Privacy-Preservising Mobility Data Collection

Fatemeh Marzani, Thijs van Ede, Geert Heijenk and Maarten van Steen

University of Twente, The Netherlands

Data Privacy VS. Data Protection

Overview

Data protection is concerned with who can access data!

Data privacy concerns with what can be learned from data!

Privacy Violation in Aggregation

Massive privacy-preserving mobility data collection and aggregation.

Types Mobility Data

Mobility data can be linked with auxiliary data to reveal personal details. Providing auxiliary data for small group is easier \rightarrow re-identification is easier. Measuring footfall at $S_1 = 1$ and if we know S_1 is Alice's office \rightarrow Alice is at S_1 .

Random Data Sampling

Problem: What type of identifier can be used to detect pedestrians? **Idea:** Sniffing cellphone MAC addresses to collect pedestrian data.

Mobility Data Collection

Random sampling helps protect data privacy.

When the population is small, sampled data is less reliable but reduces the risk of re-identification.

When the population is large, sampling provides reliable and representative data.

Conclusions and Future Work

Current Approach: Collecting MAC addresses to collect pedestrian data while ensuring privacy protection.

Problem: MAC addresses are dynamically changed, making them unreliable.

Idea: Can we generate anonymous IDs from face data to compute footfall and crowd flow while preserving privacy?
Challenges: IDs must be irreversible and consistent for each person.
IDs must be discriminative between different individuals.

UNIVERSITY OF TWENTE.

f.marzani@utwente.nl