
Exploring strategies to exploit 
machine learning in HPC-CFD

Corentin Lapeyre 
MAGISTER • 2020.09.15

A. Misdariis, N. Cazard, C. Besombes, V. Xing, E. Gullaud, L. 
Drozda, T. Poinsot, M. Bauerheim (ISAE), R. Selmi (TOTAL) 
and many more contributors…

Acknowledgments: 

HELIOS
High performance learning for computational physics



2

…



The hype

3

Intro



The hype

Time

Expectations

4

Intro



The hype

Time

Expectations

4

Intro



The hype

Time

Expectations
In

no
va

tio
n 

tri
gg

er

Pe
ak

 o
f i

nfl
at

ed
 

ex
pe

ct
at

io
ns

Tr
ou

gh
 o

f D
is

illu
si

on
m

en
t

Sl
op

e 
of

 E
nl

ig
ht

en
m

en
t

Pl
at

ea
u 

of
 p

ro
du

ct
iv

ity
4

Intro



The hype

5

Intro



The hype

5

Intro

AI



The hype

5

Intro

AI

Deep learning (2018)



6

Intro



6

?

How is Data Science (DS) relevant to the Physical sciences? 
A.k.a. how do we separate the hype from what’s truly useful?

Intro



6

?

How is Data Science (DS) relevant to the Physical sciences? 
A.k.a. how do we separate the hype from what’s truly useful?

Machine Learning

?

Intro



7

Machines that learn ?



The Data Science landscape

Data science

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data scienceData mining and processing

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data scienceData mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation, 
unsupervised clustering…

Data mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation, 
unsupervised clustering…

Machine learning
- decision trees 
- artificial neural 

networks 
- support vector 

machines 

- supervised clustering 
- reinforcement 

learning 
- rule based 
- genetic algorithms

Data mining and processing

Big data

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation, 
unsupervised clustering…

Machine learning
- decision trees 
- artificial neural 

networks 
- support vector 

machines 

- supervised clustering 
- reinforcement 

learning 
- rule based 
- genetic algorithms

Data mining and processing

Big data

Deep learning

8

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



The Data Science landscape

Data science

Statistical analysis ex: estimators, correlation, 
unsupervised clustering…

Machine learning
- decision trees 
- artificial neural 

networks 
- support vector 

machines 

- supervised clustering 
- reinforcement 

learning 
- rule based 
- genetic algorithms

Data mining and processing

Big data

Deep learning

8 The new cool kids ≈ « AI »

Machine Learning

Statistics: The science of collecting, displaying, and analysing data 
oxfordreference.com



What is learning?

9

Learn by heart

Machine Learning



What is learning?

9

Learn by heart

Machine Learning



What is learning?

9

Learn by heart
Learn abstract concepts

Machine Learning



What is learning?

9

Learn by heart
Learn abstract concepts

Learn motor skills

Machine Learning



What is learning?

9

Learn by heart
Learn abstract concepts

Learn motor skills

Machine Learning



How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference: HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn 
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning



How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

Prior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn 
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning



How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihood

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn 
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning



How about machine learning?

10

P(H |E) ∝ P(E |H) ⋅ P(H)

At it’s heart: Bayesian Inference:

PriorLikelihoodPosterior

HHypothesis
Evidence E

[1] Dehaene, S. (2020). How We Learn: Why Brains Learn 
Better Than Any Machine... for Now. Penguin.

(just like humans! [1])

Machine Learning



How about machine learning?

10

• Procedure: 
๏Choose Prior (e.g. « linear relation ») 

Compute Likelihood 
Evaluate Posterior 

๏Repeat (with new Prior) 
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The scientific 
method is 

historically a 
deductive 
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data validates 
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output.

Breiman, L. (2001). Statistical modeling: The two cultures. Statistical science, 16(3), 199-231.
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Neural Network

territory Da

ta

Statistical 
tests

(χ2…)


Simple 
regression if 

very low 
dimension

0 ≈ 30 100-1000

Regression, SVMs, 
Trees, Ensemble 

methods …
???

100,000

Machine Learning
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1. Subgrid-scale 
modeling with CNNs

Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural 
networks to estimate turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264

Lapeyre, C.J., Misdariis, A., Cazard, N. & Poinsot, T (2018). A-posteriori evaluation of a deep convolutional 
neural network approach to subgrid-scale flame surface estimation. Proc. CTR Summer Program, 349-358.

