
Exploring strategies to exploit
machine learning in HPC-CFD

Corentin Lapeyre
MAGISTER • 2020.09.15

A. Misdariis, N. Cazard, C. Besombes, V. Xing, E. Gullaud, L.
Drozda, T. Poinsot, M. Bauerheim (ISAE), R. Selmi (TOTAL)
and many more contributors…

Acknowledgments:

HELIOS
High performance learning for computational physics

2

…

The hype

3

Intro

The hype

Time

Expectations

4

Intro

The hype

Time

Expectations

4

Intro

The hype

Time

Expectations
In

no
va

tio
n

tri
gg

er

Pe
ak

 o
f i

nfl
at

ed

ex
pe

ct
at

io
ns

Tr
ou

gh
 o

f D
is

illu
si

on
m

en
t

Sl
op

e
of

 E
nl

ig
ht

en
m

en
t

Pl
at

ea
u

of
 p

ro
du

ct
iv

ity
4

Intro

The hype

5

Intro

The hype

5

Intro

AI

The hype

5

Intro

AI

Deep learning (2018)

6

Intro

6

?

How is Data Science (DS) relevant to the Physical sciences?
A.k.a. how do we separate the hype from what’s truly useful?

Intro

6

?

How is Data Science (DS) relevant to the Physical sciences?
A.k.a. how do we separate the hype from what’s truly useful?

Machine Learning

?

Intro

7

Machines that learn ?

The Data Science landscape

Data science

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data scienceData mining and processing

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data scienceData mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation,
unsupervised clustering…

Data mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation,
unsupervised clustering…

Machine learning
- decision trees
- artificial neural

networks
- support vector

machines

- supervised clustering
- reinforcement

learning
- rule based
- genetic algorithms

Data mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation,
unsupervised clustering…

Machine learning
- decision trees
- artificial neural

networks
- support vector

machines

- supervised clustering
- reinforcement

learning
- rule based
- genetic algorithms

Data mining and processing

Big data

Deep learning

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation,
unsupervised clustering…

Machine learning
- decision trees
- artificial neural

networks
- support vector

machines

- supervised clustering
- reinforcement

learning
- rule based
- genetic algorithms

Data mining and processing

Big data

Deep learning

8 The new cool kids ≈ « AI »

Machine Learning

Statistics: The science of collecting, displaying, and analysing data
oxfordreference.com

What is learning?

9

Learn by heart

Machine Learning

What is learning?

9

Learn by heart

Machine Learning

What is learning?

9

Learn by heart
Learn abstract concepts

Machine Learning

What is learning?

9

Learn by heart
Learn abstract concepts

Learn motor skills

Machine Learning

What is learning?

9

Learn by heart
Learn abstract concepts

Learn motor skills

Machine Learning

How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference: HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning

How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

Prior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning

How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihood

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning

How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihoodPosterior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning

How about machine learning?

10

• Procedure:
๏Choose Prior (e.g. « linear relation »)

Compute Likelihood
Evaluate Posterior

๏Repeat (with new Prior)

• Priori beliefs (H) are updated according
to evidence (E), using Bayes’ rule

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihoodPosterior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning

How about machine learning?

11

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

y = ax + b
H

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

y = ax + b
H

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Conclusion:
The data doesn’t support H

😡

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

y = ax + b
H

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Conclusion:
The data doesn’t support H

😡

y = ax2 + bx + c
The no-free lunch theorem [1]

« there are no a priori distinctions
between learning algorithms »

😁

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

y = ax + b
H

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Conclusion:
The data doesn’t support H

😡

y = ax2 + bx + c
The no-free lunch theorem [1]

« there are no a priori distinctions
between learning algorithms »

😁

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

How about machine learning?

11

y = ax + b
H

Conclusion: my hypothesis is
supported by the data, so I’m

now more confident in it

😁

P(E |H) is high

Conclusion:
The data doesn’t support H

😡

y = ax2 + bx + c
The no-free lunch theorem [1]

« there are no a priori distinctions
between learning algorithms »

😁

Conclusion:
Nothing works!

Some problems are ill-posed:
There is a fundamental ambiguity

that cannot be resolved

😡

😡

😡

Often called « glorified curve-fitting »

Objective: find the prior beliefs (H) that lead to the best posterior

[1] Wolpert, David H. "The lack of a priori distinctions between learning algorithms." Neural computation 8.7 (1996): 1341-1390.

