
Preface

The origin of queueing theory and its application traces back to Erlang’s historical
work for telephony networks as recently celebrated by the Erlang Centennial, 100
Years of Queueing, Copenhagen, recalling his first paper in 1909. Ever since, the
simplicity and fundamental flavour of Erlang’s famous expressions, such as his loss
formula for an incoming call in a circuit switched system to be lost, has remained
intriguing. It has motivated the development of results with similar elegance and
expression power for various systems modeling congestion and competition over
resources.

A second milestone was the step of queueing theory into queueing networks as
motivated by the first so-called product form results for assembly type networks
in manufacturing in the nineteen fifties (R.R.P. Jackson 1954, J.R. Jackson 1957,
and E. Koenigsberg 1958, 1959). These results revealed thatthe queue lengths at
nodes of a network, where customers route among the nodes upon service comple-
tion in equilibrium can be regarded as independent random variables, that is, the
equilibrium distribution of the network of nodes factorizes over (is a product of) the
marginal equilibrium distributions of the individual nodes as if in isolation. These
networks are nowadays referred to as Jackson networks.

A third milestone was inspired by the rapid development of computer systems
and brought the attention for service disciplines such as the Processor Sharing dis-
cipline introduced by Kleinrock in 1967. More complicated multi server nodes and
service disciplines such as First-Come-First-Served, Last-Come-First-Served and
Processor Sharing, and their mixing within a network have led to a surge in theoret-
ical developments and a wide applicability of queuing theory.

Queueing networks have obtained their place in both theory and practice. New
technological developments such as Internet and wireless communications, but also
advancements in existing applications such as manufacturing and production sys-
tems, public transportation, logistics, and health care, have triggered many theoreti-
cal and practical results.

Queueing network theory has focused on both the analysis of complex nodes,
and the interaction between nodes in networks. This handbook aims to highlight
fundamental, methodological and computational aspects ofnetworks of queues to
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provide insight and unify results that can be applied in a more general manner.
Several topics that are closely related are treated from theperspective of different
authors to also provide different intuition that, in our opinion, is of fundamental
importance to appreciate the results for networks of queues. Of course, applications
of modern queueing networks are manifold. These are illustrated in the concluding
chapters of this handbook. The handbook is organized in five parts.

Part 1. Exact analytical results, chapters 1–7

Product form expressions for the equilibrium distributionof networks are by far
leading and have been most dominant in the literature on exact analytical results
for queueing networks. In recent years, features such as batch routing, negative cus-
tomers and signals have been introduced to enhance the modeling power of this
class of networks. A unified theory from different perspectives is contained in the
first part of this handbook. Topics include

• a characterization of product forms by physical balance concepts and simple traf-
fic flow equations,

• classes of service and queue disciplines such as Invariant Disciplines and Order
Independent queues that allow a product form,

• a unified description of product forms for discrete time queueing networks,
• insights for insensitivity from the classical Erlang loss model up to Generalised

Semi Markov Processes and partially insensitive networks,
• aggregation and decomposition results that allow subnetworks to be aggregated

into single nodes to reduce computational burden.

These product form results encompass a number of intriguingaspects that are not
only most useful for practical purposes but also indicate a variety of open problems
which remain to be tackled.

Part 2. Monotonicity and comparison results, chapters 8–9

Exact (product form) results are only available for a limited class of networks. These
exact results, however, may also be invoked to obtain boundsfor performance mea-
sures for intractable queueing networks. Two basic approaches can be identified:

• stochastic monotonicity and ordering results based on the ordering of the gener-
ators of the processes,

• comparison results and explicit error bounds based on an underlying Markov re-
ward structure which leads to ordering of expectations of performance measures.

There is a clear trade-off for applying either of these two approaches. Stochastic
monotonicity yields stronger results such as with non-exponential service times.
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The Markov reward approach in turn is applicable under less stringent conditions,
particularly with more complex structures as in a queueing network. These results
are not only of theoretical and qualitative interest by themselves, but also motivate
the derivation of exact analytical results to enable bounds.

Part 3. Diffusion and fluid results, chapters 10–12

Limiting regimes often allow for amenable expressions for performance measures
in systems that are otherwise intractable. Two particular regimes are of interest:
the fluid regime and the diffusion regime that are illustrated through the following
topics:

• fluid limits for analysis of system stability,
• diffusion approximation for multi-server systems,
• system fed by Gaussian traffic to model variation in the arrival process.

These topics illustrate a rich class of systems that may be analyzed in the limiting
regime and identify an important area of current research.

Part 4. Computational and approximate results, chapters 13–15

Practical applications such as in manufacturing, computerperformance and com-
munications rapidly prove to be beyond analytical solvability due to e.g. non-
exponential service times, capacity constraints, synchronization or prioritization.
Numerically exact or approximate approaches for averages or distributions of per-
formance measures have been developed in literature. An illustration is provided via
the following topics:

• MVA (mean value analysis) and QNA (queueing network analyzer) focusing on
mean and variance of performance measures such as queue length and sojourn
times,

• numerical approximation of response time distributions
• approximate decomposition results for large open queueingnetworks.

The numerical approach to performance analysis is a lively research community
that considerably contributes to the success of queueing theory in applications as it
allows for explicit numerical results for performance measures.
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Part 5. Selected applications, chapters 16–18

Applications of queueing networks are manifold. To illustrate the application power
of queueing theory, some special application areas and their specific queueing net-
work aspects are enlightened:

• loss networks as originating from circuit switched telecommunications applica-
tions,

• capacity sharing as originating from packet switching in data networks,
• hospital logistics.

The first two applications have a theoretical nature as they illustrate a typical class of
queueing networks. The last application illustrates a typical approach for application
of queueing theory in a practical environment.

Despite the fundamental theoretical flavour of this book, itis to be kept in mind
that the area of queueing theory would not have existed and would not have pro-
gressed so strongly had it not been driven by application areas that led to the various
fundamental questions. The intertwined progress of theoryand practice will remain
to be most intriguing and will continue to be the basis of further developments in
queueing theory. You are highly invited to step in.
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Chapter 1

On Practical Product Form Characterizations

Nico M. van Dijk

Abstract

Do we have a product form?
If so, how is it characterized?
If not, how can product forms still be useful?

The first question is not be that easy as it seems. The answer might depend on the
state level of interest, the service assumptions imposed and the system restrictions
or flexibilities in order. This chapter aims to address thesequestion in two parts:

A: Product Forms: A Single Station
B: Product Forms: Tandem and Cluster Structures

In A just a single service station is studied to show how different levels of a state de-
scription and notions of balance may lead to analytic forms that can be referred to as
’product forms’. It covers simple birth-death type systems, forms of access blocking
for multi-class stations, and symmetric up to so-called invariant disciplines.

In B just a tandem type structure (that is with consecutive service stations) and
some Jacksonian cluster extensions are dealt with to show:

(i) The effect on the existence of a product form under practical phenomena
as blocking and service sharing

(ii) How this existence can be characterized
• in an analytic manner by ’adjoint’ reversibility
• by simple physical station or cluster ’outrate=inrate’ principles

(iii) The practical way in which these insights can be used toobtain
simple product form bounds for únsolvable systems

Nico M. van Dijk
University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
e-mail:n.m.vandijk@uva.nl
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A: Product Forms: Single Station Hierarchy

1.1 Introduction

No doubt that the popularity of queueing networks, next to its potential for modeling
a variety of practical service networks, is largely due to the existence of the well-
known product form expressions ever since the pioneering work by Jackson (1957).

In several subsequent chapters, various generalizations of this product form in more
abstract settings will be provided (and different lights will be shed on its validity).
For further interest in these generalizations the reader isreferred to these chapters.

Nevertheless, as of today, a number of questions related to the existence of product
forms still seem to be open, most notably among which:

• The simple question whether a specific network of interest has a product form
or not.

• What is actually meant by a product form, is it uniquely defined, and under
which conditions and to what extent or level does it apply.

• Last but not least, how can we guess and verify a particular product form in a
down-to-earth manner.

This chapter merely aims to provide some more insights and partial answers for
these questions. It also aims to do so in an instructive manner by following the down-
to-earth approach of straightforward verification of balance equations. As such, it
will be far from exhaustive. Roughly the objectives are:

Objectives.

1. To show the verification and the relation of product forms with different (levels
of) partial balance and to emphasize the physical interpretation of these partial
balances.

2. To show (a hierarchy of) different levels of product formsand partial balance
as depending on state description and conditions satisfied.

3. To show the characterization of these partial balances and its related product
forms by means of reversibility and, as will be called:
’adjoint reversibility’.

4. To provide instructive as well as ’non-standard’ productform examples, some
of which might still be regarded as ’new’, or at least which have not been
reported explicitly.

5. To illustrate the application of these product form insights such as to provide
simple and possibly insensitive product form bounds for practical non-product
form systems.
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Outline and results.

In line with the first three objectives, inA (sections 1.2-1.4) just a single service
station will be analyzed. More precisely, three levels of balance will be considered

• for a total number at a station

• for each job-class separately

• for each service position

First in section 1.2, it is shown that these three levels leadto the well-known cate-
gories of

(i) birth-death systems
(ii) coordinate convex access structures and
(iii) insensitive symmetric service disciplines

It is shown that these three categories and their hierarchy can be generalized
to ’product form’ structures for single service stations with more general ac-
cess/blocking mechanisms and service disciplines. Among others these results cover
and extend classical results for multiclass service stations. Next, in section 1.3 the
symmetric disciplines and its insensitivity are generalized to service invariant disci-
plines. These include some ’nonstandard’ examples. Section 1.4 completesA with a
direct application of simple bounds forM|G|c|c+msystems, a literature discussion
and an overview of the balances.

Next, in B (sections 1.5-1.7) tandem type networks are dealt with. First, in sec-
tion 1.5, the most simple and generic but nón-reversible ’network structure’ of a
simple but finite two station open tandem queue is extensively studied. Despite its
nón-reversibility it is shown how product forms can be concluded as based upon
an artificially constructed adjoint tandem queue and an extended form of reversibil-
ity, which will be called ’adjoint reversibility’. This characterization by ’adjoint
reversibility’ leads to a sufficient and necessary characterization of a product form.

Various product form examples can so still be concluded alsofor tandem queues
with finite capacities (blocking) or service sharing (fair sharing), such as of practical
interest for manufacturing or internet modeling.

In section 1.6 extensions are provided with a single servicestation replaced by a
Jackson network.

In section 1.7 it is argued and also numerically illustratedhow these product form
results may provide useful bounds for more natural but únsolvable systems with
blocking. A simple optimal design application is included.

Section 1.8 shows how the results fromB led to a special recent practical application
for hospitals

Section 1.9 completesB with a literature discussion, a brief review and some re-
maining open questions for research.
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1.2 Product Forms: Three Balances

Product forms are generally associated with a closed form expression that factorizes
into separate terms for separate service stations. But in fact, such factorizations also
exist for just one service station as by characterizations of partial balance. To shed
some more light on this phenomenon of a product form characterization, inB we
will simply consider a single service station.

1.2.1 Station Balance: B-D or Erlang-Engset systems

Consider a single server station. Withn the number of jobs present, let
{

λ (n) : be the arrival rate
µ(n) : be the service rate

where it is assumed thatµ(n) > 0 for n > 0 and whereλ (n) > 0 for all n < N, with
N some finite number or infinite. (More precisely, that is, withn jobs present the
arrival time up to the next arrival is exponentially distributed with parameterλ (n)
and similarly the time up to a next departure with parameterµ(n)).

Note that no further specification is given on possible different job-types or on a
possible service discipline, (e.g. a first-come first-served or other discipline in the
single server case withµ(n) = µ for all n > 0).

Let {π(n)} represent the steady state distribution for the number of jobs present.
This distribution is uniquely determined (up to its normalization) by the global bal-
ance (backwards Chapman-Kolmogorov) equations:
{

π(n)λ (n)+

π(n)µ(n)

}
=

{
π(n+1)µ(n+1)+

π(n−1)λ (n−1)

}
(1.1.1)
(1.1.2)

(1.1)

for anyn≤ N. These equations can be interpreted as ”out = in”-stream equations in
the ”mathematical” sense of bringing you out of (left hand side) and bringing you
into (right hand side) staten. However, substitutingn = 0, necessarily requires that




π(0)λ (0) = π(1)µ(1)

⇐⇒ (2.1.1) for n = 0⇐⇒ (2.1.2) for n = 1

=⇒ π(1)λ (1) = π(2)µ(2)⇐⇒ (2.1.1) for n = 1⇐⇒ (2.1.2) for n = 2

and so on. Hence, the global balance relation (1.1) necessarily requires that

π(n)µ(n) = π(n−1)λ (n−1)⇐⇒ (2.1.1) for n≥ 0⇐⇒ (2.1.2) for n > 0. (1.2)

Clearly, the relations (1.2) in turn, which are also well-known as ’birth-death equa-
tions’, are sufficient for (1.1) to be satisfied. Though theserelations are completely
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standard, in contrast with the ’mathematical’ out = in interpretation of (1.1), an im-
portant point that might be emphasized here, is that the relations (1.2) have the more
detailed interpretation that for any staten:

The (physical) outrate due to a departure=

the (physical) inrate due to an arrival at the service station. (1.3)

Here the outrate and inrate are to be read in the mathematicalsense of leaving and
entering that state respectively, as in (1.1). In this chapter this form of (physical)
balance for a service station will be referred to as station balance (SB), so as to
distinguish from more detailed notions of balances that will follow.

For N < ∞, and forN = ∞ under the standard ergodicity assumption that a prob-
ability solutionπ(n) of (1.2) exists, roughly speaking that is, that a normalization
constantc can be computed, (1.2) is satisfied by

π(n) = c
n−1

∏
k=0

[
λ (k)

µ(k+1)

]
0≤ n≤ N (1.4)

Example 1.2.1 (Erlang systems)As a most standard example, for given values s
and m and by setting

λ (n) = λ1(n<s+m)

µ(n) =

{
nµ (n < s)
sµ (n≥ s)

the standard M|M|s|s+ m is included, with s servers and a waiting room of size m
(possibly m= ∞), also known as an Erlang-system. (Erlang’s pure delay system by
m= ∞; Erlang’s pure loss system by m= 0). In fact, even for these standard multi-
server systems, the form (1.4) can already be regarded as a product form, as will be
made more explicit by the following example.

Example 1.2.2 (Engset or Machine-Repair systems)By

λ (n) = (M−n)γ1(n<s+m) (n < M)

where M is some given finite (integer) number, andµ(n) as in example 1, we can
also incorporate a finite source system with M sources (e.g. machines) each of which
independently generates a service request (e.g. for a repair or maintenance) at an
exponential rateγ. The service systems can be seen as in example 1 with s servers
and a waiting facility of size m, hence a finite capacity for atmost N= s+ m jobs
(with N < M). When N sources (machines) are already in service mode, a next
request is cancelled and a new request by that source is to be (exponentially) regen-
erated at rateγ.

As opposed to an Erlang system, in teletraffic theory this system is known as an
Engset system. More generally it is also referred to as a Machine-Repair system. As
a special case, for s= N, (1.4) reduces to
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1

M

n

Fig. 1.1: Engset (Machine Repair) system.

π(n) = c̃

(
M
n

)(
1
µ

)n(1
γ

)M−n

with c̃ = cγM

For M ≤N this is intuitively obvious as if each source can be seen as having its own
devoted server and alternates between an operative mode, for an average length
of time(1/γ) and a service mode, for an average length of time(1/µ). For N <
M, however, this first intuition seems less justified as a source may have multiple
repeated operative sessions when all servers are busy. Nevertheless the form still
applies.

A Product Form. More precisely, withM fixed, n = (n1,n2) wheren1 = M−n
andn2 = n, γ(k) = λ (M−k) we can also rewrite (1.4) as:

π(n) = π(n1,n2) = ˜̃c

[
n1

∏
k=1

γ(k)

]−1[ n2

∏
k=1

µ(k)

]−1

(1.5)

with

˜̃c = c

[
M

∏
k=1

γ(k)

]
,

This form can be regarded as a first representation of a product form in that it fac-
torizes in stations: in this case: asourcestation and aservicestation, with a service
rateγ(k) andµ(k) respectively, whenk jobs are present at that station.

1.2.2 Class balance: Coordinate convex property (CCP)

1.2.2.1 Two class coordinate convex case

Now consider a service station in which we can distinguish different job-classes.
For its instructive purpose first assume two job-classes which can be regarded as
independent up to common capacity constraints, say as determined by some set of
admissible statesC = {(m1,m2) |m1 ≥ 0,m2≥ 0}. More precisely, with state
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m = (m1,m2) denoting by

mi : the numbers of jobs of typei present, fori = 1,2.

let





λ1(m) = λ11(m1+1,m2)∈C be the arrival rate for job type 1

λ2(m) = λ21(m1,m2+1)∈C the arrival rate for job type 2, and

µi(m) = µi(mi) be the service rate for job typei = 1,2.

Then, as in section 1.2.1, the steady state distribution{π(m)} is uniquely deter-
mined (up to normalization) by the global balance equation which require that for
anym∈ C:






π(m1,m2)λ11((m1+1,m2)∈C)+
π(m1,m2)λ21((m1,m2+1)∈C)+
π(m1,m2)µ1(m1)+
π(m1,m2)µ2(m2)






(1.6.1)
(1.6.2)
(1.6.3)
(1.6.4)

=




π(m1 +1,m2)µ1(m1 +1)1((m1+1,m2)∈C)+
π(m1,m2 +1)µ2(m2 +1)1((m1,m2+1)∈C)+
π(m1−1,m2)λ1+
π(m1,m2−1)λ2






(1.6.1)′

(1.6.2)′

(1.6.3)′

(1.6.4)′

(1.6)

In general, a simple analytic solution will no longer be available unless the more
detailed relations(1.6.i) = (1.6.i)′ can be verified fori = 1, . . . ,4. For example,
with the natural assumptions of just a common constraint forM jobs, i.e.

1C(m1 +1,m2) = 1C(m1,m2 +1) = 1(m1+m2+1≤M)

one directly verifies these detailed equations by

π(m1,m2) = c

[
m1

∏
k=1

λ1

µ1(k)

][
m2

∏
k=1

λ2

µ2(k)

]
(1.7)

Coordinate Convex Property (CCP). More generally, expression (1.7) satisfies
(2.6.i) = (2.6.i)′, for i = 1, . . . ,4, provided the setC is coordinate convex, i.e.

(m1,m2) ∈C =⇒
{

(m1−1,m2) ∈C (m1 > 0)

(m1,m2−1) ∈C (m2 > 0)

Roughly speaking that is,C may not contain ’holes’. This condition is quite natu-
ral, such as in telecommunication structures, as will be illustrated below by some
examples.
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M1

M2

M3

Fig. 1.2: End-to-end finite link groups.

Example 1.2.3 (Circuit switch) As a simple circuit switch communication exam-
ple consider type 1 and type 2 calls each of which with its own limited trunk group
of M1 and M2 local channels connected to a common, say regional, trunk group of
M channels. A call simultaneously requires, a local and regional channel during
its entire call duration. With mi the number of ongoing type-i calls,C is coordinate
convex by

C = {(m1,m2) | 0≤m1≤M1 ; 0≤m2≤M2 ; m1 +m2≤M}

M1 M

M2

M

Fig. 1.3: CCP for circuit switch.

Example 1.2.4 (Overflow with call packing) Now consider the most simple situa-
tion with type-1 calls at some finite primary trunk group withN1 channels and type
-2 calls at some second trunk group with N2 channels. If all N1 channels are busy a
type-1 call can be overflowed to a free channel of the second group. Type-2 calls can
only be handled by the second group. If an incoming type-1 or type-2 call cannot
find an available channel as specified, it is rejected and lost. In addition (also see
section 1.2.2.3), the so-called principle of call packing (or repacking) is assumed.
That is, when a type-1 call at the primary group is completed,the channel that has
become available takes over a type-1 call form the second group, if any. In this
present setting this principle may seem unrealistic. Nevertheless, we refer to section
1.2.2.3 for further explanation of its ’necessity’ as well as also a possible practical
motivation.
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N1

N2

1

2

Fig. 1.4: Overflow system with CP.

Now note that under the call packing principle it suffices to keep track of just the
total numbers m1 and m2 of ongoing type-1 and type-2 calls as specified by the
coordinate convex region

C =
{
(m1,m2) |m2 +(m1−N1)

+ ≤ N2 ; m1 ≥ 0 ; m2 ≥ 0
}

As a consequence, under the the call packing principle, the form (1.7) thus applies
for this overflow problem.

N1

N2

N1 + N2

Fig. 1.5: CCP for overflow with CP.

Example 1.2.5 (Specialized servers)As a slightly more generalized but possibly
also more natural extension of the overflow situation in example 1.2.4, now con-
sider two type of service requests, e.g. by critical and regular patients for intensive
and medium care beds in a hospital, each with its own devoted group of S1 and S2

servers, e.g. special beds with associated nurses and equipment. In addition, how-
ever, if all type-1 servers are busy also type-2 servers, up to a maximum of K, can
be used for type 1 requests, as far as available. The service times are request depen-
dent. If no server is available a service request is rejected(e.g. in hospital practice
some transfer takes place).

Again, also a call packing principle is to be assumed to provide the product form
solution (1.7). In this case of specialized servers (e.g. beds), however, it may even be
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natural. More precisely, when a type-1 service (e.g. at an ICU bed) at a type 1 server
is completed, a type-1 service (patient) at a (lower preference) type-2 server (e.g. a
medium care bed) is ’switched’ to this (higher preference) type-1 server (again see
section 1.2.2.3).

With mi the number of ongoing type i servers,C is coordinate convex as shown in
figure 1.6, as specified with K≤ S2 by:

{
m1≤ S1 +K

m2 +(m1−S1)
+ ≤ S2

which for K= S2 reduces to:

m2 +(m1−S1)
+ ≤ K = S2

S1

S2

S1 + K

K

Fig. 1.6: CCP for specialized servers.

Remark 1.2.6 Note that the practical descriptions and mechanisms in example
1.2.4 and 1.2.5 are quite different but that the product formsolutions and the graph-
ical representations of the admissible regionsC are identical in form.

1.2.2.2 Class Balance and Product Form

The two class situation can directly be generalized toR job classes. Letm =
(m1,m2, . . . ,mR) denote bymr the number of jobs of job classr present,r = 1, . . . ,R.

Leter denote ther-th unit vector with ther-th component equal to 1 and 0 otherwise.
Hencem+er = (m1, . . . ,mr−1,mr +1,mr+1, . . . ,mR) and similarly form−er . With

{
λr(m) = λr1(m+er∈C) the arrival rate and

µr(m) = µr(mr) the service rate
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for r = 1, . . . ,R andC some set of admissible states, the global balance equation
then requires that for any statem∈ C:

{
π(m)∑r µr(mr)+

π(m)∑r λr1(m+er∈C)

}
(1.8.1)

(1.8.2)

={
∑r π(m−er)1(m−er∈C)λr+

∑r π(m+er)1(m+er∈C)µr(mr +1)

}
(1.8.1)′

(1.8.2)′

(1.8)

These are directly verified by each job classr separately by(1.8.i) = (1.8.i)′ for
i = 1,2 and withmr > 0:

π(m)µr(mr)1(m∈C) = π(m−er)λr1(m−er∈C) (1.9)

providedC is coordinate convex, that is:

m∈C =⇒m−er ∈ C (if mr > 0) (1.10)

Relation (1.9) directly leads to the solution atC:

π(m) = c∏
r

[
mr

∏
k=1

λr

µr(k)

]
(1.11)

This steady state expression (1.11) can be referred to as a ’product form’ in that it
factorizes to the steady state solutions for each job class separately with arrival rate
λr and service ratesµr(mr) as if these are completely independent up to a common
admissability regionC.

Furthermore, one may note that (1.9) states that for any job classr:

The rate out of any state due to a class r departure=

the rate into this state due to a class r arrival
(1.12)

In the present setting of this chapter (1.12) will be referred to asclass balance(CB).
Again a detailed and physical notion of an outrate = inrate interpretation (in this
case by (1.12)) thus seems to be directly related to a ’product form’ solution in that
it factorizes to the individual components of this detailedbalance.

Remark 1.2.7 (Population distribution) Clearly, by a product form expression as
in (1.7) or (1.11) we can also, compute the steady state distribution π(n) for the
total number of jobs present n= m1 +m2 by

π(n) = c∑{(m1,m2)|m1+m2=n}π(m1,m2) (1.13)

For example, in example 1.2.3 with M1 = M2 = ∞ and just a common capacity
constraint m1 + m2 ≤ M, for the pure multiserver case withµi(mi) = miµi , one
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directly obtains

π(n) = c∑ (m1,m2)

[
2

∏
i=1

1
mi !

(
λi

µi

)mi
]

= c
1
n!

(λ τ)n ,

τ =

[
λ1

λ1 + λ2

]
τ1 +

[
λ2

λ1 + λ2

]
τ2 and λ = λ1 + λ2 (1.14)

Note however, that the distribution by (1.13) will not generally have this simple
geometric form, as due to the common admissibility restrictions by C.

1.2.2.3 More examples

M1

M2

M3

M4

M5

M6

M7

Fig. 1.7: Multiple class circuit switch.

Example 1.2.8 (Circuit Switching) Example 1.2.3 can directly be extended to multi-
stage switch networks, in which a type-i call requires an available trajectory, that
is a free channel from each of its channel groups along its trajectory, such as illus-
trated in figure 1.7 with the coordinate convex capacity constraints






mi ≤Mi i = 1, . . . ,4

m1 +m2≤M5

m3 +m4≤M6

m1 +m2 +m3+m4≤M7

Example 1.2.9 (Alternate routing) Example 1.2.5 can be extended to multiple
specialized servers such as naturally arising in communication routes or call center
skills provided the ’call packing’ principle is assumed, i.e. a job should always uses
an available server of its highest preference.

As a hierarchical routing example in circuit switching, consider a circuit switching
communication network as illustrated in figure 1.8 between locations A, B and C.
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C

A B

Fig. 1.8: Alternate routing example.

There are input sources for communications between AB, AC and BC with parame-
tersλ1, λ2 andλ3 and with exponential call duration parametersµ1, µ2 andµ3 for
each of this call types. The number of links between the locations is limited by N1 for
AB, N2 for AC and N3 for BC. A type 2 or type 3 is directly lost if all N2 or N3 chan-
nels are busy. For type 1 requests between AB, however,alternate routingis used.
That is, if all N1 links are busy, the AB connection can be made via C, which requires
one link between AC and BC at the same time. In addition, call packing is in order.
That is, if a direct AB link becomes available, an alternately routed transmission is
instantaneously switched to this link.

With mr the number of ongoing type r communications, the coordinateconvexity
conditions now apply with:





m1≤min(N1 +N2,N1 +N3)

m2≤ N2− (m1−N1)
+

m3≤ N3− (m1−N1)
+

Example 1.2.10 (Two other coordinate convex examples.)As mentioned in remark
1.2.6, the examples 1.2.3, 1.2.4 and 1.2.5, although different in practical physical
descriptions, seem to be identical in its graphical (and mathematical) form.

Nevertheless, by just the condition of a coordinate convex region C (and an im-
plicit assumption of call packing so as to justify a sufficient state description for this
region), various other product form examples can so be devised, as illustrated in
figures 1.9(a) and 1.9(b).

For example, figure 1.9(a) could represent hospital departments for type-1 and type-
2 patients with B1 and B2 beds. In addition, a standby department is available in
case of excess. However, this department can only be used forone patient type (e.g.
as due to contamination risks), up to a maximum of K1 type-1 or K2 type-2 patients.

Also figure 1.9(b) could represent hospital departments fortype-1 and type-2 pa-
tients. Here it is assumed that each patient requires one nurse up to Ni nurses in
department i= 1,2. The N2 nurses of department 2 are assumed to be more ’ca-
pable’. Therefore, department 2 even allows up to P2 patients once all N2 nurses
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(a) (b)

Fig. 1.9: Two other examples with CCP.

are present. In addition, department 1 may also make use of one or more of these
specialized N2 nurses as far as available.

Call packing. As for the ’call packing’ assumption in the overflow example 1.2.4,
first note that without call packing, that is by naturally assuming that a call remains
dedicated to the channel that it is allocated to, one cannot describe the system dy-
namics by just the numbersm1 andm2. In that case, also the separate numbers of
channels at the second group have to be kept track of that are occupied by type-1
and type-2 calls. (As the call rates are different and as type2 calls are lost when all
channels at this group are occupied). Say that we would let(p1,o1,o2) denote the
state with





p1 : type-1 calls at the primary group (class-1 jobs)

o1 : type-1 calls at the secondary group (class-2 jobs)

o2 : type-2 calls at the secondary group (class-3 jobs)

Then, without call packing, by regarding the entire system as a multi-class service
station, a notion of class balance is necessarily violated for class-2 jobs. For ex-
ample, forN1 = 10 in state(4,6,2), the outrate due to a class-2 job (type-1 call at
group 2) is positive but the inrate into this state due to a class-2 job is equal to 0 (as
a type-1 call arrival in state(4,5,2) will lead to state(5,5,2) rather than(4,6,2)).

Hence, by relying upon the relationship that a ’product form’ solution in numbers
of job classes necessarily requires this notion of class-balance, we cannot expect a
’product form’ for the overflow example 1.2.4 without the call packing assumption.

With this call packing assumption, in contrast, the productform solutionπ(m1,m2)
can be concluded as by expression (1.7) withm1 = p1+o1 andm2 = o2. In fact, this
product form also satisfies the class-balances for each job-classr = 1,2,3. More
precisely, for example 1.2.4 the class balance relations become:
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π(p1,o1,o2)p1µ11(p1>0)1(o1=0)+

π(p1,o1,o2)(N1 +o1)µ11(p1=N1)1(o1>0)+

π(p1,o1,o2)o2µ21(o2>0)





(1.15.1)

(1.15.2)

(1.15.3)

=




π(p1−1,o1,o2)p1λ11(p1>0)1(o1=0)+

π(p1,o1−1,o2)λ11(p1=N1)1(o1>0)+

π(p1,o1,o2−1)λ21(o2>0)






(1.15.1)′

(1.15.2)′

(1.15.3)′

(1.15)

Here, to be complete, one must note that the outrate (left hand side) and inrate
(right hand side) are indeed both equal to 0 for class-1 jobs wheno1 > 0 and hence
p1 = N1. (In that case, the number of class-1 jobs will remain to beN1 even by a call
completion at the primary group). Conversely, an inrate by aclass-1 job could not
have taken place as it would have come from a state(N1,o1−1,o2). Furthermore,
also the corresponding outrate for the ’outside station 0’ (the total inrate for the
system) and inrate (the total outrate from the system) are tobe checked.

With m1 = p1 + o1 andC as in example 1.2.4, for(m1,m2) ∈ C the class balances
(1.15.i) = (1.15.i)′ for i = 1,2,3, are verified by

π(p1,o1,o2) = c
1

m1!

(
λ1

µ1

)m1 1
m2!

(
λ2

µ2

)m2

(1.16)

Example 1.2.11 (Practical use)As proven and numerically illustrated in [58], this
product form expression (1.16) (for the overflow example under call packing as in
example 1.2.4) provides secure (and rather accurate) upperbounds for the loss
probability of type-1 calls for an overflow system, as in example 1.2.4, without call
packing. The call packing principle and its product form consequences, even though
’unrealistic’ in particular cases, can thus still be of practical interest, such as for
dimensioning purposes to guarantee a sufficiently small loss percentage. (The tech-
nical details of the proof in [58] are rather complex and relyupon the Markov
reward approach as will be outlined in a chapter later on).

1.2.3 Job Local Balance: Necessity

1.2.3.1 Introduction: single server system

So far, no distinction or mentioning has been made as to the specific service disci-
pline in order, such as whether jobs have to wait or not and if so whether it is, for
example, in first-come first-served or last-come-first-served order. In fact, no other
specification is given than just by a simple service rateµ(n) for all jobs in section
1.2.1 or service rateµr(mr) for class-r jobs in section 1.2.2.
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Apparently, as for the steady state distributionsπ(n) in section 1.2.1 orπ(m) in
section 1.2.2, the specific service discipline does not seemto play a role. In contrast,
two implicit assumptions have been essential:

• the assumption of just one type of exponential service in section 1.2.1 and

• of an independent service rate for each job-class seperately in section 1.2.2.

In this and the next section we aim to relax both assumptions by allowing different
service parameters for different job classes as well as a common service such as by a
single server and processor sharing mechanism for different job-classes. As before,
let us first obtain some more insight by a simple situation.

Single-server system (FCFS/LCFS).Even though we might only be interested in
the total number of jobs present, as the service rates of different jobs are allowed
to be different, for either the FCFS or LCFS discipline we necessarily have to keep
track of which type of job is in service position 1 and so on. Tothis end, in a state
with n jobs present, let

[R] = [r1, r2, . . . , rn] denote by

r i : the job-type of the job at service positioni = 1,2, . . . ,n

In addition, for clarity, in state[r1, r2, . . . , rn] we also use the symbols

s= r1 : for the job-type of the job in service and

l : for the job-type of the job last entered,

Hence,

l =

{
rn for the FCFS-case

r1 for the LCFS-case.

Below we will separately treat the FCFS- and LCFS-served case in order to investi-
gate the existence of a ’product form’ or just an ’analytic’ solution forπ(n).

1.2.3.2 Instructive FCFS case

The global balance equations here require that

π(s, r2, . . . , rn)µs+∑
r

π(r1, r2, . . . , rn)λr =

π(s, r2, . . . , rn−1)λl +∑
r

π(r, r1, r2, . . . , rn)µr (1.17)

which equate the mathematical out=in rate for any state[R] = [r1, . . . , rn]. Now note
that the physical outrate as due to the job in position 1 has a factor µs while the
physical inrate is as due to the job at positionn has a factorλl . As a solution is to
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Out

In

Fig. 1.10: Out and inflow for FCFS-queue.

be sought which holds for anys and l , one cannot expect (find) a simple solution
unless the services of different job-types are identical, i.e., for someµ

µr = µ (r = 1, . . . ,R) (1.18)

In other words, without this condition we necessarily seem to fail both a notion
of physical out = in rate balance and a notion of out = in rate for each position
separately.

Alternatively, under condition (1.18) by substitutingµs = µ andµr = µ and setting

π(r1, . . . , rn) = c
n

∏
i=1

[
∏

r
λr1(r=r i)

]
µ−1 (1.19)

one easily verifies (1.17) by

π(s, r2, . . . , rn)µ = π(s, r2, . . . , rn−1)λl (all l)

π(r1, r2, . . . , rn)λr = π(r, r1, r2, . . . , rn)µ (all r)
(1.20)

The relations (1.20) in turn can again be interpreted as station balance as defined
in section 1.2.1. However, even under condition (1.18) a notion of balance for each
position (or rather job) separately remains to fail, as necessarily forn≥ 1:

the rate out of a state[r1, . . . , rn] due to the job at position 1> 0

the rate into this state due to that job at position 1= 0

The importance of this notion will become more apparent in the next section.
Among other things its failure for the FCFS-situation implies that the solution (1.19)
cannot be insensitive, i.e. next to its equality condition (1.18) it also strictly requires
exponential services. This will be clarified later on.
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1.2.3.3 LCFS-pre case

Out

In

Fig. 1.11: Out and inflow for LCFS-pre queue.

Now consider the Last-come first-served (LCFS) case (with preemption). With the
notation from section 1.2.3.2 adopted, in state[R] = [r1, . . . , rn] with s= l = r1, the
global balance equation here becomes:

π(s, r2, . . . , rn)µs+∑
r

π(r1, r2, . . . , rn)λr =

π(r2, . . . , rn)λs+∑
r

π(r, r1, r2, . . . , rn)µr (1.21)

Clearly, (1.21) is directly verified by requiring that for any stateR = [r1, . . . , rn] and
with s= r1:

π(s, r2, . . . , rn)µs = π(r2, . . . , rn)λs

π(r, r1, . . . , rn)µr = π(r1, . . . , rn)λr (1.22)

with solution:

π(r1, . . . , rn) = c
n

∏
i=1

∏
r

[
λr

µr
1(r=r i)

]
(1.23)

Furthermore, the relations (1.22) have the interpretationthat in any state:

The physical outrate due to a service completion at position1 =

the physical inrate due to an arrival at that position 1.

while for any other positionp 6= 1:

Both the outrate due to a service completion at that position

and the inrate due to an arrival at that position are equal to 0.

We have thus verified a notion of balance for each position or job separately. The
expression (1.23) in turn appears to factorize to traffic loads for each of these jobs
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separately. Again, it could therefore be referred to as product form. This property
of balance per job (or position) and a detailed ’product form’ in jobs (or positions)
separately, thus appear to be interrelated. This will be made more explicit and be
extended in sections 1.2.4, 1.2.5 and section 1.3.

First, however, for this particular form of detailed balance, as will be called job-
local balance later on, in the next section let us reveal another appealing property
that seems to be directly related.

1.2.4 LCFS-pre case: Nonexponential

In this section reconsider the LCFS-preemptive case from section 1.2.3.3 but drop
the exponential assumption. From this section onward in theremainder of this chap-
ter, for notational convenience and to distinguish from a subscript for different ser-
vice stations later on, we will consistently use superscripts to indicate the job-class
in order. Hence for job-classr from now on we use:

λ r : as arrival parameter

µ r : as service parameter in the exponential case

Instead, assume that classr jobs require an amount of service according to a distri-
bution function:

Gr =
∞

∑
k=1

qr(k)E(k,ν r ) (1.24)

whereqr(k) represents the probability that the distribution is an Erlang E(k,ν r )
distribution of k exponential phases with parameterν r . Here we refer to remark
1.2.14 below to justify the restriction to this class of distributions. Let






µ r = [τ r ]−1

τ r = ∑∞
k=1qr(k) [k/ν r ]

Hr(a) = [τ r ν r ]−1 ∑∞
k=aqr(k)

(1.25)

Hence,µ r can be seen as equivalent to the exponential parameter for the pure expo-
nential case andτ r is the mean service requirement. Furthermore, the termsHr(·),
which sum up to 1, can be seen as steady state probabilities for the number of resid-
ual exponential phases up to a next renewal in a discrete renewal process with (inter)
renewal distribution functionGr . These probabilities satisfy the discrete renewal re-
lation:

Hr(a) = Hr(a+1)+Hr(1)qr(a) (1.26)

Now note that the system dynamics or rather the transition rates requires one to keep
track of the residual number of exponential phases for each job. Therefore, let
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[(r1,a1), . . . ,(rn,an)] (1.27)

denote thatn jobs are present with the job at positioni of classr i at positioni with
ai residual exponential phases of service requirement. The following product form
can then be proven.

Result 1.2.12 (Detailed product form)

π ([(r1,a1), . . . ,(rn,an)]) = c
n

∏
i=1

{
∏

r

[
λ r

µ r

]
Hr(ai)1(r=r i)

}
(1.28)

Proof. Motivated by section 1.2.3.3 for the exponential case, the proof is based on
showing:

The rate out of state[(r1,a1), . . . ,(rn,an)] due to the job at position 1 =

The rate into state[(r1,a1), . . . ,(rn,an)] due to the job at position 1
(1.29)

For clarity, writer1 = sanda1 = a. In formula, (1.29) then requires

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs

=

π ([(r2,a2), . . . ,(rn,an)])λ sqs(a)+

π ([(s,a+1),(r2,a2), . . . ,(rn,an)])νs (1.30)

By substituting (1.28), this can be rewritten as requiring that

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs =

π ([(s,a),(r2,a2), . . . ,(rn,an)])νs
[

λ sqs(a)
1
νs

µs

λ s

1
Hs(a)

+
Hs(a+1)

Hs(a)

]

(1.31)

With µs = [τs]−1, this is satisfied by the renewal relation (1.26).

As the rate out of and into the state([(r1,a1), . . . ,(rn,an)]) due to a departure from
and arrival at any other positionp 6= 1 are both equal to 0, for each positionp
separately, the notion of job-local balance is verified. In addition, also the total inrate
and the total outrate for the system have to be shown to be equal as by:

∑
r

π ([(r1,a1), . . . ,(rn,an)])λ r =

∑
r

π ([(r,1),(r1,a1), . . . ,(rn,an)])ν r (1.32)

and verified (in fact for each job-classr separately), by substituting (1.28)

π ([(r,1),(r1,a1), . . . ,(rn,an)]) = π ([(r1,a1), . . . ,(rn,an)])H(1)
λ r

µ r (1.33)
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and using that (also see (1.26)):Hr(1)= [τ r ν r ]−1 andτ r = 1/µ r . The global balance
equation is hereby satisfied. This completes the proof of theresult 1.2.12. ⊓⊔

Result 1.2.13 (Insensitive ’product form’ for LCFS-pre case) For arbitrary ser-
vice distribution of the form (1.24):






(1.23) holds and

π(n) = c(λ τ)n with

τ = ∑r prτ r ; pr = λ r/λ ; λ = ∑r λ r

(1.34)

Proof. By using the factorizing form of the product form of result 1.2.12, by sum-
ming over all possible numbers of residual phases and recalling that the termsHr(·)
represent renewal probabilities that sum up to 1, first conclude that

π(r1, . . . , rn) = ∑
a1,...,an

π ([(r1,a1), . . . ,(rn,an)])

= c
n

∏
i=1

[λ r i τ r i ]

[
∞

∑
ai=1

[Hr i (ai)]

]

= c
n

∏
i=1

[λ r i τ r i ] (1.35)

The proof is completed by

π(n) = c∑r1,...,rn
π(r1, . . . , rn) = c

[
∑
r

λ rτ r
]n

= c(λ τ)n

⊓⊔

Remark 1.2.14 (Insensitivity and general nonexponential services) Result 1.2.13
shows that the steady state distributionπ(n) is not dependent on the actual service
distributions other than by their meansτ r . Such a result is known in the literature as
’ insensitivity’. In fact, as arbitrary nonnegative and continuous distributions can be
approximated arbitrarily closely, in weak convergence sense, by mixtures of Erlang
distributions, i.e. by distributions of the form (1.24), byweak continuity arguments
the closed form (1.34) can also be concluded for arbitrary service distributions.

Remark 1.2.15 (Insensitivity⇔ job-local balance) Note that the insensitivity re-
sult 1.2.13 for the total number of jobs has been proven by showing a notion of
physical balance for each job (position) separately. This relationship appears to
be generally valid, as will also become more apparent in the next section. More
precisely, as shown in [47], [48] and [26] in more abstract setting the concepts of
insensitivity and, as it will be called here, job-local balance, appear to be one-to-one
related.
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Remark 1.2.16 Chapter 3 by P.G. Taylor provides different insights and results of
insensitivity. The interested reader on this intriguing phenomenon is referred to this
chapter.

1.2.5 Symmetric Disciplines and Job-Local-balance (JLB)

In this section we will combine and extend the ’product form’insights and results
from sections 1.2.3.2, 1.2.3.3 and section 1.2.4 to a more general setting of service
disciplines (directly related to the work by [3], [10], [11], [33], [34]).

To this end, as before, assume that jobs are numbered by service positions 1, . . . ,n
whenn jobs are present. The service discipline is characterized by a 3-tuple( f ,γ,δ )
of functions which represent by:






f (n) the total service capacity whenn jobs are present where
f (n) > 0 for n > 0

γ(p | n) the fraction of this capacity assigned to the service
positionp ; p = 1, . . . ,n whenn jobs are present

δ (p | n−1) the probability that an arriving job whenn−1 jobs
are present is assigned positionp ; p = 1, . . . ,n > 0.

As the service positions are assumed to be successive with only one job in each
position, also a shift mechanism is operated. When a job at position p completes its
service the jobs at positionsp+1, . . . ,n are shifted to positionsp, . . . ,n−1. When
n−1 jobs are present and an arriving job is assigned positionp, the jobs previously
at positionsp, . . . ,n−1 are shifted to positionsp+1, . . . ,n. As an additional prop-
erty, that will be distinguished, a service discipline of the form above, is said to be
symmetricif:

δ (p | n−1) = γ(p | n) for all p = 1, . . . ,n andn > 0 (1.36)

The present parametrization covers a reasonably large class of natural service disci-
plines as:
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D1: 1-server FCFS: f (n) = 1
δ (n | n−1) = γ(1 | n) = 1 and
δ (p | n−1) = γ(p | n) = 0 otherwise

D2: 1-server LCFS-pre: f (n) = 1
δ (1 | n−1) = γ(1 | n) = 1 and
δ (p | n−1) = γ(p | n) = 0 otherwise

D3: 1-server Processor Sharing: f (n) = 1 and
δ (p | n−1) = γ(p | n) = 1/n, for all p

D4: Pure multi-server (PS) system:f (n) = n and
δ (p | n−1) = γ(p | n) = 1/n, for all p

Here it is to be noted that the most natural FCFS discipline (D1) is not (and cannot
be) parameterized as a symmetric discipline, while the disciplines D2, D3 and D4
do meet the condition (1.36), that is are indeed symmetric.

Consider a given discipline( f ,γ,δ ) and let jobs arrive and be serviced at the station
as in sections 1.2.3 and 1.2.4, that is with different job classes with arrival rateλ r

and exponential service requirements with parameterµ r for job classr.

As before, let[R] = [r1, . . . , rn] denote the state of job classes for each service po-
sition whenn jobs are present. Note that we need to keep track of this detailed
state description even though we might eventually only be interested in just the total
number of jobs. Let

F(n) =

[
n

∏
k=1

f (k)

]−1

(1.37)

Result 1.2.17Let S denote the set of symmetric andNS of non-symmetric disci-
plines. Then for any disciplineD of the form( f ,γ,δ ) with either one of the two
conditions:

D ∈ S ⇔ (1.36)

D ∈ NS⇔ µr = µ for all r

we have

π(R) = c F(n)
n

∏
p=1

[λ rp/µ rp] ,D ∈ S (1.38)

π(R) = c F(n)µ−n
n

∏
p=1

λ rp ,D ∈ NS (1.39)

Proof. For notational convenience let

[R− rp] = (r1, . . . , rp−1, rp+1, . . . , rn) (p = 1, . . . ,n)

[R+sp] = (r1, . . . , rp−1,s, rp, rp+1, . . . , rn) (p = 1, . . . ,n+1)
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wherer = rp identifies the job-class for the job at positionp in stateR ands the
job-class for the job at positionp in state[R+ sp]. The global balance equation in
stateR then becomes

{
π([R])∑n

p=1 f (n)γ(p | n)µ r+

π([R])∑n+1
p=1∑sλsδ (p | n)

}
(1.40.1.p)

(1.40.2.p)

={
∑n

p=1π([R− rp])λ r δ (p | n−1)+

∑n+1
p=1∑sπ([R+sp]) f (n+1)γ(p | n+1)µs

}
(1.40.1.p)′

(1.40.2.p)′

(1.40)

Now distinguish for a symmetric or non-symmetric discipline D. First consider the
symmetric case.

D : Symmetric. By assuming the form (1.38) we can write

π([R− rp]) = π([R])µ r f (n)[λ r ]−1 (1.41)

π([R+sp]) = π([R])λ s[µs f (n+1)]−1 (1.42)

By substituting (1.41) in(1.40.1.p) and(1.40.1.p)′, cancelling equal terms and us-
ing (1.36), we directly verify(1.40.1.p) = (1.40.1.p)′ separately. Similarly, by sub-
stituting (1.42) in(1.40.2.p) and(1.40.2.p)′ and using (1.36) we verify(1.40.2.p)=
(1.40.2.p)′ for each possible classs and positionp = 1, . . . ,n+1.

D: Non Symmetric. We can substituteµ r = µ and µs = µ in (1.40.1.p) and
(1.40.1.p)′. By substituting (1.39), both (1.41) and (1.42) remain valid with µ r =
µ and µs = µ substituted. Asµ r = µ and µs = µ can then be taken outside the
summations overp in (1.40.1.p) and(1.40.1.p)′, (1.40) follows directly by using
that {

∑n
p=1 γ(p | n) = ∑n

p=1δ (p | n−1) = 1

∑n+1
p=1 δ (p | n) = ∑n+1

p=1γ(p | n+1) = 1
(1.43)

⊓⊔

Remark 1.2.18 (Insensitivity of symmetric disciplines)As shown in the proof of
result 1.2.17, symmetric disciplines guarantee the notionof job-local balance to
be satisfied. In more abstract setting this notion has been shown in [47], [48] and
[26] to be both sufficient and necessary for insensitivity. As a consequence, also for
symmetric disciplines the product form result can be shown to be insensitive, that is
to apply for arbitrary service distributions with meanτ r = 1/µ r for job-class r. This
insensitivity conclusion for symmetric disciplines has first been shown explicitly in
[2] and can also be found in [24] and [10]. A straightforward and selfcontained
proof in the present setting can be given similarly to the LCFS-pre case as in section
1.2.4. It is omitted here as it is also covered by the generalized setting of invariant
disciplines in section 1.3.3.
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By result 1.2.17 and taking remark 1.2.18 into account, as inresult 1.2.13 and its
proof, we can conclude:

Result 1.2.19For arbitrary discipline D of the form( f ,γ,δ ) with µ r = µ = τ−1

for all r whenD ∈ NS and for arbitrary service distributions whenD ∈ S, we have
{

π(n) = c(λ τ)n [∏n
k=1 f (k)]−1 with

τ = ∑r prτ r ; pr = λ r/λ ; λ = ∑r λ r
(1.44)

Remark 1.2.20 (Job local balance and product form)Again, as in the proof for
the LCFS-pre case in section 1.2.4, note that the factorizing form of the steady state
expression into the traffic ratio’s of the individual jobs, relied upon showing balance
for each position (job) p, as if these can be regarded as beingindependent, sepa-
rately. To distinguish its concept from the class and station balances in section 1.2.2
and section 1.2.1, this most detailed notion of balance willtherefore be referred as
job-local balance.

Remark 1.2.21 (Necessity of symmetric discipline)Conversely, in [25] it has been
shown that a notion of job-local balance for disciplines as parameterized in this sec-
tion, requires the symmetric condition (1.36). In other words, by also referring to the
one-to-one relationship between job-local balance and insensitivity, as mentioned
and referenced to literature in remark 1.2.15, we can thus conclude that a discipline,
which only depends on the total number of jobs n, necessarilyhas to be symmetric
in order to be insensitive.

1.3 Invariant Disciplines and JLB

1.3.1 Invariance Condition

The disciplines defined in section 1.2.5 only depend on the total number of jobs
present and the order of arrival and not on which type of jobs are possessing which
positions. By this parametrization, for example, we cannotmodel different servicing
for different job-classes or some kind of priority for one type of job over the other.
In this section therefore a more extended discipline is provided that also takes into
account which type of jobs have arrived and in which order.

To this end, in stateR= [r1, r2, . . . , rn], where again positions are assumed under the
shift protocol as in section 1.2.5, let the functions( f ,γ,δ ) be represented by:
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f (r1, r2, . . . , rn) : is the total capacity that the facility provides

γ(p | r1, r2, . . . , rn) : is the fraction of this capacity assigned to positionp

δ (p | r1, r2, . . . , rn) : is the probability that a job of classr− rp is accepted
and assigned positionp when arriving in state
(r1, . . . , rp−1, rp+1, . . . , rn). Further, we also assume
the shift protocol as before.

Remark 1.3.1 (Blocking and service delay)It is emphasized that we allow

∑p δ (p | r1, . . . , rn)≤ 1

∑p γ(p | r1, . . . , rn)≤ 1

In particular, this implies that an arrival can beblocked. In this case it is assumed
to be lost. In addition, a fraction of the service capacity (e.g. by a single server) can
also be lost (which can also be regarded as a service thinningor delay).

Remark 1.3.2 (Definition ofδ ) Merely for presentational convenience in the def-
inition of the assignment functionδ the arriving job is included. Note that this in-
cludes the possible dependence on the job-class of the arriving job.

Remark 1.3.3 (One-Parallel queues)(Single queue) Clearly, the parametrization
from section 1.2.5 is included by





f (r1, . . . , rn) = f (n)

γ(p | r1, . . . , rn) = γ(p | n)

δ (p | r1, . . . , rn) = δ (p | n−1)

(1.45)

(Parallel class-queues) The parametrization also allows to group jobs of the same
class in separate registers. More, precisely, in a state with mr jobs of class r,






class 1 at positions1, . . . ,m1

class 2 at positions m1 +1, . . . ,m1 +m2

...

class r at positions m1 + . . .+mr−1 +1, . . . ,m1 + . . .+mr−1+mr

Position pr = m1 + . . .+mr−1 + p then corresponds to the p-th position in register
r for class r. By setting





f (r1, . . . , rn) = ∑r f (mr)

δ (pr | r1, . . . , rn) = δ r(p |mr −1)

γ(pr | r1, . . . , rn) = γ r(p |mr)[ f r(mr)/∑r f r(mr)]

(1.46)
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we can then let each class r have its own discipline( f r ,γ r ,δ r) as according to
section 1.2.5.

Before providing some examples let us directly resent the necessary condition which
is required as an extension of the symmetric condition. To this end, we need to
introduce some additional notation.

Notation. Let P denote the set of admissible statesR = (r1, . . . , rn). As the shift
protocol also changes positions of other jobs upon arrival or departure of a job,
the actual positions that jobs got upon arrival is not directly readable form a state
(r1, . . . , rn). We therefore use the notation of arrival orders(p1, . . . , pn) which in-
dicates that the job at positionpk was thek-th arriving job from the jobs present.
From the arrival orderp1, . . . , pk−1, pk and the state description(r1, . . . , rn), we then
know exactly the job classesrp1, rp2, . . . , rpk at these positions, that is the job classes
in order of their arrival denoted by(rp1, rp2, . . . , rpk). In addition, we also know the
position ¯pk that was assigned to thek-arriving jobrpk upon its arrival.

The symmetry condition (1.36) can now be extended to:

Service invariance condition (SIC). For anyR = [r1, r2, . . . , rn] there exists at
least onep≤ n such thatγ(p | r1, . . . , rn) > 0 and

δ (p | r1, . . . , rn) = 0⇐⇒
γ(p | r1, . . . , rn) = 0 (p = 1, . . . ,n) (1.47)

Furthermore, there exists a functionΨ such that for any(r1, . . . , rn) ∈ P and for any
permutation(p1, . . . , pn) ∈ (1, . . . ,n) of arrival orders for which the denominators in
the product below are positive:

Ψ(r1, . . . , rn) =
n

∏
k=1

[
δ (p̄k | rp1, . . . , rpk)

γ(p̄k | rp1, . . . , rpk) f (rp1, . . . , rpk)

]
(1.48)

Or equivalently, such that for any(r1, . . . , rn) ∈ P andp≤ n for which the denomi-
nator is positive:

Ψ (r1, . . . , rn) = Ψ(r1, . . . , rp−1, rp+1, . . . , rn)

[
δ (p | r1, . . . , rn)

γ(p | r1, . . . , rn) f (r1, . . . , rn)

]

(1.49)

Remark 1.3.4

1. (Instantaneous attention) Condition (1.47) reflects a requirement of instanta-
neous attention.

2. (Interpretation of (1.48)) Roughly speaking, the invariance condition (1.48) re-
quires that it should not matter in which order jobs arrive, even though state
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dependence is involved, if we considerδ (· | ·) as arrival andγ(· | ·) f (·) as de-
parture rate.

3. (Reversibility) Condition (1.48) does in fact follows from a so-called principle of
reversibility (see Kelly 79). This principle will also comealong in extended form
of ’adjoint reversibility’ in the next section.

4. (Condition (1.48) and (1.49)) Either by the principle of reversibility or directly,
the equivalence of the conditions (1.48) and (1.49) can so beproven rather easily
and is left to the reader.

5. (Use of conditions (1.48) or (1.49)) Condition (1.48) canbe seen as the condi-
tion for its insight whether or not a discipline can be expected to be invariant.
Condition (1.49) is the more practical form that will be usedin the proof as well
as to specify the product form in order.

1.3.2 Service invariant examples

First let us illustrate that the service invariance condition provides a useful general-
ization of the standard symmetric case. It includes for example:

• symmetric systems withclass interdependentblocking

• systems withclass interdependentservicing

• and combinations

In these examples for a state(r1, r2, . . . , rn), as before letm = (m1,m2, . . . ,mR) de-
note bymr the number of classr jobs present.

Example 1.3.5 (Coordinate convex blocking and symmetric disciplines) Consider
a coordinate convex regionC, for example in a 2-class case by

C =
{
(m1,m2) |m1≤M1,m2 ≤M2,m1 +m2≤M1 +M2}

Jobs accepted are serviced by a symmetric discipline( f ,γ,δ ), e.g. the single or
multi server processor sharing discipline D3 or D4, satisfying (1.36). The class de-
pendent discipline is parameterized by

{
δ (p | r1, . . . , rn) = 1C(m) δ (p | n−1)

γ(p | r1, . . . , rn) = γ(p | n)

The invariance condition is then directly verified with

Ψ(r1, . . . , rn) =

{
F(n) as by (1.37) for(m1,m2) ∈ C
0 otherwise

Hence (1.39) applies restricted toC.
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Example 1.3.6 (Coordinate convex blocking and parallel symmetric disciplines)
The same example also applies with separate symmetric disciplines for each job-
class (register) r as by (1.46) in remark 1.3.3 and a coordinate convex common
admissibility regionC. In this case, again (1.39) applies but with F(n) replaced by:

Ψ(r1, . . . , rn) = 1C(m) ∏
r

[
mr

∏
k=1

f r(k)

]−1

with

δ (p | r1, . . . , rn) = (1/mr)br(m1,m2) for each p with rp = r

γ(p | r1, . . . , rn) = (1/mr)γ r(m1,m2) for each p with rp = r

1

2

Z
1

Fig. 1.12: Type-1 dependence for type-2.

Example 1.3.7 (Type 1 level)Consider a system with 2 job-classes in which class-
2 jobs are not accepted or serviced if the number of class-1 jobs is too large, say
when m1≥ Z1, as parameterized by

δ (p | r1, . . . , rn) = γ(p | r1, . . . , rn) =





1/n p= 1, . . . ,n if m1 < Z1

1/m1 for any p with rp = 1 if m1 ≥ Z1

0 for any p with rp = 2 if m1 ≥ Z1

Here one may note that for m1≥ Z1, there is no position p at which an arriving job
of class 2 is accepted in a state(r1, r2, . . . , rp−1, rp+1, . . . , rn−1) with m1 ≥ Z1 jobs
of class-1 already present. In other words, a class-2 job is strictly blocked.

Nevertheless, the state(r1, . . . , rn) with rp = 2 and m1 ≥ Z1 is admissible, in which
case the servicing of all class-2 jobs is stopped. The invariance condition is directly
verified withΨ(·)≡ 1

Type 1 jobs can thus be seen as receiving some sort of preference or priority. The
servicing sharing, say of a capacity f(k) when k jobs are present, is processor shar-
ing otherwise. The invariance condition applies withΨ(·)≡ 1 and hence by (1.38)
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π(R) = c F(n)
2

∏
r=1

[
λ r

µ r

]

Example 1.3.8 (Blocking probabilities) Clearly, by the arrival probability func-
tion δ (· | ·) blocking probabilities can be incorporated, say by

δ (p | r1, . . . , rn) = br(mr −1)δ (p | n) with rp = r

to represent that a class-r job is accepted only with probability br(k) when k jobs of
class-r are already present with br(k) > 0 for k < Mr . With δ (p | n) = γ(p | n) for
all p = 1, . . . ,n a symmetric discipline as by (1.36), f(r1, . . . , rn) = f (n) and F(n)
given by (1.38), the service invariance condition is satisfied with

Ψ(r1, . . . , rn) = F(n)
R

∏
r=1

mr

∏
k=1

b j(k−1) (mr ≤Mr ; r = 1, . . . ,R)

Example 1.3.9 (Service scaling)Alternatively, in line with example 1.3.6 if the
number of type-1 jobs becomes too large, say again by m1 ≥ M1, the service ca-
pacity might be doubled so as to speed up the servicing while assuming an allover
single of multiserver processor sharing servicing as by






δ (p | r1, . . . , rn) = γ(p | r1, . . . , rn) = 1/n p= 1, . . . ,n

f (r1, . . . , rn) = f (n) for m1 < Z1 while

f (r1, . . . , rn) = 2 f (n) for m1 ≥ Z1.

Note that this service acceleration also applies to the type-2 jobs present. In other
words, the service speed of one class also depends on the number of the other class
present. The service invariance condition is directly verified

Ψ(r1, . . . , rn) = F(n)2[m1−Z1]+

Example 1.3.10 (Workload balancing)As both the arrival and service functionδ
andγ allow some form of class dependent ’blocking’, invariant examples can also be
given in which the states can be selectively handled, such asto balance a workload
with class preference. For example, again consider a two-class system, say with a
single server with arrival and service dependence given by

δ (p | r1, . . . , rn) =

{
δ 1(m1−1,m2)(1/n)
δ 2(m1,m2−1)(1/n)

p = 1, . . . ,n , rp = 1
p = 1, . . . ,n , rp = 2

γ(p | r1, . . . , rn) = γ r(m1,m2)(1/n) p = 1, . . . ,n , rp = 1,2
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δ 1(m1,m2) =






1
1/4
0

δ 2(m1,m2) =






0
3/4
1

m1 = m2−1
m1 = m2

m1 = m2 +1

γ1(m1,m2) =






0
1/4
1

γ2(m1,m2) =






1
3/4
0

m1 = m2−1
m1 = m2

m1 = m2 +1

Roughly speaking, the system has a triple preference for getting and servicing a
class-2 job while in addition the number of jobs of each classare kept to a difference
of at most one, as shown in figure

3

4

1

4

1

4

1

4

3

4

3

4

1

4

Fig. 1.13: Service Invariance ValuesΨ for workload balancing.

The invariance condition is checked with

Ψ(r1, . . . , rn) =






1/4 m1 = m2 +1
1 m1 = m2

3/4 m1 = m2−1

Example 1.3.11 (Approximate priority) Consider a service system which has reg-
ular class-1 jbs and which can accommodate (at most) one special class-2 job. Each
class-1 job is always serviced at unit rate (as by a multi-server processor sharing
discipline). A class-2 job, however, which has a low priority, is only served at a rate
τ, and only if no other (class-1) is placed behind it. By letting τ → 0 the discipline
thus approximates a strict waiting of the class-2 job and priority for the class-1 jobs.
This can be parameterized by
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δ (n | r1, . . . , rn) = 1 rn = 2
γ(n | r1, . . . , rn) = τ/[τ +(n−1)] rn = 2, p < n
δ (p | r1, . . . , rn) = 1/[n−1] rk = 2, p 6= k
γ(p | r1, . . . , rn) = 1/[n−1] rk = 2,k 6= n, p 6= k
γ(p | r1, . . . , rn) = τ/[τ +(n−1)] rn = 2, p < n
δ (p | r1, . . . , rn) = γ(p | r1, . . . , rn) = 1/n rk 6= 2 for all k ≤ n






f (r1, . . . , rn) = [τ +(n−1)] rn = 2
f (r1, . . . , rn) = [n−1] rk = 2 for some k< n
f (r1, . . . , rn) = n rk 6= 2 for all k ≤ n

The invariance condition now applies with:

Ψ(r1, . . . , rn) =

{
1/n! rk 6= 2 for all k
1/[τ(n−1)!] rk = 2 for some k

Clearly, an extension to more class-2 jobs is possible alongthe same type of
parametrization.

1.3.3 A generalized symmetric insensitivity result

Now let us extend the results from section 1.2.5 for symmetric disciplines to Service
Invariant disciplines. It will be shown that the detailed product form as in sections
1.2.4 and 1.2.5 particularly the related insensitivity results 1.2.13 and 1.2.19 for the
simple LCFS-preemptive case and 1.2.19 for symmetric disciplines, can be gener-
alized to class- and position-dependent service disciplines provided it satisfies the
invariance condition (1.47). In fact, we will implicitly show that

The service invariance condition=⇒
Job-local balance=⇒
Insensitivity

Formulation. Consider a single service station with arrival ratesλ r and non-
exponential service requirements of the form (1.24) for class r-jobs. The service
discipline is of the generalized form as in section 1.3.1 under the invariance condi-
tion, that is (1.47) and (1.48) or equivalently and (1.49). We further adopt all notation
from sections 1.2.4 and 1.2.5. Let

[R,A] = [(r1,a1),(r2,a2), . . . ,(rn,an)]

be the state which denotes that the job at positionp is of classrp and hasap residual
exponential phases for servicing each with parameterνr wherer = rp. First, a more
technical key-result 1.3.12 is provided. Next, the more practical insensitivity product
form result 1.3.13 is concluded.
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Result 1.3.12 (Detailed Product From.)Under the invariance condition (1.47) and
with R = (r1, . . . , rn) ∈ P:

π([R,A]) = cΨ([R])
n

∏
p=1

{[
λ r

µ r

]
·Hr(a)1(rp=r,ap=a)

}
(1.50)

Proof. Again, as in result 1.2.17 and result 1.2.19 for the symmetric discipline, let
us first show that a notion of balance is satisfied for each position p separately, i.e.

The rate out of this state due to the job at positionp =

the rate into this state due to the job at that position.
(1.51)

Consider a fixedp and the job at positionp. For notational simplicity assumerp =
r,ap = a and introduce the shorthand notation

[R,A]− (r,a)p =

((r1,a1), . . . ,(rp−1,ap−1),(rp+1,ap+1), . . . ,(rn,an))

[R,A]− (r,a)p+(r,a+1)p =

((r1,a1), . . . ,(rp−1,ap−1),(r,a+1),(rp+1,ap+1), . . . ,(rn,an))

for the same state with that job left or with its residual service changed froma to
a+1 phases. Then (1.51) becomes:

π([R,A])ν r f (r1, . . . , rn)γ(p | r1, . . . , rn) =

π([R,A]− (r,a)p)λ r δ (p | r1, . . . , rn)q
r(a)+

π([R,A]− (r,a)p+(r,a+1)p)ν r f (r1, . . . , rn)γ(p | r1, . . . , rn) (1.52)

First note that by (1.47):

δ (p | r1, . . . , rn) = 0⇐⇒ γ(p | r1, . . . , rn) = 0

so that (1.52) is trivially satisfied ifγ(p | r1, . . . , rn) = 0. Now assume:γ(p |
r1, . . . , rn) > 0. By substituting (1.50) we obtain






π([R,A]− (r,a)p+(r,a+1)p)

π([R,A])
=

Hr(a+1)

Hr(a)

π([R,A]− (r,a)p)

π([R,A])
=

Ψ(r1, . . . , rp−1, rp+1, . . . , rn)

Ψ(r1, . . . , rn)

[
µ r

λ r

]
1

Hr(a)

(1.53)

By the invariance condition (1.48) or equivalently (1.49),we can substitute

Ψ(r1, . . . , rp−1, rp+1, . . . , rn)

Ψ(r1, . . . , rn)
=

f (r1, . . . , rn)γ(p | r1, . . . , rn)

δ (p | r1, . . . , rn)
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whereδ (p | r1, . . . , rn) > 0 by virtue of (1.47). As a consequence, (1.52) can be
reduced to:





π([R,A])ν r f (r1, . . . , rn)γ(p | r1, . . . , rn) =

π([R,A])ν r f (r1, . . . , rn)γ(p | r1, . . . , rn)

[
µ r

ν r

qr(a)

Hr(a)
+

Hr(a+1)

Hr(a)

]
(1.54)

With µ r = [τ r ]−1 as in the proof of result 1.2.17, the renewal relation (1.26)com-
pletes the proof of (1.52), that is, of equality of the outrate and inrate due to the job
at any positionp = 1, . . . ,n. To conclude that global balance is satisfied, it remains
to show that:

The outrate due to arrivals=

The inrate due to departures

With [R+ rp] = (r1, . . . , rp−1, r, rp, . . . , rn), this relation becomes:

π([R,A])∑r λ r
[
∑pδ (p | [R+ rp])

]
=

∑r ∑p
π([R,A]+ (r,1)p)ν r γ(p | [R+ rp]) f ([R+ rp]) (1.55)

By substituting (1.49) and (1.50) again, and noting thatHr(1) = [τ r ν r ]−1 = [µ r/λ r ],
we obtain:

π([R,A]+ (r,1)p)

π([R,A])
=

λ r

µ r

µ r

ν r

δ (p | [R+ rp])

γ(p | [R+ rp]) f ([R+ rp])
(1.56)

provided the denominator is positive. By also recalling that δ (p | [R+ rp]) = 0 if
γ(p | [R+ rp]) = 0 by virtue of (1.47), (1.55) is directly verified by substituting
(1.56). This concludes the proof.⊓⊔

Result 1.3.13 (SIC: Insensitive Product Form)For arbitrary service distributions
with means[µ r ]−1 and for arbitrary service disciplines satisfying the invariance
condition, we have

π(R) = cΨ(R)
n

∏
p=1

[
λ r

µ r

]
1(rp=p) (R∈ P)

Proof. Identical to that of result 1.2.13 by summing over all possible numbersai of
residual exponential phases and using that∑aHr(a) = 1. ⊓⊔

Remark 1.3.14 (Non service invariant but generalized discipline)
Clearly, as in section 1.2.5 and result 1.2.17, we could alsoinclude a detailed prod-
uct form result for a generalized discipline as in this section without SI condition,
provided other stringent conditions as strictly equal and exponential services for all
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job-classes are imposed. The situation of independent service mechanisms for each
job class separately each with a generalized discipline, also without SI condition,
can so be concluded. With general class service interdependence, however, an in-
variance condition such as also illustrated later on for class balance to hold, over
job classes rather than individual jobs as in this section will still be required.

Remark 1.3.15 (Population distribution) The population distributionπ(n) is di-
rectly obtained by

π(n) = ∑
(r1,...,rn)∈P

π(r1, . . . , rn)

In order to get a simple expression forπ(n), however, the actual form ofΨ(·) and
of the set of admissible statesC play a role.

1.4 An application, literature discussion and hierarchy review

1.4.1 AnM|G|c|c+mapplication

As shown in section 1.2.3.2 in the single-server case, the natural assumption of
a first-come first-served queueing discipline violates a notion of balance for each
job or position. More precisely, as by condition (1.47) for the service invariance
condition, the notion of job-local balance necessarily requires the condition of in-
stantaneous attention: if accepted a job should also immediately receive an amount
of service by which it may complete its service. As a consequence:

Any system in which an arriving job may have to wait necessarily fails to
satisfy job-local balance and thus as in section 1.3.3 cannot (be expected

to) have a simple and ’insensitive product form type expression’.

This holds for the most simpleM|G|c|c+m-system, thus withc servers andmwait-
ing places, for anym> 0, as in section 1.2.5 note that no symmetric discipline can
be defined to cover a FCFS waiting discipline.

Modification. Intuitively, however, this failure of job-local balance for anM|G|c|c+
m-system can be repaired by simply not allowing waiting positions. To this end, we
can either

add extra servers for each waiting position or
delete the waiting positions

that is by modifying the system into an

• M|G|c+m|c+mor
• M|G|c|c-system
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These pure multi-server loss systems can be parameterized by a symmetric (and thus
also invariant) processor sharing discipline (as in section 1.2.5), as well-known and
proven in section 1.3.3, these systems have an ’insensitiveproduct form’ solution as
in result 1.2.19 (or result 1.3.13). Particularly, the corresponding loss probabilities
are well-known to be insensitive as Erlang’s loss expression for sservers as:

F(s) = [(λ τ)s/s!]/

[
s

∑
k=0

(λ τ)k/k!

]

Simple bounds. Intuitively, by adding servers we will increase the system ca-
pacity and thus decrease the loss probability, while conversely by deleting waiting
positions we decrease the system capacity and thus increasethe loss probability. We
have thus obtained a lower boundBL and upper boundBU on the loss probabilityB
by:

BU = F(s)

BL = F(s+m)

In combination with the inequality:

(ρ−1)+

ρ
≤ B≤ ρ

(ρ +1)
(1.57)

whereρ = λ τ/sas proven by Heyman (1980) and Sobel (1980) (see [60] for the ref-
erences), and the observation thatF(s)≤ ρ/(ρ +1) for anys, the following simple
bounds are thus concluded:

max

[
(ρ−1)

ρ
, F(s+m)

]
≤ B≤ F(s) (1.58)

Practical relevance and numerical results. Clearly, as adding or deleting servers
is a drastic system modification, one cannot expect accuratebounds. However, as
the bounds are insensitive and most easily computed, they can be useful as quick
secure estimates for the order of magnitude as well as for qualitative purposes as
in the optimal design application below (the numerical results below support these
claims which show a significant improvement over (1.57) for small traffic values
and more accurate intervals for large traffic situations. Here we usedµ = 1 and the
valueB applies to the exponential case.

An optimal design example. Let us give a simple illustration of how these insensi-
tive bounds can be used for qualitative purposes in practical situations. The numbers
in this example are chosen rather arbitrarily.

Consider a service station which accommodate at most 10 jobsin total. The total
number of serverss, however, is yet unspecified and is to be fixed. Each server
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incurs a salary cost of 100 dollar per hour. Each lost arrival, in turn, is seen as
an opportunity loss of 100 dollar. On hourly basisλ = 10 andµ = 2. The figure
below graphically illustrates the total costs depending ons, the number of servers,
as corresponding to (1.58).
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Fig. 1.14:M|G|c|c+m- cost bounds by (1.58).

Since both the lower and upper bound calculations lead to thesame optimal num-
ber of serverss= 5, this number is also most likely to be optimal for the original
system, regardless of the distributional forms of the service requirements. Although
a 100% guarantee cannot be given, it is the best indication that one can get without
further knowledge of the service distributions and approximate calculations. More-
over, as graphically illustrated, in any case the optimal number will be restricted to
the ’optimal region’: (3,4,5,6,7), regardless of service distributional form.

1.4.2 Literature discussion

Closed form expressions for queues and queueing networks are generally known to
be related to notions of ’partial balance’; that is, by whichthe global (Kolmogorov)
equations are satisfied in some special decomposed form. Most notably, ever since
the pioneering work by Erlang in the twenties (e.g. see [9], [43]), birth-death equa-
tions forM|M|s|s+ m-queues are standardly used as starting point in virtually any
introductory OR-textbook.

Nevertheless, thenecessityof these equations rather than justsufficiency, as well as
its physical rather than mathematical interpretation, as presented in section 1.2.1 as
’station balance’, seems far less commonly emphasized. For its explicit form(1.4)
as a product form result for the machine-repair system, as historically known as an
Engset system (see [[9], [43]]), a similar statement applies.
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Coordinate convex multiple class extensions in the settingof a single service stage
with blocking as in section 1.2.2 date back to the seventies as by [15], [31], [39].

Coordinate convex examples as examples 1.2.3 and 1.2.8 can be found in these
references. Also the call packing principle and its closed form expressions as in
examples 1.2.4 and 1.2.9 are long known in teletraffic literature (e.g. [20], [27],
[43]).

The example 1.2.5, its observations in remark 1.2.6 as well as the example 1.2.10
seem to have remained únreported. The special call packingapplication in example
1.2.11 in order to provide simple bounds for únsolvable overflow systems is based
on [58].

Also in the setting of networks with multiple service stagesbut essentially without
blocking (or accessibility constraints), closed (product) form results for multiple
job-class extensions have been reported more or less at sametime ([3], [10], [11],
[32], [33], [44] as will also be referred to in section 1.8.2 of B. These references also
introduced the condition of symmetric disciplines and proved its relationship with
(sufficiency for) product forms, as presented in section 1.2.5.

(The necessity of a discipline to be symmetric (or invariant) to guarantee a notion
of balance for each position separately (job-local balance), and correspondingly in
order for a discipline to be insensitive, has been shown in [25]).

An extension of these symmetric disciplines related to but more restricted than the
service invariance disciplines in section 1.3.1, can already be found in [3], [10],
[11]. The conditions in these references are more restricted in that it excludes access
or service blocking as covered herein (see remark 1.3.1). The service invariance
condition and its insensitive product form relationship aspresented in sections 1.3.1
and 1.3.3, but again without blocking, are essentially based upon [24]. The examples
1.3.8-1.3.11 rely upon [25].

The optimal design application in section 1.4.1 and a formalproof of the bounds
(1.57) forM|G|s|s+m-systems, as by sample path comparison, have been given in
[60].

As mentioned, different notions of ’partial’ balance and its relationship with a (pos-
sibly insensitive) closed (product) form expression have been reported in the liter-
ature, as local balance ([3], [10], [11], [47], [48], detailed balance ([32], [33], [34]
and job-local balance ([25], [26]). In particular these notions were used in these
references in relation to insensitivity (also see [2], [13], [20], [24], [26], [47], [48],
[65]). For a more detailed exposition and related references on the phenomenon of
insensitivity the reader is also referred to the chapter byTaylor.

As such the three notions as used in (this first part of) this chapter are not exclusive or
absolute, but simply used for their distinction in line withtheir natural interpretation
and corresponding hierarchy, as will be reviewed in the nextsection.
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1.4.3 A hierarchy review

On the basis of just a single service station rather than on that of a network of service
stations, this first part for just a single station (A) aimed to illustrate and highlight a
number of aspects, which are just as representative for networks of queues, related
to the concept of product forms. These aspects are:

1. The notion of a ’product form’ as factorizing to differentcomponents (e.g. sepa-
rate stations, different job-classes or individual jobs).

2. Its direct relationship with a form of partial balance with the interpretation of a
physical out = in rate for that particular component.

3. The different detailed levels of a product form as determined by its state descrip-
tion.

4. The corresponding system conditions (e.g. on a service discipline or blocking)
and service assumptions (as indistinguishable and exponential or not) that might
be required.

5. A hierarchy of product form results (as summarized in table 1.1) from:

• A simple expression, say for just the total numbers of jobs, with hardly no
discipline limitation on the one hand but a strict assumption of indistin-
guishable and exponential services on the other, up to:

• A most detailed expression which allows distinguishable jobs and which
might even apply to arbitrary services on the one hand but only under more
restricted system mechanisms (as a symmetric discipline oreven rather spe-
cialized as an invariant discipline).

Table 1.1: Balance Hierarchy Scheme.

State State System Service Product Form

Global Station Class Stronger Stronger Stronger Insensitive-PF

Detailed Job local Conditions Conditions Result

This scheme is not complete (for example other balance notions not mentioned but
which could have fitted in are:

• Cluster balance (at a level of multiple stations, also see section 1.7)

• Group balance (at a level for groups of jobs that move simultaneously)(e.g. [7])
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• Source balance (related to job-local balance for the situation of networks in
which each job is generated by a specific source, e.g. as in themachine-repair
system of section 1.2.1).

Nevertheless, the scheme is meant to be illustrative for thehierarchical (weaker and
stronger) results and conditions related to product form expressions as will even be
more complicated but with the same flavour in the setting of networks of service
stations. Numerous specific product form results that fit within such a scheme have
been reported widely in the literature and under different terminologies (as local,
detailed or partial balance with a specific meaning). As suchthe balance notions as
used in this chapter are not assumed or claimed to be as uniquedefinition. They are
simply used as ’natural terms’ for the distinctions in physical interpretations as used
in this chapter. This interpretation can be useful, as will be illustrated in the next
section, to recognize whether a product form can be expectedor not and of what
form.

To summarize, the question whether a system has a product form or not might not
be easily answered. It may require a more specified formulation such as at which
level and under what conditions. And even so the answer mightnot be as simplistic
as it seems.

Particularly, as mentioned, the specific notion of partial balance might be highly
practical to obtain more insight in its answer. This insightmight lead to either of
three practical directions:

• To conclude a product form of specific form

• To conclude that the notion of partial balance necessarily fails so that a corre-
sponding product form cannot exist

• To suggest appropriate product form modifications that might still be practical
(for approximate or bounding purposes)

In a second part (B), this essential role of a specific form of partial balance inthis
case of just station balance, and its ’practical’ consequences will be illustrated and
investigated further for situations with, consecutive service stations and practical
features as blocking or service sharing.
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B: Product Forms: Tandem and Cluster Structures

1.5 Tandem Queues

1.5.1 Introduction

So far the characteristic feature of a queueing network, rather than just a single
service station, has not yet been covered explicitly, that is:

Two (or more) successive service stages for a job to be processed, at different

service stations. At each of these stations this job may interact with a different
set of other jobs.

Example 1.5.1 (Machine-repair example revisited)In fact, in line with and as a
slight modification of the Engset or Machine-repair system from example 1.2.2 from
section 1.2.1, let us first consider a most simple example with blocking.

N1 N2

Fig. 1.15: Finite Machine-repair System.

This concerns a closed system with M jobs and two single server stations, say each
with a single server with exponential service parameterµi , and a routing from one
station to the other back and forth. In addition, however, each of these stations has a
finite capacity to accommodate at most Ni jobs, i= 1,2. When station i is saturated
(ni = Ni) jobs from the other station are blocked so that effectivelythe service of the
other can be seen as being ’stopped’ as long as the other remains saturated.

Although it is sufficient (as M is fixed) to only specify the number of jobs at one
station, letn = (n1,n2) denote the number of jobs ni at either station i= 1,2. The
global balance equations then become

{
π(n1,n2)µ11(n1>0)1(n2<N2)+

π(n1,n2)µ21(n2>0)1(n1<N1)

}
(1.59.1)

(1.59.2)

={
π(n1−1,n2+1)µ21(n1>0)1(n2<N2)+

π(n1 +1,n2−1)µ11(n2>0)1(n1<N1)

}
(1.59.1)′

(1.59.2)′

(1.59)

Clearly, as the indicator values that takes into account thefinite capacity Ni in
the left and right hand side of (1.59.1) for station i= 1 and (1.59.2) for station
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i = 2 are identical, one directly verifies the station balances(1.59.1)=(1.59.1)′ and
(1.59.2)=(1.59.2)′, and thus the global balance (1.59), by the solution.

π(n1,n2) = c

[
1
µ1

]n1
[

1
µ2

]n2

(n1≤ N1 ; n2≤ N2) (1.60)

This example seems to suggest that the notion of station balance also allows capacity
constraints and interactions of service stations and ensures a product form solution
also in the situation of multiple stations. However, this particular example can in
fact still be analyzed by only keeping track of the number of jobs, sayn = n2, at one
station, that is as a one dimensional system, as if it can be regarded (as in section
1.2.1) as a single (birth-death) service station.

As a first and most simple situation which strictly requires amulti-dimensional de-
scription, in the next example therefore, a two station tandem queue is considered
(which can also be regarded as equivalent to a closed three station network with
station 0 representing the outside).

Fig. 1.16: Tandem Queue.

Example 1.5.2 (A tandem queue)Consider an open system of two station tandem
queue with arrival rateλ , and two single server stations in series with exponential
service ratesµi at station i= 1,2 with λ/µi < 1, i = 1,2. Withn = (n1,n2) denoting
the number of jobs ni at station i= 1,2, the global balance equations become:






π(n1,n2)λ+

π(n1,n2)µ11(n1>0)+

π(n1,n2)µ21(n2>0)






(1.61.0)

(1.61.1)

(1.61.2)
=



π(n1,n2 +1)µ2+

π(n1−1,n2)λ1(n1>0)+

π(n1 +1,n2−1)µ11(n2>0)





(1.61.0)′

(1.61.1)′

(1.61.2)′

(1.61)

Clearly, this equation is directly verified by each of the more detailed balances
(1.61.i)=(1.61.i)′ separately by substituting

π(n1,n2) = c

[
λ
µ1

]n1
[

λ
µ2

]n2
(

λ
µi

< 1 ; i = 1,2

)
(1.62)
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The relations(1.61.i)=(1.61.i)′ in turn can be seen asstation balancerelation, as
formulated as by equating the physical outrate = physical inrate, for

station 0 as representing the outside for i= 0
station 1 for i= 1, and
station 2 for i= 2

The notion of station balance thus seems to be directly responsible for a factoriza-
tion to the stations as if these are completely independent.In fact, as the state space
is unlimited also the normalizing constant c factorizes as c= (1− ρ1)(1− ρ2) so
that π(n1,n2) = π1(n1)π2(n2) with πi(ni) the steady state distribution of a single
server queue.

However, in this case no interaction between jobs at all is involved, say as due to a
finite capacity constraint. To also include these constraints, in the next example let
us first assume just a finite capacity constraint at station 2.

S

Fig. 1.17: Tandem Queue with Finite Buffer.

Example 1.5.3 (A simple finite tandem queue)Reconsider the tandem system from
example 1.5.2 at which the number of jobs at station 2, such asby a finite (interme-
diate) storage buffer of size S, is restricted (the job in service included) to a num-
ber n2 ≤ N2 = S+ 1. In order for station balance to apply, now note that relation
(1.61.2) = (1.61.2)′ for station 1 would have to be replaced by

π(n1,n2)µ11(n1>0)1(n2<N2) = π(n1−1,n2)λ1(n1>0) (1.63)

But clearly, for n2 = N2, this relation cannot be satisfied as the left hand side is equal
to 0 while the right hand is positive. Similarly,(1.61.1) = (1.61.1)′ can no longer
be satisfied. In other words, for the more natural situation with a finite capacity
constraint for the second station, station balance is necessarily violated so that a
product form can no longer be expected.

n2 = N2

Fig. 1.18: Finite Tandem Queue.
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Product Form Modification. This observation, however, can still be practically
useful. By artificially assuming that arrivals are blocked when the second station is
saturated (n2 = N2), intuitively both the outrate and inrate for station 1 havebecome
0 so that (1.61) seems to be restored.

n2 = N2

n2 = N2

Fig. 1.19: Product Form Modification.

Indeed, under this modification the global balance equations become:





π(n1,n2)µ11(n1>0)1(n2<N2)+

π(n1,n2)µ21(n2>0)+

π(n1,n2)λ1(n2<N2)





(1.64.1)

(1.64.2)

(1.64.3)
=



π(n1−1,n2)λ1(n1>0)1(n2<N2)+

π(n1 +1,n2−1)µ11(n2>0)+

π(n1,n2 +1)µ21(n2<N2)





(1.64.1)′

(1.64.2)′

(1.64.3)′

(1.64)

These are directly verified again by the station balance equations(1.64.i)= (1.64.i)′

for i = 1,2,3 separately by substituting the product form (1.62) restricted to{(n1,n2)
| 0≤ n1 ; 0≤ n2≤ N2}.
Such a modified product form result, in turn, as based on its required partial balance,
can still be useful such as to provide an approximate order ora secure bound for
some performance measure of interest. This will be elaborated upon more formally
in a separate chapter on bounds and error bounds later on.

In the next section, therefore, the possible existence of product forms, even under
’un’natural system protocols will be explored further for multiple service stations
with dependencies such as due to finite capacity restrictions (blocking) or common
service sharing. In section 1.7 it will also be explored and numerically illustrated
for networks with groups of stations (clusters) having finite constraints.
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1.5.2 Product Form Tandem Queues

Consider an open tandem structure of two service stationsi = 1,2. We aim to inves-
tigate the existence of a product form which may possibly include

• Acces blocking

• Stations to be fully congested

• A load dependent service sharing over the stations

To this end, we will allow (but also may need) a state dependent parameters for
servicing and routing. To this end, as before letn = (n1,n2) denote the number of
jobs at stations 1 and 2 and letn+ei denote the same state except for one job more
at stationi andn−ej for one job less at stationj. Furthermore, for unification the
index i = 0 or j = 0 is used to represent the ’outside from the system’ as a ’station
0’ and the convention is used thatn+e0 = n−e0 = n. Jobs arrive at station 1 by a
Poisson arrival rateλ and require an exponential amount of service at station 1 and
2 with parameterµ1 andµ2. Then, in staten, the system dynamics is parameterized
by two functionsfi(n) andb j(n) as representing:

fi(n): the total service capacity of stationi, i = 1,2. This capacity can be
equal to 0 which represents that that station is effectivelystopped

b j(m): the probability that an entering request at stationj, that is a
transition from stationi = j−1 into stationj with underlying
statem, hence fromm+ei into m+ej is accepted, with
{

i = j−1 = 0 for an arrival at the system and
j = i +1= 0 for a departure from the system

Remark 1.5.4 (Separate service and blocking function)Clearly, the functions fi(n)
and bj(n) can be combined into a single mathematical function

µi j (n) = fi(n)b j(n−ei) ( j = i +1)

Nevertheless, a distinction in a separate service and blocking function is made

• for clarity of its physical interpretations related to possible applications

• for the insight in the possible existence of a product form more and

• to highlight another characterization of a product form.

Remark 1.5.5 (Blocking) With probability[1−b j(m)] a transition from staten+ei

into n+ej with j = i +1 will thus be blocked. For an arrival(i = 0) this effectively
means that the arrival is lost. For a service completion(i = 1,2) this effectively
means that the state remains unchanged (that isn + ei) as if the blocked job will
have to undergo a new service at station i. Alternatively, this probability can also
be regarded as if the effective service at station i is completely stopped (when this
factor is 0 as by complete blocking) or delayed by this factor(when it is positive).
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Remark 1.5.6 (Strict 0-values) In contrast with results in the literature for proces-
sor sharing systems, (e.g. see [4], [10], in which capacity functions are assumed to
be strictly positive), it is noted again that the capacity functions can take on 0-values
in which the service at a station is stopped. This relaxationis included as it may ei-
ther arise naturally so as to give full service priority to one station or as it may be
required, in order to conclude a product form, even though unnatural as in example
1.5.3. For similar reasons also arrivals may (have to) be blocked. Examples for both
situations (natural and unnatural) will be given in sections 1.5.3-1.5.5.

