Background

As embedded systems continue to evolve with smaller and faster technologies, hardware aging becomes a critical challenge [2] —especially in safety-critical applications such as aerospace, automotive, and space systems. Over time, physical effects like Negative Bias Temperature Instability (NBTI), Time-Dependent Dielectric Breakdown (TDDB), and Hot Carrier Injection (HCI) degrade the performance of transistors, potentially leading to incorrect or delayed operations [1], when the critical paths become longer than the clock cycle time. Moreover, different workloads lead to a different amount of stress so that joint consideration of timing effect and the aging issue is thus needed [3].

Traditional real-time system designs often neglect aging effects, risking the validity of **Worst-Case Execution Time (WCET)** estimates and system safety. A large majority of existing real-time approaches focuses on typical hardware faults [4], such as soft errors and permanent faults. Few relevant approaches exist, and they deal with aging focusing in memories, e.g., considering HCI and BTI for L1 caches [5], and register files [6]. As a result, novel approaches are required to deal with electronic aging in modern technologies and its impact on timing guarantees.

I Thesis Objective

This thesis aims to develop aging-aware runtime strategies that adapt to hardware degradation over time-without compromising real-time guarantees.

You will:

- Analyze how aging affects WCET and scheduling decisions
- Propose safe runtime control mechanisms for self-healing and dynamic scheduling
- Develop techniques to adapt WCET estimations, hardware configurations, and task scheduling to mitigate aging impact

Moreover, you may have a chance to shortly stay to visit research institutes in France to closely work with more international researchers.

I Tools & Platforms

- Open-source processors (e.g., RISC-V)
- Real-time operating systems (e.g., FreeRTOS)
- WCET analysis and scheduling tools
- Simulation or emulation platforms to model aging and execution timing

I Learning Outcomes

- Understanding of electronic aging phenomena in modern technology nodes
- Familiarity with real-time systems, scheduling theory, and runtime system design
- Experience in embedded systems development, hardware-software co-design, and reliability analysis

Key References:

[1] N. Landeros Muñoz, A. Valero, R. Gran Tejero, and D. Zoni. Gated-cnn: Combating nbti and hci aging effects in on-chip activation memories of convolutional neural network accelerators. Journal of Systems Architecture, 128:102553, 2022

[2] Daniel Kraak, Mottaqiallah Taouil, Said Hamdioui, Pieter Weckx, Francky Catthoor, Abhijit Chatterjee, Adit Singh, Hans-Joachim Wunderlich, and Naghmeh Karimi. Device aging: A reliability and security concern. In 2018 IEEE 23rd European Test Symposium (ETS), pages 1–10, 2018.

[3] S. Rehman et al., "Cross-Layer Software Dependability on Unreliable Hardware," in IEEE Transactions on Computers, vol. 65, no. 1, pp. 80-94, 1 Jan. 2016, doi: 10.1109/TC.2015.2417554

[4] C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM Computing Surveys (CS), 52(3):56:1–56:38, June 2019

[5] D. Trilla, C. Hernandez, J. Abella, and F.J. Cazorla. Aging assessment and design enhancement of randomized cache memories. Trans. Device and Materials Reliability (TDMR), 17(1):32–41, 2017.

[6] I. Tuzov, P. Andreu, L. Medina, T. Picornell, A. Robles, P. Lopez, J. Flich, and C. Hernández. Improving the robustness of redundant execution with register file randomization. In Int. Conf. Computer Aided Design (ICCAD), page 1–9. IEEE Press, 2021

Interested?

If you're passionate about reliability, embedded systems, and making a real impact in future safety-critical applications, send us an email, write a bit about your motivation to work on the subject, your background, and at what stage of the master program you are. We will then set a meeting.

- Supervisor: Dr.-Ing. Kuan-Hsun Chen, Email: k.h.chen@utwente.nl
- External Supervisor: Prof. Angeliki Kritikakou, Email: angeliki.kritikakou@irisa.fr