E

y = ax + b
H

P(H |E)

Machine Learning

Learning: a paradigm shift

12

Hypothetico-
deductive
approach

Computer

Inputs

Data
Program

INTEGER :: i

Inputs

Program
INTEGER :: i Data

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Machine Learning

Learning: a paradigm shift

12

Hypothetico-
deductive
approach

Computer

Inputs

Data
Program

INTEGER :: i

Inputs

Program
INTEGER :: i Data

The scientific
method is

historically a
deductive

approach. The
data validates

the model.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Machine Learning

Learning: a paradigm shift

12

Hypothetico-
deductive
approach

Computer

Inputs

Data
Program

INTEGER :: i

Inputs

Program
INTEGER :: i Data

The scientific
method is

historically a
deductive

approach. The
data validates

the model.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Hypotheses
(model)

Machine Learning

Learning: a paradigm shift

12

Hypothetico-
deductive
approach

Computer

Inputs

Data
Program

INTEGER :: i

Inputs

Program
INTEGER :: i Data

The scientific
method is

historically a
deductive

approach. The
data validates

the model.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Hypotheses
(model)

Deductions

Machine Learning

Learning: a paradigm shift

12

Hypothetico-
deductive
approach

Computer

Inputs

Data
Program

INTEGER :: i

Inductive
approach

Computer

Inputs
Program

INTEGER :: i

Data

The scientific
method is

historically a
deductive

approach. The
data validates

the model.

Data-driven
approaches are
inductive. The
model is the

output.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.

Hypotheses
(model)

Deductions

Model

Machine Learning

Uses of AI

13

AlphaZero …
Machine Learning

Uses of AI

13

• Shiny « superhuman »
algorithms make headlines

AlphaZero …
Machine Learning

Uses of AI

13

• Shiny « superhuman »
algorithms make headlines

AlphaZero …
Machine Learning

Uses of AI

13

• Shiny « superhuman »
algorithms make headlines

•But most applications
« automate the boring stuff ».

AlphaZero …

Just like
regular

programming
does!

Machine Learning

Uses of AI

13

• Shiny « superhuman »
algorithms make headlines

•But most applications
« automate the boring stuff ».

AlphaZero …

300 Million
Images / Day

100 Billion
Words / Day
+ …+ …

+ …

Just like
regular

programming
does!

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

(from F. Chollet)

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Smart

Dumb

(from F. Chollet)

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Human

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

(from F. Chollet)

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Human

Machine
Learning

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Alpha Zero1 needs 21 Million
games of Go during training

but
training takes ≈24h

(from F. Chollet)

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Human

Machine
Learning

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Alpha Zero1 needs 21 Million
games of Go during training

but
training takes ≈24h

If enough experience can
be gained, ML eventually
beats humans

(from F. Chollet)

Machine Learning

Intelligence vs Experience

14

•One definition of intelligence:

Skill

Experience

Human

Machine
Learning

Intelligence =
Skill

Experience

1: Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

Alpha Zero1 needs 21 Million
games of Go during training

but
training takes ≈24h

If enough experience can
be gained, ML eventually
beats humans

(from F. Chollet)

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Where’s the cat?

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Where’s the cat?

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Where’s the cat?

Not a cat

Not a cat

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Know the problem before
focusing on the data

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Where’s the cat?

Not a cat

Not a cat

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Know the problem before
focusing on the data

Get lots of data

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Where’s the cat?

Not a cat

Not a cat

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Know the problem before
focusing on the data

Get lots of data

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Ok, but what is a lot?

Where’s the cat?

Not a cat

Not a cat

Machine Learning

Finding a good ML problem

15

from: Google Machine Learning Crash Course

Focus on problems that
would be difficult to solve

with traditional
programming

Know the problem before
focusing on the data

Get lots of data

Don’t let ML do the hard
work of choosing features

Neural networks ≈ « intuition machines ».
If you can do it but you don’t know how,

you can’t code it. Example:

Ok, but what is a lot?

Where’s the cat?

Not a cat

Not a cat

Machine Learning

How much data?

16

Low intelligence + low experience
= low skill

Machine Learning

https://scikit-learn.org/

How much data?

16

Low intelligence + low experience
= low skill

Machine Learning

https://scikit-learn.org/

How much data?

16

1

Low intelligence + low experience
= low skill

Machine Learning

https://scikit-learn.org/

How much data?

16

1
2

Low intelligence + low experience
= low skill

Machine Learning

https://scikit-learn.org/

How much data?

16

1
2

Low intelligence + low experience
= low skill

Machine Learning

https://scikit-learn.org/

How much data?

16

1
2

3

ML can’t help you Low intelligence + low experience
= low skill

Machine Learning

How much data?