∂
∂x

∂
∂t

Models

More accurate 
models

Ongoing PhD of Victor Xing, Cerfacs



Very large scale combustion

22

•Context: safety of industrial 
complexes in combustible gas 
leaks 

•Reactive LES of very large domains

Fig. 1. Classical turbulent combustion diagram for premixed turbulent flames
[22,23] as a function of the length ratio (turbulence integral scale l t /flame thickness
δ0 
l ) and velocity ratio (rms (root mean square) velocity u ′ /flame speed S 0 

l ). The ap- 
proximate locations of the SydGex database are indicated by the three oval curves:
Sydney’s small-scale experiment (SS), GexCon’s medium-scale experiment (MS) and
GexCon’s large-scale experiment (LS).
chamber exit. The pressure curve is very sensitive to the reaction 
rate which is the quantity we want to investigate. No comparison 
with velocity, temperature or species field will be performed here 
but this is compensated by the fact that the comparison is not per- 
formed for one or two regimes but for more than 10 cases where 
the overall size of the setup, the fuel type and the configuration 
(number and location of obstacles) will be changed systematically. 

The SydGex database is presented in Section 2 . The setup of 
the small-scale Sydney experiment is briefly recalled before pre- 
senting the two replicas at medium- (Sydney’s experiment × 6) 
and large-scale (Sydney’s experiment × 24.4). The LES code and 
sub-grid models are described in Section 3 . LES of different op- 
erating conditions were performed, varying the number of obsta- 
cles, their position and the type of fuel (hydrogen, propane and 
methane). Sections 4 (small-scale simulations) and 5 (medium- 
scale and large-scale simulations) focus on the influence of the tur- 
bulent combustion model comparing two different sub-grid scale 
models, namely the algebraic closures of Colin et al. [47] and 
Charlette et al. [48] , used in conjunction with the Thickened Flame 
(TF) approach [47] . This exercice is similar to that done by Di Sarli 
et al. [49] or Wen et al. [50] , except that their comparison of vari- 
ous sub-grid scale combustion models relied on only one configu- 
ration, whereas many different configurations of varying geometry 
and size are used here to provide a more challenging assessment 
of turbulent combustion models. 
2. Experimental setup

The SydGex database contains three experimental setups: the 
Sydney experiment called ‘original’ or ‘small-scale’ (SS) (0.25 m 
long) configuration and its two upscaled versions, the ‘medium- 
scale’ (MS) (1.5 m long) and ‘large-scale’ (LS) (6.1 m long) configu- 
rations of GexCon. 
2.1. Small-scale experiment 

The original Sydney experiment [27,28] is sketched in Fig. 2 . 
This semi-confined configuration consists in a square cross section 
(0.05 × 0.05 m 2 ), 0.25 m long chamber with solid obstacles. Its 
volume is 0.625 l. Three removable baffle plates can be placed at 
various distances from the ignition source (overall blockage ratio of 
0.4) while the central square obstacle (1.2 cm square, blockage ra- 

Fig. 2. Explosion chamber configuration of Sydney [27,28] . The vessel is orientated
vertically in the experiment: the bottom end of the vessel is on the left of the figure
and the top end on the right.

Table 1
Configurations studied for the small-scale (SS) experi- 
ment of Sydney [28] .
Fuel Configuration

BBBS OBBS OOBS BOOS

LPG ! ! ! !

CNG !

H 2 !

tio of 0.24) is fixed [28] . The bottom end of the chamber is closed 
and the top end is opened out to the atmosphere. The vessel is ini- 
tially filled with a premixed mixture of fuel and air at atmospheric 
pressure and temperature. The mixture is then ignited by laser at 
the closed end. Experimental results include pressure signals and 
flame front visualizations for three different fuels, namely hydro- 
gen (equivalence ratio "= 0.7), LPG (95% C 3 H 8 , 4% C 4 H 10 and 1% 
C 5+ hydrocarbons by volume) ( "= 1.0), and CNG (88.8% CH 4 , 7.8% 
C 2 H 4 , 1.9% CO 2 and 1.2% N 2 with the remaining 0.3% being a mix- 
ture of propane, propene, butane and pentane) ( "= 1.0) [28] . 

The arrangement of the baffle plates control the flame speed, 
the flame front shape and the generated overpressure. The nomen- 
clature of [28] is used here to name the different configurations: 
for example, a configuration named BBOS refers to baffle plates 
(B) at the first two locations (i.e., close to the ignition point) 
and a small central obstacle (S) while configuration OOBS refers 
to a unique baffle plate located close to the central obstacle. For 
each configuration, the experiment was repeated at least 30 times 
to obtain reliable results. The configurations computed by LES in 
Section 4 are summarized in Table 1 : they allow to study the in- 
fluence of the number of grids (OOBS versus OBBS and BBBS), the 
influence of the position of the grids (BOOS versus OOBS) and the 
influence of the fuel (LPG versus PNG and H 2 ). 
2.2. Medium- and large-scale experiment 

The medium- and large-scale experiments have been set up by 
GexCon in 2012. Almost all the available measurements and di- 
agnostics are shown in this paper, a few additional results being 
available in [51] . Raw data are available upon request. 