Station balance and adjoint reversibility. Let C be the set of admissible states.
Under the assumption (of ergodicity) for its existence letπ(n) denote the steady
state distribution atC as determined by the global balance equations. These require
that for anyn∈ C:





π(n)λb1(n)+

π(n)µ1 f1(n)1(n1>0)b2(n−e1)+

π(n)µ2 f2(n)1(n2>0)b0(n−e2)





(1.65.0)

(1.65.1)

(1.65.2)
=



π(n+e2)1(n+e2∈C)µ2 f2(n+e2)b0(n)+

π(n−e1)1(n1>0)1(n−e1∈C)λb1(n−e1)+

π(n−e2+e1)1(n2>0)1(n−e2+e1∈C)µ1 f1(n−e2+e1)b2(n)





(1.65.0)′

(1.65.1)′

(1.65.2)′

(1.65)

(Here it is noted that some of the notation and implicit assumptions can be overlap-
ping. For example, ifm+ e2 /∈ C necessarilyπ(m+ e2) = 0 as the statem+ e2 is
not admissible. Nevertheless, the various functions are used to keep the ’boundary
aspects’ explicit).

One cannot expect an analytic solution for (1.65) unless foreachi = 0,1,2 sepa-
rately we can verify the station balance equation:(1.65.i) = (1.65.i)′; that is by a
balance of the departure and arrival rate each station and inthe natural flow direction
of the system dynamics.

With µ0 = λ and f0(n) ≡ 1, andi − 1 = 0 for i = 1 andi + 1 = 0 for i = 2, the
equations(1.65.i) in turn can be rewritten as requiring that for any underlyingcon-
figurationm (not necessarily inC) andi = 0,1,2:

{
π(m+ei)µi fi(m+ei)bi+1(m)1(m+ei∈C) =

π(m+ei−1)µi−1 fi−1(m+ei−1)bi(m)1(m+ei−1∈C)

(1.66)

Here (1.66) is equivalent to the station balances:

(1.65.0) = (1.65.0)′ for m = n and i = 0
(1.65.1) = (1.65.1)′ for m = n−e1 and i = 1
(1.65.2) = (1.65.2)′ for m = n−e2 and i = 2
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Before continuing, note that (1.66) already imposes implicit conditions asC is not
assumed to be of any particular form (such as coordinate convex as in section 1.2.2).

A non-coordinate convex regionC might thus be allowed, as will be illustrated later
on (e.g. see example 1.5.18 and 1.5.20). In contrast, though, (1.66) does require
compensation by 0-values for the service or blocking functions f andb. For exam-
ple, if

m+e1 ∈ C but alsof1(m+e1)b2(m) = 0,

so that the outrate in statem+e1 due to a departure at station 1 = 0, also the inrate
into this statem+e1 due to an arrival at station 1 should be equal to 0, by either

m /∈ C or f0(m)b1(m) = b1(m) = 0.

Now in order to investigate the existence of a solution for this more restricted (sta-
tion) balance relation (1.66), define a continuous-time Markov chain, which will be
called the adjoint Markov chain, at the same state spaceC of admissible states but
with transition rate ¯q(m+ ei,m+ ej) for a change fromm+ ei into m+ ej defined
by:

For i = 0,1,2: {
q̄(m+ei,m+ei+1) = fi(m+ei)bi+1(m)

q̄(m+ei,m+ei−1) = fi(m+ei)bi+1(m)
(1.67)

Hence, for the exterior:




q̄(m+e2,m) = f2(m+e2)b0(m)

q̄(m+e1,m) = f1(m+e1)b2(m)

q̄(m,m+e2) = q̄(m,m+e1) = λb1(m)

(1.68)

In words that is, up to an exponential service scaling, the adjoint chain covers the
original chain in natural flow direction but it also includesa proportional flow in
opposite direction.

Result 1.5.7 There exists a steady state solutionπ(n) of (1.65) of the product form
structure (with c a normalizing constant atC):

π(n) = cH(n) ∏
i=1,2

[
1
µi

]ni

(n ∈ C) (1.69)

if and only if adjoint reversibility applies with solutionH(·). That is, for some func-
tion H(n) at C, the adjoint Markov chain is reversible, i.e. for any pair ofstates
n,n′ ∈ C:

H(n)q̄(n,n′) = H(n′)q̄(n′,n) (1.70)

Proof. The proof is concluded directly by substitution of (1.67) in(1.66) or equiv-
alently in (1.65) and showing equality for(5.6.i) = (5.6.i)′ for i = 0,1,2. ⊓⊔
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Remark 1.5.8 (Adjoint reversibility) Result 1.5.7 characterizes the existence of a
product form solution by means of the so-called concept of reversibility, as will be
defined below, of the adjoint Markov chain. Here we emphasizethat the original
system itself isnót reversible. The characterization will therefore be referred to as
’adjoint reversibility’.

Remark 1.5.9 (Reversibility characterization) The major advantage of result 1.5.7
is that it enables one to verify the existence of a product form of the form (1.69), by
simply investigating the existence of a reversible solution H(n). This in turn, can
be verified by the so-called Kolmogorov criterion (see [33])as based upon just the
transition rates as defined by (1.67). More precisely, either by checking whether for
all cycles of transitions:

q̄(n0,n1)q̄(n1,n2) . . . q̄(nt ,n0) = q̄(n0,nt)q̄(nt ,nt−1) . . . q̄(n1,n0) (1.71)

or, equivalently, whether for some fixedn0 ∈C and any staten ∈ C:

H(n) = c
K−1

∏
k=0

[
q̄((nk→ nk+1)

q̄((nk+1→ nk)

]
for any pathn0→ n1→ . . .→ nK = n
(for which the denominator is positive).

(1.72)

Remark 1.5.10 (Routing and service factorization)Either of these ’adjoint re-
versibility’ checks in turn can generally be reduced to basic cycles or short paths
(also see section 1.5.4) that directly suggest a necessary form ofH(n). This form in
turn can generally be decomposed in a service and routing component, by

H(m+ei)

H(m+ej)
=

xi(m)

x j(m)

f j (m+ej)

fi(m+ei)
= R(m)S(m) (1.73)

for some functionsR(n) andS(n) provided, as for (1.66), both statesm+ei ,m+ej ∈
C. In addition, necessarily the numerator has to be equal to 0 if the denominator is
equal to 0.

HereR(n) might be regarded as a component (solution) which only dealswith the
routing and thus also blocking, from one station to another,as determined by

R(m+ei)

R(m+ej)
=

xi(m)

x j(m)
with {xi(m)} for any fixed underlying ’state’m (1.74)

representing the local solutions of the local routing equations

∑ j xi(m)p̄i j (m) = ∑ j x j(m)p̄ ji (m) (1.75)

for the state dependent routing probabilities of the adjoint modelp̄i j (m) from m+
ei → m+ ej with m fixed. Similarly,S(n) represents the component (solution) for
the service durations at the stations as by:

S(m+ei)

S(m+ej)
=

f j(m+ej)

fi(m+ei)
(1.76)
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This factorization in a routing and service solution also seems to be characteristic
for product form type expressions and can by itself be regarded as a ’product form’
feature.

Remark 1.5.11 (Special examples)In the subsequent sections 1.5.3-1.5.5 three
types of examples will be provided to illustrate the possibility of product forms for
tandem (or serial) structures despite the presence of station dependencies. These
examples can be distinguished in examples with

• pure service dependence

• pure routing dependence

• or mixed

1.5.3 Service examples

In this section assume that jobs upon arrival at the system oronce having completed
a service at a station can not be blocked, i.e. assume that

{
R(·)≡ 1

b0≡ b1(·)≡ b2(·) = 1
(1.77)

Example 1.5.12 (Independent services)Clearly, the standard case with indepen-
dent service capacities fi(ni) at station i when ni jobs are present is included by:

{
H(n) = S(n) = λ n1+n2 ∏i=1,2

[
∏ni

k=1 fi(k)
]−1

and

q̄(m+ei ,m+ej) = fi(ni +1) j = i +1, i−1 ( f0(·) = λ )
(1.78)

Example 1.5.13 (General function)As a first situation with interdependence, of-
ten provided in the literature, suppose that for some functions strictly positive func-
tionsΦ(·) andΨ (·):

fi(m+ei) =
Φ(m)

Ψ (m+ei)
(for all m and i) (1.79)

Then one directly verifies (1.70), with f0(m+e0) = λ , by

H(m+ei)

H(m+ej)
=

S(m+ei)

S(m+ej)
=

q̄(m+ej ,m+ei)

q̄(m+ei,m+ej)
=

f j (m+ei)

fi(m+ej)
=

Ψ (m+ei)

Ψ(m+ej)

by choosing



50 Nico M. van Dijk

H(n) = λ n1+n2Ψ(n)

However, forms as for what type of functionsΨ (·) andΦ(·) the service condition
(1.79) is satisfied are not obvious. This is where the Kolmogorov criterion (1.71) or
(1.72) might come in handy as will be illustrated in the next example.

Example 1.5.14 (Proportional and Unproportional Processor Sharing) As an ex-
tension of standard processor sharing disciplines for one service location, in present-
day service structures, such as Internet (cf. [4], [61]), a single service entity may
have to share its capacity over multiple service stations, by

fi(n1,n2) = T(n1 +n2)si(ni | n1 +n2)

where T(·) represents the total service capacity of the service entityand where
si(· | ·) represents the fraction of this capacity allocated to station i. A processor
sharing function by which each job present at any of the two stations (rather than
standardly at each station separately) gets an equal (fair)share of the capacity, is
hereby included by: si(ni | n1 + n2) = ni/(n1 + n2). This would allocate capacity
over both stations proportional to the workloads present. This will indeed still lead
to a product form result as can be concluded directly from (1.76) or (1.79) or could
also have been concluded indirectly from [10], with

Ψ (n) =
1

n1!
1

n2!

[
n1+n2

∏
k=1

T(k)

]−1

But alsounproportional sharing functions over both stations might still retain the
necessary invariance (1.72) to secure a product form, for example

si(ni | n1 +n2) =






2
3 , i = 1, 1

3 , i = 2, n1 > n2
1
3 , i = 1, 2

3 , i = 2, n1 < n2
1
3 , i = 1,2 n1 = n2

(1.80)

In words that is, a double share is provided to the highest workload so as to strive
for an equal workload at both stations (However, as a price topay to satisfy the
invariance condition (1.76) note that a capacity of1

3 is lost when n1 = n2). Condition
(1.72) or (1.76) are now verified with

H(n) = λ n1+n2

[
n1+n2

∏
k=1

T(k)

]−1[
2max(n1,n2)

]−1
[3]n1+n2

This unproportional processor sharing product form possibility seems to be unre-
ported and may lead to practical approximations.
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1.5.4 Blocking examples

Throughout this subsection assume that the service capacities are independent and
of the form fi(ni) at stationi = 1,2, with corresponding service solutionS(n) as in
example 1.5.12 in section 1.5.3. Hence,

H(n) = R(n)S(n) with S(n) by (1.78) and (1.81)

R(n) = 1C(n) with C as specified below. (1.82)

General blocking condition.

Fig. 1.20: Transition Structure.

In this two (dimensional) station case first observe (see figure 1.20) that any cycle
of transitions as in criterion (1.71) can be seen as a regularstructure that is built by
two basic cycles of either form

(I) (II)

Fig. 1.21: Basic Cycles.

I : m+e1→m+e2→m→m+e1

II : m+e1→m+e1 +e2→m+e2→m+e1
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The implicit assumption to be made here is that the adjoint transition rates within
each of these basic cycles are consistently positive. That is, if a transition has a
positive rate also its opposite one has a positive rate as according to the adjoint
rates. This is a quite realistic assumption. (If it is not satisfied one certainly cannot
expect a solution as of a form (1.69)).

By substituting the adjoint transition rates, leaving out the service rate functions
f·(·), the cycle condition (1.71) can now be applied to each of these two cycles.
Cycle I then leads to the trivial condition:

b2(m)b0(m)b1(m) = b1(m)b2(m)b0(m)

Cycle II however is verified if and only if

b1(m+e1)b2(m+e2)b0(m) =

b2(m)b1(m+e2)b0(m+e1) (1.83)

As a consequence, condition (1.83) can thus be seen as a necessary and sufficient
condition for adjoint reversibility to be satisfied with solution (1.69) andH(·) as by
(1.81) and (1.82). Let us provide some examples.

Example 1.5.15 (Finite capacity buffers)As an extension of example 1.5.3 in sec-
tion 1.5.1, suppose that both station 1 and station 2 have a finite capacity constraint
for at most N1 and N2 (such as due to an intermediate buffer) jobs respectively. The
equality condition (1.83) can then be verified for

b1(n) = 1(n1<N1,n2<N2) (block arrivals when either
station 1 or station 2 is saturated)

b2(n) = 1(n2<N2) (stop station 1 if station 2 is saturated)

b0(n) = 1(n1<N1) (stop station 2 if station 2 is saturated)

(Note that the product form modification for example 1.5.3 isincluded when n2 =
N2). For example, if n2+1= N2 both b2(n+e2) in the left hand side and b1(n+e2)
in the right hand side of (1.83) are equal to 0, and similarly if n1 +1 = N1. Rather
than just by an out = 0↔ in = 0 principle, as in the finite tandem example 1.5.3 in
section 1.5.1, we have thus more formally proven the productform (1.81) withS(n)
andR(n) as specified, withC the set of admissible states:

C =





n1≤ N1

n n2≤ N2

n1 +n2 6= N1 +N2





Remark 1.5.16 In chapter 1.7 it will be numerically illustrated and formally proven
that the product form result modification as in section 1.5.1for example 1.5.3 pro-
vides simple bounds for the more natural finite tandem queue as merely specified
by
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{
b1(n) = 1(n1<N1)

b2(n) = 1(n2<N2)

As this natural finite tandem queue has no product form (as argued in example 1.5.3
and as it violates condition (1.83)), the characterizationby adjoint reversibility, as
leading to condition (1.83), can thus still be regarded as ofpractical interest.

More generally, example 1.5.15 can in fact be seen as a special case by setting
gi(ni) = 1(ni<Ni ) when for given functionsg1(n1),g2(n2) at C:

b1(n) = g1(n1)g2(n2)

b2(n) = g2(n2) and

b0(n) = g1(n1)

Condition (1.83) is satisfied and by (1.73) leads to





R(n) = ∏2
i=1

[
∏ni−1

k=0 gi(k)
]

atC with

C as in example 1.5.15 and
Ni = min{k | gi(k) = 0}

(1.84)

Example 1.5.17Alternatively, condition (1.83) is also easily verified if for given
functions g(n),g1(n1),g2(n2):

b1(n) = d(n1 +n2)

b2(n) = d1(n1)

b0(n) = d2(n2)

with general solution

R(n) =
n1+n2

∏
k=0

d(k) ∏
i=1,2

[
ni

∏
k=Mi+1

di(k)

]−1

at C with

C =





n1 +n2≤M = min{k | g(k) = 0}
n ni ≥Mi = min{k | gi(k) = 0}

i = 1,2





Total number blocking probability. For example, withg1(·) = g2(·) ≡ 1 but
d(k) = α(k), arrivals can be assumed to be blocked with probabilityα(k) when
n = n1 +n2 jobs are already present. Say when the arrival rate is thinned by a factor
2 for n > M and completely blocked ifn = N > M we would obtain

R(n) = 2−[n−M]+ n≤ N
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Service delay - minimal workloads. Clearly, the functionsb2(·) andb0(·) can

Fig. 1.22: Minimal Workloads.

now also be seen as delay factorsd1(n1), d2(n2) and be included in the service
rate functionsf1(n) and f2(n) up to the point that these are assumed to be strictly
positive as reflected by the expression forS(n). But also strict 0-values can now be
included. As an example, withd(·)≡ 1 and

di(ni) = 1(ni>Ni) (i = 1,2)

we would block departures from and effectively stop the servicing of stationi when
it has reached a minimum ofMi jobs. In other words, the station should always have
a minimum workload (which can also be regarded as safety buffers as in figure 1.22)
of Mi jobs, as specified by the solution

R(n) = 1(n1≥M1 ;n2≥M2)

1.5.5 Mixed examples

Though in some of the earlier examples blocking at a station can also be refor-
mulated as if the servicing (or arrival process) at the preceding (outside) station is
stopped, let us give two more examples in which a mixed form isnecessarily re-
quired to guarantee the adjoint reversibility condition.

In both examples the servicing is assumed to be processor sharing over both stations,
say with a total service capacityΨ(n) whenn≤ n1 + n2 jobs are present and only
arrivals and servicing can be ’blocked’ as to be parameterized by:






f1(n) = Φ(n)s1(n1 | n1+n2)

f2(n) = Φ(n)s2(n2 | n1+n2)

b1(·)≡ b2(·)≡ 1

Example 1.5.18 (Restricted state space)Assume that the service sharing is pro-
portional to the number of jobs present (similar to a standard processor sharing
discipline), but that there is an inclination for keeping more jobs at station 1, by
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s1(n1 | n1+n2) = [n1/(n1 +n2)]1(n1≥n2+1)

s2(n2 | n1+n2) = [n2/(n1 +n2)]

b0(n) = 1(n1≥n2)

with C the restricted state space

C = {n | n1≥ n2−1≥ 0},

(1.70) is satisfied by

H(n) =
1

n1!
1

n2!

n

∏
k=1

Φ(k)

Fig. 1.23: Restricted state space.

Remark 1.5.19 Though the solution looks standard, note that this example cannot
be concluded by simply restricting the state space under reversibility conditions, as
mentioned in [33] and [45], as the tandem queue itself isnot reversible.

Example 1.5.20 (Full service capacity)Assume that there is just a single server
whose capacity is fully devoted to one of the two stations (i.e.Φ(k) = 1), as by






s1(n1 | n1 +n2) = 1(n1 = n2 +1∨n1 = n2+2)
s2(n2 | n1 +n2) = 1(n1 = n2∨n1 = n2−1)

b0(n) = 1(n1 = n2∨n1 = n2 +1)

The adjoint reversibility (1.70) is then satisfied at

C = {n | 0≤ n1 = n1−1,n2,n2 +1,n2+2}

as illustrated in figure 1.24 withH(n) = [n1n2]
−1
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Fig. 1.24: Full service example.

1.6 Jacksonian clusters

As shown by example 1.5.3, even for the most simple case of a two station open net-
work one cannot generally expect a product form when restricted capacities become
involved to accommodate jobs (e.g. by finite buffers). Nevertheless, under specific,
more unnatural protocols and possibly enforced by modification, specific product
form results could still be concluded.

Such results can still be of practical interest such as to provide reasonable orders
of magnitude or bounds. However, can these specific product form results also be
expected for larger networks, such as most standardly an arbitrary Jackson type
network with finite capacities?

In this section, it will be shown analytically by just two specific applications that
the results as in section 1.5 for a ’simple’ finite tandem queue can indeed also be
extended to restricted Jackson type networks.

In the next section, as of more practical interest, it will merely be argued and be
illustrated numerically how the concept of station balanceand the product form re-
sults from section 1.5 can also be extended to provide practical numerical results for
assembly type networks with restricted Jacksonian clusters. First in section 1.6.1 let
us briefly review the notion and product form result of a standard Jackson network.
Here, for its illustrative purpose without restriction of generality and for its broader
use in section 1.7, we only consider an open Jackson network.

1.6.1 A Jackson cluster

Consider an open network withJ service stations, numbered 1, . . . ,J and Poisson
arrival rate with parameterγ j at stationj = 1, . . . ,J. After a service completion at
stationi a job will instantaneously
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• route to a next service stationj with probabilitypi j ( j 6= 0), or

• leave the system with probabilitypi0 = [1−∑ j 6=i pi j ].

At each visit at stationi a job requires an exponential amount of service with pa-
rameterµi . Stationi services at a service capacityfi(ni) whenni jobs are present.
Let the vector

n = (n1, . . . ,nJ)

denote the number of jobsni at stationi = 1, . . . ,J and letei be the unit vector
for componenti. Hence,n + ei andn− ei denote the vectors equal to n with one
job more respectively less at stationi and n− ei + ej indicates that one job has
moved from stationi to j. Furthermore, again use the notational convention that
n+e0 = n−e0 = n, write p0 j = γ j/λ with λ = ∑ j γ j and let

F(n) = ∏
i=1

[
ni

∏
k=1

fi(k)

]−1

For the unrestricted case, that is with unlimited state space
C∞ = {n | ni ≥ 0 , i = 1, . . . ,J} the global balance relations

{
π(n)λ +

π(n)∑ j µ j f j (n j)

}
(1.85.0)

(1.85. j)
=




∑
i

π(n+ei)µi fi(ni +1)pi0 +

∑
j

1(n j>0)[π(n−ej)γ j +∑
i

π(n+ei−ej)µi fi(ni +1)pi j ]






(1.85.0)′

(1.85. j)′

(1.85)

are then directly verified (see remark 1.6.3 for its detail) by the station balance
relations(1.85. j) = (1.85. j)′, for each stationj = 0,1,2, . . . ,J separately, i.e. for
any stationj 6= 0 and staten with n j > 0 by

π(n)µ j f j (n j) = ∑i
π(n+ei−ej)µi pi j + π(n−ej)γ j (1.86)

and for the exterior (stationj = 0) and each staten:

π(n)λ = ∑i
π(n+ei)µi fi(ni +1)pi0 (1.87)

by assuming the product form

π(n) = cF(n)∏
i

[
λi

µi

]ni

where (1.88)

λ j = γ j +∑
i

λi pi j ( j = 1, . . . ,J) (1.89)
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Remark 1.6.1 (Traffic equations) Here the implicit natural assumption is made
that the so-called traffic equations (1.89) have a unique solution{λ j}.

Remark 1.6.2 (Decomposability)In fact, one might note that for the present unre-
stricted case we can also factorize the normalizing constant c and hence the steady
state solutionπ(n) as if the stations can be regarded as being independent.

Remark 1.6.3 (Verification of (1.85)) To verify (1.86) and (1.87), by assuming
(1.88) we can substitute

[
π(n+ei−n j)

π(n)

]
=

[
f j (n j)

fi(ni +1)

][
λi

λ j

][
µ j

µi

]

[
π(n+ni)

π(n)

]
=

[
1

fi(ni +1)

][
λi

µi

]

[
π(n−n j)

π(n)

]
=

[
µ j

λ j

]
[ f j (n j)]

By dividing byπ(n) and cancelling terms, (1.86) for j6= 0 with nj > 0 then reduces
to the traffic equations (1.89). Similarly (1.87) is verifiedby also using (recalling
(1.89) again):

∑i λi pi0 = ∑i λi [1−∑ j pi j ] = ∑ j λ j −∑i λi pi j = ∑i γ j (1.90)

1.6.2 A restricted Jackson cluster

As a first direct extension now assume that a Jackson cluster of section 1.6.1 is
constrained by:

• no more thanN jobs in total and

• no less thanM jobs in minimum

Loss and recycle protocol:
If upon arrival N jobs are already present, an arriving job isblocked and lost.
Conversely, if upon system departure the number of jobs leftbehind would
drop below M, the departing job is recycled into the system atstation j with
probability p0 j = γ j/∑i γi .

Clearly, in order for a steady state solution to exist, the system has to be initiated in
a state withn≥M. In that case, the set of admissible states is restricted to:

S= {n | ni ≥ 0 , i = 1, . . . ,M ; M ≤ n≤ N}
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Fig. 1.25: Maximal and Minimal Workloads.

Result 1.6.4 (Recycle protocol)Under the loss and recycle protocol the product
form (1.88) remains valid restricted toC.

Proof. The upper limitN is directly taken into account by (1.87) as

π(n)λ1(n<N) = ∑i
1(n<N)π(n+ei)µi fi(ni +1)pi0 (1.91)

is verified as before forn < N, (see remark 1.6.3) while forn = N both sides of
(1.91) are equal to 0.

Conversely, in order to take the lower limitM into account, for anyn ∈ C, hence
with n≤ N, the station balance relation (1.86) is to be replaced by

π(n)µ j f j (n j) =

∑i π(n)µi pi j +1(n j>0) ·[
1(n>M)π(n−ej)γ j +1(n=M)π(n+ei−ej)µi pi0 fi(ni +1)p0 j

]
(1.92)

Clearly, forn > M, this is verified as for (1.86) by substituting (1.88). Forn = M,
however, after substituting (1.88) and cancelling terms, again we need to use (1.90).

⊓⊔

To some extent the ’recycle protocol’ as described above canbe regarded as most
natural as it allows services to continue. It only requires blocked departures to be
reserviced. Alternatively, a seemingly stronger stop protocol could also be thought
of stated as:

Stop protocol:
Stop the servicing of all stations if a departure from the system (Jackson cluster)
is not allowed, in this case if n= M.

In the next section we will also consider multiple clusters of Jackson networks in
which a departure from one cluster can be blocked due to a finite constraint at a
next cluster. Purely for the purpose of providing a simple product form bound the
somewhat simpler ’stop protocol’ will then be more appropriate as the two protocols
generally lead to exactly the same product form. This is shown below for the present
situation of a guaranteed minimal workload.
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Result 1.6.5 (Stop protocol)Under the stop protocol the product form (1.88) re-
mains valid restricted toC.

Proof. Again, the upper limit is directly taken into account as by (1.91) to replace
(1.87). As for the lower limit constraintM, also the verification of the station balance
(1.86), as given by (1.92), the recycle protocol, even becomes more direct for the
stop protocol by

π(n)µ j f j (n j)1(n>M) =

π(n−ej)γ j1(n>M) +∑i π(n+ei−ej)µi fi(ni +1)pi j 1(n>M) (1.93)

where it is noted again that the staten−ej is not admissible whenn = M, which
directly reduces to (1.86) with 1(n>M) at both hand sides. ⊓⊔

1.6.3 A conservative product form protocol

Now consider a Jackson network as described in section 1.6.1but with a finite ca-
pacity constraint for no more thanNj jobs at stationj; j = 1,2, . . . ,J. (Here one
or more of the valuesNj can be infinite). Clearly, as already shown by the tandem
case in section 1.5.1, under a natural blocking protocol by which an upstream sta-
tion is blocked when a next downstream station is congested aproduct form cannot
be expected as station balance is necessarily violated. In line with the product form
modification in section 1.5.1 and example 1.5.15 for the finite tandem example,
however, a product form can be expected under the, as it is called here:

Conservative protocol.
When a station j is congested, i.e. nj = Nj

stop all other stations l6= j and stop arrivals.

Result 1.6.6 (Conservative protocol)Under the conservative protocol, the prod-
uct (1.88) remains valid restricted to

C =
{

n | 0≤ ni ≤ Ni ; i = 1,2, . . . ,J ; ni +n j < Ni +Nj for all pairs i 6= j
}

Proof. Again we will verify the station balance relation (1.86) forj 6= 0 and j = 0 in
its present adapted form. Consider a fixed staten ∈ C. Then (1.86) for stationj = 0
(also forn j = Nj ) is to be replaced by:

π(n)µ j f j(n j)
[
∏l 6= j 1(nl <Nl )

]
=

π(n−ej)γ j

[
∏l 6= j 1(nl <Nl )

]
+

∑i π(n+ei−ej)1(ni+1≤Ni)

[
∏l 6=i, j 1(nl <Nl )

]
µi fi(ni +1)pi j (1.94)
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As a staten+ej −ej can only be admissible ifni +1≤ Ni . Hence, as 1(ni+1<Ni) =
1(ni<Ni), either all terms in both hand sides are equal to 0 ifnl = Nl for somel 6= j, or
all indicator functions are equal to 1 so that (1.94) is identical to (1.86), as satisfied
by the product form (1.88). Similarly, forj = 0, the total outrate and inrate for the
system are equated by (1.88) atC as:

π(n)λ

[

∏
l

1(nl <Nl )

]
= ∑i

π(n+ei)1(ni+1≤Ni)

[

∏
l

1(nl <Nl )

]
µi fi(ni +1)pi0 (1.95)

⊓⊔

Remark 1.6.7 (Conservative protocol)The conservative protocol is referred to as
conservative as it only continues the service at that station which resolves the con-
gestions. As a consequence it avoids that more than one station can become con-
gested at the same time.

Remark 1.6.8 (Jump-over protocol) A(nother) protocol to generally ensure the
product form (1.88) at

C = {n | 0≤ ni ≤Ni ; i = 1, . . . ,J}

is by the

Jump-over protocol.
Let jobs jump over a saturated station i with ni = Ni to a next service station j
according to the routing probabilities pi j .

The product form can be argued intuitively by assuming infinite capacities but a
service speedfi(Ni +1)→ ∞, for all i, so that the probability for a state with more
thanNi jobs at any stationi becomes virtually 0. An analytic proof, as based upon
absorbing Markov chains, can be found in [52].

n1 = N1 n2 = N2

N1 N2

Fig. 1.26: Tandem Queue with Jump-Over.

As an illustrative example, though, as of practical interest by itself and in line with
section 1.5, let us just reconsider the finite tandem queue with capacity constraints
N1 andN2 at stations 1 and 2 jump-over protocol; i.e.
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If n2 = N2 departures from station 1 clear the system.
If n1 = N1 arrivals are directly routed to station 2.
(If both n1 = N1 andn2 = N2 the arrivals are lost)

The global balance relations now become





π(n)µ1 f1(n1)+

π(n)µ2 f2(n2)+

π(n)λ
[
1(n1<N1) +1(n1=N1)1(n2<N2)

]





=



π(n)λ+

π(n+e1−e2)µ1 f1(n1 +1)1(n1<N1) + π(n−e2)λ1(n1=N1)+

π(n+e2)µ2 f2(n2 +1)1(n2<N2) + π(n+e1)µ1 f1(n1 +1)1(n2=N2)1(n1<N1)





(1.96)
By noting that for any staten ∈ C with (n1,n2) 6= (N1,N2):

1(n1<N1) +1(n2=N2)1(n2<N2) = 1(n2<N2) +1(n2=N2)1(n1<N1) = 1,

again these in turn are verified by a ’station balance’ relation for each stationj =
0,1,2 separately when substituting the product form:

π(n) = cF(n)

[
λ
µ1

]n1
[

λ
µ2

]n2

(n1≤ N1 ; n2≤ N2) (1.97)

Remark 1.6.9 The ’tandem example’ provided above is of some natural interest for
present day packet switch communication structures (such as internet) in which case
a load congestion might be skipped which will lead to only a partial loss of packets
(information).

1.7 Product form bounds for networks of restricted clusters

As mentioned before and shown by example 1.5.2 in section 1.5.1, a simple tandem
queue with a finite capacity constraint already violates station balance and hence
a product form. Nevertheless, as shown by its modification inexample 1.5.3, its
extension in example 1.5.15. for a tandem with two finite stations, and in section 1.6
for Jacksonian type clusters, under appropriate blocking protocols a product form
expression might still be obtainable, possibly enforced bymodification.

These product forms in turn, even though the protocols mightbe ’unnatural’, might
still be useful for the original non-product form system to provide a reasonable
approximation or bound, as announced in remark 1.5.15. Moreprecisely, for the
simple but unsolvable tandem queue with both a finite first anda finite second station
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(as in example 1.5.2), the product form (modification) as in example 1.5.15 turns out
to be quite fruitful to provide a simple (lower and upper) product-form bound for
the loss probability (and throughput). As some numerical results for this two-station
example can also be found in the chapter on error bounds and comparison results
(chapter 7), in section 1.7.1 below some numerical support will directly be presented
for a slightly larger four station tandem example.

In fact, in practical situations capacity constraints are often imposed upon clusters
(groups) of stations rather than individual stations. In this section, therefore, it will
merely be illustrated, in line with the two station tandem example and the results
for a single cluster as in section 1.6, how the product-form modification approach
also extends to and can be fruitful for larger networks, particularly ’assembly line or
tandem type’ structures with restricted Jacksonian clusters. Roughly speaking, this
bounding approach is based on the two concepts of:

(i) regarding a cluster of stations with some common capacity constraint as
’one aggregate station’.

(ii) a modification of the system such that both the notion of station balance for
individual stations, and of station balance for ’aggregatestations’:
referred to as ’cluster balance’, are restored and satisfied.

1.7.1 Instructive tandem extension

In production environments, capacity constraints are often imposed upon clusters of
workstations rather than individual workstations. It would thus be appealing if the
principle of station balance can also be extended to a cluster level, by regarding a
cluster as one aggregated station.

Consider, for example, the cluster extension of the tandem case (see figure 1.27)
with four stations to be seen as a two-cluster model with capacity constraintsT1 and
T2 for the total number of jobs in cluster 1 (stations 1 and 2) andcluster 2 (stations
3 and 4).

B T1 T2

Finite Cluster Finite Cluster

Fig. 1.27: Finite Cluster Extension
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In order to enforce a simple product-form expression, a similar modification as ex-
ample 1.5.3 in section 1.5.1 and example 1.5.15 in section 1.5.4 would then seem
appealing at cluster level by also rejecting jobs at cluster1 when cluster 2 is con-
gested. This would lead to an upper bound for the blocking probability. In other
words, at first glance we would expect a similar simple product-form bounding ap-
proach by simply regarding a cluster as a station and transforming the notion of
balance per station into balance per cluster by just keepingtrack of the total number
of jobs at each cluster. This will be referred to ascluster balance.

Example 1.7.1 To be more precise, consider the simple assembly line structure with
4 service stations, numbered1, . . . ,4 and finite capacity constraints T1 for the total
number of jobs at stations 1 and 2 (cluster 1) and T2 at stations 3 and 4 (cluster 2).
The system has an arrival rate ofλ jobs per unit of time and assume that station i
has (an exponential) service rateµi fi(k) when k jobs are present. As before, let ni

denote the number of jobs at station i, i= 1, . . . ,4 and tj the total number of jobs at
cluster j, j= 1,2. (t1 = n1+n2 and t2 = n3+n4). When the first cluster is saturated
(t1 = T1) an arriving job is lost. When the second cluster is saturated (t2 = T2) the
service at cluster 1 (that is at both stations) is stopped. Assimple as the system may
look to analyze, there is no simple expression for the loss probability B of arriving
jobs or the throughputH = λ (1−B).

In this example, both the notion of balance per station (as by(1.3) in section 1.2.1)
and of balance per cluster (that is, as if a cluster is regarded as one aggregated
station) are violated, since whent1 < T1 but t2 = T2:

• the out-rate of stations 1 and 2 and the out-rate of cluster 1 are necessarily
equal to 0 while the in-rate for station 1 (and possibly also for 2) and for
cluster 1 are positive.

The following artificial modification to enforce these notions can therefore be sug-
gested.

• When cluster 2 is saturated(t2 = T2): stop the input.

• When cluster 1 is saturated(t1 = T1): stop cluster 2 (that is, both stations
at cluster 2).

Indeed, under this modification one easily verifies the global balance (1.98) by sta-
tion balance equations(1.98.i) = (1.98.i)′ for i = 1, . . . ,5 atSU the set of admissible
states:

SU = {n | t1 = n1 +n2≤ T1 ; t2 = n3 +n4≤ T2 ; t1 + t2 6= T1 +T2}

as
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π(n)µ1(n1) f1(n1)1(t2<T2)+

π(n)µ2 f2(n2)1(t2<T2)+

π(n)µ3 f3(n3)1(t1<T1)+

π(n)µ4 f4(n4)1(t1<T1)+

π(n)λ1(t1<T1)1(t2<T2)





(1.98.1)

(1.98.2)

(1.98.3)

(1.98.4)

(1.98.5)

=




π(n−e1)1(n1>0)λ1(t2<T2)+

π(n−e2+e1)1(n2>0)µ1 f1(n1 +1)1(t2<T2)+

π(n−e3+e2)1(n3>0)µ2 f2(n2 +1)1(t1<T1)+

π(n−e4+e3)1(n4>0)µ3 f3(n3 +1)1(t1<T1)+

π(n+e4)µ4 f4(n4 +1)1(t1<T1)1(t2<T2)






(1.98.1)′

(1.98.2)′

(1.98.3)′

(1.98.4)′

(1.98.5)′

(1.98)

by substituting the product-form

π(n) = cλ n1+n2+n3+n4
4

∏
i=1

{
µni

i

[
ni

∏
k=1

fi(k)

]}−1

, n ∈ SU (1.99)

with c a normalizing constant. Clearly, the modification leads to an upper bound
BU ≥ B for the loss probability

BU = ∑
{n |t1=T1 or t2=T2}

πU(n) (1.100)

Conversely, also a lower bound product-form modificationBL can be suggested by
only rejecting arriving jobs when the total number of jobsn1+n2+n3+n4 = T1+T2

and allowing up to this number to be present at any station. Then (1.99) applies with
SU replaced by:

SL = {n | n1 +n2+n3+n4≤ T1 +T2 ; ni ≥ 0 , i = 1, . . . ,4} (1.101)

Below some numerical results are given for the case of singleserver stations. Here
µi represents the service speed of stationi, BL andBU are the easily obtained lower
and upper bound for the blocking probability,Bav = (BL +BU )/2 andB is obtained
by numerical computation.

Remark 1.7.2 (Insensitive bounds)Referring to sections 1.2.5 and 1.3.3, recall
that for pure multi-server or processor sharing disciplines, the product-form ex-
pression (1.99) remains valid for arbitrary service distributions with means1/µi.
Also the boundsBU andBL can then be expected to be insensitive.
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Table 1.2: Lower and upper bounds of the loss probabilityB (and throughputH by
H = λ (1−B)) for finite two-cluster tandem example.

µ1 µ2 µ3 µ4 T1 T2 BL BU Bav B

1 1 1 1 3 5 .33 .52 .43 .42

1 1 1 1 6 6 .25 .40 .33 .30

1 1 1 1 8 8 .20 .33 .27 .24

2 2 1 1 10 10 .10 .17 .14 .12

1 2 3 2 10 10 .054 .101 .078 .084

1.1 2 3 2 10 10 .021 .065 .048 .049

1.7.2 A Jackson Tandem

The simple two-station tandem clusters can directly be replaced by a Jackson cluster
as from section 1.6 by applying either of the two protocols from section 1.6, the
recycle or stop protocol for the entire cluster, if its departures are to be blocked.

• The modification at cluster level as above if either the first or
second cluster is congested

More concrete, consider the situation of two finite Jackson clusters labeledC1 and
C2. As before lett1 andt2 be the total number of jobs at cluster 1 and at cluster 2.

T1 T2

C1 C2

Fig. 1.28: Finite Jacksonian Tandem.

For the original system of interest assume that when a departure from cluster 1 say
from stationi is blocked, it has to undergo a new service at stationi. Effectively, this
means that as in the example above that only the departure station 2 is delayed or
completely stopped when a congestion takes place. By the modification:

PF-modification
• When a cluster is activated: stop arrivals and all stations at the other cluster

a product form can now be expected. Indeed, for any stationj ∈C1 and withn j > 0,
the station balance then becomes:
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π(n)µ j f j (n j)1(t2<T2) =

π(n−ej)γ j1(t2<T2) +∑i∈C1
1(t2<T2)π(n+ei−ej)µi fi(n1 +1)pi j (1.102)

and for j ∈ C2

π(n)µ j f j (n j)1(t1<T1) =

1(t1<T1) ∑i∈C1
π(n+ei−ej)µi fi(ni +1)pi j +

1(t1<T1) ∑i∈C2
π(n+ei−ej)µi fi(ni +1)pi j (1.103)

Here in the first term in the r.h.s. of (1.103) it is noted that any staten+ ei − ej

necessarily hast2−1 < T2 jobs at cluster 2 so that the servicing at the first cluster is
not stopped. Finally, the outrate and inrate equation for the system (station 0) are:

π(n)λ1(t1<T1)1(t2<T2) =

∑i∈C2
1(t2<T2)π(n+ei)µi fi(n1 +1)1(t1<T1)pi0 =

1(t1<T1)1(t2<T2) ∑i
π(n+ei)µi fi(n1 +1)pi0 (1.104)

as pi0 = 0 for i ∈ C1. By cancelling the equal indicator terms 1(t1<T1) and 1(t2<T2)

in the left hand and right hand sides, each of these relations(1.102), (1.103)
and(1.104), which together form the global balance equations, are now verified di-
rectly as before in section 1.6.1 by using the traffic relations (1.89) and (1.90) as for
a standard Jackson cluster when substituting the product form:

π(n) = c∏
i

[
λi

µi

]ni
[

ni

∏
k=1

fi(k)

]−1

(1.105)

at
C =

{
n | t1 = ∑i∈C1

ni ≤ T1 ; t2 = ∑i∈C2
ni ≤ T2 ; t1 + t2 6= T1 +T2

}

Remark 1.7.3 (Recycle protocol)In line with section 1.6.2, the same product form
(1.105) result can also be proven if, for either of the two Jackson clusters or for both,
a recycle protocol would be applied upon departure blocking. (I.e. a departing job
would be recycled into that cluster as a newly arriving job - here for cluster 2 it
would then have to be assumed that pi j = β j for j ∈ C2 and all i∈ C1).

Remark 1.7.4 (Jump-over protocol) In line with the jump-over protocol in remark
1.6.8, a(nother) product form (modification) protocol would be to let arriving jobs
jump-over cluster 1 if t1 = T1 and let jobs leaving cluster 1 clear the system if t2 = T2.
In that case (1.105) would apply withC restricted to

C = {n | t1≤ T1 ; t2≤ T2}
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1.7.3 A nested case

B

Z1 Z2

T1

Z3 Z4

T2

Fig. 1.29: Nested Finite Constraints.

A nested extension of the example from section 1.7.1, now consider two clusters
in tandem each with 4 stations and finite constraintT1 andT2 jobs. In addition, the
stations are paired in 4 pairs (see figure 1.29) with a finite capacity constraintZi for
the total number of jobszi at pairi, by

zi = n2i−1+n2i ≤ Zi

(The natural assumption is made thatT1 ≤ Z1 + Z2 and T2 ≤ Z3 + Z4)As before,
cluster balance is violated at cluster 1 ift2 = T2 and at cluster 2 ift1 = T1. In addition,
station balance is violated at station 2i if Zi+1 is reached,i = 1,2,3. The following
modification is therefore is therefore suggested:

PF-modification
• Whent2 = T2 stop stations 1-4
• Whent1 = T1 stop stations 5-8
• Whenzi = n2i−1 +n2i = Zi :

stop arrivals and all stationsj 6= 2i−1,2i ; i = 1, . . . ,41−4

Under this modification the global balance equations become





∑ j=1,...,4 π(n)µ j f j (n j)
[
∏i 6=d( j) 1(zi<Zi)

][
1(t2<T2)

]
+

∑ j=5,...,8 π(n)µ j f j (n j)
[
∏i 6=d( j) 1(zi<Zi)

][
1(t1<T1)

]
+

π(n)λ
[
∏4

i=11(zi<Zi)

][
∏2

j=11(t j <Tj )

]






=




∑ j=2,...,4 π(n+ej−2−ej)µ j−1 f j−1(n j−1 +1)
[
∏i 6=d( j) 1(zi<Zi)

][
1(t2<T2)

]
+

∑ j=5,...,8 π(n+ej−1−ej)µ j−1 f j−1(n j−1 +1)
[
∏i 6=d( j) 1(ni<Ni )

][
1(t1<T1)

]
+

π(n+e8)µ8 f8(n8 +1)
[
∏4

i=11(zi<Zi)

][
∏2

j=11(t j<Tj )

]





(1.106)

Here in the right hand side, forj = 1 we need to readn+ej−1+ej = n−e1, µ0 = λ
and f0(n0 + 1) = 1 andd( j) denotes the pair number that contains stationj, j =
1, . . . ,8.
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For eachj = 1, . . . ,8 in the first two terms in both hand sides as well as for the
third term (as can be seen as forj = 0), the indicator functions are identical. Hence,
station balance for eachj separately is directly verified as before by substituting the
product form withJ = 8 atC the set of admissible states:

SU = {n | t1 ≤ T1 , t2≤ T2 , t1 + t2 6= T1 +T2 ,

zi ≤ Zi , i = 1, . . . ,4 ; zi +zj 6= Zi +Z j for all i, j with i 6= j
}

(1.107)

Clearly, this modification leads to an upper boundBU for the loss probabilityB.
Conversely, a lower boundBL is obtained by the modification:

PF-modification
• Only reject arrivals when the total number of jobst = n1+ · · ·+n8 = T1 +T2,

while any station can accommodate up to this number of jobs.

In this case again the station balance relations are readilyverified with the same
product-form as in (1.105) withλi = λ for all i at the set of admissible states::

SL = {n | t ≤ T1 +T2 , ni ≤ T1 +T2 for i = 1, . . . ,4}

Some numerical results are presented in table 1.3.

Table 1.3: Result for the nested blocking structure (λ = 1)

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 Z1 Z2 Z3 Z4 T1 T2 BL BU Bav B

1 1 1 1 1 1 1 1 3 2 4 2 4 5 .471 .724 .598 .572

2 3 4 5 1 2 3 4 3 2 4 2 4 5 .158 .398 .278 .204

Again, this nested assembly line example is also extendableto restricted Jacksonian
clusters instead of restricted pairs using the recycle or stop protocol as in section
1.6.

1.7.4 Further illustrative examples

In this section, some more examples will be provided to illustrate the potential of the
modification approach. For each of these examples there is noanalytic expression
known while the modifications guarantee closed product formexpressions similar
to (1.99). These in turn will lead to easily computable bounds similar to (1.100)
and (1.101). Some numerical results will be included to indicate a possible practical
usefulness.
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1.7.4.1 A Cluster With Parallel Stations

N1

T

B

N2

N3

N4

p2

p3

Fig. 1.30: A parallel routing cluster.

This example contains a random routing after completion at station 1 to either one
of two stations (with probabilitiesp2 andp3 = 1− p2) in parallel within one cluster
with a capacity constraintT for the total number of jobs at stations 2 and 3, next to
capacity constraintsNi at each stationi, i = 1, . . . ,4. By regarding the cluster as one
aggregated station as in section 2, the following modifications lead to product-form
expressions:

PF-modification
• Stop arrivals and all stations either when one of stations (ni = Ni ) or

the cluster (n2 +n3 = T) is saturated, or
• Stop arrivals when the total number of jobs is equal toN1 +T +N4 = S,

while each station may contain up toS jobs.

Clearly, the first modification leads to an upper boundBU and the second to a lower
boundBL for the loss probabilityB of the original system. Some numerical results
are shown by table 1.4.

Table 1.4: Results for the finite cluster with parallel stations (λ = 1)

µ1 = . . . = µ4 N1 N2 N3 N4 T p2 = p3 BL BU Bav B

2 2 2 2 2 3 0.5 .03 .30 .16 .16

10 2 2 2 2 4 0.5 .00 .02 .01 .01

1 5 5 5 5 10 0.5 .10 .30 .18 .20

1 10 5 5 10 10 0.75 .06 .17 .12 .10
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1.7.4.2 An Overflow Example

B

T2

T1

N3
N4

N1 N2

Fig. 1.31: Overflow clusters.

Consider two finite clusters in parallel with arrivals at cluster 1. If a job cannot enter
cluster 1 it is rerouted to cluster 2. Each cluster consists of two finite stations in
tandem. In addition to the total cluster constraintsT1 andT2, we also allow capacity
constraintsNi for each individual stationi, i = 1, . . . ,4. We assume thatµ1≤ µ3 and
µ2≤ µ4.

For this example, the so-called notion of cluster balance isviolated when cluster 2 is
busy while cluster 1 is not saturated. In that case the outflowat cluster 2 is positive,
but the in-rate is 0. The following two modifications are therefore suggested:

PF-modification
• Stop both stations in cluster 2 when cluster 1 is not saturated (t1 < T1), or
• Assign arriving jobs randomly to either one of the clusters proportional

to the free buffer capacity at the two clusters.

By the first modification cluster 2 is slowed down and kept morecongested. The
arrival loss probability will thus be enlarged which leads to an upper boundBU

for the loss probabilityB of the original system. With the second modification, the
faster overflow cluster is used more frequently than in the original system, which
leads to a lower boundBL.

1.7.4.3 A breakdown Model

Reconsider two finite clusters in tandem, which are both subject to breakdowns. In
addition to the cluster constraintsT1 andT2, we assume repair and breakdown rates
γ10 andγ11 for cluster 1, and similarly,γ20 andγ21 for cluster 2.
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Table 1.5: Results for parallel finite clusters with overflow.

λ µ1 µ2 µ3 µ4 N1 N2 N3 N4 T1 T2 BL BU Bav B

1 1 1 1 1 1 1 1 1 2 2 .095 .444 .270 .300

2 1 1 4 4 3 3 1 1 6 2 .005 .174 .090 .073

3 1 1 4 4 3 3 2 2 6 4 .023 .126 .075 .063

B T1 T2

N1 N2 N3 N4

0 / 1 0 / 1

Fig. 1.32: Breakdown clusters.

Clearly, cluster balance is violated when either cluster isdown. The following two
modifications are therefore suggested:

PF-modification
• Stop both stations in clusteri when clusterj is down (j 6= i), or
• The breakdown rate for both clusters is 0 (breakdowns do not take place).

Again, the first modification leads to an upper boundBU and the second to a lower
boundBL for the loss probabilityB of the original system. Some numerical results
are shown below.

Table 1.6: Results for finite clusters with breakdowns (λ = 1)

µ1 µ2 µ3 µ4 N1 N2 N3 N4 T1 T2 γ10 γ11 γ20 γ21 BL BU Bav B

2 2 2 2 2 2 1 1 4 4 50 1 50 1 .04 .42 .23 .20

2 1 2 1 2 4 2 4 6 6 50 1 50 1 .16 .48 .32 .28
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1.7.5 An Optimal Design Application

Reconsider the finite cluster tandem example from section 1.7.1 in which the num-
bersT1 andT2 are still be determined by trading off capacity costs(T1 + T2)

2 and
opportunity losses 1000B due to rejections. Based on the lower and upper bounds
for the loss probability, lower and upper bound curves for the costs are easily com-
puted. Despite the large discrepancy between the lower and upper bound values, the
qualitative curving behavior seems to almost pinpoint the same optimal number (9
or 10). To be more certain one can then simulate. In any case one can be 100% sure
that the optimal number is within the region 4-16.

Fig. 1.33: Total capacity optimization.

1.8 A hospital application

1.8.1 Motivation

At an Intensive Care Unit (ICU) within hospitals patients may enter directly for in-
tensive care, such as monitoring and artificial ventilation. Patients may also require
an ICU bed for postoperative care after a heavy operation at the Operating Theatre
(OT). Unfortunately, due to the limited number of beds, a request for an ICU bed
may be rejected.

For patients a rejection may lead to further delay in a critical situation which may
even put lives at risk. For the hospital (or public health) a rejection may lead to an
idle operating room, which is regarded as a loss of precious capacity. The size of an
ICU thus needs to be dimensioned carefully.
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1

OT ICU

2

Fig. 1.34: Operating Theatre (OT) - Intensive Care Unit (ICU) Tandem Model

A careful estimation of the ICU rejection probability is thus required. Unfortunately,
measurements might not be available or be sufficiently predictive for different num-
ber of beds. An analytic approach therefore will be of practical interest.

Literature and objectives. By a number of references the standardM|G|c|·multi-
server queue has already been argued as a reasonable approximate for the ICU in
isolation (see [55] and references therein). Nevertheless, these results do not contain:

• A formal justification.

• The inclusion of the OT and its interaction with the ICU.

• A secure lower and upper bound for the ICU-rejection probability.

1.8.2 Model formulation

The inflow of the ICU consists of emergency patients (the majority) and elective
patients and can be subdivided into various patient groups.However, as we are par-
ticularly interested in the effect of the limited ICU capacity and its interaction with
the OT, below we only make a cross distinction in patients, that need to visit the
ICU after having undergone an operation, and patients that enter the ICU directly
without operation. These patients will be referred to as:

• OT (or type 1-) patients.

• Direct (or type 2-) patients.

This distinction is made:

• To capture the interaction between OT and ICU.

• As the average sojourn times at the ICU significantly differ.

Original Model. To study the ICU-rejection probabilityR for type-1 and type-2
patients (where we refer to remark 1.8.2 below for its equality for both types)and
its interaction with the OT a number of assumptions are made.In [55] each of these
assumptions has been argued and justified by simulation to bequite reasonable for
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practical modeling. The corresponding tandem queue systemunder these assump-
tions (1)-(8) will be referred to as theoriginal OT-ICU model.

(1) Patients that do not require an ICU bed are not included.
(2) A Poisson arrival rateλ1 of OT-patients (type 1) at the OT.
(3) A Poisson arrival rateλ2 of Direct patients (type 2) at the ICU.
(4) An exponential service time for the surgery at the OT withrateµ1.
(5) A (possibly non-exonential) sojourn time at the ICU withmeanτ1

for OT-patients andτ2 for Direct patients.
(6) The OT hasc1 identical operating rooms with a infinite waiting

facility; The ICU has a limited capacity for at mostc2 patients
and no waiting facility.

(7) When no ICU bed is available, type 1-patients are rejected upon arrival
at the OT and type 2-patients are rejected upon arrival at theICU.

(8) An ongoing operation is always continued. When no ICU bedis
available, the patient is kept in the recovery.

Modified Product Form OT-ICU system. The OT-ICU system of interest has
no product form solution. However, in line with the results from section 1.5, more
precisely example 1.5.3 and its product form modification insection 1.5.1, the fol-
lowing artificial modification of (8) can be suggested:

(8’) When the ICU becomes congested, operations are immediately
interrupted and stopped. The operations are resumed as soon
as the ICU is no longer congested.

Under this modification, the tandem system will be referred to as themodifiedOT-
ICU system. Similarly to the relations (1.64), for this modified OT-ICU system the
following result can be proven directly.

Result 1.8.1 Let (n1;m1,m2) denote that there are n1 patients at the OT and mi
patients at the ICU of type i(i = 1,2). For the modified OT-ICU system, with m=
m1 +m2≤ c2,

F1(n1) =





[n1!]−1 for n1≤ c1[
c1! c(n1−c1)

1

]−1
for n1 > c1

and with normalizing constantα, we have:

π(n1;m1,m2) = α F1(n1)

(
λ1

µ1

)n1

∏
i=1,2

1
mi !

(λiτi)
mi (1.108)

The product form expression (1.108) decomposes as if the OT and ICU can be re-
garded as independent. As a consequence, withc = c2 it thus directly justifies an
M|G|c|c-loss approximation for the ICU rejection probabilityR as by

B(c) = ρc/c!
[
∑c

k=0 ρk/k!
]−1

with ρ = (λ1τ1 + λ2τ2) (1.109)
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Intuitively, as the modified OT-ICU tandem system only differs from the original
OT-ICU tandem system for a patient in operation when the ICU becomes congested,
one may expect that theM|G|c|c-loss expression, is a quite reasonable if not accurate
approximation for the original OT-ICU system.

Indeed, as shown in table XXX below, thisM|G|c|c-loss approximation for the ICU
rejection probabilityR of the OT-ICU as described in section 1.8.1 and practically
argued by simulation in [55], seems to approximate quite well with c in the order of
the case study as in section 1.8.3.

TABLE

Remark 1.8.2 The ICU-rejection probability for type-1 patients is equalto that for
the type-2 patients. This can be argued directly by the PASTA(Poisson Arrivals See
Time Averages) property. Alternatively, it can also be concluded from the product
form result 1.8.1 by (1.108).

1.8.3 Bounds and application

Nevertheless, there is no guarantee at all for this approximation to be accurate. More
importantly, one might intuitively expect that it providesa lower boundB(c)≤R, as
the modification seems to keep operations more conservative. In practice, in contrast
one would rather have a secure upper bound, such as for dimensioning the size of
an ICU with a secure sufficiently small rejection probability (e.g. less than 5%).
Here in addition it is also noted that the Poisson arrival assumption for type 1 jobs
is somewhat unrealistic, as operations are partly scheduled, and thus overestimates
the ’practical’ valueR. An upper rather than lower bound forR would thus be of
interest. Based upon the product form modification again as in section 1.8.2, but
with c− 1 rather thanc beds and a Markov reward proof technique as outlined in
section a chapter later on the following result is thereforeproven in [55].

Result 1.8.3 (Bounds for the ICU-rejection probability)

B(c)≤ R ≤ B(c−1) (1.110)

Application: Case study. Data were collected for a case study in a Dutch hospital
over a one year period. The percentages of type 1 and type 2-patients were 39% and
61%.

The average sojourn time spend in the ICU over all patients was 5.2 days, for
roughly 4 days for type 1-patients and 6 days for type 2-patients. Other case char-
acteristics were:

• OT capacity (number of operating rooms): 8.



1 On Practical Product Form Characterizations 77

• ICU capacity (number of beds): 12.

• ICU occupancy: 85%.

The case study situation is within a range of realistic figures as recently reported
by the Dutch ministry of health. It reported that roughly 10%of ICU requests are
strictly rejected, 3% admitted by a predischarge and 4% placed differently. Further-
more an occupancy of 75% is mentioned as norm.

Simulation results for the case study consistently supportthe lower and upper bound.
Particularly, for smaller rejection probabilities, say inthe order of 5 -10% as for
larger hospitals with a high occupancy level, the bounds appear to be quite accurate
(in absolute sense). The results seem useful, at least, for practical purposes such as
to guarantee a sufficiently small rejection percentage by the upper bound.

For the case study, an occupancy of 85% and 12 beds were used. The results lead
to a lower bound of .127 and an upper bound of .172 (the simulation result was
.128). As a direct application of the secureM|G|c -1|c-1 upper bound computation
the required number of ICU beds could be computed as:

• 16 beds forR≤ 5%.

• 19 beds forR≤ 1%.

1.9 Evaluation

1.9.1 Literature

Product forms for queueing networks have become most familiar ever since the
pioneering work of Jackson ([28], [29]) for so-called Jackson networks. In these
networks a job can randomly route form one station to another. Some most notable
other early references here are [30], [36], [37] and [35]. Particularly, for its clear
practical motivation, special attention has been given to assembly line structures,
also referred to as Gordon-Newell networks ([18], [19]). Infact, an early first prod-
uct form result for a production line system was already reported in [36], [37].

In none of these references, though, the product forms were ’explicitly’ related to (a
notion of) balance for each station separately (In the elegant paper [35] an explicit
decomposition is made for the outside as a station).

A verification by each station separately as if it were in isolation became more
emphasized in the seventies in [3], [10], [11], [33], [34], [35], [44], [47], [48] (with
corresponding balance notions as local, detailed balance and job-local balance).

With (access) blocking due to finite capacity constraints product form results
seemed more restricted. In fact the historical paper by Jackson does already con-
tains a capacity constraint on the total number of jobs in thenetwork. But with finite
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capacity constraintsNi for the total number of jobs at individual stationsi, product
form results were concluded only provided the routing is reversible [33], [45]. As
mentioned in both these references, in this case also arbitrary truncation of the state
space can be incorporated while retaining a product form. Infact, the results in sec-
tion 1.2 on coordinate convex blocking and the corresponding references as [11],
[31], [39] fall within this category as the routing for entering and leaving a single
service station is reversible by definition. [33] and [46] also include a reversible re-
sult along this line as a job has a designated service path through the network for
which it is either entirely accepted (that is the whole path)or rejected. An interme-
diate blocking or stagnation is not allowed.

The product form papers by [3], [10], [11], [44] which focus on multiple-class ex-
tensions of Jackson networks as well as different queueing disciplines, which are
well-known in the computer communication literature (as also discussed in section
1.4.2,A) do not allow for any blocking by finite capacity constraintsat all. Exten-
sions of such networks with blocking but strictly with a reversible routing can be
found in [33], [53], [67].

However, even for a simple two stage tandem model, as in example 1.5.2, the routing
is necessarily not reversible. As a consequence, a simple finite constraint as by an
intermediate buffer as in example 1.5.3, violates a productform.

In view of the practical importance of tandem (or assembly line) structures, exten-
sive attention has therefore been paid to approximations for such structures, as in
[14], [16], [17], [22], [49] and most recently [62], [63].

The approach taken in this chapter is different in that it aims to investigate the exis-
tence of product forms by more general blocking functions for two reasons:

• As of interest by itself to investigate to which extent product forms can still be
concluded also for non-reversible blocking or service sharing

• As motivated by the product form modification example under example 1.5.3.
This modification was shown to provide simple and practical bounds [56], [59].
Further exploration of a product form bounding approach is thus of practical
interest.

The notion of adjoint reversibility and its product form characterization as by (1.65)-
(1.69) in section 1.5.2 and the necessary and sufficient blocking condition (1.83)
in section 1.5.3 for the tandem example, have essentially been developed in [23].
An extension of this characterization to arbitrary multi-class Jackson type networks
with a job-configuration (state) dependent routing and servicing can be found in
[25]. This characterization is restricted in [50] to single-class networks with a state
dependence on the configuration vectorn for the total number of jobs at each station.
The presentation in section 1.5.2, more precisely the characterizations (1.69) and
(1.70), as well as (1.71)-(1.76) in remarks 1.5.9 and 1.5.10directly rely upon this
reference. This also applies to the blocking examples in section 1.5.4 while the
(mixed) service examples 1.5.14, 1.5.18 and 1.5.20 can be regarded as ’new, though
included in [51] and [61]. Other product form examples of interest which fit in this
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framework but which merely focus on service sharing over stations, such as for
internet modelling, can be found in recent work by [4] and [61].

A total network constraintN for the total number of jobs as in section 1.6.2 was
already incorporated in the original famous paper by Jackson [28]. The Jacksonian
product form results in sections 1.6.2 and 1.6.3 can be concluded from [50] and
[52] but are presented here in a self-contained compact form. The bounding results
for networks with restricted clusters in section 1.7 are adopted from [57], but are
also presented in a compact self-contained form. In this reference an analytic repre-
sentation and ’cluster balance’ relation are given to consider a restricted cluster as
one aggregate station. (For a more general setting of product form results and the
possibility of some form of decomposition or aggregation ofstations, as extension
of Norton’s theorem, the interested reader is also referredto [8] and [5], [6]). The
special hospital application in section 1.8 is obtained from [54], as based on the
research paper [55].

Finally, for more detailed discussions and reference listson product form results in
more abstract lists on product form results in more abstractsettings, most notably
as in [12], [46], [64] the reader is referred to the chapters by Miyazawa, by Daduna,
and by Boucherie and Huisman in this book.

1.9.2 Review Part B

In Part B of this chapter just single-class tandem-type structures were considered, in
its most simple form with just two successive stations. Suchsimple structures might
already be regarded as generic for a variety of application fields, as in manufacturing
for production lines, as in communications for internet andpacket switch networks,
or as in service environments like a hospital.

In contrast with Part A, however, the focus in Part B has been the phenomenon
of blocking by finite capacity limitations at stations or by service sharing between
stations, due to either of which successive stations essentially become interdepen-
dent. Even in the simple two-station case this dependence may render the system
unsolvable.

Nevertheless, by assuming general state dependent blocking and service functions,
product form results could still be concluded. These results were essentially based
upon the three types of:

(i) Requiring station balance equations.

(ii) A translation of these equations into an adjoint chain.

(iii) A product form characterization by means of reversibility for this adjoint chain
(called adjoint reversibility).
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This characterization led to concrete product form examples also with blocking such
as by a ’conservative’ or ’recycle’ blocking ’protocol’. Though these product form
examples might if not will generally be unrealistic, the underlying station balance
insights and explicit product form expressions might stillbe practically useful to
provide simple performance bounds.

This statement seemed supported by extensions and numerical results for more com-
plex tandem structures (with Jacksonian clusters) as well as a realistic hospital case.
Further extension and application of these product form insights and a bounding
approach is thus suggested.

1.9.3 Some remaining questions

Despite the general perception that product form results are exhaustively covered in
the literature, to the opinion of the author, a variety of intriguing questions, which
are also of practical interest, remain open for research. Three of them and far from
exhaustible are:

1. To what extent can the detailed product form results as inA for a single station
simply be embedded in a more global (blocking) network structure as inB. Only
without blocking (or dependence phenomena) or under special conditions as a re-
versible routing some results for mixed networks with different types of stations
have been reported .

2. Somewhat related to 1 and in line with decomposition and aggregation results
(as in [5], [8]), can we also recognize and come up with closed(product) form
expressions for just a subpart of a network, despite the factthe network in totality
is unsolvable.

3. The bounding approach as used in section 1.7 is strongly supported at a physical
and intuitive level as by a strict blocking or service interruption to let an inflow
or outflow become 0. The recognition of product form modifications will be a
less transparent if non-zero modifications have to be found,such as for resolving
unproportional processor sharing, as of present-day interest for internet applica-
tions modeling (fairness).

Please feel free to join these product form questions.
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Chapter 2
Order Independent Queues

A.E. Krzesinski

Abstract We present a class of queues which are quasi-reversible and therefore
preserve product form distribution when connected in multinode networks. The es-
sential feature leading to the quasi-reversibility of these queues is the fact that the
total departure rate in any queue state is independent of theorder of the customers
in the queue. We call such queues Order Independent (OI) queues. A distinguish-
ing feature of the OI class is that, among others, it includesthe FCFS, processor
sharing, infinite server and MSCCC queues but not the LCFS queue. We next ex-
amine OI queues where arrivals to the queue are lost when the number of customers
in the queue equals an upper bound. We prove that such queues satisfy partial bal-
ance and we obtain the stationary distribution for the OI loss queue by normalising
the stationary probabilities of the corresponding OI queuewithout losses. OI loss
queues can be used to model systems with simultaneous resource possession with
the option of queueing blocked customers. The OI loss queue thus extends previous
loss models where customers are rejected when processing resources are not avail-
able. The OI loss class is next extended to include networks of queues which can be
used to model systems with complex loss mechanisms. We finally present several
applications of OI loss queues and OI loss networks.

2.1 Introduction

Much attention has been given to product form stationary distributions for queueing
networks and associated Markov processes – see [17, 25, 30, 32] for a list of ref-
erences. Most of the known processes which have a product form distribution are
reversible or quasi-reversible. Quasi-reversibility wasfirst presented by Muntz [24]
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and later developed into a general framework [17, 29]. In theproduct form Jackson
networks [16], each node in isolation is a reversible Markovprocess. In the more
general BCMP product form networks [3], nodes may not be reversible, but they are
quasi-reversible.

However, product form is not restricted to systems of interconnected quasi-
reversible nodes. For example, Pollett [27, 28] provided a framework for intercon-
necting a collection of reversible Markov processes in sucha way that the resulting
process has a product form invariant measure with respect towhich the process is
reversible, although individual nodes need not be quasi-reversible. Kelly [17] devel-
oped a general framework for interconnecting quasi-reversible processes and intro-
duced a class of quasi-reversible symmetric queues that canbe connected in a net-
work with a product form distribution. Walrand [29, 30, 31] provided probabilistic
arguments demonstrating how quasi-reversibility impliesproduct form distribution.
One of the most general frameworks for interconnecting quasi-reversible nodes [14]
does not require the node to be customer preserving for each type of customer.

Other quasi-reversible queues are often variations of reversible queues [17, 30]
and can be described as reversible queues by choosing an appropriate state space for
the queue. There are other (unclassified) quasi-reversiblequeues [10, 17, 18, 30, 32]
and processes such as the quasi-reversible Brownian process considered in [13],
Ott’s model analysed in [14] and quasi-reversible clustering processes [32].

This paper presents a class of quasi-reversible queues which in general are neither
symmetric nor reversible. This class includes a large part of the class of symmetric
queues, but not the whole class. In particular, the well known FCFS, Infinite-Server
and Processor-Sharing queues are in the considered class which also contains the
Multiserver Station with Concurrent Classes of Customers (MSCCC) [7, 11, 12] and
the MultiServer centre with Hierarchical Concurrency Constraints (MSHCC) [21].
The quasi-reversibility for this class is not a result of thesymmetry of the reversed
process as is the case for symmetric queues. It arises from a symmetry property
concerning the order of the customers in the queue, namely that the total departure
rate in any queue state is independent of the order of the customers in the queue. We
call such queues Order Independent (OI) queues.

In section 2.2 we define the OI queue using the notation presented in [17]. This
allows us to simplify the comparison of the OI queue with other well known quasi-
reversible queues and to emphasise the distinguishing features of the OI queue. The
OI property is obtained by analysing the properties of so-called service rate func-
tions which satisfy some special conditions. In section 2.2.3 we prove that if the
instantaneous service rate of a multiclass queue is described by a set of such service
rate functions, then the queue is quasi-reversible (in the appropriate state space). We
derive a closed form expression for the stationary distribution of the queue.

In section 2.2.4 we show that an appropriate choice of relative service rate func-
tions reduces the OI queue to the well known BCMP, MSCCC and MSHCC queues.
Another OI queue which is a generalisation of example 3 from [18] is presented.
Section 2.3 derives a computationally efficient recursive equation for the stationary
distribution. Section 2.4 examines OI queues with losses. We prove that although OI
loss queues are not quasi-reversible, their stationary distributions can be obtained
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by normalising the stationary probabilities of the corresponding OI queue without
losses. Finally, section 2.5 presents several applications of OI loss queues and OI
loss networks.

Much of the work presented in this Chapter was done jointly with Sergei
Berezner whom I wish to thank for his many valuable insights and discussions on
the subject.

2.2 The OI Queue

Consider a queue serving customers of typec wherec ∈ C andC is a finite set.
Customers of typec arrive individually at the instants of a Poisson stream with
rateλc. The customers, whether waiting or in service, form a queue in the order of
their arrival. Arriving customers join the back of the queueand the front of the queue
is identified with position 1. Each customer of typec presents a demand for service
time which is exponentially distributed with mean 1/µc. All the random variables
involved in the description of the queue are independent.

Let C = (cn, . . . ,c1) denote the state of a queue of lengthn whereci denotes
the type of the customer in positioni, i = 1, . . . ,n. Let 0 denote the empty queue
andS = {0}∪⋃∞

n=1Cn denote the state space of the queue whereCn is then−fold
product space ofC.

Let the total service effort in state(cn, . . . ,c1) be supplied at the rateφ(cn, . . . ,c1).
A portionγi(cn, . . . ,c1) of the total service effort is directed at the customer in queue
positioni, i = 1, . . . ,n. Upon entering service a customer is served without interrup-
tion to completion. When the customer in queue positioni completes service, the
customer departs and the gap in the queue is closed by the obvious shift: the cus-
tomers in positionsi +1, i +2, . . . ,n move to positionsi, i +1, . . . ,n−1 respectively.
We do not require that∑n

i=1 γi(cn, . . . ,c1) = 1 so that a part of the service facility
might be wasted. This is a distinguishing feature of an OI queue and this feature
allows complex queueing disciplines such as MSCCC and MSHCCto be described
as OI queues.

Note that the OI queue is completely described by the vector of types of cus-
tomers. For some specific cases it may be possible to introduce auxiliary variables
that describe additional characteristics of the queue and for such queues the concept
of OI could be further extended. However, this will result ina cumbersome notation
without extending the range of the models in the OI class.

We therefore restrict ourselves to queues that are completely described by a vec-
tor of types of customers. We also assume that the type membership of each cus-
tomer does not change while it passes through the queue. Thisis a severe restriction
since it prevents us from considering service consisting ofa series of exponential
stages and, as a result, general service distributions are not possible for OI queues.
This restriction can be dropped for some specific models, forexample, for PS or IS
queues. But in general, service in stages does not lead to an OI queue and typical OI
queues such as M/M/K, MSCCC and MSHCC do not permit service instages.
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2.2.1 The Definition of an OI Queue

We next present a general description of the OI queue and showhow the OI property
can be obtained by imposing certain conditions on the functionsφ andγ.

First, we require that the (relative) proportion of the service effort supplied to the
customer in queue positioni depends only on the composition of the queue up to
and including positioni. This implies that when a server becomes free the queue is
searched from the head to the tail for a customer which can be admitted into service.

Second, we require that in any state(cn, . . . ,c1) ∈ S, the rate at which depar-
tures (service completions) occur is independent of the order of the customers in
the queue and is thus the same for any state(cσ(n), . . . ,cσ(1)), whereσ denotes any
permutation of(1, . . . ,n).

Last, we assume that in any state (except for the empty queue)there is a positive
rate of service completion. This condition is required in order to ensure the irre-
ducibility of the Markov chain. This restriction is usuallysatisfied in systems with
exponential service that are fully described by a vector of customer types who do
not change their type membership.

A formal description of the three conditions presented above can be given as
follows. Consider the queue in state(cn, . . . ,c1). The departure rate of the customer
in queue positioni is given byφ(cn, . . . ,c1)µci γi(cn, . . . ,c1) and the total departure
rate is given by the sum of these quantities over all the positions in the queue.

The queue is said to be an OI queue if, for all(cn, . . . ,c1) ∈ S and alli = 1, . . . ,n
the rates of service completion can be written as

φ(cn, . . . ,c1)µci γi(cn, . . . ,c1) = µ(n)si(cn, . . . ,c1)

such that

(i) si(cn, . . . ,c1) = si(ci , . . . ,c1) for any 1≤ i ≤ n,
(ii) k(cn, . . . ,c1)= ∑n

i=1si(cn, . . . ,c1) is independent of permutations of(cn, . . . ,c1),
and

(iii) µ(n) > 0 for n > 0 ands1(c) > 0 for anyc∈ C.

The functionsi(C) regulates the rate at which service is given to the customer in
positioni in the queue relative to the other customers in the queue and the function
µ(n) allows the service rate to depend upon the total number of customers in the
queue.

2.2.2 The Implications of the OI Conditions

Condition (i) requires that the relative service rate of anycustomer in the queue
depends only upon its own customer type and the customer typeof each customer
in front of it in the queue. This implies that it is only necessary to scan the queue
from the front to determine the relative service rate given to any particular customer.
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Condition (ii) is the distinguishing condition. It requires that the total departure
rate due to customer service completions is independent of the order of the cus-
tomers in the queue. Although this condition is restrictive, section 2.2.4 shows that
condition (ii) is satisfied by several well known queues.

Condition (iii) is a necessary and sufficient condition for the Markov process
describing the queue to be irreducible. This condition ensures that the empty state
can always be reached from any other state due to departures.Because arrivals allow
any state to be reached from the empty state, this is sufficient to ensure irreducibility.
Note that becauseSi(C) ≥ 0, a necessary and sufficient condition fork(C) > 0 for
anyC ∈ S is to require thats1(c) > 0 for anyc∈ C.

Theorem 2.1.Conditions (i) and (ii) imply that the relative service rategiven to a
customer in the queue is independent of the order of the customers ahead of it in the
queue.

Proof. Let (cn, . . . ,c1) be a queue state inS and let(σ(1), . . . ,σ(n− 1)) denote
a permutation of(1, . . . ,n− 1). Thus(cn,cσ(n−1), . . . ,cσ(1)) is the queue state ob-
tained when the firstn−1 customers in the queue are rearranged according to the
permutation(σ(1), . . . ,σ(n−1)). By definition

k(cn, . . . ,c1) =
n

∑
i=1

si(cn, . . . ,c1) = sn(cn, . . . ,c1)+k(cn−1, . . . ,c1)

and likewise

k(cn,cσ(n−1), . . . ,cσ(1)) = sn(cn,cσ(n−1), . . . ,cσ(1))+k(cσ(n−1), . . . ,cσ(1)). (2.1)

But condition (ii) requires thatk(cn,cσ(n−1), . . . ,cσ(1)) = k(cn, . . . ,c1) and
k(cσ(n−1), . . . ,cσ(1)) = k(cn−1, . . . ,c1). Substituting these two expressions into (2.1)
yieldssn(cn, . . . ,c1) = sn(cn,cσ(n−1), . . . ,cσ(1)) which completes the proof. ⊓⊔

Note that thesi(ci , . . . ,c1) may be dependent on the permutations of(ci , . . . ,c1),
but not on permutations of(ci−1, . . . ,c1). Howeverk(cn, . . . ,c1) is not dependent on
permutations of(ci , . . . ,c1). For example, consider an OI queue with two customer
types where only one customer from each type may be in service. Then, for ex-
ample,s3(2,1,1) = 1 whereass3(1,2,1) = s3(1,1,2) = 0 (the last two instances of
s3(c3,c2,c1) illustrate theorem 2.1) andk(2,1,1) = k(1,2,1) = k(1,1,2) = 2.

The following section demonstrates that the restrictions (i)–(iii) on si(C) are suf-
ficient to ensure that the OI queue is quasi-reversible at equilibrium and we find the
stationary distribution (when it exists).

2.2.3 The Stationary Distribution

The OI queue can be modeled by a continuous–time, homogeneous Markov process
C(t), t ∈ IR+, C(t) ∈ S, whereC(t) denotes the queue state at timet. The Markov
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process is irreducible, since transitions due to arrivals allow any state to be reached
from the empty state and condition (iii) ensures that the empty state can be reached
from any state by the departure transitions.

For anyc∈C and any(cn, . . . ,c1)∈ S the transition rate due to typecarrivals isλc

and the transition rate due to the departure of a typec customer in queue positioni +
1 where 1≤ i ≤ n is µ(n+1)si(cn, . . . ,ci+1,c,ci , . . . ,c1). The equilibrium equations
for the queue are given by

π(0) ∑
c∈C

λc = µ(1)k(c) ∑
c∈C

π(c) (2.2)

and

π(cn, . . . ,c1)(λ + µ(n)k(cn, . . . ,c1))

= ∑
c∈C

n

∑
i=0

µ(n+1)π(cn, . . . ,ci+1,c,ci , . . . ,c1)si+1(cn, . . . ,ci+1,c,ci , . . . ,c1)

+ λcnπ(cn−1, . . . ,c1) (2.3)

whereλ = ∑c∈C λc.
The arrival flow to the system is a collection of independent Poisson flows each

with rateλc with future arrivals being independent of the present stateof the queue.
If we can find a collection of positive numbersπ(cn, . . . ,c1) summing to unity and
satisfying the equilibrium Eqs. (2.2) and (2.3) such that for all (cn, . . . ,c1) ∈ S and
all c∈ C

n

∑
i=0

π(cn, . . . ,ci+1,c,ci , . . . ,c1)

π(cn, . . . ,c1)
µ(n+1)si+1(c,ci , . . . ,c1) = βc (2.4)

then the queue is quasi-reversible and this collection of numbers forms a stationary
distribution of the queue [18]. Since customers in an OI queue preserve their type
membership,βc = λc. Thus (2.4) can be rewritten as

n

∑
i=0

π(cn, . . .ci+1,c,ci , . . . ,c1)

π(cn, . . . ,c1)
µ(n+1)si+1(c,ci , . . . ,c1) = λc. (2.5)

Note that condition (i) was applied in (2.4) to replacesi+1(cn, . . . ,ci+1,c,ci . . . ,c1)
by si+1(c,ci , . . . ,c1). Substituting (2.5) into (2.3) yields

µ(n)k(cn, . . . ,c1)π(cn, . . . ,c1) = λcnπ(cn−1, . . . ,c1) (2.6)

for all (cn, . . . ,c1) ∈ S. From (2.6) we immediately obtain a proposed form of the
stationary distribution. The result is stated and proved inthe following theorem.

Theorem 2.2.If the service rate functions si(·) conform to the conditions (i)–(iii)
then for any(cn, . . . ,c1) ∈ S a collection of numbers



2 Order Independent Queues 91

π(cn, . . . ,c1) = π(0)
n

∏
i=1

λci

µ(i)k(ci , . . . ,c1)
(2.7)

whereπ(0) is an arbitrary positive real number, is a solution to the equilibrium
equations. The stationary distribution of the Markov chainexists if and only if

G = ∑
(cn,...,c1)∈S

n

∏
i=1

λci

µ(i)k(ci , . . . ,c1)
< ∞

in which case the stationary distribution is given by (2.7) with π(0) = 1/G and the
queue is quasi-reversible.

Proof. Equation (2.7) is clearly a solution to (2.6). We need to prove that (2.7) is
also a solution to (2.5) and thus the solution to the equilibrium equations. We prove
by induction onn that the equality (2.5) holds for all(cn, . . . ,c1) ∈ S andc∈ C.

Consider first the empty queue(n = 0). Applying (2.7) to the right hand side of
(2.5), and noting thatk(c)≡ s1(c), yields

µ(1)π(c)s1(c)
π(0)

=
µ(1)π(0)s1(c)

λcπ(0)µ(1)k(c)
= λc

so that the base of the induction is proved.
Next assume that (2.7) satisfies (2.5) up to then−1 value of the summation index

and consider (2.5) for the valuen of the summation index. The left hand side of (2.5)
(lhs (2.5)) can be written as

lhs (2.5) =
n

∑
i=0

π(cn, . . . ,ci+1,c,ci , . . . ,c1)

π(cn, . . . ,c1)
µ(n+1)si+1(c,ci , . . . ,c1)

=
n−1

∑
i=0

π(cn, . . . ,ci+1,c,ci , . . . ,c1)

π(cn, . . . ,c1)
µ(n+1)si+1(c,ci , . . . ,c1)

+
π(c,cn, . . . ,c1)

π(cn, . . . ,c1)
µ(n+1)sn+1(c,cn, . . . ,c1).

Application of (2.7) yields

lhs (2.5) =
µ(n)k(cn, . . . ,c1)

µ(n+1)

×
n−1

∑
i=0

π(cn−1, . . . ,ci+1,c,ci , . . . ,c1)

π(cn−1, . . . ,c1)k(cn, . . . ,ci+1,c,ci , . . . ,c1)
µ(n+1)si+1(c,ci , . . . ,c1)

+
λc

k(c,cn, . . . ,c1)
sn+1(c,cn, . . . ,c1).

Condition (ii) requires thatk(C) is independent of permutations ofC, hence we
obtaink(cn, . . . ,ci+1,c,ci , . . . ,c1) = k(c,cn, . . . ,c1). Condition (iii) ensures that
k(c,cn, . . . ,c1)µ(n+1) > 0. Thus
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lhs (2.5) =
k(cn, . . . ,c1)

k(ccn . . .c1)

n−1

∑
i=0

π(cn−1, . . . ,ci+1,c,ci , . . . ,c1)

π(cn−1, . . . ,c1)
µ(n)si+1(c,ci , . . . ,c1)

+
λcsn+1(c,cn, . . . ,c1)

k(c,cn, . . . .c1)
.

But by the induction assumption the sum on the right hand sideof the above equation
is equal toλc , which yields

lhs (2.5) = λc
k(cn, . . . ,c1)+sn+1(c,cn, . . . ,c1)

k(c,cn, . . . ,c1)
= λc

which completes the induction. ⊓⊔

2.2.4 Models Covered by the OI Class

In this section we show that the OI class includes several of the BCMP queues and
part of Kelly’s class of symmetric queues. A distinguishingfeature of the OI queues
is that they include the MSCCC and the MSHCC queues.

2.2.4.1 BCMP Models in the OI Class

The M/M/K queue is an OI queue. Letµ(n) = 1 and

si(cn, . . . ,c1) =

{
µ 1≤ i ≤ K
0 i > K

for K ∈ ZZ+. These functionsµ(n) andsi(·) conform to the conditions (i)–(iii) and
this OI queue is equivalent to an M/M/K queue. All customer types must have the
same average service rate elsek(C) would not be independent of permutations of
C. We will later show that the M/M/K queue is a special case of the MSCCC queue.
This implies that the MSCCC queue could replace the M/M/K queue as a basic
construction element (building block) for product form networks.

We next consider the Infinite Server (IS) queue. Letµ(n) = 1 andsi(cn, . . . ,c1) =
µci . These functionsµ(n) andsi(·) conform to the conditions (i)–(iii) and this OI
queue is equivalent to an IS queue.

The choice of relative service rates for the Processor Sharing (PS) queue is ob-
vious. Letµ(n) = 1/n andsi(cn, . . . ,c1) = µci . These functionsµ(n) andsi(·) con-
form to the conditions (i)–(iii) and the corresponding OI queue is equivalent to a PS
queue. As was mentioned in section 2.2, it is possible to extend the OI framework to
describe general service distributions for PS and IS queues. However, this extension
complicates the proofs and does not lead to any fundamentally new models since
in this case the OI conditions (i)–(iii) become very restrictive. In any event, typi-
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cal OI queues such as M/M/K, MSCCC and MSHCC do not admit general service
distributions.

Note that the PS and IS queues require all customers to be in service and that in
these cases the service effortkc(C) directed at customers of typec given by

kc(cn, . . . ,c1) =
n

∑
i=1

si(cn, . . . ,c1)1(ci = c)

is also independent of permutations ofC. In general, it is not necessary that all
customers be in service at an OI queue with type dependent service rates. Service
disciplines may exist for OI queues with type dependent service rates with a bound
on the number of customers in service – all that is necessary for such a queue to be
OI is that conditions (i)–(iii) hold.

Because of condition (i) the Last Come First Served (LCFS) queue cannot be
modeled by an OI queue. The failure of the OI class to describethe LCFS queue is
another argument proving the different nature of the OI class.

If the functionsφ andγ defined in section 2.2 depend only on the total number of
customers in the queue and if we allow the customers to join the queue in different
positions then, under some strong symmetric assumptions (see [17] pages 72–73),
the well known symmetric queues are obtained.

2.2.4.2 The MSCCC and MSHCC Queues

A distinguishing feature of the OI class is that it includes the MSCCC and MSHCC
queues. In fact, the OI queues were found while investigating the MSCCC queue.

The MSCCC queue consists ofK parallel identical exponential servers. The cus-
tomers belong to a set of customer types. Customers of typec arrive individually
at the instants of a Poisson stream with rateλc and present demands for service
time which are exponentially distributed with mean 1/µ . The customers are queued
for service in the order of their arrival. When a server becomes free, the queue is
searched from the front looking for the first customer to admit into service subject
to the following constraints: at mostK customers can be in service and at most 1
customer of each typec can be in service. The queue can thus be described as FCFS
subject to concurrency constraints.

The MSCCC queue was first investigated while simulating shared memory multi-
processors [22]. The simulations conjectured, but could not prove, that the MSCCC
queue had a product form solution. An analytic expression for the stationary dis-
tribution, which was first obtained by exploring the MSCCC state space using a
symbolic mathematics computer package, was presented in [7]. The concurrency
constraint was later extended [11] so that at mostK customers can be in service and
at mostBc ≥ 1 customer of each typec can be in service. It was later shown [21]
that a suitable choice of state descriptor yields a direct calculation of the stationary
distribution. However, none of these analyses explained how the MSCCC queue is
related to the product form queues.
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The OI property presents a simple explanation of the MSCCC queue which is
shown to be a quasi-reversible generalisation of the FCFS queue. Letµ(n) = 1 and

si(cn, . . . ,c1) = µ1i(cn, . . . ,c1)

where the indicator function

1i(cn, . . . ,c1) =

{
1 if the customer in positioni is in service in(cn, . . . ,c1)
0 otherwise

Then
k(cn, . . . ,c1) = µ(K∧ ∑

c∈C

(Mc∧Bc))

whereMc is the number of typec customers inC = (cn, . . . ,c1) anda∧ b is the
smaller of the two integersa andb. As required,k(C) is independent of permu-
tations ofC and the functionsµ(n) andsi(·) conform to the conditions (i)–(iii).
Furthermore, if not allK servers are busy,kc(C) = Mc∧Bc is independent of per-
mutations ofC.

Theorem 2.2 presents the stationary distribution of the MSCCC queue: the anal-
ysis is simpler than the theorems currently available [7, 11] and provides further
insight into the behaviour of the MSCCC queue.

The constraints(Bc)c∈C can be further divided into an hierarchical structure
of concurrency constraints. Thus the set of customer typesC is partitioned as
{Cr ; r ∈ R} whereR is a countable set and (with an abuse of notation) maximally
Br > 0 customers whose types are inCr are allowed to be in service simultane-
ously wherer ∈ R. Next, for eachr ∈ R the setCr is partitioned as{Crs;s∈ Sr}
whereSr is a countable set and maximallyBrs > 0 customers whose types are in
Crs are allowed to be in service simultaneously wheres∈ Sr . TheCrs can be fur-
ther partitioned, with corresponding restrictions placedon the number of customers
simultaneously in service, but we shall not go beyond theCrs as this is a straight-
forward generalization. The queue discipline can thus be described as FCFS subject
to concurrency constraints and the queue is correspondingly named the MultiServer
centre with Hierarchical Concurrency Constraints (MSHCC)[21]. Then

k(cn, . . . ,c1) = µ(K ∧ ∑
r∈R

(mr ∧Br))

and
mr = ∑

s∈Rr

(mrs∧Brs)

wheremrs is the number ofCrs customers inC = (cn, . . . ,c1). The MSHCC queue
conforms to the conditions (i)–(iii) which immediately provides us with the station-
ary distribution.

Another example of an OI queue is provided by example 3 from [18]. This queue
consists ofK servers with service ratesµ1 ≥ µ2 ≥ ·· · ≥ µK . The customers, which
belong to a single customer type, are processed according tothe following rule.
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If j servers are busy then thesej busy servers are the servers 1, . . . , j. If j < K
then an arriving customer will be served by serverj + 1, else the arrival joins the
back of the queue. LetM denote the total number of customers in the queue. If a
customer completes service at any one of the busy serversi ∈ 1, . . . , j where 1≤
j ≤M∧K then the customer at the end of the queue in positionM will be removed
from processorj (only if M < K in which caseM = j) and go into service at serveri
(only if i < K). The queue is OI and the queue can be applied to model dynamic
load balancing among asymmetric multiprocessors.

Summarising, the OI conditions (i)–(iii) do not leave much room for a wide range
of applications. On the other hand, the fact that several well known quasi-reversible
queues are OI queues speaks in favour of the OI discipline. Another valuable feature
of OI queues which we prove in the next section is that they permit a standard
normalising technique for calculating the stationary distributions of OI systems.