17

Neural Network

territory Da

ta

Statistical
tests

(χ2…)

Simple
regression if

very low
dimension

0 ≈ 30 100-1000

Regression, SVMs,
Trees, Ensemble

methods …
???

100,000

Machine Learning

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

Linear fit

Machine Learning

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

Linear fit

Machine Learning

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

Polynomial regression

Linear fit

Machine Learning

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

1 every 1000 years

8.6

Polynomial regression

Linear fit

Machine Learning

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

1 every 1000 years

8.6

Polynomial regression

Linear fit

Machine Learning

1 every 10 years
1 every 100 years

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

1 every 1000 years

8.6

Polynomial regression

Linear fit

Machine Learning

1 every 10 years
1 every 100 years

Tōhoku area
(near Fukushima)

Not enough data … ?

18 N. Silver, The Signal and the Noise, 2012

Magnitude M

lo
g(

fr
eq

ue
nc

y)

Earthquake frequency:
The Gutenberg-Richter Law

N = 10a−bM

1 every 1000 years

8.6

Polynomial regression

1 every ~ 300 years

9.0 - 9.1

Linear fit

Machine Learning

1 every 10 years
1 every 100 years

19

Case Studies of AI in CFD

AI for « better » CFD…?

20

Inputs

AI for « better » CFD…?

20

Inputs
Discretization

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate
models

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate
models

Larger timesteps

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate
models

Larger timesteps

•Many degrees of AI « intrusion » in CFD are possible
• It is not yet clear which is the best way to go!

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate
models

Larger timesteps

•Many degrees of AI « intrusion » in CFD are possible
• It is not yet clear which is the best way to go!

UC 1

AI for « better » CFD…?

20

Inputs
Discretization t + 1

∂
∂x

∂
∂t

Models

Time-
stepping

Results

Surrogates

Faster / automatic
Mesh optimization

Better gradient
estimation

More accurate
models

Larger timesteps

•Many degrees of AI « intrusion » in CFD are possible
• It is not yet clear which is the best way to go!

UC 1UC 2

21

1. Subgrid-scale
modeling with CNNs

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural
networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264

Lapeyre, C.J., Misdariis, A., Cazard, N. & Poinsot, T (2018). A-posteriori evaluation of a deep convolutional
neural network approach to subgrid-scale flame surface estimation. Proc. CTR Summer Program, 349-358.

∂
∂x

∂
∂t

Models

More accurate
models

Ongoing PhD of Victor Xing, Cerfacs

Very large scale combustion

22

•Context: safety of industrial
complexes in combustible gas
leaks

•Reactive LES of very large domains

Fig. 1. Classical turbulent combustion diagram for premixed turbulent flames
[22,23] as a function of the length ratio (turbulence integral scale l t /flame thickness
δ0
l) and velocity ratio (rms (root mean square) velocity u ′ /flame speed S 0

l). The ap-
proximate locations of the SydGex database are indicated by the three oval curves:
Sydney’s small-scale experiment (SS), GexCon’s medium-scale experiment (MS) and
GexCon’s large-scale experiment (LS).
chamber exit. The pressure curve is very sensitive to the reaction
rate which is the quantity we want to investigate. No comparison
with velocity, temperature or species field will be performed here
but this is compensated by the fact that the comparison is not per-
formed for one or two regimes but for more than 10 cases where
the overall size of the setup, the fuel type and the configuration
(number and location of obstacles) will be changed systematically.

The SydGex database is presented in Section 2 . The setup of
the small-scale Sydney experiment is briefly recalled before pre-
senting the two replicas at medium- (Sydney’s experiment × 6)
and large-scale (Sydney’s experiment × 24.4). The LES code and
sub-grid models are described in Section 3 . LES of different op-
erating conditions were performed, varying the number of obsta-
cles, their position and the type of fuel (hydrogen, propane and
methane). Sections 4 (small-scale simulations) and 5 (medium-
scale and large-scale simulations) focus on the influence of the tur-
bulent combustion model comparing two different sub-grid scale
models, namely the algebraic closures of Colin et al. [47] and
Charlette et al. [48] , used in conjunction with the Thickened Flame
(TF) approach [47] . This exercice is similar to that done by Di Sarli
et al. [49] or Wen et al. [50] , except that their comparison of vari-
ous sub-grid scale combustion models relied on only one configu-
ration, whereas many different configurations of varying geometry
and size are used here to provide a more challenging assessment
of turbulent combustion models.
2. Experimental setup

