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PACS 47.55.D- – Drops and bubbles
PACS 47.61.Jd – Multiphase flows
PACS 47.35.Pq – Capillary waves

Abstract – We use numerical (volume of fluid) simulations to study the flow in an oscillating
sessile drop immersed in an ambient immiscible fluid. The drop is excited by a sinusoidal variation
of the contact angle at variable frequency. We identify the eigenfrequencies and eigenmodes of
the drops and analyze the internal flow fields by following the trajectories of tracer particles. The
flow fields display an oscillatory component as well as a time-averaged mean component. The
latter is oriented upward along the surface of the drop from the contact line towards the apex and
downward along the symmetry axis. It vanishes at high and low frequencies and displays a broad
maximum around f = 200–300Hz. We show that the frequency dependence of the mean flow can
be described in terms of Stokes drift driven by capillary waves that originate from the contact
line, in agreement with recent experiments (Mugele F. et al., Lab Chip, 11 (2011) 2011).
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Introduction. – The dynamics of oscillating sessile
drops are of great interest to many fundamental and prac-
tical problems including the impact of drops on solid
surfaces, the generation of drops (e.g. in inkjet printers),
and the manipulation of drops in microfluidic and optoflu-
idic applications. Compared to the classical fluid dynamics
problem of oscillating free drops, for which Rayleigh [1]
developed the first systematic solution, the problem of
sessile drops is more complex because the presence of the
solid surface reduces the symmetry and gives rise to addi-
tional dissipation due to the adhesion of the liquid to the
solid surface [2,3]. Moreover, it introduces a contact line
that can be either pinned or mobile and a contact angle
with a velocity-dependent dynamic value. As a conse-
quence, the absolute values of the eigenfrequencies of
the drops shift while their scaling with surface tension,
density, and drop size remains unaffected [4]. Novel appli-
cations inspired by microfluidics trigger questions beyond
the previous focus on eigenfrequencies and eigenmodes
including the coupling between drop resonances, contact
angle hysteresis and drop motion [4–6] as well as time-
averaged streaming flows that promote mixing within the
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drops [7–10] and affect the deposition of residues from
evaporating drops [11]. In those experiments drop oscil-
lations are typically excited either by mechanical shaking
or by a periodic modulation of the equilibrium contact
angle using electrowetting (EW).
The goal of the present numerical study is to character-

ize the flow patterns in oscillating drops and to elucidate
their physical origin. Inspired by EW experiments [7–11],
we adopt a numerical scheme based on the volume of fluid
(VOF) method with a diffuse interface that is able to
deal with both moving contact lines and viscous ambi-
ent fluids [12]. This approach extends the scope of earlier
numerical studies [3,13] that focused on shape oscilla-
tions, eigenfrequencies, and instantaneous flow fields in the
numerically simpler situation of drops with pinned contact
lines in ambient air. We analyze the drop oscillations in
terms of eigenmodes and characterize instantaneous and
mean flows by following the trajectories of passive tracer
particles. Despite the presence of pronounced resonances
the simulations are found to reproduce all important char-
acteristics including the frequency dependence of the mean
flow reported in the experiments. The origin of the mean
flow can be described consistently with a Stokes drift
model that is based on propagating capillary waves rather
than discrete eigenmodes [9].
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Fig. 1: (Color online) (a) System description of a drop in
viscous medium on a wetted substrate and (b) oscillation
patterns at 176Hz (left) and 314.6Hz (right).

Problem definition and numerical implementa-

tion. – We consider a sessile drop placed on a flat
substrate in an immiscible viscous liquid bath as shown
in fig. 1(a). The physical parameters are chosen to mimic
typical experiments with millimeter-sized aqueous drops
in ambient oil [9]: The equilibrium shape of the drop is
a hemisphere with Young’s angle θY = 90

◦ and with an
average radius R0 = 1mm. The densities and viscosities of
drop and surrounding continuous medium are ρd = ρc =
1000 kg/m3, µd = 1 cP and µc = 6 cP, respectively. The
surface tension between the two fluids is σ= 35mN/m.
Drop oscillations are induced by time-periodic variations
of the equilibrium contact angle θ(t) on the substrate
following

cos θ(t) = cos θ0+Δsin(2πf t). (1)