2.3 Numerical Techniques for the OI Queue

This section presents several techniques which are used in the numerical analysis of
OI queues.

2.3.1 Aggregating the State Space

Equation (2.7) is too detailed to be of practical use when computing the performance
measures of the OI queue. In order to reduce the complexity ofthese equations,
we use the fact thatk(cn, . . . ,c1) is independent of the order of the customers in
(cn, . . . ,c1).

Define a mappingA : S 7→ ZZC such that for anyC ∈ S

A(C) = M (C) = (Mc(C))c∈C

whereMc denotes the number of typec customers inC. In the remainder of this
section, where no confusion can arise we shall writeM = M (C). LetA−1(M ) denote
the set of elements inS which maps ontoM underA. The mappingA allows us to
define an aggregated state space

M = {M = A(C), C ∈ S}

where (with an abuse of notation)

k(M ) = k(C)

for anyC ∈ A−1(M ) and (with an abuse of notation)
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π(M) = ∑
A(C)=M

π(C)

for any M ∈M. Because condition (ii) ensures thatk(C) is identical for allC ∈
A−1(M ), k(M ) is well defined and unique.

Let 1c denote a unit vector in thec-direction. From (2.7) it follows that

µ(|M |)k(M )π(M) = ∑
c∈C

λcπ(M −1c) (2.8)

with the convention thatπ(M) = 0 if M 6∈M.
The recursive (2.8) can be further simplified if the service effort kc(M) directed

at customers of typec for anyM ∈M can be determined. Although condition (ii)
requires thatk(C) is independent of permutations ofC, this does not necessarily im-
ply thatkc(C) is independent of permutations ofC. However, in the domain where
kc(C) is identical for allC ∈ A−1(M ), we can define

kc(M) = kc(C)

for anyC ∈ A−1(M ) in which case (2.8) reduces to

µ(|M |)kc(M)π(M ) = λcπ(M −1c)

which provides a recursion for the efficient computation of the aggregated probabil-
ities and the performance measures of the queue.

2.3.2 The Performance Measures: the MSCCC Queue

Unlike the BCMP queues, efficient recursions for the MSCCC queue apply only in
a limited portion of the state space wherek(M ) < B.

2.3.2.1 Invariant Measures over Special Sets

Let M = (M1, . . . ,MC) denote the state of the queue whereMc is the number of type
c customers present in the queue. LetBc denote the maximum number of typec
customers in service andB the maximum number of customers in service in total.
Define the sets

M(b) = {M ∈M | k(M ) = b }
M(b,c) = {M ∈M(b) |Mx = 0 if x > c }

M(b,c, i) =

{
{M ∈M(b,c) |Mc = i } if i < Bc

{M ∈M(b,c) |Mc≥ i } if i = Bc.
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Define the functions

P(b) = Pr(b servers busy)

P(b,c) = Pr(b servers busy andMx = 0 if x > c)

P(b,c, i) =

{
Pr(b servers busy,Mx = 0 if x > c andMc = i ) if i < Bc

Pr(b servers busy,Mx = 0 if x > c andMc≥ i ) if i = Bc.

The first step in the calculation ofP(b) is to compute theP(b,c, i). The function
kc(M ) defined in section 2.3.1 cannot be determined over the complete state space,
but in the limited portion of the state space wherek(M ) < B where not all servers are
busy, we know thatkc(M) = Mc∧Bc andk(M −1c) = k(M )−1. Defineρc = λc/µ .
For anyc∈ C and 0< b < B three cases arise

(1) 0< i < b∧Bc

P(b,c, i) = ∑
M∈M(b,c,i)

π(M)

= ∑
M∈M(b,c,i)

ρc

kc(M)
π(M −1c)

=
ρc

i ∑
M∈M(b−1,c,i−1)

π(M)

=
ρc

i
P(b−1,c, i−1). (2.9)

(2) i = Bc andBc≤ b≤ B

P(b,c,Bc) = ∑
M∈M(b,c,Bc)

π(M)

= ∑
M∈M(b,c)

Mc=Bc

π(M) + ∑
M∈M(b,c)

Mc>Bc

π(M)

= ∑
M∈M(b,c)

Mc=Bc

ρc

Bc
π(M −1c) + ∑

M∈M(b,c)

Mc>Bc

ρc

Bc
π(M −1c)

=
ρc

Bc
∑

M∈M(b−1,c,Bc−1)

π(M) +
ρc

Bc
∑

M∈M(b,c,Bc)

π(M)

=
ρc

Bc
P(b−1,c,Bc−1) +

ρc

Bc
P(b,c,Bc)

=
ρc

Bc−ρc
P(b−1,c,Bc−1). (2.10)
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(3) i = 0

P(b,c,0) = Pr{b servers busy,Mx = 0 if x > c andMc = 0}
= Pr{b servers busy,Mx = 0 if x > c−1}
= P(b,c−1). (2.11)

The starting values of the recursion presented in (2.9), (2.10) and (2.11) are obtained
from

P(0,c,0) =

{
1 if c = 0
0 otherwise

(2.12)

for all 0≤ c≤C. The next step is to compute theP(b,c)

P(b,c) =
b∧Bc

∑
i=0

P(b,c, i) = P(b,c−1)+
b∧Bc

∑
i=1

P(b,c, i) (2.13)

where

P(b,0) = Pr{b servers busy andMx = 0 if x > 0}
= Pr{b servers busy andM = 0}

=

{
1 if b = 0
0 otherwise.

The last step is to compute theP(b)

P(b) = Pr{b servers busy}
= Pr{b servers busy andMx = 0 if x > C}
= P(b,C)

which are multiples ofπ(0). To calculateπ(0), note that whenb customers are in
service, the departure rate isbµ . Thusρ = ∑B

b=0bP(b) < B whereρ = ∑C
c=1 ρc and

∑B
b=0P(b) = 1 so that

B−ρ =
B−1

∑
b=0

(B−b)P(b). (2.14)

Let P(b) represent the values obtained by starting the algorithm with an arbitrary
value forP(0,0,0) in (2.12). Then

π(0) =
B−ρ

∑B−1
b=0(B−b)P(b)

(2.15)

whereP(0) = 1. Thus for 0≤ b < B

P(b) = π(0)P(b) (2.16)
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and

P(B) = 1−
B−1

∑
b=0

P(b). (2.17)

Equations (2.15) and (2.17) do not require the valueP(B) which is not available
from the recursion presented in (2.9), (2.10) and (2.11).

Application of (2.9), (2.10) and (2.11) yields another recursion forP(b,c) namely

P(b,c) =
Bc

∑
i=0

P(b,c, i)

=
Bc−1

∑
i=0

ρ i
c

i!
P(b− i,c−1)+

ρBc
c

Bc!
Bc

Bc−ρc
P(b−Bc,c−1) (2.18)

where 0< c≤ C and 0< b < B with the convention thatP(x,y) = 0 if x < 0 or
y< 0. The recursion (2.18) has the same computational complexity namelyO(CB2)
as (2.9), (2.10) and (2.11) but with O(B) as opposed to O(B2) storage requirements.
Note that (2.18) does not replace the recursions (2.9), (2.10) and (2.11) which are
required in order to compute the expected number of typeC customers in the system.

2.3.2.2 The Expected Queue Length

Let L(b,C) denote the expected queue length of typeC customers inM(b,C)
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BC

ρC
L(b,C) =

BC

ρC
∑

M∈M(b,C)

MCπ(M)

=
BC

ρC

∞

∑
i=1

∑
M∈M(b,C)

MC=i

i π(M)

= BC

BC

∑
i=1

∑
M∈M(b,C)

MC=i

π(M −1C)+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

i π(M −1C)

= BC

BC

∑
i=1

∑
M∈M(b,C)

MC=i

π(M −1C)+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

π(M −1C)

+
∞

∑
i=BC+1

∑
M∈M(b,C)

MC=i

(i−1)π(M −1C)

= BC

BC−1

∑
i=0

∑
M∈M(b−1,C)

MC=i

π(M)+
∞

∑
i=BC

∑
M∈M(b,C)

MC=i

π(M)

+
∞

∑
i=BC

∑
M∈M(b,C)

MC=i

i π(M)

= BC

BC−1

∑
i=0

P(b−1,C, i)+P(b,C,BC)

+
∞

∑
i=0

∑
M∈M(b,C)

MC=i

i π(M )−
BC−1

∑
i=0

∑
M∈M(b,C)

MC=i

i π(M )

= BC

BC−1

∑
i=0

P(b−1,C, i)+P(b,C,BC)+L(b,C)−
BC−1

∑
i=0

iP(b,C, i)

which yields

(BC−ρC)

ρC
L(b,C) = P(b,C,BC)+

BC−1

∑
i=0

(BC P(b−1,C, i)− iP(b,C, i)).(2.19)

The expected numberL(C) of typeC customers in the queue is



2 Order Independent Queues 101

L(C) =
B

∑
b=0

L(b,C). (2.20)

Equation (2.20) cannot be used directly to determineL(C) because we do not have
a value forL(B,C). However, consider

B

∑
b=0

bL(b,C) =
B

∑
b=0

b ∑
M∈M(b)

MCπ(M)

=
B

∑
b=0

∑
M∈M(b)

MCk(M )π(M)

=
B

∑
b=0

∑
M∈M(b)

MC

C

∑
c=1

ρcπ(M −1c)

=
C

∑
c=1

ρc ∑
M∈M

MCπ(M −1c)

=
C−1

∑
c=1

ρc ∑
M∈M

MCπ(M −1c)+ ρC ∑
M∈M

MCπ(M −1C)

=
C−1

∑
c=1

ρc ∑
M∈M

MCπ(M −1c)

+ρC ∑
M∈M

(MC−1)π(M−1C)+ ρC ∑
M∈M

π(M −1C)

=
C−1

∑
c=1

ρcL(C)+ ρCL(C)+ ρC

= ρL(C)+ ρC

so that

ρL(C) =
B

∑
b=0

bL(b,C)−ρC. (2.21)

Combining (2.20) and (2.21) yields

(B−ρ)L(C) =
B−1

∑
b=1

(B−b)L(b,C)+ ρC. (2.22)

Little’s law is applied to obtain the expected timeWC = L(C)/λC that a typeC
customer spends at the queue. Equations (2.9) through (2.22) can be incorporated
into a Mean Value Analysis algorithm [7, 8, 11, 12] to computethe performance
measures for a mixed multiclass network of BCMP and MSCCC queues.

Equation (2.22) yields the typeC queue length. The performance measures for
any typec∈ C are obtained by reordering the setC. An algorithm to compute the
typeC performance measures of the MSCCC queue is presented in the Appendix.
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2.4 The OI Loss Queue

The class of OI queues can be extended to include queues with complex loss mech-
anisms. Such queues can be used to model blocking systems with simultaneous
resource possession – see [26] for list of references on the application of such mod-
els.

Consider a queue serving customers which belong toC customer types. Let
C = {1,2, . . . ,C} denote the set of customer types. Customers of typec arrive indi-
vidually to a queue of lengthn at the instants of a Poisson stream with rateλcr(n),
where the multiplierr(n)> 0 does not depend onc. Each customer of typecpresents
a demand for service which is exponentially distributed with mean 1/µ .

The customers, whether waiting or in service, form a queue inthe order of their
arrival. A Markov chain with vector statesC = (cn, . . . ,c1) is used to describe the
queue, whereci ∈ C, i = 1, . . . ,n identifies the type of the customer in queue position
i andn is the number of customers in the queue. The 0 state of the Markov chain
describes the empty queue. LetCn denote then−fold product space ofC. Then
S = 0∪⋃∞

n=1Cn is the set on which the Markov chain is defined.
An arriving customer is either accepted to the queue, in which case it joins the

back of the queue, or is rejected (lost) if certain limits on the numbers of customers
of each type in the queue are exceeded. The rejection rule forarriving customers is
defined as follows. Define a setS̃⊂ S which satisfies the following properties

(a) if (cn, . . . ,c1) ∈ S̃ then(cσ(n), . . . ,cσ(1)) ∈ S̃ for any permutationσ(1), . . . ,σ(n)
of 1, . . . ,n and

(b) if (cn, . . . ,c1) ∈ S̃ then(cn−1, . . . ,c1) ∈ S̃.

A type c customer arriving to a queue in the stateC will be accepted if(c,C) ∈ S̃

and rejected otherwise.
Condition (a) implies that acceptance does not depend on theorder of the cus-

tomers in the queue but only on the number of customers of eachtype present in the
queue. To understand condition (b) letA(C) = n = (nc)c∈C wherenc denotes the
number of typec customers inC and letÑ = A(S̃). Conditions (a) and (b) imply
that the set̃N is coordinately convex [26] so thatn ∈ Ñ impliesn−1c ∈ Ñ where
1c is a unit vector in thecth direction.

The queue described above is said to be an OI loss queue on the set S̃ if for all
C ∈ S̃ and alli = 1, . . . ,n the departure rate of the customer in queue positioni can
be written asµ(n)si(cn, . . . ,c1) where

(i) si(cn, . . . ,c1) = si(ci , . . . ,c1) for any 1≤ i ≤ n,
(ii) k(cn, . . . ,c1)= ∑n

i=1si(cn, . . . ,c1) is independent of permutations of(cn, . . . ,c1)
and

(iii) µ(n) > 0 for n > 0 ands1(c) > 0 for anyc∈ C.
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2.4.1 The Stationary Distribution

The OI loss queue can be modeled by a continuous-time, homogeneous Markov
chainX(t), t ∈ IR+,X(t) ∈ S̃, whereX(t) = C denotes that the queue vector at time
t is C. The Markov chain is irreducible, since transitions due to arrivals allow any
state to be reached from the empty state and condition (ii) ensures that the empty
state can be reached from any state by the departure transitions.

ForC∈ S̃ andc∈ C we associate an indicator functionIc(C) such thatIc(C) = 1
if (c,C) ∈ S̃, and Ic(C ) = 0 if (c,C ) 6∈ S̃. Then for anyc ∈ C and anyC =

(cn, . . . ,c1) ∈ S̃, the transition rate due to typec arrivals isλcr(n)Ic(C) and the
transition rate due to the departure of a typeci customer in queue positioni when
there aren customers in queue isµ(n)si(ci , . . . ,c1).

The functionsr(n) andIc(C) parametrise the rejection rule. Thusr(n) = 0 ap-
plies blocking when the queue length reaches some thresholdn andIc(C ) = 0 im-
plements a more refined form of blocking which depends on how many customers
of the various types are present.

The equilibrium equations for the Markov chain are given by

π(0) ∑
c∈C

λcr(0)Ic(0) = µ(1)k(c) ∑
(c)∈S̃

π(c) (2.23)

and

π(C)

(

∑
c∈C

λcr(n)Ic(C)+ µ(n)k(C)

)

= ∑
c∈C

n

∑
i=0

µ(n+1)π(cn, . . . ,ci+1,c,ci , . . . ,c1)si+1(c,ci , . . . ,c1)

+λcnr(n−1)π(cn−1, . . . ,c1) (2.24)

for any stateC = (cn, . . . ,c1) ∈ S̃ with the convention thatπ(C) = 0 if C is not inS̃.
In section 2.2 we showed that ifr(n) = 1 for all n andIc(C ) = 1 for all c∈ C and

C ∈ S̃ (thusS̃ = S) then the solution to (2.23) and (2.24) can be found as a solution
to the partial balance equations

n

∑
i=0

π(cn, . . . ,ci+1cci , . . . ,c1)

π(C)
µ(n+1)si+1(cci , . . . ,c1) = λcr(n)Ic(C) (2.25)

and
µ(n)k(C )π(C) = λcnr(n−1)π(cn−1, . . . ,c1) (2.26)

for all C ∈ S̃. This suggests the form of the stationary distribution for the OI loss
queue which is stated in the following theorem.
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Theorem 2.3.If the service rate functions si(·) conform to the conditions (i) and (ii)
on the set̃S andS̃ conforms to conditions (a) and (b) then the stationary distribution
of the Markov chain oñS associated with an OI loss queue is given byπ(0) = 1/G
and

π(cn, . . . ,c1) =
1
G

n

∏
i=1

λci r(i)
µ(i)k(ci , . . . ,c1)

(2.27)

if and only if

G = 1+ ∑
(cn,...,c1)∈S̃

n>0

n

∏
i=1

λci r(i)
µ(i)k(ci , . . . ,c1)

< ∞.

Further, the OI loss queue satisfies partial balance.

Proof. Equation (2.27) is clearly a solution to (2.26) onS̃. We need to show that
(2.27) is also a solution to the partial balance equation (2.25) on S̃ and is thus a
solution to the equilibrium equations. If the state(c,C ) does not belong tõS then
from condition (b)Ic(C ) = 0 and from condition (a) any permutation of the state
(c,C) does not belong tõS implying that both sides of (2.25) are equal to zero and
the equation is satisfied. If the state(c,C ) belongs to the set̃S thenIc(C ) = 1 and
(2.5) coincides with the form of (2.25) for an OI queue without losses [4] except for
the arrival rate scaling factorr(n) which does not affect the calculations and thus
(2.27) is a solution to the equilibrium equations. ⊓⊔

Although most of the functions used in the definition of the OIloss queue are
independent of the order of the customers in the queue, the queue order cannot
be ignored. Indeed, letN be a set of non-negative integers and letNC denote the
C−fold product space ofN. Define a functionA from S̃ into NC such thatA(C) =
N = (n1, . . . ,nC) whosecth elementnc denotes the number of typec elements in
the vectorC. Let Ñ denote the set of all vectorsN ∈ NC for which there exists a
vectorC ∈ S̃ such thatA(C ) = N. Consider the processY(t) on Ñ associated with
the OI loss queue which records only the numbers of the customers of each type
in the queue at timet. In generalY(t) is not a Markov chain because the departure
rates of the individual customer typeskc(C) = ∑n

i=1si(ci , . . . ,c1)1(ci = c) are not
necessarily order independent.

If the kc(C ) are order independent thenY(t) is a Markov chain on the aggregated
spacẽN and the following theorem holds.

Theorem 2.4.Let X(t) be a stationary Markov chain associated with an OI loss
queue. If the service rate functions kc(C ),c∈ C, are order independent oñS then
the process Y(t) is a reversible Markov chain oñN with a stationary distribution
π(N) which can be recursively calculated from the detailed balance equations

µ(n)kc(N)π(N) = λcr(n−1)π(N−1c) (2.28)

where nc > 0, n= n1 + · · ·+nC and kc(N) = kc(C ) for N = A(C).
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Proof. Y(t) is a Markov chain on the aggregated space since all the transitions due
to customer arrivals and departures are well defined. Thus the stationary distribution
π(N) on Ñ is

π(N) = ∑
C:A(C)=N

π(C). (2.29)

Equation (2.28) is obtained by summing (2.25) over all statesC such thatA(C) = N,
taking the order independence ofkc(C ) into account. Equation (2.28) is the detailed
balance equation for the Markov chainY(t) and is satisfied by the probabilities
given by (2.29). Thus the Markov chainY(t) is reversible and its distribution can be
recursively calculated from the detailed balance (2.28). ⊓⊔

Theorem 2.4 demonstrates that if the departure rateskc(C) of the individual cus-
tomer types are order independent over the entire state space then the OI construc-
tion is not necessary to derive the equilibrium distribution and the queue can be
examined via standard reversibility arguments as is shown for example in the model
presented in section 2.5.7.

2.4.2 The Performance Measures: the MSCCC Loss Queue

Let C = (cn, . . . ,c1) denote the state of the MSCCC loss queue wheren≤ N. The
state space of the queue isL = SN = {0}∪⋃N

n=1Cn. Let Mc(C) denote the number
of typec customers inC. Recall the mappingA : SN 7→ ZZC such that for anyC∈ SN

A(C) = M(C) = (Mc(C))c∈C

whereM(C) is the counting vector of the stateC. Let M(N) denote the set of all
counting vectors. As usual|M |= M1 + · · ·+MC.

The stationary distributionπN(C) whereC∈ SN for the MSCCC loss queue will,
on all statesC ∈ SN, coincide (up to a normalising constant) with the stationary
distribution for the corresponding MSCCC queue with no losses. Define

πN(M) = ∑
C∈SN

A(C)=M

πN(C).

2.4.2.1 Invariant Measures over Special Sets

Recall thatk(M ) denotes the number of customers in service when the MSCCC is
in a state with a counting vectorM . For anyc∈ C and non-negative integersn,b, i
define the sets
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L(n) = {M ∈ L | |M |= n}
L(n,b) = {M ∈ L(n) | k(M ) = b}

L(n,b,c) = {M ∈ L(n,b) |Mx = 0 if x > c}
L(n,b,c, i) = {M ∈ L(n,b,c) |Mc = i}.

In the remainder of this section, where no confusion can arise we omit the subscript
N which denotes the population constraint on the MSCCC loss queue.

Let Q(n) denote the probability thatn customers are present at the MSCCC.
Let Q(n,b) denote the probability thatn customers are present andb servers are

busy.
Let Q(n,b,c) denote the probability thatn customers are present,b servers are

busy and no customers of types higher thanc are present.
Let Q(n,b,c, i) denote the probability thatn customers are present,b servers are

busy,i customers of typec are present and no customers of types higher thanc are
present.

The first step in the calculation ofQ(n) is to compute theQ(n,b,c, i). In the
domaink(M ) < B where not all servers are busy, the number of typec customers in
service is given bykc(M ) = Mc∧Bc. For anyc∈ C and 0< b < B two cases arise.

(1) 0< i ≤ n≤ N

Q(n,b,c, i) = ∑
M∈L(n,b,c,i)

Q(M)

= ∑
M∈L(n,b,c,i)

ρc

i∧Bc
Q(M −1c)

=






ρc

i
Q(n−1,b−1,c, i−1) 0 < i ≤ Bc

ρc

Bc
Q(n−1,b,c, i−1) i > Bc

(2.30)

with the convention thatQ(n,b,c, i) = 0 if the condition 0< (i∧Bc)≤ b < B is
violated.

(2) i = 0 and 0≤ n≤ N

Q(n,b,c,0) = Pr(n customers present,b servers busy,Mx = 0 if x≥ c)

= Pr(n customers present,b servers busy,Mx = 0 if x > c−1)

= Q(n,b,c−1). (2.31)

The starting values for the recursion presented in (2.30) and (2.31) are given by

Q(n,0,c,0) =

{
1 n = c = 0
0 otherwise

(2.32)

for all 0≤ n≤ N and 0≤ c≤C. The next step is to compute theQ(n,b,c)
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Q(n,b,c) =
n

∑
i=0

Q(n,b,c, i) = Q(n,b,c−1)+
n

∑
i=1

Q(n,b,c, i)

where

Q(n,0,c) =

{
1 n = c = 0
0 otherwise.

(2.33)

The last step is to compute theQ(n,b)

Q(n,b) = Pr(n customers present andb servers busy)

= Pr(n customers present,b servers busy andMx = 0 if x > C)

= Q(n,b,C)

which yields

Q(N) =
B

∑
b=0

Q(N,b). (2.34)

Equation (2.34) cannot be used to computeQ(N) sinceQ(N,B) is not known. How-
ever, since the arrival rate of accepted traffic to the queue (the accepted traffic is the
offered traffic minus the lost traffic) equals the departure rate from the queue

ρ(1−Q(N)) =
B

∑
b=0

bQ(b) =
B

∑
b=0

b
N

∑
n=b

Q(n,b) =
B

∑
b=0

bR(N,b)

so that

BR(N,B) = ρ(1−Q(N))−
B−1

∑
b=0

bR(N,b).

AddingB∑B−1
b=0 R(N,b) to both sides of the above equation yields

B = ρ(1−Q(N))+
B−1

∑
b=0

(B−b)R(N,b) (2.35)

so that

ρQ(N) = ρ−B+
B−1

∑
b=0

(B−b)R(N,b)

whereR(N,0) = π(0) yields an expression forQ(N) in terms of the previously
computed values ofQ(N,b) where 0≤ b < B.

The Q(N,b) are multiples ofπ(0). To calculateπ(0), note that ifQ(N) and
Q(N,b) represent the values obtained by starting the algorithm with an arbitrary
value ofQ(0,0,0,0) in (2.32), then

ρ(1−π(0)Q(N)) = π(0)
B

∑
b=0

bR(N,b).
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SubtractingBπ(0)∑B
b=0R(N,b) = B from both sides of the above equation yields

B−ρ(1−π(0)Q(N)) = π(0)
B−1

∑
b=0

(B−b)R(N,b)

so that

π(0) =
B+ ρ

∑B−1
b=0(B−b)R(N,b)−Q(N)

(2.36)

whereR(N,0) = 1 yields an expression forπ(0) in terms of the previously computed
values ofQ(N,b) where 1≤ b < B. Then

Q(N,b) =






π(0)Q(N,b) 0≤ b < B

π(0)Q(N)−∑B−1
b=0 Q(N,b) b = B.

Note that limN→∞ Q(N) = 0 and limN→∞ R(N,b) = P(b) so that in the limit where
no losses occur, (2.35) and (2.36) reduce to (2.14) and (2.15).

Another recursion with the same computational complexity as the recursion pre-
sented in (2.30) and (2.31) but with O(B2) as opposed to O(B3) storage requirements
is

Q(n,b,c) =
Bc−1

∑
i=0

ρ i
c

i!
Q(n− i,b− i,c−1)+

ρBc
c

Bc!
Q(n−Bc,b−Bc,c−1)F(n,c)

where 0< c≤C and 0< b < B and

F(n,c) =






1− (ρc/Bc)
n−Bc+1

1−ρc/Bc
ρc 6= Bc

n−Bc+1 ρc = Bc.

2.4.2.2 The Expected Queue Length

Let L(n,b,C) denote the average number of typeC customers at the MSCCC when
b < B servers are busy andn customers of all types are present. For 0< b < B

L(n,b,C) =
n

∑
i=1

iQ(n,b,C, i)

where theQ(n,b,c, i) are given in (2.30). Given the relatively small numbern of
terms in the above summation, it is not necessary as was in thecase of the MSCCC
without losses – see section 2.3.2.2 – to compute an analyticexpression for the sum.

Let L(n,C) denote the average number of typeC customers at the MSCCC when
there aren customers at the MSCCC
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L(n,C) =
B

∑
b=1

L(n,b,C).

The values of theL(n,B,C) are not known. Consider therefore the following identity

BL(n,C) =
B

∑
b=1

(B+b−b)L(n,b,C) =
B

∑
b=1

bL(n,b,C)+
B−1

∑
b=1

(B−b)L(n,b,C).

Sincek(M ) = b we have

B

∑
b=1

bL(n,b,C) =
B

∑
b=1

b ∑
M∈L(n,b)

MCQ(M)

=
B

∑
b=1

b ∑
M∈L(n,b)

MC

C

∑
x=1

ρx

k(M )
Q(M −1x)

=
C−1

∑
x=1

ρx

B

∑
b=1

∑
M∈L(n,b)

MCQ(M −1x)+ ρC

B

∑
b=1

∑
M∈L(n,b)

MCQ(M −1C)

=
C−1

∑
x=1

ρx ∑
M∈L(n−1)

MCQ(M )+ ρC ∑
M∈L(n−1)

(MC +1)Q(M)

= ρL(n−1,C)+ ρCQ(n−1)

whereρ = ∑C
c=1 ρc so that

BL(n,C) = ρL(n−1,C)+ ρCQ(n−1))+
B−1

∑
b=1

(B−b)L(n,b,C).

The last termL(N,C) of this recursion is the expected number of typeC customers in
the MSCCC loss queue. Summing the values ofL(N,c) over allc∈ C yields the ex-
pected queue length – which result can be obtained at earlierstage from∑N

n=1nQ(n).

2.4.3 OI Loss Networks

Although we have presented the OI system as a single queue, OIsystems can also
be used to model networks of queues.

Let C(t) be a continuous time, homogeneous Markov process denoting the state
of an OI queue at timet on the state spacẽS with the stationary distributionπ(C).
Let S̃′ be a subset of̃S satisfying conditions (a) and (b). Then by definitionC(t) is an
OI loss queue on the set̃S′ with a stationary distribution given byπ(C)/G whereG
is the corresponding normalising constant. This truncation property of the OI queue
can be extended to a network of independent OI queues as follows.
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Let Ck(t) = (ck
nk

(t), . . . ,ck
1(t)) where k = 1, . . . ,K denote a collection of in-

dependent OI queues on the corresponding statesS̃k with the stationary distri-
bution πk(Ck). Consider the queueC(t) = (C1(t), . . . vCK(t)) on the statẽS =

S̃1× S̃2× ·· · × S̃K with stationary distributionπ(C) = π1(C1) . . .πK(CK). Let S̃′

be a subset of̃S such that

(i) C ∈ S̃′ implies(C1
σ , . . . ,CK

σ ) ∈ S̃′ for any permutationsCk
σ of Ck.

(ii) A(S̃′) = Ñ′ is coordinately convex

then [5] the queueC(t) obeys the truncation property so that the stationary dis-
tribution of C(t) on the setS̃′ is given byπ(C)/G whereG is the corresponding
normalising constant.

Several applications of OI queues and OI networks are presented in the following
section.

2.5 OI Applications

2.5.1 Multiported Memory

Consider [7, 8, 15] a computer system consisting ofN processors accessingK mem-
ory modules via a partitioned multiple bus system. Each of theG groups ofB buses
gives access to a subset ofK/G memory modules. Each memory modulek is Bk–
ported so that maximallyBk processors can access memory modulek simultane-
ously. The system is modelled as a closed queueing network consisting of an IS
centre representing the processors andG MSCCC centres, each representing one
group ofB buses and the associated memory modules. Each MSCCC centre con-
sists ofB servers which represent theB buses in its group. TheN customers in the
network belong toK classes.

A processor service interval followed by a data transfer to/from memory mod-
ule k is modelled as a customer departing from the processor service centre, and
moving to thegth MSCCC centre where groupg contains an access path to mem-
ory modulek. The customer changes class to classk and queues for service at the
MSCCC centre. The classk customer enters into service if one of theB servers is
free (a bus is available) and if at mostBk classk customers are in service (at mostBk

processors can access memory modulek simultaneously).

2.5.2 A Messaging Card

In some distributed architectures such as telephone switching exchanges, the mes-
saging function between a high level peripheral (decentralised call processor) and
a lower level one (line or trunk controller) is performed on the high level side by
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a specialised processor (the messaging card) which controls simplex channels to
the lower level peripherals. The processor time is partitioned intoB fixed time slots,
each of which is allocated to a process whose function is to send outgoing messages.
The exchange forwards messages toK destinations, each of which is reachable on
any of Bk channels. When a buffer is queued for transmission it has to wait for a
process to be available to service the request and for an outgoing channel to be free.
The messaging card can be modelled by a MSCCC centre consisting of B servers
(the transmission processes) serving customers belongingto K classes, each with its
own concurrency limitBk.

2.5.3 Multilayer Window Flow Control

Consider a set ofK application which share a common data link. At the data link
layer maximallyB transmitted packets may remain unacknowledged. For each ap-
plicationk maximallyBk packets may remain unacknowledged. The data link can be
modelled [12] as a MSCCC centre consisting ofB servers with an average service
time equal to the packet transfer time averaged over all the packets. The customer
arrivals represent packet transmission requests. A classk packet is transmitted if a
server is available (data link flow control) and if at mostBk−1 classk packets are
in service (application flow control).

2.5.4 Machine Scheduling Model

Jobs of typek ∈ {1, . . . ,C} arrive according to a Poisson process with intensityλk

and are processed by machines of typek in a FCFS order. There areBk machines
of typek which are operated by a common pool ofB machine operators. If the job
processing times are exponentially distributed and are jobtype independent then this
model is solved by the MSCCC centre. If the job processing times are exponentially
distributed but are job type dependent, then in the two special casesB = 1 and
B = B1 + · · ·+BC the stationary probabilities are a sum of product forms [1].

2.5.5 Blocked Calls Cleared

In the remainder of this section we apply OI queues to model circuit-switched net-
works where some blocked calls are queued for connection when the requested cir-
cuits become available. This call queueing mechanism differs from the admission
control generally used in circuit switched networks where blocked calls are lost –
see [19, 20] for an extensive literature on the subject of circuit-switched loss net-
works.
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Fig. 2.1: A circuit-switched network

Consider figure 2.1 which represents (part of) a circuit-switched network. There
areC source switches. Each switchc is connected by an access link consisting ofBc

circuits to a tandem switchT which switches the incoming calls amongB outgoing
circuits to a destination switchD whereB < B1 + · · ·+ BC. Calls arrive at switch
c according to a Poisson process with rateλc. Call holding times are exponentially
distributed with unit mean.

A call from switchc is connected if a circuit fromc to T and a circuit fromT to
D is available, else the call is lost. This model is OI althoughstandard methods can
also be used [23] to obtain an analytic solution. Such loss models were considered
in a more general framework [2, 19] and there are many articles on this topic for
example [9].

2.5.6 Blocked Calls Queued

Rather than clearing blocked calls, the blocked calls can beheld for a short pe-
riod while waiting for the required circuits to become free.This will significantly
decrease the loss probability and increase the circuit utilisation at the expense of
introducing a small connection delay.

Call queueing is implemented by storing the signalling information for each call
in a buffer at the transit switchT until the call is completed. When a call completes,
the queue is scanned from the front looking for the first call that can be connected.
If the call (say it originated at switchc) cannot be connected because allBc circuits
in link c are busy, the next call in the queue is considered. Connection requests are
thus attempted on a FCFS basis.

The MSCCC queue provides an exact analytic solution to this model. Calls which
arrive and findN calls in the system (queued or in service) are lost. A call from
switchcwill be connected to the destination switchD if a circuit in link c is available
(less thanBc customers of typec are in service) and a circuit fromT to D is available
(less thanB customers of all types are in service). The limitN models call holding:
up to N−min(B1, . . . ,BC) blocked calls can be queued. WhenN = B we obtain
Mitra’s model [23].

A feature of this model is that if the network is overloaded byclassc calls then
the queue will be filled with classc calls and arrivals of other classes will be rejected.
This deficiency is addressed in the next section.
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Fig. 2.2: Local and long distance calls

2.5.7 Blocked Calls Queued with Source Rejection

Calls which arrive and findN calls in the system (queued or in service) are lost.
A call from switchc which finds allBc access circuits busy is lost – this is termed
source rejection. Calls which seize an access circuit and find all B outgoing cir-
cuits busy are queued in a finite buffer. When an outgoing circuit becomes free, the
queued calls are searched in FCFS order for the next call to beconnected. Thus
maximallyN customers of all types and maximallyBc customers of typec∈ C are
admitted to the system and up toN−min(B1, . . . ,BC) blocked calls can be queued.

For all n ∈ Ñ the un-normalised aggregated stationary probabilities for above
model are given by

π(n) = g(n)
C

∏
c=1

ρnc
c

nc!

where

g(n) =

{
1 0≤ n≤ B

n!
B!Bn−B B < n≤ N

so thatBg(n) = ng(n− 1) for B < n ≤ N. This model is an OI queue although
standard methods can also be used [6] to obtain an analytic solution.

A further OI specialisation of this model is obtained by partitioning the set of
customer types into{1, . . . ,J} and{J+1, . . . ,C}. Source rejection is applied to the
types{J+ 1, . . . ,C} but is not applied to the types{1, . . . ,J} so that all customers
of types{J+1, . . . ,C} are in service whereas customers of types{1, . . . ,J} may be
queued.

2.5.8 Local and Long Distance Calls

Consider the network presented in figure 2.2. A local call from switchc requires
one circuit from switchc to the tandem switchT. A long distance call from switchc
requires one circuit from switchc to switchT and one circuit fromT to the destina-
tion switchD. Blocked local calls are lost. Blocked long distance calls are queued
in a finite buffer of sizeN−min(B1, . . . ,C).
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Fig. 2.3: Local and transit calls

Let C+ ⊆ C denote the set of long distance call types and letn+ = ∑ j∈C+
n j

denote the number of long distance calls, both in service andqueued. The un-
normalised aggregated stationary probability for the queue is given by [5]

P(n) =





∏
j∈C

ρn j
j

n j !
0≤ n+ ≤ B

n+!
B!Bn+−B ∏

j∈C

ρn j
j

n j !
B < n+ ≤ N

whereρ j = λ j/µ j . Note thatP(n) can be viewed as the product of two “indepen-
dent” queues: anM/M/B/B queue serving the local calls and anM/M/B/N queue
serving the long distance calls. The processing of the localand long distance calls
is not independent.

2.5.9 Local and Transit Calls

Consider the network presented in figure 2.3. A local call from switchc requires
one circuit from linkc. A local call from switchd requires one circuit from linkd.
Blocked local calls are lost. A transit call from switchc to switchd requires one
circuit from link c, one circuit from linkd and a circuit from switchT1 to switchT2.
A transit call is lost if it is blocked on linkc or on link d. If the transit call is not
blocked on the local links it seizes the local circuits and requests a circuit fromT1 to
T2. If the circuit is available it is connected. If the circuit is not available and if there
are less thanN transit calls in progress (queued and in service) on the linkfrom T1

to T2 then the transit call is queued, else it it is lost.
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2.5.10 Hierarchical Tree Networks

Several networks as presented in figure 2.1 are connected to form the network shown
in figure 2.4. A call from switchc is lost if it is blocked on any link connecting the
source switchc to the switchT. A finite queue is used to buffer calls that are blocked
on the final link fromT to D. This model is a variant of the Multiserver Centre with
Hierarchical Classes of Customers [21].

2.5.11 Local and External Networks

Consider the network presented in figure 2.5. The network consists of edge switches
markedE and and interior switches markedI in a core network and access switches
markedA in an access network. The switches are connected by multi-circuit links.
The topology of the network is arbitrary and we assume that the switches in the
access network are not directly connected to each other, although this assumption is
not necessary.

Local calls are routed among the switches in the core network. Blocked local
calls are lost. Consider an outgoing call from the network via an edge switchE
to an access switchA. An outgoing call is lost if it is blocked on its local route.
If the outgoing call is not blocked on its local route then it seizes the circuits in
its local route and requests a circuit in the outgoing link from switchE to switch
A. If an outgoing circuit is available the call is connected. If an outgoing circuit is
not available and if there are less thanN outgoing calls in progress (queued and in
service) on the outgoing link then the outgoing call is queued, else it it is lost. Note
that the local circuits acquired by outgoing calls are held while the calls are queued
for connection, and that each outgoing link carries traffic in the outgoing direction
only.

Call queueing is accomplished by storing the signalling information for the
blocked call in a buffer at the edge switchE. The (signalling units for the) calls

1

c

C

T D

...

...

...

...

...

Fig. 2.4: Hierarchical tree network
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Fig. 2.5: Network with outgoing traffic

are stored in FCFS order. When a call completes and releases acircuit in the out-
going link to the access switchA the first call in the queue will be connected to the
destinationA.

Let γ denote a fixed route (an ordered sequence of links) connecting an origi-
nating switchI in the network via an edge switchE to an access switchA. Let R

denote the set of interior routes. Letnγ denote the number of calls in routeγ ∈ R

and letn = (nγ) be a vector of numbers of calls. Letnk wherek ∈ K denote the
number of calls (queued or in service) in progress on outgoing link k whereK is the
set of access links, andR∩K = /0. Then the un-normalised aggregated stationary
probabilities for the network are given by [5]

P(n) = ∏
k∈K

gk(nk) ∏
γ∈R

ρnγ
γ

nγ !

and

gk(nk) =






1 0≤ nk ≤ Bk

nk!

Bk!B
nk−Bk
k

Bk < nk≤ Nk

2.5.12 Transit Calls among Networks

Consider the system presented in figure 2.6. Each network consists of switches
connected by multi-circuit links. Some of the switches are connected to gateway
switches which route transit traffic in both directions between the networks. The
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topology of the networks is arbitrary. We assume one pair of gateway switches but
there may be many such pairs.

Local calls are routed among switches within their originating networks. Blocked
local calls are lost. Consider a transit call from network 1 to network 2. A transit
call is lost if it is blocked on its local route in network 1 from its originating switch
to the gateway switchG or if it is blocked on its local route in network 2 from the
gateway switchG to its destination switch (assuming a signalling link separate from
the bearer link). If the transit call is not blocked on its local routes then it seizes
the circuits in its local routes and requests a circuit on thetransit link between the
networks. If a transit circuit is available the call is connected. If a transit circuit is
not available and if there are less thanN transit calls in progress (queued and in
service) on the transit link then the transit call is queued,else it it is lost.

The transit link carries two-way traffic and an identical call queueing mechanism
is applied to calls in both directions. Each gateway has a buffer to store the signalling
units for blocked calls. Both gateway switches are aware viathe signalling link of
the arrival order of blocked calls in both directions. The buffers are managed as
a single logical queue whose entries are ordered according to the times of arrival
of the blocked calls. The call resources are partitioned into two classes (local routes
and transit routes) and the resource classes are ordered such that all calls first request
their local routes and then their transit route – deadlock therefore cannot occur.

All of the models presented in sections 2.5.1 through 2.5.12can be modelled
as OI queues. Their stationary distributions are thereforeimmediately available.
Efficient algorithms with space-time complexity O(B2C) exist for the calculation
of the blocking probabilities for models 2.5.5, 2.5.6 and 2.5.7. The complexity of
model 2.5.10 is O(Nℓ) whereℓ is the depth of the tree. Models 2.5.9, 2.5.11 and
2.5.12 have the same complexity as the corresponding loss networks where blocked
calls are lost.

GG

bearer link

signalling link

network 1 network 2

Fig. 2.6: Networks with transit traffic
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Glossary

B the number of servers
Bc the number of typec customers that can be in service simultaneously
C the set of customer types
C the queue state(cn, . . . ,c1)
ci the type of the customer in queue positioni
γi(C) the portion of the total service effort directed at the customer in queue positioni
λc the Poisson arrival rate of customers of typec
µc the Poisson service rate of customers of typec
π(C) the equilibrium probability
φ(C) the rate at which the total service effort in stateC is supplied
S the state space of the queue
si(C) the rate at which service is given to the customer in queue position i in the

queue relative to the other customers in the queue
a∧b the smaller of the two integersa andb
σ a permutation of(1, . . . ,n)

2.6 An Algorithm to Compute the Performance Measures of the
MSCCC

The values of theP(b,c, i) are stored in the elements of the arrayP[b, i]. The indexc
is suppressed to save storage. The algorithm is appliedC times to compute the per-
formance measures of all the types. After each application the customer types are
relabelled.

1: // allocate and initialise the variables
2: doubleP[0 : B−1,0 : max(B1, . . . ,BC)],L[0 : B−1]
3: P[0,0] = 1
4: for b = 1 toB−1 do
5: P[b,0] = 0
6: end for

// compute the un-normalised probabilitiesP(b,c, i)
7: for c = 1 toC do
8: for b = 1 toB−1 do
9: for i = 1 to min(b,Bc−1) do

10: P[b, i] = ρc∗P[b−1, i−1]/i // eq. (2.9)
11: end for
12: if b≥ Bc then
13: P[b,Bc] = ρc∗P[b−1,Bc−1]/(Bc−ρc) // eq. (2.10)
14: end if
15: end for
16: for b = 1 toB−1 do
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17: for i = 1 to min(b,Bc) do
18: P[b,0] = P[b,0]+P[b, i] // eq. (2.13)
19: end for
20: end for
21: end for

// normalise the probabilitiesP(b,c, i)
22: S= 0
23: for b = 0 toB−1 do
24: S= S+(B−b)∗P[b,0] // eq. (2.15)
25: end for
26: G = (B−ρ)/S
27: for b = 0 toB−1 do
28: for i = 1 to min(b,Bc−1) do
29: P[b, i] = P[b, i]∗G // eq. (2.16)
30: end for
31: end for

// compute the typeC queue lengthL(C)
32: L = ρC

33: for b = 1 toB−1 do
34: L[b] = P[b,BC]
35: for i = 0 to min(b,BC−1) do
36: L[b] = L[b]+BC∗P[b−1, i]− i ∗P[b, i] // eq. (2.19)
37: end for
38: L = L+(B−b)∗L[b] // eq. (2.22)
39: end for
40: L = L∗ρC/(BC−ρC)/(B−ρ) // eq. (2.22)

References

1. I. Adan, J. Visschers and J. Wessels. Sum of product forms solutions to MSCCC queues with
job type dependent processing times. Memorandum COSOR 98-19, Eindhoven University of
Technology, The Netherlands (1998).

2. J.M. Akinpelu, The Overload Performance of Engineered Networks With Nonhierarchical and
Hierarchical Routing, International Teletraffic Congress, Vol 10 (1983) 3.2.4.1 – 3.2.4.7.

3. F. Baskett, K.M. Chandy, R.R. Muntz and J. Palacios, Open,Closed and Mixed Networks of
Queues with Different Classes of Customers, Journal of the ACM Vol 22 No 2 (1975) 249 –
260.

4. S.A. Berezner and A.E. Krzesinski, Quasi-reversible multiclass queues with order independent
departure rates. Queueing Systems, 19 (1995) 345 – 359.

5. S.A. Berezner and A.E. Krzesinski, Order Independent Loss Queues. Queueing Systems, 23
(1996) 331 – 335.

6. S.A. Berezner and A.E. Krzesinski, Call Queueing in Circuit-Switched Networks. Telecom-
munication Systems Vol 6 (1996) 147 – 160.

7. J.-Y. Le Boudec, A BCMP Extension to Multiserver Stationswith Concurrent Classes of Cus-
tomers. In:Proc. 1986 ACM Sigmetrics Conference, Performance Evaluation ReviewVol 14
No 1 (1986) 78 – 91.



120 A.E. Krzesinski

8. J.-Y. Le Boudec, The MULTIBUS Algorithm. Performance Evaluation Vol 8 No 1 (Feb 1988)
1 – 18.

9. D.Y. Burman, J.P. Lehoczky and Y. Lim, Insensitivity of blocking Probabilities in a Circuit-
Switching Network, Journal of Applied Probability, Vol 21 (1984) 850 – 859.

10. X. Chao and M. Pinedo, On Generalized Networks of Queues with Positive and Negative
Arrivals, Prob. Eng. Inf. Sci, Vol 7 (1993) 301 – 334.

11. S. Crosby and A.E. Krzesinski, Product Form Solutions for Multiserver Centers with Concur-
rent Classes of Customers, Performance Evaluation, Vol 11 No 4 (1990) 265 – 281.

12. S. Crosby, A.E. Krzesinski and J.-Y. Le Boudec, A MSCCC Model of Multilayer Window
Flow Control. In:Fifth International Conference on Modeling Techniques andTools for Com-
puter Performance Evaluation, G Balbo and G. Serazzi, Eds. (Elsevier 1992).

13. J.M. Harrison and R.J. Williams, On the Quasi-Reversibility of a Multiclass Brownian Station,
Annals of Probability Vol 18 (1990) 1249 – 1268.

14. W. Henderson, C.E.M. Pearce, P.K. Pollett, P.G. Taylor,Connecting Internally Balanced
Quasi-Reversible Markov Processes, Advances in Applied Probability Vol 24 (1992) 934 –
959.

15. M. Hofri and Y. Kogan, Exact and Asymptotic Analysis of Large Multiple-Bus Multiprocessor
Systems, Proc. Performance ’90, Elsevier Science Publishers B.V. (North Holland) (1990)
373–389.

16. J.R. Jackson, Networks of Waiting Lines, Operation Research Vol 5 (1957) 518 – 521.
17. F.P. Kelly, Reversibility and Stochastic Networks, John Wiley and Sons (1979) ISBN 0-471-

27601-4.
18. F.P. Kelly, Networks of Quasi-reversible Nodes, Applied Probability – Computer Science,

the Interface: Proceedings of the ORSA–TIMS Boca Raton Symposium, Ed. R. Disney,
Birkhauser Boston, Cambridge, Ma (1981).

19. F.P. Kelly, Blocking probabilities in Large Circuit-switching Networks, Advances in Applied
Probability Vol 18 (1986) 473 – 505.

20. F. P. Kelly, Loss Networks, Annals of Applied Probability, Vol. 1, No. 3, (1991) 473 – 505.
21. A.E. Krzesinski and R. Schassberger, The Multiserver Center with Hierarchical Concurrency

Constraints, Prob. Eng. Inf. Sci, Vol 6 (1992) 147 – 156.
22. M.A. Marsan, G. Balbo, G. Chiola and S. Donatelli, On the Product Form Solution of a Class

of Multiple-Bus Multiprocessor System Models, Journal of Systems and Software Vol 1 No 2
(1986) 117 – 124.

23. D. Mitra, Asymptotic Analysis and Computational Methods for a Class of Simple Circuit-
Switched Networks with Blocking, Advances in Applied Probability, Vol 19 (1987) 219 –
239.

24. R.R. Muntz, Poisson Departure Processes and Queueing Networks, IBM Research Report
RC4145, IBM Thomas J. Watson Research Center, Yorktown Heights, New York (1972).

25. R.D. Nelson, The Mathematics of Product Form Queueing Networks, ACM Computing Sur-
veys, Vol 25 (1993) 339 – 369.

26. E. Pinsky and A. Conway, Exact computation of blocking probabilities in state-dependent
multi-facility blocking models, inIFIP WG 7.3 International Conference on the Performance
of Distributed Systems and Integrated Communication Networks, T. Hasegawa, H. Takagi and
Y. Takahashi eds., Kyoto, Japan 1991.

27. P.K. Pollett, Connecting Reversible Markov Processes,Advances in Applied Probability, Vol
18 (1986) 880 – 909.

28. P.K. Pollett, Preserving Partial Balance in Continuous-time Markov Chains, Advances in Ap-
plied Probability Vol 19 (1987) 431 – 453.

29. J. Walrand and P. Varaiya, Interconnections of Markov Chains and Quasi-Reversible Queueing
Networks, Stochastic Processes and Applications Vol 10 (1980) 209 – 219.

30. J. Walrand, An Introduction to Queueing Networks, Prentice-Hall (1988), ISBN 0-13-493818-
6.

31. J. Walrand, A Probabilistic Look at Networks of Quasireversible Queues, IEEE Trans. Inf.
Theory IT-29 (1983) 825 – 831.

32. P. Whittle, Systems in Stochastic Equilibrium, John Wiley and Sons (1986) ISBN 0-471-
90877-8.



Chapter 3
Insensitivity in Stochastic Models

P.G. Taylor

Abstract A stochastic model is said to beinsensitiveif its stationary distribution
depends on one or more of its constituent lifetime distributions only through the
mean. Insensitivity is usually associated with partial balance in the corresponding
Markovian model when all lifetimes are taken to be exponential, and a product-form
stationary distribution of the Markov chain, constructed by supplementing the state
by information on the progress of generally-distributed lifetimes.

In this chapter I shall discuss insensitivity by presentinga detailed analysis of the
canonical insensitive queueing model, the Erlang loss system, from two different
directions, as a queue and as a Generalised Semi-Markov Process (GSMP). I shall
then show how the underlying ideas extend to insensitive queueing network models
and finish off with a discussion of the few known non-standardinsensitive systems
which are not associated with partial balance or a product-form supplemented sta-
tionary distribution.

3.1 Introduction

We shall start our discussion of insensitivity by thinking about the M/M/C/C (or Er-
lang Loss) queue. This is a queueing system which has Poissonarrivals, exponential
service times,C servers and no room for queueing customers that arrive when the
system is full. The queue can be modelled by a continuous-time Markov chain with
state space{0,1,2, . . . ,C}. If we denote the arrival rate byλ and the mean service
time by 1/µ , then the stationary probabilityπ(n) that there aren customers present
satisfies the equations

P.G. Taylor
Department of Mathematics and Statistics, University of Melbourne, Victoria, 3010, Australia
e-mail:p.taylor@ms.unimelb.edu.au
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λ π(0) = µπ(1),

(λ +nµ)π(n) = λ π(n−1)+ (n+1)µπ(n+1), 0 < n < C,

Cµπ(C) = λ π(C−1). (3.1)

The solution of equations (3.1) that sums to unity is

π(n) =
ρn/n!

∑C
k=0 ρk/k!

, (3.2)

whereρ = λ/µ . The stationary probability

π(C) =
ρC/C!

∑C
k=0 ρk/k!

(3.3)

that the system is full gives the probability that arriving customers cannot be accom-
modated in the queue.

Expressed as a function ofρ andC, the expression on the right hand side of equa-
tion (3.3) is known as Erlang’s Loss Formula, which we shall denote byE(ρ ,C).
Throughout most of the twentieth century, this formula was used extensively by the
telecommunications networking community for dimensioning links. It proved to be
remarkably successful in predicting the probability that an arriving call would not be
able to find an available circuit, has been the subject of research in its own right (see,
for example, Jagerman [22]) and is still used today in more complicated contexts.

However, let us think a little more about the use of a Markovian model for the
modelling of telephone links. The average duration of a traditional phone conversa-
tion was three minutes. An easy calculation shows that if call durations are exponen-
tially distributed with mean three minutes, then the probability that a call exceeds
60 minutes is about 2× 10−9. So, if call durations really were exponentially dis-
tributed, very few of us would ever have made a phone call thatlasted longer than
one hour. Since most of us have made such calls, we are led to the conclusion that the
‘service times’ corresponding to real telephone conversations are not exponentially
distributed and that a Markovian model for the system is based upon assumptions
that are not satisfied.

So why has the Erlang Loss Formula been so successful? The reason is that
the M/G/C/C queue isinsensitiveto the service time distribution: the stationary
probability that there aren customers present is given by (3.2) irrespective of the
shape of the service time distribution, provided that the mean is 1/µ .

Erlang himself [10] noticed that the stationary probability that there aren cus-
tomers present in an M/G/C/C queue when the service times aredeterministic with
duration 1/µ is the same as it is when service times are exponentially distributed
with mean 1/µ . Subsequently, with different levels of rigour, Kosten [33], Fortet
[12] and Sevastyanov [43] showed that the service time distribution can be arbitrary
without affecting the form of the stationary probabilities, assuming that the mean
is kept constant. In fact more is possible: service times canbe inter-event times in
an arbitrary stationary point process with rateµ and the stationary distribution is
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still given by (3.2), see König and Matthes [31]. Other authors who considered the
n server loss system with generally distributed service times from the point of view
of insensitivity include Takacs [44] who investigated the stationary distribution at
arrival epochs and Fakinos [11] who looked at a group arrival, group departure sys-
tem.

In the period between the late 1950s and the 1980s a number of researchers stud-
ied the phenomenon of insensitivity in other systems. The Engset loss system, which
has a finite source population, was shown to be insensitive with respect to generally
distributed, but independent, service times by Cohen [9] and with respect to succes-
sive service times which come from a stationary point process by König [29]. More
significant from a practical point view was the work of Baskett, Chandy, Muntz
and Palacios [4] and Kelly [27, 28] who showed that certain types of queueing net-
work possess the insensitivity property. Since a number of practical systems turned
out to be well-modelled by insensitive queueing networks, these papers have been
frequently cited, particularly in the telecommunicationsmodelling community.

Baskett, Chandy, Muntz and Palacios [4] considered a network of queues where
each node could be one of four different types. These were

1. a single server, first-come-first-served queue with exponential service times,
2. a single server, processor-sharing queue with service times chosen according to

a general distribution with a rational Laplace Transform,
3. an infinite-server queue with service times chosen according to a general distri-

bution with a rational Laplace Transform, and
4. a single-server, preemptive-resume last-come-first-served queue with service

times again chosen according to a general distribution witha rational Laplace
Transform.

They showed that the queueing network possesses a steady state distribution that
is a product form over the nodes and, moreover, depends on thelifetime distribu-
tion at types (2), (3) and (4) nodes only through the mean. Weak continuity argu-
ments [1, 47] later showed that the restriction to distributions with rational Laplace
transform was unnecessary, although many later papers continued to emphasize this
restriction.

Kelly [27, 28] introduced the concept of thesymmetricqueue. This can be
thought of as a generalisation of the type (2), (3) and (4) nodes of [4]. A symmet-
ric queue is a queue with multiple customer classes that operates in the following
manner:

1. the service requirement of a customer is a random variablewhose distribution
may depend on the class of customer.

2. the total service effort is supplied at rateφ(n) wheren is the number of customers
in the queue.

3. a proportionγ(ℓ,n) of this effort is directed to the customer in positionℓ. When
this customer leaves the queue customers in positionsℓ+1, ℓ+2, . . . ,n move to
positionsℓ,ℓ+1, . . . ,n−1 respectively.
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4. a customer arriving at the queue moves into positionℓ with probabilityγ(ℓ,n+
1). Customers previously in positionsℓ,ℓ+ 1, . . . ,n move to positionsℓ+ 1, ℓ+
2, . . . ,n+1 respectively.

Processor sharing queues, infinite server queues and last come first served queues
are all examples of symmetric queues. By keeping track of thecurrent ‘phase’ of
service, Kelly showed that a stationary symmetric queue is insensitive to the service
time distribution, provided that it can be represented as a mixture of Erlang distri-
butions. The rigorous extension to arbitrarily distributed lifetimes was carried out
by Barbour [1]. Furthermore, Kelly established that a network of symmetric queues
has a stationary distribution that factorizes into a product form over the nodes, and
itself is insensitive.

Kelly’s techniques relied on the insight provided by the time-reversed process.
Chandy, Howard and Towsley [7] used a partial balance approach to prove insen-
sitivity in an essentially similar system. Noetzel [37] defined Last Batch Processor
Sharing (LBPS) disciplines for queues, and showed that networks of LBPS queues
have product-form stationary distribution and are insensitive. Noetzel focused on
the arrival order, rather than the position in the queue, of customers but it is possible
to set up an equivalence between LBPS queues and symmetric queues and so derive
Noetzel’s results from Kelly’s.

Jansen and König [25] modified Chandy, Howard and Towsley’snetwork to in-
clude different classes of customer and showed that, when the network is insensitive,
the output processes from nodes in a queueing network are Poisson. They also con-
sidered the stationary distribution embedded at jump epochs of the system. Further
work on queueing networks with multiple customer classes was given in Chandy
and Martin [8].

Hordijk and van Dijk [17] studied networks of queues with blocking. They
showed that there is some trade off between the generality ofthe blocking func-
tion and the degree of balance required from the routing matrix for a network to
have product-form stationary distribution and possess an insensitivity property. In
[18, 19], they introduced a new method for analysing networks of queues that de-
pends on an associated process called the adjoint process. Using this approach they
showed that a queue must be symmetric (in the definition of Kelly) to satisfy their
concept of job local balance. They also applied their analysis to a range of models
with general routing and service characteristics.

A general framework for studying insensitivity, the Generalised Semi-Markov
Process (GSMP), was introduced by Matthes [34]. The GSMP is basically an ex-
tension of the familiar Semi-Markov Process, which residesin a particular state for
a generally distributed length of time before undergoing a transition according to a
stochastic matrix which transfers the process to another state. In a GSMP, multiple
lifetimes, each with its own general distribution, are considered to be alive simul-
taneously and the death of any one of them causes the process to move to another
state. It is possible to model a wide variety of processes with a GSMP.

Matthes showed that a GSMP is insensitive with respect to a particular lifetime
s (that is its stationary distribution depends on the distribution of the lifetimesonly
through its mean) if and only if a system of balance equationsis satisfied by the sta-
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tionary distribution when all lifetimes are taken to be exponential. Matthes’ results,
together with the work of König and Matthes [31] and König [29] are collected in
König, Matthes and Nawrotzki [32].

A generalisation of Matthes’ framework was given by König and Jansen [30]
who introduced state-dependent speedsc(s,g) at which the lifetimes is worked
off when the state isg. The use of these speeds allowed functional dependencies
between different lifetimes in the GSMP to be modelled. In particular, by putting a
speed to zero it is possible to model the situation where a particular lifetime is not
processed at all in some states.

Schassberger [38, 39, 40] proved Matthes’ partial balance result in a different
way utilising mixtures of Erlang distributions in place of the general distributions,
extending these results to arbitrarily distributed lifetimes using weak continuity ar-
guments. A general justification for the use of these arguments was given by Whitt
[47]. Further results on insensitivity in GSMPs were given in Jansen, König and
Nawrotzki [26], Burman [5], Franken, Arndt, König and Schmidt [13], Henderson
[15] and Henderson and Taylor [16].

Whittle [49] provided a simple proof of the equivalence of partial balance and in-
sensitivity, using a structure that initially appeared to be different to the GSMP. The
simplicity of the proof derived in some part from the assumptions that Whittle made
about his process. For example, Whittle’s structure did notallow a general lifetime
to immediately restart after having died, although it is fairly easy to modify the
structure to include this feature. Whittle also implicitlyassumed that all the speeds
are positive, which does sustantially simplify the situation. It was trying to cope with
these details that made the earlier proofs of König and Jansen [30] and Schassberger
[41] somewhat more complicated than they otherwise would have been. When ap-
propriate generalisations are included, Whittle’s structure is completely equivalent
to the GSMP, as was established by Schassberger [42] and Miyazawa [35]. Nonethe-
less it is notable for its elegance and simplicity. For this reason, it was used by the
author in some of his own contributions to insensitivity theory [45, 46].

In a later paper, Whittle [50] combined his previous approach with the concept of
weak coupling [48] to present an approach to insensitivity in terms of “imbedding”.
A Markov processQ with statesn is said to be imbedded in a Markov processQ̂
with a finer classification of states(n,x) if certain rules about the transitions ofQ̂
are obeyed and ifπ(n) = ∑x π(n,x) whereπ(n) andπ(n,x) are the respective sta-
tionary distributions ofQ andQ̂. Using this concept, it follows that if a processQ̂
is insensitive with respect to a set of general lifetimes then it imbeds a process with
identical transition rates but negative exponential lifetimes. This follows by consid-
ering the finer classificationx to be a set of supplementary variables describing the
state of the general lifetimes. Whittle’s results on insensitivity, imbedding and weak
coupling were collected in his book [51].

The purpose of this paper is to provide an insight into the methods used in study-
ing insensitivity and to act as a starting point for readers who are interested in learn-
ing more. We shall do this by looking in some detail at how insensitivity results are
derived for the Erlang Loss System. This system has the advantage that it can be
described as a symmetric queue as defined by Kelly [27, 28], oras a GSMP. It is
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thus an ideal vehicle to point out the similarities and the differences between the
two approaches.

In Section 3.2, we shall start by looking at the Erlang Loss system as a symmetric
queue. We shall follow this in Section 3.3 by looking at the same system within a
GSMP framework. In Section 3.4 we shall illustrate how insensitivity results can be
generalised to the queueing network context, and in Section3.5 present a discussion
of the very few non-standard insensitive systems that are known. A summary of our
approach is given in Section 3.6.

3.2 The Erlang Loss System as a Symmetric Queue

Consider the M/G/C/C queue where the service time distribution G is allowed to be
arbitrary. We shall assume that it has a densityg on [0,∞), but our results can be
shown to apply to the general case by the same weak continuityarguments [47] that
were used to justify the extension from mixtures of Erlang distributions. Given that
a service time has lasted for a timey, the probability that it finishes within a time
intervalδ is then given byh(y)δ + o(δ ) where the hazard functionh(y) is defined
by

h(y) =
g(y)

1−G(y)
. (3.4)

We shall proceed by extending the definition of state so that the process still has a
Markovian description. We can do this by labelling each of the individual customers
and recording some information about the service at each oneof them. Specifically,
we shall record the spent service time of each of the customers that is present. Thus,
instead of a continuous-time Markov chain with statesn, we study a process with
statesX(t) of the form(n,y1, . . . ,yn) whereyi is the spent service time of the cus-
tomer with labeli. We shall stipulate that
Assumptions A

1. customers arriving whenn customers are present are allocated each of then+1
possible labels with probability 1/(n+1), and

2. when a customer departs, all customers with higher labelshave their label de-
creased by one.

The resulting process is still Markovian, but it has a state space with continuous
components. The infinitesimal generator

lim
t→0

d
dt

E[ f (X(t))− f (X(0))],

which acts on a suitably-defined set of functionsF, is relatively easy to write down
and we can proceed from this to a derivation of the stationarydistribution. However,
arguably, more insight is obtained by writing down equations that govern the proba-
bility densitiesP(n,y1, . . . ,yn : t) thatX(t) = (n,y1, . . . ,yn). For a state(n,y1, . . . ,yn)
with y1, . . . ,yn > 0 and 0< n < C,
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P(n,y1 + δ , . . . ,yn + δ : t + δ )

=

[
1− [λ +

n

∑
i=1

h(yi)]δ

]
P(n,y1, . . . ,yn : t)

+
n+1

∑
i=1

ˆ ∞

0
P(n+1,y1, . . . ,yi ,z,yi+1, . . . ,yn : t)h(z)δdz+o(δ ). (3.5)

The first term on the right hand side reflects the situation in which no arrival or
departure occurs in the time interval(t,t + δ ) and all that happens is that the spent
service times of the customers who are present at timet age by an amountδ , while
the summand in the second term reflects the situation in whichthere aren+1 cus-
tomers present at timet and the one labelledi + 1 departs, with all higher labels
being decreased by one, as stipulated by Assumption A(2).

Dividing equation (3.5) byδ and lettingδ → 0, we get

∂P(n,y1, . . . ,yn : t)
∂ t

+
n

∑
i=1

∂P(n,y1, . . . ,yn : t)
∂yi

= −
[

λ +
n

∑
i=1

h(yi)

]
P(n,y1, . . . ,yn : t)

+
n+1

∑
i=1

ˆ ∞

0
P(n+1,y1, . . . ,yi ,z,yi+1, . . . ,yn : t)h(z)dz. (3.6)

Whenn=C, no arrivals can occur, nor can we ever be in staten+1, so the equations
reduce to

∂P(C,y1, . . . ,yC : t)
∂ t

+
C

∑
i=1

∂P(C,y1, . . . ,yC : t)
∂yi

= −
C

∑
i=1

h(yi)P(C,y1, . . . ,yC : t). (3.7)

Whenn = 0, the equation is

λP(0 : t) =

ˆ ∞

0
P(1,z : t)h(z)dz. (3.8)

To get the boundary conditions, we need to consider what happens at arrival instants,
as stipulated by our Assumption A(1). For 0< n≤C, we have

ˆ δ

0
P(n,y1 + δ , . . . ,yi + δ ,u, . . .yn + δ : t + δ )du

=
λ δ
n

P(n−1,y1, . . . ,yn : t)+o(δ ).
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Both sides of this equation describe the event that there were n− 1 customers
present at timet and a further customer arrived, and was allocated to position i +1,
before timet + δ . Again, dividing byδ and lettingδ → 0, we get

P(n,y1, . . . ,0, . . .yn : t) =
λ
n

P(n−1,y1, . . . ,yn : t). (3.9)

To get equations for the stationary densitiesπ(n,y1, . . . ,yn), we put the time deriva-
tive to zero in equations (3.6), (3.7) and (3.8) which gives us

n

∑
i=1

∂π(n,y1, . . . ,yn)

∂yi
=−

[
λ +

n

∑
i=1

h(yi)

]
π(n,y1, . . . ,yn)

+
n+1

∑
i=1

ˆ ∞

0
π(n+1,y1, . . . ,yi−1,z,yi , . . . ,yn)h(z)dz, (3.10)

C

∑
i=1

∂π(C,y1, . . . ,yC)

∂yi
=−

C

∑
i=1

h(yi)π(C,y1, . . . ,yC) (3.11)

and

λ π(0) =

ˆ ∞

0
π(1,z)h(z)dz, (3.12)

subject to

π(n,y1, . . . ,0, . . .yn) =
λ
n

π(n−1,y1, . . . ,yn). (3.13)

The proof of the insensitivity of the Erlang Loss model proceeds by verifying that a
solution to the above set of equations is given by the product-form expression

π(n,y1, . . . ,yn) = π(0)
λ n

n!

n

∏
i=1

(1−G(yi)). (3.14)

We do this by using the facts that, for any absolutely continuousG,

d(1−G(y))
dy

=−g(y) =−h(y)(1−G(y)), (3.15)

and so theith term in the sum on the left hand side of both equations (3.10) and
(3.11) is equal to theith term in the sum on the right hand side. Also

ˆ ∞

0
(1−G(u))h(u)du=

ˆ ∞

0
g(u)du= 1, (3.16)

and so

−λ π(n,y1, . . . ,yn)+
n+1

∑
i=1

ˆ ∞

0
π(n+1,y1, . . . ,yi ,z,yi+1, . . . ,yn)h(z)dz= 0. (3.17)
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This guarantees that the remaining terms of equation (3.10)and the two sides of
equation (3.12) are equal. AlsoG(0) = 0, which ensures that (3.13) is satisfied.

A justification that the set of equations (3.10), (3.11) and (3.13) have a unique so-
lution that sums to one, which indeed gives us the stationarydensities of the Markov
chain, follows from the work of Miyazawa and Yamazaki [36]. So (3.14) provides
an expression for the stationary densities for the Markov process with the supple-
mented state space. It does depend onG, so where does the insensitivity come in?
This occurs when we integrate out the supplementary variables. It is elementary that

ˆ ∞

0
(1−G(u))du= 1/µ , (3.18)

and so
ˆ ∞

0
· · ·
ˆ ∞

0
π(n,y1, . . .yn)dyn . . .dy1 = π(0)

λ n

µnn!
, (3.19)

which is identical to the probability (3.2) that there aren customers present in the
system with exponential service times.

The decomposition of the stationary density of the supplemented process is typ-
ical of insensitive stochastic models. Consider the situation when lifetimes are ex-
ponential, but where we retain a notional labelling of customers. Then the flux
λ π(n− 1)/n into staten due to the arrival of the customer with labeli is equal
to the fluxµπ(n) out of staten due to the departure of the customer with labeli.
It is this relationship, which crucially depends on the assumption that customers
arriving whenn previous customers are present are allocated a label uniformly on
the set 1, . . . ,n+1, that ensures that equation (3.13) is satisfied by the product-form
expression (3.14). This relationship is reflected in the partial balance equations

λ π(n−1) = nµπ(n), (3.20)

which are a finer set of equations than the equations (3.1) that define the stationary
distribution of the Markovian model that arises when service times are taken to be
exponential. Insensitivity is usually associated with thesatisfaction of some form of
partial balance equation of this type.

3.3 The Erlang Loss System as a GSMP

In this section we shall discuss insensitivity in the ErlangLoss System by modelling
it as a GSMP. We shall continue to denote the arrival rate byλ , the number of servers
by C and assume that the service time distributionG has mean 1/µ and a densityg
on [0,∞). The difference between the analysis here and that in Section 3.2 will lie
in the method that we use for labelling lifetimes. Instead ofshuffling labels up and
down when customers arrive and depart in such a way that, whenn customers are
present, labels 1, . . . ,n are all in use, we shall assign a label to each of the servers
and denote the state by the subset of labels{1, . . . ,C} that are currently present.
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So instead of denoting our supplemented states by(n,y1, . . . ,yn), reflecting the
situation that there aren customers in the queue with theith labelled customer hav-
ing spent service timeyi , we shall use states of the form(φ ,ys1, . . . ,ysn), where
φ = {s1, . . . ,sn} is a subset of{1, . . . ,C} recording the labels of the servers at which
customers are present andysi is the spent service time of the customer at serversi . It
should be immediately apparent to the reader that this is a finer state classification
than we used in Section 3.2: many statesφ haven customers present. Fors 6∈ φ , we
shall writeφ +s for the stateφ ∪{s}, and fors∈ φ , we shall writeφ −s for the state
φ \ {s}. Also we shall write|φ | for the number of elements in the setφ andφC for
the set{1, . . . ,C}.

As in Section 3.2, we need to make an assumption about how arriving customers
are allocated to servers. Thus we have
Assumption B

1. Customers arriving when the state isφ are allocated to each of theC− |φ | free
servers with probability 1/(C−|φ |).

No assumption about what happens when a customer departs is necessary: the label
of the corresponding server is simply deleted from the current state.

When the service times are exponential, it is unnecessary tokeep track of the
spent service times and the stationary probabilities of theresulting Markov chain
satisfy the equations

λ π( /0) =
C

∑
i=1

µπ({i}) (3.21)

(λ + |φ |µ)π(φ) = ∑
s∈φ

λ
C−|φ |+1

π(φ −s)+ ∑
s6∈φ

µπ(φ +s) (3.22)

Cµπ(φC) =
C

∑
s=1

λ π(φC−s). (3.23)

The solution that sums to unity is

π(φ) = π(0)
λ |φ |(C−|φ |)!

µ |φ |C!
(3.24)

where

π(0) =
1

∑C
i=0 ρ i i!

(3.25)

and, as in Section 3.1,ρ = λ/µ .
For anyφ , the expression on the right hand side of equation (3.24) depends on

φ only through|φ | and so, conditional on the fact that|φ | = n the distribution is
uniform. Summing over the

(C
n

)
statesφ with |φ | = n, we see that the probability

that there aren customers present in the system is



3 Insensitivity in Stochastic Models 131

π(n) = π(0)
λ n

µnn!
, (3.26)

which agrees with equation (3.2).
When the service times are generally-distributed, we can supplement the state

by the spent service time of the customers at each of the servers and use an ap-
proach similar to that of Section 3.2 to derive equations forthe stationary densities
π(φ ,ys1, . . . ,ysn) of the supplemented system. These are

λ π( /0) =
C

∑
i=1

ˆ ∞

0
π({i},yi)h(yi)dyi (3.27)

∑
s∈φ

∂
∂ys

π(φ ,ys1, . . . ,ysn) = −
[

λ + ∑
s∈φ

h(ysi )

]
π(φ ,ys1, . . . ,ysn) (3.28)

+ ∑
s6∈φ

ˆ ∞

0
π(φ +s,ys1, . . . ,ysn,ys)h(ys)dys

π(φ +s,ys1, . . . ,ysn,0) =
λ

C−n
π(φ ,ys1, . . . ,ysn) (3.29)

∑
s∈φC

∂
∂ys

π(φ ,ys1, . . . ,ysn) = −∑
s∈φ

h(ysi )π(φC,ys1, . . . ,ysn) (3.30)

wheren = |φ |. Like equations (3.10), (3.11) and (3.13), equations (3.27), (3.28)
and (3.29) and (3.30) have a solution that factorises into a product form over the
generally distributed lifetimes. This is

π(φ ,ys1, . . . ,ysn) = π(0)
λ n(C−n)!

C!

n

∏
i=1

(1−G(ysi )). (3.31)

Integrating out the supplementary variables gives us,
ˆ ∞

0
· · ·
ˆ ∞

0
π(φ ,ys1, . . . ,ysn)dysn . . .dys1 = π(0)

λ n(C−n)!
µnC!

, (3.32)

which demonstrates the insensitivity. The fact that (3.31)satisfies equations (3.27),
(3.28) and (3.29) and (3.30) again follows from a partial balance result. Specifically,
the stationary distribution of the Markovian system when all service times are taken
to be exponential not only satisfies equations (3.21), (3.22) and (3.23) but it also
satisfies the finer balance equations

λ
C−|φ |π(φ) = µπ(φ +s) (3.33)

for all φ 6= φC. This embodies that notion that, in the Markovian system, the proba-
bility flux into stateφ +sdue to the arrival of the customer at servers is equal to the
probability flux out of stateφ +sdue to the departure of the customer at servers.
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There are some subtle differences between the insensitivity result that we have
discussed in this section and the one that we proved in Section 3.2. First, observe that
expression (3.32) implies insensitivity of the stationaryprobability that the state of
the queue isφ . This is a stronger statement than saying that the stationary probability
that there aren customers present is insensitive.

Second, under the formulation of Section 3.2, particular lifetimes change their
label when arrivals and departures occur whereas, in the formulation of this section,
lifetimes retain the label for their entire duration. A consequence of this is that,
in the model of Section 3.2, all service times have to be chosen from the same
distribution while, in the formulation of this section, service times at a particular
server can have their own server-specific distribution. These distributions need not
even have the same mean, although this would necessitate a change to the form of
the stationary distribution (3.24). While this will not usually present extra flexibility
from a modelling point of view, since we usually want customers at a queue to
select their service times from the same distribution, thisdistinction illustrates that
the result in this section can be thought of as being more general that that of Section
3.2.

This observation might lead us to ask why we do not always use aGSMP for-
mulation rather than a symmetric queue formulation. The reason for this is that the
GSMP formulation works only when there are finitely-many possible labels avail-
able to be distributed to the lifetimes. This is the case for queueing models when
there is finite waiting room, but not when the possible numberin the queue is un-
bounded. In this case, it is impossible for an arriving customer to choose a label
(that is a server) uniformly from infinitely-many possibilities, as would be required
by the analogue of Assumption B. Without this assumption, itis not possible to
show that equations analogous to (3.27) to (3.30) are satisfied by the product-form
distribution (3.31). The only alternative is the relabelling up and down of customers
at arrival and departure points that we used in our formulation of Section 3.2. In this
way, labels need only be considered for customers that are actually present in the
queue, rather than for all the customers that could potentially come to the queue.
This issue was discussed in more detail by Barbour [2] and Schassberger [42].

3.4 Insensitive Queueing Networks

As we mentioned in Section 3.1, one of the major reasons that the study of insensi-
tive systems became popular in the last part of the twentiethcentury was that some
classes of queueing network with wide applicability were shown to be insensitive.
In particular, the networks studied by Baskett, Chandy, Muntz and Palacios [4] and
Kelly [27, 28] were used as models for a number of different systems of engineering
significance, particular in telecommunications and computer networking.

The essential observation of [4, 27, 28] and the other paperson insensitive queue-
ing networks that followed them (see Section 3.1 for a discussion) is that many types
of insensitive queue can be inserted into a network and the whole system will retain
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the insensitivity property. Because it has finite capacity,the Erlang loss queue is not
a queue that can be inserted into such a network, at least in a natural way, so we
shall illustrate this phenomenon using theM/G/∞ queue, which we can think of as
a ‘loss queue with infinite capacity’. The model that we shalldiscuss below is sim-
pler that that used in the work of either Baskett, Chandy, Muntz and Palacios [4] or
Kelly [27, 28], who allowed for queues to contain multiple customer types and for
the routing to depend on customer type. However, our analysis contains the essential
idea behind the justification for insensitivity in all the queueing network models in
which it is known to occur, and the context is simple enough for the reasoning to be
straightforward.

Consider anM/G/∞ queue at which customers arrive according to a Poisson
process with parameterλ , and where the service time distributionG has density
g and mean 1/µ . Assuming that labels are allocated to customers in accord with
assumption A, an analysis similar to that in Section 3.2 can be used show that the
stationary probability densityπ(n,y1, . . . ,yn) that there aren customers present, and
the spent service time of the customer with labeli is yi , is given by

π(n,y1, . . . ,yn) = π(0)
λ n

n!

n

∏
i=1

(1−G(yi)). (3.34)

whereπ(0) is equal to exp(−ρ). By integrating with respect to theyi , we can see
that the stationary probability density that there aren customers present depends on
G only through the fact that its mean is 1/µ , and so this queue is insensitive.

Now consider a finite collection ofK such queues, thekth of which has external
arrivals following a Poisson process with parameterλk, and where the service time
distributionGk has densitygk, hazard functionhk and mean 1/µk. When a customer
completes service at queuej, it moves to queuek with probabilityr jk or departs the
network entirely with probabilityr j0, where∑K

k=0 r jk = 1. These routing probabil-
ities are such that every customer eventually will, with probability one, depart the
network.

When the service times are exponentially-distributed the whole system can be
modelled by a continuous-time Markov chain with statesn = (n1, . . . ,nK), with nk

the number of customers in queuek, and stationary distributionπ(n) that satisfies
the equations

K

∑
k=1

(λk +nkµk)π(n) =
K

∑
k=1

λkI(nk > 0)π(n−ek)+
K

∑
k=1

(nk +1)µkπ(n+ek)rk0

+
K

∑
k=1

∑
j 6=k

(n j +1)µ j I(nk > 0)π(n+ej −ek)rk j, (3.35)

whereek is the unit vector with a one in thekth position. Equations (3.35) have
solution

π(n) =
K

∏
k=1

exp(−ηk)
ηnk

k

nk!
, (3.36)
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whereηk = αk/µk andα = (α1, . . . ,αK) satisfies the traffic equations

αk = λk + ∑
j 6=k

α j r jk. (3.37)

Summation of equation (3.37) overk gives us the result that

K

∑
k=1

λk =
K

∑
k=1

αkrk0. (3.38)

The key to establishing the product-form stationary distribution (3.36) is to use
equations (3.37) and (3.38) to show that, for all statesn and queuesk, this expression
satisfies the partial balance equations

nkµkπ(n) = λkI(nk > 0)π(n−ek)+ ∑
j 6=k

(n j +1)µ j I(nk > 0)π(n+ej −ek)r jk,

(3.39)
and

K

∑
k=1

λkπ(n) =
K

∑
k=1

(nk +1)µkπ(n+ek)rk0. (3.40)

This is essentially the result of Jackson [20] that the stationary distribution of a net-
work of M/M/∞ queues factorises into a product over the queues. The fact that the
stationary distribution, defined to be the solution to equations (3.35), also satisfies
the partial balance equations (3.39) and (3.40) has important implications for insen-
sitivity. To see this, we need to expand the state description of the network so that
each service time has a label of its own.

Let the state of the network ofM/G/∞ queues be defined by(n,y1, . . . ,yK) where
the vectoryk = (yk1, . . . ,yknk) contains the spent service times of the customers at
queuek. We assume that labels are allocated to customers at queuek in accord with
assumption A, whether the arriving customer comes from outside the network or
from another queue. Using reasoning similar to that in Section 3.2, we can show
that the stationary density of the queueing network satisfies the partial differential
equations

K

∑
k=1

nk

∑
i=1

∂π(n,y1, . . . ,yK)

∂yki
=−

K

∑
k=1

[
λk +

nk

∑
i=1

hk(yki)

]
π(n,y1, . . . ,yK)

+
K

∑
k=1

nk+1

∑
i=1

ˆ ∞

0
π(n+ek,y1, . . . ,yk +zi, . . .yK)hk(z)rk0dz, (3.41)

whereyk + zi is short-hand notation for the vector(yk1, . . . ,yk(i−1),z,yki, . . . ,yknk).
The boundary conditions are
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π(n+ek,y1, . . . ,yk +0i, . . . ,yK) =
λk

nk +1
π(n,y1, . . . ,yk, . . . ,yK)

+ ∑
j 6=k

1
nk +1

n j +1

∑
i=1

ˆ ∞

0
π(n+ej ,y1, . . . ,y j +zi , . . .yK)h j(z)r jkdz, (3.42)

where thenk + 1 in the denominator arises because a customer arriving at queue
k will choose any one of thenk + 1 available labels with equal probability. The
solution to equations (3.41) and (3.42) is

π(n,y1, . . . ,yK) =
K

∏
k=1

[
exp(−ηk)

αnk
k

nk!

nk

∏
i=1

(1−Gk(yki))

]
. (3.43)

This can be established by observing that relations analogous to equations (3.15)
and (3.16) hold at each of the queues. The relation corresponding to (3.15) im-
plies that the(k, i)th partial derivative on the left hand side of equation (3.41)
is balanced by the(k, i)th term of the formhk(yki)π(n,y1, . . . ,yK) on the right
hand side. The relation corresponding to (3.16), together with (3.38), implies that
−∑K

k=1 λkπ(n,y1, . . . ,yK) on the right hand side of equation (3.41) is balanced by the
integral term∑K

k=1 ∑nk+1
i=1

´ ∞
0 π(n+ ek,y1, . . . ,yk + zi , . . .yK)hk(z)rk0dz. Using equa-

tion (3.37), it can easily be verified that expression (3.43)satisfies equations (3.42).
Integration of the stationary distribution (3.43) with respect to all of the spent

lifetimes yki gives us the fact that the stationary distribution of the occupancies at
each of the nodes is given by (3.36) for all choices of servicetime distributions
{Gk} that have means{µk}. It is instructive to think about the factors that lead to
this insensitivity result. These are the facts that

• that the stationary distribution of the Markovian network factorises into a product
form over the queues, and

• that the stationary distribution of the individual queues,with state spaces includ-
ing information on the spent service time of each customer, factorise into product
forms over the individual customers.

These factorisation properties have, in turn, arisen from partial balance properties:

• that the transition flux into staten of the Markovian network due to an arrival
at queuek is balanced by the transition flux out of staten due to a departure at
queuek, and

• that the transition flux into a statenk due to the arrival of the customer with label
i is balanced by the transition flux out of statenk due to the departure of the
customer with labeli.

We can see that the two partial balance properties have led tothe fact that the net-
work is insensitive. The second requirement can be shown to be satisfied by any
symmetric queue and thus any such queue can serve as a component in an insensitive
network. The first requirement follows from the fact that therouting of customers
is ‘of Jackson type’ and, in particular, that the rate of transition of customers from
queuej to queuek does not depend on the state at queuek. It is possible for these



136 P.G. Taylor

types of partial balance to be traded off in a restricted way and for a network still to
be insensitive. For example, if the routing matrixR= [r jk] is the transition matrix of
a reversible discrete-time Markov chain, then some types ofdependence on the state
of the destination node, including blocking, can be incorporated (see, for example,
[17]). However, in general, the statement that insensitivity in a queueing network is
associated with partial balance holds. In the next section,we shall discuss the few
known examples of insensitivity that are not associated with partial balance.

3.5 Non-Standard Insensitive Models

In some queueing systems there has been observed a form of insensitivity which
does not fall into the class of insensitivity discussed above. This type of insensi-
tivity is not associated either with a product form of the supplemented stationary
distribution or with partial balance. The first example of such insensitivity was dis-
cussed by Jacobi [21], who showed that an Erlang loss system with one overflow
server is insensitive.

Another example was given by Wolff and Wrightson [52] who generalised a sys-
tem which was considered earlier by Chaiken and Ignall [6]. Wolff and Wrightson’s
system has two arrival streams to a two server loss system with stream-dependent
service time distribution. Stream 1 has preference for server 1, while stream 2 has
preference for server 2. If the state of the system were defined as the number of cus-
tomers of each type in the system then it would be an ordinary Erlang loss system
with two types of customer, which can be shown to be insensitive and to possess
product form using techniques similar to those discussed inSections 3.2 and 3.3.

Wolff and Wrightson showed, however, that this system is still insensitive if the
states are defined by the busy servers, irrespective of whichtype of customer is
present at the server. It is interesting to note that the system with either of these state
definitions can be obtained by amalgamating states of a refined GSMP in which
both the position and type of each customer are recorded in the state space. The sta-
tionary distribution of this refined GSMP does not satisfy the partial balance equa-
tions analogous to equation (3.33) and hence is not insensitive. It appears that the
distribution-dependentcomponents of the stationary state probabilities of the refined
process cancel out if the states are amalgamated according to either type or position.

Jacobi’s [21] result was built upon by Jansen [23] to come up with a class of
queues which are insensitive but do not possess product formover the supplemen-
tary variables. Jansen considered an Erlang loss system with C servers,m Poisson
arrival streams, with streami having rateλi , and statesφ ⊆ {1, . . . ,C} defining the
busy servers. He definedq j(φ , i) as the probability that a type-i customer, arriv-
ing to find a stateφ , is allocated to serverj, and derived a set of conditions on the
q j(φ , i), sufficient for the process to be insensitive. Jansen’s conditions were slightly
incorrect. However it is reasonably easy to show that the correct set of conditions is:
For j ∈ {1, . . . ,C} andi ∈ {1, . . . ,m},
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q j(φ , i) ≤ 1
C−1

(3.44)

for all φ such that|φ |< C−1, for j 6∈ φ and for alli,

q j(φ , i) =
1

C−|φ | ∑k∈φ
pk +

1
C−|φ |−1 ∑

k6∈φ
pk (3.45)

where

pk =
∑m

l=1 λl [1− (C−1)qk(φ , l)]

∑m
l=1 λl

(3.46)

and, for alli and j
q j({1, . . . ,C}−{ j}, i) = 1. (3.47)

Jansen’s class of systems includes loss queues where the allocation of customers to
servers is “nearly random”. In particular if we takeC = 2 so thatq j(φ , i) ≤ 1 we
have complete freedom to choose allocation probabilities.A choice ofq j(φ , i) = δi j

gives Wolff and Wrightson’s system.
The common thread in all of these “non-standard” insensitive systems is that

they apply in models where certain lifetimes are constrained to have the same dis-
tribution. Although partial balance is necessary and sufficient for the standard type
of insensitivity, the existence of these systems shows thatwe can have insensitivity
without partial balance if we insist that certain lifetimeshave common distributions.
The only (to the author’s knowledge) clue to the form of the stationary distribution
for such a system, supplemented by variables to describe spent or residual lifetimes,
was given by Henderson [14], who presented a solution for theLaplace transform of
the equations for the supplemented stationary distribution of Wolff and Wrightson’s
model. Unfortunately, Miyazawa and Yamazaki [36] pointed out that Henderson
omitted the necessary step of verifying that the inverse Laplace transform of his
solution can be interpreted as a distribution function. Furthermore they presented a
family of solutions similar to Henderson’s. Since it is not possible for every member
of this family to be the Laplace transform of the supplemented stationary distribu-
tion of Wolff and Wrightson’s model, it is clear that the formof this distribution is
yet to be resolved.

