accurate)
 - Compactness -> succinct

Why?

- Safety -> can help expose safety issues
- Mismatched objectives and multi-objective trade-offs -> what you optimise is not what you meant to optimise
- **Debugging** -> understand why the system doesn't work, and fix it
- Sensitive domain -> decisions in medicine, criminal justice, etc
- Legal/Ethics -> legally required to provide an explanation (e.g. GDPR) and/or we don't want to discriminate against particular groups

• ...

How?

- Ideal case supervised ML approach
 - A dataset containing $\{features_{k,i}, question_k, answer_k\}$

 (Almost) never the case —> proxy models or approaches are needed

How?

Pre-model

- Exploratory data analysis
- Visualisation for data exploration

In-model

- Build inherently interpretable models (e.g. rule-based
 - decision trees, rule list, rule sets -, case-based)
- Regularisation (e.g. sparsity, monotonicity)

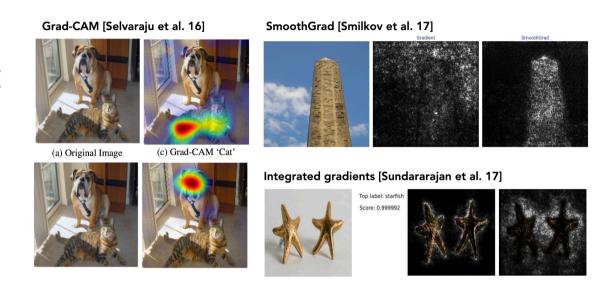
How?

- Post-model
 - White box
 - Saliency maps
 - Investigation on hidden activations
 - Black box
 - Sensitivity analysis
 - Mimic models

White Box - Saliency Maps

What are the features in the input space that influenced the most the classification?

$$\frac{\partial y}{\partial x_i}$$



backpropagate gradient of the output to the pixels in order to understand which pixels need to change the least to affect the class score the most

White Box - Hidden Layers

Gradient ascent (class model visualisation) — update the input image that maximizes the score of a certain class + some regularisation

Deconvolution — use deconvolution blocks to go from an activation map to a reconstructed image only with the most relevant parts

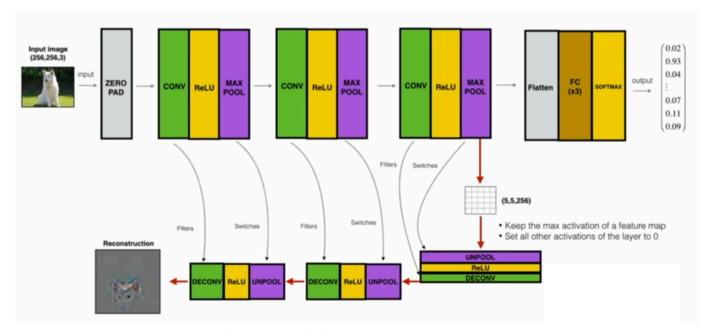


image from Stanford CS230, Fei-Fei Li and Justin Johnson

Black Box - Sensitivity Analysis

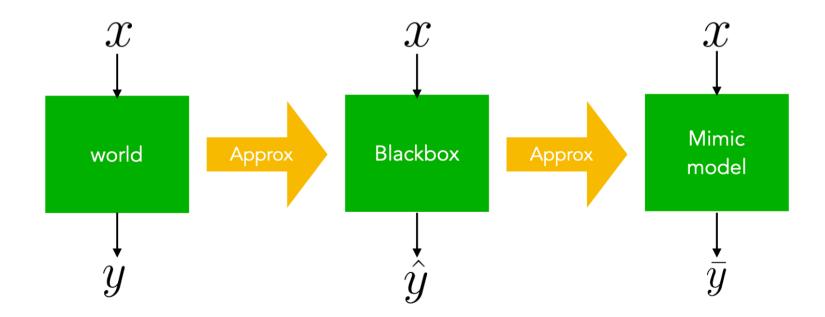
What would happen to output \hat{y} , if we perturb the input x?

$$x \rightarrow x + \epsilon$$

Occlusion sensitivity — occlude some part (sliding window) of the image and check how that affected the output