The SydGex database contains three experimental setups: the
Sydney experiment called ‘original’ or ‘small-scale’ (SS) (0.25 m
long) configuration and its two upscaled versions, the ‘medium-
scale’ (MS) (1.5 m long) and ‘large-scale’ (LS) (6.1 m long) configu-
rations of GexCon.
2.1. Small-scale experiment

The original Sydney experiment [27,28] is sketched in Fig. 2 .
This semi-confined configuration consists in a square cross section
(0.05 × 0.05 m 2), 0.25 m long chamber with solid obstacles. Its
volume is 0.625 l. Three removable baffle plates can be placed at
various distances from the ignition source (overall blockage ratio of
0.4) while the central square obstacle (1.2 cm square, blockage ra-

Fig. 2. Explosion chamber configuration of Sydney [27,28] . The vessel is orientated
vertically in the experiment: the bottom end of the vessel is on the left of the figure
and the top end on the right.

Table 1
Configurations studied for the small-scale (SS) experi-
ment of Sydney [28] .
Fuel Configuration

BBBS OBBS OOBS BOOS

LPG ! ! ! !

CNG !

H 2 !

tio of 0.24) is fixed [28] . The bottom end of the chamber is closed
and the top end is opened out to the atmosphere. The vessel is ini-
tially filled with a premixed mixture of fuel and air at atmospheric
pressure and temperature. The mixture is then ignited by laser at
the closed end. Experimental results include pressure signals and
flame front visualizations for three different fuels, namely hydro-
gen (equivalence ratio "= 0.7), LPG (95% C 3 H 8 , 4% C 4 H 10 and 1%
C 5+ hydrocarbons by volume) ("= 1.0), and CNG (88.8% CH 4 , 7.8%
C 2 H 4 , 1.9% CO 2 and 1.2% N 2 with the remaining 0.3% being a mix-
ture of propane, propene, butane and pentane) ("= 1.0) [28] .

The arrangement of the baffle plates control the flame speed,
the flame front shape and the generated overpressure. The nomen-
clature of [28] is used here to name the different configurations:
for example, a configuration named BBOS refers to baffle plates
(B) at the first two locations (i.e., close to the ignition point)
and a small central obstacle (S) while configuration OOBS refers
to a unique baffle plate located close to the central obstacle. For
each configuration, the experiment was repeated at least 30 times
to obtain reliable results. The configurations computed by LES in
Section 4 are summarized in Table 1 : they allow to study the in-
fluence of the number of grids (OOBS versus OBBS and BBBS), the
influence of the position of the grids (BOOS versus OOBS) and the
influence of the fuel (LPG versus PNG and H 2).
2.2. Medium- and large-scale experiment

The medium- and large-scale experiments have been set up by
GexCon in 2012. Almost all the available measurements and di-
agnostics are shown in this paper, a few additional results being
available in [51] . Raw data are available upon request.

The medium-scale experiment is a replica of the small-scale ex-
periment of Sydney at scale 6. The combustion chamber is a 1.5
× 0.3 × 0.3 m 3 volume (135 l) with a vent opening. Contrary to
the Sydney experiment where the vessel was oriented vertically,
the vessel was positioned horizontally on a table due to the higher
intensity of the explosion. The three aluminum grids were posi-
tioned vertically inside the vessel. All dimensions of the MS rig

Elsa Gullaud, Post-Doc 2019

Very large scale combustion

22

•Context: safety of industrial
complexes in combustible gas
leaks

•Reactive LES of very large domains

Fig. 1. Classical turbulent combustion diagram for premixed turbulent flames
[22,23] as a function of the length ratio (turbulence integral scale l t /flame thickness
δ0
l) and velocity ratio (rms (root mean square) velocity u ′ /flame speed S 0

l). The ap-
proximate locations of the SydGex database are indicated by the three oval curves:
Sydney’s small-scale experiment (SS), GexCon’s medium-scale experiment (MS) and
GexCon’s large-scale experiment (LS).
chamber exit. The pressure curve is very sensitive to the reaction
rate which is the quantity we want to investigate. No comparison
with velocity, temperature or species field will be performed here
but this is compensated by the fact that the comparison is not per-
formed for one or two regimes but for more than 10 cases where
the overall size of the setup, the fuel type and the configuration
(number and location of obstacles) will be changed systematically.