3.6 Conclusion

In this paper, we have presented an introduction to insensitivity as it occurs in
stochastic models. Our approach has been to illustrate the main ideas using simple
special cases. Thus, in Sections 3.2 and 3.3, we illustratedinsensitivity in symmet-
ric queues and insensitivity in GSMPs both within the context of an Erlang Loss
model. In Section 3.4 we used a network of infinite server queues to illustrate in-
sensitivity in a product-form queueing network. Finally, in Section 3.5 we discussed
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non-standard insensitive models in which insensitivity isnot associated either with
partial balance or a product-form supplemented stationarydistribution.
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Chapter 4
Palm Calculus, Reallocatable GSMP and
Insensitivity Structure

Masakiyo Miyazawa

Abstract This chapter discusses Palm calculus and its applications to various pro-
cesses including queues and their networks. We aim to explain basic ideas behind
this calculus. Since it differs from the classical approachusing Markov processes,
we scratch from very fundamental facts. The main target of Palm calculus is station-
ary processes, but we are also interested in its applications to Markov processes. For
this, we consider piece-wise deterministic processes and reallocatable generalized
Markov processes, RGSMP for short, and characterize their stationary distributions
using Palm calculus. In particular, the insensitive structure of RGSMP with respect
to the lifetime distributions of its clocks is detailed. Those results are applied to
study the insensitive structure of product form queueing networks with respect to
service requirement distributions.

4.1 Introduction

In queues and their networks, it is typical that their time evolutions substantially
change only when customers arrive or complete service. Thatis, essential changes
occur only at embedded instants on the continuous time axis.This is a prominent
feature of stochastic models for those systems. Such time instants are caused typi-
cally by arrivals and departures of customers, and often called discrete events. As
is well known, it motivates to use discrete time stochastic processes embedded at
those time instants. However, sample paths of such embeddedprocesses may lose
key information on the system evolution. Thus, they may be only useful in limited
situations. Of course, those sample paths can retain full information of the system if
we supplement them with all information between the embedded instants. However,
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it causes their descriptions to be complicated, and therefore analytical tractability
may be lost.

In this chapter, we introduce a stochastic model to capture those discrete time
nature in the continuous time setting. We aim to avoid to simultaneously use dif-
ferent processes for describing discrete events under the continuous time setting.
Instead of doing so, we introduce different probability measures on the same sam-
ple space. They describe observations at times of interests. That is, they are used to
compute characteristics of system states at continuous time or various embedded in-
stants. When such characteristics are expectations of somerandom quantities, they
are called time or event averages, respectively. Under certain stationary assump-
tions, it is shown that those probability measures are nicely related. This leads to
useful relationship among time and event averages. It is referred to as Palm cal-
culus since the probability measures concerning embedded epochs are called Palm
distributions.

We apply this Palm calculus to stochastic processes arisen in queues and their
networks. However, the Palm calculus itself may not be convenient since it usually
involves integrations over the time axis. To ease this, we introduce a rate conserva-
tion law, which may be considered as a differential form of the Palm calculus.

Those results by the Palm calculus are very general in the sense that they only
require the stationary assumption. However, we may need more specific models to
compute characteristics in closed form. For this, we consider a piece-wise deter-
ministic Markov process, PDMP for short. We then specializeit as a reallocatable
generalized semi-Markov process, RGSMP for short. We are interested in when
RGSMP has a certain nice form of the stationary distribution. It turns out that con-
ditions for this form are closely related to those for a queueing network to have a
product form stationary distribution. Under the same conditions, we also consider
the conditional mean sojourn time of a customer in a queue or in a network given
total amount of his/her work.

In this chapter, we consider analytical tools for studying queueing models rather
than just to collect results for applications. However, we divide this chapter into
small sections to highlight each topic. We expect the readerhas some background
in introductory levels of the probability and measure theories. Some descriptions
particularly in the first few sections may look too formal since they are different
from those in the standard queueing literature. However, arguments are essentially
elementary. A problem is probably in the language that we use. So, we provide its
details.

4.2 Shift operator group

When we consider a stochastic process for queueing models, we usually do not
explain the probability space, i.e., the triplet of a samplespace, aσ -field and a
probability measure on it under which the process is defined.This is because the
probability space is obviously identified. However, we herestart from this very ba-
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sic description since we will consider different probability measures on the same
sample space andσ -field. We also play with different stochastic processes which
have a common time axis. For this, it is convenient to implement a time axis in the
sample space. Thus, we introduce a time-shift operator on it.

Let (Ω ,F) be a measurable space, and letθt be an operator onΩ , i.e., a mapping
from Ω to Ω for each real numbert ∈R. Since we consider a function of timet and
analytic operations on it, we need conditions to well define them. Thus, we formally
define the operatorθt in the following way.

Definition 4.1. For the operatorθt on Ω for eacht, define functionϕ from R×Ω
to Ω by ϕ(t,ω) = θt(ω), and letB(R) be the Borelσ -field onR. If the condition:

(4.2a)ϕ is B×F/F-measurable, i.e.,ϕ−1(A) ∈B×F for all A∈ F,

is satisfied, then{θt ; t ∈R} is said to be measurable. In addition to this, if

(4.2b) For anys, t ∈R, θs◦θt = θs+t , namely,

θs(θt(ω)) = θs+t(ω), ω ∈Ω ,

is satisfied, then{θt} is said to be a shift operator group.

Example 4.1.A natural candidate for the sample spaceΩ for θt to be defined is
the set of functions onR, which represents the time axis. For example, letS be
a complete, separable metric space, which is called Polish space, and letB(S) be
the Borelσ -field on S. Thus, we have measurable space(S,B(S)). Let Ω be the
set ofS-valued functions onR whose discontinuous points are countable at most
and are right continuous. Sinceω ∈ Ω is a function of time, it can be written as
{ω(t)}. Theσ -field F can be generated from all the following subsets ofΩ for all
n≥ 1, ti ∈ R,Bi ∈B(S) for i = 1,2, . . . ,n.

{ω ∈Ω ;ω(ti) ∈ Bi , i = 1,2, . . . ,n}.

Then, we can define the shift operator groupθt through

θt(ω)(s) = ω(s+ t), s,t ∈R.

We refer to thisθt as a natural shift operator.

We next define stationarity with respect to the shift operator.

Definition 4.2. Let {θt} be an operator group on a measurable space(Ω ,F). If a
probability measure on(Ω ,F) satisfies

P(θ−1
t (A)) = P(A), t ∈ R,A∈ F,

thenP is said to beθt -stationary, or stationary with respect to{θt}.

Up to now, we have only considered the time to be real valued, i.e., continuous.
We are also interested in discrete time. In this case, the shift operator onΩ is denoted
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by ηn for n∈ Z, whereZ is the set of all integers. Obviously, conditions (4.2a) and
(4.2b) are replaced by

(4.2c) For anyn∈ Z, η−1
n (A) ∈ F for A∈ F,

(4.2d) For anym,n∈ Z, ηm◦ηn = ηm+n.

Similarly to θt , {ηn;n ∈ Z} is said to be measurable if (4.2c) is satisfied, and said
to be an discrete time shift operator group if (4.2c) and (4.2d) are satisfied. Further-
more,P is said to beηn-stationary ifP(η−1

1 (A)) = P(A) for all A∈ F.
We next apply the shift operators to functions onΩ , that is, random variables

and sample paths. Throughout this chapter, we assume that random variables and
states of stochastic processes take values in a Polish spaceS with the Borelσ -
field B(S). However, in our applications, it is sufficient to assume that S is a finite
dimensional Euclid space, i.e., real valued vector space. As usual, we also assume
that a stochastic process is right-continuous with left limits.

Definition 4.3. Let {θt} be an operator group on(Ω ,F), and letX be a random
variable on this measurable space. Define random variableX ◦θt as

X ◦θt(ω) = X(θt(ω)), ω ∈Ω .

With this notation, a stochastic process{X(t)} defined on(Ω ,F) is said to be con-
sistent withθt if the following condition is satisfied.

X(s)◦θt = X(s+ t), s,t ∈ R

Similarly, we define the consistency of a discrete time process{Xn} with respect to
a discrete time shift operatorηn by

Xm◦ηn = Xm+n, m,n∈ Z.

The following definitions of stationary processes are standard.

Definition 4.4. A stochastic process{X(t)} is said to be stationary underP if , for
each fixedn≥ 1, ti ∈ R,Bi ∈B(S) for i = 1,2, . . . ,n,

P(X(ti +u) ∈ Bi , i = 1,2, . . . ,n)

is unchanged for allu∈R. Similarly, the stationarity of a discrete time process{Xn}
underP0 is defined, whereP0 is another probability measure on(Ω ,F).

The next lemma is immediate from the definitions of the shift operators, the
consistency and the stationarity.

Lemma 4.1.If P is a θt -stationary probability measure and if{X(t)} is consistent
with {θt}, then{X(t)} is a continuous time stationary process underP. Similarly, if
P0 is ηn-stationary and if{Xn} is consistent with{ηn}, then{Xn} is a discrete time
stationary process underP0.
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It should be noted that we are concerned with different probability measures in
Lemma 4.1, but the underlying measurable spaces, i.e., the sample space and the
set of all events, are the same. This allows us to directly relateX(t) to Xn through
ω ∈Ω .

Example 4.2.How one can create a sample spaceΩ with operationsθt andηn for a
queueing model ? Let us consider this problem by a small example. Since an actual
system usually starts at some fixed time, we assume that a queueing system starts
with no customer at timec0≡ 0. Assume that this system is closed with no customer
just before timec1. We represents the evolution of this system on the time interval
by a functionf from [c0,c1) to S, whereS is a finite dimensional real vector space.
At time c1, the system restarts and repeats the same trajectory until time c2 ≡ 2c1.
If the system operates in this manner continuously, then we have a trajectoryω+

0 :

ω+
0 (t) =

∞

∑
n=1

f (t−cn−1)1(cn−1≤ t < cn), t ≥ 0,

wherecn = nc1, and 1(·) is the indicator function of the statement “·”, i.e., it takes 1
(or 0) if the statement is true (or false). We next shift the starting timec0 to−kc1 for
positive integerk, and lettingk to infinity, we have the double sided trajectoryω0:

ω0(t) =
+∞

∑
n=−∞

f (t−cn−1)1(cn−1≤ t < cn), t ≥ 0.

Let ω(u)
0 (t) = ω0(t−u) for u∈ [0,c1), and define the sample spaceΩ as

Ω = {ω(u)
0 ;u∈ [0,c1)}.

Since this sample space is the set of functions onR and closed under time shift, we
have a natural shift operatorθt . Furthermore, let

ηn◦ω(u)
0 (t) = ω0(t−cn), u∈ [0,c1),t ∈ R,n∈ Z.

Then,{ηn} is a discrete time shift operator group. Obviously, this operator group is
stationary for any probability measure. Sincef is a deterministic function, a prob-
ability measure on(Ω ,F) can be determined by that on[0,c1)×B([0,c1)). In par-
ticular, if this distribution is uniform on[0,c1), then P is stationary with respect to
the natural shift operator group{θt}.

This example is trivial in the sense that all sample paths aregenerated by a single
function{ω0(t)}. Nevertheless, it can be used a prototype of the probabilityspace
for shift operators. For example, if we changecn−cn−1 to bei.i.d. (that is, indepen-
dently and identically distributed) random variables and functions on the intervals
[cn−1,cn) to be alsoi.i.d. random functions, then, using the same uniform distribu-
tion, we can construct the probability measure which is stationary with respect to the
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natural shift operator group{θt}. This construction will be systematically studied
in the following two sections.

4.3 Point processes

We introduce a process for randomly chosen discrete time instants on the time axis.
This process is called a point process, and will be used to generate a discrete time
process, called embedded process, from a continuous time process. Thus, the point
process will make a bridge between continuous time and discrete time embedded
processes.

Definition 4.5. N is called a point process on the line if it satisfies the following two
conditions.

(4.3a)N is an integer-valued and locally finite random measure on(R,B(R)), that
is, eachω ∈ Ω , N(·)(ω) is an integer-valued measure on(R,B(R)) such that
N(B)(ω) < ∞ for any boundedB∈B(R) andω ∈Ω .

(4.3b) For alln≥ 1, Bi ∈B(R) andni ∈ Z+ ≡ {0,1, . . .} for i = 1,2, . . . ,n,

{N(Bi) = ni , i = 1,2, . . . ,n} ∈ F.

Furthermore, ifN({t})≤ 1 for all t ∈R, thenN is said to be simple.

If we remove the assumption thatN(B) is integer-valued, we can similarly define
a random measure, but we do not need this generality in this chapter except for
Section 4.11.

Similar to the case of a stochastic process, we define the operation ofθt to point
processN as

N(B)◦θt(ω) = N(B)(θt (ω)), t ∈ R,ω ∈Ω ,B∈B(R).

In what follows, we assume

N(B)◦θt = N(t +B), t ∈ R,B∈B(R),

wheret + B = {t + u;u∈ R}. In this case,N is said to be consistent withθt . This
is meant thatN andθt have a common time axis similar to the case of a stochastic
process.

The stationarity of point processN is defined similar to that of a stationary
process. That is,N is said to be stationary if, for alln ≥ 1, k1, . . . ,kn ∈ Z+ and
B1, . . . ,Bn ∈B(R)

P(N(t +B1) = k1,N(t +B2) = k2, . . . ,N(t +Bn) = kn)

is unchanged for allt ∈ R.
The next lemma is a point process version of Lemma 4.1.
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Lemma 4.2.If P is θt -stationary and ifN is consistent withθt , thenN is stationary
underP.

Note thatN((0, t]) with t > 0 can be considered to be a counter for random events
that occur in the time interval(0,t]. Because of this, a point process is also called a
counting process. From this viewpoint, it may be convenientto define the time when
the discrete events occur. Let

Tn =

{
inf{t > 0;N((0,t])≥ n}, n≥ 1,
sup{t ≤ 0;N((t,0])≥ 1−n}, n≤ 0.

This Tn is said to be then-th counting time ofN. SinceTn = Tn+1 may occur for
n 6= 0, Tn may not be strictly increasing inn. We thus have

. . .≤ T0≤ 0 < T1≤ . . . (4.1)

From the definition ofTn, we have

N(B) =
+∞

∑
n=−∞

1(Tn ∈ B), B∈B(R),

and the right-hand side of this equation can be written as

ˆ +∞

−∞
1(u∈ B)N(du).

Remind that 1(·) is the indicator function of the statement “·” (see its definition in
Example 4.2).

In the remaining part of this section, we assume thatN is a simple point process.
In this case,Tn is strictly increasing inn. For convenience, let

N(t) =

{
N((0,t]), t > 0,
−N((t,0]), t ≤ 0.

SinceN is simple,N(Tn) = n for n≥ 1. Note thatN is assumed to be consistent with
the shift operatorθt . This yields, forn≥ 1 ands> 0,

Tn ◦θs = inf{t > 0;N◦θs((0,t]) = n}
= inf{t > 0;N((s,s+ t]) = n}
= TN(s)+n−s. (4.2)

Fors≤ 0 andn≤ 0, we can get the same formula (4.2). In particular, lettings= Tm

in (4.2),N(s) = m yields

Tn◦θTm = Tm+n−Tm.

Thus,θTn shifts the counting number. From this observation, we defineηn for n≥ 1
as
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ηn(ω) = θTn(ω)(ω), ω ∈Ω . (4.3)

Lemma 4.3.For simple point processN, {ηn;n∈Z} is a discrete time shift operator
group on(Ω ,F).

Proof. From (4.3), we have

ηn◦ηm = θTn◦ηm ◦ηm

= θTm+n−Tm ◦θTm

= θTm+n = ηm+n.

Hence,ηn satisfies (4.2d), which corresponds with (ii) of Definition 4.1. To see
condition (4.2c), letΦ(ω) = (Tn(ω),ω) for ω ∈ Ω , which is a function fromΩ to
R×Ω . This function isF/(B(R)×F)-measurable. We next letϕ((t,ω)) = θt(ω),
which is a(B(R)×F)/F measurable function fromR×Ω to Ω . Hence,ηn = ϕ ◦Φ
is F/F-measurable, which completes the proof.

Thus, we get the discrete time shift operatorηn from the continuous time shift
operatorθt . The ηn describes the time shift concerning the point processN. The
following observation is intuitively clear, but we give a proof since it is a key of our
arguments.

Lemma 4.4.Suppose that stochastic process{X(t); t ∈R} and simple point process
N are consistent withθt . Define discrete time process{Yn;n∈ Z} byYn = X(Tn) for
the counting times{Tn} of N. Then,{Yn} is consistent withηn.

Proof. From (4.3) and the fact thatX(t) is consistent withθt , we have

Yn ◦ηm = X ◦ηm(Tn ◦ηm)

= X ◦θTm(Tm+n−Tm)

= X(Tm+n−Tm+Tm) = Ym+n.

Thus,Yn is indeed consistent withηn.

We next add information to the counting timesTn of N. This information is called
mark, and the resulted process is called a marked point process. This process is
formally defined in the following way. LetN be a simple point process which is
consistent withθt , and let{Tn} be its counting times. Further, let{Yn} be a discrete
time process with state space byK, whereK is assumed to be a Polish space. Then,
Ψ ≡ {(Tn,Yn)} is called a marked point process, andYn is said to be a mark at the
n-th pointTn.

Define a random measureMΨ on (R×K,B(R)×B(K)) as

MΨ (B,C) =
+∞

∑
n=−∞

1(Tn ∈ B,Yn ∈C), B∈B(R),C∈B(K)

whereB(K) is the Borelσ -field onK. If we have, for allt ∈ R,
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MΨ (B,C)◦θt = MΨ (B+ t,C), B∈B(R),C∈B(K),

thenΨ is said to be consistent withθt . In particular, if{Yn} is consistent withηn≡
θTn, thenMΨ is consistent withθt . In fact, from (4.2), we have

{Tn◦θt ∈ B}= {TN(t)+n ∈ B+ t}.

On the other hand,Yn = Y0◦ηn yields

Yn◦θt(ω) = Y0(θTn◦θt(ω)(θt(ω))

= Y0(θTN(t)(ω)+n(ω)(ω)) = YN(t)(ω)+n(ω).

Hence, the claim is proved by

MΨ (B,C)◦θt =
+∞

∑
n=−∞

1(TN(t)+n ∈ B+ t,YN(t)+n ∈C) = MΨ (B+ t,C).

We also define the stationarity ofΨ similar toN. Namely, if, for alln andBi ∈
B(R),Ci ∈B(K) (i = 1,2, . . . ,n)

P(MΨ (B1 + t,C1),MΨ (B2 + t,C2), . . . ,MΨ (Bn + t,Cn))

is unchanged for allt ∈ R, thenΨ is said to be stationary underP. Similarly to 4.2,
we have the following fact, whose proof is left to the reader.

Lemma 4.5.If P is θt -stationary and if marked point processΨ is consistent with
θt , thenΨ is stationary underP.

4.4 Palm distribution

One may wonder whetherP can beθt -stationary andηn-stationary simultaneously.
This may look possible, but it is not true. To see this, we consider time shift opera-
tions underP assuming that it isθt -stationary.

We first note that the distribution of{Tn+ t;n∈ Z} is unchanged underP for any
t ∈ R by theθt -stationarity. Hence, shifting the time axis does not change the prob-
ability measure. We now shift the time axis subject to the uniform distribution on
the unit interval[0,u] independently of everything else for a large but fixed number
u > 0. The choice of thisu is not essential in the subsequent arguments, but think-
ing of the largeu may be more appearing. The renumbered{Tn} still has the same
distribution becauseP is unchanged. Under such time shifting,Tn is changed toT1

if the time interval(Tn−1,Tn] contains the origin. Because the longer time interval
has more chance to include the origin,T1−T0 would be differently distributed from
Tn+1−Tn for n 6= 0, where the numbersn of Tn are redefined after the time shifting.
On the other hand, ifP is ηn-stationary, then we have
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(T1−T0)◦ηn = Tn+1−Tn,

which implies thatT1− T0 and Tn+1− Tn are identically distributed. Hence, it is
impossible thatP is θt -stationary andηn-stationary simultaneously.

This observation motivates us to introduce a convenient probability measure for
ηn.

Definition 4.6. Suppose thatP is θt -stationary, point processN is consistent withθt

and has a finite intensityλ ≡N((0,1). Define nonnegative valued set functionP0 on
F as

P0(A) = λ−1E
(ˆ 1

0
1θ−1

u (A)N(du)
)
, A∈ F, (4.4)

where 1A is the indicator function of setA, i.e., 1A(ω) = 1(ω ∈ A). Note that
1θ−1

u (A)(ω) = 1A(θu(ω)) = (1A ◦ θu)(ω). Then, it is easy to see thatP0 is a prob-

ability measure on(Ω ,F), which is referred to as a Palm distribution concerningN.
Note thatN is not necessarily simple in this definition.

Remark 4.1.(4.4) is equivalent to that, for any functionf from Ω to R which is
F/B(R)-measurable and either bounded or nonnegative, the following equation
holds.

E0( f ) = λ−1E
(ˆ 1

0
f ◦θuN(du)

)
, (4.5)

whereE0 represents the expectation concerningP0.

Let A = {T0 = 0} in (4.2), then, for anyu∈ R,

θ−1
u (A) = {ω ∈Ω ;θu(ω) ∈ A}

= {T0◦θu = 0}= {TN(u) = u}.

Furthermore, sinceN({u})≥ 1 impliesTN(u) = u, we have, from (4.4),

P0(T0 = 0) = λ−1E(N((0,1])) = 1.

Hence,N has a mass at the origin underP0. This means thatP0 is a conditional
probability measure givenN({0})≥ 1.

The following result is a key to relateP0 to P whenP is θt -stationary, whereP0 is
the Palm distribution concerningN. The formula (4.6) below is referred to as either
Campbell’s or Mecke’s formula in the literature.

Lemma 4.6.Let {X(t)} be a nonnegative valued stochastic process, then we have

E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
= λE0

(ˆ +∞

−∞
X(u)du

)
. (4.6)
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Proof. Define a nonnegative random variablef as

f =

ˆ +∞

−∞
X(s)ds=

ˆ +∞

−∞
X(s+u)ds.

Substituting this into (4.5), we obtain (4.6) through the following computations.

λE0

(ˆ +∞

−∞
X(s)ds

)
= E

(ˆ 1

0

(ˆ +∞

−∞
X(s+u)◦θuds

)
N(du)

)

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u < 1)X(s+u)◦θuN(du)

)
ds

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u < 1)X(s+u)◦θu+sN(du+s)

)
ds

=

ˆ +∞

−∞
E
(ˆ +∞

−∞
1(0 < u−s< 1)X(u)◦θuN(du)

)
ds

= E
(ˆ +∞

−∞

ˆ u

u−1
dsX(u)◦θuN(du)

)

= E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
,

where the third equation is obtained using the fact thatP is θt -stationary.

It is notable that{X(t)} in 4.6 is not necessarily consistent withθt , and therefore
it is not necessary stationary underP. The essence of (4.6) lies in the shift invariance
of P and Lebesgue measure onR.

Example 4.3 (Little’s formula).We derive a famous formula due to Little [20] using
4.6. Consider a service system, where arriving customers get service and leave. Let
Tn be then-th arrival time, whereTn is also defined forn≤ 0. Let N be a point
process generated by theseTn, and letθt be a shift operator onΩ . We assume that
N is consistent withθt . Let Un be the sojourn time ofn-th customer in system. We
also assume that{Un;n∈ Z} is consistent withηn defined by (4.3).

Then, the number of customersL(t) in system at timet is obtained as

L(t) =
+∞

∑
n=−∞

1(Tn≤ t < Tn +Un).

Assume thatL(t) is finite for all t ∈ Z. LetN(s) = N((0,s]), thenTn◦θs = TN(s)+n−
s, Un = U0◦ηn andηn ◦θs = θTN(s)+n

. Hence,

L(t)◦θs =
+∞

∑
n=−∞

1(TN(s)+n≤ s+ t < TN(s)+n +Un) = L(s+ t),

so{L(t)} is consistent withθt . Assume thatP is θt -stationary andλ ≡E(N((0,1]))
is finite. Thus,{L(t)} is a stationary process underP.
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Let X(u) = 1(T0≤−u < T0 +U0), then we have

ˆ +∞

−∞
X(u)du= U0,

ˆ +∞

−∞
X(u)◦θuN(du) =

+∞

∑
n=−∞

1(0≤−Tn < Un) = L(0).

Hence, 4.6 yields

E(L(0)) = λE0(U0). (4.7)

This is called Little’s formula.

Let Ψ = {(Tn,Yn)} be a marked point process which is consistent withθt , and
let N be a point process generated by{Tn} with a finite intensityλ ≡ E(N(0,1]). In
4.6, for each fixedB∈B(R),C∈B(K), let

X(u) = 1(u∈ B,Y0 ∈C), t > 0.

Since
ˆ +∞

−∞
X(u)◦θuN(du) =

+∞

∑
n=−∞

1(Tn ∈ B,Yn ∈C),

(4.6) yields

E(MΨ (B,C)) = λ |B|E0(Y0 ∈C), t > 0, (4.8)

where|B|=
´

Bdu, that is, ifB is an interval, then|B| is the length ofB. From this,
we have known that measureE(MΨ (B,C)) on(R×K,B(R)×B(K)) is the product
of Lebesgue measure and the distribution ofY0 underP0.

Another interesting conclusion of 4.6 is the orderliness ofa simple point process.

Corollary 4.1. AssumeN is a simple point process that is consistent withθt and has
a finite intensityλ , then

lim
t↓0

1
t

E(N(T1,t];T1 < t) = 0, (4.9)

and therefore

lim
t↓0

1
t
P(θ−1

T1
(A),T1≤ t) = λP0(A), A∈ F. (4.10)

Proof. SinceN(T1, t] =
´ t

0 1(u > T1)N(du) for t > T1 andT1◦θ−u = T−N(−u,0]+1+u
for u > 0, 4.6 yields
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E(N(T1, t]; t > T1) = E

(
ˆ t

0
(1(u > T1)◦θ−u)◦θuN(du)

)

= E

(
ˆ t

0
1(T−N(−u,0]+1 < 0)◦θuN(du)

)

= λE0

(
ˆ t

0
1(T−N(−u,0]+1 < 0)du

)
.

SinceP0(T0 = 0) = 1, the indicator function 1(T−N(−u,0]+1 < 0) vanishes asu ↓ 0
(see also (4.1)). Hence, dividing both sides of the above equation byt and letting
t ↓ 0, we have (4.9) by the mean value theorem of an elementary calculus. To get
(4.10), we apply 4.6 forX(u) = 1(0 < u≤ t)1A for t ≥ 0 andA∈ F, then

λ tP0(A) =

(
ˆ t

0
1A◦θuN(du)

)

= P(θ−1
T1

(A),T1≤ t)+E

(
ˆ t

T1+
1A◦θuN(du)

)
.

Dividing both sides byt and lettingt ↓ 0, (4.9) yields (4.10), where the plus sign
at T1 in the integral indicates that the lower pointT1 is not included in the integral
region.

Note that (4.10) gives another way to define the Palm distribution P0. This may
be more intuitive, but the limiting operation may not be convenient in addition to
the restriction to a simple point process.

4.5 Inversion formula

We next present basic properties of Palm distributionP0 and to give a formula to get
backP from P0 directly.

Theorem 4.1.Suppose thatN is a simple point process which is consistent withθt

and has a finite and non-zero intensityλ = E(N((0,1]). If P is θt -stationary, thenP0

is ηn-stationary. Hence,{Yn} of 4.4 is a discrete time stationary process underP0.
Furthermore,P is obtained fromP0 by

P(A) = λE0

(ˆ T1

0
1θ−1

u (A)du
)
, A∈ F. (4.11)

Proof. The first half is obtained ifP0(η−1
1 (A)) = P0(A) holds. We prove this using

the definition of the Palm distribution (4.4). Becauseη1 = θT1 and (4.2) implies

θT1 ◦θu(ω) = θTN(u)+1(ω)−u(θu(ω)) = θTN(u)+1
(ω),

we have
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θ−1
u (η−1

1 (A)) = {η1◦θu ∈ A}= {θTN(u)+1
∈ A}.

Applying this to (4.4), we have

P0(η−1
1 (A)) = λ−1E

(N(1)

∑
n=1

1(θTn+1 ∈ A)
)

= λ−1

(
E
(N(1)

∑
n=1

1(θTn ∈ A)
)

+P(θTN(1)+1
∈ A)−P(θT1 ∈ A)

)
.

SinceθT1 ◦θ1 = θTN(1)+1
andP is θt -stationary, we have

P(θTN(1)+1
∈ A) = P(θT1 ∈ A).

Thus, we getP0(η−1
1 (A)) = P0(A). We next prove (4.11). For this, let

X(u) = 1(N((−u,0)) = 0,u > 0)1θ−1
u (A),

then

X(u)◦θu = 1(N((0,u)) = 0,u > 0)1A = 1(0 < u≤ T1)1A.

Substituting this in the left-hand side of (4.6), we have

E
(ˆ +∞

−∞
X(u)◦θuN(du)

)
= E(1A) = P(A),

sinceN(du) has a unit mass atu = T1. On the other hand, the right-hand side of
(4.6) becomes

E0

(ˆ +∞

−∞
X(u)du

)
= E0

(ˆ 0

T−1

1θ−1
u (A)du

)

= E0

(ˆ 0

T−1◦η1

1(θu◦η1)−1(A)du
)

sinceP0 is ηn-stationary. Note thatT−1 ◦η1 = T0−T1 andθu ◦η1 = θu+T1. Hence,
changing the integration variable fromu to u+T1 in the last term and using the fact
thatP0(T0 = 0) = 1, we have (4.11).

An excellent feature of the definition (4.4) of Palm distribution P0 is that it com-
putes the conditional distribution given the event with probability zero, using neither
limiting operations nor conditional expectation as a Radon-Nikodym derivative of
the measure theory.

From (4.11),P is obtained fromP0. In this sense, it is called an inversion formula.
Another interpretation of (4.11) is that it represents the time average of the indicator
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function ofA from T0 = 0 to T1. Since{Tn−Tn−1} is stationary underP0, (4.11) is
also called a cycle formula.

The next result shows that the inverse of Theorem 4.1 holds.

Theorem 4.2.Suppose that a simple point processN is consistent withθt , a measure
P0 on (Ω ,F) satisfies that 0< E0(T1) < ∞ for T1 ≡ sup{u > 0;N(0,u) = 0}. Let
λ = 1/E0(T1). If P0 is ηn-stationary, thenP defined by (4.11) is aθt -stationary
probability measure. Furthermore,E(N((0,1]) = λ and (4.4) holds for theseP0 and
P.

Proof. It is easy to see thatP is a probability measure. Let us showP(θ−1
t (A)) =

P(A) for A∈ F and for allt ∈ R. From the definition (4.11) ofP, we have

P(θ−1
t (A)) =

1
E0(T1)

E0

(ˆ T1

0
1θ−1

t+u(A)
du
)

=
1

E0(T1)
E0

(ˆ t+T1

t
1θ−1

u (A)du
)

=
1

E0(T1)
E0

(ˆ T1

0
1θ−1

u (A)du+

ˆ t+T1

T1

1θ−1
u (A)du−

ˆ t

0
1θ−1

u (A)du
)
.

SinceP0 is ηn-stationary, we haveE0(X) = E0(X ◦η1) for a nonnegative random
variableX. Hence, we have

E0

(ˆ t

0
1θ−1

u (A)du
)

= E0

(ˆ t

0
1(θu◦η1)−1(A)du

)

= E0

(ˆ t

0
1θ−1

u+T1
(A)du

)

= E0

(ˆ t+T1

T1

1θ−1
u (A)

du
)
.

Thus, we getP(θ−1
t (A)) = P(A), so P is θt -stationary. It remains to prove (4.4),

whereP is defined by (4.11). Using thisP, defineP†
0 as

P†
0 (A) =

1
E(N((0,1]))

E
(ˆ 1

0
1θ−1

u (A)N(du)
)
, A∈ F.

Thus, the proof is completed if we showP0 = P†
0 . This equality is equivalent to that,

for nonnegative and bounded random variablef ,

E0( f ) =
1

E(N((0,1]))
E
(ˆ 1

0
f ◦θuN(du)

)
.

From (4.11),

E
(ˆ 1

0
f ◦θuN(du)

)
= λE0

(ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds

)
. (4.12)
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Hence, we need to verify that

E0( f ) =
λ

E(N((0,1]))
E0

(ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds

)
. (4.13)

Let us prove (4.13). We first compute the inside of the expectation in the right-hand
side of (4.13). Since Lebesgue integration is unchanged by shifting the integration
variable, we have

ˆ T1

0

(ˆ 1

0
f ◦θuN(du)

)
◦θsds=

ˆ T1

0

(ˆ 1

0
f ◦θu+sN(du+s)

)
ds

=

ˆ T1

0

(ˆ s+1

s
f ◦θuN(du)

)
ds

=

ˆ +∞

−∞

ˆ T1

0
1(s< u < s+1)ds( f ◦θu)N(du)

=
+∞

∑
n=−∞

ˆ T1

0
1(s< Tn < s+1)ds( f ◦θTn).

SinceP0 is stationary with respect toηn = θTn, the expectation concerningP0 in the
left-hand side of (4.13) becomes

+∞

∑
n=−∞

E0

(ˆ T1

0
1(s< Tn < s+1)ds( f ◦θTn)

)

=
+∞

∑
n=−∞

E0

((ˆ T1

0
1(s< Tn < s+1)ds f◦ηn

)
◦η−n

)

=
+∞

∑
n=−∞

E0

(ˆ T1−n−T−n

0
1(s< T0−T−n < s+1)ds f

)

= E0

( +∞

∑
n=−∞

ˆ T1−n

T−n

1(s< T0 < s+1)ds f
)

= E0

(ˆ +∞

−∞
1(T0−1 < s< T0)ds f

)
= E0( f ).

Thus, (4.13) is obtained ifλ = E(N((0,1])). The latter is obtained from (4.12) with
f ≡ 1 and the above computations. This completes the proof.

In applications, particularly in queueing networks, we frequently meet the situa-
tion that point processN is the superposition ofm point processesN1, . . . ,Nm all of
which are consistent withθt for somem≥ 2. Namely,

N(B) = N1(B)+ . . .+Nm(B), B∈B(R).

Assume thatP is θt -stationary, andλ ≡ E(N((0,1]) < ∞ with λ 6= 0. For i =
1,2, . . . ,m, let λi = E(Ni((0,1])), and denote Palm distribution concerningNi by
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Pi . Then, from the definition of Palm distribution, it is easy tosee that

λP0(A) =
m

∑
i=1

λiPi(A), A∈ F. (4.14)

This decomposition of the Palm measure is shown to be useful in applications (see
Section 4.10).

4.6 Detailed Palm distribution

We have mainly considered Palm distribution when point processN is simple. The
definition of Palm distribution itself does not need forN to be simple. However, if
N is not simple,ηn defined byηn = θTn can not properly handle events that simulta-
neously occur in time. We need to differently define Palm distribution for this case.
To this end, we consider a pair ofTn andηn, whereηn is a discrete time operator
group. In what follows, point processN is assumed to be generated by{Tn}, andN
is not necessarily simple.

Definition 4.7. Let {Tn;n ∈ Z} be a nondecreasing sequence of random variables,
which generate point processN, and let{ηn} be the discrete time shift operator
group. If

{(Tn,ηn)} ◦θt = {(Tn− t,ηn)}, n∈ Z,t ∈R

holds, then{(Tn,ηn)} is said to be aθt -consistent marked point process with shift
operatorηn.

Definition 4.8. Suppose thatP be θt -stationary and{(Tn,ηn)} is a θt -consistent
marked point process withηn, where. . . ≤ T−1 ≤ T0 ≤ 0 < T1 ≤ T2 ≤ . . ., and
λ ≡ E(N((0,1])) < ∞. Then, we defineP0 as

P0(A) = λ−1E
(N((0,1])

∑
n=1

1η−1
n (A)

)
, A∈ F. (4.15)

This P0 is a probability measure on(Ω ,F), and called a detailed Palm distribution
concerning{Tn}.

Detailed Palm distributionP0 is different from Palm distributionP0 concerning
N if N is not simple. Nevertheless, we can extend the results in theprevious two
sections to detailed Palm distribution. Since their proofsare similar to the previous
ones, we present their versions for Theorems 4.1 and 4.2 without proof.

Theorem 4.3.Suppose thatP is θt -stationary,{(Tn,ηn)} is a θt consistent marked
point process, andλ ≡ E(N((0,1])) < ∞. Then, detailed Palm distributionP0 is
ηn-stationary. Furthermore,P is recovered fromP0 by
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P(A) = λE0

(ˆ T1

0
1θ−1

u (A)du
)
, A∈ F. (4.16)

whereE0 represents the expectation concerningP0. Conversely, suppose that prob-
ability measureP0 on (Ω ,F) satisfies 0< E0(T1) < ∞ andP0 is ηn-stationary for
a given discrete time shift operator group{ηn}. Let λ = 1/E0(T1) and defineP by
(4.16), Then,P is a probability measure on(Ω ,F) which is θt -stationary, and we
haveE(N((0,1]) = 1/E0(T1) = λ . For theseP0 andP, we have (4.15).

We next consider another way to define the detailed Palm distribution. For this,
we use a simple point process which have masses at the same time instant asN.
Denote this point process byN∗. Namely,N∗ is defined as

N∗(B) =

ˆ

B

1
N({u})N(du), B∈B(R). (4.17)

This point process is said to be a simple version ofN. Let T∗n be then-th counting
point ofN∗.

Lemma 4.7.Under the same assumptions of Definition 4.8, letλ ∗ = E(N∗((0,1]))
and denote the Palm distribution concerningN∗ by P∗0 , then we have

P0(A) =
λ ∗

λ
E∗0
(N((0,T∗1 ])

∑
n=1

1η−1
n (A)

)
, A∈ F, (4.18)

whereE∗0 represents the expectation concerningP∗0 .

Proof. Let η∗n = θT∗n . Then, from the definition of Palm distributionP∗0 , we have, for
random variablef ,

E∗0( f ) = (λ ∗)−1E

(
N∗((0,1])

∑
n=1

f ◦η∗n

)
.

In this equation, lettingf = ∑
N((0,T∗1 ])
ℓ=1 1η−1

ℓ (A), the expectation in the right-hand side

becomes
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E

(
N∗((0,1])

∑
n=1

(
N((0,T∗1 ])

∑
ℓ=1

1η−1
ℓ (A)

)
◦η∗n

)

= E




N∗((0,1])

∑
n=1




N((T∗n ,T∗n+1])

∑
ℓ=1

1(ηN((0,T∗n ])+ℓ)
−1(A)






= E




N∗((0,1])

∑
n=1




N((0,T∗n+1])

∑
ℓ=N((0,T∗n ])+1

1(ηℓ)−1(A)






= E

(
N((0,1])

∑
n=1

1η−1
ℓ (A)

)
.

Since the last term equalsλP0(A) by (4.15), we have (4.18).

Example 4.4.Let us consider batch arrival queueing system. LetT∗n be then-th batch
arrival time. We then number all customers sequentially including those who are in
the same batch. LetTn be then-th arrival time of a customer in this sense. LetBn

the size of the batch arriving at timeT∗n , and letJn be the number of then arriving
customer counted in his batch. That is,Jn = max{ℓ≥ 1;Tn = Tn−ℓ+1}. In particular,
J0 = B0. Let ηn = θTn, then

J0◦ηn = max{ℓ≥ 1;0= Tn−ℓ+1−Tn}= Jn.

Hence, if{Tn} is ηn-stationary underP0, then we have, for anyn∈ Z,

P0(Jn = k) = P0(J0 = k)

=
λ ∗

λ
E∗0
( B1

∑
n=1

1(J0◦ηn = k)
)

=
1

E∗0(B1)
P∗0 (B1≥ k),

becauseJn = k for some positiven≤ B1 if and only if B1 ≥ k. This means that a
randomly chosen customer is counted in its batch subject to the so called stationary
excess distribution ofB1 underP∗0 .

4.7 Time and event averages

In this section, we give interpretations of stationaryP andP0 through sample av-
erages. It will be shown that these sample averages are unchanged under both of
them. This means that both probability measures can be used for computing sta-
tionary characteristics when either one of them is taken fora probability model.
Furthermore, sample averages may be only a way to identify system parameters.
Thus, the unchanged sample averages are particularly important in applications of
Palm calculus. This is something like to use two machines forproduction which is
originally designed for one machine. Throughout this section, we assume
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(4.7a) Measurable space(Ω ,F) is equipped with a shift operator group{θt ; t ∈
R}.

(4.7b) There exists a simple point processN which is consistent withθt , and the
discrete time shift operator group{ηn;n∈ R} is defined by (4.3).

(4.7c) There exists a probability measureP on (Ω ,F) which isθt -stationary and
satisfiesλ ≡ E(N(0,1]) < ∞.

By these assumptions, Palm distributionP0 is well defined forN. Let

I = {A∈ F;θ−1
t (A) = A holds for allt ∈ R},

thenI is σ -field onΩ . Sinceθ−1
t (I) = I, this I is called an invariantσ -field con-

cerningθt . Similarly, an invariantσ -field concerningηn is defined.

Lemma 4.8.For the shift operator group{ηn;n∈ Z}, defineI0 as

I0 = {A∈ F;η−1
1 (A) = A}.

Then,I0 = I, andI0 is the invariantσ -field concerningηn.

Proof. From the definition,I0 is clearlyηn-invariant, i.e.,η−1
n (I0) = I0, Hence, we

only need to proveI0 = I. ChooseA∈ I. Sinceθ−1
t (A) = A, we have

η−1
1 (A) = {ω ∈Ω ;θT1(ω)(ω) ∈ A}

= ∪t∈R{T1 = t}∩θ−1
t (A)

= ∪t∈R{T1 = t}∩A= A.

Thus, we haveA ∈ I0. Conversely, letA ∈ I0. Sinceηn ◦ η1 = ηn+1, we have
η−1

n (A) = A for anyn∈ Z. If Tn−1≤ t < Tn, then

η1◦θt(ω) = θT1(θt)(θt(ω)) = θTn(ω)−t(θt (ω)) = θTn(ω) = ηn(ω).

Hence, for anyt ∈R,

θ−1
t (A) = ∪+∞

n=−∞{Tn−1≤ t < Tn}∩θ−1
t (A)

= ∪+∞
n=−∞{Tn−1≤ t < Tn}∩θ−1

t (η−1
1 (A))

= ∪+∞
n=−∞{Tn−1≤ t < Tn}∩ (η1◦θt)

−1(A)

= ∪+∞
n=−∞{Tn−1≤ t < Tn}∩η−1

n (A)

= ∪+∞
n=−∞{Tn−1≤ t < Tn}∩A= A.

Thus, we haveA∈ I, which completes the proof.

ForA∈ I, P(A) 6= P0(A) in general, but we have the following result.

Lemma 4.9.ForA∈ I, P0(A) = 1 if and only ifP(A) = 1.

Proof. Sinceθ−1
u (A) = A for A∈ I, from (4.4) and (4.11), it follows that
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P0(A) = λ−1E(1AN((0,1])), P(A) =
1

E0(T1)
E0(1AT1).

Hence, ifP0(A) = 1, thenE(1AN((0,1])) = E(N((0,1]), which impliesP0(A) = 1.
Conversely, ifP(A) = 1, thenE0(1AT1) = E0(T1), which impliesP(A) = 1.

Clearly, the equivalence in this lemma is not true forA = {T0 = 0}. Thus, it may
not be true forA 6∈ I.

Definition 4.9. Suppose that probability measureP on (Ω ,F) is θt -stationary, and
let I be the invariantσ -field concerningθt . If eitherP(A) = 0 or P(A) = 1 for each
A ∈ I, thenP is said to be ergodic concerningθt . As for P0 and{ηn;n ∈ Z}, we
similarly defineP0 to be ergodic concerningηn.

From 4.9, the following result is immediate.

Lemma 4.10.Assume that probability measureP on (Ω ,F) is θt -stationary. Then,
P0 is ergodic concerningηn if and only if P is ergodic concerningθt .

The next result is a version of law of large numbers, and called ergodic theorem.
We omit its proof, which can be found in text books on probability theory (see, e.g.,
[5]).

Theorem 4.4.Let {ηn;n∈ R} be the shift operator group on(Ω ,F), and let{Yn}
be a discrete time stochastic process which is consistent with ηn. Let P0 be aηn-
stationary probability measure on(Ω ,F), and denote the expectation concerningP0

by E0. If E0(|Y0|) < ∞, then we have, underP0,

lim
n→∞

1
n

n

∑
ℓ=1

Yℓ = E0(Y0|I0) (4.19)

with probability one, whereI0 is the invariantσ -field concerningηn, andE0(Y0|I0)
is the conditional expectation ofY0 givenI0.

This theorem leads to the following results.

Corollary 4.2. Suppose (4.7a), (4.7b), (4.7c). Then,{Yn} is consistent withηn. If
E0(|Y0|) < ∞, then we have, under both ofP0 andP,

lim
n→∞

1
n

n

∑
ℓ=1

Yℓ = E0(Y0|I) (4.20)

with probability one. Furthermore,{X(t)} is consistent withθt , and ifE(|X0|) < ∞,
then we have, under both ofP0 andP,

lim
t→∞

1
t

ˆ t

0
X(u)du= E(X(0)|I) (4.21)

with probability one.
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Remark 4.2.Sample averages in (4.20) and (4.21) are referred to as eventand time
averages, respectively. IfP or P0 is ergodic, thenI consists of events which have
either probability zero or probability one. Hence, the conditional expectations in
(4.20) and (4.21) reduce to the unconditional ones. IfYn (or X(t)) is nonnegative,
we do not need the condition thatE0(Y0) < ∞ (or E(X(0)) < ∞). To see this, we first
apply min(a,X(t)) to (4.20) for fixed constanta > 0, then leta ↑ ∞.

Proof. SinceP0 is ηn-stationary, (4.20) holds underP0 with probability one by The-
orem 4.4. LetA be the set of allω ∈Ω such that (4.20) holds. SinceP0(A) = 1, 4.9
yields P(A) = 1. Hence, (4.20) holds underP with probability one. As for (4.21),
if it holds underP with probability one, we similarly get it underP0. To get (4.21)
underP, we let

ηn = θn, Yn =

ˆ n

n−1
X(u)du.

Then, it can be shown that Theorem 4.4 yields (4.21) underP sinceP is also sta-
tionary concerning thisηn.

Similarly to this corollary, we can prove the next result.

Corollary 4.3. Under the same assumptions of 4.2, we have, under both ofP0 and
P,

lim
t→∞

N((0, t])
t

= lim
t→∞

N((−t,0])

t
= E(N((0,1])|I) (4.22)

holds with probability one.

4.2 and 4.3 are convenient to compute sample averages since we can choose
eitherP or P0 to verify them for both ofP andP0.

Example 4.5 (Little’s formula in sample averages).We consider the same model
discussed in Example 4.3. Consider a service system, where arriving customers get
service and leave. For simplicity, we here assume that allTn are distinct, i.e., not
more than one customers arrive at once. If eitherP or P0 is ergodic, then, by 4.2, we
can rewrite Little’s formula (4.7) in terms of time and eventaverages as

lim
t→∞

1
t

ˆ t

0
L(u)du= λ lim

n→∞

1
n

n

∑
ℓ=1

Un,

which holds with probability one under both ofP andP0.
The simplicity condition onN is not essential in the above arguments. We only

need to replaceE0 by the expectationE0 of the detailed Palm distribution.
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4.8 Rate conservation law

In the previous sections, we have considered two kinds of expectations by a sta-
tionary probability measure and its Palm distributions. Computations using those
distributions is called Palm calculus. This calculus givesrelationship among charac-
teristics observed at arbitrary points in time and those in embedded epochs. Typical
formulas are (4.4), (4.6) and (4.11). They can be applied to astochastic process.
However, they are generally not so convenient for studying acomplex systems such
as queueing networks. Dynamics of those systems is typically driven by differential
operators such as generators and transition rate matrices of Markov processes or
chains while formulas in Palm calculus concern integrations over time in general.

In this section, we consider a convenient form of Palm calculus for stochastic
processes. As we shall see, this form can be used to characterize the stationary
distribution when they are Markov processes. However, in this section, we do not
assume any Markovian assumption, but use the same frameworkas Palm calculus.
So, our assumptions is basically of the stationary of processes. Extra assumptions
that we need is the smoothness of a sample path except jump instants, which is not
so restrictive in queueing applications.

Throughout this section, we assume (4.7a), (4.7b), (4.7c) of Section 4.7. Since
these assumptions are important in our arguments, we restate it as follows.

(4.8a) There is a probability space(Ω ,F,P) such that shift operator group{θt ; t ∈
R} is defined onΩ andP is θt -stationary. There is a simple point processN
which is consistent withθt and satisfiesλ ≡ E(N(0,1]) < ∞.

We further assume the following three conditions on a stochastic process of interest.

(4.8b) {X(t)} is a real valued continuous time stochastic process such that it is
consistent withθt and right-continuous with left-limits for eacht ∈ R, that is,
limε↓0X(t + ε)(ω) = X(t)(ω), andX(t−)(ω) ≡ limε↓0X(t− ε)(ω) exists for
eacht ∈ R and eachω ∈Ω .

(4.8c) At allt, X(t) has the right-hand derivativeX′(t). That is,

X′(t)≡ lim
ε↓0

1
ε
(X(t + ε)−X(t))

exists and finite.
(4.8d) N includes all the times whenX(t) is discontinuous int. That is, for each

B∈B(R), N(B) = 0 implies∑t∈B1(X(t) 6= X(t−)) = 0.

All these conditions are sufficient to hold with probabilityone for our arguments.
However, we rather prefer that they hold for allω ∈Ω for simplicity.

Lemma 4.11.Under assumptions (4.8a), (4.8b), (4.8c) and (4.8d),{X(t)} and
{X′(t)} are stationary processes, andN is a stationary simple point process. If
E(X′(0)) andE0(X(0−))−X(0)) are finite, then

E(X′(0)) = λE0(X(0−)−X(0)). (4.23)
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Proof. From (4.8a) and (4.8b),X(t) andN are clearly stationary. From the consis-
tency onX(t) and the differentiability (4.8c), it follows that

X′(t)◦θu = lim
ε↓0

1
ε
(X(t + ε)−X(t))◦θu

= lim
ε↓0

1
ε
(X(t +u+ ε)−X(t +u)) = X′(t +u).

Hence,X′(t) is also consistent withθt , so {X′(t)} is a stationary process. From
(4.8a),λ < ∞, soN(0,1] is finite with probability one. Hence, from (4.8d), we have

X(t) = X(0)+

ˆ t

0
X′(u)du+

ˆ t

0
(X(0)−X(0−))◦θuN(du), t > 0. (4.24)

We tentatively suppose thatE(X(t)) is finite, which implies thatE(X(t)) = E(X(0))
due to the stationarity ofX(t). SinceE(X′(0)) is finite andX′(t) is stationary, we
have

E
(ˆ 1

0
X′(u)du

)
=

ˆ 1

0
E(X′(u))du= E(X′(0)).

Hence, taking the expectations of (4.24) fort = 1, we have

E(X′(0))+E
(ˆ 1

0
(X(0)−X(0−))◦θuN(du)

)
= 0.

This yields (4.23) by applying the Palm calculus in Definition 4.6.
We next remove the assumption thatE(X(t)) is finite. To this end, for each integer

n≥ 1, define functionfn as

fn(x) =






x, |x| ≤ n,

− 1
2(max(0,n+1−x))2+ 1

2 +n, x > n,
1
2(max(0,n+1+x))2− 1

2−n, x <−n.

This function is bounded since| fn(x)| ≤ 1
2 +n for all x∈ R. Furthermore, it has the

right-hand derivative:

f ′n(x) =






1, −n≤ x < n,
n+1−x, n≤ x < n+1,
n+1+x, −n−1≤ x <−n,
0, otherwise.

From this, it is easy to see thatf ′(x) is continuous inx, and| f ′n(x)| ≤ 1. Furthermore,

| fn(x)− fn(y)| ≤
ˆ x

y
| f ′n(z)|dz≤ |x−y|.
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LetYn(t) = fn(Y(t)), thenYn(t) is bounded and

|Y′n(t)|= |Y′(t) f ′n(Y(t))| ≤ |Y′(t)|,
|Yn(t−)−Yn(t)| ≤ |Y(t−)−Y(t)|,

soE(Y′n(0)) andE0(Yn(0−)−Yn(0)) are finite by the assumptions. Hence, from the
first part of this proof, (4.23) is obtained forYn(t). Namely, we have

E(Y′n(0)) = λE0(Yn(0−)−Yn(0)).

Let n→ ∞ in this equation noting thatfn(x)→ x and f ′n(x) ↑ 1 asn→ ∞. Then, the
bounded convergence theorem yields (4.23) since|Y′n(t)| and |Yn(t−)−Yn(t)| are
uniformly bounded inn.

Remark 4.3.From the proof of 4.11, we can see that, ifE(X(0)) is finite, then the
finiteness of eitherE(X′(0)) or E0(X(0−)−X(0)) is sufficient to get (4.23). Here,
we note that the finiteness ofE(X) for a random variableX is equivalent to the
finiteness ofE(|X|) due to the definition of the expectation.

Formula (4.23) is referred to as a rate conservation law, RCLfor short. In fact, it
can be interpreted that the total rate due to continuous and discontinuous changes of
X(t) are kept zero. In application of the RCL,X(t) is a real or complex valued func-
tion of a multidimensional process. LetX(t) = (X1(t), . . . ,Xd(t)) be such a process
for a positive integerd, and letf be a partially differentiable function fromRd to R.
In this case, we putX(t) = f (X(t)). Then, 4.11 yields

Corollary 4.4. Let d be a positive integer, and letf be a continuously partially dif-
ferentiable function fromRd to R. If eachXℓ(t) instead ofX(t) satisfies condi-
tions (4.8a), (4.8b), (4.8c) and (4.8d) for allℓ = 1,2, . . . ,d and if E( f (X(0))) and
E( f (X(0))− f (X(0−))) are finite, then we have

E
(
X′(0)∇ f (X(0))

)
= λE0( f (X(0−))− f (X(0))). (4.25)

where X′(0) = (X′1(0), . . . ,X′d(0)) and ∇ f (x) = ( ∂
∂x1

f (x), . . . ∂
∂xd

f (x))T for x =

(x1, . . . ,xd).

This is the most convenient form for queueing applications even ford = 1 be-
cause we can choose anyf as far as it is differentiable and satisfies the finiteness
conditions on the expectations. We refer this type off as a test function.

Example 4.6 (Workload process).We consider the workload process with a state
dependent processing rater and an input generated by a point processN and a
sequence of input works{Sn}. The workloadV(t) at timet ≥ 0 is defined as

V(t) = V(0)+
N(t)

∑
n=1

Sn−
ˆ t

0
r(V(u))1(V(u) > 0)du,
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wherer(x) is a nonnegative valued right-continuous function on[0,∞). If r(x) ≡ 1,
thenV(t) is the workload process of a single server queue.

Let Tn be then-th point ofN. We assume thatN has a finite intensityλ , {(Tn,Sn)}
is consistent withθt (see Definition 4.7), and{V(t)} is a stationary process underP.
Let f be a bounded and continuously differentiable function onR. SinceX(t)≡V(t)
satisfies all the conditions of 4.4 andX′(t) = r(t), we have

E(r(V(0)) f ′(V(0))1(V(0) > 0)) = λE0( f (V(0−))− f (V(0−)+S0)). (4.26)

Using 4.4, we can generalize this formula for a multidimensional workload process
with a multidimensional input. The virtual waiting time vector of a many server
queue is such an example.

Another useful form is obtained from decomposing the point processN.

Corollary 4.5. Under the assumptions of 4.11, suppose that the point process N is
decomposed intom point processesN1,N2, . . . ,Nm all of which are consistent with
θt for somem≥ 2. Namely,

N(B) = N1(B)+N2(B)+ . . .+Nm(B), B∈B(R).

Further suppose thatλi ≡ E(Ni((0,1])) is finite for all i = 1,2, . . . ,m, and de-
note the expectation concerning Palm distribution with respect to Ni by Ei . If
Ei(X(0)),Ei(X(0)) are finite for i = 1,2, . . . ,m and if E(X′(0)) is finite, then we
have

E(X′(0)) =
m

∑
i=1

λiEi(X(0−)−X(0)). (4.27)

Proof. From the assumption on the finiteness ofλi , N has the finite intensityλ ≡
∑m

i=1 λi . Denote the expectation concerning Palm distribution withresect toN by E0,
then

λE0(X(0−)−X(0)) = E

(
ˆ 1

0
(X(u−)−X(u))N(du)

)

=
m

∑
i=1

E

(
ˆ 1

0
(X(u−)−X(u))Ni(du)

)

=
m

∑
i=1

λiEi(X(0−)−X(0)).

Hence, 4.11 concludes (4.27).

We have been only concerned with the simple point processN for the rate con-
servation law (4.23). IfN is not simple, we can use its simple versionN∗ defined by
(4.17). However, we must be careful about the changes ofX(t) at atoms ofN∗. That
is, we need to use the detailed Palm distributionP0 instead ofP0 in (4.23) when we
consider embedded events atTn.
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4.9 PASTA: a proof by the rate conservation law

In queueing problems, we frequently require to compute system characteristics ob-
served at different points in time. In this section, we demonstrate how we can use
the rate conservation law to the observation of a customer arriving subject to a Pois-
son process, where point processN is called a Poisson process if{tn+1− tn;n∈ Z}
is the sequence of independently, identically and exponential random variables for
the n-th increasing instants instanttn of N. The following result is called PASTA,
which is the abbreviation of “Poisson Arrivals See Time Averages”, which is coined
by Wolff [35].

Theorem 4.5 (PASTA).Under the assumptions (4.8a), (4.8b), (4.8c) and (4.8d), let
N0 be the Poisson process which is consistent withθt and finite intensityλ0, and
denote the expectation of Palm distribution with respect toN0 by E0. If {X(u);u< t}
is independent of{N0([t, t + s]);s≥ 0} for all t, then we have, for all measurable
function f such thatE( f (X(0))) andE0( f (X(0−))) are finite,

E( f (X(0))) = E0( f (X(0−))). (4.28)

Proof. Similarly to 4.11 and the standard arguments for approximation of functions
in expectation, it is sufficient to prove (4.28) for thef such thatf is differentiable
and its derivative is bounded. LetR0(t) = sup{u≥ 0;N0(t,t +u] = 0}. That is,R0(t)
is the remaining time to count the next point ofN0 at timet. For nonnegative number
s, let

Y(t) = f (X(t))e−sR0(t), t ∈ R.

Then, clearlyY(t) is bounded and consistent withθt . SinceR′0(t) = −1, the right-
hand derivative ofY(t) is computed as

Y′(t) = (X′(t) f ′(X(t))+s f(X(0)))e−sR0(t).

We next define a point processN1 as

N1(B) = N(B)−max(N(B),N0(B)), B∈B(R),

where it is noted thatN is the point process given in the assumption (4.8d). Obvi-
ously,N0 andN1 are simple, and do not have a common point. Furthermore,N1 is
consistent withθt and has the intensityλ1 ≡ E(N1(0,1]) < λ < ∞. Thus, we can
apply 4.5 (see (a) in Remark 4.3). Letϕ(s) = E(e−sR0(0)), then

E
(
X′(0) f ′(X(0))+s f(X(0)))

)
ϕ(s)

= λ0 (E0( f (X(0−)))−E0( f (X(0)))ϕ(s))

+λ1E1 ( f (X(0−))− f (X(0)))ϕ(s). (4.29)
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By the memoryless property of the exponential distribution, we haveϕ(s) = λ0/(s+
λ0). Hence, lettings→∞ in (4.29) and using the fact thatsϕ(s)→ λ0 andϕ(s)→ 0,
we obtain (4.28).

Remark 4.4.If the reader is familiar with a martingale and the fact that the Poisson
processN of Theorem 4.5 can be expressed as

N((0, t]) = λ t +M(t), t ≥ 0,

whereM(t) is an integrable martingale with respect to the filtrationσ(X(u);u≤ t).
See Section 4.11 for the definition of the martingale. Then, (4.28) is almost imme-
diate from the definition of the Palm distribution since

ˆ t

0
f (X(u−))dM(u)

is also a martingale, and therefore its expectation vanishes. This proof is less ele-
mentary than the above proof.

Let us apply Theorem 4.5 together with the rate conservationlaw to theM/G/1
queue, which is a single server queue with the Poisson arrivals and independently
and identically distributed requirements.

Example 4.7 (Pollaczek-Khinchine formula).We consider the special case of the
workload process in Example 4.6. We here further assume thatthe processing rate
r(x) ≡ 1, N is the Poisson process with rateλ > 0 and{Sn} is a sequence ofi.i.d.
(independent and identically distributed) random variables which are independent
of everything else.

Thus, we consider the workload processV(t) of theM/G/1 queue. The service
discipline of this queue can be arbitrary as long as the totalservice rate is always
unit and the server can not be idle when there is a customer in the system. This
process is known to be stable, that is, its stationary distribution exists if and only if

ρ ≡ λE(S1) < 1.

We assume this stability condition. Then,{V(t)} is a stationary process under the
stationary distribution. For nonnegative numberθ , let f (x) = e−θx for x≥ 0, then
(4.26) yields

θE(e−θV(0)1(V(0) > 0)) = λE0(e
−θV(0−)−e−θ(V(0−)+S0))

= λE(e−θV(0−))(1−E(e−θS1)), (4.30)

where we have used thei.i.d. assumption ofSn and Theorem 4.5 to get the second
equality. We can rewrite the left-hand side as

θE(e−θV(t))−θP(V(0) = 0).

Let ϕ(θ ) = E(e−θV(t)) andg(θ ) = E(e−θS1), then we have, from (4.30),



4 Palm Calculus, Reallocatable GSMP and Insensitivity Structure 169

θϕ(θ )−θP(V(0) = 0) = λ ϕ(θ )(1−g(θ )).

Sinceϕ(θ )→ 1 and 1−g(θ)
θ →−g′(0) = E(S1) asθ ↓ 0. we haveP(V(0) = 0) =

1−ρ , dividing the above formula byθ and lettingθ ↓ 0. Thus, we have the Laplace-
transform ofV(0) under the stationary assumption.

ϕ(θ ) =
θ (1−ρ)

θ −λ (1−g(θ ))
, θ > 0. (4.31)

This formula is independently obtained by Pollaczek and Khinchine, and called
Pollaczek-Khinchine formula.

In this example, if the processing rater(x) is not a constant, then it is generally
hard to get the stationary distribution of the workload in any form. We show that
there is an exceptional case in the following example.

Example 4.8 (State dependent service).We again consider the workload process
V(t) in Example 4.6 under the assumptions of Example 4.7 except for the pro-
cessing rater(x), which may be arbitrary. Thus, we consider theM/G/1 workload
process with state dependent processing rate. In this case,the stability condition for
V(t) is complicated, so we here just assume that the stationary distribution exists.
Similar to (4.30), we have

θE(r(V(0))e−θV(0)1(V(0) > 0)) = λE(e−θV(0−))(1−E(e−θS1)). (4.32)

From this equation, it is generally hard to getϕ(θ ) ≡ E(e−θV(0−)) for a given
g(θ )≡ E(e−θS1) except for the case thatr(x) is a constant.

We thus consider the special case thatr(x) = a+ bx for nonnegative constanta
and positive constantb. In this case, the left-hand side of (4.32) can be written as

θE((a+bV(0))e−θV(0)1(V(0) > 0)) = θ (aϕ(θ )−bϕ ′(θ ))−aθP(V(0) = 0).

Hence, we have the following differential equation from (4.32).

−1
b

(
a−λ

1−g(θ )

θ

)
ϕ(θ )+ ϕ ′(θ ) =−a

b
P(V(0) = 0) (4.33)

For θ ≥ 0, let

h(θ ) =−1
b

ˆ θ

0

(
a−λ

1−g(u)

u

)
du.

Then, the solution of (4.33) with the boundary conditionϕ(0) = 1 is obtained as

ϕ(θ ) = e−h(θ)

(
1− a

b
P(V(0) = 0)

ˆ θ

0
eh(u)du

)
.
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To determineP(V(0) = 0), Note thath(∞) ≡ limθ→∞ h(θ ) = −∞ if a > 0 while
h(∞) = +∞ if a = 0. Hence, ifa = 0, then

ϕ(θ ) = e−h(θ).

If a > 0, then we must have 1=
a
b

P(V(0) = 0)

ˆ ∞

0
eh(u)du, which concludes

P(V(0) = 0) =
b
a

(
ˆ ∞

0
eh(u)du

)−1

. Hence, we finally have, fora > 0,

ϕ(θ ) = e−h(θ)

ˆ ∞

θ
eh(u)du

(
ˆ ∞

0
eh(u)du

)−1

.

It may be interesting to see the mean workloadE(V(0)) =−ϕ ′(0), which is

E(V(0)) =

{ 1
bρ , a = 0,

1
b(ρ−a)+

(
´ ∞

0 eh(u)du
)−1

, a > 0.

Note that these computations are not valid forb = 0.

4.10 Relationship among the queueing length processes observed
at different points in time

The rate conservation is powerful for complicated systems.This is exemplified for
the system queue length process, i.e., the total number of customer in system, un-
der a very general setting. Here, the queueing system is meant a service system
with arrivals and departures. LetNa andNd be point processes composed of arrival
and departure instants, respectively. We here allow those point processes to be not
simple. Then, the the system queue lengthL(t) at timet is defined as

L(t) = L(0)+Na((0,t])−Nd((0,t]), t ≥ 0.

Note that customers who leave the system immediately after their arrivals without
any service are counted as departure.

Theorem 4.6.For a queue system with arrival point processNa, departure point
processNd and the system queue lengthL(t), assume thatP is θt -stationary and
Na,Nd,L(t) are consistent withθt , that is,(Na,Nd,{L(t)}) is jointly stationary. Let
N∗a andN∗d be the simple versions ofNa andNd. If λ ∗a ≡ E(N∗a((0,1]) andλ ∗d ≡
E(N∗d((0,1])) are finite, then, forn∈ Z+,

λ ∗aP∗a (n+1−△L(0)≤ L(0−)≤ n) = λ ∗dP∗d(n+1+△L(0)≤ L(0)≤ n),(4.34)
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where△L(0) = L(0)−L(0−), andP∗a andP∗d are Palm distributions ofN∗a and the
following point process, respectively.

N∗d(B) = N∗d(B)−min(N∗a(B),N∗d(B)), B∈B(R),

andλ ∗d is its intensity.

Proof. We can apply 4.5 forX(t) = 1(L(t)≥ n+1) andN = N∗a +N∗d becauseX(t)
is bounded andX′(t) = 0. Hence, (4.27) yields

λ ∗a (P∗a (L(0−)≥ n+1)−P∗a(L(0−)+△L(0)≥ n+1))

+λ ∗d(P
∗
d(L(0)−△L(0)≥ n+1)−P∗d(L(0)≥ n+1)) = 0,

which concludes (4.34).

In Theorem 4.6,N∗d count instants when departures only occur.

Example 4.9 (Queueing model with no customer loss).In the model of Theorem 4.6,
assume that there is no lost customer, and customers singly arrive and singly depart.
Furthermore assume that arrivals and departures do not simultaneously occur. That
is, Pa(△L(0) = 1) = Pd(△L(0) =−1) = 1, wherePd is the Palm distribution ofNd.
From (4.34), it follows that

λaPa(L(0−) = n) = λdPd(L(0) = n), n = 0,1, . . . .

Summing both sides of the above equation over alln, we haveλa = λd. Hence, we
have

Pa(L(0−) = n) = Pd(L(0) = n), n∈ Z+. (4.35)

Thus, the system queue length observed by arriving customers is identical with the
one observed by departing customers. This is intuitively clear, but it is also formally
obtained, which is important to consider more complex situations.

Example 4.10 (Loss system).For the queueing system of Example 4.9, assume that
the system queue length is limited toM, and arriving customers who findM cus-
tomers in system are lost. In this case, (4.35) does not hold generally. For example,
its right-hand side vanishes forn = M, but its left-hand side may not be zero. Since
both sides of (4.34) vanishes forn≥M, we have

λaPa(L(0−) = n) = λdPd(L(0) = n), n = 0,1, . . . ,M−1. (4.36)

Since the departure reduces one customer,Pd(L(0)≤M−1) = 1. Hence, summing
(4.36) over forn = 0,1, . . . ,M−1, we have

Pa(L(0−) = M) =
λa−λd

λa
.

This is the probability that customers are lost, and is againintuitively clear. We here
correctly present it using Palm distributions.
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Theorem 4.6 does not have information on the system queue length at an arbitrary
point in time. Let us include this information using supplementary variables.

Theorem 4.7.Under the assumptions of Theorem 4.6, letRa(t) be the time to the
next arrival instant measure from timet, i.e., remaining arrival time, and letT1 be
the first arrival time after time 0. For a nonnegative measurable functionf onR such
that it is differentiable,Ea( f (T1)) < ∞ and|E( f ′(Ra(0)))|< ∞, whereEa represents
the expectation concerning the detailed Palm distributionof Na, we have

−E( f ′(Ra(0));L(0)≥ n+1)

= λa
(
Ea( f (0);L(0−) ≥ n+1)−Ea( f (T1);L(0)≥ n+1)

)

+λdEd( f (Ra(0));n+1+△L(0)≤ L(0)≤ n), n∈ Z+, (4.37)

whereE represents the expectation of the detailed Palm distribution of Nd, andλa

andλd are the intensities ofNa andNd, respectively.

Proof. Let X(t) = f (Ra(t))1(L(t) ≥ n+ 1). SinceR′a(t) = −1, we haveX′(t) =
− f ′(Ra(t))1(L(t) ≥ n+ 1). SincePa(Ra(0) = T1) = 1, 4.5 and the remark on the
detailed version of the rate conservation law at the end of Section 4.8 concludes
(4.37).

Example 4.11 (NBUE distribution).In Example 4.9, assume that the interarrival
times of customers are independent and identically distributed and that arrivals and
departures do not simultaneously occur. Furthermore, assume that the interarrival
timeT1 satisfies

Ea(T1−x|T1 > y)≤ Ea(T1), x≥ 0. (4.38)

The distribution ofT1 underPa satisfying this condition is said to be NBUE type,
where NBUE is the abbreviation of New Better than Used in Expectation. In fact,
(4.38) represents that the conditional expectation of the remaining arrival time is not
greater than the mean interarrival time. If the inequality in (4.38) is reversed, then
the distribution ofT1 is said to be NWUE, which is the abbreviation of New Worse
than Used in Expectation. Form the NBUE assumption, we have

E(Ra(0);L(0)≥ n+1)≤ Ea(T1)P(L(0)≥ n+1).

We apply Theorem 4.7 withf (x) = x. Since f (0) = 0, f ′(x) = 1 andλa = λ d =
λd = 1/Ea(T1), (4.37) yields

−P(L(0)≥ n+1)≤−Pa(L(0)≥ n+1)+Pd(L(0) = n), n≥ 0.

SincePa = Pa andPd = Pd, this and (4.35) lead to

Pa(L(0−)≥ n+1)≤ P(L(0)≥ n+1), n≥ 0. (4.39)

Hence, the distribution of the system queue length at the arrival instants is greater
than the one at an arbitrary point in time in stochastic order, where, for two dis-
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tribution functionsF andG, F is said to be greater thanG in stochastic order if
1−F(G)≥ 1−G(x) for all x∈ R.

Similarly to Theorem 4.7, we can take the minimum of the remaining service
times of customers being served, and get relationships among the distributions of
the system queue lengths at different embedded points in time.

4.11 An extension of the rate conservation law

In this section, we briefly discuss how the rate conservationlaw (4.23) can be gen-
eralized for other types of processes. For this, it is notable that this law is obtained
from the integral representation of the time evolution (4.24) and the definition of
Palm distributionP0. There are two integrators,du of the Lebesgue measure and
N(du) of a point process, both of which are defined on the line. To closely look at
this, we rewrite (4.24) in a slightly extended form as

X(t) = X(0)+

ˆ t

0
X′(u)A(du)+

ˆ t

0
∆X(u)N(du),

whereA(t)−A(0) is consistent with the shift operatorθt and has bounded variations,
and∆X(u)= X(u)−X(u−). If X(t) has either a component of unboundedvariations
or a continuous and singular component with respect to the Lebesgue measure, this
expression breaks down. To get back the expression, we subtract this component,
denoting it byM(t). Thus, we have

X(t)−M(t) = X(0)−M(0)+

ˆ t

0
Y′(u)A(du)+

ˆ t

0
∆Y(u)N(du),

whereY(u) = X(u)−M(u). If M(t) is consistent withθt , then we have the rate
conservation law for the process{Y(t)}. It may be reasonable to assume thatM(t)
is continuous. However, this rate conservation law may not be useful to study{X(t)}
becauseX(t) is not directly involved.

To get useful information, we make use of a test function, which is used in 4.4,
and apply Itô’s integration formula, assuming thatM(t) is a square integrable mar-
tingale. That is,

(4.11a) M(t) is continuous int and consistent with{θt}.
(4.11b) E((M(t)−M(0))2) < ∞ for all t ≥ 0.
(4.11c) {M(t)−M(0); t ≥ 0} is a martingale with respect to{Ft}, that is,

E(M(t)−M(0)|Fs) = M(s)−M(0), 0≤ s≤ t,

whereFt is a subσ -field of F which is increasing int ∈ R, and{Ft ; t ∈ R} is
called a filtration.
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This martingale assumption is typical for a process with unbounded variations. It is
beyond our scope to fully discuss Itô’s integration formula, but we like to see how it
works. The reader may refer to standard text books such as [16] and [17] for more
details. Assume thatX(t) andM(t) areFt -measurable for allt ∈ R.

For convenience, letM0(t) = M(t)−M(0) for t ≥ 0. Under these assumptions,
M2

0(t) is submartingale, that is,

E(M2
0(t)|Fs)≥M2

0(s), 0≤ s≤ t,

and there exists a nondecreasing process〈M0(t)〉 such thatM2
0(t)−〈M0(t)〉 is a mar-

tingale. Then, Itô’s integration formula reads: for twicecontinuously differentiable
function f ,

f (X(t)) = f (X(0))+

ˆ t

0
f ′(X(u))dM(u)+

ˆ t

0
f ′(X(u))Y′(u)A(du)

+
1
2

ˆ t

0
f ′′(X(u))d〈M0(u)〉+

ˆ t

0
∆ f (Y(u))N(du), (4.40)

where the integration on the interval[0,t] with respect todM(u) is definedL2-
limit of the Riemann sum, that is,∑n

ℓ=1 f ′(X( ℓ−1
n ))(M( ℓ

n)−M( ℓ−1
n )). See Theorems

17.18 and 26.6 of [16] and Theorem 3.3 of [17]. This integration is a martingale, and
its expectation vanishes. Define the Palm distribution withrespect to〈M0(t)〉 as

P〈M〉(C) =
1

λ〈M〉
E

(
ˆ 1

0
1C ◦θud〈M0(u)〉

)
, C∈ F.

whereλ〈M〉 = E(M(1)−M(0)). The Palm measurePA is similarly defined for the
non-decreasing processA. Thus, taking the expectation of both sides of (4.40), we
arrive at

EA( f ′(X(0))Y′(0))+
1
2

λ〈M〉E〈M〉( f ′′(X(0)))+ λE0(∆ f (Y(0))) = 0, (4.41)

assuming suitable finiteness conditions for the expectations, whereEA and E〈M〉
stand for the expectations concerningPA andP〈M〉.

We can proceed one further step using the representation theorem for a contin-
uous martingale by the Brownian motion. This theorem says that, for a continuous
martingaleM0(t) with respect filtration{Ft}, there exists a progressively measur-
able processZ(t) such that

M0(t) =

ˆ t

0
Z(u)dB(u), 〈M0(t)〉=

ˆ t

0
Z2(u)du< ∞, t ≥ 0,

where{Z(t)} is said to be progressively measurable if{(u,ω) ∈ [0,t]×Ω ;Z(u) ∈
A} ∈ B([0, t])×Ft for all t ≥ 0, and{B(t); t ≥ 0} is called a Brownian motion if
it has independent and stationary increments which are normally distributed with
mean 0 and unit variance (see, e.g., Theorem 18.12 of [16] andTheorem 4.15 of
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[17]). Hence, (4.41) can be written as

EA( f ′(X(0))Y′(0))+
λZ2

2
E
(

f ′′(X(0))Z2(0)
)
+ λE0(∆ f (Y(0))) = 0, (4.42)

whereλZ2 = E(
´ 1

0 Z2(u)du).
In queueing applications of (4.42),Y(t) andZ(t) are often identified as functions

of X(t) from their modeling assumptions through the expression:

X(t) = X(0)+

ˆ t

0
Y′(u)A(du)+

ˆ t

0
Z(u)dB(u)+

ˆ t

0
∆Y(u)N(du). (4.43)

In this case,Y(t) = g(X(t)) andZ(t) = h(X(t)) for some functionsg andh, and
(4.42) is really useful to consider the stationary distribution of X(t).

Example 4.12 (extended Pollaczek-Khinchine formula).Let us consider to add the
Brownian motion to the workload processV(t) in Example 4.7. That is,V(t) is
changed to the followingX(t).

X(t) = X(0)+ σ2B(t)+
N(t)

∑
n=1

Sn− t + I(t)

= X(0)+

ˆ t

0
(I(du)−du)+

ˆ t

0
σ2dB(u)+

ˆ t

0
∆Y(u)N(du)

whereI(t) is a minimum non-decreasing process forX(t) to be nonnegative. That
is, I(t) is a regulator. Thus, if we putA(t) = I(t)− t, Y(t) = t +

´ t
0 ∆Y(u)N(du) and

Z(t) = σ , then we have (4.43).
Assume the stability condition that

ρ ≡ λE(S1) < 1.

Then,{X(t)} is a stationary process under the stationary distribution.For non-
negative numberθ , let f (x) = e−θx. We apply (4.42) toX(t) and this f . Since
I(t) is increased only whenX(t) = 0, we have, usingϕ(θ ) = E(e−θX(0))) and
g(θ ) = E(e−θS1),

θ (ϕ(θ )−EI (1))+
σ2θ 2

2
ϕ(θ ) = λ ϕ(θ )(1−g(θ )).

Similar to Example 4.7, we haveEI (1) = 1− ρ , dividing the above formula byθ
and lettingθ ↓ 0. Thus, we have the Laplace-transform ofX(0) under the stationary
assumption.

ϕ(θ ) =
θ (1−ρ)

θ + 1
2σ2θ 2−λ (1−g(θ ))

, θ > 0. (4.44)

This is an extension of the Pollaczek-Khinchine formula (4.31).
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The results of the present section can be obtained under weaker assumptions and
for a multidimensional process. The latter is in a similar line to 4.4 with a multidi-
mensional version of the Itô integration formula, while the continuous martingale
can be weakened to a local martingale with unbounded variational discontinuity. Of
course, we need to carefully consider the integration undersuch discontinuity.

4.12 Piece-wise deterministic Markov process (PDMP)

As we discussed in Section 4.1, many queueing models can be described by stochas-
tic processes whose major changes occur in embedded points in time. In this section,
we introduce a typical Markov process having such structure. The sample path of
this Markov process is assumed to satisfy the integral representation (4.24) and to
have discontinuous points only on a set, called boundary. Itwill be shown that this
process is flexible and has a wide range of applications.

We first introduce notation for state spaces. LetX be a countable set. An element
x ∈ X is referred to as a macro state. For eachx ∈ X, let Kx be a closed subset of
Rm(x), wherem(x) be a positive integer determined byx andRn is then-dimensional
Euclid space, i.e., vector space with the Euclidean metric.Define setsK andJ(x) as

K = {(x,y);x ∈X,y ∈ Kx}, J(x) = {1,2, . . . ,m(x)}.

For(x,y)∈K, y is referred to as a continuous component or supplementary variable
under macro statex.

On thisK, we introduce a natural topology induced from those onKx. For each
z≡ (x,y) ∈ K, the family of its neighborhoods is generated by all the setsof the
form {x}× (Vy∩Kx), whereVy is a neighborhood ofy ∈ Rm(x). Let B(K) be the
Borelσ -field onK, i.e., theσ -field generated by all open sets ofK. Thus,(K,B(K))
is measurable space and we can define a probability measure onit.

We further need notation on boundary. LetKx+ be an open subset ofKx, and let
Kx0 ≡ Kx \Kx+, which is called a boundary. ForK, we define its insideK+ and its
boundaryK0 as

K+ = {(x,y);x ∈ X,y ∈ Kx+}, K0 = K \K+.

Definition 4.10 (PDMP).Let Z(t)≡ (X(t),Y(t)) be a stochastic process with state
spaceK defined above, and assume thatZ(t) is right-continuous with left-limits.
This {Z(t)} is said to be a piece-wise deterministic Markov process, PDMP for
short, if the following three conditions are satisfied.

(4.12a)X(t) is unchanged as long asY(t) ≡ (Y1(t), . . . ,Ym(x)(t)) ∈ Kx+, which
changes according to the following differential equation whenX(t) = x.

dYℓ(t)
dt

= gxℓ(Y(t)), ℓ ∈ J(x),
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wheregxℓ is a bounded measurable function fromRm(x) to R for eachx ∈ X,
andY(t) hits boundaryKx0 in a finite time with probability one. We refer to
X(t) andY(t) as macro state and continuous component, respectively.

(4.12b) At the moment whenZ(t) hits the boundaryK0, that is,Z(t−) ∈ K0, it
instantaneously returns to the inside, that is,Z(t−)∈K0 is changed toZ(t)∈K+

subject to the transition kernelQ from the boundaryK0 to the insideK+. That
is, for each(x,y) ∈ K0,

P(Z(t) ∈ A|Z(t−) = (x,y)) = Q((x,y),A), A∈X×B(K).

Q is referred to as a jump transition kernel.
(4.12c) For each finite time interval, the number of the hitting times at the bound-
ary, i.e., the number oft such thatY(t−) ∈ K0 is finite. We denote the point
process generated by such hitting times byN.

Remark 4.5.The PDMP was introduced by Davis [10] (see also [11]). However, our
definition of PDMP is slightly different from his definition.They use the attained
lifetimes for the supplementary variablesY(t). Thus, the macro state transitions
randomly occur subject to intensity depending onY(t), which may hit the boundary.
However, if the time is reversed, then their PDMP becomes ours. A minor advantage
of ours is that the existence of the intensity is not necessary. This means that we do
not need to assume the existence of densities of lifetime distributions for macro state
transitions, which will be discussed below.

The PDMP (piece-wise deterministic Markov process) looks complicated, but it
has simple structure when we only observe the embedded epochs due to the state
transition byQ. Let {tn;n ∈ Z} be the set of such epochs numbered in increasing
order. Then,{Z(tn−)} is a discrete time embedded Markov chain. Let us consider
the transition kernel of this embedded Markov chain.

For each statez≡ (x,y)∈ K+, denote the time to the next transition starting from
this state byζ (x,y), which is uniquely determined by (4.12a). We letζ (x,y) = 0 if
(x,y) ∈ K0. We also denote the state of the continuous componentY(t) that attains
just before this time byψ(x,y). Let H be the transition kernelH of the embedded
process{Z(tn−)}. That is,

H(z,{x′}×B) = P(Z(tn+1−) ∈ {x′}×B|Z(tn−) = z),

z∈ K0,x
′ ∈X,B∈B(Kx′).

Then, it is easy to see that

H(z,{x′}×B) =

ˆ

Kx′
Q(z,{x′}×dy′)1(ψ(x′,y′) ∈ B). (4.45)

Example 4.13.As an example of PDMP, let us consider the workload processV(t)
of Example 4.8 for theM/G/1 queue with state dependent processing rater.
Let X(t) ≡ 0, Y1(t) = t − TN(t) and Y2(t) = V(t), thenY′1(t) = −1 andY′2(t) =

r(V(t))1(V(t) > 0). Hence, if we letX = {0} and K = {0}× [0,∞)2 with K0 =
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{0}2× [0,∞), then(X(t),(Y1(t),Y2(t))) is a PDMP, where the jump transitionQ is
given by

Q f(0,(0,x)) = E( f (0,(T1,x+S1))), x≥ 0,

for a nonnegative valued functionf on K+ ≡ {0}× (0,∞)× [0,∞). Note thatY2(t)
has no boundary in this formulation.

We next to consider the stationary distribution of PDMP (piece-wise determinis-
tic Markov process). We are interested to characterize it using the rate conservation
law. We first consider its transition operator of the Markov process{Z(t)}. Since its
state spaceK includes continuous components, we consider the transition operator
to work on the space of suitable functions onK.

LetMb(K) be the set of all bounded functions fromK toR which areB(K)/B(R)-
measurable. For eacht ≥ 0, define operatorTt onMb(K) as

Tt f (z) = E( f (Z(t))|Z(0) = z), z∈ K, f ∈Mb(K).

Note thatTt is a linear function fromMb(K) to Mb(K). Furthermore, it maps a
nonnegative function to a nonnegative function. Thus,Tt is nonnegative and linear
operator onMb(K), which uniquely determines a distribution on(K,B(K)) as is
well known.

Define operatorA+ as

A+ f (z) = lim
t↓0

1
t
(Tt f (z)− f (z)), z∈ K+,

as long as it exists. We refer to thisA+ as a weak generator. LetDA+ be the set
of all f ∈Mb(K) such thatA+ f exists. Note thatA+ is a generator only for the
continuous part ofZ(t), and does not include the information on state changes due
to the macro state transitions. Hence,A+ is not a generator in the sense that it
determines the operatorTt . This is the reason why we call it weak.

For each macro statex ∈X, let Yx be the set of all solutions{y(t)} for the differ-
ential equation (4.12a), i.e.,

dyℓ(t)
dt

= gx(y(t)), 0≤ t < ζ (x,y).

Let M1
b(K) be the set of all functionsf ∈Mb(K) such thatf (x,ξ (t)) has the right-

hand derivative in allt in the domain ofξ and is continuous from the left att =
ζ (x,y) for x ∈ X andξ ∈ Yx. Let C1

b(K) be the set of all functionsf ∈Mb(K)

such thatf (x,y) has bounded and continuous partial derivatives∂
∂yℓ

f (x,y) (ℓ =

1,2, . . . ,m(x)) for eachx ∈X andy ∈ Kx+. Clearly,C1
b(K)⊂M1

b(K).
For f ∈M1

b(K) andZ(t) ∈ K, it follows from the definition of the PDMP that

f (Z(t))− f (Z(0)) =

ˆ t

0

d
du

f (Z(u))du+

ˆ t

0
( f (Z(u))− f (Z(u−)))N(du).
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Hence, forz≡ (x,y) ∈ K+ andξ ∈M1
b(K) with ξ (0) = y, we have

A+ f (z) = lim
t↓0

1
t
E ( f (Z(t))− f (Z(0))|Z(0) = z)

= lim
t↓0

1
t
E

(
ˆ t

0

d
du

f (Z(u))du

∣∣∣∣Z(0) = z
)

=
d
du

f (x,ξ (u))

∣∣∣∣
u=0

,

where the second equality is obtained sinceZ(u) must stay inK+ for a finite time
under the condition thatZ(0) = z∈ K+. In particular, forf ∈C1

b(K),

A+ f (z) =
m(x)

∑
ℓ=1

gxℓ(y)
∂

∂yℓ
f (x,y). (4.46)

Hence,C1
b(K) ⊂M1

b(K)⊂DA+ . However,C1
b(K) 6= M1

b(K) in general. For exam-
ple,ζ ∈M1

b(K), butζ 6∈C1
b(K) after Definition 4.11.

Theorem 4.8.Let {Z(t)} be the PDMP and letN be the point processN generated
by hitting times at the boundary. If{Z(t)} has the stationary distributionν and ifN
has a finite intensityλ , then there exists a probability distributionν0 on(K0,B(K0))
satisfying

ˆ

K+

A+ f (z)ν(dz) = λ
ˆ

K0

( f (z)−Q f(z))ν0(dz), f ∈M1
b(K). (4.47)

Conversely, if there exist probability distributionsν on (K+,B(K+)) and ν0 on
(K0,B(K0)) satisfying (4.47) with some positive numberλ , then

ν(B) = ν(B∩K+), B∈B(K)

is the stationary distribution ofZ(t), and the point processN has the finite intensity
λ . Furthermore, letP be a probability measure on(Ω ,F) such that{Z(t)} is the
stationary process with the stationary distributionν, thenν0 is the distribution of
Z(0−) under the Palm distributionP0 with respect toN.

Remark 4.6.Davis [11] computes an extended generator, which characterizes the
stationary distribution, for the PDMP supplemented by the attained lifetimes. We
can rewrite (4.47) in a similar form. Namely, letλ (z) = λ ν0(dz)

ν(dz) , whereν0(dz)
ν(dz) is the

Radon Nikodym derivative ofν0 with respect toν. Then, we have
ˆ

K
(A+ f (z)+ λ (z)(Q f(z)− f (z)))ν(dz) = 0. (4.48)

λ (z) can be considered as a stochastic intensity, and the integrant corresponds with
the extended generator. (4.48) is particularly useful whenλ (z) is available, but this
may not be always the case. In this situation, (4.47) is more flexible.
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Proof. Assume that{Z(t)} is a stationary process under probability measureP. De-
note the stationary distribution ofZ(t) by ν. Since the set of the times whenZ(t)
is on the boundary is countable,P(Z(0) ∈ K0) = 0. Hence,ν can be viewed as a
probability distribution on(K+,B(K+)). Let P0 be the Palm distribution ofP with
respect toN. Since the distributionZ(0−) underP0 is determined byν0, (4.47) is
immediate from (4.46) and 4.4.