Black Box - Mimic Models

- Train a black box on x and $y: f(x) = \hat{y}$
- Train an interpretable model on x and $\hat{y}: f(x) = \bar{y}$



Evaluation

Function-based

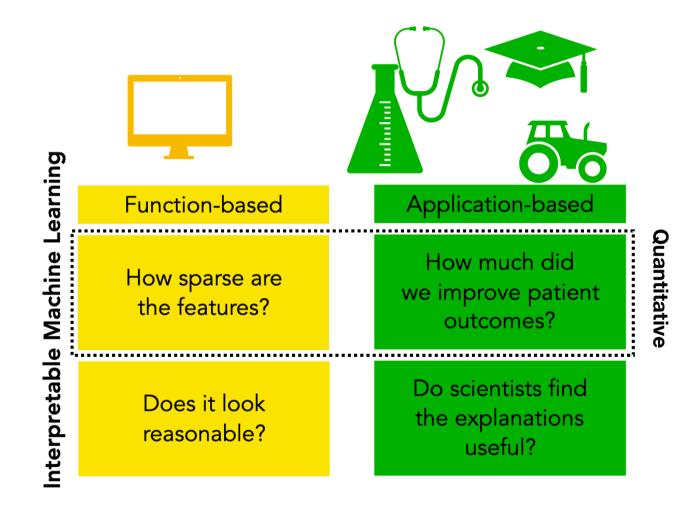
a variety of synthetic and standard benchmarks e.g, UCI datasets, imagenet

Application-based

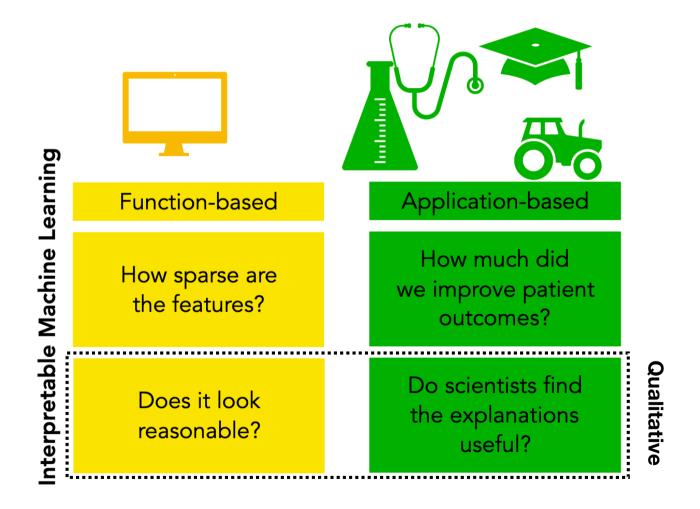
Backing up claims
e.g., performance on a
cool medical dataset,
winning Go games

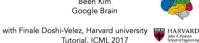
Machine Learning

Evaluation



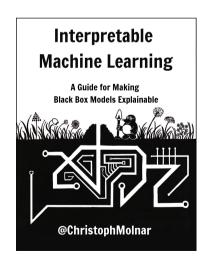
Evaluation





Been Kim and Finale Doshi-Velez, "Interpretable Machine Learning: The fuss, the concrete and the questions", ICML Tutorial, 2017

https://people.csail.mit.edu/beenkim/papers/BeenK FinaleDV ICML2017 tutorial.pdf



Interpretable Machine Learning

A Guide for Making Black Box Models Explainable", Christoph Molnar, 2019

https://christophm.github.io/interpretable-ml-book/

Towards a Joint Approach to Produce Decisions and Explanations Using CNNs

Isabel Rio-Torto, Kelwin Fernandes, Luis F. Teixeira
IbPRIA 2019

(to be presented tomorrow - shortlisted for best paper)

