A Comparative Study of Co-Kernel and Co-Processor based
Solutions for High-Performance Real-Time Applications

Background

More autonomous systems contain applications that require high-performance capabilities and real-
time guarantees. On the one hand, conventional micro-controllers cannot satisfy the

Security Core Complex 1 Connectivity
‘ Userspace | Am®TusiZone® 1Gb Etheret

‘ NRT-Task ‘ NRT-Task ‘ NRT-Task ‘ ‘ RT-Task ‘ RT-Task

Process DRM Ciphers (IEEE 1588, EE & AVB)
| Secure Clock Quad Cortex®-A53 SIPDIF TX & RX
| cFusekeyStoage |] 32KB I-cache 32 KB D-cache 10Tx + 10Rx IS Lanes
[| Random Number Arm Neon™ FPU 1x USB2.0 OTG & PHY
. Cobalt | 32KB Secure RAM 512 KB L2 Cache 8-ch. PDM
Linux Schedul Pr . Sehag
(Xenomai) Kernel System Control Core Complex 2 4 x UART
SmertDMAX3 Cortex-M7 4xrc
g . 0 @ + ’ s 256 KB TCM 3xSPI
Dispatching and Collaboration Services (I-Pipe, Dovetail) —
= o= oo S Watchdog x 3 Multimedia External Memory
i) “IrR@ Ra “Ra ™ { : 1 x16 LPDDR4/DDR4/DDR3L.
IRQ IRQ IRQ IRQ PWMx 4 i 3D GPté. Lz:rf;ag p(z;:z.gsu ﬁi o 3
S_— Timer x 6 ' e ' 3xeMMC5.1/SD 3.0/SDIO3.0
ne
Secure JTAG
Hardware EEIE T NAND CTL (BCH62)
Temperature Sensor
512 KB OCRAM ARG Dual-ch. QuadSPI

Figure 1: Xenomai 3 co-kerenel . . .
Figure 2: NXP - i.MX 8M Nano Processors Block Diagram

where Coretex-M7 is a co-processor

high-performance requirements. On the other hand, high-performance processors, like ARM A53,
have unpredictable execution behavior, which make them less suitable for real-time tasks. In
addition, many high-performance applications cannot work on a real-time operating system (RTOS).
Hence, Linux is preferred over RTOS for high-performance application. Linux is not real-time capable.

To overcome this challenge with high-performance real-time applications, there are two typical
solutions: real-time co-kernel like Xenomai 3 and 4 and real-time capable co-processors like ARM
cortex-M architecture. Many factors affect our decision on which solution to use. For instance, legacy
code, hardness of the real-time constraints, dependency between high-performance and real-time
tasks, etc.

Thesis Objective

In this project, we aim to carry out an empirical comprehensive study on the pros and cons of each
solution under difference case studies.

You will:
* Evaluating the performance, determinism, and compatibility of both approaches
* Identifying trade-offs based on case studies and practical benchmarks
* Providing practical desigh recommendations for embedded system developers

Moreover, you may have a chance to visit DLR in Germany and present your findings.

Tools and Platforms

We would like to consider the following tools/platforms:

¢ Xenomai 3/4 with Linux

* ARM Cortex-M and Cortex-A SoCs (e.g., NXP i.MX 8M Nano)
¢ Real-time benchmarks and tracing tools

¢ Linux and RTOS environments

Learning Objectives

¢ Understand architectural differences between co-kernel and co-processor systems
* Gain hands-on experience in benchmarking and profiling embedded systems
¢ Evaluate trade-offs in designing high-performance real-time systems

* Strengthen skills in Linux/RTOS integration and performance analysis

Interested?

Please send us an email, write a bit about your motivation to work on the subject, your background,
and at what stage of the master program you are. We will then set a meeting.

e Supervisor: Dr.-Ing. Kuan-Hsun Chen, Email: k.h.chen@utwente.nl

e External Supervisor: Dr.-Ing. Zain A. H. Hammadeh, Email: Zain.HajHammadeh@dIr.de

	A Comparative Study of Co-Kernel and Co-Processor based Solutions for High-Performance Real-Time Applications
	Background
	Thesis Objective
	Tools and Platforms
	Learning Objectives
	Interested?

