# Is a name enough? A first look into detecting clouds using DNS pointer records

Sousan Tarahomi\*, Raffaele Sommese\*, Pieter-Tjerk de Boer\*, Jeroen Linssen‡, Ralph Holz\*<sup>†</sup>, Anna Sperotto\* \* University of Twente, The Netherlands, † University of Münster, Münster, Germany ‡ Saxion University of Applied Sciences, The Netherlands {s.tarahomi, r.sommese, p.t.deboer, r.holz, a.sperotto }@utwente.nl, j.m.linssen@saxion.nl

# **Problem statement**

- Understanding **the cloud scope** on the internet is crucial for network management, security, and regulation.
- Hypergiants cloud providers often publish the allocation of their network



Model

resources, but not the case for smaller providers.

• Despite efforts by commercial IP intelligence, there is a lack of transparency about their identification methods and clarity about its completeness and reliability.

### **RQ: How do we distinguish IP cloud from non-cloud ?**

# Methodology

• We utilized reverse DNS (Pointer records (PTR)) to develop a Markov chain-based classifier for identifying patterns and structures in the reverse DNS naming schemes of cloud providers.



The **thickness** of the edges reflects the magnitude of these probabilities.



- These figures show the **higher probability ratio** for cloud samples and a **broader** distribution for residential samples.
- The **overlap** area marks the intrinsic limit of our classification where we can't differentiate between cloud and residential PTR records.



| Sequence               | Samples in clouds | Samples in residential | Log10(ratio) |
|------------------------|-------------------|------------------------|--------------|
| (start, reg,<br>end)   | 197               | 447                    | -0.167397    |
| (start, infra,<br>end) | 80                | 110                    | 0.167701     |
| (atart, ip,<br>end)    | 1                 | 344                    | -1.554941    |
| (start, none,<br>end)  | 88                | 21                     | -0.137798    |
| (start, geo,<br>end)   | 9                 | 2                      | -1.658913    |

• The curve is for  $\theta \in [-10:0.5:4]$ .

#### • Seven samples of state sequences in the



overlap with a -3<log10(ratio)<2.

We are more likely to make a classification error for **short sequences**.

## Conclusion

- There are some common generic sequences, particularly single-word PTR names, shared across datasets, leading to misclassification.
- We also identified that major providers employ specific patterns exclusive to them. These unique sequences create discernible patterns for differentiation.
- Future research could improve our approach by expanding the PTR dictionary to include word variants and abbreviations.