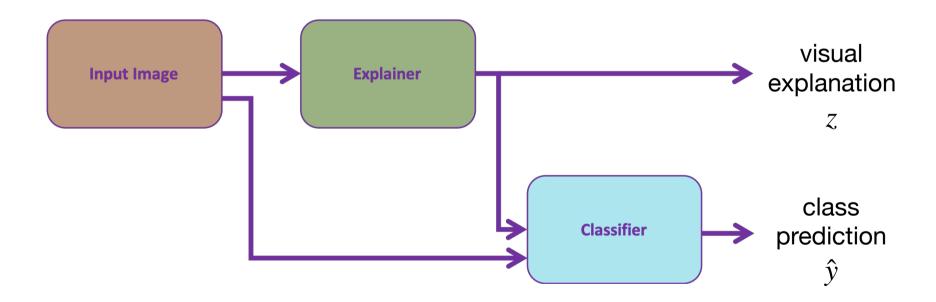
Background

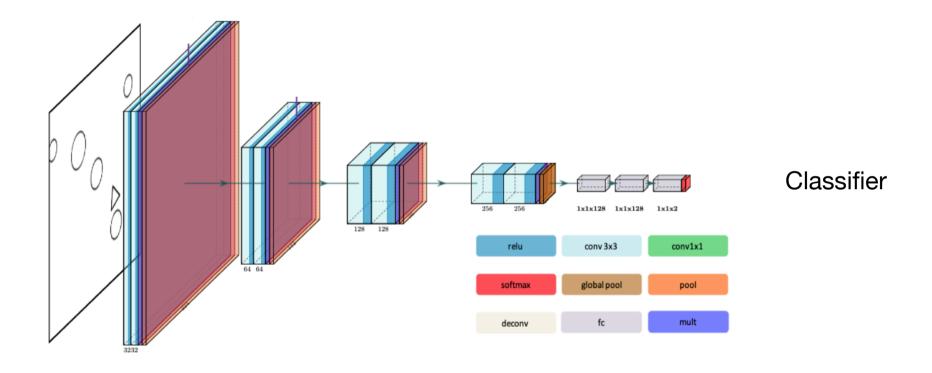
- Interpretability still lacks a unified formal definition and metrics
- Definition used (L.H. Gilpin et al.: "Explaining explanations: An overview of interpretability of machine learning):
 - explainability > interpretability