The SydGex database is presented in Section 2 . The setup of
the small-scale Sydney experiment is briefly recalled before pre-
senting the two replicas at medium- (Sydney’s experiment × 6)
and large-scale (Sydney’s experiment × 24.4). The LES code and
sub-grid models are described in Section 3 . LES of different op-
erating conditions were performed, varying the number of obsta-
cles, their position and the type of fuel (hydrogen, propane and
methane). Sections 4 (small-scale simulations) and 5 (medium-
scale and large-scale simulations) focus on the influence of the tur-
bulent combustion model comparing two different sub-grid scale
models, namely the algebraic closures of Colin et al. [47] and
Charlette et al. [48] , used in conjunction with the Thickened Flame
(TF) approach [47] . This exercice is similar to that done by Di Sarli
et al. [49] or Wen et al. [50] , except that their comparison of vari-
ous sub-grid scale combustion models relied on only one configu-
ration, whereas many different configurations of varying geometry
and size are used here to provide a more challenging assessment
of turbulent combustion models.
2. Experimental setup

The SydGex database contains three experimental setups: the
Sydney experiment called ‘original’ or ‘small-scale’ (SS) (0.25 m
long) configuration and its two upscaled versions, the ‘medium-
scale’ (MS) (1.5 m long) and ‘large-scale’ (LS) (6.1 m long) configu-
rations of GexCon.
2.1. Small-scale experiment

The original Sydney experiment [27,28] is sketched in Fig. 2 .
This semi-confined configuration consists in a square cross section
(0.05 × 0.05 m 2), 0.25 m long chamber with solid obstacles. Its
volume is 0.625 l. Three removable baffle plates can be placed at
various distances from the ignition source (overall blockage ratio of
0.4) while the central square obstacle (1.2 cm square, blockage ra-

Fig. 2. Explosion chamber configuration of Sydney [27,28] . The vessel is orientated
vertically in the experiment: the bottom end of the vessel is on the left of the figure
and the top end on the right.

Table 1
Configurations studied for the small-scale (SS) experi-
ment of Sydney [28] .
Fuel Configuration

BBBS OBBS OOBS BOOS

LPG ! ! ! !

CNG !

H 2 !

tio of 0.24) is fixed [28] . The bottom end of the chamber is closed
and the top end is opened out to the atmosphere. The vessel is ini-
tially filled with a premixed mixture of fuel and air at atmospheric
pressure and temperature. The mixture is then ignited by laser at
the closed end. Experimental results include pressure signals and
flame front visualizations for three different fuels, namely hydro-
gen (equivalence ratio "= 0.7), LPG (95% C 3 H 8 , 4% C 4 H 10 and 1%
C 5+ hydrocarbons by volume) ("= 1.0), and CNG (88.8% CH 4 , 7.8%
C 2 H 4 , 1.9% CO 2 and 1.2% N 2 with the remaining 0.3% being a mix-
ture of propane, propene, butane and pentane) ("= 1.0) [28] .

The arrangement of the baffle plates control the flame speed,
the flame front shape and the generated overpressure. The nomen-
clature of [28] is used here to name the different configurations:
for example, a configuration named BBOS refers to baffle plates
(B) at the first two locations (i.e., close to the ignition point)
and a small central obstacle (S) while configuration OOBS refers
to a unique baffle plate located close to the central obstacle. For
each configuration, the experiment was repeated at least 30 times
to obtain reliable results. The configurations computed by LES in
Section 4 are summarized in Table 1 : they allow to study the in-
fluence of the number of grids (OOBS versus OBBS and BBBS), the
influence of the position of the grids (BOOS versus OOBS) and the
influence of the fuel (LPG versus PNG and H 2).
2.2. Medium- and large-scale experiment

The medium- and large-scale experiments have been set up by
GexCon in 2012. Almost all the available measurements and di-
agnostics are shown in this paper, a few additional results being
available in [51] . Raw data are available upon request.

The medium-scale experiment is a replica of the small-scale ex-
periment of Sydney at scale 6. The combustion chamber is a 1.5
× 0.3 × 0.3 m 3 volume (135 l) with a vent opening. Contrary to
the Sydney experiment where the vessel was oriented vertically,
the vessel was positioned horizontally on a table due to the higher
intensity of the explosion. The three aluminum grids were posi-
tioned vertically inside the vessel. All dimensions of the MS rig

Elsa Gullaud, Post-Doc 2019

Subgrid-scale models

23

What I can pay for

Subgrid-scale models

23

Fully resolved physicsWhat I can pay for

Subgrid-scale models

23

Fully resolved physicsWhat I can pay for

What’s missing?

Subgrid-scale models

23

Fully resolved physicsWhat I can pay for

What’s missing?

Filter

What
was lost

Subgrid-scale models

23

Fully resolved physicsWhat I can pay for

What’s missing?

CN
N Neural network

Input

Output

Filter

What
was lost

Subgrid-scale models

23

Fully resolved physicsWhat I can pay for

What’s missing?