We next prove the converse. Suppose that there exists probability measuresν,ν0

satisfying (4.47) and positive constantλ . Let f ∈Mb(K). SinceTu f is continuous
in u, we have, from the definition ofA+

A+

(
ˆ t

0
Tu f du

)
(z) = lim

ε↓0
1
ε

(
Tε

(
ˆ t

0
Tu f du

)
(z)−

ˆ t

0
Tu f (z)du

)

= lim
ε↓0

1
ε

(
ˆ t

0
Tu+ε f (z)du−

ˆ t

0
Tu f (z)du

)

= lim
ε↓0

1
ε

(
ˆ t+ε

t
Tu f (z)du−

ˆ ε

0
Tu f (z)du

)

= Tt f (z)− f (z), z∈ K+. (4.49)

Defineh for f ∈Mb(K) as

h(z) =

ˆ t

0
Tu f (z)du, z∈ K.

Then, (4.49) implies thath∈DA+ . In general,h may not be inM1
b(K), but we can

prove that (4.47) holds for thish in the place off by approximatingh by functions
in M1

b(K). Since this proof is complicated, we omit it, but the reader can find it in
[27]. Since, forZ(0−) ∈ K0,

QTu f (Z(0−)) = E(Tu f (Z(0))|Z(0−))

= E( f (Z(u))|Z(0−)) = Tu f (Z(0−)), u > 0,

implies
ˆ

K0

Tu f (z)ν0(dz) =

ˆ

K0

QTu f (z)ν0(dz).

Integrating both sides foru∈ [0,t], we have
ˆ

K0

h(z)ν0(dz) =

ˆ

K0

Qh(z)ν0(dz).

Hence substitutingh into f of (4.47), (4.49) yields
ˆ

K+

Tt f (z)ν(dz) =

ˆ

K+

f (z)ν(dz), t > 0.
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Thus,ν is the stationary distribution ofZ(t).
We next prove thatN has the finite intensityλ . To this end, defineϕε for ε > 0

as

ϕε(u) =
1
ε

min(ε,u), u≥ 0.

We remind thatζ (x,y) is the hitting time at the boundary starting from the state
(x,y)∈K, whereζ (x,y)= 0 for (x,y)∈K0. For the trajectoryξ ∈Yx, d

dt ζ (x,ξ (t))=
−1. Hence,

d
dt

ϕε(ζ (x,ξ (t))) =−1
ε

1(0 < ζ (x,ξ (t))≤ ε).

Let f (x,y) = ϕε (ζ (x,y)). Then,f ∈M1
b(K). We apply thisf in (4.47), and letε ↓ 0.

Then

lim
ε↓0

ˆ

K0

ϕε(ζ (x,y))ν0(dx,dy) =

ˆ

K0

1(ζ (x,y) > 0)ν0(dx,dy) = 0,

lim
ε↓0

ˆ

K0
∑

x′∈X

Q((x′,y′),(x,y))ϕε (ζ (x,y))ν0(dx′,dy′) = ν0(K0) = 1.

Here, we have used the fact thatν0 is the distribution ofZ(t) just before hitting the
boundaryK0. Sinceν is the stationary distribution, the above computations yield

lim
ε↓0

1
ε

ˆ

K+

1(0 < ζ (z)≤ ε)ν(dz) = λ .

Reminding thatN counts the hitting times at the boundary, we have

E(N((0,1]) = λ .

That is,λ is the intensity ofN. Sinceλ is finite, we can define Palm distributionP0

of P with respect toN. Denote the distribution ofZ(0) under thisP0 by ν̃0, then the
rate conservation law (4.23) yields

ˆ

K+

A+ f (z)ν(dz) = λ
ˆ

K0

( f (z)−Q f(z))ν̃0(dz), f ∈M1
b(K).

This together with (4.47) concludes
ˆ

K0

( f (z)−Q f(z))ν̃0(dz) =

ˆ

K0

( f (z)−Q f(z))ν0(dz), f ∈M1
b(K).

Here, we choosefθ for f such that, for eachx ∈X andθℓ ≥ 0 (ℓ = 1,2, . . . ,J(x)),

fθ (x′,y′) = 1(x′ = x) ∏
ℓ∈J(x)

e−θℓy
′
ℓ , (x′,y′) ∈ K+.
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For each subsetU of J(x), we letθℓ→ ∞ for all ℓ ∈U . Then, we haveν0 = ν̃0 on
the boundary{y ∈ Kx;yℓ = 0 for all ℓ ∈U} sinceQ fθ (z) goes to zero. ChangingU
over all subsets ofJ(x), we obtainν̃0 = ν0 onK0. This completes the proof.

For applications, Theorem 4.8 is not convenient sinceM1
b(K) is too large for

verifying (4.47). We can replace it by a smaller class of functions.

Corollary 4.6. In Theorem 4.8, the condition (4.47) can be replaced by

ˆ

Kx+

m(x)

∑
ℓ=1

gxℓ(y)
∂

∂yℓ
f (x,y)ν(dx×dy)

= λ
ˆ

K0

( f (z)−Q f(z))ν0(dz), f ∈C1
b(K). (4.50)

The necessity of (4.50) is immediate, but its sufficiency needs approximation
arguments for functions inM1

b(K) by those inC1
b(K). This argument can be found

in [26], and omitted here.

4.13 Exponentially distributed lifetime

For the PDMP, some of its continuous componentsYi(t) may be exponentially dis-
tributed and be decreased with constant rates. For example,this is the case when
customers arrive subject to a Poisson process, andYi(t) is the remaining time to the
next arrival. In such a case, we can remove those continuous components to have
a stochastically equivalent Markov process because the exponential distribution has
memoryless property, that is, if random variableT has the exponential distribution,
then

P(T > s+ t|T > s) = P(T > t), s,t ≥ 0.

Since this case is particularly interested in our applications, we make the following
assumption.

(4.13a) The jump transition kernelQ of the PDMP does not depend on the contin-
uous components which are exponentially distributed and decreased with con-
stant rates.

In this section, we characterize the stationary distribution for this type of piece-wise
deterministic Markov processes (PDMP).

Although we do not need to keep track such continuous components, the stan-
dard description of PDMP must include them. Thus, after removing them from the
PDMP, we have to care about the modified process, which is not exactly PDMP.
In this section, we are particularly interested in the stationary distribution of this
modified process.
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Assume that the PDMP satisfies the assumption (4.13a). For macro statex ∈ X

and continuous componenty ∈ Kx, let Je(x) be the index set ofy’s which have
exponential distributions. We denote the decreasing rate of the i-th component for
i ∈ Je(x) by cxi ≥ 0. We replace thei-th entry ofy by 0 for i ∈ Je(x), and denote this
modified vector bỹyx. Let K̃ = {(x, ỹx);x ∈X,y ∈ Kx}.

Note that the process(X(t), Ỹ(t)) is a continuous time Markov process with state
spaceK̃. Its macro state transition kernelQ̃ is unchanged for this process. LetÃ+

be the restriction of the weak generatorA+on M1
b(K̃) for the PDMP(X(t),Y(t)).

That is, for f̃ ∈M1
b(K̃) and f̃K(x,y)≡ f̃ (x, ỹx),

Ã+ f̃ (x, ỹx) = A+ f̃K(x,y), (x,y) ∈ K. (4.51)

The following fact is intuitively clear, but its proof clarifies the role of the stationary
equation (4.47) of Theorem 4.8.

Theorem 4.9.Let the PDMP(X(t),Y(t)) have weak kernelA+ and jump transition
kernelQ. Assume that this PDMP satisfies the assumption (4.13a) and the mean
lifetime of the i-th continuous component is 1/µi(x) for i ∈ Je(x). Then,ν̃ is the
stationary distribution of(X(t), Ỹ(t)) that has a finite intensity for the embedded
point process generated by macro state transitions if and only if there exists a finite
measurẽνx on (K̃x,B(K̃x)) for eachx ∈ X such that

λ ν̃0({x}×dỹx) = ν̃x(dỹx)+ ∑
i∈Je(x)

cxiµi(x)ν̃({x}×dỹx), x ∈X,(4.52)

ˆ

K̃
Ã+ f̃ (z̃)ν̃(dz̃) = λ

ˆ

∂ K̃

(
f̃ (z̃)−Qf̃ (z̃)

)
ν̃0(dz̃), f̃ ∈M1

b(K̃), (4.53)

whereÃ+ is the weak generator of(X(t), Ỹ(t)), that is given by (4.51).

Proof. For necessity, (4.52) is immediate from the decomposition formula of Palm
distributions while (4.53) is obtained from Theorem 4.8 and(4.51). To prove suf-
ficiency, we let f̃ (x̃,y) = 1(x̃ = x)g̃(ỹx) in (4.53). Then, with help of (4.52), we
have
ˆ

K̃x

Ã+g̃(x, ỹx)ν̃({x}×dỹx) =

ˆ

∂ K̃x

g̃(ỹx)ν̃x(dỹx)

+ ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx)

−λ
ˆ

∂ K̃
Q(z̃′,{x}×dỹx)g̃(ỹx)ν̃0(dz̃′). (4.54)

Multiply both sides of this equation by∏ j∈Je(x)
µ j (x)

µ j (x)+θ j
, which is the joint Laplace

transform of independent and exponentially distributed random variables with means
1/µ j(x), whereθ j is a nonnegative number, and should not be confused with the
shift operatorθt . Then, the second term in the right-hand side can be computedas
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∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

= ∑
i∈Je(x)

cxiµi(x)

(
1− θi

µi(x)+ θi

)
ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

= ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

− ∑
i∈Je(x)

cxiθi

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j
.

Thus, we have
ˆ

K̃x

Ã+g̃(y)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

+ ∑
i∈Je(x)

cxiθi

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

=

ˆ

∂ K̃x

g̃(ỹx)ν̃x(dỹx) ∏
j∈Je(x)

µ j(x)

µ j(x)+ θ j

+ ∑
i∈Je(x)

cxiµi(x)

ˆ

∂ K̃x

g̃(ỹx)ν̃({x}×dỹx) ∏
j∈Je(x)\{i}

µ j(x)

µ j(x)+ θ j

−λ
ˆ

∂ K̃
Q(z̃′,{x}×dỹx)g̃(ỹx)ν̃0(dz̃′) ∏

j∈Je(x)

µ j(x)

µ j(x)+ θ j
.

This is identical with (4.47) withf given by

f (x′,y) = 1(x′ = x)g̃(ỹx) ∏
j∈Je(x)

e−θiyi .

Sinceθi can be any positive number, this class of functionf is sufficiently large to
determine a distribution onK. Hence,

ν({x}×dy) = ν̃({x}×dỹx) ∏
j∈Je(x)

µ j(x)e−µ j (x)yj dyj

is the stationary distribution of the PDMP(X(t),Y(t)), soν̃ is that of(X(t), Ỹ(t)).

It is notable that (4.52) is necessary to get the stationary distribution. Of course,
we can combine (4.52) and (4.53) substituting the former into the latter.

Example 4.14 (State dependent workload, revisited).In Example 4.13, we formu-
late the workload processV(t) of Example 4.8 for theM/G/1 queue with state
dependent processing rater as the PDMP(X(t),(Y1(t),Y2(t))). SinceTn−Tn−1 is
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exponentially distributed and independent of everything else, we can dropY1(t), and
Theorem 4.9 is applicable. Although this is not so much helpful to find the station-
ary distribution since (4.52) and (4.53) are equivalent to (4.32), we can see how
Theorem 4.9 is applied.

4.14 GSMP and RGSMP

In many queueing applications of the PDMP, all the continuous componentsYℓ(t)
count the remaining lifetimes, and the macro state transitions due toQ is indepen-
dent of non-zero remaining lifetimes. Assume that the remaining lifetimes decrease
with constant rates. In this case, the weak generatorA+ has a simpler form:

A+ f (x,y) =−
m(x)

∑
i=1

cxi
∂

∂yi
f (x,y), (4.55)

wherecxi are nonnegative constants for eachx andi. Furthermore,Q is also simpler.
We introduce this class of models adding more structure to the macro states.

Definition 4.11 (GSMP).LetX andS be countable or finite sets. Their elements are
called a macro state and a site, respectively. For eachx ∈ X, a finite and non-empty
subset ofS is associated, and denoted byA(x), whose element is called an active site
under macro statex. For eachs∈ A(x), a clock is attached, and counts its remaining
life time rs. Let r(x) = {(s, rs);s∈ A(x)}.

Assume the following dynamics of macro states and clocks.

(4.14a) Under macro statex, the clock at sites∈ A(x) advances with speedcxs.
(4.14b) If the remaining lifetime of clocks at sites inU ⊂ A(x) simultaneously
expire under macro statex, then the macro state changes tox′ with probability
pU(x,x′).

(4.14c) Under the above transition, the remaining lifetimes of clocks at sites
A(x) \U are retained, and new clocks are activates on sitesA(x′) \A(x) with
lifetimes independently sampled from the distribution determined by their sites
and new macro statex′.

Thus,A(x) \U must be a subset ofA(x′). Let X(t) be a macro state at timet,
and letRs(t) be remaining lifetime of the clock at sites∈ A(x) at time t. Then,
(X(t),{Rs(t);s∈ A(x)}) is a Markov process. We refer to this Markov process as a
generalized semi-Markov process, GSMP for short, with macro state spaceX and
site spaceS.

This GSMP is not exactly the PDMP (piece-wise deterministicMarkov process),
but can be reduced to it. To see this, letm(x) be the number of elements ofA(x), and
let J(x) = {1,2, . . . ,m(x)}, wherem(x) is a finite positive integer by the assumption
onA(x). For eachx ∈ X, define one to one mappingξx from A(x) to J(x). For each
ℓ∈ J(x), letyℓ = vξ−1

x (ℓ). Thus, sites∈A(x) is mapped toℓ∈ J(x) with the remaining
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lifetime of the clock attached tos. Let Kx = [0,∞)m(x) andK = ∪x∈X{x}×Kx. Let
Rs(t) be the remaining lifetime of the clock at sites, and withYℓ(t) = Rξ−1

X(t)(ℓ)
(t) let

Y(t) = (Y1(t),Y2(t), . . . ,Ym(X(t))(t)).

We also define the jump transition kernelQ as, forx,x′ ∈X, y ∈ Kx andBℓ ∈B(R),

Q((x,y),{x′}×B1×·· ·×Bm(x′))

= pU(x,x′) ∏
ℓ∈ξ (A(x)\U)

1(yℓ ∈ Bℓ) ∏
ℓ∈ξ (A(x′)\A(x))

Fx′ξ−1
x′ (ℓ)(Bℓ),

whereU is the set of all expiring sites underx and the remaining lifetimesyξ−1
x (s) of

the clock at sites∈ A(x), andFxs is the new lifetime distribution of the clock at site
sunder macro statex. Note thatF(B) is defined for distributionF as

F(B) =

ˆ

B
F(du), B∈B(R).

Then, we have PDMP{(X(t),Y(t))} with state spaceK and jump transition kernel
Q. We refer to{(X(t),Y(t))} as a canonical form of GSMP.

From the assumption on the speed of clocks, we have

dYℓ(t)
dt

=−cX(t)ℓ, ℓ ∈ J(X(t)),

wherecxℓ = cxξ−1(ℓ). Hence, lety = (y1, . . . ,ym(x)), then

ζ (x,y) = min

{
y1

cx1
, . . . ,

ym(x)

cxm(x)

}
,

ψ(x,y) =

(
y1

cx1
− ζ (x,y), . . . ,

ym(x)

cxm(x)
− ζ (x,y)

)
.

Many queueing models and their networks can be described by GSMP. For those
models, sites correspond with arrivals and services, and the remaining lifetimes are
the remaining arrival times and the remaining workloads. Particularly, GSMP is
useful for those queues with the first-come and first-served discipline since sites for
service are unchanged for them.

However, GSMP is not so convenient when services are interrupted. In this case,
we have to keep track of the remaining workloads of all customers who once started
service. Then, the macro state has to accommodate all the sites as they are since
clocks are fixed at sites in GSMP. This often unnecessarily complicates analysis,
particularly when the number of active sites is unbounded.

To reduce this complication, one may think of reallocating clocks on sites at each
transition instants. This is basically equivalent to only work on the canonical form
with the reallocation. Let us define this model.
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Definition 4.12 (RGSMP).LetX be a finite or countable set for a macro state space,
and letJ(x)≡ {1,2, . . . ,m(x)} of the set of all active sites under macro statex. Let
D be the index set of lifetime distributions for clocks at their activation, where the
same distribution may have different indexes. An active clock is allocated to each
element ofJ(x) and has the remaining lifetime, but this allocation may change at
the macro state transitions in the following way.

(4.14d) Under macro statex, the remaining lifetime of the clock at siteℓ ∈ J(x)
decreases with ratecxℓ, where there is at least one positive rate.

(4.14e) Each clock at siteℓ∈ J(x) has an index inD. Denote this index byγx(ℓ).
This γx is a mapping fromJ(x) to D, which is not necessarily one-to-one.

(4.14f) When all clocks of sites in setU simultaneously expire, macro statex
changes tox′ activating clocks on sites in setU ′ with probabilityp((x,U),(x′,U ′)).

(4.14g) At this macro state transition, clocks onJ(x) \U are reallocated on
J(x′) \U ′ by one-to-one mappingΓxU,x′U ′ onto J(x′) \U ′, whose domain
Γ−1

xU,x′U ′(J(x′)\U ′) is a subset ofJ(x)\U . The clocks at sites in the set:

(J(x)\U)\Γ−1
xU,x′U ′(J(x′)\U ′)

are said to be interrupted. Under this reallocation, the remaining lifetimes of
the reallocated clocks and their indexes are unchanged while newly activated
clocks with indexesd ∈ D have the lifetimes independently sampled subject to
distributionFd’s.

Let X(t) andY(t) be the macro state and the remaining lifetime vector at timet.
Then,{(X(t),Y(t))} is the PDMC, and we refer to it as a reallocatable generalized
semi-Markov process, RGSMP for short.

Note that the transition kernelQ at macro state transitions is given by

Q((x,y),(x′,B1×·· ·×Bm(x′)))

= p((x,U),(x′,U ′)) ∏
j∈ΓxUx′ (J(x)\U)

1(y j ∈ B j) ∏
j∈U ′

Fγx′ ( j)(B j).

We assume thatΓxU,x′U ′ is deterministic for simplicity, but it could be random with-
out any difficulty. In applications,U is usually a singleton, that is,U = {ℓ} for some
ℓ. In this case,p((x,U),(x′,U ′)) andΓxU,x′U ′ are simply written asp((x, ℓ),(x′,U ′))
andΓxℓ,x′U ′ , respectively.

Although the canonical form of the remaining lifetimes is sufficient for RGSMP,
it may not be always convenient. For example, if there are different groups of sites
and reallocations are only taken within each group, then a finite set of multidimen-
sional vectors is more convenient than one multidimensional vectory. In this case,
J(x) is divided into subsetsJs1(x), . . . ,Jsk(x) for the numberk of such groups and
their indexess1, . . . ,sk. Similarly, γx(ℓ) is divided intoγs1x(ℓ1), . . . ,γskx(ℓk).

In our definition of RGSMP, some of active clocks may expire atthe transition. In
queueing applications, this may be the case that a customer being serviced is forced
to leave. For example, so called a negative customer causes such an event.
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We now specialize 4.6 to RGSMP (reallocatable generalized semi-Markov pro-
cess) of Definition 4.12. In this case, Laplace transform is convenient.

Corollary 4.7. Assume RGSMP satisfies the assumptions in Theorem 4.8. For each

x ∈ X, let θx = (θ1, . . . ,θm(x)), θℓ ≥ 0, 〈θx,y〉 = ∑m(x)
ℓ=1 θℓyℓ, then (4.50) can be re-

placed by

m(x)

∑
ℓ=1

cxℓθℓν̂(x,θx) = λ
(
ν̂0(x,θx)− ν̂+

0 (x,θx)
)
, θ ≥ 0,x ∈ X, (4.56)

where

ν̂(x,θx) =

ˆ

Kx+

e−〈θx,y〉ν(x,dy),

ν̂0(x,θx) =

ˆ

Kx0

e−〈θx,y〉ν0(x,dy),

ν̂+
0 (x,θx) =

ˆ

K0

ˆ

Kx+

e−〈θx,y〉Q(z′,(x,dy))ν0(z
′).

Since functione−〈θx,y〉 is in C1
b(K), the necessity is immediate. For the necessity,

we need to approximate functions inC1
b with compact supports by Fourier series.

This can be found in [26] again.
Up to now, we are mainly concerned with a single point processN for the macro

state transitions. We can decompose thisN into point processes observed at sites.
For each subsetU of {1,2, . . .}, define point processNU as

NU (B) = ∑
t∈B

∑
x∈X

1(X(t) = x,Yℓ(t) = 0, ℓ ∈U ∩J(x)), B∈B(R),

and letλU = E(NU ((0,1])). SinceλU ≤ λ < ∞, we can define Palm distribution
PU of P with respect toNU . Denote the distribution ofZ(t) underPU by νU . Let
ν̂U(x,θx) be the Laplace transform with respect to the remaining lifetimes under
macro statex ∈ X, and let

ν̂+
U (x,θx) =

ˆ

K0

ˆ

Kx+

e−〈θx,y〉Q(z′,(x,dy))νU(z′).

Then, (4.56) can be replaced by

m(x)

∑
ℓ=1

cxℓθℓν̂(x,θx) = ∑
U

λU
(
ν̂U(x,θx)− ν̂+

U (x,θx)
)
, θ ≥ 0. (4.57)

In many cases,U is a singleton forλU > 0. In this case, we simply writeλ{ℓ} and
ν{ℓ} asλℓ andνℓ, respectively, forU = {ℓ}.
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4.15 Exponential and non-exponential clocks in RGSMP

In this section, we consider the stationary distribution ofRGSMP (reallocatable
generalize semi-Markov process), provided it exists. In what follows, we use the
notations in Definition 4.12, and assume that{(X(t),Y(t))} is stationary underP.

As we have considered in Section 4.13, it is interesting to see the case where some
of lifetime distributions are exponential. We here consider such a case for RGSMP.
Denote the set of the indexes inD which specify the exponential distributions byDe.
Similarly, let Je(x) be the set of the sites whose clocks have indexes inDe. Those
clocks are activated with lifetimes subject to the exponential distributions. For the
other distributions, we let

Dg = D\De, Jg(x) = J(x)\ Je(x).

In this section, we shall use Theorem 4.9 and 4.7 to characterize the stationary
distribution. We first prepare some notations. For eachd ∈ D, denote the mean of
distributionFd by md, and its reciprocal byµd. Denote the Laplace transform ofFd

by F̂d(θ ). SinceFd is exponential ford ∈ De,

Fd(x) = 1−e−µdx, x≥ 0, F̂d(θ ) =
µd

µd + θ
, θ ≥ 0.

Let θx = (θ1, . . . ,θm(x)). For U ⊂ J(x), let θx(U) denote theθx in which the
components with indexes inU is replaced by 0. In particular, ifU = {ℓ}, thenθx(U)
is denoted byθx(ℓ). Let Nℓ be the point process generated by expiring instants of
clocks at siteℓ. This point process is obviously stationary underP. In what follows,
we also assume

(4.15a) The meanmd of Fd is finite for alld ∈ D.
(4.15b) Not more than one clock simultaneously expires.
(4.15c) ∑∞

ℓ=1 λℓ < ∞, whereλℓ is the intensity ofNℓ.

Let Pℓ be the Palm distribution concerningNℓ. We denote the distribution of
(X(t),Y(t)) underP byν, and its Laplace transform concerningY(t) underX(t)= x
by ν̂(x,θx) for eachx ∈ X. Similarly, the distribution of(X(0−),Y(0−)) under the
Palm distributionPℓ and its Laplace transform underX(0−) = x are denoted byνℓ

andν̂ℓ(x,θx), respectively.

Lemma 4.12.Forx ∈X andθx ≥ 0, we have

ν̂(x,θx) = ν̂(x,θx(Je(x))) ∏
i∈Je(x)

µγx(i)

µγx(i) + θi
, (4.58)

ν̂ℓ(x,θx) = ν̂ℓ(x,θx(Je(x))) ∏
i∈Je(x)\{ℓ}

µγx(i)

µγx(i) + θi
, (4.59)

cxℓµγx(ℓ)ν̂(x,θx(Je(x))) = λℓν̂ℓ(x,θx(Je(x))), ℓ ∈ Je(x). (4.60)
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Proof. (4.58) and (4.59) are immediate from the memoryless property of the expo-
nential distribution. Substituting them into (4.57) and letting θℓ → ∞ yield (4.60).

The next result is a specialization of 4.7 to the case that some of lifetime distri-
butions are exponential, but can be viewed as a special case of Theorem 4.9.

Theorem 4.10.Under the assumptions (4.15a), (4.15b) and (4.15c), RGSMP has
the stationary distribution if and only if there exist Laplace transformŝν, ν̂ℓ andλℓ

(ℓ = 1,2, . . .) such that (4.60) holds and, for eachx ∈ X andθx(Je(x))≥ 0,

∑
i∈Jg(x)

cxiθi ν̂(x,θx(Je(x)))

= ∑
i∈J(x)

λi ν̂i(x,θx(Je(x)))− ∑
x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

λi ν̂i(x′,Γ̂−1
x′i,xU(θx(Je(x)))

×p((x′, i),(x,U)) ∏
j∈U∩Jg(x)

F̂γx( j)(θ j), (4.61)

whereΓ̂−1
x′ i,xU(θx) is them(x′)-dimensional vector whosej-th entry isθΓx′ i,xU ( j) if

j 6= i andΓx′i,xU( j) ∈ J(x) and equals 0 otherwise. In this case,ν̂ is the Laplace
transform of the stationary distributionν.

Remark 4.7.It is not hard to see that (4.61) is a special case of (4.54).

Proof. We apply 4.7. From the assumption (4.15a),

λ ν̂0(x,θx) =
∞

∑
ℓ=1

λℓν̂ℓ(x,θx).

Similarly, from the definition ofΓ̂−1
x′ixU ,

λ ν̂+
0 (x,θx) =

∞

∑
i=1

λiν̂+
i (x,θx)

=
∞

∑
i=1

∑
x′∈X

∑
U⊂J(x)

λi ν̂−i (x′,Γ̂−1
x′i,xU(θx′))p((x′, i),(x,U)) ∏

j∈U∩Jg(x)

F̂γx( j)(θ j).

Substituting these formulas together with (4.58) and (4.59) into (4.56) and dividing
both sides by∏ j∈Je(x)

µγx( j)
µγx( j)+θ j

, we have
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m(x)

∑
i=1

cxiθi ν̂(x,θx(Je(x)))

= ∑
i∈Jg(x)

λiν̂i(x,θx(Je(x))+ ∑
i∈Je(x)

λi(µγx(i) + θi)

µγx(i)
ν̂i(x,θx(Je(x))

− ∑
x′∈X

m(x′)

∑
i=1

∑
U⊂J(x)

λiν̂−i (x′,Γ̂x′ i,xU(θx′(Je(x′))))p((x′, i),(x,U)) ∏
j∈U∩Jg(x)

F̂γx( j)(θ j).

By 4.12, (4.60) is necessary. We apply it to the second term inthe right-hand side of
this equation, then we can see that the terms ofi ∈ Je(x) in the left-hand side are can-
celled, which yields (4.61). Thus, (4.60) and (4.61) are necessary. These arguments
can be traced back, so the converse is proved (see also the proof of Theorem 4.9).

Example 4.15.Let us formulate theM/G/1 queue of Example 4.7 by the RGSMP.
We here assume the first-come first-served discipline. LetX(t) be the number of
customers in the system, andR(t) be the remaining service time of a customer in ser-
vice, whereR(t) = 0 if the system is empty. Obviously,(X(t),R(t)) is a continuous-
time Markov chain, and it is easy to see that this process is a RGSMP.

We show how the notations of the RGSMP are specified in this case. LetX =
{0,1,2, . . .}. D = {0,1}, where 0 represents the exponential distribution with mean
λ−1, and 1 represents a generic distribution with meanµ−1 and distributionF .
Define the jump transition function by

p((n,0),(n+1,U)) = 1 if n = 0 andU = {0,1} or if n≥ 1 andU = {0},
p((n,1),(n−1,U)) = 1 if n = 1 andU = /0 or if n≥ 2 andU = {1},

and letcn,0 = cn+1,1 = 1 for n≥ 0. Let

Je(0) = {0,1}, Je(n) = {0}, Jg(0) = /0, Jg(n) = {1}, n≥ 1.

Thus, we indeed have the RGSMP. Assume the stability conditionρ ≡ λ/µ < 1. In
what follows we solve the stationary equation (4.61), whichbecomes

0 = λ ν̂(0,0)−λ ν̂(1,0),

θ ν̂(1,θ ) = λ (ν̂(1,θ )+ ν̂(1,0))−λ (ν̂(0,0)+ ν̂(2,0))F̂(θ ),

θ ν̂(n,θ ) = λ (ν̂(n,θ )+ ν̂(n,0))−λ (ν̂(n−1,θ )+ ν̂(n+1,0)F̂(θ )),

for n≥ 2, where we have used the fact thatλ1 = λ . By lettingθ = 0 in these formu-
las. it is easy to see thatν̂1(n,0) = ν̂(n−1,0) for n≥ 1. Then, it is routine to solve
these stationary equations by taking the generating function:

ν̂∗(z,θ ) = 1−ρ +
∞

∑
n=1

znν̂(n,θ ).

Let π(0) = ν̂(0,0). This yields
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(θ −λ (1−z))(ν̂∗(z,θ )−π(0)) = λ (1−z)F̂(θ )π(0)+ λ (z− F̂(θ ))ν̂∗(z,0).(4.62)

Let θ = λ (1−z) in this equation, then we have

ν̂∗(z,0) =
(1−ρ)(1−z)F̂(λ (1−z))

F̂(λ (1−z))−z
. (4.63)

We can computêν∗(z,θ ) by substituting this into (4.62). These results are well
known. The advantage of the present derivation is that the existence of the density
of F is not needed, which is often assumed in the literature.

If Dg = /0 in Theorem 4.10, i.e., all the lifetimes are exponentially distributed,
then the set of equations (4.60) and (4.61) withθi = 0 uniquely determines the
stationary distribution of the macro states. Hence, we havethe following corollary.

Corollary 4.8. For the RGSMP satisfying (4.15a), (4.15b) and (4.15c), if all the
lifetime distributions are exponential, then a probability distributionπ on X is the
stationary distribution ofX(t) if and only if, for all x ∈ X,

∑
ℓ∈J(x)

cxℓµγx(ℓ)π(x) = ∑
x′∈X

∑
ℓ∈J(x′)

∑
U⊂J(x)

cx′ℓµγx′ (ℓ)
π(x′)p((x′, ℓ),(x,U)). (4.64)

Equation (4.64) can be interpreted as the stationary equation for the macro state.
To see this, define the transition rate functionq(x,x′) as

q(x,x′) = ∑
ℓ∈J(x′)

∑
U⊂J(x)

cxℓµγx(ℓ)p((x, ℓ),(x′,U)).

Then, it is not hard to see that (4.64) is equivalent to

π(x) ∑
x′∈X

q(x,x′) = ∑
x′∈X

π(x′)q(x′,x), x ∈X.

Thus, we can find the time-reversed process of{X(t)}, which has the transition
rate function:

q̃(x,x′) =
π(x′)
π(x)

q(x′,x).

Then, it is not hard to see the following result.

Corollary 4.9. Under all the conditions of 4.8, the time-reversed macro process can
be considered as that of the RGSMP with the speeds ˜cxU and the rates of the ex-
ponential distributions̃µγx(U) and jump transition ˜p((x,U),(x′, ℓ)) as long as they
satisfy
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c̃xU µ̃γx(U) =
1

π(x) ∑
x′∈X

∑
ℓ∈J(x′)

cx′ℓµγx′ (ℓ)
π(x′)p((x′, ℓ),(x,U)), (4.65)

p̃((x,U),(x′, ℓ)) =
1

π(x)c̃xU µ̃γx(U)
cx′ℓµγx′ (ℓ)

π(x′)p((x′, ℓ),(x,U)). (4.66)

Remark 4.8.If U is not a singleton in this corollary, then clocks inU are forced to
expire except for one in the constructed RGSMP for reversed time. However, active
clocks are singly created. This is contrasted with the forward process.

Example 4.16 (Reversibility of the M/M/1 queue).We show how 4.9 can be used
for applications. Consider theM/M/1 queue with arrival rateλ and service rateµ .
We assume the stability conditionρ ≡ λ

µ < 1. This model is a special case of the
M/G/1 queue, which is formulated by the RGSMP in Example 4.15, andwe can
apply 4.9 because all lifetime distributions are exponential. SinceF̂(θ ) = µ/(µ +
θ ), (4.63) becomes

ν̂∗(z,0) =
1−ρ
1−ρz

.

Hence, the stationary distribution{π(n)} is given byπ(n) = (1−ρ)ρn, as is well
known. Remind thatD = De = {0,1}, J(0)= {0}, andJ(n) = {0,1} for n≥ 1. From
(4.65), we have, forn≥ 0,

c̃(n+1)0µ̃0 =
1

π(n+1)
λ π(n) = λ ρ−1 = µ ,

c̃n1µ̃1 =
1

π(n)
µπ(n+1) = µρ = λ ,

Similarly we have

p̃((n,U),(n+1,1)) = p((n+1,1),(n,U)) = 1,

p̃((n+1,U),(n,0)) = p((n,0),(n+1,U)) = 1.

Thus, letting ˜c(n+1)0 = c̃n1 = 1 for n≥ 0, the time reversed RGSMP is identical
with the sameM/M/1 queue except for the indexes, which are exchanged. Thus,
the departure process of the originalM/G/1 queue is the Poisson process with rate
λ and independent of the past history of the system. This is known as the Burke’s
theorem [7], which is obtained for theM/M/squeue.

4.16 Product form decomposability

Under the assumptions of 4.8,{X(t)} is a continuous time Markov chain. However,
this is not the case if there are non exponential lifetime distributions, soπ deter-
mined by (4.64) may not be the stationary distribution of themacro state. We are
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interested in the case that thisπ is either still the stationary distribution ofX(t) or
can be modified to be the stationary distribution. We guess this could occurs when
the remaining lifetimes are independent, and give the following definition.

Definition 4.13. If RGSMP{(X(t),Y(t))} is stationary and if there exist distribu-
tion functionHd for eachd ∈D such thatHd(0) = 0 and, under the stationary prob-
ability measureP,

P
(

X(0) = x,Y(0) ∈
m(x)

∏
ℓ=1

[0,uℓ]
)

= P(X(0) = x)
m(x)

∏
ℓ=1

Hγx(ℓ)(uℓ), x ∈X,uℓ ≥ 0,

then the RGSMP or its stationary distribution is said to haveproduct form decom-
position with respect to remaining lifetimes

Remark 4.9.The product form decomposability is slightly different from the condi-
tionally independence ofYℓ(t) (ℓ = 1,2, . . . ,m(X(t)) givenX(t) = x, that is,

P
(

X(t) = x,Y(t) ∈
m(x)

∏
ℓ=1

[0,uℓ]
)

= P(X(t) = x)
m(x)

∏
ℓ=1

P(Yℓ(t)≤ uℓ).

Clearly, they are equivalent if no reallocation occurs.

Lemma 4.13.Assume that the RGSMP satisfies the assumptions (4.15a) and (4.15c).
If the RGSMP has a product form decomposable stationary distribution ν, then
(4.15b) is satisfied, and there existsαd > 0 for eachd ∈ D such that

Hd(x) = 1−βd

ˆ ∞

x
(1−Fd(u))e−αd(u−x)du, x≥ 0,d ∈ D, (4.67)

cxℓµ∗γx(ℓ)
ν̂(x,θx(ℓ)) = λℓν̂ℓ(x,θx(ℓ)), x ∈ X, ℓ ∈ J(x), (4.68)

whereβd andµ∗d are given by

βd =

{
αd

1−F̂d(αd)
, αd 6= 0,

µd αd = 0 ,
µ∗d =

{
αdF̂d(αd)

1−F̂d(αd)
αd 6= 0,

µd αd = 0 .
(4.69)

Proof. Assume that(X(t),Y(t)) is a stationary process with the stationary distri-
bution ν. WhenFd is exponential, we obviously have (4.67), and (4.68) is easily
obtained similarly to (4.60). Hence, it is sufficient to prove (4.67) and (4.68) for
d ∈ Dg and forℓ ∈ Jg(x). If cxℓ = 0, then (4.68) obviously holds, so we assume that
cxℓ > 0. Let Tℓ1 = inf{t > 0;Nℓ((0,t]) = 1}. SinceYℓ(0) = cxℓTℓ1, we have, from
4.1,

λℓPℓ (X(0−) = x,Yi(0−)≤ ui , i ∈ J(x)\ {ℓ})

= lim
t↓0

1
t

P(X(Tℓ1−) = x,Yi(Tℓ1−)≤ ui , i ∈ J(x)\ {ℓ},Tℓ1≤ t)

= lim
t↓0

cxℓ

cxℓt
P(X(0) = x,Yi(0)−cxiTℓ1≤ ui , i ∈ J(x)\ {ℓ},Yℓ(0)≤ cxℓt) .
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Hence, from the product form decomposability and the definition of Palm distribu-
tion, we have

λℓνℓ

(
x,

m(x)

∏
i=1

[0,ui ]

)
= cxℓ

∂
∂uℓ

ν

(
x,

m(x)

∏
i=1

[0,ui]

)∣∣∣∣∣
uℓ=0

= cxℓH
′
γx(ℓ)

(0)π(x) ∏
i∈J(x)\{ℓ}

Hγx(i)(ui), (4.70)

whereH ′γx(ℓ)
(0) must exist and be finite because the left-hand side is finite. Note

that this formula also holds forℓ ∈ Je(x). Furthermore, if more than one clocks
simultaneously expire, then we can putui = uℓ for somei 6= ℓ in the right-hand side
of (4.70), which implies that the corresponding Palm distribution vanishes. Thus,
(4.15b) is satisfied.

Lettingui = ∞ in (4.70) and summing both sides of it for allx∈X andℓ∈ γ−1
x (d)

for eachd ∈D, we have

∑
ℓ∈γ−1

x (d)

λℓ = H ′d(0) ∑
x∈X

∑
ℓ∈γ−1

x (d)

cxℓπ(x). (4.71)

Thus, the right-hand side is finite by the assumption (4.15c).
Let d = γx(ℓ), and lettingθi = 0 for all i ∈ J(x) \ {ℓ} andθℓ = θ in (4.61) of

Theorem 4.10 and substituting (4.70) yield, forℓ ∈ Jg(x),

cxℓθπ(x)Ĥd(θ ) = cxℓH
′
d(0)π(x)+ ∑

i∈J(x)\{ℓ}
cxiH

′
γx(i)(0)π(x)Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′iH
′
γx′ (i)

(0)π(x′)p((x′, i),(x,U))Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iH
′
γx′ (i)

(0)π(x′)p((x′, i),(x,U))F̂d(θ ). (4.72)

Summing this formula for allx ∈ X andℓ ∈ γ−1
x (d) for each fixedd ∈ Dg, we can

see that the sum of the left-hand side is finite by (4.71) and the second sum is not
less than the third sum because of the interruption (they must be identical if there is
no interruption). So, there exist a nonnegative constanta and positive constantsb,c
such that

θ Ĥd(θ ) = c+aĤd(θ )−bF̂d(θ ).

Letting θ = 0 in this equation, we havec = b−a. Thus, we have, rewritingθ asθ ,

θ Ĥd(θ )−aĤd(θ ) =−a+b(1− F̂d(θ )). (4.73)

This is equivalent to the following differential equation.

d
dx

Hd(x)−aHd(x) =−a+b(1−Fd(x)) (4.74)
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In fact, using the fact thatHd(0) = 0, one can check this equivalence by integrating
both sides of the above equation multiplyinge−θx concerningx over[0,∞) for each
θ > 0. We can easily solve the linear differential equation (4.74) using the boundary
conditionsHd(0) = 0 and limx→∞ Hd(x) = 1. Thus, we get

Hd(x) = 1−b
ˆ ∞

x
(1−Fd(x))e

−a(u−x)du, x≥ 0.

Denotea by αd. Then,b = βb, and we have (4.67). From (4.74), we have

H ′d(0) = βd−αd = µ∗d .

Hence, (4.70) implies (4.68).

Remark 4.10.From (4.73) and the expression ofβd, we have

Ĥd(θ ) = βd
F̂d(αd)− F̂d(θ )

θ −αd
, θ ≥ 0,d ∈ Dg. (4.75)

From (4.68), we can interpretαd as the rate for the interruption of a clock with
indexd. This rate does not depend on the macro statex and siteℓ ∈ J(x) as long as
d = γx(ℓ).

Lemma 4.14.Under the assumptions of 4.13, we have, for eachx ∈X,

∑
i∈J(x)

cxiµ∗γx(i)
π(x) = ∑

x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U)), (4.76)

cxℓ(αγx(ℓ) + µ∗γx(ℓ)
)π(x)

= ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)), ℓ ∈ Jg(x). (4.77)

Remark 4.11.The right-hand side of (4.77) is the rate for the event that a new clock
is activated at siteℓ. On the other hand, the left-hand side is the expiring rate of
a clock at siteℓ. Hence, (4.77) represents the balance of the rates for expiring and
activating clocks at the same siteℓ, so it is referred to as a local balance at siteℓ.

Proof. SubstitutingH ′γx′ (i)
(0) = µ∗γx′ (i)

into (4.72) withθ = 0 in the proof of 4.13

and noting the fact that (4.72) also holds forℓ ∈ Je(x), we have (4.76) for their
summation. We next consider (4.72). For this let

K1(x, ℓ) = ∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)
π(x)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)), (4.78)

K2(x, ℓ) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)). (4.79)

Then, (4.72) can be written as
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cxℓθℓπ(x)Ĥd(θ ) = cxℓH
′
d(0)π(x)+K1(x, ℓ)Ĥd(θ )−K2(x, ℓ)F̂d(θ )

Subtracting this from (4.73) multiplied bycxℓθℓπ(x), we have

(αdcxℓπ(x)−K1(x, ℓ))(1− Ĥd(θ )) = (βdcxℓπ(x)−K2(x, ℓ))(1− F̂d(θ )).

Because 1− Ĥd(θ ) can not be a constant multiplication of(1− F̂d(θ )) for d ∈ Dg

by 4.13, their coefficients must vanish. Thus, we have

αdcxℓπ(x) = K1(x, ℓ), βdcxℓπ(x) = K2(x, ℓ). (4.80)

This is nothing but (4.77) becauseβd = αd + µ∗d.

It is notable that (4.76) represents the global balance under macro statex while
(4.77) is the local balance at siteℓ under macro statex. We are now ready to prove
the following theorem.

Theorem 4.11.The RGSMP satisfying the assumptions (4.15a) is product form de-
composable and satisfies and (4.15c) if and only if there exist the distributionπ on
X and nonnegative numbers{αd;d ∈ Dg} satisfying the global balance (4.76), the
local balance (4.77) and the finite intensity condition:

∑
x∈X

∑
ℓ∈J(x)

cxℓµ∗γx(ℓ)
π(x) < ∞. (4.81)

In this case, the stationary distributionν is given by

ν
(

x, ∏
i∈J(x)

[0,ui]
)

= π(x) ∏
i∈J(x)

Hγx(i)(ui), x ∈ X,ui ≥ 0, (4.82)

whereαd = 0 for d∈De andµ∗d andHd are defined in 4.13. Furthermore, under this
stationary distribution, (4.15b) is satisfied, and not morethan one clock is activated
at once, that is, we have, for eachx ∈ X and anyℓ1, ℓ2 ∈ Jg(x) such thatℓ1 6= ℓ2,

∑
x′∈X

∑
i∈J(x′)

∑
{ℓ1,ℓ2}⊂U⊂Jg(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)) = 0. (4.83)

Proof. We have already shown that the product decomposability withconditions
(4.15a), (4.15b) and (4.15c) implies (4.76), (4.77), (4.81) and (4.82) with the non-
negative numberαd for d ∈ D. Thus, for the necessity, we only need to prove the
last statement. Suppose thatℓ1, ℓ2 ∈ Jg(x) satisfyingℓ1 6= ℓ2 are simultaneously ac-
tivated. Letdi = γx(ℓi) for i = 1,2. Then, similar to (4.72), it follows from (4.61)
that
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(cxℓ1θ1 +cxℓ2θ2)π(x)Ĥd1(θ1)Ĥd2(θ2)

= (cxℓ1µ∗d1
Ĥd1(θ1)+cxℓ2µ∗d2

Ĥd2(θ2))π(x)

+ ∑
i∈J(x)\{ℓ1,ℓ2}

cxiµ∗γx(i)
π(x)Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2 6∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)F̂d2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1∈U,ℓ2 6∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)F̂d2(θ2). (4.84)

On the other hand, multiplying (4.72) forℓ = ℓ1 andθ = θ1 by Ĥd2(θ2), we have

cxℓ1θ1π(x)Ĥd1(θ1)Ĥd2(θ2)

= (cxℓ1µ∗d1
Ĥd1(θ1)Ĥd2(θ2)+cxℓ2µ∗d2

Ĥd2(θ2))π(x)

+ ∑
i∈J(x)\{ℓ1,ℓ2}

cxiµ∗γx(i)
π(x)Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2 6∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1∈U,ℓ2 6∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)Ĥd2(θ2). (4.85)

Subtracting both sides (4.85) from (4.84), we have

cxℓ2θ2π(x)Ĥd1(θ1)Ĥd2(θ2) = cxℓ2µ∗d2
π(x)(1− Ĥd2(θ2))Ĥd1(θ1)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1))(F̂d2(θ2)− Ĥd2(θ2))

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)(F̂d2(θ2)− Ĥd2(θ2)).

Dividing both sides of the above formula byθ2 and lettingθ2 ↓ 0 yield

cxℓ2π(x)Ĥd1(θ1) = cxℓ2µ∗d2
π(x)(−Ĥ ′d2

(0))Ĥd1(θ1)

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1 6∈U,ℓ2∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd1(θ1))(F̂

′
d2

(0)−H ′d2
(0))

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ1,ℓ2∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d1(θ1)(F̂

′
d2

(0)−H ′d2
(0)).
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Consequently,̂Fd1(θ1) must be proportional tôHd1(θ1) and therefore identical with
Ĥd1(θ1). This is impossible. Thus, not more than one clock can not be activated at
once.

We next show the converse. Summing (4.77) over allℓ ∈ Jg(x) and subtracting
this sum from (4.76), we have

∑
i∈Je(x)

cxiµ∗γx(i)π(x) = ∑
i∈Jg(x)

cxiαγx(i)π(x)

+ ∑
x′∈X

∑
i∈J(x′)

∑
U⊂Je(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)). (4.86)

From the definition ofĤd(θ ), it follows that

βdF̂d(θ ) = (αd−θ )Ĥd(θ )+ µ∗d.

Multiplying both sides of (4.77) bŷFd(θ ) and substituting the abovêFd(θ ) to its
left side, we have

cxℓθπ(x)Ĥd(θ ) = cxℓµ∗dπ(x)+cxℓαdπ(x)Ĥd(θ )−K2(x, ℓ)F̂d(θ ). (4.87)

From (4.76) and (4.77), we have

∑
i∈J(x)

cxiµ∗γx(i)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))

+ ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))

= ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))

+cxℓ(αγx(ℓ) + µ∗γx(ℓ)
)π(x).

Substitutingcxℓαγx(ℓ)π(x) from this equation into (4.87), we arrive at

cxℓθπ(x)Ĥd(θ ) = cxℓµ∗dπ(x)+ ∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)
π(x)Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))Ĥd(θ )

− ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′i µ∗γx′ (i)
π(x′)p((x′, i),(x,U))F̂d(θ ).

This equation is identical with (4.72). Letd = γx(ℓ), multiply both sides of it by
∏i∈J(x)\{ℓ} Ĥγx(i)(θi) and define distributionsν,νℓ and constantsλℓ by
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ν̂(x,θx(Je(x))) = π(x) ∏
i∈J(x)

Ĥγx(i)(θi),

ν̂ℓ(x,θx(Je(x))) = π(x) ∏
i∈J(x)\{ℓ}

Ĥγx(i)(θi),

λℓ = ∑
x∈X

cxℓµ∗γx(ℓ)
π(x).

We then have the stationary equation (4.61). Hence,ν is the stationary distribution
of the RGSMP by Theorem 4.10.

There are a number of remarks on this theorem.

Remark 4.12.This theorem does not answer the uniqueness of the stationary dis-
tribution. However, the uniqueness can be considered through the irreducibility. In
particular, for the macro state distribution, it is not hardto check the irreducibility
from the global balance equation (4.76) similar to the irreducibility of a Markov
chain with discrete state spaceX.

Remark 4.13.Although at most one clock with non exponentially distributed life-
time is activated at each completion time, some clocks with exponentially dis-
tributed life times may be activated at the same instant. Thus, it is not necessary
thatU = {ℓ} in (4.76) and (4.77).

Remark 4.14.From the proof of 4.14, we can see thatαγx(ℓ) > 0 if and only if
K1(x, ℓ) > 0, that is

∑
i∈J(x)\{ℓ}

cxiµ∗γx(i)
π(x)− ∑

x′∈X

∑
i∈J(x′)

∑
ℓ 6∈U⊂J(x)

cx′ iµ∗γx′ (i)
π(x′)p((x′, i),(x,U)) > 0.

By the global equation (4.76), this is equivalent to

∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµ∗γx′ (i)
π(x′)p((x′, i),(x,U))−cxℓµ∗γx(ℓ)

π(x) > 0.

This means thatαγx(ℓ) > 0 holds if and only if the total activation rate of typed =
γx(ℓ) clock is greater than its total completion rate. Thus,αd can be interpreted as
an interruption rate.

Remark 4.15.We have not discussed how to compute the interruption rateαd. In
many cases, they are given as modeling parameters. If this isnot the case, they
would be determined by (4.80) although they are highly nonlinear equations.

In the rest of this section, we consider the case where there is no interruption, that
is, αd = 0 for all d ∈D. The following corollary is immediate from Theorem 4.11.

Corollary 4.10. Suppose the RGSMP satisfies (4.15a) and has no interruption.
Then, the RGSMP is product form decomposable and satisfies (4.15b) and (4.15c)
if and only if there exist the distributionπ on X satisfying the global and local
balances:
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∑
i∈J(x)

cxiµγx(i)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
U⊂J(x)

cx′iµγx′ (i)
π(x′)p((x′, i),(x,U)), (4.88)

cxℓµγx(ℓ)π(x) = ∑
x′∈X

∑
i∈J(x′)

∑
ℓ∈U⊂J(x)

cx′iµγx′ (i)
π(x′)p((x′, i),(x,U)), ℓ ∈ Jg(x),(4.89)

and the finite intensity condition:

∑
x∈X

∑
ℓ∈J(x)

cxℓµγx(ℓ)π(x) < ∞. (4.90)

In this case, the stationary distributionν is given by

ν
(

x, ∏
i∈J(x)

[0,ui]
)

= π(x) ∏
i∈J(x)

µγx(i)

ˆ ui

0
(1−Fγx(i)(v))dv, x ∈ X,ui ≥ 0. (4.91)

Furthermore, not more than one clock is activated at once.

Note that the stationary distributionπ of the macro states depend onFd for d∈Dg

only through their meansµ−1
d . This stationary distribution is said to be insensitive

with respect toFd for d ∈Dg.

Example 4.17.Consider theM/G/1 queue of Example 4.15. We have formulated it
by the RGSMP. Since there is no interruption, we examine the product form decom-
posability by 4.10. The local balance condition (4.89) is

µ1π(1) = λ π(0)+ µ1π(2), µ1π(n) = µ1π(n+1), n≥ 2.

Obviously, these are impossible. Hence, theM/G/1 queue with the first-come first-
served discipline can not be product form decomposable.

4.17 Applications to queues and their networks

How we can check the conditions in Theorem 4.11 and 4.10 to seethe decompos-
ability ? It is notable that we do not need to consider the RGSMP with generally
distributed lifetimes. Namely, we only need to find the stationary distribution of the
macro state which satisfies (4.76) and (4.77) (or (4.88) and (4.89)). In particular,
if there is no interruption, it is sufficient to consider the RGSMP all of whose life-
times are exponentially distributed. This greatly simplifies the verification of the
decomposability.

In this section, we exemplify queues and their networks by applying 4.10 and
Theorem 4.11 in this way. We first consider the following queueing system.

(4.17a) There are service positions numbered 1,2, . . . to accommodate one cus-
tomer in each position. Customers arrives subject to the Poisson process with
rateλ with i.i.d amounts of work for service, whose distribution is denoted by
F . ThisF is assumed to have a finite mean1

µ .



202 Masakiyo Miyazawa

(4.17b) An arriving customer who foundn customers in the system gets into posi-
tion ℓ with probabilityδn+1,ℓ for ℓ = 1,2, · · · ,n+1, and customers in positions
ℓ,ℓ+1, · · · ,n move toℓ+1, ℓ+2, · · · ,n+1, respectively, where

n+1

∑
ℓ=1

δn+1,ℓ = 1, n≥ 0.

Thus, if there aren customers in the system, positions 1,2, · · · ,n are occupied.
(4.17c) A customer in positionℓ is served at ratecn,ℓ for ℓ = 1,2, . . . ,n when there

aren customers in the system. Denote the total service rate in this case byσ(n).
That is,

σ(n) =
n

∑
ℓ=1

cnℓ, n≥ 1.

If a customer in positionℓ leaves the system, customers in positionsℓ+ 1, ℓ+
2, · · · ,n move toℓ,ℓ+1, · · · ,n−1.

This model is referred to as a packed positioning queue. For eacht, denote the
number of customers in system byX(t) and the remaining work of the customer at
positionℓ by Yℓ(t) for ℓ = 1,2, . . . ,X(t). Let Y(t) = (Y1(t), . . . ,YX(t)(t)). We show
that the process(X(t),Y(t)) is the RGSMP. Let

X = N+, D = {e,g}, Je(n) = {0}, Jg(n) = {1,2, . . . ,n} for n∈X,

whereN+ = {0,1,2, . . .}. The index functions are defined asγen(0) = eandγgn(ℓ) =
g for ℓ ≥ 1, wheree andg represent exponential and general distributions, respec-
tively.

Let cn0 = λ for all n∈X. We interpretcnℓ for ℓ≥ 1 as the speed of a clock at the
siteℓ under the macrostaten. Define transition probabilities by

p((n,0),(n+1, ℓ)) = δ(n+1)ℓ, (n∈ X,1≤ ℓ≤ n+1),

p((n, ℓ),(n−1, /0)) = 1, (n≥ 1,1≤ ℓ≤ n),

µe = λ , µg = µ .

Thus,(X(t),Y(t)) can be considered as the RGSMP. Hence, by 4.10, the RGSMP
supplemented by the remaining service requirements is product-form decomposable
if and only if

cnℓµπ(n) = λ δnℓπ(n−1) (n≥ 1,1≤ ℓ≤ n). (4.92)

From this, we see that

cnℓ = σ(n)δnℓ, n≥ 1, ℓ = 1,2, . . . ,n.

This service discipline is called symmetric by Kelly [18, 19].
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Thus, the packed positioning queue with Poisson arrivals and i.i.d. service re-
quirements is product form decomposable if and only if its service discipline is sym-
metric. In this case, (4.92) uniquely determines the stationary distribution{π(n)} as

π(n) = π(0)
λ n

µn∏n
i=1 σ(i)

, n≥ 1.

whereσ(n) = ∑n
ℓ=1cnℓ, if

+∞

∑
n=0

λ n

µn ∏n
i=1 σ(i)

< +∞.

This stationary distribution is insensitive with respect to the work for service. Fur-
thermore, (4.92) implies

n+1

∑
ℓ=1

cnℓµπ(n+1) = λ π(n) n≥ 0.

Hence, by a similar time-reversed argument in Example 4.16,we can see that the
departure process from this queue is also Poisson. This is generally known as quasi-
reversibility (see [9] for its details).

Note that packing rule of service positions does not affect to get (4.92), that is,
any reallocations are possible at arriving and departing instants if all positions are
packed. In what follows, we refer to this model simply as a symmetric queue.

Remark 4.16.One might expect that the insensitivity of the queue length distribution
implies the symmetric condition. But, this is not true. For example, assume that,
for eachn, cnℓ = 1

n for 1 ≤ ℓ ≤ n and δnℓ = 1 only if ℓ = 1. Then, the sample
path of{X(t)} is identical with that of the corresponding symmetric queuewith
cnℓ = δnℓ = 1

n for 1≤ ℓ ≤ n since all customers in service have a same service rate
after arriving of a new customer. Thus, (4.92) does not hold but the queue length
distribution is still insensitive. This example is rather trivial, but shows the local
balance (4.76) is indeed stronger than the insensitivity.

We next consider the case where interruptions occur in the symmetric queue
with Poisson arrivals. In addition to the assumptions (4.17a), (4.17b) and (4.17c),
we assume the following condition.

(4.17d) Negative signals arrive according to the Poisson process with rateασ(n),
which is independent of everything else, and delete a customer in positionℓ
with probabilityδnℓ whenn customers are in the system.

The index for this signal is denoted by−1. That is,J(n) = {−1,0,1,2, . . . ,n}
for n≥ 0. Suppose the local balance (4.77) holds. Since the generalindexg is only
activated by arrivals, we have

(µ∗+ α)δnℓσ(n)π(n) = λ δnℓπ(n−1), n≥ 1, ℓ = 1,2, . . . ,n,
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whereµ∗ is given by (4.69) forαd = α. Thus, the stationary distribution is given by

π(n) = π(0)
λ n

(µ∗+ α)n ∏n
i=1 σ(i)

, n≥ 0,

where the stability condition
∞

∑
n=0

λ n

(µ∗+ α)n∏n
i=1 σ(i)

< ∞ is assumed. Then, it is

easy to see that this distribution satisfies the global balance (4.76):

(λ +(µ∗+ α)σ(n))π(n) = λ π(n−1)+ (µ∗+ α)d(n+1)π(n+1), n≥ 1.

Hence, (4.77) indeed holds, and we have the product form decomposability by The-
orem 4.11.

Example 4.18.The symmetric queue can be generalized for multi-class queues and
their networks. We show how to formulate multi-class symmetric queues by an
RGSMP. Suppose there are T types of customers. Denote a set oftheir types
{1,2, · · · ,T} by T. We assume that the arrival process of typei customers is Poisson
with the rateλi and the arrival streams of different types of customers are indepen-
dent. Now the macrostate needs to specify the configuration of customer types in
positions. So far, we let

X = {x = (t(1),t(2), · · · ,t(n));n≥ 0,t(i) ∈ T} .

The site space is same as the packed positioning queue, butD is changed to
{e,1, · · · ,T}, which means that different types of customers may have different
service time distributions. Service discipline is also same as the packed position-
ing queue. We assume that the speeds of service and position selecting probabil-
ities of arriving customers may depends onn = |x|, so the total speed also only
depends onn, which is denoted byσ(n). Then, the local balance (4.76) becomes,
for x = (t(1), · · · , t(n)) andx⊖eℓ = (t(1), · · · ,t(ℓ−1),t(ℓ+1), · · · ,t(n)),

cnℓµt(ℓ)π(x) = δnℓλt(ℓ)π(x⊖eℓ), ℓ ∈ Jg(x)≡ {1,2, . . . ,n}. (4.93)

Thus, if the queue is symmetric, i.e., ifcnℓ is proportional toδnℓ concerningℓ for
eachn = |x|, then

π(x) = π(0)
n

∏
ℓ=1

λt(ℓ)

µt(ℓ)σ(ℓ)
, x = (t(1), · · · ,t(n)),

gives a stationary distribution if the total sum ofπ(x) overX is finite, whereπ(0)
is the normalizing constant. From (4.93), we again have the quasi-reversibility for
each fixed typet as

n+1

∑
ℓ=1

cnℓµtπ(x⊕eℓ(t)) = λtπ(x), x ∈ X,
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wherex⊕ eℓ(t) = (t(1), · · · , t(ℓ− 1),t,t(ℓ + 1), . . . ,t(n)) for x = (t(1), · · · ,t(n)).
sinceσ(n)µt(ℓ)π(x) = λt(ℓ)π(xℓ) by the symmetric condition. These are the well-
known results originally obtained by [18] and Chandy, Howard and Towsley [8]. We
here note that (4.93) fully verifies the insensitivity with respect to the distributions
of the amount of work for all types due to 4.10.

Consider an open or closed queueing network with multi-class Markovian rout-
ing whose nodes have symmetric service discipline in the sense of Example 4.18.
Then, each node in separation with multi-class Poisson arrivals is quasi-reversible.
Hence, from the product form solution for a quasi-reversible network (see, e.g.,
[9]), if all service requirement distributions are exponential and exogenous arrivals
are subject to Poisson processes, then this queueing network has the product form
stationary distribution for all type configurations over the network, and satisfies the
local balance at each node for each type of customers.

This concludes that the stationary distribution is insensitive with respect to the
distributions of the amount of work for all types of customers at each node. This
result is usually verified by approximating such distributions by phase types of dis-
tributions or by assuming the densities of those distributions. We can again fully
verify it by 4.10.

For those product form queueing networks, we can also consider the case that
there are negative customers or negative signals at each node as in the condition
(4.17d). Similar to the single node case, we can show the product form decompos-
ability by Theorem 4.11. Of course, the macro state distribution can not be insensi-
tive in this case.

4.18 Further insensitivity structure in RGSMP

The product form decomposable RGSMP has insensitive structure not only for the
stationary distribution but also for other characteristics. A most prominent feature
among them is the conditional mean actual lifetime of a clockgiven its nominal
lifetime, where the nominal lifetime is meant the total amount of lifetime when the
clock always advances with unit speed. In RGSMP, speeds of clocks may change,
so the actual lifetimes are different from their nominal lifetimes in general. The ac-
tual lifetimes are interesting for us since they correspondwith the sojourn times of
customers in symmetric queues and their networks. We shall show that the mean
total sojourn time of a customer arriving at a product form decomposable queue-
ing network is proportional to his total work for service, and its coefficient can be
computed.

We first consider the attained sojourn time of an arbitrary fixed clock of a fixed
insensitive typed ∈ Dg in RGSMS. Such a clock is calledtagged. For this purpose,
besides the initial distribution of the RGSMP{Z(t)} given in (4.91), we will con-
sider a further initial distribution which will be specifiedbelow and which can be
interpreted as a conditional version of that given in (4.91)under the condition that,
at time zero, a new (tagged) clock of typed ∈ Dg is activated.
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Let τ∗ denote the (total) nominal lifetime of the tagged clock. Fory≤ τ∗, let T∗y
be the length of time required by the tagged clock to processy units of its nominal
lifetime and letℓ∗(t) denote the site at which this clock is at timet ≤ T∗y . ThenT∗y
is given by

T∗y = sup

{
t > 0 :

ˆ t

0
cX(u)ℓ∗(u)du< y

}
. (4.94)

Throughout this section we assume that the point processN generated by macro
state transition instants has finite intensityλ .

We need further notation for describing various point processes arising in con-
nection with stationary RGSMP. LetN(d) be the point process generated by all jump
instants at which a new clock of typed is activated. Letλ(d) andP(d) denote the
intensity ofN(d) and the Palm distribution ofP with respect toN(d), respectively.
Note thatP(d) can be interpreted as the conditional probability measure of P given
that a clock of typed starts at time 0. For each sites∈ J, we also introduce the point
processNs generated by all jump instants at which sites gets a new clock of type
d, and denote its intensity and the corresponding Palm distribution by λs andPs,
respectively. Furthermore, we use the following notation:

Jd = ∪x∈X{s∈ J(x) : γx(s) = d}, Xs = {x ∈ X : s∈ J(x)}.

SinceN(d) = ∑s∈Jd
Ns, from the definition of Palm distribution, we have (see

(4.14))

λ(d)P(d)(C) = ∑
s∈Jd

λsPs(C), C∈ F. (4.95)

By A∗(t) we denote the amount of the nominal lifetime of the tagged clock processed
up to timet, i.e.

A∗(t) =

ˆ t

0
cX(u)ℓ∗(u)du

for everyt ≥ 0 with A∗(t) < τ∗. For t ≥ T∗τ∗ , we putA∗(t) ≡ τ∗. Furthermore, by
A∗s(t) we denote the amount of the nominal lifetime that a clock of typed, which
has been activated at time zero at sites, has consumed up to timet ≥ 0. Since
Ps(Ns′(0) = 1) = 1{s}(s′) for s,s′ ∈ J. Hence, (4.95) yields, foru,y≥ 0, s′ ∈ Jd and
C∈ F,

λ(d)P(d)(A
∗(u) < y, l∗(0+) = s′,C) = ∑

s′′∈Jd

λs′′Ps′′(A
∗(u) < y, l∗(0+) = s′,C)

= λs′Ps′(A
∗
s′(u) < y,C)

Thus, by summing up for all possibles′ in the above equation, we get the following
result.

Lemma 4.15.Foru,y≥ 0 andC∈ F,
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λ(d)P(d)(A
∗(u) < y,C) = ∑

s′∈Jd

λs′Ps′(A
∗
s′(u) < y,C) .

We denote the nominal lifetimeτ∗ of the tagged clock byτ∗s if the tagged clock
is created at sites. Fors∈ S, x ∈Xs andu,yℓ ≥ 0, define the eventCxs(u,yℓ) ∈ F by

Cxs(u,yℓ)≡ {X(u) = x,Rs′(u)≤ ys′(s
′ ∈ J(x)\ {s})} ,

where yℓ = {ys′ ;s
′ ∈ J(x) \ {s}}. Since the probabilityPs′(A

∗
s′(u) < y, ℓ∗(u) =

s,Cxs(u,yℓ) |τ∗s′) does not depend onτ∗s′ on the set{τ∗s′ ≥ y} ∈ F, we can write,
for 0≤ z≤ t∗−y,

Ps′(A
∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗s′ = t∗)

= Ps′(A
∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗s′ = y+z) , (4.96)

wheret∗ = sup{u : 1−Fd(u) > 0}. Moreover, by 4.15, we have

λ(d)

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗ = z)Fd(dz)

= ∑
s′∈Jd

λs′

ˆ ∞

0
Ps′(A

∗
s′(u) < y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = z)Fd(dz) . (4.97)

We are now in a position to prove the next lemma.

Lemma 4.16.Assume thatFd is purely atomic and has a finite number of atoms,
i.e.Fd(x) is a step function with a finite number of jumps. Then, for every x∈X and
s∈ J(x) satisfyingγx(s) = d, for 0≤ y≤ t∗ and foryℓ ≥ 0, we have

µdπ(x)y ∏
s′∈J(x)\{s}

F (r)
γx(s′)

(ys′)

= λ(d)

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du.(4.98)

Proof. Let ks(t) denote the site at which the clock being at timet at sites was
originally activated. Foru≤ v letAs(u,v), ℓs(u,v) andτs(u,v) be the attained sojourn
time, the site and the nominal lifetime, respectively, of a clock of typed at timev
which started at sitesat timeu. Let x≥ 0, s,s′ ∈ Jd, x ∈Xs, andyℓ ≥ 0 be arbitrary
but fixed. Then, by the definition ofℓs′(u,v) andNs′ , we have

P(Rs(0) > y,ks(0) = s′,Cxs(0,yℓ))

= E

(
ˆ 0

−∞
1{Rs(0)>y,ks(0)=s′,Cxs(0,yℓ),ℓs′ (u,0)=s}Ns′(du)

)

= E

(
ˆ 0

−∞
1{Rs(0)>y,Cxs(0,yℓ),ℓs′ (u,0)=s}Ns′(du)

)
.
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Moreover, note that, foru < 0, As′(u,0)+ Rs(0) = τs′(u,0) on the set{ℓs′(u,0) =
s}, and thatAs′(u,0) = As′(0,−u) ◦ θu, τs′(u,0) = τs′(0,−u) ◦ θu and ℓs′(u,0) =
ℓs′(0,−u)◦θu. Then, the last term of the above formula becomes

E

(
ˆ 0

−∞
1{As′ (u,0)<τs′ (u,0)−y,Cxs(0,yℓ),ℓs′ (u,0)=s}Ns′(du)

)

= E

(
ˆ 0

−∞
1{As′ (0,−u)<τs′ (0,−u)−y,Cxs(−u,yℓ),ℓs′ (0,−u)=s} ◦θuNs′(du)

)
,

which, by 4.6, equals

λs′Es′

(
ˆ 0

−∞
1{As′ (0,−u)<τs′ (0,−u)−y,Cxs(−u,yℓ),ℓs′ (0,−u)=s}du

)

= λs′Es′

(
ˆ ∞

0
1{As′ (0,u)<τs′ (0,u)−y,Cxs(u,yℓ),ℓs′ (0,u)=s}du

)

= λs′

ˆ ∞

0
Ps′ (As′(0,u) < τs′(0,u)−y,Cxs(u,yℓ), ℓs′(0,u) = s)du,

whereEs′ denotes the expectation taken with respect to the Palm distribution Ps′ .
Thus, from the fact that

As′(0,u) = A∗s′(u), τs′(0,u) = τ∗s′ , ℓs′(0,u) = s= ℓ∗(u) Ps′-a.s.,

we get

P(Rs(0) > y,ks(0) = s′,Cxs(0,yℓ))

= λs′

ˆ ∞

0
(

ˆ t∗

y
Ps′(A

∗
s′(u) < z−y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = z)Fd(dz))du

= λs′

ˆ t∗

y
(

ˆ ∞

0
Ps′(A

∗
s′(u) < z−y, ℓ∗(u) = s,Cxs(u,yℓ)| τ∗s′ = t∗)du)Fd(dz) ,(4.99)

where we have used (4.96) in the last equality of (4.99). Define a functionHd by

Hd(y,yℓ) =

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du .

Sum up both sides of (4.99) for alls′ ∈ Jd, then (4.97) yields

P(Rs(0) > y,Cxs(0,yℓ)) = λ(d)

ˆ t∗

y
Hd(z−y,yℓ)Fd(dz) . (4.100)

On the other hand, from (4.91), the left-hand side of (4.100)becomes

π(x)F
(r)
d (y) ∏

s′∈J(x)\{s}
F(r)

γx(s′)
(ys′) = µdπ(x) ∏

s′∈J(x)\{s}
F(r)

γx(s′)
(ys′)

ˆ t∗

y
(z−y)Fd(dz),(4.101)
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whereF
(r)
d (y) = 1−F(r)

d (y). Because of our assumption onFd, there exist a positive
integern, two sets of positive numbers{ai ; i = 1,2, . . . ,n} and{pi; i = 1,2, . . . ,n}
satisfying

Fd(y) =
n

∑
i=1

pi1[ai ,∞)(y) .

Here, we can assume thatai is increasing ini. Then, from (4.100), (4.101), we get,
for 0≤ y≤ t∗,

λ(d)

n

∑
i=1

piHd((ai−y)+,yℓ) = µdπ(x) ∏
s′∈J(x)\{s}

F(r)
γx(s′)

(ys′)
n

∑
i=1

pi(ai−y)+ ,(4.102)

wherey+ = max(y,0). Finally, (4.102) implies that, for 0≤ y≤ t∗,

λ(d)Hd(y,yℓ) = µdπ(x)y ∏
s′∈J(x)\{s}

F (r)
γx(s′)

(ys′) . (4.103)

This can be proved in the following way. Consider (4.102) foreach sub-interval
(ai−1,ai ], wherea0 = 0. First, from (4.102) fory∈ (an−1,an], we have (4.103) for
0≤ y ≤ an− an−1. Then, from (4.102) fory ∈ (an−2,an−1], we have (4.103) for
an− an−1 ≤ y≤ min[an− an−2,2(an− an−1)]. If 2(an− an−1) < an− an−2, then,
by using the equation just proved, we get (4.103) for 2(an−an−1) ≤ y≤min[an−
an−2,3(an− an−1)]. We repeat the argument and eventually get (4.103) foran−
an−1 ≤ y≤ an−an−2. In a similar way we inductively get (4.103) for all the sub-
intervals. (4.103) is nothing but (4.98), and therefore thelemma is proved.

Note that, by (4.94),T∗y is defined for 0≤ y ≤ τ∗. Now, we extendT∗y to the
whole non-negative half-line by changing the nominal lifetime of the tagged clock
to infinity, and denoteT∗y in this case byT∞

y . ClearlyT∗y = T∞
y for 0≤ y≤ τ∗. The

nondecreasing process{T∞
y ;y≥ 0} is called aattained sojourn time process.

Analogously, byℓ∞(t) we denote the site at which the tagged clock is at timet
when its nominal lifetime is changed to infinity. Under the assumption of 4.16, we
consider a time change of the RGSMP{Z(t)} by {T∞

t }.
Definition 4.14.Let {T∞

t ; t ≥ 0} be the attained sojourn time process for a fixed
indexd ∈ D. Let X̃(t) = X(T∞

t ), ℓ̃(t) = ℓ∞(T∞
t ) andR̃s(t) = Rs(T∞

t ). We define a
time-changed process{Z̃(t);0≤ t < ∞} as

Z̃(t) = (X̃(t), ℓ̃(t),R̃s′(t);s
′ ∈ J(X̃(t))\ {ℓ̃(t)}) .

This process is said to be a time changed RGSMP concerning theattained lifetime.

Note that{Z̃(t)} is a Markov process because we can trace its history by using
analogous dynamics as for the strong Markov process{Z(t)} and by using the sup-
plementary informatioñℓ(t), which indicates the site at which the tagged clock is at
present. Fors∈ Jd, x ∈ Xs andt,yℓ ≥ 0, define the event̃Cxs(u,yℓ) ∈ F by

C̃xs(t,yℓ)≡ {X̃(t) = x,R̃s′(t)≤ ys′(s
′ ∈ J(x)\ {s})} .
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Note that, if we putv = A∗(u) on {l∗(u) = s} ∩Cxs(u,yℓ), thendv = cxsdu and
T∗A∗(u) = u for cxs > 0 while dv= 0 for cxs = 0. Hence, by Fubini’s theorem and by
changing variables fromu to v = A∗(u), we have, for 0≤ y≤ t∗,

cxs

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du

= E(d)

(
ˆ ∞

0
1{A∗(u)<y,ℓ∗(u)=s,Cxs(u,yℓ)}cxsdu

∣∣∣∣τ
∗ = t∗

)

= E(d)

(
ˆ ∞

0
1{v<y,l∗(T∗v )=s,Cxs(T∗v ,yℓ)}dv

∣∣∣∣τ
∗ = t∗

)

= E(d)

(
ˆ y

0
1{ℓ∞(T∞

v )=s,Cxs(T∞
v ,yℓ)}dv

)

= E(d)

(
ˆ y

0
1{ℓ̃(v)=s,C̃xs(v,yℓ)}dv

)
=

ˆ y

0
P(d)

(
ℓ̃(v) = s,C̃xs(v,yℓ)

)
dv,(4.104)

where the expectationE(d) is taken with respect toP(d). Multiplying both sides of

(4.98) bycxsλ−1
(d)

, substituting (4.104) into its right-hand side and differentiating it
with respect toy, we get, for 0≤ y≤ t∗,

cxsµdπ(x)

λ(d)
∏

s′∈J(x)\{s}
F (r)

γx(s′)
(ys′) = P(d)(ℓ̃(x) = s,C̃xs(y,yℓ)) . (4.105)

Hence,{Z̃(t);0 ≤ t < ∞} is a stationary process. By summing up both sides of
(4.105) for all possibles,x, we get

λ(d) = µd ∑
x∈X

∑
s∈J(x)∩Jd

cxsπ(x) .

Hence, the left-hand side of (4.105) can be expressed by

π∗(x,s) ∏
s′∈J(x)\{s}

F (r)
γx(s′)

(ys′). (4.106)

whereπ∗(x,s) is the probability distribution on{(x,s);s∈ Jd,x ∈ Xs} defined as

π∗(x,s) =
cxsπ(x)

∑
x′∈X

π(x′) ∑
s′∈J(x′)∩Jd

c(s′,x′)
. (4.107)

Thus, we arrive at the following result.

Lemma 4.17.Under the assumption of 4.16,{Z̃(t); t ≥ 0} is a stationary Markov
process provided that the initial distribution of{Z̃(t)} is given by (4.106).

We now remove the assumption of 4.16. For this purpose, we will use a certain
continuity property of Markov processes. LetFd be a general lifetime distribution,
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and let{Fd,n} be a sequence of distributions which satisfy the condition of 4.16 and
which weakly converge toFd. Let {Zn(t); t ≥ 0} and{Z̃n(t); t ≥ 0} be the processes
corresponding to{Z(t); t ≥ 0} and{Z̃(t); t ≥ 0}, respectively, for the RGSMP’s
with Fd,n instead ofFd. We define the initial distribution of{Z̃n(t)} by (4.106), in
which Fd is replaced byFd,n. By 4.17,{Z̃n(t)} are stationary Markov processes.
{Z̃n(t)} and{Z̃(t)} are self-clocking jump processes as introduced in [26]. We ap-
ply Theorem 5.2 of [26] to those processes. Condition (i) of this theorem is clearly
satisfied because of (4.90). The stationary one-dimensional distribution of{Z̃n(t)}
weakly converges to the left-hand side of (4.106), and the transition function at the
jump instants of{Z̃n(t)} satisfy conditions (ii) and (iii) of Theorem 5.2 of [26],
which can easily be verified because we only change the lifetime distributionsFd,n

(see also Remark 5.2 of [26]). Thus, we get

Theorem 4.12.Assume that RGSMP is product form decomposable, and letd∈Dg

be fixed. Then, for a general lifetime distributionFd, {Z̃(t); t ≥ 0} is a stationary
Markov process provided that the initial distribution of{Z̃(t); t ≥ 0} is given by
(4.106). Furthermore, combining (4.104) with (4.105) and (4.106), we also have
(4.98), namely,

cxsπ(x)y

∑
x′∈X

π(x′) ∑
s′∈J(x′)∩Jd

c(s′,x′) ∏
s′∈J(x)\{s}

F (r)
γx(s′)

(ys′)

=

ˆ ∞

0
P(d)(A

∗(u) < y, ℓ∗(u) = s,Cxs(u,yℓ) |τ∗ = t∗)du. (4.108)

We have the following verbal interpretation of Theorem 4.12. Under stationarity
conditions, given we freeze a randomly chosen type-d clock once it has been started
(i.e. putting its nominal lifetime equal to infinity), we observe a stationary process
if we look at the remaining system at those timesT∞

y when the frozen clock has
consumedy units of resource, i.e. reached agey≥ 0. In particular, the distribution
we see when the tagged clock has reached agey is the same for ally and hence, if we
draw the age to be reached, blindly from some distribution, e.g. fromFd, we have
the same distribution of the process at the time this (random) age is reached. Thus,
the next corollary is a direct consequence of Theorem 4.12, i.e. the stationarity of
{Z̃(t)}.

Lemma 4.18.Under the conditions of Theorem 4.12, forx ∈ X, s∈ Jd andy > 0,
we have

P(d)(X(0) = x, l(0) = s) = P(d)(X(T∗τ∗−) = x, l(T∗τ∗−) = s|τ∗ = y). (4.109)

Note that formula (4.109) can be somewhat sharpened: In steady state, at the
instants right after the starting of a randomly chosen type-d clock and right before
expiring ofthat same clock, the joint distributions of the statex, the sites∈ J(x)∩Jd

on which that clock is found, and the residual lifetimes of the other clocks are both
the same.
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Theorem 4.12 also yields the following corollary because{T∞
y ;x≥ 0} is com-

pletely determined by{Z̃(t); t ≥ 0} (see also Theorem 1 of [13]).

Corollary 4.11. Under the conditions of Theorem 4.12, the attained sojourn time
process{T∞

y ;y≥ 0} has stationary increments.

Let T∞
y (x,s) denote the total sojourn time of the system in statex ∈ X while the

tagged clock is at sites∈ J(x)∩Jd, until the tagged clock has processedy units of
its nominal lifetime, where the nominal lifetime of the tagged clock is assumed to
be infinity. Then we have the following result.

Theorem 4.13.Under the conditions of Theorem 4.12, we get, fory≥ 0, and for
x ∈ X ands∈ J(x)∩Jd,

E(d)(T
∞
y (x,s)) =

π(x)

∑x′∈X π(x′)∑s′∈J(x′)∩Jd
cx′s′

y , (4.110)

and, in particular, by summing up over all possiblex ands,

E(d)(T
∞
y ) =

∑x∈X π(x)|J(x)∩Jd|
∑x∈X π(x)∑s∈J(x)∩Jd

cxs
y (4.111)

where|J(x)∩Jd| denotes the number of elements of the setJ(x)∩Jd.

Proof. Since, for 0≤ y≤ t∗,

T∞
y (x,s) = T∗y (x,s) =

ˆ ∞

0
1{A∗(u)<x,ℓ∗(u)=s,X∗(u)=g}du ,

(4.108) of Theorem 4.12 yields (4.110) and (4.111).

Remark 4.17.Note that the right-hand side of (4.110) does not depend ons∈ J(x)∩
Jd. Furthermore, if we sum(4.110) up over allx,s such thatcxs = 0, we get a
formula for the expected total time during which the tagged clock is interrupted (i.e.
stands still) up to the time agey is reached.

In some systems, e.g., in the processor-sharing queue, manyclocks of a given
typed may run at the same time. Consider the time-changed process with respect
to a clock of typed whose lifetime is infinite. Suppose that type-d clocks never
run at zero speeds. Then the time-changed process is the RGSMP with macrostates
(x,s), s∈ Jd, c ∈ Xs, and where, in state(x,s), a clocks′ ∈ J(x) \ {s} is running
at the speedcxs′/cxs. Because (4.106) is the stationary distribution of this RGSMP,
we can, for instance, consider the successive instants at which another type-d clock
gets started, and study the corresponding time-changed process, all from the starting
point of the first time-changed process. This new time-changed process lives on the
states[s′,(x,s)] with s∈ J(x)∩ Jd, s′ ∈ J(x)∩ Jd, s′ 6= s. Let (4.107) be written
asπ∗(x,s) = 1

k∗ cxsπ(x). Then the corresponding distribution for the second time-
changed process is given by
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π∗∗(s′,(x,s)) =
1

k∗∗
cxs′

cxs
π∗(x,s)

on account of (4.107) applied to the second time-changed process. So

π∗∗(s′,(x,s)) =
cxs′π(x)

k∗k∗∗
=

cxs′π(x)

∑
x′∈X

π(x′) ∑
s′′∈J(x′)∩Jd

cx′s′′
.

This would be, in steady state, the probability that, right after the instant of birth of
a type-d clock chosen at random while another type-d clock is already running (at
sites), the state isx and that clock is sitting ons′.

Example 4.19 (Symmetric queue).Consider the symmetric queue of Section 4.17.
Since there is only one type of customers,|J(x)∩Jd|= n for x = n. Hence, by The-
orem 4.13, the conditional mean sojourn time of a customer who bringsy amount
of work is

Ed(T
∞
y ) =

∑∞
n=1nρn∏n

i=1 σ(i)−1

∑∞
n=1 ρn∏n−1

i=1 σ(i)−1
y,

whereρ = λ/µ . In particular,σ(n) = a for all n≥ 1 for some positive constanta,
then

Ed(T
∞
y ) =

ρ
a(a−ρ)

y.

As is expected, the coefficient of the linear function is proportional to the mean
queue length. For the product form decomposable network, similar results can be
obtained for a given sequence of the amounts of work at visiting nodes of a tagged
customer when his route is specified.

4.19 Bibliographic notes

We briefly discuss about the literature in this chapter. Point processes and Palm mea-
sures are now standard in queueing books (see, e.g., [1]). Inparticular, Baccelli and
Bremaud [2] is devoted to this topic and “Palm calculus” was coined there. Histori-
cally, the first comprehensive book on this topic for queues was written by Franken,
König, Arndt and Schmidt [14]. However, point processes and Palm distributions
are old stuff, going back to the ninety-sixties (see, e.g., [30, 21, 22]). There are
some other approaches (see, e.g., [6]). The treatments of this topic from Section 4.2
to 4.7 are somehow different from the standard one as in [2]. We more emphasize
the symmetric role of time stationary and Palm probability measures. This idea goes
back to Miyazawa [23].

The materials in Sections 4.8 and 4.10 are taken from Miyazawa [24, 25]. The
rate conservation law and their applications are surveyed in [28]. Example 4.8 is
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new. Piece-wise deterministic process (PDMP) in Section 4.12 was coined by Davis
[10], and detailed in [11]. However, similar types of processes would have been con-
sidered long before since they are typical in queueing applications. Our treatments
of PDMP is slightly different from those of Davis’ as mentioned in Remark 4.5.
Generalized semi-Markov process (GSMP) for the insensitivity in the same sec-
tion has a long history. The earlier literature is Schassberger [31, 32] and Jansen
König and Nawrotzki [15]. However, its limitation had beenrecognized (see, e.g.,
[3]). Schassberger [33] proposes “relabeling” to relax thelimitation. Reallocatable
GSMP (RGSMP) was introduced by Miyazawa[27]. It has a similar mechanism to
Schassberger’s, but allows interruptions.

The stationary equations in Section 4.12 is taken from Miyazawa [26], and those
in Section 4.16 from Miyazawa [27]. Symmetric queue and their networks in Sec-
tion 4.17 is due to Kelly [18, 19]. The locally balanced conditions and product
form solutions are largely discussed in the queueing network literature (see, e.g.,
[4, 8, 9, 34] and references there). Section 4.18 is largely taken from Miyazawa,
Schassberger and Schmidt [29], which generalizes the results in [12, 13].
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Chapter 5
Networks with Customers, Signals, and Product
Form Solutions

Xiuli Chao

Abstract In this chapter we present an overview of the latest developments in
queueing networks with product form stationary distributions. Under a general
framework that allows instantaneous movements, we presentsufficient conditions
for the network to possess a product form solution. For the case where transitions
can involve at most two nodes, we present necessary and sufficient conditions for
the network to have a product form solution.

5.1 Introduction

A queueing network is a system consisting of a finite number ofstationsthat provide
services tojobs. The processing stations in the network are typically referred to as
nodes. Examples of queueing networks include computer systems, manufacturing
systems, job shops, airport terminals, railway or highway systems, and telecommu-
nication systems. In these settings, jobs (data, parts or sub-assemblies, customers,
planes, vehicles, phone calls, etc.) arrive at the system, and require some form of
service (operation executions, assembly processes, machining, airplane take-offs,
bridge or toll booth passings, phone conversations, etc.).Queueing network mod-
els have been successfully applied in the performance evaluation and optimization
of computer systems, communication systems, manufacturing systems and logis-
tic systems. Typical performance measures of practical interest are sojourn time,
congestion level, blocking probability, and throughput; and system design and op-
timization issues include dynamic routing control of jobs (packets), trunk designs,
resource allocation, load balancing, or throughput maximization.
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Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI
48109
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A number of methods have been developed for analyzing queueing networks,
each with its own limitations. For example, rapid advances in computers have made
it possible to perform large-scale simulations. Still, in addition to the high costs be-
cause of the extensive use of computer time and memory, the results of large-scale
simulations tend to be application-specific, and are not always useful for detecting
general trends in performance measures. Another method forevaluating a queueing
system is approximation. However, a theoretical basis is often required to guarantee
that an approximation is not far from the real solution. A theoretical analysis of a
queueing model is therefore not only important for its own sake; it is also important
to complement simulation results and approximations. Sucha theoretical analysis
involves determining the stationary distribution of the network states, e.g., the num-
ber of jobs at each node, from which various performance measures can be derived.

Clearly, a closed form solution for the stationary distribution, if obtainable, is
the most preferred. Of the networks with tractable solutions, networks with prod-
uct form stationary distributions are the ones most researchers have focused on and
most applications are based on. Networks with product form solutions have many
properties that facilitate their analysis. In this class ofnetworks, in spite of the high
level of interaction between the nodes, the joint distribution of all the nodes is the
product of the marginal distributions of the individual nodes. Roughly speaking, it
implies that the stationary distribution of the network canbe obtained by multiply-
ing the stationary distributions of the individual nodes assuming that each node is
in isolation and subject to Poisson arrivals. Due to this property, the analysis of a
queueing network reduces to the analysis of single node queues, simplifying the
applications tremendously. Nevertheless, we shall see that this area is, from a the-
oretical as well as from a practical point of view, not as narrow as it appears. As a
matter of fact, were it not because of Jackson’s celebrated product form result and
its extensions, applications of queueing networks would most likely not have been
as widespread as they are today.

The study of queueing network starts with the celebrated papers of Jackson
(1957) (1963). Other work in the nineteen sixties includes Whittle (1968) and Gor-
don and Newell (1967). These models focus on networks with exponential process-
ing times. Significant breakthrough of queueing network research appeared in mid
seventies with the work of Baskett, Chandy, Muntz, and Palacios (1975), and Kelly
(1975) (1976), that extend the product form results to networks with arbitrary pro-
cessing time distributions and multiple classes of jobs. During the nineteen eighties
and nineteen nighties researchers extend the theory of queueing networks with batch
movements and networks with instantaneous movements and signals, and the repre-
sentative works in this area are Henderson and Taylor (1990), Gelenbe (1991), Chao
and Pinedo (1993), and Chao and Miyazawa (2000). See also thebooks by Chao, et
al. (1999) and Serfozo (1999).