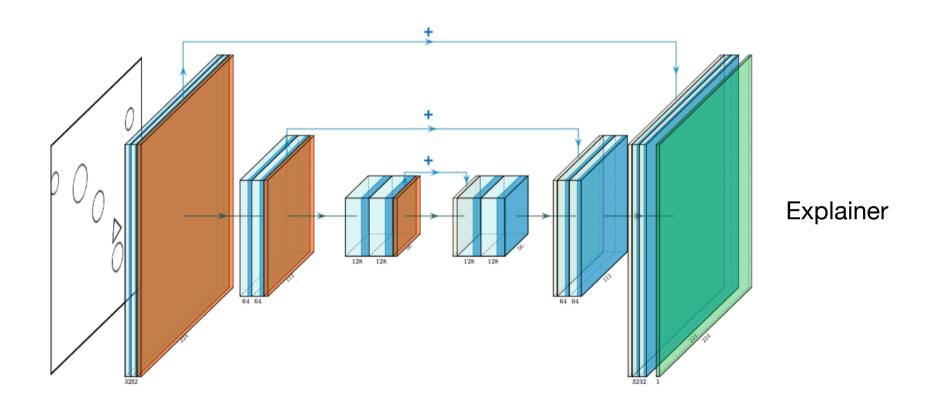
Explainable Model

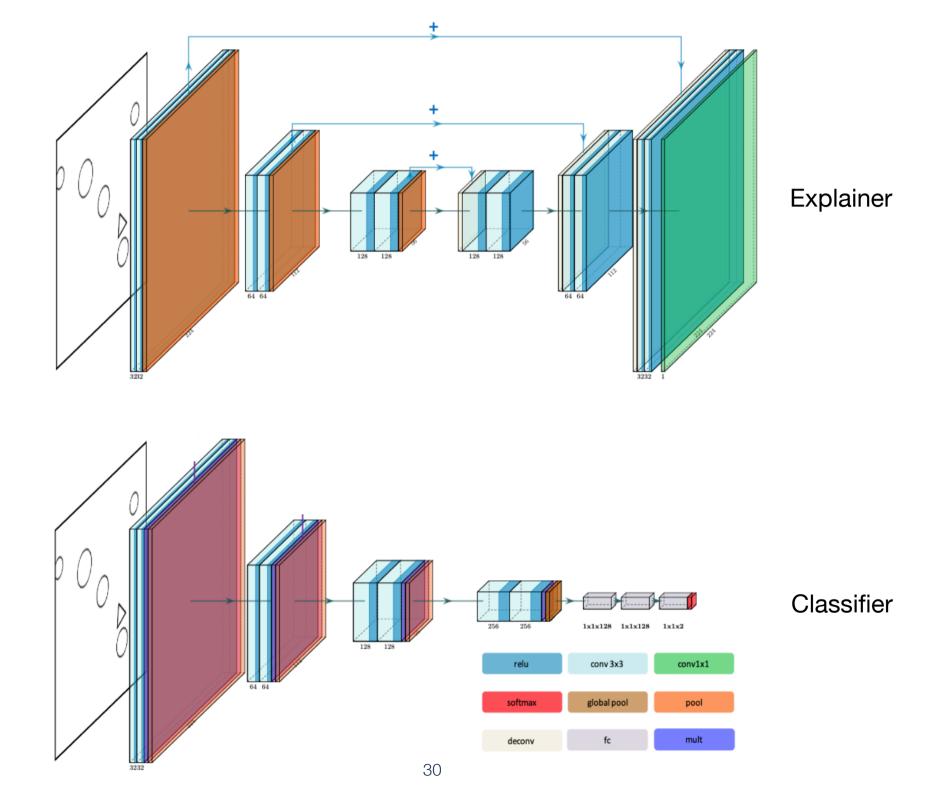
- Explainable model is one that can summarise the reasons for its behaviour or the causes of its decisions
- A good explanation should be able to balance the interpretability-completeness trade-off, because the more accurate an explanation, the less interpretable it may be to humans