CN
N Neural network

Input

Output

Filter

What
was lost

CNN

ML / DL based
model for on-

the-fly use

 ' solver
<latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit><latexit sha1_base64="AXvZuq00Nwr2BYIWCRNCGHFjdkI=">AAAC/XicjVFNT9tAEH1xaUtDP9L22MuKKBKV2sgG2sIBCZVLj0FqCBJBkb1sYIXjtXbXKFEU9Z/0xq3qtX+gV7ii/gP4F8xuTAWKULuW7Tdv5r3d2UnyVBobhn8qwYO5h48ezz+pLjx99vxF7eWrHaMKzUWbq1Tp3SQ2IpWZaFtpU7GbaxEPklR0kuMtl++cCG2kyr7aUS72B/FhJvuSx5aoXm2tMWIbrL807EXvhr3lt9XuSazzI8m6VgztmBmVknxSbUzjljL2fa4Vn/Rq9bC5vrqy/nGFEfhAMGRRM/TrL6ijXC1Vu0AXB1DgKDCAQAZLOEUMQ88eIoTIidvHmDhNSPq8wARV0hZUJagiJvaYvocU7ZVsRrHzNF7NaZeUXk1KhgZpFNVpwm435vOFd3bsfd5j7+nONqJ/UnoNiLU4IvZfupvK/9W5Xiz6WPM9SOop94zrjpcuhb8Vd3J2qytLDjlxDh9QXhPmXnlzz8xrjO/d3W3s85e+0rEu5mVtgSt3ShrwzDhnwc5yMwqb0fZqffNzOep5vMEilmien7CJL2ihTd7f8RtnOA++BafBj+DntDSolJrXuLOCX9eHUqVf</latexit>

24 [1] Butler, T. D. & O’Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 – 1515.

DNS:
Resolved

flame

Combustion SGS

24 [1] Butler, T. D. & O’Rourke, P. J. (1977). Symp. (Int.) Combust. 16, 1503 – 1515.

DNS:
Resolved

flame

LES: e.g.
Artificially
thickened
flame [1]

Combustion SGS

25

LOCAL FORMULATIONS:
• 1989 - Gouldin (fractal)
• 2000 - Colin et al.
• 2002 - Charlette et al.

Ξ : ℝk ↦ ℝ

Efficiency functions f - local to global

25

LOCAL FORMULATIONS:
• 1989 - Gouldin (fractal)
• 2000 - Colin et al.
• 2002 - Charlette et al.

DYNAMIC FORMULATIONS:
• 2011 - Wang et al.

Ξ : ℝ2k ↦ ℝ

Ξ : ℝk ↦ ℝ

Efficiency functions f - local to global

25

LOCAL FORMULATIONS:
• 1989 - Gouldin (fractal)
• 2000 - Colin et al.
• 2002 - Charlette et al.

DYNAMIC FORMULATIONS:
• 2011 - Wang et al.

Ξ : ℝ2k ↦ ℝ

CNN FORMULATION:
 2019 - Lapeyre et al.

Ω

Ξ = fCNN(Ω, t)

Ξ : ℝk ↦ ℝ

Efficiency functions f - local to global

Building the dataset

26

CNN |∇c|
|∇c|

n

n

n

c

n

n

n

c

nΔ

nΔ

nΔ

DNS Mesh

LES Mesh
Ω Ω

Gaussian filtering equivalent
to flame thickening Δ

Convolutional neural network

FΔ(n) = {e− 1
2 (n

σ)2
if n ∈ [1,N]

0 otherwise

Neural network

27

7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

32
|∇c|
|∇c|

c

fCNN

Conv 33, BN, ReLU
MaxPooling 23

UpSampling 23

Concatenate
Conv 13, ReLu

32

64 64 128 64

128

64 32
7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Input

Segmented image

Architecture is adapted from a medical
image segmentation network [9]

Neural network

28

32

c

32

64 64 128 64

128

Neural network

28

32

c

32

64 64 128 64

128

3

Receptive field

Neural network

28

32

c

32

64 64 128 64

128

3 5

Receptive field

Neural network

28

32

c

32

64 64 128 64

128

3 5

9 13

21 29

Receptive field

Neural network

28

32

c

32

64 64 128 64

128

•Network is trained on increasing size inputs: 83, then
163, and finally 323.