In this chapter we present an overview of the latest developments in queueing net-
works with tractable solutions. We focus on continuous-time network models. The
starting point for the network is a multi-dimensional continue-time Markov chain.
This may sound restricted, but it should be noted that, by expanding the state space
appropriately, we can approximate a continuous-time network by a continuous-time
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Markov chain to any degree of accuracy. In particular, it allows the processing times
and interarrival times to have any phase-type distributions (see Neuts 1986). To
present the result in a general format we shall start with an abstract framework. We
first develop sufficient conditions for the queueing networkto possess product form
stationary distribution, and for the case with no instantaneous movements we also
present the necessary and sufficient conditions for the network to possess product
form solution. Numerous examples are given that are coveredby the result of the
chapter as special cases.

This chapter consists of ten sections. In the following two sections we present the
definition of quasi-reversibility for both nodes without triggering and with trigger-
ing. In Sections 4 and 5 we introduce networks with quasi-reversible nodes, without
and with triggering respectively. Section 6 presents a special class of queueing net-
works called networks with positive and negative signals aswell as their solution.
In Section 7 addresses the following question: What is the necessary and sufficient
condition for a network to possess a product form stationarydistribution, and a com-
plete answer is given to this question for the class of networks that involve simulta-
neous transitions of at most two nodes. Quasi-reversibility is revisited in Section 8
under the framework of Section 7, and several classes of networks are investigated
for which quasi-reversibility is not only a sufficient, but also a necessary condi-
tion for product form. Section extends the results to allow customers to randomly
change positions at their nodes, both at arrival and customer departure epoches. We
conclude with a brief discussion in Section 10.

Sections 2-6 follow Chao and Miyazawa (2000) and Chao, Miyazawa and Pinedo
(1999). Sections 7 and 8 follow from Chao, Miyazawa, Serfozoand Takada (1998)
and Takada and Miyazawa (1997), see also Chao Chao, Miyazawaand Pinedo
(1999). Section 9 extends the model and results in Bonald andTran (2007).

5.2 Quasi-Reversibility of Queues

Quasi-reversibility is an input-output property of queues. It implies that when the
system is in stochastic equilibrium, the future arrival processes, the current state of
the system, and the past departure processes are independent.

In conventional queueing models, a job arrives at a system toreceive service,
and leaves the system after its service is completed. The networks discussed in this
chapter include, in addition to conventional jobs, other entities that carry along com-
mands and induce actions at the nodes where they arrive. These entities are, in case
they do not trigger instantaneous departures, still referred to asjobs. If, however, an
arrival has a positive probability of triggering a departure, it is called asignal. Thus,
the cascading effects of signals may generate throughout the network an arbitrary
number of arrivals and departures simultaneously.

It is useful to make a distinction between different classesof jobs and signals.
Jobs of different classes may have different characteristics with respect to their pro-
cessing requirements, their routings through the network,etc. Signals of different
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classes may carry different messages and may have differenteffects on the system.
When there is no need to make a distinction between them, jobsas well as signals
are referred to asentities; they may be viewed as different classes of entities.

In the theory of continuous time Markov chain with transition ratesq(x,y),x,y∈
S, it is conventional to defineq(x,x) as−∑x′∈S\{x}q(x,x′). However for the purpose
of our study, we forgo this convention and defineq(x,x) as a nonnegative number
presenting the transition rate fromx to itself. This modification allows us to signal
such event as arriving entities that cause no change of stage.

In some stochastic systems, such as Example 1 below, both thearrival and the
service completion of a regular job result in a transition from n+ 1 to n. Hence,
different events may result in the same transition fromx to x′. For this reason, we
introduce the following notation. Let the system be modeledby a continuous time
Markov chain with state spaceS and transition rates.q(x,x′), x,x′ ∈ S. For each pair
of states(x,x′), we decompose the transition rate functionq(x,x′) of the queue into
three types of rates, namely,

qA
u(x,x′), u∈ T,

qD
v (x,x′), v∈ T,

qI(x,x′),

whereT is the set of the classes of arrivals and departures, which iscountable.
Even though in many queueing systems the classes of arrivalsare different from
the classes of departures, we use a single index setT because we can takeT as the
union of both arrival and departure classes. Thus the transition rate of the queue can
be written as

q(x,x′) = ∑
u∈T

qA
u(x,x′)+ ∑

v∈T
qD

v(x,x′)+qI(x,x′), x,x′ ∈ S. (5.1)

These thinned transition rate functionsqA
u, qD

v andqI generate the embedded point
processes corresponding to classu arrivals, classv departures and the internal tran-
sitions, respectively. The first two embedded point processes are often referred to as
thearrival process of class u entitiesand thedeparture process of class v entities.
The superscripts “A”, “ D”, and “I” stand for “arrival”, “departure” and “internal”.
The internal transition typically represents a change of status of the jobs such as a
decrease of their remaining processing times, or, in the case the node contains mul-
tiple processing stations, the movements of jobs among the different stations of the
node.

If the supports of the rate functions in (5.1) are disjoint, the decomposition above
would only have one term. However, we do not make any restriction with regard to
their supports. They are distinguished only by the probabilities, i.e., rate decomposi-
tion. It should be noted that, even thoughq(x,x′) is said to be decomposed into three
types of components (arrival, departure, and internal transition rates) that result in
the same transition fromx to x′, it is the opposite in applications. One is usually
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given the arrival, departure and internal rates that resultin the same transition, and
they have to be added up in order to obtainq(x,x′).

Example 1.Consider anM/M/1 queue with two classes of arrivals. The first class
of arrival, denoted byc, represents regular customer, and an arrival of classc in-
creases the number of customer in system by 1. The second class of arrival, denoted
byc− and referred to as negative customer, is a kind of entity whose arrival decreases
the number of customer in system, if any, by 1. Thus,T = {c,c−}. Service times
are exponentially distributed with mean 1/µ , and a service completion is classified
as classc departure:

qD
c(n,n−1) = µ , n = 1,2, . . . .

Regular customers arrive according to a Poisson process with rateα, so

qA
c(n,n+1) = α, n = 0,1, . . . .

Negative customers arrive according to a Poisson process with rateα− and reduce
the number of customers by 1, we have

qA
c−(n,n−1) = α−, n = 1,2, . . . .

Finally, a negative customer that arrives at an empty node simply disappears, thus

qA
c−(0,0) = α−.

Let q(n,n′) denote the transition rate of the queue, then its non-zero transition rates
are

q(n,n+1) = qA
c(n,n+1), n≥ 0,

q(n,n−1) = qD
c(n,n−1)+qA

c−(n,n−1), n≥ 1,

q(0,0) = qA
c−(0,0).

Definition 1. The continuous time Markov chain with transition rateq is called
quasi-reversible with respect to{qA

u(x,x′);u∈ T}, {qD
u(x,x′);u∈ T} and qI(x,x′) if

there exist two sets of non-negative numbers{αu;u∈ T} and{βu;u∈ T} such that

∑
x′∈S

qA
u(x,x′) = αu, x∈ S,u∈ T, (5.2)

∑
x′∈S

π(x′)qD
u(x′,x) = βuπ(x), x∈ S,u∈ T, (5.3)

whereπ is the stationary distribution of the Markov chainq.
The non-negative numbersαu andβu are often called the arrival rate and depar-

ture rate of classu entities.
Quasi-reversibility is a property concerning the arrival and departure processes.

In fact, it is often useful to study this property with regardto only a portion of



222 Xiuli Chao

the arrival and departure processes. This is particularly true in networks of queues
where only some of the departures from a node join another node, while the rest are
either absorbed at that node or exit the network. These cases, however, are included
in the definition above since one can classify the non-routedarrivals (or departures)
as internal transitions.

An alternative definition for quasi-reversibility is the following.

Definition 2. A stationary continuous time Markov chain{X(t); t ≥ 0} with transi-
tion rateq of (5.1) is quasi-reversible if the following two conditions hold.

(i) The X(t) is independent of the arrival process of classu entities subsequent to
time t for all u∈ T.

(ii) The X(t) is independent of the departure process of classu entities prior to time
t for u∈ T.

Before going further, we present an important result, knownas Kelly lemma,
which will be used numerous times later in this chapter. Its proof can be found, for
example, in Kelly (1979).
Lemma 1. (Kelly lemma)For a stationary continuous time Markov chain with state
spaceS and transition ratesq(x,x′), if we can find a collection of nonnegative num-
bersq̃(x,x′),x,x′ ∈ S and a collection of positive numbersπ(x),x∈ S, summing to
unity, such that

∑
x′∈S

q(x,x′) = ∑
x′∈S

q̃(x,x′), x∈ S,

π(x′)q(x′,x) = π(x)q̃(x,x′), x,x′ ∈ S,

thenq̃(x,x′),x,x′ ∈ S are the transition rates of the reversed process, andπ(x), x∈ S

is the stationary distribution of both processes.
Since different transitions may result in the same change ofstates, it turns out

that a more detailed form of Kelly’s lemma is often more convenient to apply. As
the relationship between Lemma 1 and the following result isanalogous to that of
balance equation and detailed balance equation for continuous time Markov chain,
we call it detailed Kelly lemma (see Chao, et al. (1999)).
Lemma 2. (Detailed Kelly lemma)Let q(x,x′) be the transition rates of a station-
ary continuous time Markov chain with state spaceS. Assume thatq(x,x′) can be
decomposed into transition ratesqσ (x,x′), indexed byσ ∈ U, i.e.,

q(x,x′) = ∑
σ∈U

qσ (x,x′), x,x′ ∈ S.

If we can find a collection of nonnegative numbers ˜qσ (x,x′),x,x′ ∈ S,σ ∈ U, and a
collection of positive numbersπ(x),x∈ S, summing to unity, such that

∑
x′∈S

qσ (x,x′) = ∑
x′∈S

q̃σ (x,x′), x∈ S,σ ∈U,

π(x′)qσ (x′,x) = π(x)q̃σ (x,x′), x,x′ ∈ S,



5 Networks with Customers, Signals, and Product Form Solutions 223

then
q̃(x,x′) = ∑

σ∈U

q̃σ (x,x′), x,x′ ∈ S

are the transition rates of the reversed process, andπ(x),x ∈ S is the stationary
distribution of both processes.

Quasi-reversibility is closely related to Poisson flows, asis shown in the follow-
ing theorem.

Theorem 1.Definitions 1 and 2 are equivalent, and each of them implies that

(a) the arrival process of classu∈ T entities are Poisson and the arrival processes
of different classes of entities are independent,

(b) the departure process of classu ∈ T entities are Poisson and the departure
processes of different classes of entities are independent.

Proof. The first quasi-reversibility condition (5.2) implies condition (i) of Definition
2 and part (a) of the theorem. On the other hand, condition (i)implies that the left
hand side of condition (5.2) is a constant. Denoting this constant byαu, we obtain
(5.2). We next show that condition (5.3) of the first definition implies condition
(ii) of the second definition and part (b) of the theorem. To this end, consider the
reversed processX(−t). Defineq̃A

u, q̃D
u andq̃I as

q̃A
u(x,x′) =

π(x′)
π(x)

qD
u(x′,x),

q̃D
u(x,x′) =

π(x′)
π(x)

qA
u(x′,x),

q̃I(x,x′) =
π(x′)
π(x)

qI(x′,x) .

Let q̃ be the transition rate function ofX(−t). Its transition rates are

q̃(x,x′) = ∑
u

q̃A
u(x,x′)+∑

u
q̃D

u(x,x′)+ q̃I(x,x′) .

Thus, the time reversed process also represents a queueing model with thinned tran-
sitionsq̃A

v , q̃D
u andq̃I . From condition (5.3), we have

∑
x′

q̃A
u(x,x′) =

1
π(x) ∑

x′
π(x′)qD

u(x′,x) = βu .

This implies that the classu arrival process inX(−t) is Poisson with rateβu. How-
ever, from the definition of ˜qA

u and the detailed Kelly lemma, a classu arrival in the
reversed processX(−t) corresponds to a classu departure in processX(t). Thus
we obtain condition (ii) of the second definition. Since a Poisson process reversed
in time is Poisson with the same rate, we have (b). Finally, condition (ii) implies
that the arrival epochs in the reversed processX(−t) are generated at a constant rate
independent of the current state, which gives (5.3).
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5.3 Quasi-Reversibility of Queues
with Triggered Departures

The quasi-reversibility defined in the last section is concerned with arrival and de-
parture epochs. One prominent feature is that an arrival cannot occur at the same
time as a departure. In queueing systems with signals, however, the arrival of a signal
may immediately trigger a departure. Thus the definition of quasi-reversibility is not
applicable in these cases. In this section we extend the notion of quasi-reversibility
to include such simultaneous events.

As before, letq be the transition rate of the node and let it be decomposed into
the components{qA

u;u∈ T}, {qD
u;u∈ T} andqI of (5.1). Assume thatq admits the

stationary distributionπ . Furthermore, assume that when a classu entity arrives and
induces the state of the node to change fromx to x′, it instantaneously triggers a
classv departure with triggering probabilityfu,v(x,x′), where

∑
v∈T

fu,v(x,x
′)≤ 1, u∈ T,x,x′ ∈ S.

With probability
1−∑

v∈T

fu,v(x,x
′)

the classu arrival does not trigger any departure.
Note that when∑v∈T fu,v(x,x′) ≡ 0 for all x andu, the system reduces to that of

the previous section with no instantaneous movements.

Definition 3. If there exist two sets of non-negative numbers{αu;u∈ T} and
{βu;u∈ T} such that

∑
x′∈S

qA
u(x,x′) = αu, x∈ S,u∈ T,

(5.4)

∑
x′∈S

π(x′)

(
qD

u(x′,x)+ ∑
v∈T

qA
v(x′,x) fv,u(x

′,x)

)
= βuπ(x), x∈ S,u∈ T,

(5.5)

then the queue with signals is said to be quasi-reversible with respect to{qA
u, fu,v;u∈

T,v∈ T}, {qD
u;u∈ T}, andqI .

As in the last section, quasi-reversibility for queues withsignals implies that
the arrivals of the different classes of entities form independent Poisson processes,
and the departures of different classes of entities, including both triggered and non-
triggered departures, also form independent Poisson processes. Moreover, future
arrivals and past departures are independent of the currentstate of the system.

In many applications, triggered and non-triggered departures belong to different
classes, i.e.,
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qA
v(x,x′) fv,u(x,x

′)qD
u(x,x′) = 0, for all x,x′ andu,v∈ T.

Let T ′ andT ′′ be the sets of the non-triggered and triggered departure classes, re-
spectively, such that

T = T ′∪T ′′, andT ′∩T ′′ = /0.

Then (5.5) is reduced to

∑
x′∈S

π(x′)qD
u(x′,x) = βuπ(x), x∈ S,u∈ T ′,

∑
x′∈S

π(x′) ∑
v∈T ′

qA
v(x′,x) fv,u(x

′,x) = βuπ(x), x∈ S,u∈ T ′′.

This is equivalent to saying that both the triggered and non-triggered departure pro-
cesses are independent Poisson with rateβu for classu∈ T.

The triggering arrivals and triggered departures are referred to as signals since
they pass through a node and change its state instantaneously. The following exam-
ple illustrates this.

Example 2.Consider anM/M/1 queue with two classes of arrivals, denoted byc
ands. Classc refers to the regular jobs, and classs refers to signals. When a signal
arrives at the node, it triggers a job to depart immediately as a classsdeparture, pro-
vided the queue is not empty upon its arrival. If a signal arrives at an empty queue,
nothing occurs and no departure is triggered. The job departures generated by regu-
lar processing completions are still classified as classc departures. The decomposed
transition rates are

qA
c(n,n+1) = α, n≥ 0,

qA
s(n,n−1) = α−, n≥ 1,

qA
s(0,0) = α−,

qD
c(n,n−1) = µ , n≥ 1.

All other transition rates are zero. By the triggering mechanism, we have

fc,c(n,n′) = fc,s(n,n′) = 0, n,n′ ≥ 0,

fs,s(n,n−1) = 1, n≥ 1.

Since the dynamics of this queue is the same as that of a regular M/M/1 queue with
arrival rateα and service rateµ + α−, its stationary distributionπ is given by

π(n) =

(
1− α

µ + α−

)(
α

µ + α−

)n

, n≥ 0.

If we set
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β =
αµ

µ + α−
,

β− =
αα−

µ + α−
,

then this system is quasi-reversible with departure ratesβ andβ−, since,

∑
n′

qA
c(n,n′) = α, n≥ 0,

∑
n′

qA
s(n,n′) = α−, n≥ 0,

∑
n′

π(n′)
(

qD
c(n′,n)+ ∑

u=c,s
qA

u(n′,n) fu,c(n
′,n)
)

= ∑
n′

π(n′)qD
c(n′,n) = β π(n), n≥ 0,

∑
n′

π(n′)
(

qD
s(n′,n)+ ∑

u=c,s
qA

u(n′,n) fu,s(n
′,n)
)

= ∑
n′

π(n′)qA
s(n′,n) fs,s(n

′,n) = β−π(n), n≥ 0.

This is a very simple system, but many queueing networks withnegative signals are
generated by this model.

5.4 Networks of Quasi-Reversible Nodes

In this section we connectN quasi-reversible nodes into a queueing network with
Markovian routing mechanisms. The main result is that such anetwork has a prod-
uct form solution, i.e., the stationary distribution of thenetwork factorizes into the
product of the marginal distributions of the individual nodes.

We consider a queueing network with an arbitrary Markovian routing mechanism
and multiple classes of entities. As discussed earlier, entities include both jobs and
signals, and their effects on the nodes can be quite general.For instance, the arrival
of an entity may decrease the number of jobs or trigger other actions before instan-
taneously moving to another node. In this section we consider a network structure
without signals, i.e., an arrival does not trigger any instantaneous departure. This
enables us to give an explicit expression for the network transition rates. The model
in this section forms the basis for the network with signals that will be discussed in
Section 5. However, when signals are present, the model becomes more involved,
and a mathematical expression for the network transition rates becomes complicated
without the use of matrix operators.

Suppose the network hasN nodes. Each node represents a single processing sta-
tion, or a cluster of stations (subnetwork). In addition to these nodes we have node
0, which represents the outside world. In this section, the state spaceS0 of node 0
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is the singleton, i.e.,S0 = {0}. Node 0 is a Poisson source, i.e., exogenous entities
arrive at the network according to a Poisson process. Even though our main con-
cern is an open network, the arguments can be applied to closed networks as well
by simply removing node 0. However, we keep node 0 for consistency. For node
j = 0,1, . . . ,N, let Tj denote the class of arrival and departure entities at nodej.
As discussed earlier, we do not make any distinction betweenarrival and departure
classes, even though they may be different. In case they are different we simply let
Tj be the union of the arrival and departure classes. For instance, in Example 1,
Tj = {c,c−}, even though the arrival classes are{c,c−} and the departure class is
{c}.

Let x j be the state of nodej with state spaceS j . For node 0, apparentlyx j ≡ 0.
When nodej contains a single station,x j may represent, for instance, the number of
each class of jobs as well as their positions in the queue. Since nodej may also be a
subnetwork,x j can be more general, e.g., it may represent the number of eachclass
of jobs present at each station as well as their positions at the stations within the
node. It may also include the remaining processing times at the node when the pro-
cessing times are not exponentially distributed. Furthermore, since each node may
be a subnetwork, there may be internal transitions withinx j , e.g., job movements
between different stations within the same node, or betweenpositions in the same
station of nodej.

What is the necessary information to construct a queueing network model? A
little reflection reveals that we need two types of information: Node (or local) infor-
mation, i.e., how does each node operate and react to arrivals from other nodes; and
inter-node (or global) information, i.e., how are the nodesinterconnected.

With regard to node information, we first note that the arrival process at each
node of the network is not known before the network is put together. Therefore the
arrival transition rate of each node, i.e.,qA

j , is not known, nor is it needed for the con-
struction of the queueing network. What we do have to know is what would happen
with the node when an arrival occurs. Thus, in order to construct the network, we
need for each node the following information.

(i) Arrival effects: The rules according to which the node changes state with the
arrival of an entity.

(ii) Departure transition rates: The rate at which the stateof the node changes and
it may induce the state of another node to change.

(iii) Internal transition rates: The rate at which the stateof the node changes and
it does not affect the states of other nodes.

For these reasons, we specify each node by a transitionprobability function that de-
scribes the changes of state upon arrivals and transitionrate functions that describe
changes of state due to departures and internal transitions. Thus, for nodej and an
entity of classu, we introduce functionspA

ju, qD
ju andqI

j on state spaceS j .

pA
ju(x j ,x′j) = the probability that a classu arrival at nodej changes the state from

x j to x′j , where it is assumed that
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∑
x′j∈S j

pA
ju(x j ,x

′
j) = 1, x j ∈ S j .

qD
ju(x j ,x′j) = the rate at which classu departures change the state of nodej from

x j to x′j .
qI

j(x j ,x′j) = the rate at which internal transitions change the state of node j from
x j to x′j .

For node 0, we setpA
0,u(0,0) = 1, qD

0,u(0,0) = β0u, andqI
j(0,0) = 0. This implies

that exogenous classu entities, i.e., classu departures from node 0, arrive at the
network from the outside according to a Poisson process withrateβ0u. Note that
pA

ju(x j ,x j) may be positive, i.e., an arrival may not cause a change of state with a
positive probability. We refer topA

ju as thearrival effect function.
We describe each queue by the three componentsqA

u, qD
u andqI . If a queue in the

network is initially characterized byqA
u, qD

u andqI , then the arrival effect function
may be defined as

pA
u(x,x′) =

qA
u(x,x′)

∑
y

qA
u(x,y)

, (5.6)

andqD
u, qI are the departure and internal transition functions. However, unless a node

is a separate queue, we assume that it is characterized bypA
u, qD

u andqI because, as
discussed earlier, the arrival process at a node of a networkdepends on the structure
of the entire network.

Example 3.Assume that nodej of the network is a queue with negative customers,
i.e., Example 1. It has two classes of arrivals and a single class of departures,Tj =
{c,c−}, and is characterized by the following arrival and departure functions:

pA
jc(n j ,n

′
j) =

{
1, n′j = n j +1,

0, otherwise,

pA
jc−(n j ,n

′
j) =

{
1, n′j = n j −1≥ 0,

0, otherwise,

pA
jc−(0,0) = 1,

qD
jc(n j ,n

′
j) =

{
µ j , n′j = n j −1,n j ≥ 1,

0, otherwise.

There are no classc− departures and there are no internal transitions, so

qD
jc−(n j ,n

′
j) ≡ 0, n j ,n

′
j ≥ 0,

qI
j(n j ,n

′
j) ≡ 0, n j ,n

′
j ≥ 0.

Node j has a single server with service rateµ j . When a customer arrives, the
number of customers in the node increases by 1, when a negative customer arrives,
the number of customer decreases by 1, provided the node is not empty. When a
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negative customer arrives at an empty node, the state does not change. Note that the
arrival process at nodej, which is denoted byqA

ju, is not given. It is characterized by
pA

ju, which describes what happens when a classu (u = c,c−) entity arrives at the
node when it is in staten j . Also note thatpA

ju andqA
ju in Example 1satisfy (5.6).

The interactions between the nodes are defined as follows. A classu departure
from node j enters nodek as a classv arrival with probabilityr ju,kv, and an exoge-
nous classu arrival is routed to nodek as a classv arrival with probabilityr0u,kv. It
is assumed that

N

∑
k=0

∑
v∈Tk

r ju,kv = 1, j = 0,1, . . . ,N, u∈ Tj . (5.7)

Note that classudepartures from nodej leave the network with probability∑v∈T0
r ju,0v.

This probability is often denoted byr ju,0. In this way, we associate the departures
from one node with the arrivals at another.

Let
S = S1×S2×·· ·×SN

be the product state space. Then,

x = (x1,x2, . . . ,xN) ∈ S

is the state of the network. This network is a continuous timeMarkov chain with
state spaceS and transition rate functionq, where

q(x,x′) =
N

∑
j=0

N

∑
k=0

∑
u∈Tj

∑
v∈Tk

qD
ju(x j ,x

′
j) r ju,kv pA

kv(xk,x
′
k) 1[xℓ = x′ℓ for all ℓ 6= j,k]

+
N

∑
j=0

qI
j(x j ,x

′
j) 1[xℓ = x′ℓ for all ℓ 6= j] , (5.8)

for x = (x1,x2, . . . ,xN) ∈ S andx′ = (x′1,x
′
2, . . . ,x

′
N) ∈ S. The first summation on the

right hand side of (5.8) represents the state changes due to job transfers from one
node to another, and the second summation represents internal state changes. If

qD
ju(x j ,x j) = pA

ju(x j ,x j ) = qI
j(x j ,x j) = 0,

then the transition rate function (5.8) can be partitioned into disjoint sets:

q(x,x′) =





∑
u∈T

∑
v∈T

qD
ju(x j ,x

′
j ) r ju,kv pA

kv(xk,x
′
k) , xℓ = x′ℓ, for all ℓ 6= j,k,

qI
j(x j ,x

′
j) , xℓ = x′ℓ, for all ℓ 6= j,

0 , otherwise.

This is a typical situation in a conventional queueing network such as Jackson net-
work. However, it is not true in general. For instance, if a departing job transforms
itself into a negative signal and there is no job present at the node where it arrives,
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then the signal does not have any effect. In this case only thestate of the node from
which the job departs changes. That is, the transition caused by a signal may result
in a change of state that is similar to an internal transition.

We now derive the stationary distribution for the queueing network just con-
structed. Assuming that each node in isolation is quasi-reversible, we show that the
stationary distribution of the network process has productform.

Consider for each nodej the following auxiliary process:

q
(α j )
j (x j ,x

′
j) = ∑

u∈Tj

(
α ju pA

ju(x j ,x
′
j)+qD

ju(x j ,x
′
j)
)
+qI

j(x j ,x
′
j), x j ,x

′
j ∈ S j . (5.9)

Clearly,q
(α j )
j (x j ,x′j) can be viewed as nodej being in isolation, with classu∈ Tj

entities arriving according to a Poisson process with rateα ju. In general,pA
ju, qD

ju,
andqI

j are allowed to be functions ofα j = {α ju;u∈ Tj}. However, this dependency
of α j is made implicit for simplicity.

Supposeq
(α j )
j has a stationary distributionπ (α j )

j , i.e.,

π (α j )
j (x j )

(

∑
u∈Tj

(
α ju + ∑

x′j∈S j

qD
ju(x j ,x

′
j )
)

+ ∑
x′j∈S j

qI
j(x j ,x

′
j)

)

= ∑
u∈Tj

∑
x′j∈S j

π (α j )
j (x′j)

(
α ju pA

ju(x
′
j ,x j)+qD

ju(x
′
j ,x j)

)
+ ∑

x′j∈S j

π (α j )
j (x′j)q

I
j(x
′
j ,x j) ,

x j ,x
′
j ∈ S j . (5.10)

Thisπ (α j )
j is expected to be the marginal distribution of nodej for some parameters

α j = (α ju;u ∈ Tj). However, the exact values ofα1, . . . ,αN are not yet known.
Thus, for the time being, theα j may be regarded as dummy parameters, and their
values will be determined later by the traffic equations.

First, note that we always have

∑
x′j∈Sj

α ju pA
ju(x j ,x

′
j) = α ju, u∈ Tj .

Hence, quasi-reversibility is equivalent to the property that there exists a set of non-
negative numbers{β ju;u∈ Tj} such that

∑
x′j∈S j

π (α j )
j (x′j)q

D
ju(x
′
j ,x j) = β juπ (α j )

j (x j), x j ∈ S j (5.11)

for all j = 1,2, . . . ,N andv∈ Tj . By (5.11),β ju is determined by

β ju = ∑
xj ,x′j∈S j

π (α j )
j (x j)q

D
ju(x j ,x

′
j) . (5.12)
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Consider now the network generated by linking nodes 1,2, . . . ,N through the
routing probability matrixR= {r ju,kv}, where nodej is defined bypA

ju, qD
ju, andqI

j .
Assume that classu∈ T0 entities arrive at the network from the outside (node 0) at
rateβ0u, which is given, and that each entity joins nodek as a classv entity with
probabilityr0u,kv. Let βkv be the average departure rate of classv entities from node
k. The average arrival rate of classu entities at nodej satisfies

α ju =
N

∑
k=0

∑
v∈Tk

βkvrkv, ju, j = 0,1, . . . ,N, u∈ Tj . (5.13)

These equations are referred to as thetraffic equations. Note thatβ jv is a non-linear
function ofα j , which is determined by (5.12), so the traffic equations are,in general,
non-linear in theα ju’s. Finding solutions of (5.13) can be considered a fixed point
problem concerning the vectorα = {α ju; j = 0,1, . . . ,N,u∈ Tj}.
Theorem 2.For (α0,α1, . . . ,αN) satisfying (5.11) and (5.13), if each node of the

network with transition rateq
(α j )
j is quasi-reversible, then the stationary distribution

of the network is

π(x) =
N

∏
j=1

π (α j )
j (x j ), x≡ (x1,x2, . . . ,xN) ∈ S. (5.14)

Proof. Define distributionπ by (5.14). We apply the detailed Kelly lemma to ver-
ify that this π is indeed the stationary distribution of the network process q. For
convenience, we drop the superscript(α j). Assume that the time reversed process
corresponds to another network with a similar structure. Let

q̃D
ju(x
′
j ,x j ) =

π j(x j)α ju pA
ju(x j ,x′j)

π j(x′j)
,

q̃I
j(x
′
j ,x j ) =

π j(x j)qI
j(x j ,x′j)

π j(x′j )
,

p̃A
ju(x
′
j ,x j ) =

π j(x j)qD
ju(x j ,x′j)

π j(x′j)β ju
,

r̃ ju,kv =
βkvrkv, ju

α ju
.

Note that

∑
x′j∈S j

p̃A
ju(x j ,x

′
j) = 1,

and
N

∑
k=0

∑
v∈Tj

r̃ ju,kv = 1.
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So, we can define a transition rate ˜q for a queueing network process with arrival
probability function ˜pA

ju, departure rate function ˜qD
ju, internal transition rate ˜qI

j and
routing probabilities ˜r ju,kv.

The detailed Kelly lemma requires the verification of two conditions. To check
the first condition, i.e.,

∑
x′

q(x,x′) = ∑
x′

q̃(x,x′),

note that the state of the network changes only when there is adeparture or when
there is an internal transition. Thus

∑
x′

q̃(x,x′) =
N

∑
j=0

[
∑

u∈Tj

∑
x′j

q̃D
ju(x j ,x

′
j)+∑

x′j

q̃I
j(x j ,x

′
j)
]

=
N

∑
j=0

[

∑
u∈Tj

∑
x′j

π j(x′j)α ju pA
ju(x

′
j ,x j)

π j(x j)
+∑

x′j

π j(x′j)q
I
j(x
′
j ,x j)

π j(x j)

]

=
N

∑
j=0

1
π j(x j)

[
∑

u∈Tj

∑
x′j

π j(x
′
j)
(

α ju pA
ju(x
′
j ,x j)+qD

ju(x
′
j ,x j)

)

+∑
x′j

π j(x
′
j)q

I
j(x
′
j ,x j)− ∑

u∈Tj

β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j ,x

′
j)+∑

x′j

qI
j(x j ,x

′
j)+ ∑

u∈Tj

(α ju−β ju)
]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j ,x

′
j)+∑

x′j

qI
j(x j ,x

′
j)
]

= ∑
x′

q(x,x′),

where the third equality follows from (5.11), the fourth equality follows from the
fact thatπ j is the stationary distribution forq j , i.e., (5.10), and the last equality
follows from the total balance

N

∑
j=0

∑
u∈Tj

α ju =
N

∑
j=0

∑
u∈Tj

β ju, (5.15)

which is immediate from the traffic equation.
We next verify the second condition of the detailed Kelly lemma. We decom-

poseq(x,x′) and q̃(x,x′) according to the types of transitions. Letx j(x′j) be the
vector x with its j-th componentx j replaced byx′j , and denote(x j(x′j))k(x′k) by
x jk(x′j ,x

′
k). Note that the types of transitions out of statex underq are(x,x j(x′j)) and

(x,x jk(x′j ,x
′
k)). The first represents an internal transition at nodej and the second a

departure from nodej, triggering an arrival at nodek. In the latter,j may be equal
to k, representing a feedback. When this is the case the sequenceof transitions is
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x
u→ x j(y j)

v→ x j(x
′
j), (5.16)

whereu andv are the classes of entities that cause the corresponding transitions.
Denote the transition rate for this sequence by

q ju(yj ), jv(x,x
′) =

{
qD

ju(x j ,y j)r ju, jvpA
jv(y j ,x j ), for x′ = x j(x′j),

0, otherwise.

Similarly, for j 6= k and for the sequence of transitions

x
u→ x j(x

′
j)

v→ x jk(x
′
j ,x
′
k), (5.17)

denote the transition rate by

q ju,kv(x,x
′) =

{
qD

ju(x j ,x′j)r ju,kvpA
kv(xk,x′k), for x′ = x jk(x′j ,x

′
k),

0, otherwise.

We similarly define the corresponding rates in the reversed process. Let ˜q ju(yj ), jv
denote the rate for the state transitions (5.16), and, forj 6= k, let q̃ ju,kv be the rate for
the state transitions (5.17). Then, we have

q(x,x′) =
N

∑
j=0

(

∑
u,v∈Tj

( N

∑
k=0

q ju,kv(x,x
′)+ ∑

yj∈S j

q ju(yj ), jv(x,x
′)
)

+qI
j(x,x

′)

)
,

q̃(x,x′) =
N

∑
j=0

(

∑
u,v∈Tj

( N

∑
k=0

q̃ ju,kv(x,x
′)+ ∑

yj∈S j

q̃ ju(yj ), jv(x,x
′)
)

+ q̃I
j(x,x

′)

)
.

We now verify the second condition of the detailed Kelly lemma for each sequence
of state transitions and each internal transition. The latter is immediate from

π(x j(x
′
j))q̃

I
j(x
′
j ,x j) = π(xj(x

′
j))

π j(x j)qI
j(x j ,x′j)

π j(x′j)

= π(x)qI
j(x j ,x

′
j) ,

where we have used the fact thatπ(x) is the product ofπ j(x j). Similarly,

π(x j(x
′
j))q̃ ju(yj ), jv(x j(x

′
j),x) = π(x j(x

′
j))q̃

D
ju(x
′
j ,y j)r̃ ju, jv p̃A

jv(y j ,x j)

= π(xj(x
′
j))

π j(y j)α ju pA
ju(y j ,x′j)

π j(x′j)
β jvr jv, ju

α ju

π j(x j)qD
jv(x j ,y j)

π j(y j)β jv

= π(xj(x
′
j))

π j(x j)

π j(x′j)
qD

jv(x j ,y j)r jv, ju pA
ju(y j ,x

′
j)

= π(x)q jv, ju(yj )(x,x j(x
′
j)) .

A similar argument yields, forj 6= k,
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π(x jk(x
′
j ,x
′
k))q̃ ju,kv(x jk(x

′
j ,x
′
k),x) = π(x)qkv, ju(x,xk j(x

′
k,x
′
j)) .

Thus the second condition of Kelly lemma is also satisfied. This completes the proof
of the theorem.

In many queueing systems (5.11) holds for a range ofα j . If this is the case the
queue is called uniformly quasi-reversible.

Definition 4. Node j, characterized by{pA
ju;u∈ Tj}, {qA

ju;u∈ Tj} andqI
j , is called

uniformly quasi-reversibleif it is quasi-reversible for allα j for which the stationary

distributionπ (α j )
j exists.

If node j is uniformly quasi-reversible, then the departure rateβ ju is well defined

on the range ofα j for which π (α j )
j exists. Thus it can be considered a function

of α j , and the determination ofα j , for which the marginal distributionπ (α j )
j of

node j is computed, requires the solution of the non-linear trafficequations. Thus
uniform quasi-reversibility is important in computing thestationary distribution of
the network. The remaining problem is whether the traffic equations have a solution
and how they can be determined. This is a fixed point problem aswe stated before
on which there exists an extensive literature, thus we will not elaborate it further.

We refer to a network of quasi-reversible nodes as aquasi-reversible network.
Indeed, as seen from the following corollary, when the entire network is viewed as
a system, it is also quasi-reversible.

Corollary 1. In quasi-reversible queueing networks, the classu departure process
from nodej to the outside is Poisson with rateβ ju ∑v∈T0

r ju,0v. The network is quasi-
reversible with respect to arrivals from the outside and departures to the outside.

Proof. From the proof of Theorem 2, the time reversed network process also rep-
resents a quasi-reversible network characterized by ˜pA

ju, q̃D
ju and q̃I

j , and routing
probabilities ˜r ju,kv. Hence, in the time reversed network, the classu entities arrive at
node j from the outside according to a Poisson process with rate

∑
v∈T0

α0vr̃0v, ju = ∑
v∈T0

α0v
β ju

α0v
r ju,0v

= β ju ∑
v∈T0

r ju,0v .

The corollary follows from the fact that the arrivals from the outside in the time
reversed process are the departures from the network to the outside in the original
network.

However, this does not imply that the departure and arrival processes at each
node of the network are Poisson. Actually, it can be shown that the flow on a link is
Poisson if and only if it is not part of a cycle. For instance, the flows in between any
two nodes in a feedforward network are Poisson.

Example 4.Consider a network withN single-server nodes. Each node has expo-
nentially distributed processing times and two classes of entities: regular customers
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and negative customers, i.e., the type of node discussed in Example 1. Regular as
well as negative customers arrive at nodej from the outside according to indepen-
dent Poisson processes with ratesλ j andλ−j . Upon a processing completion at node
j, a customer joins nodek as a regular customer with probabilityr jc,kc and as a
negative customer with probabilityr jc,kc− , k = 0,1, . . . ,N. The arrival of a negative
customer removes a customer from the node. The state of the network is represented
by a vectorn = (n1, . . . ,nN), wheren j is the number of regular customers at nodej,
n j ∈ S j = {0,1, . . .}.

Node j, characterized by (5.9), is subject to Poisson arrivals of regular and nega-
tive customers with ratesα j andα−j . From Example 1, it follows that the stationary
distributionπ j of node j is of a geometric form, and the node is uniformly quasi-
reversible, and theπ j exists if and only if

α j < µ j + α−j . (5.18)

The departure rate from nodej is

β j =
α j µ j

µ j + α−j
.

The traffic equations are

α j = λ j +
N

∑
k=1

αkµk

µk + α−k
rkc, jc , j = 1, . . . ,N ,

α−j = λ−j +
N

∑
k=1

αkµk

µk + α−k
rkc, jc− , j = 1, . . . ,N .

Thus, if the stability condition (5.18) is satisfied, then, by Theorem 2, the stationary
distribution of the network,π , is the product of theπ j , i.e.,

π(n) =
N

∏
j=1

(
1− α j

µ j + α−j

)(
α j

µ j + α−j

)n j

.

This is the network first studied by Gelenbe (1991). Gelenbe (1991) introduced
the terminology of negative customer in queueing networks,while he called the
conventional customerspositive customers. The reader should not mix this positive
customer with a positive signal which we will introduce later.

5.5 Networks with Signals and Triggered Movements

This section extends the results of the last section to networks with instantaneous
movements. Since instantaneous movements are triggered bysignals, these net-
works are often referred to as networks with signals.
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Consider a network withN nodes. Each node is a quasi-reversible queue with
signals as described in Section 3. LetS j be the state space of nodej, and letTj be
the set of arrival and departure entity classes,j = 1,2, . . . ,N. As discussed in Section
2, we need to specify for each node the transitionprobability functions that describe
state changes due to arrivals, and the transitionrate functions that describe depar-
tures and internal state changes. For these, we use the same notation as in last sec-
tion, i.e.,pA

ju, qD
ju andqI

j . However, since there are instantaneous movements when
there is an arrival at a node, we also have to specify the probability functions for the
arrivals to induce departures, i.e., thetriggering probabilityfunctions f ju,v(x j ,x′j).
When a classu entity arrives at nodej and the state changes fromx j to x′j , it simul-
taneously induces a classv departure with triggering probabilityf ju,v(x j ,x′j). These
probabilities satisfy

∑
v∈Tj

f ju,v(x j ,x
′
j)≤ 1, u∈ Tj , x j ,x

′
j ∈ S j , j = 1,2, . . . ,N.

We allow pA
ju, f ju,v, qD

ju, andqI
j to be functions of a nonnegative vectorα j =

{α ju;u∈ Tj}, even though this dependency is made implicit for convenience. Also,
pA

ju(x j ,x j) may be positive, i.e., an arrival may, with a positive probability, cause no
change of state.

The dynamics of the network is described as follows. Classu∈ Tj entities from
the outside, i.e., classu departures from node 0, arrive at the network according to
a Poisson process with rateβ0u, and each is routed to nodej as a classv entity with
probabilityr0u,kv. A classu departure from nodej, either triggered or non-triggered,
joins nodek as a classv arrival with probabilityr ju,kv, k = 0,1, . . . ,N, where

N

∑
k=0

∑
v∈Tk

r ju,kv = 1, j = 0,1, . . . ,N, u∈ Tj .

Furthermore, whenever there is a classu arrival at nodej, either from the outside or
from other nodes, it causes the state of the node to change from x j to x′j with prob-
ability pA

ju(x j ,x′j), it also triggers a classv departure with probabilityf ju,v(x j ,x′j),
and it triggers no departure from nodej with probability

1− ∑
v∈Tj

f ju,v(x j ,x
′
j).

In this way, we associate the departures, both regular departures and triggered
departures, from one node with the arrivals at another.

A distinctive feature of this network is that there are simultaneous arrivals
and departures. For instance, if, for nodesj1, j2, . . . , jk and classesuℓ,u′ℓ ∈ Tℓ,
ℓ = j1, j2, . . . , jk,

pA
j1u1

(x j1,x
′
j1) f j1u1,u′1

(x j1,x
′
j1)r j1u′1, j2u2

×·· ·× pA
jk−1uk−1

(x jk−1,x
′
jk−1

)

× f jk−1uk−1,u
′
k−1

(x jk−1,x
′
jk−1

)r jk−1u′k−1, jkuk
pA

jkuk
(x jk ,x

′
jk
) > 0,
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then a classu1 arrival at node j1 will simultaneously create arrivals at nodes
j1, j2, . . . , jk, and change the states of these nodes tox′j1,x

′
j2
, . . . ,x′jk with a posi-

tive probability. Note that the same node may be visited several times on this route,
and as a result, the state of the node may change a number of times at one point in
time.

Let
X(t) = (X1(t),X2(t), . . . ,XN(t))

denote the state of the network at timet, with Xj(t) being the state of nodej. Then
X(t) is a Markov process on the state spaceS.

The following technical assumption has to be made in order toavoid an infinite
number of visits at a node at one time epoch. For any sequence of nodesj1, j2, . . . , jℓ,
with arrival classesu1, . . . ,uℓ, and departure classesu′1, . . . ,u

′
ℓ, and for any sequence

of network statesx,x1,x2, . . . ,xℓ,

lim
ℓ→∞

px(( j1u1,u
′
1,x1), . . . ,( jℓuℓ,xℓ)) f jℓuℓ,u

′
ℓ
(xℓ−1,xℓ) = 0. (5.19)

In most applications this assumption is easily verified. Forinstance, if instantaneous
movements always decrease the numbers of jobs at the nodes and stop propagating
when they arrive at empty nodes, the network will be empty after a finite number of
steps, so the sequence of nodes to be visited is of finite length. On the other hand,
if each visit increases the number of jobs, then, without theassumption above, the
network will, with positive probability, explode at a single time epoch. Letq denote
the transition rate function of the Markov processX(t).

As in the earlier section, we need to first consider each individual nodej with an

auxiliary transition rateq
(α j )
j to compute the stationary distribution of the network,

where

q
(α j )
j (x j ,x

′
j) = ∑

u∈Tj

(
α ju pA

ju(x j ,x
′
j)+qD

ju(x j ,x
′
j)
)
+qI

j(x j ,x
′
j), x j ,x

′
j ∈ S j .(5.20)

Theα j = (α ju;u∈ Tj) are considered dummy parameters and their values are to be

determined by the traffic equations. Assumeq
(α j )
j has a stationary distributionπ (α j )

j ,
j = 1,2, . . . ,N. We now require that the nodes with signals be quasi-reversible. Note
that qA

ju ≡ α ju pA
ju satisfies condition (5.5) automatically. So the quasi-reversibility

is equivalent to the existence of non-negative numbers{βiu;u ∈ Tj} for all j =
1,2, . . . ,N such that

∑
x′j∈S j

π (α j )
j (x′j)

(
qD

ju(x
′
j ,x j)+ ∑

v∈Tj

α jvpA
jv(x
′
j ,x j) f jv,u(x

′
j ,x j)

)
= β juπ (α j )

j (x j)

u∈ Tj , x j ∈ S j . (5.21)

Sinceα ju andβiu are the arrival and departure rates of classu entities at nodej,
the traffic equations
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α ju =
N

∑
k=0

∑
v∈Tk

βkvrkv, ju, j = 0,1, . . . ,N, u∈ Tj

have to be satisfied. We need the following condition to ensure that the network
process is regular:

N

∑
j=1

∑
xj∈S j

π (α j )
j (x j) ∑

x′j∈S j

q
(α j )
i (x j )(x j ,x

′
j) < ∞. (5.22)

A simple sufficient condition for (5.22) is

∑
u∈Tj

(
α ju + β ju + ∑

x′j∈S j

qI
j(x j)(x j ,x

′
j)

)
< ∞, for all j = 1, . . . ,N ,

which is satisfied by all the examples in this chapter.
The following result for networks with signals is an extension of Theorem 2 for

networks without instantaneous movements.

Theorem 3. If each node of the network is a quasi-reversible queue with signals,
i.e., equation (5.21) is satisfied, and ifα j , j = 1, . . . ,N are the solutions of the traf-
fic equations (5.13), then the queueing network with signalshas the product form
stationary distribution

π(x) =
N

∏
j=1

π (α j )
j (x j ), x≡ (x1,x2, . . . ,xN) ∈ S. (5.23)

Proof. We use the detailed Kelly lemma. For convenience we drop the superscript
(α j). Assume that the reversed process corresponds to a similar network that is
characterized by

q̃D
ju(x
′
j ,x j) =

π j(x j )α ju pA
ju(x j ,x′j)

(
1−∑v f ju,v(x j ,x′j)

)

π j(x′j)

q̃I
j(x
′
j ,x j) =

π j(x j )qI
j(x j ,x′j)

π j(x′j)
,

p̃A
ju(x
′
j ,x j) =

π j(x j )
(

qD
ju(x j ,x′j)+ ∑vα jv pA

ju(x j ,x′j) f jv,u(x j ,x′j)
)

π j(x′j)β ju

f̃ jv,u(x
′
j ,x j) =

α jv pA
jv(x j ,x′j) f jv,u(x j ,x′j)

qD
ju(x j ,x′j)+ ∑v α jv f jv,u(x j ,x′j)

,

r̃ ju,kv =
βkvrkv, ju

α ju
.
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Because of the quasi-reversibility condition (5.21) and the traffic equations (5.13),
p̃A

ju(y j ,x j) and ˜r ju,kv are indeed probabilities. Thus they determine a queueing net-
work with instantaneous movements.

To apply the detailed Kelly lemma, we need to verify two conditions. To check
the first condition, i.e.,

∑
x′

q(x,x′) = ∑
x′

q̃(x,x′),

we first note that changes in the network state are initiated by either a departure
or an internal transition, and terminated after a finite number of transitions. The
latter is ensured by condition (5.19), which guarantees that the network process is
well defined. Thus, similar to the proof of Theorem 2, using the quasi-reversibility
condition (5.21), the global balance of each node (5.10) andthe total balance (5.15),
we obtain

∑
x′

q̃(x,x′) =
N

∑
j=0

[
∑

u∈Tj

∑
x′j

q̃D
ju(x j ,x

′
j)+∑

x′j

q̃I
j(x j ,x

′
j)
]

=
N

∑
j=0

[

∑
u∈Tj

∑
x′j

π j(x′j)α ju pA
ju(x

′
j ,x j)

(
1−∑v∈Tj

f ju,v(x′j ,x j)
)

π j(x j)

+∑
x′j

π j(x′j)q
I
j(x
′
j ,x j)

π j(x j )

]

=
N

∑
j=0

[ (
∑

u∈Tj

∑
x′j

π j(x
′
j )α ju pA

ju(x
′
j ,x j)+ ∑

u∈Tj

∑
x′j

π j(x
′
j)q

D
ju(x

′
j ,x j)

+∑
x′j

π j(x
′
j)q

I
j(x
′
j ,x j)

)/
π j(x j)−β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j ,x

′
j)+∑

x′j

qI
j(x j ,x

′
j)+ α ju−β ju

]

=
N

∑
j=0

[
∑

u∈Tj

∑
x′j

qD
ju(x j ,x

′
j)+qI

j(x j ,x
′
j)
]

= ∑
x′

q(x,x′),

To check the second condition of the detailed Kelly lemma, weneed to decom-
pose the transition functionsq(x,x′) andq̃(x,x′), such that

π(x)qσ (x,x′) = π(x′)q̃σ̃ (x′,x) (5.24)

is satisfied for each decomposed transition functionsqσ (x,x′) andq̃σ̃ (x,x′), where
σ is the index for a sequence of simultaneous transitions, andσ̃ is the index for the
reversed sequence ofσ . Clearly, a transition for this network is either an internal
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transition at a node, or a transition involving at least two nodes (possibly node 0, the
outside). A transition involving two or more nodes takes thefollowing form: The
network starts out in statex, a classu entity departs from nodej ( j = 0,1, . . . ,N)
and goes to nodej1 as a classu1 entity, changes the state of the network tox1, and
triggers at the same time a classu′1 departure from nodej1; it then goes to nodej2
as a classu2 entity, changes the state of the network tox2, and triggers a classu′2
departure, etc. The string transition ends when a classv entity arrives at a nodek
that does not trigger any instantaneous departure, and the state changes tox′. Let σ
denote this sequence. For the reversed process,σ̃ represents the reversed sequence
of σ which initiates with a classv departure at nodek when its state isx′, triggering
a string of transitions, and ends with a classu arrival at nodej that does not trigger
any instantaneous departure and the state of the network changes tox.

We now verify the second condition of the detailed Kelly lemma. For an internal
transition, (5.24) is easily seen to be satisfied by the definition of q̃I

j . For transitions
that involve more than one node, we consider here only the case of a string transition
that involves three nodes.

π(x)qσ (x,x′)

= π j(x j)π j1(x j1)πk(xk)q
D
iu(x j ,x

′
j )r ju, j1u1 pA

j1u1
(x j1,x

′
j1) f j1u1,u′1

(x j1,x
′
j1)

×r j1u′1,kvpA
kv(xk,x

′
k)
(

1− ∑
w∈Tk

fkv,w(xk,x
′
k)
)

∏
ℓ 6= j , j1,k

πℓ(xℓ).

Similarly the right hand side is

π(x′)q̃σ̃ (x′,x)

= πk(x
′
k)π j1(x

′
j1)π j(x

′
j)q̃

D
jv(x
′
j ,x j)r̃kv, j1u′1

p̃A
j1u′1

(x′j1,x j1) f̃ j1u′1,u1
(x′j1,x j1)

×r̃ j1u1, ju p̃A
ju(x

′
j ,x j)

(
1− ∑

w∈Tj

f̃ ju,w(x′j ,x j)
)

∏
ℓ 6= j , j1,k

πℓ(xℓ).

It is straightforward to verify that these two terms are equal. In case the string con-
tains more than 3 nodes, (5.24) can be verified in a similar way. This completes the
proof of Theorem 3.

The following example extends Example 4 by including triggered movements
throughout the network. Clearly, ifr js,ks = for all j andk, then it reduces to the
model of Example 4.
Example 5. Consider a queueing network with jobs and negative signals,as de-
scribed in Example 2. When a job completes its processing at node j, it goes to
nodek as a regular job with probabilityr jc,kc, and as a negative signal with prob-
ability r jc,ks, k = 0,1, . . . ,N. When a negative signal arrives at nodej, it induces a
job, if there is one present, to depart. The job then joins nodek as a regular job with
probabilityr js,kc, and as a negative signal with probabilityr js,ks, k = 0,1, . . . ,N. Let
λ j andλ−j be the exogenous arrival rates of jobs and signals at nodej. The state of
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the network is given by vectorn = (n1, . . . ,nN), wheren j is the number of jobs at
node j.

Node j, defined by (5.20), is a queue discussed in Example 2, with service rate
µ j , job arrival rateα j , and signal arrival rateα−j . It is quasi-reversible with departure
rates of jobs and signals given by

β j =
α j µ j

µ j + α−j
, β−j =

α j α−j
µ j + α−j

.

Thus the traffic equations are

α j = λ j +
N

∑
k=1

αkµk

µk + α−k
rkc, jc +

N

∑
k=1

αkα−k
µk + α−k

rks, jc , (5.25)

j = 1,2, . . . ,N,

α−j = λ−j +
N

∑
k=1

αkµk

µk + α−k
rkc, js +

N

∑
k=1

αkα−k
µk + α−k

rks, js , (5.26)

j = 1,2, . . . ,N .

Suppose these traffic equations have positive solutionsα j ,α−j such that

α j

µ j + α−j
< 1, j = 1,2, . . . ,N .

Since each node is uniformly quasi-reversible, applying Theorem 3 yields the sta-
tionary distribution

π(n) =
N

∏
j=1

(
1− α j

µ j + α−j

)(
α j

µ j + α−j

)n j

.

5.6 Networks with Positive and Negative Signals

In this section we apply Theorem 3 to a queueing network with two types of signals:
positive signals and negative signals. The first subsectionconsiders the case of a
single class of positive signals and a single class of negative signals, and the second
subsection considers multiple classes of positive and negative signals. These models
include most networks with batch movements as special cases.
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5.6.1 Single Class of Positive and Negative Signals

Consider a network withN nodes and a single server at each node. There are
three classes of entities:jobs, positive signals, and negative signals, denoted by
T = {c,s+,s−}. Classc refers to the regular jobs; their arrivals do not trigger any
instantaneous movements. Positive and negative signals, however, represent signal-
ing mechanisms that induce immediate transitions at the nodes where they arrive.
Assume that the state of the network isn = (n1,n2, . . . ,nN), wheren j is the number
of jobs at nodej, j = 1,2, . . . ,N. The arrival of a positive signal at a node increases
the number of jobs at that node by 1, and then leaves immediately for another node.
The arrival of a negative signal at a node triggers a job to depart, provided the node is
not empty upon its arrival. A negative signal disappears when it arrives at an empty
node.

Assume that jobs arrive from the outside at nodej according to a Poisson process
with rate λ j , and positive and negative signals arrive from the outside at node j
according to Poisson processes with ratesλ +

j andλ−j . Node j, j = 1, . . . ,N, has
exponential processing times with rateµ j .

Upon a processing completion at nodej, a job leaves for nodek as a regular
job with probabilityr jc,kc, as a positive signal with probabilityr jc,ks+ , as a negative
signal with probabilityr jc,ks− , and it leaves the network with probabilityr jc,0, where

N

∑
k=1

(r jc,kc+ r jc,ks+ + r jc,ks−)+ r jc,0 = 1, j = 1, . . . ,N.

When a positive signal arrives at nodej, either from the outside or from another
node, it adds one job and then leaves immediately for nodek as a regular job with
probabilityr js+,kc, as a positive signal with probabilityr js+,ks+ , as a negative signal
with probabilityr js+,ks− , and it leaves the network with probabilityr js+,0, where

N

∑
k=1

(r js+,kc+ r js+,ks+ + r js+,ks−)+ r js+,0 = 1, j = 1, . . . ,N.

Finally, when a negative signal arrives at nodej, either from the outside or from
another node, it triggers a job, if any, to depart. The departing job goes to nodek as
a regular job with probabilityr js−,kc, as a positive signal with probabilityr js−,ks+ , as
a negative signal with probabilityr js−,ks− , and it leaves the network with probability
r js−,0, where again

N

∑
k=1

(r js−,kc+ r js−,ks+ + r js−,ks−)+ r js−,0 = 1, j = 1, . . . ,N.

As indicated earlier, a negative signal that arrives at an empty node is assumed to be
lost. We refer to this model asa network with positive and negative signals.
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In this network there can be any number of job additions or deletions at various
nodes of the network at the same point in time. For instance, if there is a sequence
j1, j2, . . . , jk such that

r j1s+, j2s+r j2s+, j3s+ · · · r jk−1s+, jks+ > 0,

then the arrival of a positive signal at nodej1 would, with positive probability, add
one job at each one of nodesj1, j2, . . . , jk. There can also be batch arrivals at nodej
if r js+, js+ > 0, and the arrival of a positive signal can add a batch of random size at
a number of nodes. Unlike in networks with negative signals,in which a signal may
be interrupted on its route once it hits an empty node, a positive signal in this model
will never be interrupted. It disappears only when it is transformed into another class
of entity or when it leaves the network.

To ensure that the network is stable, i.e., it will not be overloaded, we have to
exclude the case that a positive signal from any node generates an infinite number
of jobs in the network at one point in time. Hence we make the following technical
assumption in order to ensure that the stochastic process isregular: The Markov
chain with state space{0,1, . . . ,N} and transition probabilitiesp·,· given by

p j ,k = r js+,ks+ , j,k = 1, . . . ,N,

p j ,0 = 1−
N

∑
k=1

r js+,ks+ −
N

∑
k=0

r js+,kc, j = 1, . . . ,N,

p0,0 = 1,

has only one recurrent state 0.
We are interested in the stationary probability of this network. However, it is

known that such networks do not have closed form solutions. In the following theo-
rem, we modify the network process so as to obtain a product form solution for the
network. This modification may appear artificial, and it is introduced purely to ob-
tain the uniform quasi-reversibility of each node so that Theorem 3 can be applied.
However, under some conditions the product form solution serves as a stochastic
upper bound for the original network.

Suppose the following traffic equations have a nonnegative solution {α j ; j =
1, . . . ,N}, {α+

j ; j = 1, . . . ,N}, and{α−j ; j = 1, . . . ,N}:

α j = λ j +
N

∑
k=1

ρkµkrkc, jc +
N

∑
k=1

ρkα−k rks−, jc +
N

∑
k=1

ρ−1
k α+

k rks+ , jc, (5.27)

α+
j = λ +

j +
N

∑
k=1

ρkµkrkc, js+ +
N

∑
k=1

ρkα−k rks−, js+ +
N

∑
k=1

ρ−1
k α+

k rks+, js+ , (5.28)

α−j = λ−j +
N

∑
k=1

ρkµkrkc, js− +
N

∑
k=1

ρkα−k rks−, js−+
N

∑
k=1

ρ−1
k α+

k rks+, js− , (5.29)

for j = 1, . . . ,N, where
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ρ j =
α j + α+

j

µ j + α−j
.

Now modify the network with positive and negative signals such that whenever
node j is empty, a Poisson departure process of positive signals isactivated with
rateρ−1

j α+
j .

Theorem 4. If the solution of the traffic equations satisfyρ j < 1 for j = 1, . . . ,N,
the modified network described above has the product form stationary distribution

π(n1, . . . ,nN) =
N

∏
j=1

(1−ρ j)ρn j
j . (5.30)

Proof. We use Theorem 3 to prove the result. It suffices to verify the quasi-
reversibility of each node when it is in isolation and subject to Poisson arrivals
of jobs and signals. Let a processing completion at nodej be classified as a classc
departure, and departures triggered by positive and negative signals as classs+ and
s− departures, respectively. Then, nodej is characterized by

pA
jc(n j ,n j +1) = 1, n j ≥ 0,

pA
js+(n j ,n j +1) = 1, n j ≥ 0,

pA
js−(n j ,n j −1) = 1, n j ≥ 1,

pA
js−(0,0) = 1,

qD
jc(n j ,n j −1) = µ j , n j ≥ 1.

The triggering probabilities are

f jc,u(n j ,n
′
j) = 0, u = c,s+,s− andn j ≥ 0,

f js+,s+(n j ,n j +1) = 1, n j ≥ 0,

f js−,s−(n j +1,n j) = 1, n j ≥ 0.

For convenience we letα j = α jc, α+
j = α js+ andα−j = α js− . Node j, characterized

by

q
(α j )
j (n j ,n

′
j) = α j p

A
jc(n j ,n

′
j)+ α+

j pA
js+(n j ,n

′
j)+ α−j pA

js−(n j ,n
′
j)+qD

jc(n j ,n
′
j),

is anM/M/1 queue with Poisson arrivals of three classes of entities, with respective
ratesα j , α+

j andα−j , and with service rateµ j . As far as the stationary distribution
of the node is concerned, this queue is the same as anM/M/1 queue with arrival
rateα j + α+

j and service rateµ j + α−j . Hence its stationary distribution is

π j(n j) = (1−ρ j)ρn j
j , n j ≥ 0,

provided the stability condition
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ρ j = (α j + α+
j )/(µ + α−j ) < 1

is satisfied.
However, this node with positive and negative signals is notquasi-reversible, as

we will see below. So we modify this queue by assuming that whenever it is empty,
the node generates departures of classs+ at a constant rate. That is, we modify the
transition rate for nodej such thatqD

js+(0,0) > 0. In what follows we show that this
modifiedM/M/1 queue with positive and negative signals is quasi-reversible if and
only if

qD
js+(0,0) = ρ−1

j α+
j . (5.31)

It is easy to verify that the quasi-reversibility condition(5.21) is satisfied for
u = c,s− with

β j = ρ j µ j ,

β−j (≡ β js−) = ρ jα−j .

Foru = s+ andn j ≥ 1,

∑
n′j

π j(n
′
j)
(

qD
js+(n′j ,n j)+ ∑

v=c,s+,s−
α jv pA

jv(n
′
j ,n j) f jv,s+(n′j ,n j)

)

= π j(n j −1)α+
j pA

js+(n j −1,n j)

= ρ−1
j α+

j π j(n j).

And for n j = 0,

∑
n′j

π j(n
′
j)
(

qD
js+(n′j ,0)+ ∑

v=c,s+,s−
α jv pA

jv(n
′
j ,0) f jv,s+(n′j ,0)

)

= qD
js+(0,0)π j(0).

Thus for (5.21) to hold foru = s+ and all n j , (5.31) is necessary and sufficient.
Letting

β +
j (≡ β js+) = ρ−1

j α+
j ,

we obtain that nodej is uniformly quasi-reversible for allα j ,α+
j , α−j and

β j =
α j + α+

j

µ j + α−j
µ j , j = 1, . . . ,N,

β−j =
α j + α+

j

µ j + α−j
α−j , j = 1, . . . ,N,

β +
j =

µ j + α−j
α j + α+

j

α+
j , j = 1, . . . ,N,
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providedρ j < 1 for all j. Hence, it follows from Theorem 3 that, ifα j ,α+
j andα−j

are the solutions of traffic equations (5.13), which are simplified to (5.27), (5.28)
and (5.29), then the network has the geometric product form stationary distribution
(5.30). This completes the proof of Theorem 4.

Since the modified network has additional departures of positive signals, the net-
work process stochastically dominates the corresponding process without the addi-
tional departures if a positive signal cannot be transformed into a negative signal.
This can be easily proved using sample path stochastic comparison by constructing
the two processes and coupling the numbers of jobs in the two networks. Note that,
if the modified network has a stationary distribution, and ifit stochastically dom-
inates the original network, then the original network mustalso have a stationary
distribution. Thus we obtain the following result.

Corollary 2. Let π0 be the stationary distribution of the network without the addi-
tional departure processes. Ifr js+,ks− = 0 andr jc,ks− = 0 for all j,k = 1, . . . ,N, then
π0 is stochastically dominated by the product form geometric distribution obtained
in Theorem 4, i.e.,

∑
kj≥n j , j=1,...,N

π0(k1, . . . ,kN)≤
N

∏
j=1

(
α j + α+

j

µ j + α−j

)n j

. (5.32)

5.6.2 Multiple Classes of Positive and Negative Signals

We extend the results of the last subsection to networks withmultiple classes of
positive and negative signals. Suppose there is a single class of jobs denoted byc,
I+ classes of positive signals denoted by{u+;u = 1,2, . . . , I+}, andI− classes of
negative signals denoted by{u−;u = 1,2, . . . , I−}, whereI+ andI− may be infinity.
There is a single server at nodej, and the processing times at nodej are exponen-
tially distributed with rateµ j . Jobs arrive at nodej from the outside according to
a Poisson process with rateλ j . Classu+ positive signals,u = 1,2, . . . , I+, arrive at
node j from the outside according to a Poisson process with rateλ +

ju, and classu−

negative signals,u = 1,2, . . . , I−, arrive at nodej from the outside according to a
Poisson process with rateλ−ju.

The effects of positive and negative signals at a node are thesame as before. That
is, the arrival of a classu+ positive signal at nodej adds one job at nodej and then
departs, whereas the arrival of a classu− negative signal at nodej triggers one job,
if any one is present, to depart. If a negative signal arrivesat an empty node, nothing
happens and the signal disappears. Thus, nodej is characterized by
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pA
jc(n j ,n j +1) = 1, n j ≥ 0,

pA
ju+(n j ,n j +1) = 1, n j ≥ 0,u = 1,2, . . . , I+,

pA
ju−(n j ,n j −1) = 1, n j ≥ 1,u = 1,2, . . . , I−,

pA
ju−(0,0) = 1, u = 1,2, . . . , I−,

qD
jc(n j ,n j −1) = µ j , n j ≥ 1.

The triggering probabilities are

f jc,w(n j ,n
′
j) = 0, w = c,u+,v−, andn j ,n

′
j ≥ 0,

f ju+,u+(n j ,n j +1) = 1, n j ≥ 0,u = 1,2, . . . , I+,

f ju−,u−(n j ,n j −1) = 1, n j > 0,u = 1,2, . . . , I−.

The routing probabilities are defined as follows. Upon a processing completion
at nodej, a job goes to nodek as a regular job with probabilityr jc,kc, as a classv+

positive signal with probabilityr jc,kv+ , as a classv− negative signal with probability
r jc,kv− , and it leaves the network with probabilityr jc,0, where

N

∑
k=1

(
r jc,kc+

I+

∑
v=1

r jc,kv+ +
I−

∑
v=1

r jc,kv−

)
+ r jc,0 = 1,

for j = 1, . . . ,N.

The arrival of a classu+ positive signal at nodej, either from the outside or from
another node, adds one job to nodej, and the signal leaves immediately for nodek as
a job with probabilityr ju+,kc, as a classv+ positive signal with probabilityr ju+,kv+ ,
as a classv− negative signal with probabilityr ju+,kv− , and it leaves the network with
probabilityr ju+,0, where

N

∑
k=1

(
r ju+,kc+

I+

∑
v=1

r ju+,kv+ +
I−

∑
v=1

r ju+,kv−

)
+ r ju+,0 = 1,

for j = 1, . . . ,N, andu = 1,2, . . . , I+.

Finally, the arrival of a classu− negative signal at nodej, either from the outside or
from another node, triggers one job from the node to depart, provided the queue is
not empty upon its arrival. The triggered job then goes to nodek as a job with prob-
ability r ju−,kc, as a classv+ positive signal with probabilityr ju−,kv+ , as a classv−

negative signal with probabilityr ju−,kv− , and it leaves the network with probability
r ju−,0, where

N

∑
k=1

(
r ju−,kc+

I+

∑
v=1

r ju−,kv+ +
I−

∑
v=1

r ju−,kv−

)
+ r ju−,0 = 1,

for j = 1, . . . ,N, andu = 1,2, . . . , I−.



248 Xiuli Chao

The arrival of a negative signal at an empty node does not haveany effect and
disappears.

Remark 1. The only additional feature of the network with multiple classes of
positive and negative signals is the class-dependent routing. However, the class-
dependent routing is very useful and it is general enough to include most queueing
networks with batch arrivals and batch processing as special cases. See Example 6.

Let α jc, {α+
ju; j = 1, . . . ,N,u = 1, . . . , I+}, and{α−ju; j = 1, . . . ,N,u = 1, . . . , I−}

denote the average arrival rates of jobs, positive signals,and negative signals at node
j. They are determined by traffic equation (5.13), i.e.,

α j = λ jc +
N

∑
k=1

ρkµkrkc, jc +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv−, jc +
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+ , jc,

j = 1, . . . ,N; (5.33)

α+
ju = λ +

ju +
N

∑
k=1

ρkµkrkc, ju+ +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv− , ju+ +
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+ , ju+ ,

j = 1, . . . ,N,u = 1, . . . , I+;(5.34)

α−ju = λ−ju +
N

∑
k=1

ρkµkrkc, ju− +
N

∑
k=1

I−

∑
v=1

ρkα−kvrkv− , ju−+
N

∑
k=1

I+

∑
v=1

ρ−1
k α+

kvrkv+ , ju− ,

j = 1, . . . ,N,u = 1,2, . . . , I−,(5.35)

where

ρ j =
α j + α+

j

µ j + α−j
, j = 1, . . . ,N,

andα+
j andα−j are defined as

α+
j =

I+

∑
v=1

α+
jv , j = 1, . . . ,N,

α−j =
I−

∑
v=1

α−jv , j = 1, . . . ,N.

Clearly, α j , α+
j andα−j are the average arrival rates of jobs, positive signals and

negative signals at nodej. Also, the total average arrival rate of jobs, including
regular job and those added by positive signals, isα j + α+

j .

Theorem 5.Suppose the traffic equations (5.33), (5.34) and (5.35) havenonnegative
solutions such that

ρ j ≡
α j + α+

j

µ j + α−j
< 1, for all j = 1, . . . ,N.
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If the network is modified so that whenever nodej is empty, there is an additional
departure process of classu+ positive signals with rate

µ j + α−j
α j + α+

j

α+
ju,

then the stationary probability of the network is

π(n) =
N

∏
j=1

(1−ρ j)ρn j
j . (5.36)

Corollary 3. Let π0 be the stationary distribution of the network without the addi-
tional departures of positive signals. Ifr ju+,kv− = 0 andr jc,kv− = 0 for all j,k, u and
v, thenπ0 is stochastically dominated by the geometric product formπ of (5.36).

The following example illustrates how the multiple classesof signals can be used
to model batch movements.

Example 6. Consider a network ofN single-server nodes. Jobs arrive at nodej
from the outside according to a Poisson process with rateλ j , j = 1,2, . . . ,N. The
jobs are served in batches of a fixed sizeK j , and the processing time of a batch is
exponentially distributed with rateµ j . Upon a processing completion at nodej, the
K j jobs coalesce into a single job, and this single job goes to nodek with probability
r jk, k= 0,1, . . . ,N, where 0 is the outside world. In case there are less thanK j jobs in
node j upon a processing completion at the node, these jobs coalesce into a partial
batch and are removed from the system. When a job arrives at node j when the
number of jobs at the node is less thanK j , it joins the batch currently being served;
otherwise it waits in queue.

This model is a special case of the network with multiple classes of negative
signals. To see this, consider a network with a single class of jobs andK j−1 classes
of negative signals at nodej, denoted byu− for u = 1,2, . . . ,K j −1. Jobs arrive at
node j from the outside according to a Poisson process with rateλ j . The jobs are
served one at a time and the service rate at nodej is µ j . The routing probabilities,
denoted byr∗, are defined as

r∗jc, j(K j−1)− = 1, j = 1, . . . ,N,

r∗ju−, j(u−1)− = 1, u = 2,3, . . . ,K j −1, j = 1, . . . ,N,

r∗j1−,kc = r jk, k = 0,1, . . . ,N, j = 1, . . . ,N.

That is, upon a processing completion at nodej a job goes back to nodej as a
class(K j − 1)− negative signal with probability 1; the arrival of a classu− (u =
2,3, . . . ,K j − 1) negative signal at nodej removes one job and then immediately
goes to nodej as a class(u− 1)− signal with probability 1; a class 1− negative
signal arrives at nodej and reduces the number of jobs by 1, then goes to nodek as
a regular job with probabilityr jk. This implies that a regular processing completion
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at nodej instantaneously removesK j jobs from nodej, provided there are at least
K j jobs present, and then goes to nodek as a regular job with probabilityr jk. That a
negative signal that arrives at an empty queue disappears translates to the fact that,
when there are less thanK j jobs at nodej upon a processing completion, the entire
batch is removed from the network. This is exactly the network under consideration.

By Theorem 5, this network has a geometric product form stationary distribution.
Since there are no positive signals, no additional departure process is required.

5.7 Necessary and Sufficient Conditions for Product Form

In the preceding sections we discussed various network models that possess prod-
uct form stationary distributions. Most of the results are obtained through quasi-
reversibility. A natural question is whether quasi-reversibility is also a necessary
condition for product form. The answer is negative. This section presents the nec-
essary and sufficient conditions for product form for the class of networks whose
transitions involve at most two nodes, i.e., there is no instantaneous triggering. Such
a characterization yields a general procedure for verifying whether a network has
a product form solution and obtaining it when it exists. Furthermore, the network
has a product form stationary distribution and isbiased locally balancedif and only
if the network is quasi-reversible and certain traffic equations are satisfied. We also
consider various scenarios in which quasi-reversibility is a necessary condition for
product form.

The network consists ofN nodes, indexed 1 toN, and the outside is labeled as
node 0. However, unlike the formulation earlier sections, we here assume that the
outside, i.e., node 0, has multiple states. Since departures from node 0 are arrivals
to the network, such a formulation allows the arrival process to the network from
the outside to be arbitrary. The state of the network is a vector of the states of the
individual nodes and the outside world. Its state space is

S = S0×S1×·· ·×SN.

For convenience we only consider the case of single class of transitions. Exten-
sion multiple classes of transitions is straightforward. As in earlier sections, node
j, j = 0,1, . . . ,N, is subject to three types of state transitions, referred toas arrival,
departure and internal transitions, denoted by

{pA
j (x j ,y j);x j ,y j ∈ S j},

{qD
j (x j ,y j);x j ,y j ∈ S j},

{qI
j(x j ,y j);x j ,y j ∈ S j}.

They represent, respectively, the transition probabilities due to arrivals, the transition
rate due to departures, and the internal transition rate. Thus we must have
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∑
yj∈S j

pA
j (x j ,y j) = 1, x j ∈ S j .

The network process is characterized by the following system dynamics.

(i) When nodej is in statex j , the departure transition rate that changes the state
from x j to y j is qD

j (x j ,y j), y j ∈ S j . .
(ii) A departure from nodej is transferred to nodek as an arrival with probability

r jk, k = 0,1, . . . ,N (recall that node 0 represents the outside).
(iii) An arrival at nodek changes its state fromxk to yk with probabilitypA

k (xk,yk),
yk ∈ Sk.

(iv) The internal transition rate at nodej is qI
j(x j ,y j) when its state isx j . We here

redefine the internal transition so as to represent all transitions that do not trigger
state changes at other nodes, i.e., it includes case (ii) with j = k. Denote this new
internal transition rate byqI∗

j , i.e.,

qI∗
j (x j ,y j) = qI

j(x j ,y j)+∑
x′j

qD
j (x j ,x

′
j)r j j p

A
j (x
′
j ,y j).

The network process has the transition rates

q(x,x′) = ∑
j ,k

q jk(x,x
′), x,x′ ∈ S,

where

q jk(x,x
′) =

{
qD

j (x j ,x′j )r jk pA
k (xk,x′k)1[yℓ = xℓ, ℓ 6= j,k], if j 6= k,

qI∗
j (x j ,x′j)1[x′ℓ = xℓ, ℓ 6= j], if j = k.

Our objective is to find the necessary and sufficient conditions for the network to
have a product form stationary distribution.

The following notation will be used in our analysis. For a probability distribution
π j onS j , define
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qD
j (x j) = ∑

yj

qD
j (x j ,y j),

qI∗
j (x j) = ∑

yj

qI∗
j (x j ,y j ),

p̃A
j (x j) =

∑yj
π j(y j)pA

j (y j ,x j)

π j(x j)
,

q̃D
j (x j) =

∑yj
π j(y j)qD

j (y j ,x j)

π j(x j)
,

q̃I∗
j (x j) =

∑yj
π j(y j)qI∗

j (y j ,x j)

π j(x j)
,

β j = ∑
xj

∑
yj

π j(x j)q
D
j (x j ,y j),

ν j = ∑
xj

∑
yj

π j(x j)q
I∗
j (x j ,y j).

Notice thatqD
j (x j) (qI∗

j (x j)) is different from the transition rate functionqD
j (x j ,y j)

(qI∗
j (x j ,y j )). They are distinguished only by their arguments. When theyare used

without arguments (e.g.,qD
j ), they represent the transition rate functions, e.g.,

qD
j (x j ,y j). Assume thatβ j andν j are finite. Keep in mind that ˜pA

j (x j), q̃D
j (x j), q̃I∗

j (x j)
as well asβ j ,ν j are functions ofπ j . The following relationships can be easily veri-
fied:

∑
xj

π j(x j)q
D
j (x j) = ∑

xj

π j(x j)q̃
D
j (x j) = β j , (5.37)

∑
xj

π j(x j)q
I∗
j (x j) = ∑

xj

π j(x j)q̃
I∗
j (x j) = ν j . (5.38)

We first consider the possible forms of the marginal distributions when the net-
work process has a product form stationary distribution. Define the transition rate
q j for each nodej by

q j(x j ,y j) = α j p
A
j (x j ,y j)+ (1− r j j )q

D
j (x j ,y j)+qI∗

j (x j ,y j), x j ,y j ∈ S j ,(5.39)

whereα j is a parameter to be determined. Consider this process as node j operating
in isolation. The first term in the summation indicates that this isolated node has
Poisson arrivals with rateα j . The second and third terms are transition rates asso-
ciated respectively with departures from nodej and internal transitions at nodej,
where an internal transition may be a departure that returnsto the same node (see
(iv)).

Theorem 6.If the network process has the product form stationary distribution

π(x) =
N

∏
j=0

π j(x j),
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then eachπ j is the stationary distribution for theq j defined by (5.39) in which
coefficientsα j are the solution to traffic equations

α j = ∑
k6= j

βk(αk)rk j, j = 0,1, . . . ,N, (5.40)

whereβ j(α j ) denotes theβ j of (5.37) which depends onα j throughπ j . Note that
in this, as well as the next, section we have included immediate feedback as internal
transition, hence on the right hand side of the traffic equation onlyk 6= j is needed.

Proof. The global balance equations for the network are

π(x)∑
y

q(x,y) = ∑
y

π(y)q(y,x), x∈ S. (5.41)

Since

π(y) =
π(x)π j(y j)πk(yk)

π j(x j)πk(xk)
, (5.42)

for y such thatxℓ = yℓ for all ℓ 6= j,k, it follows from the definition ofq that (5.41)
is equivalent to

π(x)∑
j

(
qI∗

j (x j)+qD
j (x j) ∑

k6= j

r jk

)

= π(x)∑
j

(
q̃I∗

j (x j)+ p̃A
j (x j) ∑

k6= j

rk jq̃
D
k(xk)

)
, x∈ S. (5.43)

For a fixed j, we sum these equations over allxℓ for ℓ 6= j. First, the left hand side
becomes

∑
xℓ:ℓ 6= j

π(x)
[
qI∗

j (x j)+ ∑
j ′ 6= j

qD
j ′(x j ′)r j ′ j +qD

j (x j) ∑
k6= j

r jk

+ ∑
j ′ 6= j

(
qI∗

j ′ (x j ′)+qD
j ′(x j ′) ∑

k6= j , j ′
r j ′k

)]

= π j(x j)
(

qI∗
j (x j)+ ∑

j ′ 6= j

β j ′r j ′ j +(1− r j j )q
D
j (x j)

)
+ ∑

j ′ 6= j

(
ν j ′ + β j ′ ∑

k6= j , j ′
r j ′k

)

= π j(x j)
(

qI∗
j (x j)+ α j +(1− r j j )q

D
j (x j)

)
+ ∑

j ′ 6= j

(
ν j ′ + β j ′ ∑

k6= j , j ′
r j ′k

)
.

A similar manipulation on the right hand side yields

π j(x j)
(

q̃I∗
j (x j)+ α j p̃

A
j (x j)+ (1− r j j )q̃

D
j (x j)

)
+ ∑

j ′ 6= j

(
ν j ′ + β j ′ ∑

k6= j , j ′
r j ′k

)
.

Thus it follows from (5.43) that
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qI∗
j (x j)+ α j +(1− r j j )q

D
j (x j) = q̃I∗

j (x j)+ α j p̃
A
j (x j)+ (1− r j j )q̃

D
j (x j). (5.44)

These are the balance equations forq j divided byπ j(x j) with α j given by (5.40).
This completes the proof of Theorem 6.

The next theorem provides the necessary and sufficient conditions for the net-
work process to have a product form distribution.

Theorem 7.The network has the product form stationary distribution

π(x) =
N

∏
j=0

π j(x j), x∈ S

if and only if eachπ j is the stationary distribution ofq j with coefficientsα j satisfy-
ing the traffic equations (5.40) and

(q̃D
j (x j)−β j)r jk(p̃A

k (xk)−1)+ (q̃D
k(xk)−βk)rk j(p̃A

j (x j)−1) = 0, (5.45)

for all j 6= k andx j ∈ S j , xk ∈ Sk.

Proof. Assume the product form isπ(x) = ∏N
j=0 π j(x j). Since the conditions of

Theorem 6 are satisfied, (5.43) holds. Dividing (5.43) byπ(x), and subtracting the
summation of (5.44) over allj yields

∑
j

(
α j p̃

A
j (x j)+ (1− r j j )q̃

D
j (x j)

)
= ∑

j

(
α j + p̃A

j (x j) ∑
k6= j

rk jq̃
D
k(xk)

)
. (5.46)

For convenience define

D jk(x j ,xk) = (q̃D
j (x j)−β j)r jk(p̃A

k(xk)−1).

Since the stationary distribution is product form, it follows from Theorem 6 thatα j

andβ j satisfy (5.40). Hence, substitutingα j of (5.40) into (5.46) gives

∑
j

∑
k6= j

D jk(x j ,xk) = 0. (5.47)

Multiplying (5.47) by ∏ℓ 6= j ,kπℓ(xℓ), summing overxℓ for ℓ 6= j,k, and observing
that

∑
xℓ

πℓ(xℓ)(Dℓk(xℓ,xk)+Dkℓ(xk,xℓ)) = 0

yields

D jk(x j ,xk)+Dk j(xk,x j) = 0.

This is exactly (5.45).
Conversely, assume that eachπ j is the stationary distribution ofq j and that (5.40)

and (5.45) are satisfied. Since (5.45) implies (5.47), we obtain (5.46). Similarly,
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(5.44) follows from the fact thatπ j is the stationary distribution ofq j . Hence, from
the calculation of (5.46) we obtain (5.43). Thus the productform π satisfies the
global balance (5.41).

Clearly, the following are three sufficient conditions for (5.45), so they are suffi-
cient for the stationary distribution of the network to be product form.

(a)Both nodesj andk are quasi-reversible. Recall that nodej is quasi-reversible if
q̃D

j (x j) is independent ofx j ; in this case it must equal toβ j .
(b)Both nodesj andk are non-effective with respect to arrivals. Nodej is said to be

non-effective with respect to arrivalsif p̃A
j (x j) = 1 for all x j ∈ S j .

(c)Either nodej or nodek is quasi-reversible and non-effective with respect to ar-
rivals.

These sufficient conditions are further weakened ifr jk = 0 or rk j = 0. These and
other special cases will be discussed in the next section. Note that when the outside
(node 0) is a Poisson source, then node 0 has only one state (say 0) which is non-
effective with respect to arrivals, i.e., the state of the outside source is not changed
when a job departs the network. On the other hand, the Poissonsource is clearly
quasi-reversible, so it belongs to case (c). Therefore, when a network is subject to
Poisson arrivals from the outside, condition (5.45) only has to be verified for nodes
other than 0. In this case the product form stationary distribution∏N

j=0π j(x j) can

be written as∏N
j=1 π j(x j).

Theorem 7 yields the following procedure for establishing the existence of a
product form stationary distribution for the network process and obtaining the dis-
tribution when it exists.

Step 1.For the dummy parameterα j compute the stationary distributionπ j of
node j defined byq j of (5.39).

Step 2.Computeβ j using (5.40), which is a function ofα j sinceπ j is. So write
it asβ j(α j).

Step 3.Solve the traffic equations (5.40).
Step 4.Check condition (5.45) for each pairj,k and allx j ,xk.

If this four-step procedure is successful, thenπ(x) = ∏N
j=0π j(x j) is the stationary

distribution of the network process.

Finding vectorα = (α0,α1, . . . ,αN) that satisfies the traffic equations (5.40) is a
fixed point problem whose solution is usually established byBrouwer’s fixed point
theorem. It follows from Theorem 7 that such a fixed point always exists when the
network has a product form stationary distribution.

Theorem 8.The network has a product form stationary distribution if and only if
there exists a solution to the traffic equations (5.40) and itsatisfies the condition of
Step 4.

Therefore, the procedure above, in principle, applies to any queueing networks
with product solutions. If the procedure is successful it gives the product form sta-
tionary distribution of the network; otherwise, i.e., if itdoes not lead to a solution
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that satisfies the condition of Step 4, then the procedure concludes that the network
does not has a product form solution. For a particular application, one may be able
to construct an algorithm to compute the fixed point, e.g., aniterative algorithm.

5.8 Quasi-Reversibility Revisited

As we observed earlier, quasi-reversibility is a sufficientcondition but not a neces-
sary condition for product form. This section is concerned with how much stronger
than necessary this condition is. It turns out that quasi-reversibility is equivalent to
a product form that satisfies the biased local balance equations.

A Markov chain with transition rateq is said to satisfybiased local balance
with respect to a positive probability measureπ onS and real numbersγ = {γ j ; j =
0,1, . . . ,N} if ∑ j γ j = 0 and

π(x)

(

∑
k

∑
y

q jk(x,y)+ γ j

)
= ∑

k
∑
y

π(y)qk j(y,x), x∈ S, j = 0,1, . . . ,N. (5.48)

The π must be the stationary distribution for the Markov chainq since the global
balance equations are the sum of these biased local balance equations overj. Also,
we say thatq is locally balancedwith respect toπ when all theγ j ’s are 0.

Theorem 9.The following statements are equivalent.

(i) The network satisfies biased local balance with respect to a product form distri-
butionπ(x) = ∏N

j=0π j(x j) andγ = {γ j ; j = 0,1, . . . ,N}.
(ii) Each nodeq j is quasi-reversible with respect toπ j for someα j that satisfies

α j = ∑
k6= j

βkrk j, j = 0,1, . . . ,N. (5.49)

If these statements hold, then

γ j = α j − (1− r j j )β j , j = 0,1, . . . ,N. (5.50)

Proof. Suppose (i) holds. Sinceπ has the product form, it follows from Theorem 6
thatπ j is the stationary distribution ofq j . Using the same argument that we derived
(5.44) from (5.42), we obtain the following equation from the biased local balance
equation (5.48):

qI∗
j (x j)+ (1− r j j )q

D
j (x j)+ γ j = q̃I∗

j (x j)+ p̃A
j (x j) ∑

k6= j

q̃D
k (xk)rk j. (5.51)

Defineα j by (5.49) and fix nodej. Multiplying (5.51) byπ j(x j), summing overx j

and applying (5.37) and (5.38), we obtain

(1− r j j )β j + γ j = ∑
k6= j

q̃D
k(xk)rk j.
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Fix ℓ 6= j. Multiplying this equation by∏k6= j ,ℓ πk(xk), summing overxk for k 6= j, ℓ
and applying (5.37) and (5.49) yields

(1− r j j )β j + γ j = q̃D
ℓ (xℓ)rℓ j1(ℓ 6= j)+ ∑

k6= j ,ℓ

βkrk j

= α j +(q̃D
ℓ (xℓ)−βℓ)rℓ j1(ℓ 6= j) (5.52)

Summing overj and using (5.49) gives rise to

(q̃D
ℓ (xℓ)−βℓ) ∑

j 6=ℓ

rℓ j = 0.

This proves ˜qD
ℓ (xℓ) = βℓ. Thus, each nodeqℓ is quasi-reversible, so (ii) is proved.

Next assume (ii) holds. Since quasi-reversibility implies(5.45), the conditions for
the product form of Theorem 7 are satisfied, and therefore (5.44) holds. Substituting
pA

j (x j) = 1 andq̃D
j (x j) = β j in (5.44), we obtain

qI∗
j (x j)+ α j +(1− r j j )q

D
j (x j) = q̃I∗

j (x j )+ α j p̃
A
j (x j)+ (1− r j j )β j , x j ∈ S j .

Defineγ j by (5.50). Applying (5.50) to the expression above yields

qI∗
j (x j)+ (1− r j j )q

D
j (x j)+ γ j = q̃I∗

j (x j)+ α j p̃
A
j (x j), x j ∈ S j . (5.53)

From (5.49) and the fact thatβ j = q̃D
j (x j), it follows that

α j = ∑
k6= j

q̃D
k(xk)rk j .

Substituting thisα j into (5.53) yields (5.51), which implies (5.48). Henceq satisfies
biased local balance with respect toπ and γ. This completes the proof that (ii)
implies (i).

The remaining part of this section explores scenarios underwhich quasi-reversibility
is also a necessary condition for product form.

Corollary 4. If in a queueing network there are no immediate turn around loop, i.e.,
r jk 6= 0 impliesrk j = 0, andpA

k (xk) is not identically 1 for allxk, i.e.,

p̃A
k(xk) 6= 1, for at least onexk ∈ Sk, (5.54)

then the product form implies that nodej is quasi-reversible. In particular, if the
discrete-time Markov chain onSk with transition probability{pA

k(xk,yk);xk,yk∈ Sk}
is transient, then (5.54) is satisfied.