The medium-scale experiment is a replica of the small-scale ex- 
periment of Sydney at scale 6. The combustion chamber is a 1.5 
× 0.3 × 0.3 m 3 volume (135 l) with a vent opening. Contrary to 
the Sydney experiment where the vessel was oriented vertically, 
the vessel was positioned horizontally on a table due to the higher 
intensity of the explosion. The three aluminum grids were posi- 
tioned vertically inside the vessel. All dimensions of the MS rig 

Elsa Gullaud, Post-Doc 2019
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Ξ : ℝ2k ↦ ℝ

CNN FORMULATION:  
    2019 - Lapeyre et al. 

Ω

Ξ = fCNN(Ω, t)

Ξ : ℝk ↦ ℝ

Efficiency functions f - local to global



Building the dataset

26

CNN |∇c|
|∇c|

n

n

n

c

n

n

n

c

nΔ

nΔ

nΔ

DNS Mesh

LES Mesh
Ω Ω

Gaussian filtering equivalent 
to flame thickening Δ

Convolutional neural network

FΔ(n) = {e− 1
2 ( n

σ )2
if n ∈ [1,N]

0 otherwise



Neural network

27

7

a b c d

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

algorithms on this data set use highly data set specific post-processing methods1

applied to the probability map of Ciresan et al. [1].
We also applied the u-net to a cell segmentation task in light microscopic im-

ages. This segmenation task is part of the ISBI cell tracking challenge 2014 and
2015 [10,13]. The first data set “PhC-U373”2 contains Glioblastoma-astrocytoma
U373 cells on a polyacrylimide substrate recorded by phase contrast microscopy
(see Figure 4a,b and Supp. Material). It contains 35 partially annotated train-
ing images. Here we achieve an average IOU (“intersection over union”) of 92%,
which is significantly better than the second best algorithm with 83% (see Ta-
ble 2). The second data set “DIC-HeLa”3 are HeLa cells on a flat glass recorded
by di↵erential interference contrast (DIC) microscopy (see Figure 3, Figure 4c,d
and Supp. Material). It contains 20 partially annotated training images. Here we
achieve an average IOU of 77.5% which is significantly better than the second
best algorithm with 46%.

5 Conclusion

The u-net architecture achieves very good performance on very di↵erent biomed-
ical segmentation applications. Thanks to data augmentation with elastic defor-

1 The authors of this algorithm have submitted 78 di↵erent solutions to achieve this
result.

2 Data set provided by Dr. Sanjay Kumar. Department of Bioengineering University
of California at Berkeley. Berkeley CA (USA)

3 Data set provided by Dr. Gert van Cappellen Erasmus Medical Center. Rotterdam.
The Netherlands

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. 
In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
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Similar to: Bell, J. B., Day, M. S., Grcar, J. F., Lijewski, M. J., Driscoll, J. F., & Filatyev, S. A. (2007). 
Numerical simulation of a laboratory-scale turbulent slot flame. Proceedings of the combustion 
institute, 31(1), 1299-1307.
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•We target large scale LES => hybrid CPU/GPU and 
solver/neural network approach must scale to HPC 
• 2019-2020: Jean Zay Grand Challenge 

V. Xing (Ph.D. started 2019), supervised by C. Lapeyre, A. Misdariis, O. Vermorel & T. Poinsot

AVBP-DL: 2000 CPU + 64 GPU simulation on Jean Zay V. Xing,A. Misdariis, G. Staffelbach, C. Lapeyre

GPU1 GPU17 …
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024
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the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32⇥ neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2⇡] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1⇥ grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 =1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.
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Fig. S1. Neural network architecture. During training, the model is optimized to predict cell average time-derivatives or time evolved solution values from cell average values,

based on a precomputed dataset of snapshots from high resolution simulations. During inference, the optimized model is repeatedly applied to predict time evolution using the

method of lines.

Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
same conservative form,

ˆv
ˆt

+ ˆJ
ˆx

= F (x, t) , v(x, t = 0) = v0(x), [S2]
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Appendix I: Neural network model

Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
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Model details Complete source code, allowing production of a training dataset, training the network on it, and deployment
of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.

Godunov numerical flux For some models, we used Godunov numerical flux for the convective term v2 in the flux. Following
the example of numerical fluxes for WENO methods (2), we construct both left- and right-sided estimates of v (with separate
– coe�cients for each), v≠ and v+, and combine them according to the Godunov flux rule for J(v) = v2:

Jgodunov(v≠, v+) =
;

min[(v≠)2, (v+)2] if v≠
Æ v+

max[(v≠)2, (v+)2] if v≠ > v+ . [S1]

Appendix II: PDE parameters

Equations We solved three PDEs in one space dimension x and time dimension t. All of our equations can be written in the
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of the resulting coarse-grained equation is freely available online at https://github.com/google/data-driven-discretization-1d. Our
model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.

