Data & risks

Medium

Prof. dr. Marielle Stoelinga University of Twente | Radboud University Nijmegen

The first algorithm?

The first algorithm!

- Euclid / Euclides
- Ca. 325 270 BC
- Alexandria, Greece
- Mathematician

Raphael School of Athens ca 1500

BREAK

Claim to fame: The elements

E THEATRO SHELDONIANO, An. Dom. MDCCIII.

- Numbers & geometry (triangles, cones)
- Euclid: first come up with procedure
- Algorithm
 - \circ step wise procedure =
 - list of instructions =
 - \circ recipe

For nerds only: Euclid's algorithm

- computes greatest common divisor
- gcd(30,18) = 6

Idea / trick / magic gcd(30,18) = = gcd(30-18,18) = gcd(12,18) = gcd(12,18-12) = gcd(12,6) = gcd(12-6,6) = gcd(6,6) == gcd(6,6-6) = gcd(6,0) = 6

Algorithms: no computer needed

The first algorithm for computers

Charles Babbage Analytical Engine (1833) Memory (1000 numbers) + computation unit

Ada Lovelace

- Lived 1815 1852
- Daughter of Lord Byron

Analytical Engine

- Translated + extended description
- Invented calculation method for Bernoulli numbers
- \rightarrow first computer algorithm

Vision

computers go beyond calculating + number crunching

From Ada's notes

		Variables for Data						Working Variables							Variables for Results			
mber of Operations	ations	$^{1}\mathrm{V}_{0}$	$^{1}\mathrm{V}_{1}$	$^{1}\mathrm{V}_{2}$	$^{1}\mathrm{V}_{3}$	$^{1}\mathrm{V}_{4}$	$^{1}\mathrm{V}_{5}$	°V6	$^{\rm o}V_7$	$^{\rm o}{\rm Vs}$	$^{0}\mathrm{V}_{9}$	${}^{0}V_{10}$	⁰ V ₁₁	$^{\mathrm{o}}\mathrm{V}_{12}$	${}^{0}V_{13}$	$^{\circ}V_{14}$	$^{\rm o}{\rm V}_{15}$	⁰ V ₁₆
	pers	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	o Jo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ture	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ñ	Na	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		m	n	d	m'	n'	ď										$\boxed{\frac{dn'-d'n}{mn'-m'n}=x}$	$\boxed{\frac{d'm-dm}{mn'-m'n}=y}$
1	×	m				n'		mn'	<i>m</i> ′n									
3	Ŷ			d					118 18	dn'								
4	×		0				ď				d'n							
5	\times	0					0					d'm						
6	\times			0	0								dm'					
7	-							0	0		* * * *			(mn' - m'n)				
8	-									0	0				(dn' - d'n)	(A., 1.)		
9	-					••••				••••		0	0	(mail miles)	0	(a m - am')	dn'-d'n	
10	÷													(mn - mn)	0		$\frac{1}{mn'-m'n} = x$	
11	÷						••••				•••••			0		0		$\tfrac{d'm-dm'}{mn'-m'n}=y$

Algorithms: What about the fuss?

The first self-learing algorithms

Al algorithms

- Not programmed by humans
- But: Self-learning
- o Learn automatically from data / examples
- Eg: cats vs dogs

Buzz words

- Artificial Neural Networks ("deep learning")
- Bayesian Networks
- Genetic algorithms
-
- 1956 darthmouth workshop
- The problem: *they did not work!*

Al winters

Al Winter 1969 - 1990

The first working AI algorithms

1997

- DeepBlue beats Kasparov
- Classical algorithms

2013

- AlphaGO defeat2 Lee Sedol
- Neural networks

Why did it suddenly work?

Increased computer power

Moore's law

Data storage cheaper

More data available

Exponential growth: computing power & data storage

Performance / \$

Moore's Law— Doubles 18 months (number of transistors)

- Data Storage— Doubles 12 months (bits per square inch)
- Optical Fiber—
 Doubles 9 months
 (bits per second)

See keynote Prof. Vossen

Summary

30	0	BC
	84	3

- First classical algorithm: stepwise procedure
- First computer algorithm: on analytical machine

First AI algorithms: self-learning

• First AI algorithms: *now effective*

If you hear the word "algorithm", is it human-written or self-learning?

Where will we end up?

Where will we end?

How does it all work?

Applications

Deep fake

Face recognition

Sales forecasting

profiling

Applications in Risk Analysis

Anomaly detection

Predictive maintenance

How it works: Self-learning algorithms

example: neural networks

Black box algorithm

cat: yes / no

	algo: cat	algo: no cat
picture: cat	true positive	false negative
picture: no cat	false positive	true negative

Accuracy = % correctly classified pictures

inputs

- (cat) picture: 64 x 64 pixels
- grey scale in [0,1]: 0=white, 1= black, 0.8 rather black
 Output
- binary: 1 (yes, cat) or 0 (no cat)

firing neurons

- a neuro fires iff their weighted sum of its inputs > T
- training = finding the weights
- many variants: recurrent, convolutional, long short term memory

- a neuro fires iff their weighted sum of > T
- (renormalize to get numbers in [0,1])
- Learning = finding good weights

neural networks: black box

Propblem: not understandable

- GIGO: garbage in, garbage out
- No patterns in NN (eg eyes, ears)
- Acceptable? Responsible? Liable?

PART 2: Predictive maintenance

Predictive maintenance

Predictive maintenance

McKenzie

- PdM is most promising IoT application
- 63 billion / year cost savings
- 50% downtime reductions

workflow: predictive maintenance

Discussion

I am curious to hear

- Which data could help your organization?
- What would you like to predict?