Proof. Under the assumptions, equation (5.45) is reduced to

(q̃D
j (x j)−β j)r jk(p̃A

k (xk)−1) = 0. (5.55)
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Fix anxk that satisfies (5.54). Since (5.55) holds for everyx j andr jk(p̃A
k(xk)−1) 6= 0,

we conclude that ˜qD
j (x j) = β j for all x j , i.e., nodej is quasi-reversible.

To prove the second part, first note that ˜pA
k (xk) = 1 for all xk is, by the defini-

tion of p̃A
k(xk), equivalent toπk being a positive stationary measure for the Markov

chain with transition probability{pA
k(xk,yk);xk,yk ∈ Sk}; this cannot be true ifpA

k is
transient. Thus there must be at least onexk such that (5.54) is satisfied.

In job based queues with no signals, arrivals do not decreasethe number of jobs
at the node, sopA

k is clearly transient. This is not true, however, in networkswith
negative signals, in which the arrival of a negative signal reduces the number of
regular jobs.

Definition 5. Node j is said to benon-terminalif

1− r j j − r j0 > 0,

i.e., a departure from nodej arrives at other nodes in the network with a positive
probability.

Feedforward networks clearly satisfy the first condition ofCorollary 4 for all
nodes that are non-terminal. Thus we obtain the following result.

Corollary 5. A job based feedforward queueing network has a product form sta-
tionary distribution if and only if all the non-terminal nodes are quasi-reversible.

Of course, there are many queueing networks with feedback that satisfy the con-
ditions of Corollary 4.

Example 7.Consider the job based network with four nodes. Jobs arrive at nodes
1 and 2 according to Poisson processes. Departures from nodes 1 and 2 join node
3, and departures from node 4 either join node 1, node 2, or leave the network.
Clearly, this network satisfies the conditions of Corollary5, so quasi-reversibility
of each node is both necessary and sufficient for the stationary distribution of the
network to be product form.

To present the next result, we need to introduce two new concepts. Nodej is
called aconventional queueif it has an empty state, denoted by 0, from which there
can be no departures or internal transitions, and state 0 cannot be reached via arrival
or internal transitions. That is,

p̃A
j (0) = qD

j (0) = 0,

qI∗
j (x j ,x

′
j) = 0, if eitherx j = 0 orx′j = 0.

Clearly, if a network has an outside Poisson source, then node 0 is not conventional.
A queueing network is called conventional if its outside source is Poisson and all
other nodes are conventional. Letα+

j denote the average arrival rate at nodej in-
cluding the feedback, i.e.,
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α+
j =

N

∑
k=0

βkrk j = α j + r j j β j .

Node j is said to beinternally balanced, if α+
j = β j , i.e., the average arrival rate

equals the average departure rate.

Theorem 10.Suppose a queueing network has conventional nodes and the outside
source, i.e., node 0, is non-effective with respect to arrivals. If the network has a
product form stationary distribution, then a non-terminalnodek is quasi-reversible
if and only if either one of the following two conditions holds.

(a)Nodek has a path connecting it to an internally balanced node.
(b)Nodek is directly connected to some nodej 6= 0, but nodej is not directly con-

nected to nodek, i.e, rk j > 0 andr jk = 0.

In these cases, all the non-terminal nodes are internally balanced. Note that condi-
tion (b) is satisfied if the destination nodek is a terminal node.

Proof. Suppose the network has a product form stationary distribution. By Theorem
6, the marginal distribution for each node satisfies the balance equation (5.44) for
the coefficients determined by the traffic equations (5.40).Substitutingx j = 0 in
(5.44) yields

α j +(1− r j j )q
D
j (0)+qI∗

j (0) = α j p̃
A
j (0)+ (1− r j j )q̃

D
j (0)+ q̃I∗

j (0) .

Thus it follows from the condition that nodej is a conventional queue that

α j = (1− r j j )q̃
D
j (0) . (5.56)

Because of the product form, we also have (5.45) of Theorem 7.Letting x j = 0 in
(5.45) and substituting (5.56), we obtain

(α+
j −β j)

r jk

1− r j j
(p̃A

k (xk)−1)− (q̃D
k(xk)−βk)rk j = 0, k 6= j, 0. (5.57)

Substitutingxk = 0 in (5.57) yields

(α+
j −β j)

r jk

1− r j j
+(α+

k −βk)
rk j

1− rkk
= 0. (5.58)

Since the network process is irreducible, any non-terminalnodek has an arc
directly connecting it to some other nodej, i.e.,rk j > 0. From (5.57) it follows that
nodek is quasi-reversible if and only if

(α+
j −β j)r jk(p̃A

k (xk)−1) = 0.

Lettingxk = 0 in this formula we conclude eitherα+
j −β j = 0 or r jk = 0. The latter

is exactly (b), while the former is (a) since nodej is internally balanced. Thus (a)
and (b) are necessary for the quasi-reversibility of nodek. Conversely, from (5.57),
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(b) clearly implies that nodek is quasi-reversible; if (a) is satisfied, we need to
use induction to show that nodek is quasi-reversible. First, if nodek is directly
connected to nodej, i.e., rk j > 0, then it follows from (5.57) that nodek is quasi-
reversible. If nodek is connected toj throughi1, i2, . . . , iℓ, then applying (5.58) to
nodesiℓ and j shows that nodeiℓ is internally balanced, and applying (5.58) to nodes
iℓ−1 andiℓ shows that nodeiℓ−1 is internally balanced, etc. After showing that node
i1 is internally balanced, we apply (5.57) to nodesk andi1 to obtain that nodek is
quasi-reversible.

To show that each non-terminal node has to be internally balanced, assume that
node j is quasi-reversible. Then, from (5.56) and ˜qD

j (0) = β j it follows that

α+
j = α j + r j j β j = α j + r j j q̃

D
j (0) = q̃D

j (0) = β j .

The proof of Theorem 10 is thus complete.

From sufficient condition (c) of Section 7 for product form stationary distribu-
tion, it follows that if the outside source is Poisson, then no condition is required on
the terminal nodes for the product form to hold.

The next result follows immediately from Theorem 10.

Corollary 6. Consider a queueing network with all nodes being conventional and
all non-terminal nodes satisfy either (a) or (b) of Theorem 10. The network has a
product form stationary distribution if and only if all the non-terminal nodes are
quasi-reversible.

Considering an even more special case we obtain the following result.

Corollary 7. Consider a conventional queueing network with Poisson arrivals from
the outside and each node is internally balanced, i.e., the departure rate of each node
is equal to its arrival rate. The network has a product form stationary distribution if
and only if all non-terminal nodes are quasi-reversible. Ifthe outside source node is
also a conventional queue, then the network has a product form stationary distribu-
tion if and only if all nodes are quasi-reversible.

Note the difference between Corollary 5 and Corollary 7. In Corollary 6 the non-
terminal nodes do not need to be conventional or internally balanced, but the topo-
logical structure of the network is restricted. On the otherhand, in Corollary 7, the
network topology may be arbitrary, but each non-terminal node has to be conven-
tional and internally balanced.

5.9 Networks with Random Customer Shuffling

In this section we show that the results on product form networks can be extended
to models with random reshuffling of customer positions at both customer/signal
arrival and departure epochs. Random permutation of customers at each node has
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been studied by several authors, including Yashkov (1980),Daduna (2001), Daduna
and Schassberger (1985), Yates (1994), and Bonald and Tran (2007). The models
studied in Yashkov (1980), Daduna (2001), Daduna and Schassberger (1983) and
Yates (1994) are discrete time, while Bonald and Tran (2007)consider continuous
time model. Though most of the networks discussed earlier inthis chapter can be
extended to include this additional feature of random shuffling, for simplicity in
what follows we consider the case with multiple classes of customers but only one
class of negative signals.

The network hasN nodes andI classes of customers and one class of negative
signals. Classu customers arrive to nodei from the outside according to a Poisson
process with rateλiu, and each classu customer requires exponentially distributed
amount of time at nodei with mean 1/µiu. Letniu be the number of classucustomers
at nodei, and

ni = (ni1, . . . ,niI ),

n = (n1, . . . ,nN).

Supposeni is the total number of customers at nodei, i.e.,

ni =
I

∑
u=1

niu.

Let eiu represent the unit vector with a 1 for classu customer at nodei and 0 else-
where.

We shall refer ton = (n1, . . . ,nN) as the macro-state of the network. The micro-
state,c to be defined below, shall include information about the classes of customers
and their positions at the nodes.

Since we consider multiple classes of customers, the service disciplines at the
node is assumed to be symmetric. However, we shall assume that the service dis-
cipline at nodei depends not only on the number of customers at nodei but also
on the macro-state of the entire network. When the network isin macro-staten,
let γi(ℓ,n) be the proportion of service effort at nodei that is directed to position
ℓ, ℓ = 1, . . . ,ni . Similarly, when a customer arrives at nodei, it joins positionℓ
with probabilityγi(ℓ,n), and customers originally at stationℓ,ℓ+ 1, . . . ,ni move to
ℓ+1, ℓ+2, . . . ,ni +1, respectively. When a classu customer finishes service at node
i, it leaves for nodej as a classv customer with probabilityr iu, jv, it leaves for node
j as a signal with probabilityr iu, js, and it departs the network with probabilityr iu,0,
where

N

∑
j=1

I

∑
v=1

r iu, jv +
N

∑
j=1

r iu, js + r iu,0 = 0, i = 1, . . . ,N,u = 1, . . . , I .

Negative signals, denoted bys, arrive at nodei from the outside according to a
Poisson process with rateλ−i . When a signal arrives at nodei, it heads for position
ℓ and deletes the customer in positionℓ with probabilityγi(ℓ,n).
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Given that there areni customers in nodei, let ci be the state of nodei which is
the sequence ofni elements whoseℓ-th valueci(ℓ) is the class of the customer in
positionℓ, i.e.,

ci = (ci(1),ci(2), . . . ,ci(ni)).

Let
c = (c1, . . . ,cN)

be the state of the network, which is referred to as the micro-state.
Letαiu be the overall arrival rate of classucustomers at nodei, andα−i the overall

arrival rate of signals at nodei. Then the following traffic equations are satisfied:

αiu = λiu +
N

∑
k=1

I

∑
v=1

αkvµkv

µkv+ α−k
rkv,iu, i = 1, . . . ,N,u = 1, . . . , I ,

α−i = λ−i +
N

∑
k=1

I

∑
v=1

αkvα−k
µkv+ α−k

rkv,is, i = 1, . . . ,N.

The additional feature for the network israndom shuffling. That is, immediately
after the arrival of a customer or a signal, and immediatelyaftera departure from a
node, the customers at each and every node randomly permute positions within the
same node, and this happens at all nodes simultaneously. Theresults of this section
also hold true when the customers are assumed to randomly shuffle positions imme-
diatelybeforethe arrival of customers or signals. But in this section we shall focus
on the case that the shuffling takes place immediately after arrival and immediately
after departure.

Let P(m) denote the set of permutations ofm elements,m≥ 1, and letP(0)
denote the identity mapping on{ /0}. Let

P(n) = P(n1)×P(n2)×·· ·×P(nN).

For any micro-statec and any permutationσ ∈ P(n), we letσ(c) denote the micro-
state whosei-th component is equal toσi(ci), i.e., the positions of customers in node
i are permuted according toσi ∈ Pi(ni).

For a macro-staten, let αA
iu(·,n),αA

is(·,n),αD
iu(·,n) be arbitrarily given distribu-

tions onP(n), and they are interpreted as follows: Immediately after a classu cus-
tomer arrives at nodei, all customers in the network randomly shuffle positions
according distributionαA

iu(·,n), wheren is the macro-state of the networkafter the
classu customer joins nodei; immediately after a negative signal arrives at nodei,
the customers in the network randomly shuffle positions according to permutation
probabilityαA

is(·,n), wheren is the state after the arrival of the signal; and imme-
diately after a classu departs from nodei, and before its arrival at the destination
node, all the customers in the network randomly shuffle according to probability
αD

iu(·,n), here againn is the macro-state after the departure of the customer but be-
fore its arrival at another node. We note here that a departure from a node causes
the customers in the network to reshuffle twice (unless the departure is heading for
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the outside of the network): the first shuffle takes place after the departure, while the
second happens after it arrives at the destination node.

The following result shows that, the introduction of the additional feature of ran-
dom shuffling does not affect the stationary distribution ofthe network.

Theorem 11. If the solution to traffic equations satisfy∑I
u=1 αiu < µiu + α−i for

i = 1, . . . ,N andu = 1, . . . , I , then the stationary distribution of the network with
random shuffling is

π(c) =
N

∏
i=1

πi(ci),

π(n) =
N

∏
i=1

πi(ni),

where, fori = 1, . . . ,N,

πi(ci) =

(
1−

I

∑
u=1

αiu

µiu + α−i

)
ni

∏
ℓ=1

αici(ℓ)

µici (ℓ) + α−i
,

πi(ni) =

(
1−

I

∑
u=1

αiu

µiu + α−i

)
ni !

∏I
u=1niu!

I

∏
u=1

(
αiu

µiu + α−i

)niu

.

Proof. We show that the stationary distribution satisfies the crossbalance equa-
tions for each class of customeru in each positionℓ of the associated nodei (Chao,
Miyazawa, and Pinedo (1999)). Notice that the distributionπ(c) only depends on
the classes of customers at each node, and it does not depend on their relative posi-
tions at the node. This, turns out to be the key for the networkdistribution to be not
affected by customer shuffling within the node.

First, we introduce some notation. For any network micro-statec, let c⊕eiu(ℓ)
be the state after a classu customer joins positionℓ of nodei, and letc⊖eici(ℓ)(ℓ) be
the state of the network after the customer at positionℓ of nodei leaves the system.
For convenience letρiu = α+

iu /(µiu + α−i ).
Consider a micro-statecsuch thatci(ℓ) = u. The macro-state isn. The probability

flux corresponding to a departure in positionℓ from nodei in micro-statec, either
due to service completion or removal by signals, causing thenetwork state to go
acrossc from above, is

π(c)µiuγi(ℓ,n)+ π(c)λ−i γi(ℓ,n)

+
N

∑
j=1

n j+1

∑
ℓ=1

∑
σ∈P(n)

π(c′)µ jvγ j(ℓ,n+ejv)r jv,isδ D
jv(σ ,n)γi(ℓ,n)

= π(c)
(

µiu + λ−i +
N

∑
j=1

I

∑
v=1

ρ jvµ jvr jv,is

)
γi(ℓ,n)

= π(c)(µiu + α−i )γi(ℓ,n),
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wherec′ is such thatc′i(ℓ) = v andσ(c′⊖ejv(ℓ)) = c, and the last equality follows
from the traffic equation. Similarly, the probability flux corresponding to an arrival
of classu customer at positionℓ of nodei, causing the state of the network to go
across statec from below, is

∑
σ∈P(n)

ni

∑
ℓ=1

π(c′)λiuδ A
iu(σ ,n)γi(ℓ,n)

+
N

∑
j=1

n j +1

∑
ℓ′=1

∑
σ ′∈P(n−eiu)

∑
σ ′′∈P(n)

π(c′′)µ jvγ j (ℓ
′,n+ejv−eiu)r jv,iuδ D

jv(σ ′,n−eiu)δ D
iu (σ ′′,n)γ j (ℓ,n)

= π(c)
λ j +∑N

j=1 ∑I
u=1 ρ jvµ jvr jv,iu

ρiu
γi(ℓ,n)

= π(c)α+
iu/ρiuγi(ℓ,n)

= π(c)(µiu +α−i )γi(ℓ,n),

where the second equality follows from the traffic equation,and the last equality
follows from the definition ofρiu, andc′ andc′′ are such that

σ(c′⊕eiu(ℓ)) = c,

σ ′′
(

σ ′(c′′⊖ejv(ℓ
′))⊕eiu(ℓ)

)
= c.

This shows that the cross balance equations is satisfied for any positionℓ of
any nodei with regard to any class of customers, implying that the global balance
equations are satisfied. This proves thatπ(c) is the stationary distribution of the
network. The stationary probabilityπ(n) is implied byπ(c).

Remark 2.All the results in this section holds true after introducingmultiple classes
of negative signals.

Remark 3. As mentioned earlier, the results remain the same when customers ran-
domly shuffle positions immediately before the arrivals of customers and/or signals.

Remark 4. Haviv (2005) considers a “one-chance random queue”, where an arrival
always joins the head of the queue, however at a service completion a customer is
randomly selected for service. The “one-chance random queue” is clearly a special
case of random shuffling of this section, since that service discipline can be ob-
tained by the LIFO service discipline followed by random reshuffling of customers
immediately after a service completion.

5.10 Conclusion

In this chapter we reviewed some latest developments on queueing networks with
tractable stationary distributions. Clearly, if possibleit is always preferred to find
the closed form analytical solution for a network problem, and only when this is not
possible will one resort to approximation methods. Furthermore, we note that even
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when analytical solution is not available, the necessary and sufficient condition often
can help obtain bounds and approximations for the non-product form networks. This
is because of the fact that necessary and sufficient condition reveals the additional
conditions that need to be imposed for the network problem toyield a product form
solution. In many cases, the network after imposing additional conditions, that has
a product form solution, gives rise to a stochastic bound forthe original problem.
Moreover, it is clear that, if the additional conditions only have minor impact on the
performance of the original problem, then the product form solution obtained can
be used as a good approximation for the original problem.

This chapter focused on queueing network models with exponential processing
times. For models with arbitrary processing time distributions, state-dependent tran-
sition rates (such as multi-server queues, etc.), and discrete time models, the reader
is referred to Chao, Miyazawa and Pinedo (1999) and the otherpapers in the refer-
ences.
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Chapter 6
Discrete Time Networks with Product Form
Steady States

Hans Daduna

Abstract We consider networks of queues in discrete time, where the steady state
distribution can be computed explicitly in closed form (product form networks):
(i) Closed cycles and open tandems of single server FCFS Bernoulli nodes with
state dependent service probabilities, where customers flow linearly, (ii) networks
of doubly stochastic and geometrical queues (which are discrete time analogues of
Kelly’s symmetric, resp. general, servers), where customers of different types move
through the network governed by a general routing mechanismand request for ser-
vice according to general, resp. geometrical, distributions, (iii) networks with batch
movements of customers and batch service, where the serviceand routing mecha-
nism is defined via an abstract transition scheme.
We describe recent developments of product form networks where nodes are unre-
liable, break down and are repaired. This opens the possibility to investigate perfor-
mance and availability of networks in an integrated model.

6.1 Introduction

Queueing network theory provided models, structural insights, problem solutions,
formulas, and algorithms to many application areas. Its strong development over
now around fifty years is closely connected with building a product form calculus
for queueing networks in continuous time. Breakthroughs were works of Jackson
[Jac57] and Gordon and Newell [GN67] in the Operations Research fields, Baskett,
Chandy, Muntz, and Palacios [BCMP75] in the Computer Science, and of Kelly
[Kel76]. For a survey on the state–of–the–art serve the recent books of Van Dijk
[Dij93], Serfozo [Ser99], and Chao, Miyazawa, Pinedo [CMP99], previous sources
are [Kel79], Whittle [Whi86], and Walrand [Wal88].

Hans Daduna
Department of Mathematics, University of Hamburg
e-mail:daduna@math.uni-hamburg.de
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Today’s growing together of production, manufacturing, transportation with in-
formation processing and communication technology results in more and more com-
plex systems which require even more elaborated models, techniques, and algo-
rithms for better understanding their performance behaviour and for predicting per-
formance and quality of service.

The classical single node queues and their networks are models living on a con-
tinuous time scale. And even if for some applications a discrete time scale might
be more appropriate, often the well established continuoustime machinery served
as an approximation tool. Consequently, the survey articles [Coo90], [Wal90] from
1990 still do not review discrete time models.

But from then on an astonishing evolution of discrete time stochastic network
models can be observed. Usually it is argued that the invention of ATM (Asynchron-
uous Transfer Mode) as the protocol for high speed transmission network technol-
ogy triggered this development. Following this, special issues ofPerformance Eval-
uation: Discrete time models and analysis methodsandQueueing Systems and Their
Applications: Advances in discrete time queueswere dedicated to the subject. The
Editorial Introductions[TGBT94], [MT94] of these issues advertise for developing
further this class of models.

Several books appeared recently dedicated to theory and applications of discrete
time queueing systems and networks, [BK93], [Tak93], [Woo94], [Dad01], and in
parts [CMP99].

The center of this chapter is the presentation of a discrete time analogue to the
celebratedproduct form calculusof continuous time stochastic network theory. The
program behind is to build a calculus which is of comparable simplicity and general
applicability as the continuous time theory. Therefore this chapter refers in many
parts to [Woo94] (Section 6.6.2), [CMP99] (Section 6.6.1),[Dad01] (Section 6.3
and 6.4). (To a certain extent I reused parts of [Dad01].)

I consider three classes of models:
• Linear networks (closed cycles and open tandems) of single server FCFS

Bernoulli nodes.
•Networks of doubly stochastic and geometrical queues (which are discrete time

analogues of Kelly’s symmetric, resp. general, servers andof the BCMP nodes):
Customers of different types move through the network governed by a general rout-
ing mechanism and request for service according to general,resp. geometrical, dis-
tributions.
• Networks with batch movements of customers and batch service, where the

service and routing mechanism is defined via an abstract transition scheme.
I further discuss recent developments of product form networks where nodes are

unreliable, break down and are repaired. This opens the possibility to investigate
performance and availability of networks in an integrated model.

Parallel work on discrete time theory and several application areas are summa-
rized in the introduction of [Dad01].

Notation: IR denotes the real numbers,IR+ := [0,∞).
The natural numbers areIN := {0,1,2, . . .}, the strict positive natural numbers are
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IN+ := {1,2,3, . . .}, and we denoteZZ := {. . . ,−2,−1,0,1,2, . . . .}.
For any setA we denote byP(A) the set of all subsets ofA.
We denote the Kronecker deltaδ , resp. the complementary Kronecker deltaη by

δ (a,b) =

{
1 i f a = b
0 i f a 6= b

, resp. η(a,b) =

{
1 i f a 6= b
0 i f a = b

.

ACKNOWLEDGEMENT: Parts of this Chapter were written in course of a re-
search project on STOCHASTIC NETWORKS IN DISCRETE TIME: ANALYSIS OF

PERFORMANCE AND AVAILABILITY (DA774/1-1). I thank my collaborator Chris-
tian Malchin for many helpful remarks and discussions on thesubject.

I thank Richard Boucherie for reading the manuscript carefully and for his help
in the final version.

6.2 Bernoulli Servers with Different Customer Types and
state-dependent arrivals

The Bernoulli server is the analogue of the state dependent exponential single server
queue in continuous time under First–Come–First–Served (FCFS) regime. There is
a single service facility where at each time instant at most one customer may be
served. If at timet ∈ IN a customer is in service and if there aren−1≥ 0 other cus-
tomers present then this service ends in the time segment[t,t +1) with probability
p(n) ∈ (0,1) and the customer will depart at the end of this time slot; withprob-
ability q(n) = 1− p(n) this customer will stay at least one further time quantum.
The decision for a customer whether to stay or to leave is madeindependently of
anything else other than the queue length at timet.

All customers share the same countable type setM (“single chain” case). The
type of an arriving customer is chosen as follows: Arrival probabilities depend on
the history of the system only through the actual queue length, i.e., if at timet
there aren customers present, then a new arrival of typem appears in(t,t +1] with
probabilityb(n) · a(m) ∈ (0,1). With probabilityc(n) = 1−b(n) there will be no
arrival. Such an arrival stream will be termed henceforthstate dependent Bernoulli
arrival process.(Sometimes we allowp(n) = 1 and/orb(n) = 1.)

Departures and arrivals occur conditionally independent given the actual queue
lenght. Joint arrivals and departures are scheduled according to LA-D/A regime (late
arrivals–departure before arrivals) [GH92], see Figure 6.1.

If at a customer’s arrival instant the server is free her service immediately com-
mences. Otherwise she enters the waiting room which is organized on a FCFS basis
(sometimes called FIFO: First–In–First–Out). If a customer has obtained her total
service request she immediately departs from the system. Ifa customer departs and
there is at least one further customer present then the customer at the head of the
waiting line enters the server, her service commences immediately, and all other
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waiting customers are shifted one place up in the line. The time needed for reorga-
nizing the queue is assumed neglectible (zero time).

The system’s development over time is described by a discrete time Markov chain
X = (X(t) : t ∈ IN). The state is recorded at timest ∈ IN just after possible departures
D(t) and arrivalsA(t) have happened (Figure 6.1). A typical state of the system is

? ??

?

?

? t t+1

Xt Xt+1

Arrival A(t−1) Arrival A(t)

DepartureD(t−1) DepartureD(t)

Fig. 6.1: Regulation of arrivals and departures

described by a type sequencex= (x1, . . . ,xn) ∈Mn, where forn> 0 x1 is the type of
the customer in service,x2 is the type of the customer at the head of the queue,. . . ,xn

is the type of the customer who arrived most recently. The empty system is denoted
by x = e. (We set for the empty system the queue lengthn = 0.) Let X(t) denote the
state of the node at timet ∈ IN.

X = (X(t) : t ∈ IN) is irreducible with state spacẽS:= {e}∪⋃∞
n=0Mn.

Theorem 6.2.1 (Steady state)If the Markov chain X is ergodic then the unique
equilibrium distribution of X is with norming constant H< ∞

π(x) = π(x1, . . . ,xn) x = (x1, . . . ,xn) ∈ S̃.

=

(
∏n−1

m=0b(m)

∏n
m=0c(m)

)(
n

∏
k=1

a(xk)

)(
∏n−1

m=1q(m)

∏n
m=1 p(m)

)
·H−1. (6.1)

Remark 6.1 (Steady state decomposition).π shows a decomposition (separation) of
steady states into factors concerning arrival, service, and type selection probabilities.
Such separability is common to almost all product form steady states in continuous
time and occurs in discrete time queueing networks as well.

Theorem 6.2.2 (Arrival Theorem) Let X be in equilibrium and denote by
A(m, t) = {at time t a customer of type m arrives at the node}
the arrival event of interest. Then for x= (x1, . . . ,xn) ∈ S̃,

π1,m(x) := P(X(t) = (x1, . . . ,xn,m)|A(m,t)) (6.2)

=

(
∏n

m=0b(m)

∏n+1
m=0c(m)

)(
n

∏
k=1

a(xk)

)(
n

∏
m=1

q(m)

p(m)

)
H−1

1 .
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The norming constant H1 does not depend on the arriving customer’s type.

The interpretation ofπ1,m is that it describes the distribution of the other customers’
disposition in a type-m arrival instant under equilibrium conditions. Remarkableis
that this arrival distribution has not the form of the equilibrium distribution even
if the arrival process is a state independent Bernoulli process. In continuous time
it is true for state independent arrivals that time stationary and customer arrival
stationary distribution coincide. For systems with Poisson arrivals this is the PASTA
property (Poisson Arrivals See Time Averages) [Wol82].

From a general point of view the PASTA theorem and its relatives determine
the stationary and asymptotic distribution of systems whenthe observation points
are prescribed by an associated (embedded) point process, for a review see [BB94],
chapter 4, section 3. Palm theory in discrete time ([BB94], Chapter 1, Section 7.4)
yields similar results via elementary conditional probabilities.

In discrete time, a PASTA analogue usually does not hold, although exceptions
can be found. An early result was proved by Halfin in [Hal83]. Characterisation
theorems of the PASTA type (thereby strengthening the BASTA–results (Bernoulli
Arrivals See Time Averages) from [MMW89]) were proved by El-Taha and Stidham
[ETS92], (see also [ETS99], section 2, theorem 3.18 and corollary 3.19). Miyazawa
and Takahashi [MT92] proved ASTA in a discrete time point process setting by
using a rate conservation principle. They also observed that for some systems this
property does not hold.

Corollary 6.2.3 (End–to–end–delay)[Dad01][Theorem 2.12] Consider the
Bernoulli server with state dependent arrival rates b(n) ∈ (0,1) and state inde-
pendent service rates p(n) = p∈ (0,1) in equilibrium with a test customer of type
m arriving at time0 finding the other customers distributed according toπ1,m, see
(6.2). Denote by Pπ1,m a probability measure which governs X under this conditions
and by Eπ1,m[·] expectations under Pπ1,m.
Denote by S the test customer’s sojourn time in system. Then with (see(6.1))

α(θ ) =
∞

∑
n=0

∏n−1
m=0 b(m)

∏n
m=0c(m)

θ m, |θ | ≤ q/p, (6.3)

Eπ1,mθ S =

(
α(

qθ
1−qθ

)−α(0)

)
·
(

α(
q
p
)−α(0)

)−1

, |θ | ≤ 1. (6.4)

Corollary 6.2.4 (Queue length process)The queue length process is a homoge-
meous Markov chain, which we denote by X as well. If X is ergodic, then its unique
stationary and limiting distribution is (with H< ∞ from (6.1))

π(n) =
∏n−1

m=0b(m)

∏n
m=0c(m)

· ∏n−1
m=1q(m)

∏n
m=1 p(m)

·H−1. n∈ IN, (6.5)

If additionally p(n) = p∈ (0,1), and b(n) = b∈ (0,1),n∈ IN, then X is ergodic if
and only if b< p, and if this holds the stationary distribution of X is
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π(n) = (1− b
p
)

(
bq
cp

)n(1
q

)η(0,n)

, n∈ IN. (6.6)

Remark 6.2 (Random walks in discrete time).The queue length of the
Bernoulli server is a random walk onIN (with reflection at 0) in discrete time
in the sense of [KSK76], p. 84, or a birth and death chain in discrete time, see
[Hun83a],(Vol. I), p. 178. Corollary 6.2.4 and the corollaries below are therefore
simple consequences of the limiting and stationary behaviour of birth and death
chains, see [Hun83b], (Vol. II), Example 7.2.2, p. 107.

Remark 6.3 (Reversibility).For state independent arrival probabilities, Hsu and
Burke [HB76] proved that in steady state the queue length processX is time re-
versible. So, in equilibrium the departure process is a Bernoulli–(b) process, and the
departure process up tot and the state att are independent. This lead Hsu and Burke
to apply separability to tandem queues.

In [CMP99], example 12.10, and the remark below on p.354, it is shown that this
queue is quasi–reversible according to the definition 12.6 there.

The system dealt with in theorem 6.2.1 is neither reversiblenor quasi–reversible.

Corollary 6.2.5 (Loss systems)Assume that in the setting of corollary 6.2.4 we
have b(n) ∈ (0,1) for n≤ L−1 > 0, and b(n) = 0 for n≥ L.
Then X is ergodic on E= {0,1, . . . ,L}, and the stationary distribution of X is

π(n) =
∏n−1

m=0b(m)

∏n
m=0 c(m)

· ∏n−1
m=1 q(m)

∏n
m=1 p(m)

·H−1. n∈ E, (6.7)

For the discrete timeM/M/s/∞ no simple closed form expressions for the steady
state are at hand. Usually root solving procedures for multidimensional bound-
ary equations are applied. Related problems are dealt with in [BSDP92], [DT92]
[SZ94], [BK93], section 4.1.2. For a light traffic approximation see [Dad01][example
2.10]. The no-waiting-room case is considered in [CG96]. Multiserver queues in dis-
crete time for modeling controlled ATM switches are described in [RMW94], where
a leaky–bucket control is investigated.

Pestien and Ramakrishnan [PR94b], section 3, proved that including ·/M/s/∞
into a closed cycle of queues destroys the product form equilibrium if 1 < s< ∞.

Feedback queues are models of repeated visits to a production or service facility,
and rework of an item, e.g., with production control. ATM transmission systems are
described in [STH98], where in a node with service time deterministic-(1) the feed-
back mechanism models successive transmission of cells of amessage, with geo-
metrically distributed length. Feedback destroyes the FCFS structure of the systems,
which reflects real systems’ protocol behaviour. Related isRound–Robinregime ,
described e.g. in [Kle64], [LB96] (see the references there).

We consider a feedback node where customers of different types from the set
M of possible types are served, i.e., the model of section 6.2 with a queue length
dependent Bernoulli feedback. The state space isS̃, defined before theorem 6.2.1. A
customer departing from the queue leaving behindm−1 customers is fed back into
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the waiting room (to the tail of the queue) with probabilityr(m). If she was the only
customer present she will obtain immediately a further service, otherwise she will
join the tail of the queue. With probability 1− r(m) she will leave the system. The
decision whether to leave or to reenter is made independently of anything else. The
regulation of customer movements in case of multiple eventsis: Departure before
arrival for a joint arrival and departure (D/A) and feedbackbefore arrival for a joint
feedback and arrival (F/A).

Theorem 6.2.6 (Feedback queue with customer types)If on state spacẽS the Markov
chain is ergodic, then its steady state is for(x1, . . . ,xn) ∈ S̃,

π(x1, . . . ,xn) =
∏n−1

m=0b(m)

∏n
m=0 c(m)

·
n

∏
k=1

a(xk) ·
∏n−1

m=1(q(m)+ p(m)r(m))

∏n
m=1 p(m)(1− r(m))

·H−1.

Settingp(n) = 1,n≥ 1, r(m) = r,m∈ IN yields the round–robin scheme of [STH98],
which shows some further features not represented here. In [LB96] the number of
packets arriving per slot is an of i.i.d. sequence, service time is of phase type, and
the service mechanism is round–robin. Product form steady state occurs in [DS81].

6.3 Closed Cycles of Bernoulli Servers

In this chapter we construct closed cycles of state dependent Bernoulli servers with a
fixed number of customers cycling. We have multiple customertypes as described in
section 6.2. In section 6.3.1 we determine steady state behaviour and the individual
customers’ behaviour at arrival instants at the nodes. We concentrate on the unichain
case (all customers share the same set of possible types) throughout. The multichain
case is sketched in [Dad01][Section 3.2]. In section 6.3.2 we determine a travelling
customer’s sojourn time distributions at the nodes in a cycle. We end with explicit
expressions for the generating function (z-transform) of the vector of the successive
sojourn times which can be inverted easily by direct methods. We sketch in section
6.3.3 algorithms to compute different norming constants.

The first explicit result on the steady state behaviour for closed cycles of state
independent Bernoulli servers appeared in 1994 – see [PR94b] and [PR94a]. The
parallel result for open series of such nodes is already from1976, see [HB76]. A
shorter proof of the steady state result can be found in [Dad97c].

6.3.1 Steady State Behaviour and Arrival Theorem

Consider a closed cycle of state–dependent Bernoulli servers under FCFS queue-
ing regime with unlimited waiting room. There areJ nodes in the cycle, numbered
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1,2, . . . ,J; customers leaving nodej procede immediately to nodej + 1. We for-
mally define for the numbering of the nodesJ+1 := 1 and 1−1 := J.

K customers cycle in the system being of typesm∈M, |M|< ∞. Customers may
change their types according to a Markovian rule when departing from a node. All
customers show the same behaviour with respect to their types.

With probabilityr(i;m,m′)≥ 0 a customer of typem on leaving node i becomes
a customer of typem′ ∈M when entering nodei +1, i = 1, . . . ,J. Giveni andm, the
selection ofm′ is done independently of anything else in the past of the system. We
assume that the system of equations

η(i;m) = ∑
m′∈M

η(i−1;m′)r(i−1;m′,m), i = 1, . . . ,J,m∈M, (6.8)

has a unique stochastic solutionη = (η(i;m) : i = 1, . . . ,J,m∈M).
The evolution of the system is described by a multivariate Markov chainX :=

(X(t) : t ∈ IN) as follows: LetM(i) = {m∈ M : η(i;m) > 0} denote the set of
possible types which customers may show when staying in nodei, i = 1, . . . ,J.
A typical state of the system is denoted byx = (x1, . . . ,xJ), wherex j = ej or
x j = (x j1, . . . ,x jn j ) ∈ M( j)n j ,1 ≤ n j ≤ K, j = 1, . . . ,J, andn1 + · · ·+ nJ = K. x j

is called a local state for nodej with the following meaning :
If x j = ej then nodej is empty and we setn j = 0.
If x j = (x j1, . . . ,x jn j ),n j > 0, then a customer of typex j1 is in service at node

j, x j2 is the type of the customer waiting at the head of the queue,. .. , andx jn j is
the type of the customer who arrived most recently at nodej. The local states are
concatenated to global states in the state space

S̃(K,J) := {(x1, . . . ,xJ) : x j = (x j1, . . . ,x jn j ) ∈M( j)n j ,1≤ j ≤ J,
J

∑
j=1

n j = K}

whereX = (X(t) := (X1(t), . . . ,XJ(t)) : t ∈ IN) is living on.
The nodes operate independently as follows: If at timet at node j a customer

is in service and if there aren j − 1≥ 0 other customers present at that node then
this service ends in the time segment[t,t + 1) with probability p j(n j) ∈ (0,1) and
the departed customer will be at the end of the queue of nodej + 1 at timet + 1;
with probabilityq j(n j) = 1− p j(n j) this customer will stay at least one further time
quantum at nodej, j = 1, . . . ,J. Whether a customer stays on or to leaves nodej
is independent of the history given the local state ofX at j. A customer arriving at
node j + 1 at timet + 1 either joins the end of the queue there (if other customers
are present) or immediately enters service (if at timet node j was empty or there
has been exactly one customer who obtained her last quantum of service time). If
at some node at the same epoch an arrival and a departure occurwe always assume
that the departure event takes place first, D/A–rule; see Figure 6.1 and [GH92].)

The state of the system is recorded at timest ∈ IN just after possible departures
and arrivals had happened. (Due to ample waiting room theA/D–rule, arrival before
departure, yields the same steady state distribution.) Thestates whichX will enter
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may be a subset of̃S(K,J), depending on the initial state of the process. We set the
following assumption in force.

Assumption 6.3.1 (Irreducibility) Depending on the initial state X is irreducible
on its state space. We denote the state space in any case byS̃(K,J), the meaning of
which will be clear from the context.

Theorem 6.3.2 (Steady–State Distribution)X = (X(t) : t ∈ IN) is positive recur-
rent and its unique steady state is with norming constant G(K,J)−1

πK,J(x11, . . . ,x1n1; . . . ;xJ1, . . . ,xJnJ) (x11, . . . ,xJnJ) ∈ S̃(K,J)

=
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·G(K,J)−1. (6.9)

For obvious reasons the steady state distributionsπK,J are said to be ofproduct form,
which clearly does not imply independence of the local queuelengths. n interesting
difference between (6.9) and the continuous time analogue (see e.g. [Kel79]), is
clarified when considering state independent service rates.

Corollary 6.3.3 Suppose we have pj(n j) = p j ,n ∈ IN+, j = 1, . . . ,J. Then the
unique stationary distribution of X is for(x11, . . . ,xJnJ) ∈ S̃(K,J),

πK,J(x11, . . . ,x1n1; . . . ;xJ1, . . . ,xJnJ) (6.10)

=
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
1
q j

)η(0,n j )
(

q j

p j

)n j

·G(K,J)−1.

The extra factor
(

1
q j

)η(0,n j )
for non empty queues sets the difference. Therefore

in the homogeneous cycle (p j = p, j = 1, . . . ,J) the stationary distribution is not
uniform onS̃(K,J) as in continuous time. For consequences see [PR94a].

Corollary 6.3.3 and even the case of state dependent serviceprobabilities can in
principle be proved by applying theorem 2.2 of [HT91] or by similar derivations as
presented in section 4 of [BD91].

Remark 6.4 (Bottleneck behaviour).Consider the closed cycle of corollary 6.3.3
with state independent service probabilities andp1 < min(p2, . . . , pM), i.e. node 1 is
the unique slowest server and will act as bottleneck of the network. This means: If
we have a cycle with large population size(K≫ J) then in equilibrium (and asymp-
totically over time) we shall see with high probability almost all customers at node
1 and node 1 acts asymptotically as a Bernoulli source.

More precisely: For fixed state(x21, . . . ,x2n2; . . . ;xJ1, . . . ,xJnJ) ∈ ×J
j=2M( j) at

nodes 2, . . . ,J denote byπK,J(x21, . . . ,x2n2; . . . ;xJ1, . . . ,xJnJ) the marginal proba-
bility for the coordinates 2, . . . ,J underπK,J(·) in a cycle withJ nodes andK ≥
n2 + . . .nJ customers. Then we have



278 Hans Daduna

lim
K→∞

πK,J(x21, . . . ,x2n2; . . . ;xJ1, . . . ,xJnJ) = (6.11)

=
J

∏
j=2

(
n j

∏
k=1

η( j;x jk)

)(
1
q j

)η(0,n j )
(

p1q j

q1p j

)n j

·
(

1− p1

p j

)
.

The limiting probability is the stationary distribution ofan open tandem of nodes
2, . . . ,J with a Bernoulli arrival stream with parameterp1, see theorem 6.4.1.

Corollary 6.3.4 [DPR03] For each node j, we define the throughput TK,J
( j) at any

node j as the expected progress at node j at a given instant under πK,J:

TK,J
( j) = ∑

(x1,...,xJ)∈S̃(K,J)

πK,J(x1, . . . ,xJ) · p j(n j). (6.12)

TK,J := TK,J
( j) is independent of j.

If the service probabilities pj(m) are nondecreasing in m∈ IN for all j, T K,J is
nondecreasing in K and nonincreasing in J.

In continuous time a consequence of the product form is theArrival Theorem,
[LR80], [SM81], which roughly states, that in equilibrium an arriving customer at
node j observes the other customers distributed according to the equilibrium of the
system if she himself would not be there,j = 1, ...,J. So thearrival distributionhas
the same structure as the equilibrium, and is independent ofthe node j, where the
customer arrives. This is not the case in discrete time.

Property 6.3.5 (Arrival Theorem) [Dad96] Let X= (X(t) : t ∈ ZZ) be the station-
ary continuation of X= (X(t) : t ∈ IN) underπK,J. Assume that for node i and cus-
tomer type m there exists some m′ such that r(i−1;m′,m) > 0, i.e. m∈ M(i), and
denote by A(i,m) the event that at time0 an arrival of a type–m customer at node
i appeared, i∈ {1, . . . ,J}. Then for x= (x1, . . . ,xJ) ∈ S̃(K−1,J) with Gi,m(K,J)−1

as norming constant

πK,J
i,m (x1, . . . ,xJ) (6.13)

:= P(X(0) = (x1, . . . ,xi−1,(xi,1, . . . ,xi,ni ,m),xi+1, . . . ,xJ)|A(i,m))

=

(
ni

∏
k=1

η(i;xik)

)(
∏ni

h=1qi(h)

∏ni
h=1 pi(h)

)

·
J

∏
j=1, j 6=i

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·Gi,m(K,J)−1.

A different form of an arrival theorem was proved by Henderson and Taylor
[HT91]: They computed in a general setting the disposition probability for stay–on
customers seen by a prescribed set of departing customers just before the latter enter
their destination node. These probabilities can be computed similarly to the proof
of proposition 6.3.5. And the other way round: Having the arrival probabilities of
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[HT91], Corollary 2.4, at hand, by a suitable, but lengthy, summation our result for
indistinguishable customers would follow.

6.3.2 Delay Times for Customers in a Closed Cycle

For a closed cycle ofJ state independent Bernoulli servers as described in section
6.3.1 and specified in corollary 6.3.3 we derive the steady state cycle time for a
customer in the system, and similar quantities. Most important is to determine the
joint distribution of successive sojourn times (waiting time + service time) of a
customer at the different nodes during such a cycle.

From the arrival theorem 6.3.5 and the type independent service times it fol-
lows that these distributions do not depend on the type of thecycling customer.
We therefore can and will restrict our attention to the case of indistinguishable cus-
tomers. The joint queue length processX = (X(t) : t ∈ IN) is Markov with state
spaceS(K,J) = {(x1, . . . ,xJ) ∈ INJ : x1 + . . .+xJ = K}.

X(t) = (X1(t), . . . ,XJ(t)) = (x1, . . . ,xJ) indicates that at timet there arex j cus-
tomers present at nodej, including the one in service, if any,j = 1, . . . ,J.

Consider a test customerC0 arriving at time 0 at nodei finding the other cus-
tomers distributed according toπK,J

i . Denote byPπK,J
i

a probability that governs the

system with this condition, and byEπK,J
i

[·] expectations underPπK,J
i

.

Theorem 6.3.6 (Joint sojourn time distribution) [Dad97b] If C0 arrives at time
0 at node i∈ {1, . . . ,J}, finding the other customers distributed according toπK,J

i ,

and if (S(i)
1 ,S(i)

2 , . . . ,S(i)
J ) denotes the vector of her sojourn times during her cycle

which starts at 0, then

EπK,J
i

[
J

∏
j=1

θ
S
(i)
j

j

]
| θ j |≤ 1, j = 1, . . . ,J (6.14)

= ∑
(x1,...,xj )∈S(K−1,J)

Gi(K,J)−1

{
J

∏
j=1

(
p jθ j

1−q jθ j

)}

·
(

qiθi

1−qiθi

)xi J

∏
j=1, j 6=i

{(
1

q jθ j

)η(0,xj )
(

q jθ j

1−q jθ j

)xj
}

,

The joint distribution of C0’s successive sojourn times vector(S(i)
1 , . . . ,S(i)

J ) during
this cycle doesnot depend on the node i, where the cycle started.

The appealing interpretation of the RHS of (6.14) as a directresult of conditioning
on the arrival situation is false, withi = 1 we note:

(
p1θ1

1−q1θ1

)x1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)xj +1( 1
θ j

)η(0,xj )
}
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is not the conditional distributionL(S(1)
1 , . . . ,S(1)

J | X(0) = (x1 +1,x2, . . . ,xJ)).
Note that in (6.14) the asymmetry of (6.13) (which is substantial there) formally

reappears, but nevertheless we have symmetry ini ∈ {1, . . . ,J}.

Remark 6.5.The proof of theorem 6.3.6 is performed by induction on the length
of the cycle and the number of customers. We consider the cycle built of an initial
node connected to a smaller residual cycle with less customers cycling, where the
induction hypothesis applies. Insofar the proof is standard, mimicing the continu-
ous time analogue [KP83]. Kelly and Pollett showed even more: Splitting of the
cycle for the induction step is possible between every pair of nodes j and j + 1,
j ∈ {1,2, . . . ,J− 1} - the induction step is always the same ! The main difficulty
that arises in the discrete time system is to justify this splitting. Directly carrying
over the arguments from [KP83] is not possible, because of the dependence of the
disposition distribution for the other customers on the node where the customer
jumps.

Remark 6.6 (End–to–end–delay).As a by-product of theorem 6.3.6 we have a result
on the distribution of cycle times ( =sum of successive sojourn times) which is
the end–to–end–delay e.g. in a transmission line under window flow control for a
system in heavy traffic (see [Rei79] and [Rei82]): Putθ j = θ , j = 1, . . . ,J. A direct
proof is given in [Dad96].

Theorem 6.3.6 allows to compute moments and covariances explicitly. Results on
partial-cycle times are given in [Dad96], section 4.

Remark 6.7 (An invariance property versus bottleneck behaviour). The discussion
of the bottleneck behaviour underp1 < min(p2, . . . , pM), i.e. when node 1 is the
bottleneck of the network, in remark 6.4 suggests that for(K ≫ J) the cycle time
will be determined almost completely by the sojourn time of the test customer at
node 1. This is made precise by Boxma [Box88] in continuous time. Boxma’s result
in the discrete time setting is forK→ ∞

EπK,J
1

[S(1)
1 + . . .+S(1)

J ] = Kp−1
1

{
1+O

(
p1

min(p2, . . . , pM)

)K
}

, (6.15)

(eveno(·) instead ofO(·) can be shown) and it is also limK→∞ K−1EπK,J
1

[S(1)
1 ] = p−1

1 .

So the overwhelming part of the customer’s cycle time is her visit at the bottleneck.
Therefore the following observation is striking ([MD05] for continuous time): If we
compute the conditional joint counting densities of the successive sojourn times of
a cycling customer given her cycle time, then for all feasible values this conditional
densities are independent ofK [MD04].
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6.3.3 Computational Algorithms for Closed Cycles of State
Independent Bernoulli Servers

Algorithms are developed for continuous time networks to efficiently evaluate norm-
ing constants, steady state probabilities, and further quantities derived from this.
An analysis of convolution algorithm (norming constants),Mean Value Analysis
(MVA), the more recent RECAL method, and further approximation algorithms for
product form networks as well as for non product form networks based on those con-
cepts is in [BGdT98]. For a short survey, including approximation procedures, see
[HNS99]. Algorithms for discrete time systems with finite capacity, are developed
in [SG97].

We sketch in this section the prolems occurring due to the discrete time scale.
A first observation is based on theorem 6.3.2 and proposition6.3.5: While in con-
tinuous time models the norming constants in the steady state and in the arrival
probabilities are of the same structure, we have to apply different computational
schemes. We restrict ourself to state-independent servicerates.

Property 6.3.7 (Norming constants)(a) For the steady state distribution (6.9) in
theorem 6.3.2 (with state independent service probabilities) the norming constant in
a system with K customers cycling in J nodes is

G(K,J) = ∑
(n1,...,nJ)∈INJ

n1+···+nJ=K

J

∏
j=1

(
q j

p j

)n j
(

1
q j

)η(0,n j )

, K ≥ 1,J≥ 1.

(b) The norming constant for the arrival probabilities (6.13) in proposition 6.3.5
seen by a type m–customer on his arrival at node i in a system with K customers
cycling in J nodes is

Gi,m(K,J) = ∑
(n1,...,nJ)∈INJ

n1+···+nJ=K−1

(
qi

pi

)ni J

∏
j=1
j 6=i

(
q j

p j

)n j
(

1
q j

)η(0,n j )

, K ≥ 1,J≥ 1.

The constants are type independent. We set Gi(K,J) := Gi,m(K,J), m∈M.

The following is an analogue ofBuzen’s algorithm([Buz73]).

Property 6.3.8 (Buzen’s algorithm) For K ≥ 1,J ≥ 1 and pj ∈ (0,1),q j = 1−
p j , j = 1, . . . ,J, the following recursion holds for G(K,J):

G(1,J) =
J

∑
j=1

1
p j

, J≥ 1, G(K,1) =

(
q1

p1

)K 1
q1

, K ≥ 1,

G(K,J) = G(K,J−1)+
qJ

pJ
G(K−1,J)+G(K−1,J−1),

K ≥ 2,J≥ 2. (6.16)
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Note that the computation of (6.16) depends on the prescribed numbering of the
nodes. Renumbering the nodes leads to different paths for the algorithm.

The norming constant for the arrival probabilities will be computed for any
customer arriving at node 1. It does not depend on the type of the arrival. Fur-
thermore: From [Dad01], lemma 7.2, it follows that for allj = 1, . . . ,J equality
Gi(K,J) = G1(K,J) holds.

Computing norming constants and performance indices needsan interplay of
constants of different type: from time stationary steady states and from customer
stationary steady states. Such distinction is not necessary in continuous time.

Property 6.3.9 For K ≥ 1,J≥ 1 and pj ∈ (0,1),q j = 1− p j , j = 1, . . . ,J, the fol-
lowing recursion holds for G1(K,J):

G1(2,J) =
q1

p1
+

J

∑
j=2

1
p j

, J≥ 1,

G1(K,J) = G(K−1,J−1) +
qJ

pJ
G1(K−1,J), K ≥ 3,J≥ 1.

Some elementary consequences of the above algorithms follow.

Corollary 6.3.10 For a random vector(X1, . . . ,XJ) distributed according to the
equilibrium distributionπK,J in the closed cycle (see corollary 6.3.3) holds:
(a) The probability for queue length X1 at node1 to exceed k∈ {0,1, . . . ,K} is

P(X1≥ k) =

(
q1

p1

)k 1
q1

G1(K−k,J)G(K,J)−1

(b) The mean steady state queue length E[X1] at node 1 is

E[X1] =
1
q1

G(K,J)−1
K

∑
k=1

(
q1

p1

)k

G1(K−k,J).

(c) For j = 1, . . . ,J and k≥ 0 we have

P(Xj ≥ k) = P(X1≥ k)

(
p1q j

q1p j

)k q1

q j

6.3.4 Large Cycles of State Dependent Bernoulli Servers

In the remarks 6.4 and 6.7 the number of nodesJ in the cycles was fixed while the
number of customers grew unboundedly. The limiting behavour of the sequence of
networks provides information about the behaviour of the cycle when the system is
overloaded by high population sizes. A related question about approximating the be-
haviour of large networks can be studied by observing sequences of networks where
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the number of nodes and the number of customers grow simultaneously. Pestien and
Ramakrishnan studied the asymptotic throughput and queue lenghts in networks (in-
dexed byN) of state independent nodes, where the number of nodes fulfill J(N)→∞
and the limit of the customer/nodes ratios

α = lim
N→∞

K(N)/J(N) ∈ [0,∞]

exists, [PR94a], [PR99], In [DPR03] this is extended to the model in theorem 6.3.2
(with undistinguishable customer).

We haveL types of nodes, characterized by distinct nondecreasing sequences of
success probabilitiesp[0], . . . , p[L−1], i.e., for eachℓ, p[ℓ](h) is the service probability
at a node of typeℓ when the queue length ish. Let the maximal service rate for type
be

p∗[ℓ] = lim
h→∞

p[ℓ](h),

and assume 0< p∗[L−1] ≤ p∗[L−2] ≤ ·· · ≤ p∗[0] ≤ 1.

Even though we assume that the service ratesp[ℓ] are distinct, we allow the pos-
sibility that p∗[ℓ] be constant inℓ.

For each positive integerN, for eachℓ (0≤ ℓ ≤ L−1), assume that there are
Jℓ(N)≥ 1 nodes of typeℓ. Also suppose that for eachℓ, the proportion of nodes of
typeℓ (asN approaches∞) has a limit, which defines a density(βℓ : ℓ = 0,1, . . . ,L−
1),

βℓ = lim
N→∞

Jℓ(N)/J(N).

Theorem 6.3.11[DPR03] Let T(N) := TK(N),J(N) denote the throughput for the
Nth network as defined in (6.12).

Denote by mp[ℓ],b the expected queue length of a stationary single node with
steady state distribution(6.5), where b(m) = b,m∈ IN, is a constant arrival rate
and p[ℓ] = (p[ℓ](m) : m∈ IN) is a state dependent service rate.

Let g be the function defined by g(θ ) = ∑L−1
ℓ=0 βℓ ·mp[ℓ],θ , for θ such that0≤ θ <

p∗[L−1]. g is continuous and strictly increasing andlimθ→0g(θ ) = 0.

The limiting throughput,limN→∞ T(N), exists, and the following cases summa-
rize the possible values of this limit:

(i) If α = 0, thenlimN→∞ T(N) = 0.
(ii) If 0≤ α < limθ↑p∗

[L−1]
g(θ ), thenlimN→∞ T(N) = g−1(α).

(iii) If α ≥ limθ↑p∗
[L−1]

g(θ ), thenlimN→∞ T(N) = p∗[L−1].

For node typeℓ in networkN denote byX(ℓ)(N) a random variable distributed like
the stationary queue length of a typeℓ node in this network.

Theorem 6.3.12Denote byθ ∗ := limN→∞ T(N) the limiting throughput. Forℓ such
that0≤ ℓ≤ L−1, the distribution of Xℓ(N) has the following properties:
(i) For everyℓ such thatθ ∗ < p∗[ℓ], the distribution of Xℓ(N) converges in total

variation norm toπ from (6.5) with constant arrival rate b(m) = θ ∗,m∈ IN, and
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state dependent service rate p[ℓ] = (p[ℓ](m) : m∈ IN). Also, for each positive integer
r, we have convergence of the rth moments.
(ii) For everyℓ such thatθ ∗ = p∗[ℓ],

lim
N→∞

P[Xℓ(N)≥ ∆ ] = 1 for every∆ > 0.

Moreover the expectations diverge to∞.

In [PR02] Pestien and Ramakrishnan proved monotonicity properties of perfor-
mance measures in the cyclic queue under steady state conditions when the service
rates are state-independent. These results are utilized torefine some of their previous
results in [PR94a], [PR99].

6.4 Open Tandems of Bernoulli Servers with State Dependent
Arrivals

In this section we investigate a series of linearly ordered nodes, fed by a state depen-
dent arrival stream. Tandem networks are models e.g., for production lines, trans-
mission lines in a telecommunication network, etc. Resultson steady state behaviour
for tandem systems (with state independent Bernoulli inputand indistinguishable
customers) date back to [HB76]. Hsu and Burke solved the steady state problem by
proving time reversibility of a nodes’ local state process in equilibrium and then us-
ing induction. A similar procedure is not possible in case ofstate dependent arrival
processes.

We describe the steady state behaviour of state dependent tandems with different
customer types in section 6.4.1. In section 6.4.2 we computeend–to–end–delay dis-
tribution for a customer traversing the tandem and the distribution of this customer’s
joint sojourn times at the successive nodes of his passage.

Although series systems seem to be a rather narrow class of networks, the results
usually are considered to be of value for networks with more general topology as
well. The technique to reduce many network problems to problems which can be
solved in linear systems is called theMethod of Adjusted Transfer Ratesand is
described for discrete time systems in [Dad97a].

6.4.1 Steady State and Arrival Theorem

Bernoulli servers from section 6.2 are building blocks of anopen tandem ofJ
queues. Customers of different types arrive in a state dependent Bernoulli process
at node 1, and proceed through the sequence of nodes possiblychanging their types,
and after leaving nodeJ, they depart from the system. All customers share the same
countable type setM. If a customer of typem∈M leaves nodej, then this customer’s
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type is resampled according to probability matrixr( j), his new type ism′ ∈M with
probabilityr( j;m,m′), j = 1, . . . ,J.

Regulation of simultaneous events is according tolate arrivals anddeparture
before arrivals, see Figure 6.1 and [GH92].

External arrival probabilities depend on the total population of the system and on
the type of the arrival, i.e., if at timet ∈ IN there aren j customers present at node
j, j = 1, . . . ,J, then a new arrival of typem appears in(t,t + 1] with probability
b(n1 + · · ·+nJ) ·a(m) ∈ (0,1).

Service times and arrivals are conditionally independent given the actual vector
of customer types at the nodes.

We use the definitions of section 6.3.1, page 276:M(i) denotes the set of possible
types which customers may show when staying in nodei, i = 1, . . . ,J. HereM(1) =
{m∈M : a(m) > 0}, while M(i), i = 2, . . . ,J, is determined by solving the equation
(6.8) forη(i; ·), i = 2, . . . ,J, in the present context and then settingM(i) = {m∈M :
η(i;m) > 0}.

A typical state of the system isx= (x1, . . . ,xJ), wherex j = ej orx j = (x j1, . . . ,x jn j )∈
M( j)n j ,1≤ n j , j = 1, . . . ,J. x j is called a local state for nodej with the interpreta-
tion given in section 6.3, page 276. These local states allowto construct the state
space forX

S̃(J) := {(x1, . . . ,xJ) : x j = (x j1, . . . ,x jn j ) ∈M( j)n j ,n j ≥ 0, j = 1, . . . ,J}

Let Xj(t) denote the local state at nodej, andX(t) = (X1(t), . . . ,XJ(t)) the joint
vector of type sequencesat time t.X = (X(t) : t ∈ IN) is a discrete time irreducible
Markov chain with state spacẽS(J).

Theorem 6.4.1 (Steady state)[Dad97c] If X is ergodic, then the unique equilib-
rium distribution of X is with norming constant H(J) < ∞

πJ(x1, . . . ,xJ) = πJ((x11, . . . ,x1n1); . . . ;(xJ1, . . . ,xJnJ)) = (6.17)

=

(
∏n1+···+nJ−1

h=0 b(h)

∏n1+···+nJ
h=0 c(h)

)
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·H(J)−1,

(x1, . . . ,xJ) ∈ S̃(J),where c(h) := 1−b(h),h∈ IN

Theorem 6.4.1 carries over to the caseb(n) ∈ [0,1) for somen∈ IN, which encom-
pass then loss systems as well, see [Dad97c], section 3.

Example 6.4.2 (Control of Bernoulli arrival) Consider a Bernoulli arrival stream
with constant intensity B∈ (0,1], which feeds an open tandem of Bernoulli servers.
There is a Bernoulli switch at the entrance point of the network (before node 1): If
the total population size of the network is n then an arrivingcustomer is admitted
with probability β (n) ∈ (0,1] and is rejected and lost with probability1− β (n).
This system fits into the class of models of theorem 6.4.1 withb(n) = B·β (n). If the
arrival process is sufficiently thin (1− β (n) sufficiently high) we have ergodicity.
(β (n),n∈ IN) then is a stability control function.
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To describe a customer’s delay behaviour we again need an arrival theorem.

Theorem 6.4.3 (Arrival Theorem) For the state process X of the open tandem in
equilibrium consider the event
A(1,m) = { at time 0 a customer of type m arrives at node 1}. Then

πJ
1,m(x1, . . . ,xJ) := P(X(0) = ((x1,m),x2, . . . ,xJ|A(1,m)) (6.18)

= P(X(0) = ((x11, . . . ,x1n1),m);(x21, . . . ,x2n2); . . . ;(xJ1, . . . ,xJnJ)|A(1,m))

=

(
∏n1+···+nJ

h=0 b(h)

∏n1+···+nJ+1
h=0 c(h)

)
J

∏
j=1

(
n j

∏
k=1

η( j;x jk)

)

·
(

n1

∏
h=1

q1(h)

p1(h)

)
J

∏
j=2

(
∏

n j−1
h=1 q j(h)

∏
n j
h=1 p j(h)

)
·H1(J)−1, (x1, . . . ,xJ) ∈ S̃(J),

H1(J) is the norming constant, which does not depend on the type of the arriving
customer. For i6= 1 similar formulas apply.

The usual interpretation ofπJ
i,m is that it describes the distribution of the other cus-

tomers’ disposition in an arrival instant at nodei under equilibrium conditions. Re-
markable is that this distribution has not the form of the equilibrium.

Corollary 6.4.4 (Individual loss probabilities) (a) Control of Bernoulli arrival
streams (example 6.4.2): Assume that a Bernoulli arrival process with arrival prob-
ability B ∈ (0,1] is controlled by a Bernoulli switch with admission probabilities
β (n),n ∈ IN. Then the loss probability for an arriving customer of type m due to
rejection is

pl ,m(J) = 1− 1
B ·H(J)

∞

∑
K=0

K

∏
h=0

b(h)

c(h)
G1(K,J),

where G(1K,J) is the norming constant for the arrival distribution at node1 for a
customer in a closed cycle of J nodes (see section 6.3.3) withK indistinguishable
customers cycling. (See [Dad97c]; theorem 1.)

(b) Open loss system: If the control of the Bernoulli-(B) process is of the form
β (n) = 1, n < L, and β (n) = 0, n≥ L. Then the loss probability for an arriving
customer of type m due to overflow is pL,m(J) = G1(L,J)/H(J).

The results are similar to computing loss probabilities at asingle station with finite
buffer, single deterministic-(1)-server, and Markovian arrivals [IT99].

Theorem 6.4.5 (Throughput of the tandem) In equilibrium the throughput of the
tandem is Th(J) = HJ(J) ·H(J)−1, the throughput of type m customers is a(m) ·
Th(J).

This result seems curious: Inspection of theH j(J) in theorem 6.4.3 leads to the
conjecture that the value of the throughput depends on the node where it is evaluated,
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because theH j(J) would appear. But it can be shown, thatH j(J) is independent of
j, [Dad01], lemma 7.2.

Example 6.4.6 (Re–entrant lines)Re–entrant lines are models for complex manu-
facturing systems with items (parts) flowing through the line which possibly request
for different kind of (repeated) service and different amount of work. For modeling
re–entrant lines via queueing networks see [Kum93], and thereferences there. If the
actions on all stages are synchronized, then the productionline is suitably modeled
by a discrete time network of queues, for more details see examples 12.1 and 12.37
of [CMP99]. A fundamental building block of re–entrant lines is the feedback queue
described in theorem 6.2.6. Building open tandems and closed cycles of such queues
with different customer types is possible with obtaining explicit product form steady
states, see section 4.4 in [Dad01].

6.4.2 Delay Times for Customers in an Open Tandem

We consider a test customer of typemarriving at time 0 at node 1 who finds the other
customers distributed according toπJ

1,m. We denote byPπJ
1,m

a probability which gov-

erns the system with this initial condition, and byEπJ
1,m

[·] expectations underPπJ
1,m

.

The following theorem states that the joint distribution ofthe successive sojourn
times of a customer in equilibrium is distributed like a mixture of multivariate dis-
tributions with independent negative binomial marginals.

Theorem 6.4.7 (Joint sojourn time distribution in a tandem) [Dad97c] Let(S1,S2, . . . ,SJ)
denote the vector of the test customer’s successive sojourntimes (= waiting time +
service time) at the nodes during her passage through the tandem. The joint distri-
bution of(S1,S2, . . . ,SJ) is given by

EπJ
1,m

[
J

∏
j=1

θ Sj
j

]
| θ j |≤ 1, j = 1,2, . . . ,J, (6.19)

= ∑
(n1,...,nJ)∈INJ

·
(

∏n1+···+nJ
h=0 b(h)

∏n1+···+nJ+1
h=0 c(h)

)(
q1

p1

)n1 J

∏
j=2

(
1
q j

)η(0,n j )
(

q j

p j

)n j

·
(

p1θ1

1−q1θ1

)n1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)n j+1( 1
θ j

)η(0,n j )
}
·H1(J)−1.

Warning: The following tempting conjecture is false
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EπJ
1,m

[
J

∏
j=1

θ Sj
j |X(0) = ((x1,m),x2, . . . ,xJ)

]

=

(
p1θ1

1−q1θ1

)n1+1 J

∏
j=2

{(
p jθ j

1−q jθ j

)n j +1( 1
θ j

)η(0,n j )
}

.

For state independent arrivals (6.19) boils down to simple expressions.

Corollary 6.4.8 (Independent sojourn times) [Dad97b] For Bernoulli arrivals with
constant rate b the generating function of(S1,S2, . . . ,SJ) is

EπJ
1,m

[
J

∏
j=1

θ Sj
j

]
=

J

∏
j=1

(
p j−b

c

)
θ j

1−
(

1− p j−b
c

)
θ j

, | θ j |≤ 1, j = 1,2, . . . ,J. (6.20)

Sojourn times are independent, geometrically distributedwith parameter
p j−b

c .

(6.20) is the analogue of Burke’s and Reich’s results on the independence of a
customer’s sojourn times in an open tandem (for a review see [BD90b]).

An adhoc approximation procedure to solve complex discretetime network prob-
lems is described by Bruneel and Kim [BK93], chapter 4.1.6: The end–to–end delay
of a cell on its transmission through an ATM network is computed byassuming that
the successive single node delays behave statistically independent. This results in
convolution formulas for the end–to–end delay distribution approximation. The re-
sult on the end–to–end delay in corollary 6.4.8 is therefore: In case of linear series
of state independent Bernoulli serversthe assumption holdsand the convolution for-
mula isexact. Clearly, compared with the decomposition approximation of Bruneel
and Kim, formula (6.20) suffers from the fact that the class of networks dealt with
is much more narrow.
The approach of Bruneel and Kim can be viewed as typical for dealing with more
general cases. Corollary 6.4.8 contributes to the discussion in that we have identified
some fundamental networks where their approximation is exact.

6.4.3 Open Tandems of Unreliable Bernoulli Servers

Consider the open tandem from section 6.4.1 and assume for simplicity that cus-
tomers are indistinguishable. Then the joint queue length processX = (X(t) : t ∈ IN)
is Markov with state spaceINJ.

The servers are assumed to be unreliable in the following sense: if at timet node
j is in up status= 0 thenα j(0,1) is the probability that in the present time slot the
node fails, i.e., turns intodown status= 1 at timet +1. The node undergoes repair
and if at timet node j is in down status= 1 thenα j(1,0) is the probability that in
the present time slot the node will be repaired, i.e., turns into up status= 0 at time
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t +1. Break down and repair events are independent over the nodes and depend on
the local state of the respective node only. Customers at nodes in down status stay
on there waiting for the repair of the server, customers arriving at such nodes are
not allowed to enter but skip over failed servers to the next working node, possibly
leaving the network, if no node in up status is in front of them. For a Markovian
description of the system we supplementX and the states inNJ by a local sup-
plementary variabley j ∈ {0,1} which indicates theavailability statusof the node
j = 1, . . . ,J. We denote the supplemented Markov chain by(X,Y) with state space
E = (N×{0,1})J. (X(t),Y(t)) = (X1(t),Y1(t), . . . ,XJ(t),YJ(t)) = (n1,y1, . . . ,nJ,yJ)
indicates that at timet there aren j customers present at nodej and that the avail-
ability status of that node isy j .
Denote by⊕ coordinatewise addition modulo 1 in{0,1}.

Theorem 6.4.9 [MD06b] If (X,Y) is ergodic, then with norming constant K< ∞
its unique steady state distribution is

π((n1,y1, . . . ,nJ,yJ)) (n1,y1, . . . ,nJ,yJ) ∈ E,

=
1
K

(
n1+···+nJ

∏
k=1

b(k−1)

c(k)

)(
J

∏
j=1

n j

∏
k=1

q j(k−1)

p j(k)

)(
J

∏
j=1

α j (y j ⊕1,y j)

)
.

6.5 Networks with Doubly Stochastic and Geometrical Servers

The doubly stochastic server (section 6.5.2) was introduced by Schassberger [Sch81]
as a discrete time analogue of Kelly’ssymmetric server[Kel79], which is a general-
ization of the nodes in the BCMP networks in continuous time [BCMP75]: Nodes
with processor sharing or Last–Come–First–Served–preemptive resume discipline
or infinite servers. Exponential servers under FCFS are further building blocks of
BCMP networks, generalized by Kelly togeneral exponential nodes. The discrete
time analogue of these nodes are geometrical nodes (section6.5.3).

For Kelly’s networks ofgeneral exponentialandsymmetric serverssteady state
probabilities can be explicitly given in simple terms as in the BCMP case and main
performance quantities can be computed. An appealing property is that first order
mean values of relevant performance measures are insensitive: They remain invari-
ant under variation of the service time distribution at symmetric servers as long as
the mean service time remains invariant. Similar properties will be proved for the
discrete time counterparts, see section 6.5.4.
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6.5.1 Common Properties of Doubly Stochastic and Geometrical
Server

Prerequisits for construction of doubly stochastic and geometrical servers are as
follows: The server (node) consists of an unlimited sequence of service and waiting
positions 1,2,3,. . . , which is controlled according to theshift–protocol. Whenever
there aren customers present,n≥ 1, they occupy positions 1, . . . ,n. If the customer
in position i ∈ {1, . . . ,n} departs then the gap is closed by shifting the customers
from positionsi + 1, . . . ,n one step down into positionsi, . . . ,n− 1, leaving their
order invariant. If an additional customer is inserted intoposition i ∈ {1, . . . ,n},
the customers previously on positionsi, . . . ,n are shifted one step up into positions
i +1, . . . ,n+1, leaving their order invariant.

If n> 0 customers are present at the node service is provided to customers staying
on positions 1, . . . ,C(n), whereC(n) > 0 is a node specific service parameter. We
call positions 1, . . . ,C(n) busy, while positionsC(n)+ 1, . . . ,n are said to beidle.
We setC(0) := 0.

If at time t ∈ IN there aren customers present then there will be no arrival with
probability c(n) = (1− b(n)) – or there is exactly one arrival which is of typem
with probabilityb(n) ·a(m) > 0, m∈M, such that∑m∈M a(m) = 1 holds,M being a
countable set of types.

Occurrence of arrivals depends on the history of the system only through the ac-
tual total population size in system, type selections are independent of the system’s
history. We assume late arrivals and for multiple events we assume the D/A rule in
force (departure before arrival), see Figure 6.1. The stateof the system is recorded
at timest ∈ IN, just after possible departures and arrivals have happened.

6.5.2 The Doubly Stochastic Server

The amount of service a customer requests for depends deterministically on the
customer’s type. A customer of typem∈ M will request for an amount ofK(m)
time units of service time,K(m) ∈ IN+. For a discussion of this assumption and the
modeling principles behind, see section 6.5.4, page 297. Toexclude trivialities we
assume that there exists at least one customer type who requests for more than one
time unit of service time.

The state spaceSof the doubly stochastic server contains statesx as follows:
x := e for the empty node, and sequences
x := [m(n),k(n); . . . ;m(1),k(1)], n≥ 1

wheren is the number of customers present at the node (queue length), m(i) is the
type of the customer on positioni, andk(i) his residual request for service time
(residual work).

The service discipline is now described in a three-step procedure, where through-
out x := [m(n),k(n); . . . ;m(1),k(1)] or x = e is a generic state. In(I) we describe
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arrivals and service mechanisms and handling of multiple events in general. In(II)
we add the feature of rearranging customers in the course of aone-step transition
of the network, and in(III) we put some constraints on the rearrangements and de-
scribe how these rearrangements constraints resemble properties of doubly stochas-
tic Markov transition matrices.

Definition 6.5.1 (Doubly stochastic discipline)
(I) General rules:

(1) A customer present at time t in a busy position i∈ {1, . . . ,C(n)} obtains
exactly one unit of service time until time t+1.
If k(i) > 1 then at time(t +1)− this residual workload is diminished to k(i)−1.
If k(i) = 1 then this customer departs from the node at time(t + 1)−. (Unless the
restriction on the departure rules below in(3) are in force.)

(2) Assume a customer of type m observes just before his entrance(which will
happen between t− and t) the node in state x.
If x = e, then the state changes to[m,K(m)];
else if x:= [m(n),k(n); . . . ;m(1),k(1)] is the state of the system after at time t− all
residual service times of customers on busy positions are decreased, then with prob-
ability 1/C(n+1) the state changes to
x := [m(n),k(n); . . . ;m(i +1),k(i +1);m,K(m);m(i−1),k(i−1); . . .;m(1),k(1)],
for some i∈ {1, . . . ,C(n+1)}. A new arrival is inserted randomly into a busy posi-
tion and hasimmediate accessto service.

(3) The rule to handle these multiple events composed of arrivals and/or sev-
eral departures resemblesrejection blockingor repetitive servicein multiple access
transmission systems with limited buffer capacity [Per90], p. 455, i.e., not all of the
requested transitions are allowed:

Customers wishing jointly to depart due to their service completions have to stay
at their present position for obtaining another service (retrial of transmission). This
request for service time is identical to the previous service there. The only exception
is:

If (several) services expire jointly and at the same time instant an arrival occurs
then from the departure candidates we select randomly one who departs and is
substituted at his position by the new arrival.

Therefore one single external arrival and at most one departure from the node
can be observed. Especially no access conflicts can happen.

(4) Assume that according to(1) or (2) one arrival or service completion or ac-
cording to(3) a multiple event appeared and is handled. Then all the stay–on cus-
tomers, i.e., those customers staying before on idle positions and customers on busy
positions whose service did not expire, are permuted on their positions according to
some probability law. This law may depend on what has happened in (1),(2),(3)and
on the state of the node, in a way to be described now in detail.

(II) Detailed rules:
In the following for state x∈ S we shall call customers to bestay–on customersif

they either occupy an idle position or if they are on a busy position i ≤C(n) showing
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a residual work of k(i) > 1. A customer is adeparture candidateif she is in a busy
position i with residual work k(i) = 1. A customer on position i is called afresh
customerif she shows her total service request k(i) = K(m(i)) as residual work.
Recall: n is the queue length.

(A) If the state at time t is x6= e, and if there is no departure candidate and no
arrival occurs at time t+1−, then the set A(x) of possible successor states at time
t +1 of x is obtained as follows:

Decrease the residual work of customers in busy positions byone and then per-
mute the positions of the customers according to any permutation resulting in state
y∈ A(x). This happens with probability

c(n)d(x,y)≥ 0, ∑
y∈A(x)

d(x,y) = 1.

(B) If the state at time t is x, and there is no departure candidate, and an arrival
of type m∈M occurs at time t+1−, then the set Am,i(x) of possible successor states
of x with the new arrival inserted in position i, i∈ 1, . . . ,C(n+ 1), at time t+ 1 is
obtained as follows:

Decrease the residual work of customers in busy positions byone, insert the new
arrival in position i and then permute the stay–on customerson positions1, . . . , i−
1, i + 1, . . . ,n+ 1 according to any permutation resulting in state y∈ Am,i(x). This
happens with probability

b(n)a(m)C(n+1)−1d+(x,y)≥ 0, ∑
y∈Am,i(x)

d+(x,y) = 1.

(C) If the state at time t is x6= e, and if there is exactly one departure candidate
and no arrival occurs at time t+1−, then the set A(x) of possible successor states
at time t+1 of x is obtained as follows:

Decrease the residual work of customers in busy positions byone, delete the de-
parture candidate and then permute on positions1, . . . ,n−1 the stay–on customers
according to any permutation resulting in state y∈ A(x). This happens with proba-
bility

c(n)d−(x,y)≥ 0, ∑
y∈A(x)

d−(x,y) = 1.

(D) If the state at time t is x6= e, and if there are k≥ 1 departure candidates on
positions i1, . . . , ik, and an arrival of type m∈M occurs at time t+1−, then the set
Am,i(x) of possible successor states of x at time t+1 with the new arrival staying in
i, i ∈ 1, . . . ,C(n)+1, is obtained as follows:

Decrease the residual work of customers in busy positions byone, select at ran-
dom one of the departure candidates who is allowed to depart and the new arrival
is inserted in his previous position i. All other departure candidates stay on their
positions and become fresh jobs again requesting for a further service of K(m(i l ))
time units, l∈ {1, . . . ,k}−{i}. Then permute the stay–on customers on positions
{1, . . . ,n}−{i1, . . . , ik} according to any permutation resulting in state y∈ Am,i(x).
This happens with probability
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b(n)a(m)k−1d+(x,y)≥ 0, ∑
y∈Am,i(x)

d+(x,y) = 1.

(E) If the state at time t is x6= e, and if there are k≥ 2 departure candidates
occupying positions i1, . . . , ik, and no arrival occurs at time t+ 1−, then the set
A(x) of possible successor states at time t+1 of x is obtained as follows:

Decrease the residual work of stay–on customers in busy positions by one, con-
vert the departure candidates into fresh jobs staying on their previous positions and
requesting for a further service of K(m(i l )) time units, l= 1, . . . ,k. Then permute
the stay–on customers on positions{1, . . . , . . . ,n}− {i1, . . . , ik} according to any
permutation resulting in state y∈ A(x). This happens with probability

c(n)d(x,y)≥ 0, ∑
y∈A(x)

d(x,y) = 1 .

(III) The doubly stochastic property
Thedoubly stochasticproperty refers to the transition density matrices d,d+,d−

introduced in(II) as we shall roughly explain the principle in case of d. In the sit-
uation described in(A) d can be considered as a transition matrix from the set of
all states x other than e which do not show a departure candidate, into the union of
all set of successor states A(x). This matrix, described in(A) is row-stochastic. In
general it is not a square matrix.
In (i) below we require that this matrix is column-stochastic as well.
In a similar way the other cases can be interpreted.

Assume that statex shows no fresh jobs, i.e., k(i) < K(m(i)) for all i.
(i) One type of predecessor states y∈A0(x) are those states which are obtained from
x by rearranging the customers on positions1, . . . ,n and increasing the residual
work by one for those customers staying now on the busy positions.
For d(y,x) from (A) must hold∑y∈A0(x) d(y,x) = 1.

(ii) The second type of predecessor states y∈ A0
ri (x) of x are those states which

are obtained from x by inserting a fresh customer of type r∈ M in position i, i ∈
{1, . . . ,C(n+ 1)}, according to the shift protocol and then arbitrarily rearranging
the customers on positions1, . . . , i−1, i +1, . . . ,n and increasing the residual work
by one for those customers staying now on the busy positions.
For d−(y,x) from (C) must hold∑y∈A0

ri (x)
d−(y,x) = 1.

Next consider a statex = [m(n),k(n); . . . ;m(1),k(1)] with exactly one fresh
job which is of type r in position i, i.e., m(i) = r and k(i) = K(r), and for all other
positions j6= i we have k( j) < K(m( j)).
(iii) One type of predecessor states y∈ A0(x) are those states which are obtained
from x by deleting the fresh customer and rearranging the other customers on po-
sitions 1, . . . ,n− 1 and increasing the residual work by one for those customers
staying now on the busy positions.
For d+(y,x) from (B) must hold∑y∈A0(x) d+(y,x) = 1.

(iv) The second type of predecessor states y∈ A0
r ′ i(x) of x are those states which are
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obtained from x by deleting the fresh customer of type r on position i and substi-
tuting him by a departure candidate of type r′ ∈M and then rearranging the other
customers on positions1, . . . , i−1, i +1, . . . ,n, increasing the residual work by one
for those customers staying now on the busy positions.
For d+(y,x) from (D) must hold∑y∈A0

r′ i(x)
d+(y,x) = 1.

The remaining states are of the formx = [m(n),k(n); . . . ;m(1),k(1)] with
exactly k ≥ 2 fresh customersin positions i1, . . . , ik, being of type m(i l ) in po-
sition il with k(i l ) = K(m(i l )), and for all other positions j6= i1, . . . , ik we have
k( j) < K(m( j)).
(v) One type of predecessor states y∈ A0(x) are those states which are obtained
from x by fixing the fresh customers on their positions with maximum residual work
and rearranging the other customers on positions{1, . . . ,n}−{i1, . . . , ik}, increas-
ing the residual work by one for those customers staying now on the busy positions.
For d(y,x) from (E) must hold∑y∈A0(x) d(y,x) = 1.

(vi) The second type of predecessor states y∈ A0
r ′ i l

(x) of x are those states which
are obtained from x by deleting the fresh customer of type m(i l ) on position il and
substituting him by a departure candidate of type r′ ∈M, fixing the residual fresh
customers on their positions with maximal residual work andthen rearranging the
other customers on positions{1, . . . ,n}−{i1, . . . , ik}, increasing the residual work
by one for customers staying now on the busy positions.
For d+(y,x) from (D) must hold∑y∈A0

r′ il
(x) d+(y,x) = 1.

Example 6.5.2 (Doubly stochastic disciplines)The class ofdoubly stochastic
nodescomprises especially nodes with the following queueing disciplines: Last–
Come–First–Served (preemptive resume), infinite server, random service allocation,
round–robin with a preemptive modification for new arrivals[DS81]. These disci-
plines are prototypes for so calledpermutation queues, where service is provided
on a time shared basis, for a more in depth description see [Yat94] and [Yat90].
Permutations are special cases of the doubly stochastic reorganization rules.

First–Come–First–Servedis not included because immediate service must be
guaranteed for adoubly stochasticnode [Sch81].

The permutations in the doubly stochastic disciplines are in general not considered
as a rule for physically moving stay–on customers. The interpretation is that service
capacity of the node is redistributed to the customers. E.g., applying a suitable per-
mutation rule would guarantee fairness of service. This wasdiscussed for the case
of processor sharingby Kleinrock [Kle76], pp. 166–172. Processor sharing is fair
without applying a permutation rule.

Permutation rules for general symmetric servers were introduced by Yashkov
[Yas80] and open the possibility to control the service nearly continuously.

The queueing discipline and the stochastic assumptions puton the systems ensure
that the system can be described by a Markov chainX = (X(t) : t ∈ IN) with state
spaceS. Its steady state is of product form.
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Theorem 6.5.3 (Steady state)A steady stateπ of X exists if and only if A=
∑∞

n=0 π̂(n) < ∞ holds, wherêπ(0) = c(0)−1 and for n> 0

π̂(n) =

(
∏n−1

h=0b(h)

∏n
h=0c(h)

)
· (µ−1)n−C(n) ·µC(n) ·

n

∏
i=1

C(i)−1.

µ = ∑m∈M a(m)K(m) is the mean service request of an average (typical) customer.
If A < ∞ then the steady state of the doubly stochastic node is

π([m(n),k(n); . . . ;m(1),k(1)]) =
∏n−1

h=0b(h)

∏n
h=0c(h)

n

∏
h=1

a(m(h))

C(h)
A−1, (6.21)

[m(n),k(n); . . . ;m(1),k(1)] ∈ S.

The equilibrium queue length distribution isπ(n) = π̂(n) ·A−1 on IN and is insen-
sitive under perturbations of the service time distributions as long as their mean is
fixed.

6.5.3 The Geometrical Server

The amount of service a customer requests for is geometrically distributed with pa-
rameterp∈ (0,1) for all customers. Service times are independent and independent
from the arrival process.

The state spaceS for the geometric node consists of elementsx as follows:
x := e for the empty node, and sequences
x := [m(n); . . . ;m(1)], n≥ 1

wheren is the number of customers present at the node (queue length of the node),
m(i) is the type of the customer on positioni.

Definition 6.5.4 (Geometrical discipline) (1)A customer present at time t in a
busy position i∈ {1, . . . ,C(n)} obtains exactly one unit of service time until time
t + 1. With probability p her service ends at the end of[t,t + 1), and she departs
from the node. (Unless the restrictions on departure rules in (3) and(4) are in force.)
With probability q= 1− p she requests for at least one more service quantum.

(2) An arriving customer observing n other customers present enters position
n+1,n≥ 0. (Unless the restrictions on departure rules in(3) and(4) are in force.)
Applying the shift–protocol after the departure from a busyposition then leads to a
FCFS–based service.

(3) If more than one customer complete their service at the same time instant
they are not allowed to depart jointly. They have to stay at their present position for
obtaining just another service (retrial of transmission).

(4) If an arrival occurs and at one or more services expire jointly at the same time
instant then the departure candidates stay for another service on their positions and
the arrival candidate is rejected and lost.
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Therefore either one single external arrival or at most one service completion with
a subsequent departure from the node can be observed. The time evolution of the
system is described by a Markov chainX = (X(t) : t ∈ IN) with state spaceS. Its
steady stateπ is of product form.

Theorem 6.5.5 (Steady state)A steady stateπ of X exists if and only if A=
∑∞

n=0 π̂(n) < ∞ holds, wherêπ j(0) = c(0)−1 and for n> 0

π̂(n) =

(
∏n−1

h=0b(h)

∏n
h=0c(h)

)n
n

∏
i=1

C(i)−1
(

q
p

)n(1
q

)C(n)

.

If A < ∞ holds then the steady state of X is

π([m(n); . . . ;m(1)]) =
∏n−1

h=0b(h)

∏n
h=0c(h)

n

∏
h=1

a(m(h))

C(h)

(
q
p

)n(1
q

)C(n)

A−1

[m(n); . . . ;m(1)] ∈ S. (6.22)

The equilibrium queue length distribution isπ(n) = π̂(n) ·A−1, n∈ IN.

Remark 6.8 (Slotted Aloha–type protocol).The rules to regulate simultaneous events
in geometrical nodes occurred first in models of transmission stations in a slotted
Aloha–type communication system, [Kle76], section 5.11, [Woo94], section 6.2. If
there areC(n) active sources of traffic (stations), and if the end of a service in posi-
tion i ∈ {1, . . . ,C(n)} indicates that a message has to be transmitted over the shared
medium, then this is possible if and only if exactly one service ends. If more than
one service ends, and more than one message is tried to be sendat the same time
instant, all those transmission trials are not successful and have to be repeated. A
common regime to resolve the conflicts is that the sources retry at random to repeat
sending. This is just what is going on in a geometrical serveraccording to(3) in
definition 6.5.4.
Due to the memoryless property of the geometrical service time distribution the
blocking mechanism according to repititive service is equivalent to what is known
as communication blocking, [Per90], p.455.

6.5.4 Networks of Doubly Stochastic and Geometrical Nodes

The networks in this section are constructed along the linesof the BCMP networks
[BCMP75] and Kelly’s networks [Kel79]. These networks are now widely accepted
as a versatile class of queueing networks, which simulate the behaviour of many
complex systems. We substitute the symmetric and exponential servers of Kelly’s
networks by doubly stochastic and geometrical servers. We concentrate on open
networks.
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The network consists ofJ nodes and is fed by a Bernoulli arrival stream of cus-
tomers which are of different typesm∈M, M a countable set.

At any timet ∈ IN there is either no arrival, with probabilityc= 1−b, or there is
exactly one arrival, being of typem with probabilityb ·a(m) > 0, m∈M, such that
∑m∈M a(m) = 1 holds. The successive arrival and type decisions are an independent
sequence, independent of the previous history.

The typem of an arriving customers specifies the route of this customerthrough
the network:W(m) = (W(m,1),W(m,2), . . . ,W(m,S(m))), where nodeW(m, i) is
the ith stage ofm on her itinerary, and 1≤ S(m) < ∞ is the length of his route. We
assume for simplicity of presentation thatW(m, i) 6=W(m, i +1),1≤ i < S(m). (For
how to remove this restriction see [DS83].)

Nodes 1, . . . ,J′,0 ≤ J′ ≤ J, are doubly stochastic(section 6.5.2). NodesJ′ +
1, . . . ,J are geometrical nodes (section 6.5.3).

If n j > 0 customers are present at nodej service is provided to those customers
staying on positions 1, . . . ,C( j,n j), whereC( j,n j) > 0 is a node specific service
parameter. We call positions 1, . . . ,C( j,n j ) busy, while positionsC( j,n j)+1, . . . ,n
are said to beidle. (C( j,0) := 0,1≤ j ≤ J.)

The amount of service time a customer requests for at a geometrical node j is
geometrically distributed onIN+ = {1,2, . . .}. A customer requests with probability
p j(1− p j)

k−1, p j ∈ (0,1], for exactlyk time units of service at nodej, k ∈ IN+.
These geometrical service times are drawn independently and independent of any-
thing else in the history of the network.