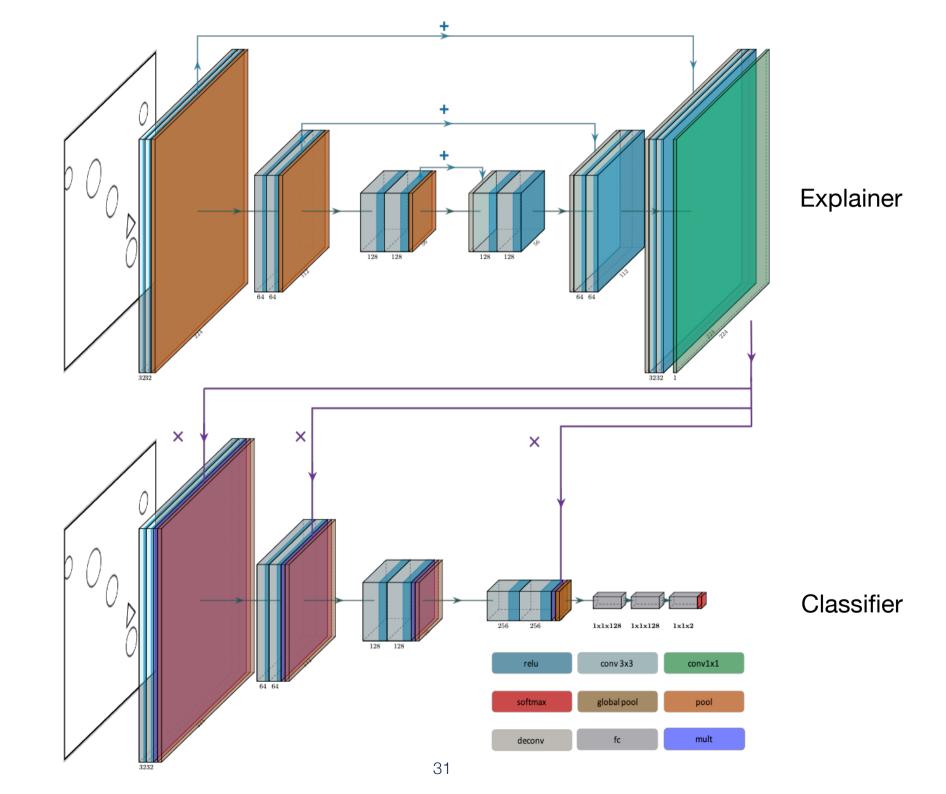
Proposed Architecture



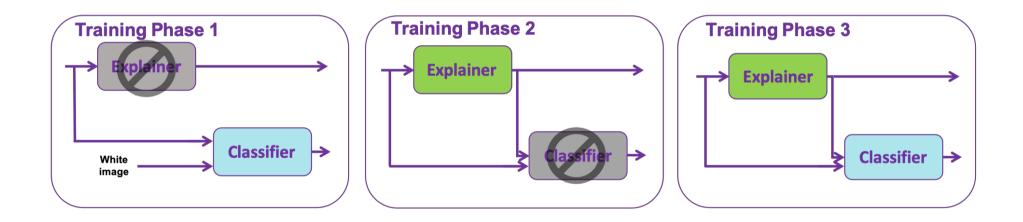








Training Process



Loss

$$\mathcal{L} = \alpha \mathcal{L}_{class} + (1 - \alpha) \mathcal{L}_{expl}$$

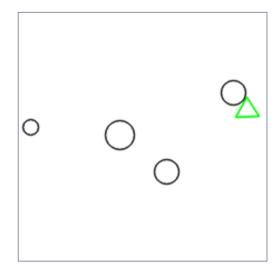
$$\mathcal{L}_{class} = -\sum_{c} y_{o,c} log(p_{o,c})$$

categorical cross entropy

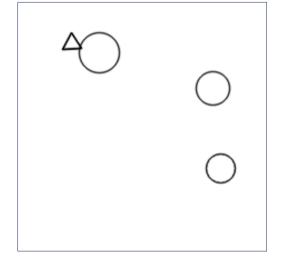
$$\mathcal{L}_{expl} = \lambda \frac{1}{m \times n} \sum_{i,j} |z_{i,j}|$$

 $\begin{array}{c} \text{penalised} \\ \mathcal{\ell}_1 \text{ norm} \end{array}$

Synthetic Datasets

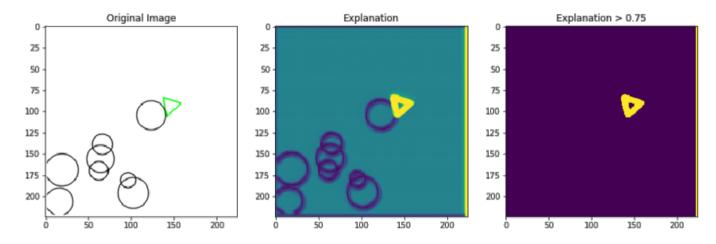


Simple dataset with colour cues
Binary classification
problem: exists/does
not exist a triangle



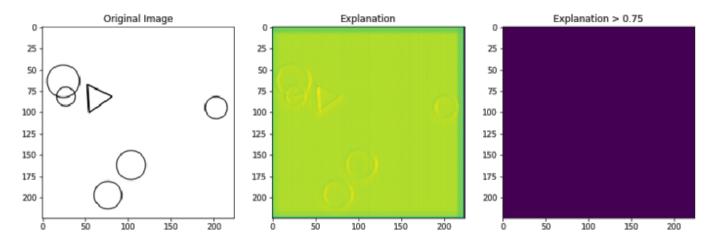
Simple dataset without colour cues
Binary classification
problem: exists/does
not exist a triangle

Results on Synthetic Datasets



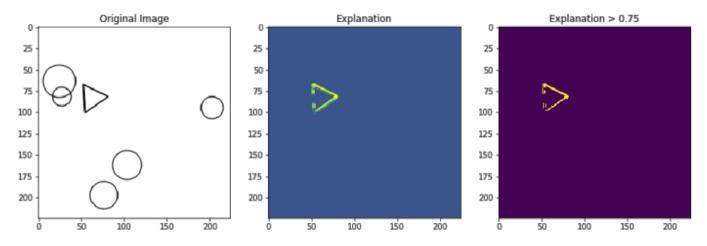
Explanation obtained without any regularisation

