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LAMINAR-TURBULENT TRANSITION AND ITS PREDICTION

The laminar-to-turbulent 
transition is the process of a 
laminar flow becoming 
turbulent. Depending on the 
mechanism this process is 
caused by instabilities growing 
exponentially and eventually 
turning the flow into a chaotic, 
turbulent state.

For many applica>ons in 
aerodynamics it is essen>al to 
consider the laminar-to-
turbulent transi>on and to 
know in which region this 
transi>on is happening. For 
this purpose, a wide range of 
methods exists that enable 
the predic4on of the 
transi>on at different levels 
of fidelity.

A class of methods pioneered by Menter and 
colleagues in the early 2010s are known as local 
(correlation-based) transition-transport models 
[1]. They adhere to the principal of being fully 
compatible with modern computational fluid 
dynamics software, offering additional advantages 
such as robustness and user-friendliness. However, 
a drawback of these methods is that they may 
sacrifice accuracy in pursuit of these benefits.

𝜕(𝜌𝜙)
𝜕𝑡

+ ∇ ⋅ 𝜌 𝒖𝜙
= 𝒫! + ∇ ⋅ ( 𝜇 + 𝜇" 𝜎! ∇𝜙)

In this context, one strategy 
to maintain the predictive 
quality of a high-fidelity 
method like local, linear 
stability theory in conjunction 
with eN method within a 
transition transport model is 
the incorporation of Machine 
Learning methods.



Problem description:

• In a grid-point local transition transport model it is crucial to provide  quantities that characterize
the state of the boundary-layer. For this purpose, integral boundary layer quantities are used 
(as the shape factor 𝐻!").

• The challenge is to estimate these parameters solely by utilizing local grid-point quantities
within a simulation,  i.e. ℱ: 𝜍 ⟼ ℒ, where 𝜍 is the grid-point local quantity and ℒ the integral parameter.

• The current state-of-the-art approach involves employing data fits derived from self-similar laminar solutions, as shown 
in references [1, 2, 3, 4]. However, this method has inherent limitations. To potentially overcome these constraints, an 
alternative approach is to utilize Neural Networks: ℱℒ: 𝜂$ ⟼ ℒ.

ASSINGMENT 3: Grid-point local approxima0on of boundary-
layer quan00es using Machine Learning

Is it possible to approximate integral boundary-layer quantities with grid-point local data using Neural Networks?

Research question: 
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Tasks in this assignment:

ü Reproduction of curve fits ℱ: 𝑅𝑒#,%&' ⟼ 𝑅𝑒( for
ü Blasius solution: zero pressure gradient laminar flat plate
ü Falkner-Skan solution: wedge flow for different constant pressure gradients 𝛽

ü Establishment of a comprehensive database comprising laminar profiles across a broad spectrum of flow conditions using CFD.

ü Identification of suitable (local) input parameters and training of a Neural Network.

ü Application:
ü Verification for test cases within the database.
ü Generalizability: Validation across additional test cases.
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