Relating Electric Vehicle Scheduling to Processor Speed Scaling and Network Flow Problems Leoni Winschermann

Processor Speed Scaling

Instance

- Jobsj
- Release times r_i
- Deadlines d_j

Electric Vehicle Scheduling

Least-majorized Flows

Jobs j

Instance

- Arrival times r_i
- Departure times d_i

Instance

- Flow network N
- Target flow value τ - (Majorization)

- Workloads p_j

Decision variable:

Schedules s_j(t) specify at
what speed job j is processed
at time t

Feasible solution

- Jobs only process between release r_j and deadline d_j
- Jobs process their entire workload p_j

- Charging demand *p_i*
- Maximum charging rates ℓ_i

Decision variable:

Schedules s_j(t) specify at
what power vehicle j is
charged at time t

Feasible solution

- Vehicles only charge between arrival r_j and departure d_j
- Vehicles charge their entire

- Subset V_t of nodes adjacent to network sink v_t
- Positive weights d_v

Decision variable:

- Flow f on network N

Feasible solution

- f is a feasible flow on N
- f has flow value τ

- Only one job runs at any time t

Objective

Example

- Minimize the intensity of the schedule, e.g., minimizing

$$\int \left(\sum_{j} s_{j}(t)\right)^{2} dt$$

3

demand p_j

- At no time does the charging power exceed a vehicle's maximum charging rate ℓ_j

Objective

Example

- Minimize the intensity of schedule, e.g., minimizing

$$\int \left(\sum_{j} s_{j}(t)\right)^{2} dt$$

Objective

- Find a least-majorized flow *f*, e.g., minimizing

Example

UNIVERSITY OF TWENTE.

<u>Get in touch</u>