Results on Synthetic Datasets



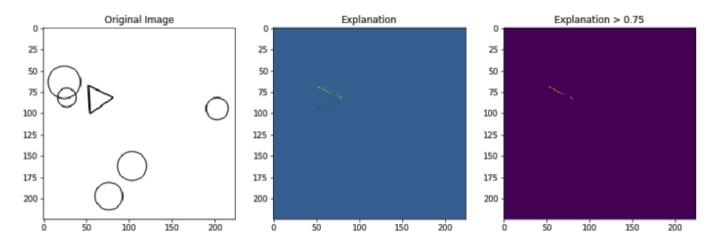
Explanation obtained without any regularisation

Results on Synthetic Datasets



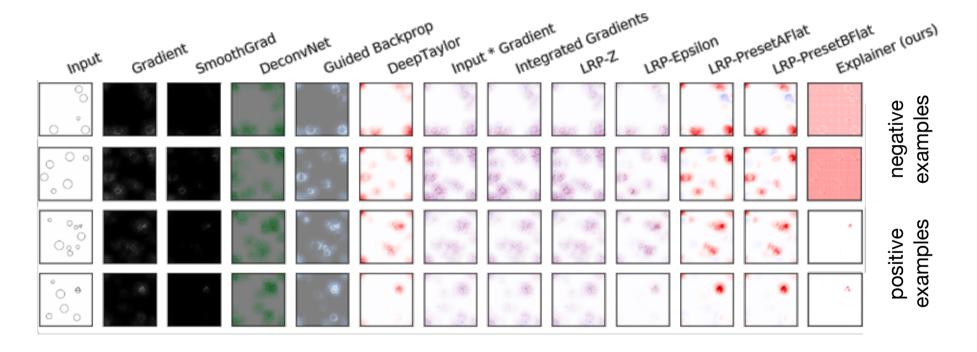
Explanation obtained with ℓ_1 penalty $\lambda = 10^{-6}$

Results on Synthetic Datasets



Explanation obtained with ℓ_1 penalty $\lambda=10^{-4}$

Comparison with State-of-the-Art Methods



Comparison between our explanation method and methods implemented in the iNNvestigate toolbox (Alber *et al.*: iNNvestigate neural networks!)

Real Datasets

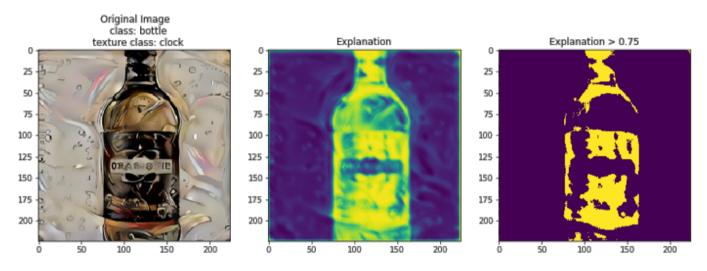
Cue conflict dataset introduced in Geirhos *et al.*: "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness"

Original class: truck
Texture class:
elephant

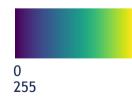
Original class: bicycle
Texture class: truck

Original class: bottle
Texture class: clock

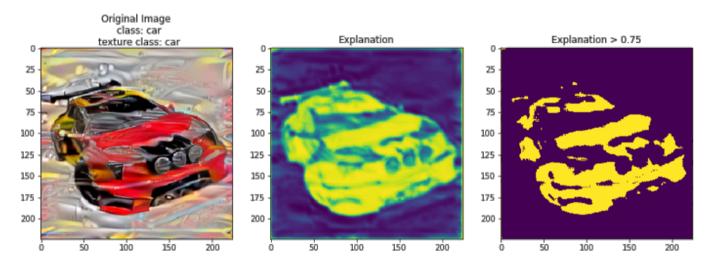
Results on Cue Conflict Dataset



Example explanation obtained from the cue conflict dataset without regularisation