Here f and Δ are the forcing frequency and amplitude,
respectively. There is no contact angle hysteresis. Experi-
mentally, such contact angle variations are easily realized
over a wide range of forcing frequencies using electrowet-
ting (EW) [7–9].
We solve the full Navier-Stokes equations and continuity

equation with a surface tension force on the free interface
in a single axisymmetric domain. The numerical scheme
is implemented using the volume of fluid (VOF) method
with a continuous surface force formalism (CSF). The
calculations are carried out in a domain of interest of
3mm× 3mm with a 300× 300 staggered grid system in
the cylindrical coordinates (r, z). For more details of
the method, implementation, and validation we refer the
reader to ref. [12], which also describes the optimized
regularization and filtering schemes used in the present
work. Unless stated otherwise, the forcing amplitude
is Δ= 1/2, corresponding to 60◦ < θ(t)< 120◦, and the

Fig. 2: (Color online) Frequency dependence of oscillation
amplitudes of height (Δh, blue triangles) of drop, the corre-
sponding speeds (Δuh, red circles) and reconstruction of Δh
based on harmonic oscillator model (blue solid line).

forcing frequencies are in the range of 20Hz< f < 2000Hz.
Since we are interested in steady-state oscillations we run
the simulations for at least 100 oscillations cycles for each
condition with at least 2000 time steps per period. We
compare the flow fields at the beginning and the end of
these two last cycles to verify that transients have decayed.
All results discussed below are extracted from the last two
oscillation cycles.

Drop oscillations. – The response of the liquid
surface depends strongly on the forcing frequency. At
low frequencies (f < 600Hz), a series of resonances at
distinct eigenfrequencies are observed as illustrated by
the snapshots in fig. 1(b). At higher forcing frequencies
the amplitude of the surface progressively decreases.
Figure 2 illustrates this behavior using the amplitude
Δh of the apex of the surface at r= 0 as well as the
corresponding speed Δuh. The latter is found to agree
with dΔh/dt= 2πfΔh within the numerical accuracy. Δh
vanishes at high frequencies as expected. For f → 0, Δh
approaches a constant value Δhmin = 0.262mm as deter-
mined by the drop size and the forcing amplitude. Δuh
vanishes both at low and at high frequencies. In between,
it displays a broad maximum around f ≈ 200Hz with
superimposed local maxima due to the resonances. While
the behavior at low frequencies is a trivial consequence
of the saturation of Δh, the high frequency limit implies
that Δh vanishes faster than 1/f for high frequencies.
To analyze the drop oscillations we expand the surface

shapes into the Legendre polynomials, i.e. we write the
surface profile R(φ, t) as

R(φ, t) =R0+
∑

n

an(t) Pn(cosφ), (2)

where Pn is the Legendre polynomial of order n. Since
the Legendre polynomials form a complete and orthogonal
basis in −1� cosφ� 1, we can calculate the coefficients an
of the shape modes from the numerically obtained surface
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Fig. 3: (Color online) Frequency dependence of the amplitudes
of shape modes. Symbols denote numerical results and solid
lines represent harmonic oscillator fit curves. The vertical red
dashed lines in the inset represent the resonance frequencies
predicted by eq. (4).

profile R(φ, t) as

an(t) =
2n+1

2

∫ 1

−1

R(cosφ, t)Pn(cosφ)d(cosφ). (3)

For symmetry reasons, this expansion contains only even
modes for the present conditions [14]. (This is readily
confirmed by comparing R(φ, t) to the reconstructed
shape based on the an.) The symbols in the inset of fig. 3
show the absolute values of the resulting coefficients |an|
for n= 2, 4, 6, . . . , 14 as obtained from the numerical
surface profiles. Each individual mode follows largely the
response of a damped harmonic oscillator with a specific
resonance frequency and damping coefficient (see solid
lines in fig. 3). The resonance frequencies fSNn extracted
from the fits are shown in table 1. Except for a small
variation of the damping, the amplitude coefficients
collapse onto the universal response function of a damped
harmonic oscillator if the amplitudes and the frequency
are normalized by their low frequency limits and by the
resonance frequencies fSNn , respectively (see main panel of
fig. 3). Notwithstanding the presence of some non-linear
coupling for the lowest eigenmodes (in particular between
the P2 and the P4 mode) and a slight systematic over esti-
mation of the an at high frequencies

1, this linear analysis
overall provides a decent description of the drop dynam-
ics. This is also consistent with the reconstruction of Δh
based on the harmonic oscillator model (blue solid line in
fig. 2). It implies in particular that the amplitudes an of
the eigenmodes vanishes as ∝ 1/f2 for f ≫ f∗n and thereby
explains the vanishing of Δuh in fig. 2 at high frequencies.
The vertical dashed lines in the inset of fig. 3 denote the

resonance frequencies for a free drop in a viscous medium

1At high frequencies, the an’s become smaller than the grid size
and thus less reliable (see inset of fig. 3).