3 5

9 13

21 29

Receptive field

A priori strategy

29

Training
CNN

Training setup

AVBP DNS

Target setup

c

A priori strategy

29

Training
CNN

Training setup

Filter

c

AVBP DNS

Target setup

c

A priori strategy

29

Training
CNN

Training setup

Filter

c

AVBP DNS

Target setup

c

|∇c|
|∇c|

Filter

A priori strategy

29

Training
CNN

Training setup

Filter

c

AVBP DNS

Target setup

c

|∇c|
|∇c|

Filter

Detailed
comparison

|∇c|
|∇c|

30

Similar to: Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F., & Filatyev, S. A. (2007).
Numerical simulation of a laboratory-scale turbulent slot flame. Proceedings of the combustion
institute, 31(1), 1299-1307.

y

Fresh + Turbulence

Burnt

Burnt

z

x

O
ut

le
t

51.2 mm

0 mm

25.6 mm

25.6 mm

DNS for training

A priori test

31

10

20

u i
n

[m
/s

]

Snapshots
0 5 10 15

Test

1 ms

Time

uin = 20 m /s

uin = 10 m /s

• Test case: unsteady
flow dynamics

Train

32

Example snapshot during test

A priori results

DNS

LES
input

LES
model

32

Example snapshot during test

A priori results

DNS

LES
input

LES
model

Excellent agreement compared
to litterature.

A posteriori strategy

33

Training
CNN

AVBP DNS

Training setup

Target setup

A posteriori strategy

33

Training
CNN

AVBP DNS

Training setup

AVBP-DL LES
Detailed

comparison

Target setup

Tests a posteriori in LES:

34

• The CNN can be integrated in AVBP code to compute
flame wrinkling but the inference time (evaluation of fCNN)
becomes too long on CPU: GPUs are much better
• -> hybrid architecture is needed

CPU : Navier-Stokes solver
(AVBP)

GPU : CNN
(TensorFlow)

c

fCNN(c)

Tests a posteriori in LES:

34

• The CNN can be integrated in AVBP code to compute
flame wrinkling but the inference time (evaluation of fCNN)
becomes too long on CPU: GPUs are much better
• -> hybrid architecture is needed

CPU : Navier-Stokes solver
(AVBP)

GPU : CNN
(TensorFlow)

c

fCNN(c)

AVBP-DL

35

A B C D

A B C D

Charlette [7]
Dynamic [2]

0

1

• CNN performs better than than state-of-the-art
models on this setup

CNN [10]

A posteriori results

35

A B C D

A B C D

Charlette [7]
Dynamic [2]

0

1

• CNN performs better than than state-of-the-art
models on this setup

CNN [10]

A posteriori results

JZ Grand Challenge

36

•We target large scale LES => hybrid CPU/GPU and
solver/neural network approach must scale to HPC
• 2019-2020: Jean Zay Grand Challenge

V. Xing (Ph.D. started 2019), supervised by C. Lapeyre, A. Misdariis, O. Vermorel & T. Poinsot

AVBP-DL: 2000 CPU + 64 GPU simulation on Jean Zay V. Xing,A. Misdariis, G. Staffelbach, C. Lapeyre

GPU1 GPU17 …

37

2. Data-driven discretization

∂
∂x

∂
∂t

Models

Better gradient
estimation

Ongoing PhD of Luciano Drozda, Cerfacs

Solving fine structures

38

Fully resolved physicsWhat I can pay for

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Solving fine structures

38

Fully resolved physicsWhat I can pay for

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Solving fine structures

38

Fully resolved physicsWhat I can pay for

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Solving fine structures

38

Fully resolved physicsWhat I can pay for

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Solving fine structures

38

Fully resolved physicsWhat I can pay for

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

Fine 8x Coarse 16x Coarse

Cr
as

h

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Solving fine structures

38

Fully resolved physicsWhat I can pay for

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

Bar-Sinai et al. PNAS Latest Articles | 5 of 6

Fine 8x Coarse 16x Coarse

Cr
as

h

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

Data Driven Discretization

39

•One of the less intrusive approaches

•Objective: achieve better gradient estimation on coarse
meshes <=> run same simulation on coarser mesh

FR
QY
�G

UH
OX

FR
QY
�G

UH
OX

FR
QY
�G

SR
O\
QR
P
LD
O�

DF
FX
UD
F\

'IPP�EZIVEKI�EX�
XMQI�X

'SIƽGMIRXW

7TEXMEP�HIVMZEXMZIW

*PY\��IUYEXMSR�WTIGMƻG

'IPP�EZIVEKI�EX�XMQI�X�ᵂX
�QIXLSH�SJ�PMRIW

2IYVEP�RIX[SVO

8MQI�HIVMZEXMZI

8MQI�HIVMZEXMZI�PSWW-RXIKVEXIH�WSPYXMSR�PSWW

Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]

2 of 14 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, Michael P. Brenner

Bar-Sinai, Y., Hoyer, S., Hickey, J., & Brenner, M. P. (2019). Learning data-driven discretizations for
partial differential equations. Proceedings of the National Academy of Sciences, 116(31), 15344-15349.