Fig. S1 presents a graphical depiction of our model architecture. The coarse grained function values are fed into a neural
network. The network’s output, the coe�cients –(n)

i , are combined with the coarse grained values to estimate the spatial
derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
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with constant coe�cients only, as noted below).

We trained our models using the Adam optimizer for 40 000 steps total, decreasing the learning rate by a factor of 10 after
20 000 steps. For most models we used an initial learning rate of 3 ◊ 10≠3, with the exception of KdV and KS models with a
resample factor of 16x and higher, for which we used an initial learning rate of 1 ◊ 10≠3. We used a batch size of 128 times the
resampling factor. All of our results show models trained with the time-derivative loss, with the exception of the “optimized
constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.

We found that some of our models had highly variable performance on di�erent model training runs, due to randomness in
the training procedure and a lack of guarantees of numerical stability in our training procedure. To ameliorate this issue and
improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
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model, including all physical constraints, was implemented using the TensorFlow library (1). In the calculations presented here,
the model had three fully convolutional layers, each with 32 filters of a fixed kernel of size five and with a ReLU nonlinearity
between each layer. Our neural network predictions at a single point are thus dependent on values of the local solution over a
maximum range of 13 grid cells, independent of the model resolution. The code allows for easily tuning these hyper-parameters.
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derivatives. These are used in the known physical equation for the flux, which is used to calculate the temporal derivative by a
first-order divergence. Training minimizes either the di�erence between the calculated time derivative and the true one (most
models), or the di�erence between the calculated evolved state at future times and the true evolved state (Burgers’ equation
with constant coe�cients only, as noted below).
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constant coe�cient” models for Burgers’ equation, which was trained to predict 8 forward time-steps with the midpoint method.
Each individual model trained to completion in less than an hour on a single Nvidia P100 GPU.
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improve the interpretability of our results, we trained each model ten times and in most results only show predictions from
only the best overall performing model for each task. Predictions from the worst-performing models are shown below in S10.
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Great idea, difficult execution

41

•Challenge #1: differentiability 
๏ NN require the chain to be differentiable i.e. you must 

rewrite your CFD solver in a deep learning framework 
๏ Several solvers with this tech under development (e.g. 

PhiFlow [1] at TUM) 

•Challenge #2: time stability 
๏ Supervised learning (error wrt next iteration) leaves room for 

small errors that accumulate => divergence 
๏ BUT training in a supervised manner long term doesn’t 

seem to work: turbulent paths differ, and punishing the 
network for difference to DNS doesn’t work anymore

[1] https://ge.in.tum.de/research/phiflow/
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Concluding remarks
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• Papers: 

๏Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D. & Poinsot, T. (2019). Training convolutional neural networks to estimate 
turbulent sub-grid scale reaction rates. Combustion and Flame, 203, 255-264. 

•Conferences: 

๏Lapeyre, C. J., Cazard, N., Roy, P. T., Ricci, S., & Zaoui, F. (2019). Reconstruction of Hydraulic Data by Machine 
Learning. SimHydro 2019, Nice, France, June 12-14, arXiv:1903.01123. 

๏Lapeyre, C.J., Misdariis, A., Cazard, N., Xing, V., Veynante, D. & Poinsot, T. (2019). A convolutional neural network-based 
efficiency function for sub-grid flame-turbulence interaction in LES. 16th International Conference on Numerical Combustion, 
May 6-8 2015, Avignon France. 

๏Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster: 
Computing High Resolution Fire Behavior Metrics from Prescribed Burn using Handheld Airborne Thermal Camera 
Observations. The 6th International Fire Behaviour and Fuels Conference, Marseilles, May 2019. 

๏Ronan Paugam, Melanie Rochoux, Nicolas Cazard, Corentin Lapeyre, William Mell, Joshua Johnston, and Martin Wooster. 
Journée de télédétection et incendie Organisée par IRSTEA, Aix, Decembre 2018. 

๏Lapeyre, C.J., Misdariis, A., Cazard, N, Poinsot, T. Replacing a sub-grid closure model with a trained deep convolutional neural 
network. HiFiLeD Symposium, November 14-16th 2018, Brussels Belgium. 

•Other: 

๏Lapeyre, C.J., Misdariis, A., Cazard, N. & Poinsot, T (2018). A-posteriori evaluation of a deep convolutional neural network 
approach to subgrid-scale flame surface estimation. Proc. CTR Summer Program, 349-358.