Table 1: Comparison of resonance frequencies.

n f∗n f thn fSNn
2 65.23 61.19 55.02
4 188.32 175.95 164.14
6 338.48 314.53 300.23
8 512.68 474.13 464.73
10 708.20 652.22 640.86
12 923.01 846.94 824.10
14 1155.57 1056.83 1016.04

following the classical theory by Miller and Scriven [15].
The latter are given by

f thn = f
∗

n −
µd
ρdR20

F
√

Red,n, (4)

where f∗n is the resonance frequency for potential flow

f∗n =
1

2π

√

(n− 1)n(n+1)(n+2)σ
(ρd(n+1)+ ρcn)R30

. (5)

F is the viscous correction term

F =
(2n+1)2 (ρ̂µ̂)

1

2

4
√
2π [nρ̂+n+1]

[

1+ (ρ̂µ̂)
1

2

] , (6)

where the density ratio ρ̂ and viscosity ratio µ̂ are given
as ρ̂= ρc/ρd and µ̂= µc/µd, respectively.
Overall, the individual resonance frequencies are rather

close to the values obtained for free drops. This result is
not too surprising since the surface tension and the mass
involved in the oscillations are the same as in the case
of free drops. The additional viscous damping due to the
presence of the moving contact line as well as the viscous
boundary layer at the drop-substrate interface produces
only a rather small relative shift, as indicated by the
similarity of the values of fn, f

∗

n, and f
SN
n in table 1.

(Note that the apparently larger relative shift of the f2
mode may be affected by non-linear coupling [16].) The
rather small viscosity-induced shifts are consistent with
the overall Reynolds number

Red,n =
ρdR

2
0 (2πf

∗

n)

µd
, (7)

which ranges from 410 to 14048 in 20Hz< f < 2048Hz
indicating inertia-dominated dynamics.
Close inspection of the video sequences from the simula-

tions reveals another important characteristic of the drop
response. Due to the specific forcing mechanism of impos-
ing a time-dependent contact angle, the “information” to
change the shape enters the drop from the contact line and
subsequently spreads further. At high forcing frequencies,
this generates very clearly the impression of propagating
waves traveling from the contact line towards the apex of
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Fig. 4: (Color online) Wave propagation on the drop surface
from the contact line to the apex of the drop at (a) 300Hz and
(b) 1400Hz. Each curve is plotted at every (a) 0.08T (2.667e-
4 s) and (b) 0.1T (7.143e-5 s), respectively.

the drop. Figure 4(b) shows this for f = 1400Hz. Note also
that the wave is slightly damped. As a consequence, the
reflected wave propagating back from the apex towards the
contact line has a smaller amplitude than the original one
causing the appearance of a travelling wave. (The increase
for φ→ 0 in fig. 4(b) is due to a geometric focusing effect
at r= 0.) At lower frequencies, in particular close to the
resonance frequencies, the drop shapes appear more like
standing wave patterns. Yet, also under these conditions
a gradual propagation of nodes and antinodes from the
substrate towards the drop apex can be observed (see
fig. 4(a)). Interestingly, the propagation speed of these
waves turns out to be approximately constant and assumes
a value of ≈ 0.4m/s(±10%) for the conditions studied
here. The propagation speed agrees fairly well with the
phase velocity for capillary wave (vp = f λ∼ 0.4–0.5m/s)
where λ is the wavelength.

Internal flow. – We now turn to the flow fields within
the drop. Since the shape oscillations are perfectly periodic
in time, the local flow field at any fixed position x0 in
space both within and outside the drop is also periodic
in time. For mixing or other problems involving mass
transfer within the drop, however, it is more interesting
to consider the trajectory of volume elements of fluid or
of passive tracer particles following the flow. Lagrangian
particle tracing leads to trajectories

x= x0+

∫ t

t0

u(x, t)dt (8)

that are not necessarily periodic in time. Here u(x, t) is
the velocity of the fluid element at position x and time t.
Figure 5(a) shows the motion of a many tracer particles
followed of a duration of ≈ 9 cycles. In contrast to the
drop surface, none of the tracer trajectories is periodic in

