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The main goal of this project is to prove the correctness of one or several encoders
composing the JavaBIP coordination engine, using the VerCors deductive verifier.

Context

JavaBIP [1] is a Java-based implementation of the BIP [2] mechanisms for
the coordination of concurrent software components. A runnable system in
JavaBIP consists of two major parts: the engine and several modules, one for
each component to be coordinated (see Figure 1). In a nutshell, a JavaBIP
component extends a Java class with a behavioural BIP specification describing
a Finite State Machine through Java annotations.
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Figure 1: High-level view of the JavaBIP runnable system architecture

The coordination constraints are specified in terms of glue and data wires.
The glue consists of synchronisation constraints encoding the set of possible
interactions among the ports of the components. Data transfer is specified as
a set of data wires connecting required inputs with provided outputs of the
components.

The behaviour specification of each component along with the glue and data wire
specifications are provided to the engine. The engine orchestrates the overall
execution of the system by 1) deciding which component transitions must be
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executed at each cycle, 2) transferring the necessary data, and 3) triggering the
execution of the selected transitions.

The JavaBIP engine consists of a collection of dedicated encoders transforming
specification elements (behaviour, glue, data wires) into Boolean constraints (see
Figure 2). The engine kernel stores the conjunction of these constraints as a
Binary Decision Diagram (BDD) used to compute the interactions to be fired at
each execution cycle.
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Figure 2: JavaBIP engine architecture

Project goals

The BDD representation used for the encoding of JavaBIP models allows the
efficient execution of JavaBIP systems but makes it very hard to test and
debug the engine. On the other hand, such Boolean encodings and the modular
architecture of the engine make it well suited for deductive verification. The
main goal of this project is, thus, to prove the correctness of one or several
encoders composing the JavaBIP engine, using the VerCors deductive verifier [3].
After studying the source code of the selected encoder, the student will have to
1) formalise the equivalence between the input model and the Boolean encoding,
2) design the require and gurantee annotations necessary to carry out deductive
verification using VerCors, and 3) interpret the results and, if necessary, propose
appropriate bug fixes.

Benefits

You will learn the principles of correct-by-construction design of concurrent
software based on formal operational semantics and get an in-depth understand-
ing of BIP, a state-of-the-art component-based framework. Successful project
realisation can lead to a research publication.



Required skills

Good analytical skills will definitely be required. The candidate must have good
understanding of Labelled Transition Systems and Finite State Automata. The
work will be based on Java sources, so proficiency in Java is a must.

Contact and application

For additional information and to apply please send an e-mail to Simon Bliudze
and Marieke Huisman with the subject “JavaBIP verification”.
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