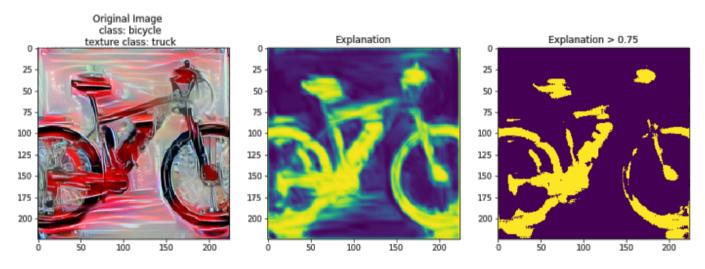


Results on Cue Conflict Dataset



Example explanation obtained from the cue conflict dataset without regularisation

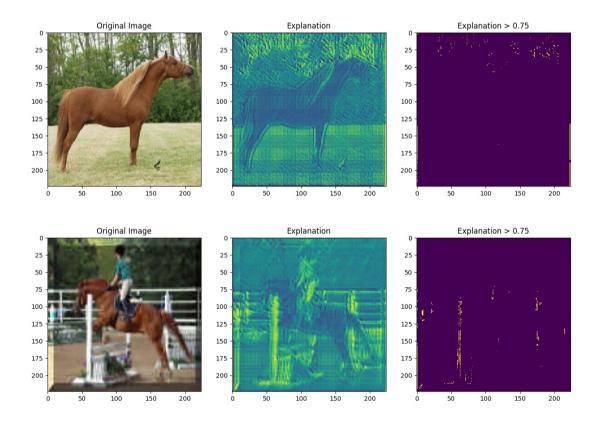
Results on Cue Conflict Dataset



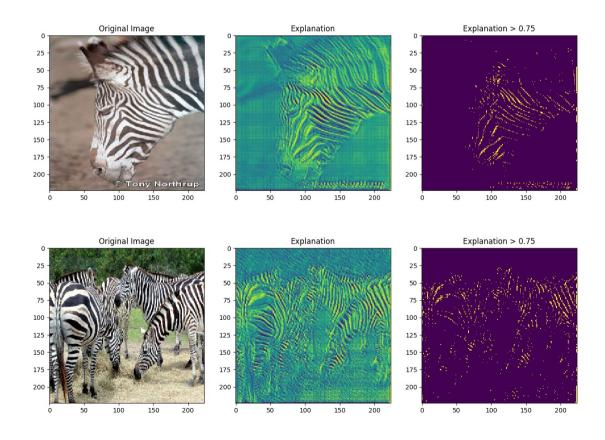
Example explanation obtained from the cue conflict dataset without regularisation

- Using a different (and larger) classifier
 - ResNet-50 pre-trained w/ ImageNet
- Horses vs. Zebras

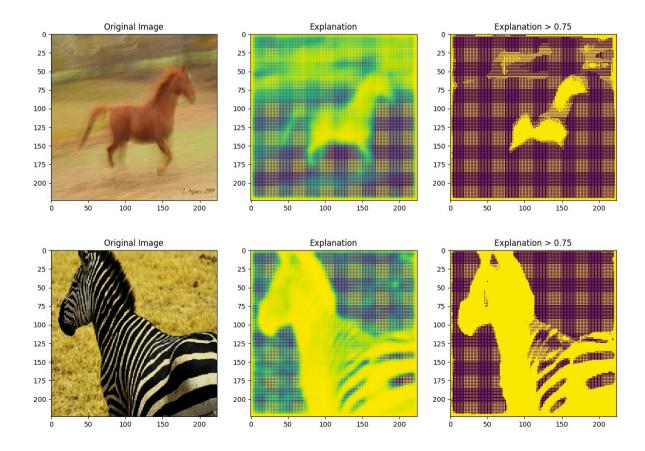
During the training process (before plateauing):



During the training process (before plateauing):



 After the training process (no regularisation -> some artefacts):



Conclusion and Future Work

- Joint approach to produce decisions and explanations using CNNs
- Shows potential especially when compared to existing methods
- Future work includes:
 - Experimenting with other explainer losses, e.g. using Total Variation
 - Weak (and Semi) supervision of the explainer
 - Other modalities

Producing Joint Decisions and Explanations with CNNs

Luis F. Teixeira
Universidade do Porto / FEUP, INESC TEC

University of Twente - July 1, 2019