(a)

(b)

Fig. 5: (Color online) (a) Particle trajectories inside (blue)
and outside (red) drop at f = 300Hz. Arrows: direction of
mean flow. (b) The corresponding net flow where color contour
represents absolute net speed u= |u| (color scale: umax =
0.055m/s (red); u= 0 (blue)).

time. Rather, all particles display a net displacement per
oscillation cycle superimposed on an oscillatory motion.
Small dots indicate the positions of the particles once per
oscillation cycle. Both the amplitude of the oscillatory
motion as well as the strength of the net drift motion
depend on the position. Particularly vigorous motion is
observed close to the contact line and close to the apex of
the drop, where the amplitude is particularly pronounced
due to geometric focusing. The net motion with color
contour shown in fig. 5(b) is directed upward from the
contact line towards the apex of the drop. Within the
drop this leads to a vortex rotating counterclockwise with
a maximum flow velocity along the the symmetry axis
of the drop in the downward direction. In the ambient
phase, a second “mirror” vortex develops, which also
rotates clockwise to satisfy continuity of shear stress at
the drop surface. Particles on the interface display a zig-
zag motion. Qualitatively similar patterns are observed at
other forcing frequencies up to approximately 1 kHz both
for the instantaneous and for the mean flow. At higher
frequencies additional more complex flow patterns arise
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close to the apex of the drop. Given their overall weakness
we disregard these flows in the remainder of this work.
To characterize the overall strength of the mean flow

as a function of the frequency we calculate its volume
average from the time-averaged motion of N ≈ 14000
tracer particles uniformly distributed within the drop
according to

〈u(f)〉=
∫

Ω
u dV
∫

Ω
dV
≃
N
∑

i

riui/

N
∑

i

ri. (9)

Here u= |u| and ri is the distance of the i-th particle from
the symmetry axis. The result, shown as red solid circles
in fig. 7, displays a broad maximum around f ≈ 200Hz
with a series of superimposed maxima at frequencies
close to the eigenfrequencies of the drop. For both low
and high frequencies 〈u〉 vanishes. Overall, the frequency
dependence of the mean flow is thus very similar as the
velocity Δuh at the apex of the drop.

Stokes drift. – How can we understand the physical
origin and the frequency dependence of the mean flow?
Qualitatively, it is natural that the mean flow ceases
for low frequencies. In that limit, the spreading and
receding motion of the drop is quasi-static and hence
perfectly reversible. It is also plausible that the mean
flow vanishes at very high frequencies. In that limit
inertia prevents the drop from following the excitation and
the drop shape becomes quasi-stationary. In discussing
fig. 4 we noted that perturbations of the surface travel
in a wave-like fashion from the contact line towards the
apex of the drop. At the surface, the mean flow in our
simulations propagates in the same direction as these
capillary waves. In our previous experimental work [9]
we observed similar patterns and suggested that the
flow can be explained in terms of “Stokes drift”. The
present numerical calculations allow for a more detailed
comparison to this model. In general, Stokes drift describes
the net transport of tracer particles along the direction of
propagation of waves at liquid interfaces. The origin of
this effect can be understood as follows: tracer particles
inside the fluid follow almost circular trajectories. The
diameter of these trajectories is maximum at the surface
and decreases exponentially with increasing distance from
the interface with a decay length of order of the wavelength
λ (see fig. 6). To first order, the displacement velocity
at any given moment t is exactly compensated by the
displacement velocity at t+T/2, where T is the period of
the wave. Then, the trajectories will make a closed circle to
the first order (see the lhs in fig. 6). Yet, since the velocity
is z -dependent, the horizontal velocity component at the
lowest point of the trajectory is somewhat smaller than
the one at the highest point of the trajectory. Therefore,
for finite drive amplitudes the two components do not
perfectly compensate but give rise to a net horizontal
displacement, the Stokes drift (see the rhs of fig. 6). The

Fig. 6: (Color online) Schematic particle trajectories below a
surface with a travelling wave. Left: linearized situation with
circular trajectories. Right: second-order trajectories display-
ing Stokes drift (see text for details)

drift velocity is given by

〈u(f, z)〉 ∝ fkA(f)2e−2kz ∝ vp
[

A(f)

λ

]2

e−2kz. (10)