40

« Truth » (DNS) Coarse LESCoarse LES with NN

Ongoing PhD of Luciano Drozda, Cerfacs

40

« Truth » (DNS) Coarse LESCoarse LES with NN

Ongoing PhD of Luciano Drozda, Cerfacs

Great idea, difficult execution

41

•Challenge #1: differentiability
๏ NN require the chain to be differentiable i.e. you must

rewrite your CFD solver in a deep learning framework
๏ Several solvers with this tech under development (e.g.

PhiFlow [1] at TUM)

•Challenge #2: time stability
๏ Supervised learning (error wrt next iteration) leaves room for

small errors that accumulate => divergence
๏ BUT training in a supervised manner long term doesn’t

seem to work: turbulent paths differ, and punishing the
network for difference to DNS doesn’t work anymore

[1] https://ge.in.tum.de/research/phiflow/

42

Concluding remarks

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Distribution
Parametrization

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Data Assimilation

Geological
morphology
estimation

Climate model
parametrizationCamille

Besombes

El Mahdi
Chayti

Data Fusion Distribution
Parametrization

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Synthetic data
generation

Turbulence
generation

Luciano Drozda

Data Assimilation

Geological
morphology
estimation

Climate model
parametrizationCamille

Besombes

El Mahdi
Chayti

Data Fusion Distribution
Parametrization

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Data reconstruction

Inpainting for
partial satellite
observations

Temporal super-
resolution

Image
denoising

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Synthetic data
generation

Turbulence
generation

Luciano Drozda

Data Assimilation

Geological
morphology
estimation

Climate model
parametrizationCamille

Besombes

El Mahdi
Chayti

Data Fusion Distribution
Parametrization

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

Sound classification

Antony Cellier

Virtual
mechanic

Saint Venant solver

Valentin Mercier

Data reconstruction

Inpainting for
partial satellite
observations

Temporal super-
resolution

Image
denoising

Predictive
Maintenance

Physical
phenomena

identification

Michele
Lazzara

Synthetic data
generation

Turbulence
generation

Luciano Drozda

Data Assimilation

Geological
morphology
estimation

Climate model
parametrizationCamille

Besombes

El Mahdi
Chayti

Data Fusion Distribution
Parametrization

Hybrid Physical
HPC Solvers

PDE solvers (CPU)
coupled with NN
inference (GPU)

Elsa Gullaud

Helmholtz solver

Antonio Alguacil

Physical solver
approximatiors

Poisson solver

Ekhi Ajuria

Data Compression

Turbulent field
compression with
physical quantities

conservation

Forest fire
front tracking

Image
segmentation

Ronan Paugam
Nicolas Cazard

Time series
forecasting

Abderramane
Yewgat

Replacing local
physical models

with CNNs

Victor Xing

43

Supervised Generative

Performance

Classification

intern Ph.D. Post-Doc /
Engineer

Regression

RL?

Thank you

44

• Papers:

๏Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural networks to estimate
turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264.

•Conferences:

๏Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., & Zaoui, F. (2019). Reconstruction of Hydraulic Data by Machine
Learning. SimHydro 2019, Nice, France, June 12-14, arXiv:1903.01123.

๏Lapeyre, C.J., Misdariis, A., Cazard, N., Xing, V., Veynante, D. & Poinsot, T. (2019). A convolutional neural network-based
efficiency function for sub-grid flame-turbulence interaction in LES. 16th International Conference on Numerical Combustion,
May 6-8 2015, Avignon France.

๏Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster:
Computing High Resolution Fire Behavior Metrics from Prescribed Burn using Handheld Airborne Thermal Camera
Observations. The 6th International Fire Behaviour and Fuels Conference, Marseilles, May 2019.

๏Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster.
Journée de télédétection et incendie Organisée par IRSTEA, Aix, Decembre 2018.

๏Lapeyre, C.J., Misdariis, A., Cazard, N, Poinsot, T. Replacing a sub-grid closure model with a trained deep convolutional neural
network. HiFiLeD Symposium, November 14-16th 2018, Brussels Belgium.

•Other:

๏Lapeyre, C.J., Misdariis, A., Cazard, N. & Poinsot, T (2018). A-posteriori evaluation of a deep convolutional neural network
approach to subgrid-scale flame surface estimation. Proc. CTR Summer Program, 349-358.

