Deductive verification of the JavaBIP engine

Simon Bliudze (simon.bliudze@inria.fr)
Marieke Huisman (m.huisman@utwente.nl)

The main goal of this project is to prove the correctness of one or several encoders
composing the JavaBIP coordination engine, using the VerCors deductive verifier.

Context

JavaBIP [1] is a Java-based implementation of the BIP [2] mechanisms for
the coordination of concurrent software components. A runnable system in
JavaBIP consists of two major parts: the engine and several modules, one for
each component to be coordinated (see Figure 1). In a nutshell, a JavaBIP
component extends a Java class with a behavioural BIP specification describing
a Finite State Machine through Java annotations.

calls

Reflection
calls

Executor

calls

Reflection
calls

Executor

Reflection
calls

[JavaBIP Engine]

Figure 1: High-level view of the JavaBIP runnable system architecture

The coordination constraints are specified in terms of glue and data wires.
The glue consists of synchronisation constraints encoding the set of possible
interactions among the ports of the components. Data transfer is specified as
a set of data wires connecting required inputs with provided outputs of the
components.

The behaviour specification of each component along with the glue and data wire
specifications are provided to the engine. The engine orchestrates the overall
execution of the system by 1) deciding which component transitions must be


mailto:simon.bliudze@inria.fr
mailto:m.huisman@utwente.nl
https://github.com/sbliudze/javabip-engine
http://www-verimag.imag.fr/New-BIP-tools.html

executed at each cycle, 2) transferring the necessary data, and 3) triggering the
execution of the selected transitions.

The JavaBIP engine consists of a collection of dedicated encoders transforming
specification elements (behaviour, glue, data wires) into Boolean constraints (see
Figure 2). The engine kernel stores the conjunction of these constraints as a
Binary Decision Diagram (BDD) used to compute the interactions to be fired at
each execution cycle.

r ——— ; \
JavaBIP Engine y + |
) .
Data Coordinator Gilue Coordinator Engine Kernel
temporary Glue temporary
“““““ Encoder =
Data permanent Current permanent BDD T
- >
Encoder State Manager
Encoder
| ceans Behaviour
Encoder
- - @ -
A A A
i
| S
permanent permanent

Figure 2: JavaBIP engine architecture

Project goals

The BDD representation used for the encoding of JavaBIP models allows the
efficient execution of JavaBIP systems but makes it very hard to test and
debug the engine. On the other hand, such Boolean encodings and the modular
architecture of the engine make it well suited for deductive verification. The
main goal of this project is, thus, to prove the correctness of one or several
encoders composing the JavaBIP engine, using the VerCors deductive verifier [3].
After studying the source code of the selected encoder, the student will have to
1) formalise the equivalence between the input model and the Boolean encoding,
2) design the require and gurantee annotations necessary to carry out deductive
verification using VerCors, and 3) interpret the results and, if necessary, propose
appropriate bug fixes.

Benefits

You will learn the principles of correct-by-construction design of concurrent
software based on formal operational semantics and get an in-depth understand-
ing of BIP, a state-of-the-art component-based framework. Successful project
realisation can lead to a research publication.



Required skills

Good analytical skills will definitely be required. The candidate must have good
understanding of Labelled Transition Systems and Finite State Automata. The
work will be based on Java sources, so proficiency in Java is a must.

Contact and application

For additional information and to apply please send an e-mail to Simon Bliudze
and Marieke Huisman with the subject “JavaBIP verification”.

References

1. Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolo-
tukhina. Exogenous coordination of concurrent software components with
JavaBIP. Software: Practice and Ezperience, 47(11):1801-1836, November
2017. PDF

2. Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mo-
hamad Jaber, Thanh-Hung Nguyen, Joseph Sifakis. Rigorous component-
based system design using the BIP framework. IEEE Software 28(3) (2011)
41-48 PDF

3. Stefan Blom, Saeed Darabi, Marieke Huisman, Wytse Oortwijn. The
VerCors toolset: Verification of parallel and concurrent software. In: IFM.
Lecture Notes in Computer Science, vol. 10510, pp. 102-110. Springer
(2017), DOT: 10.1007/978-3-319-66845-1_ 7


mailto:simon.bliudze@inria.fr
mailto:m.huisman@utwente.nl
http://www.bliudze.me/simon/articles/javabip-spe.pdf
https://www-verimag.imag.fr/~sifakis/RecentPublications/2011/ieee-software.pdf
https://link.springer.com/chapter/10.1007/978-3-319-66845-1_7

	Deductive verification of the JavaBIP engine
	Simon Bliudze (simon.bliudze@inria.fr)
	Marieke Huisman (m.huisman@utwente.nl)
	Context
	Project goals
	Benefits
	Required skills
	Contact and application
	References