Here, A, and k= 2π/λ are the amplitude, and wave
number of the surface wave, respectively. As apparent from
the formula, the effect is purely inviscid2 and of second
order in the small parameter A/λ.
Adapting this mechanism to our present simulations, we

interpret the mean flow as being driven by the capillary
waves that travel upward along the drop surface. Indeed
the trajectories of tracer particles close to the drop surface
resemble the ones in standard Stokes drift, in particular for
polar angles of φ≈ 45◦ where neither the solid substrate
nor the focusing of the waves close to the drop apex disturb
the flow (see fig. 5(a)). Obviously, the actual flow field
within the drop is more complex than in the case of a
propagating plane wave on a flat surface. In particular, the
finite size of the drop forces the stream lines to close upon
themselves and produce the vortex in which the liquid
circulates back downward towards the substrate along
the symmetry axis. Notwithstanding these differences, the
Stokes drift model makes a clear prediction regarding the
frequency dependence of the mean flow. Averaging over
both time and volume, we expect

〈u(f)〉 ∝ f2A(f)2/vp ∝ f2 (Δh(f))2 . (11)

Here we make use of the facts that vp = const and Δh(f)∝
A(f). The mean flow obtained from eq. (11) is shown as
blue circles in fig. 7. Up to a single scaling factor to match
the absolute value, the data agree remarkably well with the
red circles obtained averaging by directly the numerical
flow speeds. Equation (11) implies 〈u(f)〉 ∝ (Δuh)2, which
explains the qualitatively similar behavior as Δuh in fig. 2.
To test the dependence of the Stokes drift on A we varied
the forcing amplitude of the contact angle variation at a
fixed frequency. The inset of fig. 7 shows that 〈u〉 is indeed
quadratic in A as predicted. Thus, we conclude that the

2Viscous dissipation gives rise to corrections to eq. (10) due to
a viscous boundary layer at the interface, as described recently by
Belonozhko and Kozin [17].
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Fig. 7: (Color online) Frequency dependence of the average
flow speed. Red line: volume average obtained from numerically
simulated flow speed. Blue line: prediction of the Stokes drift
model (eq. (11)) using numerical result for Δh from fig 2. Inset:
〈u〉 vs. Δh at f = 300Hz.

Stokes drift model provides a consistent description of the
net flow inside the drop under the conditions studied here.

Discussion. – Comparing the results of fig. 7 to earlier
quantitative measurements of the flow fields in oscillating
drops [7,9], we find an overall qualitative agreement
regarding the broad maximum of the mean flow, the
orientation of the flow, as well as the decay at both
low and high frequencies. Moreover, we find that tracer
particles initially concentrated in the top half of the drop
are distributed across the drop within a few hundred
oscillation cycles in a very similar manner as the patches of
fluorescent dye in refs. [7,9] (see also supplementary movie
Suppl-1-mixing.mov). Quantitatively, however, there are
deviations from the experiments. The absolute value of
the maximum flow speed is substantially higher than in
the experiments. Moreover, the simulations display strong
resonances which were completely smeared out in the
experiments. However, it was noted in ref. [9] that the
contact line did not move smoothly in these experiments
but displayed temporal pinning and depinning in each
oscillation cycle. Such an irregular motion of the contact
line leads to a highly non-sinusoidal forcing effectively
exciting the drop with many frequencies at the same
time. Sudden depinning events probably also give rise
to additional damping that can further broaden the
resonances. Further studies will be needed to verify these
dramatic consequences of a hysteretic contact line motion
for the oscillation dynamics of drops.

Conclusion. – In conclusion, the present numerical
simulations provide a consistent picture of the oscillation
dynamics of sessile drops with moving contact lines in
a dense and viscous ambient fluid. The eigenmodes can
be described by Legendre polymials and the resonance
frequencies are shifted by less than 10% as compared to

free drops. The specific excitation with a modulation of
the contact angle gives rise to wave-like perturbations
traveling from the contact line towards the apex of the
drop. The resulting capillary waves drive a net internal
flow that scales with the square of characteristic speed
of the oscillating drop surface and thus vanishes for both
low and high frequencies. The present calculations provide
a starting point for a number of open problems to be
addressed in future studies. Interesting aspects include the
influence of the density and/or viscosity ratio on the flow
patterns and possible reversal of the flow direction [8,10] as
well as symmetry breaking in the azimuthal direction [10].
Moreover, it would be interesting to identify whether
similar flow patterns are also observed in mechanically
driven oscillating drops with pinned contact lines [3,13]
that do not display traveling wave-like surface modes.
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