
Is a name enough? A first look into detecting clouds 

using DNS pointer records

• Understanding the cloud scope on the internet is crucial for network 

management, security, and regulation.

• Hypergiants cloud providers often publish the allocation of their network 

resources, but not the case for smaller providers.

• Despite efforts by commercial IP intelligence , there is a lack of 

transparency about their identification methods and clarity about its 

completeness and reliability.
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• We utilized reverse DNS (Pointer records (PTR)) to  develop a Markov 

chain-based classifier for identifying patterns and structures in the 

reverse DNS naming schemes of cloud providers. 

• These figures show the higher probability ratio for cloud samples and a broader 

distribution for residential samples.

• The overlap area marks the intrinsic limit of our classification where we can't differentiate 

between cloud and residential PTR records.

• The curve is  for θ ∈ [−10 : 0.5 : 4]. 

• The area under the ROC curve (AUC) is 

0.93 showing high performance for 

our model.

• There are some common generic sequences, particularly single-word PTR names, shared across datasets, leading to misclassification. 

• We also identified that major providers employ specific patterns exclusive to them. These unique sequences create discernible patterns for differentiation.

• Future research could improve our approach by expanding the PTR dictionary to include word variants and abbreviations.

• Seven samples of state sequences in the 

overlap with a –3<log10(ratio)<2.​

•  We are more likely to make a classification 

error for short sequences.
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Example: rate-limited-
proxy-108-177-77-

197.google.com

Sequence Samples in 
clouds

Samples in 
residential

Log10(ratio)

(start, reg, 
end)

197 447 -0.167397

(start, infra, 
end)

80 110 0.167701

(atart, ip, 
end)

1 344 -1.554941

(start, none, 
end)

88 21 -0.137798

(start, geo, 
end)

9 2 -1.658913

Markov chain model  for cloud PTRs Markov chain model for residential PTRs

• Each node in these charts represents a state in our model and the edges between these 

nodes show the transition probabilities derived from the training sets.

• The thickness of the edges reflects the magnitude of these probabilities.
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rate-limited
-proxy-ipaad Rate, limited,

proxy, ipaad

Rate -> infra
Limited -> infra
Proxy -> infra
Ipaad -> ip

(infra, infra) 
(infra,infra) 
(infra,ip)

Ratio = Pcloud/ p residential
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Find the paper here


	Slide 1

