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POD: PROPER ORTHOGONAL DECOMPOSITION

Also known as PCA: Principal Component Analysis
Original formulation in 1967 by J. Lumley
Widely used in Fluid Dynamics

v v Vv VY

Many variations exist:

» Missing data

» Noisy or corrupted data
» Multiple datasets
| 4

Multiscale
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DECOMPOSITION: MAIN IDEA

y(z,t) = Z uj(x)aj(t)

» Decomposing time variant systems into spatial and temporal parts
» In general, not a unique decomposition

» POD finds this decomposition with smallest “m”
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POD: DATA ASSEMBLY

“u(y,ty)  ulzy,ty) WXyt )"
vV — u(Zg,ty)  u(xq,ts) u(2q,t,,)
_U(ﬂfn,tl) U’(‘rnﬁtZ) U(ZEn,tm)_

» Spatial dimension: n
» Temporal dimension: m

» Various assembly techniques are available
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ECONOMY SVD & TRUNCATION

|V
Y = U by

m X m

nxm n X n nxXm

» We can trim U and X while keeping the same results
» U and V are unitary. X is diagonal with decreasing positive entries

» We can further trim for an approximation to Y
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ECONOMY SVD & TRUNCATION
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ECONOMY SVD & TRUNCATION
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» We can trim U and X while keeping the same results
» U and V are unitary. X is diagonal with decreasing positive entries

» We can further trim for an approximation to Y
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POD: MODES AND COEFFICIENTS

Y =USV* ~ U3,V

» Optimality of POD: Rank-r approximation minimizes the Frobenius norm

n__m
Y =Y lp= /> > (Y=Y

j=1 k=1

» U contains the POD modes
» X contains POD singular values

» V contains the right singular vector or POD coefficients
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DEMO

Let's try it with the following synthetic signal

x — by)?
(x — by)?

y(xz,t) = sy sin(2nww,t) + Sosin (27wwsyt)
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EXAMPLE: LES OF UT BURNER

Velocity Contour Q-Criterion Flame Front

0.04704 [s]

Velocity

100
94
89
83
78
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POD APPLIED TO UT BURNER

» Identify mean values I3Ire5§ur§ OH radicals SWIII’|

» Breakdown into modes
» Extract flow structures
» Able to identify PVC

» Energy breakdown of modes
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POD APPLIED TO UT BURNER

» Identify mean values

» Breakdown into modes
» Extract flow structures
» Able to identify PVC

» Energy breakdown of modes
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POD APPLIED TO UT BURNER

» Identify mean values

» Breakdown into modes
» Extract flow structures
» Able to identify PVC

» Energy breakdown of modes
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POD APPLIED TO UT BURNER

» Identify mean values

» Breakdown into modes

» Extract flow structures

» Able to identify PVC

» Energy breakdown of modes

&
c
L
(5]
<
=}
=
)
°

2 4 ) 8 10 12 14 16 18 20
Mode

MAGISTER ITN  UNIVERSITY OF TWENTE.



DMD: DYNAMIC MODE DECOMPOSITIONS

» Think of it as POD + DTFT
» Developed in 2010 by P. Schmid
» DMD modes are not orthogonal like POD
» Many extensions exist:
» GPU CUDA implementation
» Compressed sensing
» Noisy data
» Multiresolution
| 2

Robustness
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KOOPMAN ANALYSIS BASICS

» Formalism for dynamic systems: Koopman Theory 1931

» Imagine the following discrete time system with state vector x

CUn+1 — (xfn,)

» Observables of the state vector or functions of x is defined as g(x)

» Koopman operator evolves the system in the following manner
g(wn—l-l) — Kg(ajn)

» Koopman operator turns a finite nonlinear dynamical system in vector
space into an infinite dimensional linear system in function space g(x)
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DMD: MAIN IDEA

» DMD gets us the best linear approximation to a dynamical system by
approximating the infinite-dimensional Koopman operator

» Let's assemble our Y matrix in the two following forms

Y=1Y1 Y2 ... Y. 4 Y=Y Ys ... vy,

» Looking for an optimally locally linear approximation in the following form

Y’ =~ AY
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DMD: ALGORITHM

» Best-fit A matrixisgivenby A =Y'YT
» This, again, minimizes the aforementioned Frobenius norm

» By using SVDor Y = UXV* we can work out the following
A=Y'VElU*

» For efficiency, instead of 4, we compute A which is the

projection of A onto POD modes in the following manner

fand

A=U*AU =U*Y'Vx!
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DMD: ALGORITHM

» Now we compute the eigen decomposition of A or simply: AW = WA
» Eigenvalues of A are the same as 4
» It can be shown that eigenvectors of ® = UW are the same as A

=Y'VX'W

» We compute eigenvectors (modes) and eigenvalues (time dynamics) of A
without ever actually computing A

» We can still adopt a low rank approach like before
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DMD: CODE

Run economy SVD

Find A

Find Wand D

Find time eigenvalues

Find DMD modes

Find DMD mode coefficients

Construct your approximation

© N o vk~ W N =
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Prepare the data matrix Y and Y’ in the correct form

[U ,S, V]=svd (Y, '"econ');

Atilde = U’ *Yp*V/S;

[W, D] = eig(Atilde);

omega = log(diag (D)) /dt;

Phi = Yp*V/S*W;

b = Phi\Y (:, 1);

Ydmd = Phi* (b.exp(omega*time)) ;
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EXAMPLE: LES OF UT BURNER

DMD DMD ROM
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