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POD: PROPER ORTHOGONAL DECOMPOSITION
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Also known as PCA: Principal Component Analysis

Original formulation in 1967 by J. Lumley

Widely used in Fluid Dynamics 

Many variations exist: 

Missing data

Noisy or corrupted data

Multiple datasets

Multiscale



DECOMPOSITION: MAIN IDEA
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Decomposing time variant systems into spatial and temporal parts

In general, not a unique decomposition

POD finds this decomposition with smallest “m”



POD: DATA ASSEMBLY
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Spatial dimension: n

Temporal dimension: m

Various assembly techniques are available



ECONOMY SVD & TRUNCATION
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We can trim U and Σ while keeping the same results

U and V are unitary. Σ is diagonal with decreasing positive entries

We can further trim for an approximation to Y
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Optimality of POD: Rank-r approximation minimizes the Frobenius norm

U contains the POD modes

Σ contains POD singular values

V contains the right singular vector or POD coefficients

POD: MODES AND COEFFICIENTS
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Let’s try it with the following synthetic signal

DEMO
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EXAMPLE: LES OF UT BURNER
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Velocity Contour Q-Criterion Flame Front



POD APPLIED TO UT BURNER 
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Identify mean values

Breakdown into modes

Extract flow structures

Able to identify PVC

Energy breakdown of modes

Pressure OH radicals Swirl
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DMD: DYNAMIC MODE DECOMPOSITIONS
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Think of it as POD + DTFT

Developed in 2010 by P. Schmid

DMD modes are not orthogonal like POD

Many extensions exist: 

GPU CUDA implementation

Compressed sensing

Noisy data

Multiresolution

Robustness



KOOPMAN ANALYSIS BASICS
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Formalism for dynamic systems: Koopman Theory 1931

Imagine the following discrete time system with state vector x

Observables of the state vector or functions of x is defined as 𝑔(𝑥)

Koopman operator evolves the system in the following manner

Koopman operator turns a finite nonlinear dynamical system in vector 

space into an infinite dimensional linear system in function space 𝑔(𝑥)



DMD: MAIN IDEA
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DMD gets us the best linear approximation to a dynamical system by 

approximating the infinite-dimensional Koopman operator

Let’s assemble our Y matrix in the two following forms

Looking for an optimally locally linear approximation in the following form



DMD: ALGORITHM
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Best-fit A matrix is given by

This, again, minimizes the aforementioned Frobenius norm 

By using SVD or                         we can work out the following

For efficiency, instead of 𝐴, we compute ሚ𝐴 which is the 

projection of A onto POD modes in the following manner



DMD: ALGORITHM
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Now we compute the eigen decomposition of ሚ𝐴 or simply: ሚ𝐴𝑊 = 𝑊Λ

Eigenvalues of ሚ𝐴 are the same as 𝐴

It can be shown that eigenvectors of Φ = UW are the same as 𝐴

We compute eigenvectors (modes) and eigenvalues (time dynamics) of 𝐴

without ever actually computing 𝐴

We can still adopt a low rank approach like before



DMD: CODE
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1. Prepare the data matrix 𝑌 and 𝑌′ in the correct form

2. Run economy SVD

3. Find ሚ𝐴

4. Find 𝑊 and 𝐷

5. Find time eigenvalues

6. Find DMD modes

7. Find DMD mode coefficients

8. Construct your approximation

[U ,S, V]=svd(Y,'econ'); 

Atilde = U’*Yp*V/S;

[W, D] = eig(Atilde);

omega = log(diag(D))/dt;

Phi = Yp*V/S*W;

b = Phi\Y(:, 1);

Ydmd = Phi*(b.exp(omega*time));



EXAMPLE: LES OF UT BURNER
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DMD DMD ROM Prediction
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Thank you for your attention!

Stay healthy :)