If a customer of typem∈M, enters stages, 1≤ s≤ S(m), of her route, which
is a doubly stochastic nodeW(m,s) ∈ {1, . . . ,J}, she will request for an amount
of K(m,s) units of service time,K(m,s) ∈ IN+. We assume that for every doubly
stochastic node there exists at least one customer type who requests at this node for
more than one unit of service time.

The requirement of having deterministic service times at doubly stochastic nodes
is not a restriction but widens considerably the possibility of modeling the proba-
bilistic behaviour of customers on their itinerary at doubly stochastic nodes. The key
is the introduction of different customer types and of the type and stage dependent
behaviour: The random decision for the amount of the successive service requests
at doubly stochastic nodes on a customer’s route is done by selecting the customer’s
type when entering the network.

To be more specific: Let us assume that we have a set of customers with dif-
ferent (physical) customer types requesting for service according to general (type–
and stage–dependent) distributions at the doubly stochastic nodes of their route. We
can discriminate between different sampled sequences of requests for a specific cus-
tomer type by introducing ficticious customer types. Each ficticious customer type
carries information about the physical type of that customer, her routing, and her ex-
act successive amounts of requested service at her successive stages on her itinerary.
This concept even allows for using stochastically dependent service requests at the
successive doubly stochastic nodes.

The local state spaceSj for a doubly stochastic nodej, j ∈ {1, . . . ,J′} consists of
elementsx j as follows:
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x j := ej for the empty node, and sequences
x j := [m( j,n j),s( j,n j ),k( j,n j ); . . . ;m( j,1),s( j,1),k( j,1)], n j ≥ 1

wheren j is the number of customers present at nodej (queue length at node j),
m( j, i) is the type of the customer on positioni, s( j, i) is the stage number of this
customer on his actual route, andk( j, i) is his residual request for service time (his
residual work), 1≤ i ≤ n j .

The local state spaceSj for a geometrical nodej, j ∈ {J′+ 1, . . . ,J} consists of
elementsx j as follows:

x j := ej for the empty node, and sequences
x j := [m( j,n j),s( j,n j ); . . . ;m( j,1),s( j,1), ], n j ≥ 1

wheren j is the number of customers present at nodej (queue length at node j),
m( j, i) is the type of the customer on positioni, ands( j, i) is the stage number of
this customer on his actual route, 1≤ i ≤ n j .

Global states of the network are composed of these local states. The state space
of the network isS:= S1×S2×·· ·×SJ or a subset thereof.

In case of a network with general topology we have to impose some further rules
which regulate the network’s behaviour at instances of simultaneous events.

Definition 6.5.6 (Queueing disciplines in the network)The customers’ behaviour
in the network is governed by a two-step regime. First: the arrival decision is made
and at any node the customers are served individually. Second: multiple events
are regulated according to the Aloha-type protocol (Remark6.8, repetitive ser-
vice/rejection blocking) in multiple access transmission systems, none of the re-
quested multiple transitions is allowed:

Customers on arrival from the outside source are lost; customers wishing to de-
part from the network due to a service completion at node W(·,S(·)), or wishing
to enter the next stage of their route due to service completion on the present stage
have to stay at their present node on their present position for obtaining just another
service (retrial of transmission) .

This request for retrial service time is distributed according to the node specific
geometrical distribution, if the node is geometrical. Otherwise, if the node is doubly
stochastic, then the additional service request is deterministically selected and iden-
tical to the previous service there. (The additional service at the node is therefore
not counted as an additional stage for the customer’s passage.)

The restriction for either a single arrival or a single departure from exactly one node
according to the blocking protocol (repetitive service/rejection blocking) resembles
the departure protocol applied in [Miy96] for batch servicedisciplines in discrete
time networks. At every time epoch at most one node is selected to release a batch
of customers being served to be distributed over the networkor partially to leave
the network. As Miyazawa puts it, this model is motivated notonly by the fact that
it is important for discrete time queueing networks, but also by its tractability for
analysis.

The network’s state processX = (Xt : t ∈ IN) is a Markov chain on state space
S= S1× ·· · ×SJ. S is not minimal, e.g., a customer of typem∈ M at a doubly
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stochastic nodeW(m,s) ≤ J′, can show a residual work ofK(m,s) time units if
and only if she is on a busy position ofW(m,s). We assume henceforth thatS and
Sj ,1≤ j ≤ J are restricted to states with feasible workloads for the customers. A
detailed description of the transition laws is given in [DS83].

We define local measureŝπ j = (π̂ j(x j) : x j ∈ Sj) for the nodes as follows:
π̂ j(ej) = 1, and if j is doubly stochastic then

π̂ j([m( j,n j ),s( j,n j ),k( j,n j ); . . . ;m( j,1),s( j,1),k( j,1)]) =

(
b
c

)n j n j

∏
i=1

a(m( j, i))
C( j, i)

and if j is a geometric then

π̂ j([m( j,n j ),s( j,n j ); . . . ;m( j,1),s( j,1)]) =

(
bqj

cpj

)n j
(

1
q j

)C( j ,n j ) n j

∏
i=1

a(m( j, i))
C( j, i)

Letb j = ∑(m,s):W(m,s)= j b·a(m), 1≤ j ≤ J, denote the total arrival rate at nodej, and
µ j the mean service request of a typical customer at nodej: For a geometrical nodej
µ j = p−1

j and for a doubly stochastic nodej µ j = ∑(m,s):W(m,s)= j ba(m)b−1
j K(m,s).

Theorem 6.5.7 (Steady state)The Markov chain X= (Xt : t ∈ IN) describing the
network’s evolution has a steady state if and only if Aj := ∑∞

n=0 π̂ j(n) < ∞ holds for
all j, whereπ̂ j(0) = 1 and for n> 0

π̂ j(n) =

(
b j(µ j −1)

c

)n

·
(

µ j

µ j −1

)C( j ,n)

·
n

∏
i=1

C( j, i)−1 .

The steady state distribution is

π(x) =
J

∏
j=1

π̂ j(x j) ·A−1
j , i f x = (x1, . . . ,xJ) ∈ S. (6.23)

A proof can be found in [DS83] as well as computation of performance indices.

Remark 6.9 (Related models and parallel developments).
1. Closed networksThe theory for closed networks of doubly stochastic and geo-
metrical servers is developed by Krüger [Krü83], for a summarizing description see
[Dad01][section 5.6].
2. Open tandemsThe case of open tandems of doubly stochastic and geometrical
servers allows a more detailed analysis without the restriction put on the multiple
events handling, see [Sch81] or [Dad01][section 5.7]. The idea behind is a discrete
time analogue of Burke’s theorem [Bur56], [HB76].
3. Networks of unreliable geometrical nodesA network of geometrical nodes with
a state dependent arrival stream, where the arrival probabilities depend on the total
population size of the network and the arriving customer’s type similar to section
6.4.1, page 285, is investigated in [MD06a]. It turns out that the steady state distri-
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bution of theorem 6.5.7 is changed similarly to the expression for the arrival term in
(6.17) of theorem 6.4.1.

The model is further refined in that the nodes can break down and undergo suc-
cessive repair similar to the mechanisms described in Section 6.4.3. The steady state
is then supplemented with a term similar to the factor concerning the breakdown and
repair probabilities in theorem 6.4.9.

6.6 Batch Service and Movements Networks

Over around thirty years a set of different network models has been developed as
generalization of (continuous time) product form networkswith the additional fea-
tures that customers are served in batches and proceed partly in different batches
to other nodes or leave the network. The aim was to define the arrival, service, and
routing mechanism in a way that functional descriptions of these data lead to explicit
functional expressions for the steady state distributions. This was often connected
with partial balance structures inside the describing Markov process and some sort
of insensitivity theory. We describe in this section some prototypes of classical re-
sults to let the reader get an impression of the ideas underlying these models and
some recent progress in extending the area of such models.

6.6.1 The General Network Model

The description of a rather general network model with batchservices and batch
movements follows Henderson and Taylor [HT90], [HT91], Miyazawa [Miy94],
[Miy95], and Osawa [Osa94]. More detailed structural properties of these models
can be found in [CHPT97]. (This paper contains references for further applications
of the models, e.g., to Petri nets.) Parallel results are presented by Boucherie and
van Dijk [BD91], [Bou92], with additional features, e.g., state dependent routing.

Consider an open network of queues with nodes numbered 1,2, . . . ,J. Customers
enter the system from the outside (which is termed node 0), procede according to
some routing regime through the network and eventually leave the system. The cus-
tomers may be of different types which they may randomly change when entering a
new node. The setM of customer types is finite.

The system evolves in discrete timeIN according to a Markovian transition law,
the state process is denoted byX = (Xt : t ∈ IN), with state spaceSwhich is(IN|M|)J

or a subset thereof.X carries the following information:
X = (Xt : t ∈ IN) = ((Xt( j,m) : j = 1, . . . ,J,m∈ M) : t ∈ IN), whereXt( j,m) =

n( j,m) indicates that at timet there aren( j,m) customers of typem at nodej. X is
governed by sequences ofrelease vectors D= (Dt : t ∈ IN) andtransformed vectors
A = (At : t ∈ IN), where fort ∈ IN we have
• release vectorDt = (Dt(0),Dt( j,m),1≤ j ≤ J,m∈M), and
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• transformed vectorAt = (At(0),At( j,m),1≤ j ≤ J,m∈M).
The construction of the network process is as follows:

Assume at timet the network is in stateXt = n. Then at time(t + 1)− from the
source (node 0)Dt(0) = a(0) customers are released for being transformed into the
network. From nodej there areDt( j,m) = a( j,m) customers of typem released
to be transformed to other nodes or to the sink (node 0). Immediately thereafter
(between time(t + 1)− and time t+ 1) the released customers are transformed –
possibly changing their types – to their destination nodes:At(0) = a′(0) customers
depart from the network,At( j,m) = a′( j,m) customers of typem enter nodej, 1≤
j ≤ J,m∈ M. Updating the state of the network according to this movements and
changes we obtainXt+1. Formally: For

a = (a(0),a( j,m),1≤ j ≤ J,m∈M) let a+ = (a( j,m),1≤ j ≤ J,m∈M),

and similarly letA+
t andD+

t be obtained fromAt andDt by deleting theexternal
componentsAt(0) andDt(0). Then

Xt+1 = Xt −D+
t +A+

t , t ∈ IN, (6.24)

and Xt ≥ D+
t , Xt+1 ≥ A+

t , (6.25)

where the inequalities are to be read coordinatewise. Having now

Xt+1 = n′,Xt = n,Dt = a,At = a′ then n′ = n−a+ +a′+.

Because new customers arrive only from the outside and vanishing customers must
depart to the sink (node 0) we have the balance equation

Dt(0)+
J

∑
j=1

∑
m∈M

Dt( j,m) = At(0)+
J

∑
j=1

∑
m∈M

At( j,m). (6.26)

The sequencesA andD therefore take values from a commom state space denoted
by A⊆ IN× INJ·|M|. But the images ofA andD need not be identical.

The following probabilistic assumption onA andD imply that X as given by
(6.24) is a Markov chain with stationary transition probabilities:

Dt depends on the history of the system up to timet only throughXt and

P(Dt = a|Xt = n,Xs = ns,Ds = as,As = a′s,0≤ s< t) (6.27)

= P(Dt = a|Xt = n) = q(n,a), n∈ S,a∈A, with (6.25),

At depends on the history of the system up to(t +1)− only throughDt and

P(At = a′|Dt = aXs = ns,Ds = as,As = a′s,0≤ s< t) (6.28)

= P(At = a′|Dt = a) = r(a,a′), a,a′ ∈A, with (6.26).

The sequence of transformations of released vectors into transformed vectors gov-
erned by (6.28) are calledrouting process. Transition probabilities ofX are
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P(Xt+1 = n′|Xt = n) = ∑
a,a′∈A

n−a++a′+=n′

q(n,a)r(a,a′), n,n′ ∈ S.

From (6.26) it follows that a Markov chain onA determined by the routing matrix
R= (r(a,a′) : a,a′ ∈A) is not irreducible. Vectorsa anda′ connected by (6.26) are
assumed to be reachable vice versa viaR. We assume

Assumption 6.6.1 For transition matrix R= (r(a,a′) : a,a′ ∈ A) on A denote by
Ak⊆A the set of states inA which contain exactly k customers, k∈ IN. The setsAk

are finite and weassumethat R restricted to eachAk is irreducible.

Essential for successful analysis are the following assumptions. These or similar
ones can be found in almost all papers on the subject.

Assumption 6.6.2 There exist functionsΦ : S−→ (0,∞), Θ : A −→ [0,∞), and
Ψ : S×A−→ [0,∞), such that for all n∈ S,k∈ IN the partial functions

Ψ(n, ·) : Ak −→ [0,∞), a→Ψ(n,a)

are constants, and

q(n,a) =
Ψ (n−a+,a) ·Θ(a)

Φ(n)
, n∈ S, a∈A. (6.29)

Assumption 6.6.3 There exist functions f: A−→ (0,∞),g : S−→ (0,∞), such that
f solves the followingtraffic equationsfor batch movement systems

Θ(a) f (a) = ∑
a′∈A

Θ(a′) f (a′)r(a′,a), a∈A, (6.30)

and there is a representation

g(n)

g(n−a+ +a′+)
=

f (a)

f (a′)
∀n∈ S,a,a′ ∈A with q(n,a)r(a,a′) > 0. (6.31)

Theorem 6.6.4 (Steady state)Suppose that assumptions 6.6.1, 6.6.2, 6.6.3 hold.
Then the state process X of the network has invariant measure

π̂(n) = Φ(n)g(n), n∈ S. (6.32)

If C = ∑n∈SΦ(n)g(n) < ∞ thenπ̂ can be normalized to an invariant probability

π(n) = C−1Φ(n)g(n), n∈ S. (6.33)

The proof is via time reversion, see [HT90], [Miy95].
To evaluateπ in (6.33) we need an explicit expression forg(n),n∈ S, which is

easier accessible than therepresentation(6.31).
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For the case that in staten∈ Sa transition ton′ = n−a+ +a′+ is possible such
thata+−a′+ > 0 holds, (6.31) suggests a recursion step of the form

g(n) = g(n−a+ +a′+) · f (a)

f (a′)
, (6.34)

and provided this iteration can be continued we may hope to end eventually by
g(ñ), for some base state ˜n, which in open networks usually can be chosen ˜n = 0,
the empty network. Provided further, that this iteration for all states can be done in
a well definedway, we would be able to compute the network’s equilibrium.Well
definedmeans that the result obtained by the iterative procedure (6.34) does not
depend on the path from the base state ˜n to other statesn.

As Miyazawa [Miy94] noticed, almost all examples of open batch movement
networks in the literature, where a product form equilibrium is known, show the
following structure: The base state is the empty state, ˜n = 0. Let e0 ∈ A denote
the unit vector having 1 in the 0th coordinate and other coordinates 0, andei,m ∈
A the unit vector having 1 in the(i,m)th coordinate and other coordinates 0. If
q(n,e0)r(e0,ei,m) > 0 then (6.31) and (6.34) imply

g(n+e+
i,m) = g(n) · f (ei,m)

f (e0)
.

Denoting
f (ei,m)

f (e0)
=: αi,m, i = 1, . . . ,J,m∈M,

we obtain

g(n) = g(0)
J

∏
j=1

∏
m∈M

αn( j ,m)
j ,m , n∈ S, f (a) = f (e0)

J

∏
j=1

∏
m∈M

αa( j ,m)
j ,m , a∈A.

For properties of functions obeying such a representation see [Ser93], p.149, 155.

Remark 6.10.In [HT90] and [Miy94] and the references there, a stronger condition
than assumption 6.6.2 is required:Ψ : S×A −→ [0,∞), is a function ofS only,
independent of the second coordinateA. In [Miy95] it was remarked that (6.6.2)
suffices to prove the theorem. The interpretation is:

Fora,b∈A we writea ⇋ b if and only if a,b are members of the same commu-
nicating class with respect to transition matrixRof the routing process. ThenΨ(·, ·)
depends in its second coordinate only through equivalence classes of⇋. SoΨ can
be written as(n,a)−→Ψ (n,a) := Ψ̃(n,a/ ⇋), where

Ψ̃ : S× (A/ ⇋)−→ [0,∞)

is a function defined in its second coordinate on the equivalence classes ofA/ ⇋.
The introduction of the additional dependency ofΨ on a second coordinate with

respect toA is assumed to broaden the applicability of the concept.
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Remark 6.11.In definition (6.29) of the service allocation functionq(·, ·) the func-
tionsΨ ,Φ,θ cannot be chosen arbitrarily, because for anyn the functionq(n, ·) is a
density onA. Φ(n) is therefore the norming constant ofq(n, ·). In continuous time
this restriction is not necessary becauseq(·, ·) is a rate.

The form ofq(·, ·) allows a versatile modeling of service features. E.g., the total
number of customers moving in one time step can be bounded by settingΘ(a) = 0
if a(0)+ ∑J

j=1∑m∈M a( j,m) > B for a prescribed boundB.

6.6.2 Walrand’s S–Queues and Networks

Walrand [Wal83] introduced S-queues and their networks. Heproved that driven by
an arrival sequence of independent Poisson–distributed customer batches the iso-
lated S-queues are quasi–reversible. From this it follows that these nodes can be
used as building blocks of networks with product form equilibrium. Because of their
structural simplicity these models were used as a versatiletool in modeling infor-
mation networks and investigating their performance analysis [Woo94]. For further
detailed investigation of S-queues see [CMP99]. Walrand’snetworks of S–queues
are standard examples in the literature on service systems with batch arrivals and
batch services, see [Bou92], [BD90a], and [BD91].

Our presentation of the S-queue deviates from the original one in that observation
instants are slightly shifted to fit it into the framework of Section 6.6.1.

Theorem 6.6.5 [Wal83] Let A= (At : t ∈ IN) be an IN–valued i.i.d. arrival sequence
of Poisson–λ variables (the transformed variables) and D= (Dt : t ∈ IN) an IN–
valued sequence of release variables (to the outside). Witha suitable initial value
X0 the queue length sequence

Xt+1 = Xt −Dt +At , t ∈ IN,

defines an S–queue if for0≤ u≤ v

P(Dt = u|Xs,s≤ t;Ds,s< t;As,s≥ 0,Xt +At = v) = S(v,u),

holds for all t∈ IN. If for all v ≥ 0

S(v,0) = c(v), and for u≥ 0

S(v,u) =
c(v)
u!

α(v)α(v−1) · · ·α(v−u+1), 0 < u≤ v, (6.35)

whereα(0) = 1 andα(u) > 0 for u > 0, and c(v) is such that S(v, ·) is a density on
{0,1, . . . ,v}, then X= (Xt : t ∈ IN) has invariant measure

π̂(v) = c
λ v

α(0) · · ·α(v)
, v≥ 0.
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If π̂ can be normalized to a probability lawπ , then in steady state the departure
sequence D= (Dt : t ∈ IN) is an i.i.d. sequence of Poisson–λ variables, and for all
t is (Ds : s≤ t−1) independent of Xt . (Quasi–reversibility for the S–queue.)

To prove product form equilibria for networks of S–queues byquasi–reversibility
the network is observed at time instances when customers arereleased from the
nodes and from the outside but are not yet deposited at the destination nodes, see
lemma 12.8 in [CMP99]. But, as Henderson and Taylor remarked(see [HT90], sec-
tion 3.3), these networks fit into the formalism of section 6.6.1.

This is because Walrand assumed independent Poisson–γ j arrival sequences,j =
1, . . . ,J, (γ = ∑J

j=1γ j ), Markovian routing, and because the functionsS(·, ·) can be
suitably reproduced. Taking Walrand’s routing probabilities (r(i, j) : 1≤ i, j ≤ J)
and additionally(r(0, j) = γ j/γ : 1≤ j ≤ J) we define

Φ(n) =
J

∏
i=1

c(ni)
−1

ni

∏
h=1

αi(h)−1, n∈ INJ,

Ψ(n−a+) =
J

∏
i=1

ni−ai

∏
h=1

αi(h)−1, n∈ INJ,a∈A,n−a≥ 0,

Θ(a) =
eγγa(0)

∏J
i=1a(i)!

, a∈A,

and obtain for a stable system an equilibrium probability

π(n) = CΦ(n)
J

∏
i=1

η(i)ni , n∈ INJ, (6.36)

whereC is the normalizing constant and(η( j) : 1≤ j ≤ J) is the solution of the
standard traffic equation.

The steady state probabilities (6.36) are obtained in ([HT90]) and differ from that
obtained by Walrand, due to different observation time points.

Closely related are the networks investigated by Woodward in [Woo96], [Woo00].
In this work emphasis is put on applying the results to modeling of ATM networks.

6.6.3 Closed Networks of Unreliable S–Queues

Generalized S–queues combine the departure rules (6.29) from assumption 6.6.2
and (6.35) of theorem 6.6.5. There areJ nodes andK indistinguishable customers,
the joint queue length processX is Markov onS(K,J) = {(x1, . . . ,xJ) ∈ INJ : x1 +
· · ·+xJ = K} with local departure probabilities

qi(ni ,ai) =
Ψi(ni−ai)

(ai !)Φi(ni)
.
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whereΦi : IN −→ (0,∞),Ψi : IN −→ [0,∞), are general functions similar to those in
assumption 6.6.2. Assuming independence over nodes the global departure proba-
bilities are

q(n,a) :=
J

∏
i=1

q(ni,ai) =
N

∏
i=1

Ψi(ni−ai)

(ai !)Φi(ni)
. (6.37)

Movements are independent over customers according to irreducible routing prob-
abilities (r(i, j) : 1≤ i, j ≤ J) with probability solution(η( j) : 1≤ j ≤ J) of the
standard traffic equation.

The nodes are unreliable, i.e. can break down in the course ofa time slot and are
repaired after some random time. Thus, the system state has to record the availability
status of the nodes. Let̄I ⊆ {1, . . . ,J} be the set of nodes under repair. The states of
the network are of the form

(n, Ī) = ((n1, . . . ,nN), Ī) : n = (n1, . . . ,nJ) ∈ S(K,J), Ī ⊆ {1, . . . ,N}),

Changes in the state of the system occur due to
a) breakdowns of active nodes and/or repairs of inactive nodes, and
b) departures of customers from nodes and their arrival to other nodes.
Breakdowns and repairs are assumed to occur independently from the queue-lengths
at the various nodes of the network. If, at the beginning of a time slot, the nodes in
Ī ⊆ {1, . . . ,N} are inactive, the probability that, by the end of the same time slot,
the set of inactive nodes is̄H ⊆ {1, . . . ,N}, is given byγ(Ī ,H̄), γ being a reversible
transition matrix onP{1, . . . ,J}.

As long asĪ = /0, nodes are functioning and customers move as determined by
these regimes. If, however,̄I 6= /0, that is, if at least one node is inactive, either all
nodes immediately stop serving customers (”stalling”), orexactly the nodes in̄I
interrupt services and reject new arrivals. Consequently,some re-routing strategy
has to be applied, because the active nodes continue their services. In either case,
though, all customers in service at a node that breaks down have to stay there until
the node is repaired and their service time is terminated.

If the network’s service is not stalled during some nodes being under repair, a
customer trying to make a prohibited movement
• either is sent back to the node she has just left and is served there once more
(Repeated Service – Random Destination: RS-RD),
• or she makes a virtual jump to the node of her choice; having arrived there, she
immediately jumps to the next node according tor as though she had just left the
respective inactive node, and so on, until she reaches an active node (skipping).

Instead of re-routing individual customers, one can also determine whether an
arrival vector is permitted or prohibited and then, if the vector is prohibited, re-
transform it according to some global RS-RD or skipping rules, for more details see
[Tip06].

Theorem 6.6.6 [Tip06] In closed networks of generalized S-queues with departure
probabilities in the form(6.37)and with unreliable servers the joint availability and
queue length process is Markov. In case of RS-RD we assume that the routing of
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customers is reversible. The equilibrium distribution is independent of the rerouting
strategies described above

π((n1, . . . ,nN), Ī) = G̃−1
K,Jπ̄(Ī )

J

∏
i=1

η(i)ni Φi(ni),

with normalizationG̃−1
K,J and η(·) the probability solution of the standard traffic

equation.π̄(·) is the probability solution of the availability balance equations

π̄(Ī) =
N

∑
i=1

π̄(J̄)γ(J̄, Ī)

6.6.4 Networks with Triggered Batch Movements

The networks’ description follows Henderson, Northcote, and Taylor [HNT95] who
constructed a unification of the batch movements networks ofsection 6.6.1 and the
recently introduced networks where events (e.g. service completions or arrivals)
may trigger other events to happen. This happens in a way, that by a triggering
event (e.g.) a sudden departure of specific customers may be enforced without those
customers having obtained the full requested service time.A related concept is that
of negative customers, see [Gel91] and [CP93]. For a discussion of further related
models and for more references see in [CMP99] the reference note 9.8, for gener-
alizations of the network of section 6.6.1 see chapters 4 through 11 there. Further
extension are by Serfozo and Yang [SY98], and Peterson [Pet00]. All these models
provide us with discrete time queueing networks by simple transformations.

Consider an open network of queues with nodes 1,2, . . . ,J. Customers are undis-
tinguishable and enter the system from the outside (node 0),procede according to
some routing regime through the network and eventually leave the system. (Differ-
ent customer types which may randomly change can be incorporated, see [HNT95]
section 4.)

The joint queue length processX = ((Xt( j) : j = 1, . . . ,J) : t ∈ IN) is Markov
with state spaceINJ, whereXt( j) = n j indicates that at timet there aren j customers
present at nodej. The one–step transitions are as follows:

If the network’s state at timet is Xt = n = (n1, . . . ,nJ), then a batcha =
(a1, . . . ,aJ) of customers is served at nodes 1, . . . ,J resp., with probability

q(n,a) =
Ψ(n−a)Θ(a)

Φ(n)
.

With probabilityp(a,a′,a′′) the released batcha attempts to trigger a batcha′ =
(a′1, . . . ,a

′
J) (enforcing these customers to immediately finish their service) and to

deposit a further batcha′′= (a′′1, . . . ,a
′′
J) to the respective nodes,∑a′∑a′′ p(a,a′,a′′)=

1. a,a′,a′′ ∈A must fulfill some feasibility conditions to guarantee consistent tran-
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sitions. External arrivals are included into the depositedbatcha′′, the internal transi-
tions are included ina,a′ anda′′, external departures are due to eithera or a′. Batch
a′ accepts the triggering with probabilityΨ(n−a−a′)/Ψ(n−a) and rejects it with
probability 1−Ψ(n−a−a′)/Ψ(n−a).

The stateXt+1 of the network at timet +1 then isn−a−a′+a′′ if the triggering
was accepted andn−a if it was rejected.

Thetraffic equationssimilarly defined to (6.30) take the form

Θ(a) f (a) a∈A−{0} (6.38)

= ∑
a′∈A

∑
a′′∈A

Θ(a′) f (a′)[ f (a′′)p(a′,a′′,a)− f (a)p(a′,a,a′′)],

The existence of a strict positive solution of (6.38) is nontrivial [HNT95][pp132-
133], we take it as anassumptionhere.

Theorem 6.6.7 [HNT95] If the traffic equation (6.38) has product solution f(a) =

∏J
j=1y

a j
j > 0, then X has invariant measurêπ(n) = Φ(n) f (n), n∈ INJ.

Example 6.6.8 An example of a telecommunication network where customers may
trigger by their arrival additional resources is worked outin detail in [HNT95],
section 4. This network model is then solved using the resultof theorem 6.6.7 .
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Chapter 7
Decomposition and Aggregation in Queueing
Networks

Tijs Huisman and Richard J. Boucherie

Abstract This chapter considers the decomposition and aggregation of multiclass
queueing networks with state-dependent routing. Combining state-dependent gen-
eralisations of quasi-reversibility and biased local balance, sufficient conditions are
obtained under which the stationary distribution of the network is of product-form.
This product-form factorises into one part that describes the nodes of the network in
isolation, and one part that describes the routing and the global network state. It is
shown that a decomposition holds for general nodes if the input-output behaviour of
these nodes is suitably compensated by the state-dependentrouting function. When
only a subset of the nodes is of interest, it is shown that the other nodes may be ag-
gregated into nodes that only capture their global behaviour. The results both unify
and extend existing classes of product-form networks, as isillustrated by several
cases and an example of an assembly network.

7.1 Introduction

In the analysis of queueing networks, two at first sight different techniques have
been used to derive product form results: quasi-reversibility and local balance.
Quasi-reversibility is a property of the nodes of the network, roughly stating that
they should preserve input and output flows when they are considered in isolation
and fed by a Poisson process. If such nodes are coupled into a network by Markov
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routing, the stationary distribution factorises over the nodes, i.e., is of product form
(see [18, 25]). When using local balance, however, the nodesare not analysed in
isolation first. Instead, the local balance equations for the entire network are consid-
ered and shown to hold in more detailed form (usually per node) under the assumed
product form stationary distribution (see [5, 14]). This technique has the advantage
that state-dependent routing can be analysed too.

Recently, both techniques have been combined. Boucherie [3] considers a net-
work of quasi-reversible nodes linked by state-dependent routing. If the process
associated with the routing (called the global process) satisfies local balance, the
stationary distribution of the network is shown to factorise into the stationary distri-
butions of the nodes in isolation, and the stationary distribution of the global process.
Chao and Miyazawa [11] extend the definition of quasi-reversibility, allowing input
and output rates of customers to differ from each other. Whennodes satisfying this
extended form of quasi-reversibility are coupled into a network by Markov routing,
the network is shown to have a product form stationary distribution. In [12] it is
demonstrated that this product form result can be proved using biased local bal-
ance. This is an extension of local balance allowing unbalance inthe local balance
equations to be compensated by a constant bias term. When thenodes are quasi-
reversible with equal input and output rates, the bias termsare zero, and biased
local balance reduces to ordinary local balance.

This chapter combines and extends the results of [3] and [12]to networks with
more general nodes, and more general state-dependent routing. As in [3], we intro-
duce local processes describing the nodes in isolation, anda global process describ-
ing the routing process. For the global process the definition of biased local balance
of [12] is extended, allowing state-dependent bias terms. For the local processes,
quasi-reversibility is further generalised to include state-dependent input rates, and
a state-dependent difference between input and output rates. This difference can be
interpreted as the bias of the local process with respect to the outside of a node,
similar to the bias of the global process. If the bias of the nodes with respect to
their outside is suitably compensated by the bias of the global process, the network
allows a decomposition into the global process and the localprocesses. Thus, this
chapter combines state-dependent generalisations of the quasi-reversibility results
in [3] and of the biased local balance results in [12].

Decomposition
The first part of this chapter is concerned with thedecompositionof queueing net-
works. A queueing network can be decomposed if its stationary distribution fac-
torises into the stationary distributions of the nodes of which the network is com-
prised; the network is then of product form. Apart from the theoretical interest,
decomposition results are also of substantial practical importance: finding the sta-
tionary distribution of an entire queueing network usuallyrequires an enormous
computational effort, whereas the stationary distribution of a single node can be
found relatively easily.

The first, and perhaps most famous, decomposition results for queueing networks
have been reported by Jackson [17], who considered a single class queueing net-
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work of queues with exponential service times, where customers move between the
queues according to fixed routing probabilities, and arriveat the network according
to a Poisson process with rate equal to the throughputs that can be obtained from
the routing probabilities via the so-called traffic equations. Extensions of this result
include closed queueing networks, specific service disciplines for non-exponential
service times, and multiclass queueing networks, where classes differ in routing and
- again under certain service disciplines - in service times, see, for example, the
BCMP networks [2].

It was shown that these results were a consequence of local balance [26, 27], and
later that these results were also a consequence of a specialinput/output property of
the queues in the network, called quasi-reversibility (see, for example [18]): when
a queue is considered in isolation with Poisson arrivals, the time-reversed Process
describing this queue also has Poisson arrivals with the same rates as the original
(time-forward) process. The two worlds of local balance andquasi-reversibility have
since then moved on parallel tracks. Some product-form results, such as those for
networks with blocking [5] were developed by local balance conditions, and are
believed not to be available via quasi-reversibility. Other results, such as for net-
works with negative customers [15] were rapidly shown to be due to an extension
of local balance [7]. Later, also the concept of quasi-reversibility was extended by
allowing that customer classes depart from the nodes at a different rate from which
they entered, which allows customers to change class in the queue, and includes
negative customers, see [12]. Networks of quasi-reversible queues linked via state-
dependent routing were considered in [3]. Due to the state-dependent nature of the
routing, it is not possible to determine the throughput fromthe traffic equations.
Instead, the traffic equations are replaced by a stochastic process, called the global
process, that describes the number of customers in each nodeof the network. A
decomposition of the network into the stationary distributions of the nodes and the
stationary distribution of the global process is obtained under the condition that all
nodes are quasi-reversible with arrival rate one, and the global process - describing
the number of customers in each node, as if each node emits customers with con-
stant rate one - satisfies local balance. Via these results, the worlds of local balance
and quasi-reversibility seem to re-join the same track. This chapter provides a uni-
fied framework for quasi-reversibility and local balance.

Aggregation
The second part of this chapter is concerned withaggregationof queueing net-
works. A stochastic process is the aggregation of a queueingnetwork with respect
to an aggregation function on the state of the network, if this process describes - in
probability, as well as in probability flow - the evolution ofthe aggregate state in the
network, see [9] for a general definition.

Aggregation results are commonly referred to as Norton’s theorem. Norton’s the-
orem for queueing networks states that under certain conditions on the structure of
the queueing network it is possible to replace a subset of thequeueing network by
a single station such that for the feature of interest (e.g. equilibrium distribution,
throughput, average number of customers) the behaviour of the rest of the network
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remains unchanged. Norton’s theorem for queueing networkswas originally intro-
duced by Chandyet al. [10] as an efficient aggregation method for queueing net-
works similar to Norton’s theorem from electrical circuit theory. They prove the ag-
gregation method to be correct for queueing networks of the BCMP-type [2] consist-
ing of two subnetworks of which the subnetwork of interest isa single station. The
results of [10] can easily be generalised to subnetworks consisting of several stations
such that customers enter the subnetwork through a single input node and leave the
subnetwork through a single output node. Balsamo and Iazeolla [1], Kritzinger et
al. [19], and Vantilborgh [23] extend Norton’s theorem to BCMP-networks con-
sisting of two arbitrary subnetworks. A further extension is given by Towsley [22],
where elementary state-dependent routing is incorporated. An additional extension
is presented in Hsiao and Lazar [16], where it is shown that Norton’s equivalent can
be seen as a conditional expectation.

The relation between quasi-reversibility and Norton’s theorem is introduced
in Walrand [24]. Walrand considers a queueing network containing two quasi-
reversible components, and shows that a quasi-reversible component may be re-
placed by an equivalent server. In Brandt [8] this result is extended to queueing
networks of multiple quasi-reversible components linked by Markov routing, that
is by state-independent routing. Pellaumail [21] shows that components of a closed
network with state-dependent routing can be replaced by equivalent servers under
a type of quasi-reversibility condition. Both the method and the construction of the
equivalent servers require the network to be a closed network. Boucherie and van
Dijk [6] discuss Norton’s theorem for queueing networks consisting of product form
components linked by state-dependent routing. All components can be aggregated
into equivalent servers independently, and for the detailed behaviour of components
it is allowed to analyse the behaviour of components as open networks in isola-
tion (not part of the queueing network). Additional resultsfor networks consisting
of multiple components linked by state-dependent routing are reported in Van Dijk
[13], where product form results for networks in which the routing probabilities de-
pend only on the total number of customers present in the components are derived.
Boucherie [3] combines the results of Boucherie and van Dijk[6] and Brandt [8].
This gives an extension of Norton’s theorem to queueing networks comprised of
quasi-reversible components linked by state-dependent routing. This is an extension
of the results of [6] since the components in isolation are now assumed to be quasi-
reversible and of [8] since the routing process is allowed tobe state-dependent, such
as most notably including blocking and alternative routing. A key difference with
other methods is that subnetworks are analysed as open networks in isolation and not
by shortcircuiting of the components. This substantially simplifies the construction
of the equivalent servers.

In this chapter we extend the aggregation result of [3] to ourmodel: we show
that the global process is the aggregation of the network with respect to the global
state. Moreover, we show that under some additional restrictions on the arrival rates,
the local processes are also aggregations of the network with respect to the detailed
state of the nodes. To obtain the necessary arrival rates forthis aggregation, an iter-
ative algorithm can be used. This algorithm appears to be similar in spirit to Marie’s
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method [20] to compute approximations for the steady-statedistribution in queue-
ing networks with non-quasi-reversible nodes and fixed routing, and thus allows
development of new approximation methods, allowing globalprocesses that do not
satisfy local balance, allowing state-dependent routing,and general global states.

Examples and outline
To make the relation with the models and assumptions of [3] and [12] more explicit,
we consider them as a special case. Somewhat surprisingly, it appears that our re-
sults reduce to those of [3] if there is only one customer class, and the global state
represents the number of customers in a node: the state-dependent arrival and depar-
ture rates do not lead to further extensions. This, however,only holds for single class
networks. By defining a trivial global state, our model and results reduce to those of
[12]. This is, in fact, almost immediate, since in this way all state-dependence is re-
duced. We then proceed with pull networks, in which a transition is initiated by the
arrival of a customer to a queue, and subsequently a customeris removed from the
originating queue [4]. Finally, we consider decompositionfor assembly network.

The chapter is organised as follows. In section 7.2 the network model is de-
scribed and the definitions of the global and the local processes are given. Section
7.3 presents our decomposition results, and section 7.4 ouraggregation results. Ex-
amples are included in section 7.5.

7.2 Model

Consider a network comprised ofN interacting nodes, labelledn = 1,2, . . . ,N, and
an outside node, labelled node 0, in which customers of classes

⋃N
n=0{An∪Dn}

route among the nodes, whereAn resp.Dn is the set of customer classes that may
arrive to resp. depart from noden, n = 0, . . . ,N. Interaction among the nodes is due
to customers routing among the nodes as well as due to the state of nodes influenc-
ing the behaviour of other nodes. This interaction is specified below. First, we will
describe the nodes. Then, the interaction between the nodesis characterised.

7.2.1 The nodes

Consider the state-spaceSn, with statesxn. Define the mappingGn : Sn→ Gn(Sn),
andXn = Gn(xn). We will refer toXn as global state corresponding to the detailed
statexn. The global state may be seen as an aggregate state (thus containing ag-
gregate information of the node that is of interest for its performance, such as the
number of customers), but will also play a more technical role in describing the
interaction between the nodes (i.e. arrival and departure processes, and the routing
between the nodes). The setGn(Sn) will be referred to as the global state-space of
noden.
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We distuinguish three types of state changes: due to an arrival, due to a depar-
ture, and due to an internal change, only. The behaviour of node n in isolation is
characterised as follows, see [28] for a similar characterisation.

Definition 7.1 (Local process).Consider noden. An resp.Dn is the set of customer
classes that may arrive resp. depart from noden. For eachc ∈ An∪Dn, let Ac

n :
Gn(Sn)→ Gn(Sn), andDc

n : Gn(Sn)→ Gn(Sn) 1−1 mappings such thatDc
n is the

inverse ofAc
n.

• In an arrival transition, upon arrival of a classc ∈ An customer at noden, the
detailed state changes fromxn ∈ Sn to x′n ∈ Sn with probabilityac

n(xn,x′n), and the
global state changes fromXn = Gn(xn) to Ac

n(Xn), whereac
n(xn,x′n) is an honest

probability function:

∑
x′∈Sn

ac
n(xn,x

′
n) = 1, xn ∈ Sn,c∈An. (7.1)

• In a departure transition in detailed statexn a state change to statex′n causing a
departure of a classc∈Dn customer occurs at ratedc

n(xn,x′n). This detailed state
change results in a global state change fromXn = Gn(xn) to Dc

n(Xn).
• Noden initiates internal transitions from statexn to statex′n with ratein(xn,x′n).

Internal transitions do not cause a departure or arrival anddo not change the
global state, i.e.,Gn(xn) = Gn(x′n).

• Consider the set of functionsλn = (λ c
n : Gn(Sn)→R+

0 ;c∈An). The local process
Ln(λn) is the Markov chain with state-spaceSn and transition ratesqn(xn,x′n;λn)
from statexn ∈ Sn to statex′n ∈ Sn defined by

qn(xn,x
′
n;λn) = ∑

c∈An

λ c
n(Gn(xn))a

c
n(xn,x

′
n)+ ∑

c∈Dn

dc
n(xn,x

′
n)+ in(xn,x

′
n). (7.2)

Observe that, upon arrival of a classc customer in statexn, the global state changes
from Xn = Gn(xn) to X′n = Ac

n(Xn), and the detailed state may change to allx′n ∈ {x :
Gn(x) = Ac

n(Xn)}, which also implies thatac
n(xn,x′n) = 0 if Gn(x′n) 6= Ac

n(Gn(xn)).
The detailed state may represent the detailed content of a queue, and the global state
the number of customers in this queue: upon arrival of a single customer, the global
state then always changes fromXn to Xn + 1, where the detailed state change then
may reflect the position of the customer in the queue, see e.g.the(φ ,γ,δ ) protocol
introduced in [18], chapter 3, to represent queue disciplines such as FIFO, LIFO
and PS. A classc customer may also represent a batch of customers by defining
Ac

n(Xn) = Xn +bc
n, wherebc

n denotes the classc batch size arriving at noden. More-
over,bc

n may be set to a negative value: the number of customers is thendecreased
upon arrival of a classccustomer. Such a customer may reflect a signal in a computer
network, that removes tasks at a server. In literature, suchcustomers have also been
referred to as negative customers, see e.g. [15]. Departuretransitions satisfy similar
conditions as arrival transitions. Upon a departure, the global state change is unique,
determined solely by the current global state and the class of the departing customer,
whereas the detailed state may change fromxn to all x′n ∈ {x : Gn(x) = Dc

n(xn)},
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which also implies thatdc
n(xn,x′n) = 0 if Gn(x′n) 6= Dc

n(Gn(xn)). Internal transitions
may correspond e.g. to completion of service phases, and - innodes represent-
ing a subnetwork of queues - movements of customers between the queues in the
subnetwork. As internal transitions do not change the global state, it must be that
in(xn,x′n) = 0 if Gn(x′n) 6= Gn(xn).

Remark 7.1.The class of arriving customersAn is not required to coincide with the
class of departing customersDn. As a consequence, the inverseAc

n of Dc
n needs not

be a function that corresponds to the global state change of an arriving transition,
i.e., it may be that classc customers arrive to noden, but do not depart from noden.

2

We assume that the local processLn(λn) is ergodic. Letπn(xn;λn) denote the
stationary probability thatLn(λn) is in statexn, i.e., for allxn ∈ Sn,

∑
x′n∈Sn

{
πn(xn;λn)q(xn,x

′
n;λn)−πn(x

′
n;λn)q(x′n,xn;λn)

}
= 0,

and let
pn(Xn;λn) = ∑

{xn:Gn(xn)=Xn}
πn(xn;λn), (7.3)

denote the stationary probability thatLn(λn) is in global stateXn.
Observe that the transition rates (7.2) characterise the arrival rate of customers to

noden via the state-dependent arrival rate functionsλn. The arrival processes at node
n can be described by a state-dependent Poisson process, whose rateλ c

n(Gn(xn))
is assumed to depend on the global stateXn = Gn(xn) of this node, only. For the
departure process, which - in correspondence with [18, 12] -will be described by
the arrival rate in the time-reversed process, a similar assumption is made.

Assumption 7.2.1 For the local processLn(λn), c∈Dn, we assume that the arrival
rate of class c customers in state xn of the stationary time-reversed process ofLn(λn)
depends on xn through the global state Xn = Gn(xn), only. We will denote this rate
by µc

n(Xn;λn):

µc
n(Xn;λn) = ∑

x′n∈Sn

πn(x′n;λn)

πn(xn;λn)
dc

n(x
′
n,xn), Xn ∈Gn(Sn). (7.4)

Quasi-reversibility plays a key-role in the theory of product form networks. Kelly
[18] calls a node quasi-reversible, if, for a constant arrival rate function, the arrival
rate of the time-reversed local process is constant, and equal to the arrival rate in the
original (time-forward) process. This, in particular, implies that both the arrival and
departure processes are Poisson processes with equal intensity, and independent of
the state of a node. Chao and Miyazawa [12] have extended thisdefinition by allow-
ing arrival and departure rates to differ from each other: intheir definition a node
is quasi-reversible, if, for constant arrival rate functions, the departure process is a
Poisson process that is independent of the state of a node. Todistinguish these two
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definitions, we will call the latter form generalised quasi-reversible. We summarise
the above in the following definition.

Definition 7.2 ((Generalised) quasi-reversibility).Let λ̂n = (λ̂ c
n : Gn(Sn)→ R+

0 ;
c∈ An) be a set of constant functions. IfAn = Dn, and, forc∈Dn, µc

n(Xn; λ̂n) is
constant inXn and equal tôλ c

n , then the local processLn(λ̂n) is said to be quasi-
reversible. If, forc∈Dn, µc

n(Xn; λ̂n) is constant inXn, then the local process is said
to be generalised quasi-reversible.

In the analysis below, we do not require generalised quasi-reversibility. Instead,
we use the more general form of Assumption 7.2.1, and invoke amore general form
of partial balance.

7.2.2 Interaction between the nodes

Nodes are coupled via a global process. LetX = (X1, . . . ,XN) denote the global
state of the network, withXn the global state of noden. The global state-space of
the network,Sg ⊆ G1(S1)× . . .×GN(SN), is the set of all possible global states in
the network. The global state of the network affects the interaction in three ways.
Routing of customers between the nodes may depend on the global state of the
network, arrivals to and departure from the network may depend on the global state,
and the global state of a node may cause nodes to speed up or slow down. We use
the following notation. ForX ∈ Sg, Tcc′

nn′ (X) denotes the vector obtained fromX,

by replacing then-th component byDc
n(Xn), and then′-th component byAc′

n′(Xn′),
n,n′ = 0, . . . ,N, wheren = 0, or n′ = 0 does not result in a change of state of that
component.

Definition 7.3 (Global process).LetA0 resp.D0 denote the set of customer classes
that may leave resp. enter the network. Consider stateX ∈ Sg.

• A classc∈D0 customer enters the network at rateMc
0(X), and arrives at noden′,

n′ = 1, . . . ,N, as a classc′ ∈ An′ customer with probabilityRcc′
0n′(X). The global

state changes fromX to Tcc′
0n′ (X).

• A classc ∈ Dn customer departing from noden leaves the network as a class
c′ ∈ A0 customer with probabilityRcc′

n0 (X). The global state changes fromX to
Tcc′

n0 (X).
• A classc∈Dn customer departing from noden, n = 1, . . . ,N, routes to noden′,

n′ = 1, . . . ,N, n′ 6= n, as a classc′ ∈An′ customer with probabilityRcc′
nn′(X). The

global state changes fromX to Tcc′
nn′ (X).

• The rate of change of noden, n = 1, . . . ,N, for internal and departure transitions
is Nn(X).

• The routing probabilitiesRcc′
nn′(X) are honest:
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N

∑
n′=0,n′ 6=n

∑
c′∈An′

Rcc′
nn′(X) = 1, X ∈ Sg,c∈Dn,n = 0, . . . ,N. (7.5)

• Consider the set of functionsM = (Mc
n : Gn(Sn)→ R+

0 ;c ∈ Dn,n = 1, . . . ,N).
The global processG(M) is the Markov chain with state-spaceSg and transition
ratesQ(X,X′;M) from stateX ∈ Sg to stateX′ ∈ Sg defined by

Q(X,Tcc′
nn′ (X);M) =

{
Mc

0(X)Rcc′
0n′(X) n = 0,

Mc
n(Xn)Nn(X)Rcc′

nn′(X) n = 1, . . . ,N,

for n′ = 0, . . . ,N, n′ 6= n, c∈Dn andc′ ∈An′ .

The global process describes the global state of the network, as if noden in iso-
lation (i.e. without the multiplication factorNn(X)) emits customers at rateMc

n(Xn).
We will call Mc

n(Xn) the nominal departure rate of classc customers from noden.
The global and local processes are closely intertwined, as will become clear later. In
the formulation of the global process, the nominal departure ratesMc

n(Xn) depend
on the local process. Furthermore, the arrival ratesλ c

n(Gn(xn)) in the local processes
depend on the global process. These relations will be made explicit when we define
our network in Definition 7.4.

We assume that the global processG(M) is ergodic. LetΠ(X;M) denote the
stationary probability thatG(M) is in stateX, i.e., for all X ∈ G(M), c ∈ Dn, n =
0, . . . ,N,

N

∑
n,n′=0, n′ 6=n

∑
c∈An, c′∈An′

{Π(X;M)Q(X,Tcc′
nn′ (X);M)

−Π(Tcc′
nn′ (X);M)Q(Tcc′

nn′ (X),X;M)}= 0. (7.6)

Let
Pn(Xn;M) = ∑

{X′:X′n=Xn}
Π(X′;M),

denote the marginal stationary probability that the globalstate of noden is Xn.
Our results are formulated via the nominal departure ratesMc

n(Xn), and the de-
parture rates of the time-reversed process that will be usedto characterise the arrival
processes at the nodes. LetΛc

0(X;M) denote the classc∈D0 departure rate in the
time-reversed process ofG(M). Then

Λc
0(X;M) =

N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
0n′ (X);M)

Π(X;M)
Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
0n′ (X))Rc′c

n′0(T
cc′
0n′ (X)).

(7.7)
The nominal departure ratesMc

n(Xn) of noden depend only on the global state of
noden, n = 1, . . . ,N. We assume that this is also the case for the nominal departure
rates in the time-reversed process.
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Assumption 7.2.2 For the global processG(M), c∈An, n= 1, . . . ,N, and X∈ Sg,
we assume that the nominal departure rate of class c customers from node n in state
X of the stationary time-reversed process ofG(M) depends on the global state Xn

only. We will denote this nominal departure rate byΛc
n(Xn;M):

Λc
n(Xn;M)Nn(X) = ∑

c′∈D0

Π(Tcc′
n0 (X);M)

Π(X;M)
Mc′

0 (Tcc′
n0 (X))Rc′c

0n (Tcc′
n0 (X))

+
N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)

Π(X;M)
Mc′

n′(A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)). (7.8)

In general, the time-reversed departure rate (7.8) will depend on the global state
X of the network. The asssumption that this rate is equal toΛc

n(Xn;M)Nn(X), where
Λc

n(Xn;M) depends onX through the global stateXn of noden, only, seems to be
rather restrictive. This is not the case. Assumption 7.2.2 includes local balance, a
common assumption for queueing networks with state-dependent routing. To this
end, note that ifAn = Dn, andΛc

n(Xn;M) = Mc
n(Xn), Xn ∈ Gn(Sn), c ∈ An, n =

1, . . . ,N, then, from (7.8),

Mc
n(Xn)Nn(X)Π(X;M) = ∑

c′∈D0

Π(Tcc′
n0 (X);M)Mc′

0 (Tcc′
n0 (X))Rc′c

0n (Tcc′
n0 (X))

+
N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)),

and thus the global process satisfies local balance

N

∑
n′=0

∑
c′∈An′

{Π(X;M)Q(X,Tcc′
nn′ (X);M)−Π(Tcc′

nn′ (X);M)Q(Tcc′
nn′ (X),X;M)} = 0.

7.2.3 The network

Combining the descriptions of the nodes and their interaction, we obtain a queue-
ing network of nodes in which the detailed behaviour of the node is specified in
Definition 7.1, and the interaction among the nodes is specified in Definition 7.3.
This network allows a Markovian description with statex = (x1, . . . ,xN). Denote
G(x) = (G1(x1), . . . ,GN(xN)).

Definition 7.4 (Network).The networkN is the Markov-chain with state-spaceS⊆
{x = (x1, . . . ,xN) : xn ∈ Sn,G(x) ∈ Sg}, and transition ratesq(x,x′) from statex =
(x1, . . . ,xN) to statex′ = (x′1, . . . ,x

′
N) given by

q(x,x′) = ∑
c∈Dn, c′∈An′

dc
n(xn,x

′
n)Nn(G(x))Rcc′

nn′(G(x))ac′
n′(xn′ ,x

′
n′),
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if x′n 6= xn, x′n′ 6= xn′ , andx′k = xk, for k 6= n,n′,

q(x,x′) = in(xn,x
′
n)Nn(G(x))+ ∑

c∈D0

Mc
0(G(x)) ∑

c′∈An

Rcc′
0n (G(x))ac′

n (xn,x
′
n)

+ ∑
c∈Dn

dc
n(xn,x

′
n)Nn(G(x)) ∑

c′∈A0

Rcc′
n0 (G(x)),

if x′n 6= xn, andx′k = xk for k 6= n.

We assume that the networkN is ergodic, and defineπ(x) as the stationary prob-
ability that the network is in statex.

Arrivals and departures in the global process have been characterised via assump-
tions on the nominal departure rates,Mc

n(Xn), and their time-reversed counterparts,
Λc

n(Xn;M), that are restricted to depend on the global stateXn, only. In contrast, ar-
rivals and departures in the local processes have been characterised via assumptions
on the arrival ratesλ c

n(Xn), and their time-reversed counterpartsµc
n(Xn;λn). This

may seem somewhat inconvenient at first glance. However, arrivals to a node at lo-
cal level are determined by departures from nodes at global level and subsequent
routing of customers at global level. In our analysis below,we will make this rela-
tion explicit, thus characterising the relation betweenλ andM. Further, note that
characterisation of local processes via arrival rates in the forward and time-reversed
process provides a direct link with quasi-reversibility, whereas characterisation of
the global process via departure rates in the forward and time-reversed processes
provides a link with local balance. We may thus view our network as a network of
further generalised quasi-reversible nodes linked via a process that satisfies a gener-
alised form of local balance.

The aim of this chapter is twofold. First, we want to establish sufficient condi-
tions on the arrival rate functionsλ c

n(Xn), µc
n(Xn;λn), and the nominal departure rate

functionsMc
n(Xn), Λc

n(Xn;M) under which the network can be decomposed, i.e. the
stationary distributionπ(x) of the network can be factorised into the stationary dis-
tributionsπn(xn;λn) of the local processes, and the stationary distributionΠ(X;M)
of the global process. Second, our aim is to investigate whenthe global process and
the local processes are aggregations of the network, i.e., the distribution and the
rates of the global process describe the evolution of the global state of the network,
and the distribution and the rates of the local processes describe the evolution of
the detailed state of a node in the network. Roughly said, these aggregations require
that not only the stationary distribution of the networkN can be decomposed into
the stationary distributions of the local and global processes, but also the processN

itself can be decomposed into the processesLn(λn) andG(M).
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7.3 Decomposition

This section considers the decomposition of the stationarydistributionπ(x) of the
networkN into the stationary distributions of the global process andthe local pro-
cesses. We show that such a decomposition holds if the nominal departure rates
Mc

n(X) and the nominal time-reversed departure ratesΛc
n(X;M) of the global pro-

cess equal the corresponding rates in the local processes, to be specified below. As
an illustration, in Section 7.5 we consider the two models that are studied in [3] and
[12]. These models fall into our class of queueing networks via specific assumptions
on the form of the global state. We will show that for both models the conditions of
our general result are satisfied if and only if the assumptions that are made in [3] and
[12] are satisfied. In addition, we will describe pull networks [4], and derive some
new decomposition results for so-called assembly networks.

The conditional probability ofxn given Xn for local processLn(λn) equals
πn(xn;λn)/pn(Xn;λn). Let M̃c

n(Xn;λn) denote the conditional expected classc∈Dn

departure rate given stateXn of the local processLn(λn). Then

M̃c
n(Xn;λn) = ∑

{xn:Gn(xn)=Xn}

πn(xn;λn)

pn(Xn;λn)
∑

x′n∈Sn

dc
n(xn,x

′
n) (7.9)

=
1

pn(Xn;λn)
∑

{x′n:Gn(x′n)=Dc
n(Xn)}

πn(x
′
n;λn)µc

n(D
c
n(Xn);λn)

=
pn(Dc

n(Xn);λn)

pn(Xn;λn)
µc

n(D
c
n(Xn);λn), (7.10)

where the second equality is obtained from the defintion ofµc
n given in (7.4). Simi-

larly, let Λ̃c
n(Xn;λn) denote the conditional expected classc∈Dn arrrival rate given

stateXn of the local processLn(λn). Then

Λ̃c
n(Xn;λn) = ∑

{xn∈Sn:Gn(xn)=Xn}

πn(xn;λn)

pn(Xn;λn)
∑

x′n∈Sn

πn(x′n;λn)

πn(xn;λn)
λ c

n(Gn(x
′
n))a

c
n(x
′
n,xn)

=
pn(Dc

n(Xn);λn)

pn(Xn;λn)
λ c

n(Dc
n(Xn)), (7.11)

where the last equality is due to the restrictions onx′n due toac
n(x
′
n,xn), i.e.,x′n ∈ {x :

Gn(x) = Dc
n(Xn)}, and due toac

n(x
′
n,xn) being honest.

It is interesting to observe that under Assumption 7.2.1 resp. Assumption 7.2.2
we obtain flow balance under time-reversal as specified belowfor the local pro-
cesses, resp. the global process. These observations startfrom the global balance
equations for the local processes, forπn(xn;λn) the stationary distribution of local
processLn(λn),

πn(xn;λn) ∑
x′n∈Sn

(

∑
c∈An

λ c
n(Gn(xn))a

c
n(xn,x

′
n)+ ∑

c∈Dn

dc
n(xn,x

′
n)+ in(xn,x

′
n)

)
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= ∑
x′n∈Sn

πn(x
′
n;λn)

(

∑
c∈An

λ c
n(Gn(x

′
n))a

c
n(x
′
n,xn)

+ ∑
c∈Dn

dc
n(x
′
n,xn)+ in(xn,x

′
n)

)
, (7.12)

and the global balance equations for the global process, forΠ(X;M) the stationary
distribution of the global processG(M),

Π(X;M)
N

∑
n=0

∑
c∈Dn

Mc
n(X)Nn(X)

=
N

∑
n=0

∑
c∈An

N

∑
n′=0

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)Mc′

n′ (T
cc′
nn′ (X))Nc′

n′ (T
cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)).

(7.13)
Summing the global balance equations (7.12) for fixedXn over allxn with Gn(xn) =
Xn, the internal transitions cancel out. The definition ofµc

n(Xn;λn) in Assumption
7.2.1 then yields, noting thatGn(xn) = Xn,

∑
{xn:Gn(xn)=Xn}

πn(xn;λn) ∑
c∈An

λ c
n(Gn(xn))+ ∑

c∈Dn

∑
{x′n:Gn(x′n)=Dc

n(Xn)}
πn(x

′
n;λn)

×µc
n(D

c
n(Gn(xn));λn) = ∑

c∈An

∑
{x′n:Gn(x′n)=Dc

n(Xn)}
πn(x

′
n;λn)

×λ c
n(Dc

n(Gn(xn)))+ ∑
{xn:Gn(xn)=Xn}

πn(xn;λn)µc
n(Gn(xn);λn).

The definition ofpn(Xn;λn) now implies that for the local processLn(λn) the sum
of the total arrival rates and the total mean departure ratesin each global stateXn

does not change under time reversal:

∑
c∈An

λ c
n(Xn)+ ∑

c∈Dn

pn(Dc
n(Xn);λn)

pn(Xn;λn)
µc

n(D
c
n(Xn);λn)

= ∑
c∈Dn

µc
n(Xn;λn)+ ∑

c∈An

pn(Dc
n(Xn);λn)

pn(Xn;λn)
λ c

n(Dc
n(Xn)) (7.14)

To obtain our decomposition result, we will assume that for the global process the
arrival rate to noden equals the departure rate to noden, as characterized via the
time-reversed process:

Mc
n(Xn) = M̃c

n(Xn;λn) (7.15)

Λc
n(Xn;M) = Λ̃c

n(Xn;λn). (7.16)

Invoking (7.10), (7.15), (7.11), and (7.16) we obtain
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∑
c∈An

λ c
n(Gn(xn))− ∑

c∈An

Λc
n(Gn(xn);M)

= ∑
c∈Dn

µc
n(Gn(Xn);λn)− ∑

c∈Dn

Mc
n(Gn(xn)), (7.17)

i.e., the net input due to the local and global processes equals thenet output due to
the local and global processes.

A further consequence of (7.14) is that thepn(Xn;λn) can be computed recur-
sively:

pn(Xn;λn) =

∑c∈An pn(Dc
n(Xn);λn)λ c

n(Dc
n(Xn))−∑c∈Dn pn(Dc

n(Xn);λn)µc
n(Dc

n(Xn);λn)

∑c∈An λ c
n(Xn)−∑c∈Dn µc

n(Xn;λn)

for ∑c∈An λ c
n(Xn) 6= ∑c∈Dn µc

n(Xn;λn). For ∑c∈An λ c
n(Xn) = ∑c∈Dn µc

n(Xn;λn), we
find

pn(Xn;λn) =
∑c∈An pn(Dc

n(Xn);λn)λ c
n(Dc

n(Xn))

∑c∈Dn M̃c
n(Xn;λn)

,

which, for example, is the case for quasi-reversible nodes.
Invoking Assumption 7.2.2 on the nominal departure ratesΛc

n(X;M) in the right-
hand side of the global balance equations (7.13) implies that for the global process
G(M), the total departure rate in each stateX does not change under time-reversal:

∑
c∈D0

Mc
0(X)+

N

∑
n=1

∑
c∈Dn

Mn(X)Nn(X) =

= ∑
c∈A0

Λc
0(X;M)+

N

∑
n=1

∑
c∈An

Λc
n(X;M)Nn(X). (7.18)

We are now ready to state the main theorem of this section.

Theorem 7.3.1 Assume that, for n= 1, . . . ,N, Xn ∈Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λc
n(Xn;M) = Λ̃c

n(Xn;λn).

Then the stationary distribution of the networkN is

π(x) = Π(G(x);M)
N

∏
n=1

πn(xn;λn)

pn(Gn(xn);λn)
, x∈ S. (7.19)

Observe that (7.15) and (7.16) place severe restrictions onthe departure rates from
a node in the local processes and the global process, and thusrelate the sets of
functionsM = (Mc

n : Gn(Sn)→ R+
0 ;c ∈ Dn,n = 1, . . . ,N) to the sets of functions

λn = (λ c
n : Gn(Sn)→R+

0 ;c∈An), n = 1, . . . ,N.
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Proof of Theorem 7.3.1.It is sufficient to show thatπ(x) solves the balance
equations for the network, that read when inserting the proposed form (7.19), and
dividing byπ(x):

∑
c∈D0

Mc
0(G(x))+

N

∑
n=1

Nn(G(x))∑
x′n

(

∑
c∈Dn

dc
n(xn,x

′
n)+ in(xn,x

′
n)

)

=
N

∑
n′=1

∑
c′∈Dn′

∑
c∈A0

Π(Tcc′
0n′ (G(x));M)

Π(G(x);M)
Nc′

n′ (T
cc′
0n′ (G(x)))Rc′c

n′0(T
cc′
0n′ (G(x)))

× pn′(Gn′(xn′);λn′)

pn′(Ac′
n′(Gn′(xn′));λn′)

(

∑
x′
n′

πn′(x
′
n′ ;λn′)

πn′(xn′ ;λn′)
dc′

n′(x
′
n′ ,xn′)

)

+
N

∑
n=1

∑
c∈An

∑
x′n

πn(x′n;λn)

πn(xn;λn)
ac

n(x
′
n,xn)

pn(Gn(xn);λn)

pn(Dc
n(Gn(xn));λn)

(

∑
c′∈D0

Π(Tcc′
n0 (G(x)))

Π(G(x))

×Mc′
0 (Tcc′

n0 (G(x)))Rc′c
0n (Tcc′

n0 (G(x)))+
N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
nn′ (G(x));M)

Π(G(x);M)
Nc′

n′ (T
cc′
nn′ (G(x)))

×Rc′c
n′n(T

cc′
nn′ (G(x)))

pn′(Gn′(xn′);λn)

pn′(A
c′
n′(Gn′(xn′));λn)

(

∑
x′
n′

πn′(x
′
n′ ;λn′)

πn′(xn′ ;λn′)
dc′

n′(x
′
n′ ,xn′)

)



+
N

∑
n=1

∑
x′n

πn(x′n)
πn(xn)

Nn(G(x))in(x
′
n,xn).

Invoking (7.4), (7.10), and (7.15), and (7.7), the first termon the right hand side
equals∑c∈A0

Λc
0(G(x);M). Invoking (7.4), (7.10), (7.15), (7.8), (7.16) and (7.11),

the second and third term in the right hand side equal:

N

∑
n=1

∑
c∈An

∑
x′n

πn(x′n;λn)

πn(xn;λn)
ac

n(x
′
n,xn)λ c

n(Dc
n(Xn);M)Nn(X).

Inserting these expressions in the right hand side, and invoking global balance for
the nodes (7.12), implies that it is sufficient to show that

∑
c∈D0

Mc
0(G(x))+

N

∑
n=1

∑
c∈Dn

∑
x′n

πn(x′n)
πn(xn)

dc
n(x
′
n,xn)Nn(Gn(xn))

=
N

∑
n=1

Nn(G(x)) ∑
c∈An

λ c
n(Gn(xn))+ ∑

c∈A0

Λc
0(G(x);M) (7.20)

Inserting (7.17) into (7.18) yields (7.20), which completes the proof. 2
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The decomposition of Theorem 7.3.1 does not establish a complete decompo-
sition of the nodes and the global process, in the sense that the state of the nodes
and the global state of the network are independent. Equation (7.19) states that the
detailed states of the nodes are independent, conditioned on the global state of the
nodes:

π(x)
Π(X;M)

=
N

∏
n=1

πn(xn;λn)

pn(Xn;λn)
.

The proof of Theorem 7.3.1 relies heavily on (7.14) but does not require addi-
tional properties ofpn(Xn;λn). An immediate generalisation of Theorem 7.3.1 is
obtained replacingpn(Xn;λn) by any function satisfying (7.14) .

Theorem 7.3.2 Let fn : Sn→ R+
0 be a function satisfying

∑
c∈An

λ c
n(Xn)+ ∑

c∈Dn

fn(Dc
n(Xn);λn)

fn(Xn;λn)
µc

n(D
c
n(Xn);λn)

= ∑
c∈Dn

µc
n(Xn;λn)+ ∑

c∈An

fn(Dc
n(Xn);λn)

fn(Xn;λn)
λ c

n(Dc
n(Xn)), (7.21)

and assume that the following conditions are satisfied:

Mc
n(Xn) =

fn(Dc
n(Xn);λn)

fn(Xn;λn)
µc

n(D
c
n(Xn);λn), (7.22)

Λc
n(Xn;M) =

fn(Dc
n(Xn);λn)

fn(Xn;λn)
λ c

n(Dc
n(Xn)). (7.23)

Then the stationary distributionπ(x) of the networkN is

π(x) = C−1Π(G(x);M)
N

∏
n=1

πn(xn;λn)

fn(Gn(xn);λn)
, x∈ S, (7.24)

with

C = ∑
x∈S

Π(G(x);M)
N

∏
n=1

πn(xn;λn)

fn(Gn(xn);λn)
.

For generalised quasi-reversible nodes conditions (7.22), (7.23) are satisfied with
fn(Xn;λn) = 1. In this case, a complete decomposition can be obtained from Theo-
rem 7.3.2.

As a consequence of Theorem 7.3.2, we can simplify the formula for the sta-
tionary distribution in case the local processes are extended quasi-reversible: then
fn(Xn) = 1 satisfies condition (7.21), and the following Corollary follows immedi-
ately from Theorem 7.3.2.

Corollary 7.3.3 Assume that the local processesLn(λn) are generalised quasi-
reversible, say with arrival ratesλ c

n(Xn) = λ̂ c
n and time-reversed arrival rates
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µc
n(Xn;λn) = µ̂c

n. Let Mc
n(Xn) be given by

Mc
n(Xn) =

{
µ̂c

n if Dc
n(Xn) ∈Gn(Sn),

0 otherwise.

If for all Xn with Dc
n(Xn) ∈Gn(Sn), Λc

n(Xn;M) = λ c
n, then the stationary distribution

of the networkN is given by

π(x) = C−1Π(G(x))
N

∏
n=1

πn(xn;λn), x∈ S,

with

C = ∑
x∈S

Π(G(x))
N

∏
n=1

πn(xn;λn).

Theorems 7.3.1, 7.3.2 and Corollary 7.3.3 require the values for the arrival rates
λn = (λ c

n : Gn(Sn)→ R+
0 ;c ∈ A0) that relate the local processes and the global

process. These arrival rates are the solution of the fixed point problem consisting of
the equations.

Corollary 7.3.4 (Fixed point equations for arrival rates: decomposition) The ar-
rival ratesλn = (λ c

n : Gn(Sn)→R+
0 ;c∈ A0) are a solution of the fixed point equa-

tions:
(7.12) πn = πn(λn)
(7.4) µc

n = µc
n(πn,λn)

(7.10) M̃c
n = M̃c

n(πn,µn,λn)
(7.15) M = M̃
(7.13) Π = Π(M)
(7.7) Λc

n = Λc
n(M,Π)

(7.16) Λ̃ = Λ
(7.11) λ = λ (Λ̃)

These equations may be solved using the following algorithm:

Step i: For n= 1, . . . ,N initialize with a starting value for̂λn for λn.
Step ii: Use (7.12), (7.4), (7.10) to obtaiñMc

n.
Step iii: Use (7.15), (7.13), (7.7) to obtainΛc

n.
Step iv: IfΛ̃c

n = Λc
n for c∈Dn, n = 1, . . . ,N then stop, andλn is obtained, else

use (7.11) to let

λ c
n(Xn) =

pn(Ac
n(Xn);λn)

pn(Xn;λn)
Λc

n(Ac
n(Xn);M).

and go to Step ii.

Notice that existence of a fixed point is an implicit assumption that we made for
the results of Theorems 7.3.1, 7.3.2 to be valid.
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The arrival rates and time-reversed arrival rates of our network depend on the
statex through the global stateG(x) only. For the network to satisfy Assumption
7.2.1 additional assumptions on the global state are required. Section 7.5 provides
examples of networks that have this structure.

7.4 Aggregation

This section considers aggregation of the nodes in our network. We first show that
under the conditions of Theorem 7.3.1, the global process isthe aggregation of the
network with respect to the global state, that is, for the analysis of the global network
the detailed behaviour of the nodes is not required. We then investigate under which
conditions the local processes are the aggregation of the network with respect to the
detailed state of a single node, that is, for the analysis of the detailed behaviour of a
single node the detailed behaviour of theothernodes is not required. It appears that
this requires some extra restrictions on the arrival rates:the local arrival rates should
equal the global arrival rates. Our generalisation resultsin an aggregation algorithm
that generalises the method developed by Marie in [20].

The following definition is adapted from Brandwajn [9].

Definition 7.5 (Aggregation).Consider two Markov chainsM1 andM2 with state
spacesS1 andS2, transition ratesq1(y1,y′1), y1,y′1 ∈ S1, andq2(y2,y′2), y2,y′2 ∈ S2,
and stationary distributionsπ1(y1), y1 ∈ S1, andπ2(y2), y2 ∈ S2. The Markov chain
M2 is said to be the aggregation ofM1 with respect to a functionh : S1→ S2 if the
following two conditions are satisfied:

π2(y2) = ∑
{y1∈S1:h(y1)=y2}

π(y1), y2 ∈ S2, (7.25)

π2(y2)q2(y2,y
′
2) = ∑

{y1,y′1∈S1:h(y1)=y2,h(y′1)=y′2}
π1(y1)q(y1,y

′
1), y2,y

′
2 ∈ S2. (7.26)

The definition of aggregation requires both the equilibriumdistribution and the
probability flows to match. Boucherie [3] refers to this formof aggregation as first
order equivalence. The intuition for Theorem 7.4.1 is encapsulated in (7.15), (7.16)
of Theorem 7.3.1:Mc

n(Xn) = M̃c
n(Xn;λn), Λc

n(Xn;M) = Λ̃c
n(Xn;λn). These equations

state that for the global process the arrival rate to noden equals the departure rate to
noden, as characterized via the time-reversed process, which expresses conservation
of probability flow.

Theorem 7.4.1 (Aggregation with respect to the global statefunction) Assume that,
for n = 1, . . . ,N, Xn ∈Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λc
n(Xn;M) = Λ̃c

n(Xn;λn).



7 Decomposition and Aggregation in Queueing Networks 331

Then the global processG(M) is the aggregation of the networkN with respect to
the global state function G: S→ Sg.

Proof. Condition (7.25) is almost immediate:

∑
{x:G(x)=X}

π(x) = Π(X) ∑
{x:G(x)=X}

N

∏
n=1

πn(xn;λn)

pn(Xn;λn)
= Π(X), X ∈ Sg.

For condition (7.26), we first consider a transition from global stateX to Tcc′
nn′ (X)

with n,n′ 6= 0,c∈Dn, andc′ ∈An′ . The aggregate probability flow for this transition
is

∑
{x,x′ : G(x) = X,

G(x′) = Tcc′
nn′ (G(x))}

Π(X;M)
N

∏
i=1

πi(xi ;λi)

pi(Xi ;λi)
dc

n(xn,x
′
n)Nn(X)Rcc′

nn′(X)ac′
n′(xn′ ,x

′
n′)

= Π(X;M)Nn(X)Rcc′
nn′(X) ∑
{xn,x′n : Gn(xn) = Xn,

Gn(x′n) = Dc
n(Xn)}

πn(xn;λn)

pn(Xn;λn)
dc

n(xn,x
′
n)Π(X)Nn(X)Rcc′

nn′(X)Mc
n(Xn),

which is the corresponding probability flow in the global processG(M). For tran-
sitions from stateX to stateTcc′

0n′ (X) and stateTcc′
n0 (X), condition (7.26) is proved

analogously. 2

Let us now study conditions for the local processes to be the aggregation of the
network with respect to the detailed state of a node. The multiplication factorNn(X)
in the transition rates for the network is not incorporated in the local processes, so
that we must setNn(X) = Nn(Xn). We will restrict the network to

Nn(X) = 1, n = 1, . . . ,N, X ∈ Sg.

For aggregation with respect to the nodes, we need additional conditions. To this
end, observe that Theorem 7.3.1 has been obtained under the condition that the
departure and time-reversed departure rates of the local processes equal the corre-
sponding rates in the global processes. Intuitively, for the local processes to be the
aggregation of the network with respect to the nodes, it is also required that the local
arrival rates equal the corresponding rates in the global process. Let us first specify
the arrival rates in the global process that will be used in the formulation of our
aggregation result.

Let λ̃ c
n(Xn) denote the mean classc∈ An arrival rate at noden in stateXn, n =

1, . . . ,N, of the global processG(M). Then
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λ̃ c
n(Xn) = ∑

Y:Yn=Xn

Π(Y;M)

Pn(Xn;M)



 ∑
c′∈D0

Mc′
0 (X)Rc′c

0n (X)+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′ (Xn′)R

c′c
n′n(X)





(7.27)

=
1

Pn(Xn;M) ∑
Y:Yn=Ac

n(Xn)

(

∑
c′∈D0

Π(Tcc′
n0 (Y))Mc′

0 (Tcc′
n0 (Y))Rc′c

0n (Tcc′
n0 (Y))

+
N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
nn′ (Y))Mc′

n′ (A
c′
n′(Yn′))R

c′c
n′n(T

cc′
nn′ (Y))




=
Pn(Ac

n(Xn);M)

Pn(Xn;M)
Λc

n(Ac
n(Xn);M), (7.28)

where the term

∑
c′∈D0

Mc′
0 (X)Rc′c

0n (X)+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′(Xn′)R

c′c
n′n(X)

in the first line (7.27) is the classc arrival rate at noden in stateX of the global pro-
cess, and the last equality follows from the definitions ofΛc

n(Xn;M) andPn(Xn;M).
Under the conditions (7.15), (7.16) of Theorem 7.3.1 the local classc∈An arrival

rateλ c
n(Xn) is related toΛc

n(Xn;M) by

λ c
n(Xn) =

pn(Ac
n(Xn);λn)

pn(Xn;λn)
Λc

n(Ac
n(Xn);M).

The following theorem shows that if this rate equals the corresponding ratẽλ c
n(Xn)

as specified in (7.28) for the global process, the local processes are the aggrega-
tion of the network with respect to the nodes. Note that this further implies that
the aggregate probabilitypn(Xn;λn) that the local process is in stateXn equals the
corresponding probabilityPn(Xn;M) for the global process.

Theorem 7.4.2 (Aggregation with respect to the detailed state of the nodes)Assume
that Nn(X) = 1 for all n and X, and that, for n= 1, . . . ,N, Xn ∈Gn(Sn),

Mc
n(Xn) = M̃c

n(Xn;λn)

Λc
n(Xn;M) = Λ̃c

n(Xn;λn).

Further assume that for n= 1, . . . ,N, Xn ∈Gn(Sn),

λ̃ c
n(Xn) = λ c

n(Xn). (7.29)

Then, for n= 1, . . . ,N, Xn ∈Gn(Sn),

Pn(Xn;M) = pn(Xn;λn) (7.30)
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and the local processLn is the aggregation ofN with respect to the aggregation
function h(x) = xn.

Proof. First observe that condition (7.29) implies that

pn(Ac
n(Xn);λn)

pn(Xn;λn)
=

Pn(Ac
n(Xn);M)

Pn(Xn;M)
.

Since bothpn(·) andPn(·) are probabilities overGn(Sn), it must be that (7.30) is
satisfied.

The aggregate probability that the state of noden in the network equalsxn is
given by

∑
{y:yn=xn}

π(y) = ∑
{y:yn=xn}

Π(G(y);M)
N

∏
i=1

πi(yi ;λi)

pi(Gi(yi);λi)

= ∑
{Y:Yn=Gn(xn)}

Π(Y;M)
πn(xn;λn)

pn(Gn(xn);λn)

= Pn(Gn(xn);M)
πn(xn;λn)

pn(Gn(xn);λn)
= πn(xn;λn),

the corresponding probability in the local process. Hence,condition (7.25) is satis-
fied.

It remains to prove that condition (7.26) is satisfied. For internal transitions, note
that the probability flow of an internal transition of noden from statexn to x′n in the
network is given by

∑
{y:yn=xn}

∑
{y′:y′n=x′n}

π(y)in(yn,y
′
n) = πn(xn;λn)in(xn,x

′
n).

For departure transitions, condition (7.26) is proved similarly. Let us now consider
a classc∈An arrival transition from statexn to statex′n. The probability flow of this
transition in the network is given by

∑
{y:yn=xn}

(

∑
c′∈D0

∑
{y′: y′n=x′n

G(y′)=Tc′c
0n (G(y))}

π(y)Mc′
0 (G(y))Rc′c

0n (G(y))ac
n(yn,y

′
n)

+
N

∑
n′=1

∑
c′∈Dn′

∑
{y′: y′n=x′n

G(y′)=Tc′c
n′n (G(y))}

π(y)dc′
n′(yn′ ,y

′
n′)R

c′c
n′n(G(y))ac

n(yn,y
′
n)

)

= πn(xn)a
c
n(xn,x

′
n) ∑
{Y:Gn(yn)=Gn(xn)}

Π(Y;M)
1

pn(Yn;λn)
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(

∑
c′∈D0

Mc′
0 (Y)Rc′c

0n (Y)+
N

∑
n′=1

∑
c′∈Dn′

Mc′
n′(Yn′)R

c′c
n′n(Y)

)

= πn(xn;λn)λn(Gn(xn))a
c
n(xn,x

′
n),

which is the corresponding rate in the local process. Note that the last equality is
obtained using (7.27) and (7.30). 2

Note that the conditions of Theorem 7.4.2 include those of Theorem 7.4.1. Thus
under the conditions of Theorem 7.4.2 both aggregations hold. Note also that the
decomposition (7.19) still holds: the stationary distribution of the network thus may
be factorised such that the local processes are aggregations of the network with
respect to the nodes, and the global process is the aggregation of the network with
respect to the global state.

Under the conditions of Theorem 7.4.2, the arrival ratesλn = (λ c
n : Gn(Sn)→

R+
0 ;c∈ A0) are a solution of a set of fixed point equations that comprisesthose of

Corollary 7.3.4 and in addition (7.29) and (7.30). To simplify this set of equations,
note that (7.30) implies that both (7.29):λ = λ̃ , and (7.16):Λ̃ = Λ are satisfied. We
have the following result.

Corollary 7.4.3 (Fixed point equations for arrival rates: aggregation) Under the
conditions of Theorem 7.4.2, the arrival ratesλn = (λ c

n : Gn(Sn)→R+
0 ;c∈A0) are

a solution of the fixed point equations:

(7.12) πn = πn(λn)
(7.4) µc

n = µc
n(πn,λn)

(7.10) M̃c
n = M̃c

n(πn,µn,λn)
(7.15) M = M̃
(7.13) Π = Π(M)

(7.28) λ̃ c
n = λ̃ c

n(Λc
n)

(7.30) Pn = pn

λ c
n(Xn) = Pn(Ac

n(Xn);M)
Pn(Xn;M)

Λc
n(Ac

n(Xn);M).

These equations may be solved using the following algorithm:

Step i: For n= 1, . . . ,N initialize with a starting value for̂λn for λn.
Step ii: Use (7.12), (7.4), (7.10) to obtaiñMc

n.
Step iii: Use (7.15), (7.13), (7.28) to obtainλ̃ c

n.
Step iv: If Pn(Xn) = pn(Xn) for c∈Dn, Xn ∈Gn(Sn), n= 1, . . . ,N then stop, and
λn is obtained, else let

λ c
n(Xn) =

Pn(Ac
n(Xn);M)

Pn(Xn;M)
Λc

n(Ac
n(Xn);M)

and go to Step ii.

Remark 7.2 (Marie’s decomposition and aggregation method). The algorithm of
Corollary 7.4.3 requires Assumptions 7.2.1 and 7.2.2. Observe, however, that the
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algorithm can also be evaluated if these assumptions do not hold by replacing for-
mula (7.10) for the mean local departure rate by (7.9), and formula (7.28) for the
mean global arrival rates by (7.27). This gives an approximation algorithm that ex-
tends Marie’s method [20] to include state-dependent routing, general global states
and to global processes that do not satisfy local balance. 2

7.5 Examples

This section provides some examples to illustrate the results of Sections 7.3 and
7.4. The first three examples relate our results to known cases from the literature
that have motivated the results of this paper. Section 7.5.1describes a network of
quasi-reversible nodes linked via state-dependent routing as studied in [3]. Section
7.5.2 describes biased local balance and a network with negative customers and
signals as studied in [12]. The third example in Section 7.5.3 is concerned with pull
networks as studied in [4] for which the partial balance equations are different from
the standard equations for Jackson type networks. Finally,Section 7.5.4 provides
a novel example of assembly networks. We obtain novel product form results and
novel decomposition results.

7.5.1 Quasi-reversible nodes linked via state-dependent routing

Consider a network ofN interacting nodes containing customers of a single class,
sayAn = Dn = {1} for all n = 0, . . . ,N. Let the global stateXn of noden = 1, . . . ,N
represent the total number of customers in noden. Let A1

n(Xn) = Xn +1, D1
n(Xn) =

Xn− 1, i.e. an arriving customer increases the number of customers by one, and
a departing customer decreases the number of customers by one. For simplicity,
we also assume thatGn(Sn) = {0, . . . ,M}, whereM may represent infinity. This
assumption, however, is not essential for the results below.

In (7.14) we have shown that for the local processLn(λn) the sum of the total
arrival rates and the total mean departure rates in each global stateXn does not
change under time reversal. This implies for a network containing only a single
class of customers that the local time-reversed arrival rates equal the time-forward
arrival rates:

µ1
n(Xn;λn) = λ 1

n (Xn) n = 1, . . . ,N. (7.31)

To see this, first note that forXn = 0, the result follows sincepn(−1) = 0. Now
supposeµ1

n(Xn;λn) = λ 1
n (Xn) for Xn < M. Then, again by (7.14),µ1

n(Xn +1;λn) =
λ 1

n (Xn +1), sincepn(Xn +1) > 0 by the ergodicity of the local processes.
Equation (7.31) states that the outside of the nodes in the local process should

satisfy local balance (with possibly state-dependent arrival rates). In the following
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lemma we show that this property is equivalent to quasi-reversibility (i.e., with con-
stant arrival rates).

Lemma 7.5.1 Assume thatAn = Dn = {1} for all n = 0, . . . ,N. Let the global state
Xn of node n= 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn +1, D1
n(Xn) = Xn−1. Thenµ1

n(Xn;λn) = λ 1
n (Xn) if and only if node n

is quasi-reversible when the arrival rate equals one.

Proof. Suppose noden is quasi-reversible with arrival rate one, andπn(xn;1) is its
stationary distribution. By substitution in the balance equations, we obtain that

πn(xn;1)
Gn(xn)−1

∏
y=0

λ 1
n (y) (7.32)

is the stationary distribution of noden with arrival rateλ 1
n (Xn), and thatµn(Xn;λn)=

λn(Xn). Similarly, if µn(Xn;λn) = λn(Xn) and noden has stationary distribution
πn(xn;λn), then

πn(xn;λn)

(
Gn(xn)−1

∏
y=0

λ 1
n (y)

)−1

is the stationary distribution of noden with arrival rate 1, andµn(Xn;1) = 1. 2

Let us now consider the implications of a single class with global state represent-
ing the number of customers in the global process. By Lemma 7.5.1 we immediately
see that

Λc
n(Xn;M) = Mc

n(Xn),

since for (generalised) quasi-reversible nodes we may invoke Theorem 7.3.2 with
fn(Xn;λn) = 1, or Corollary 7.3.3. The global process thus must satisfy local bal-
ance. The following lemma shows that the choice of the departure ratesMc

n(Xn) does
not effect the local balance of the global process: local balance of the global process
is a property that is only determined by the coupling of the nodes, and not by the
nodes themselves.

Lemma 7.5.2 Assume thatAn = Dn = {1} for all n = 0, . . . ,N. Let the global state
Xn of node n= 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn + 1, D1
n(Xn) = Xn− 1. Then M1

n(Xn) = Λ1
n (Xn;M) if and only if the

global process satisfies local balance when Mn(Xn) = 1.

Proof. Suppose the global process satisfies local balance withMn(Xn) = 1, and let
Π(X;1) denote the stationary distribution whenMn(Xn) = 1. Then it is readily ver-
ified by substitution in the balance equations for the globalprocess that

Π(X;1)
N

∏
n=1

(
Xn

∏
y=1

Mn(y)

)−1

(7.33)
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is the stationary distribution for the global process with departure ratesMn(Xn), and
thatΛn(Xn;M) = Mn(Xn). Similarly, if Π(X;M) is the stationary distribution of the
global process with departure ratesMn(Xn), andΛn(Xn;M) = Mn(Xn), then

Π(X;M)
N

∏
n=1

(
Xn

∏
y=1

Mn(y)

)

is the stationary distribution for the global process with departure rates equal to one,
and satisfies local balance for the global process. 2

We summarize the above results in the following theorem, that states the condi-
tions on the nodes and the local processes of [3]. We want to stress that the results
presented above need all conditions stated here. Theorem 7.5.3 generally will not
hold for multiclass queueing networks, networks with batchmovements, or net-
works with negative customers.

Theorem 7.5.3 Assume thatAn = Dn = {1} for all n = 0, . . . ,N. Let the global
state Xn of node n= 1, . . . ,N represent the total number of customers in node n.
Let A1

n(Xn) = Xn+1, D1
n(Xn) = Xn−1. The conditions of Theorems 7.3.1 and 7.3.2,

and of Corollary 7.3.3 are satisfied if and only if the nodes are quasi-reversible with
arrival rate one, and the global process satisfies local balance with departure rates
one.

If λ 1
n (Xn) = µ1

n(Xn;λn), then any functionfn satisfies (7.21). Hence, Theorem
7.3.2 allows the global process to be analysed by arbitrary departure rate functions.
From (7.32) and (7.33) we find that the stationary distribution in Theorem 7.3.2
takes the form

CΠ(G(x);1)
N

∏
n=1

(
Gn(xn)

∏
y=1

λ 1
n (y−1)

fn(y−1)

fn(y)

)−1
πn(xn;1)

fn(Gn(xn))

Gn(xn)−1

∏
y=0

λ 1
n (y)

= C
N

∏
n=1

fn(0)Π(G(x);1)
N

∏
n=1

N

∏
n=1

πn(xn;1),

in correspondence with Corollary 7.3.3.

7.5.2 Biased local balance

For the global process, we have assumed in Assumption 7.2.2 that the nominal de-
parture rate of classc customers from noden in stateX of the stationary time-
reversed process ofG(M) depends on the global stateXn only, i.e.,

Λc
n(Xn;M)Nn(X) = ∑

c′∈D0

Π(Tcc′
n0 (X);M)

Π(X;M)
Mc′

0 (Tcc′
n0 (X))Rc′c

0n (Tcc′
n0 (X))
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+
N

∑
n′=1

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)

Π(X;M)
Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)).

We have shown that, ifAn = Dn, andΛc
n(Xn;M) = Mc

n(Xn), Xn ∈ Gn(Sn), c∈ An,
n = 1, . . . ,N, then this assumption implies that the global process satisfies local
balance (where, for notational convenience,Nc

0(X) = 1 for all c,X)

Mc
n(Xn)Nn(X)Π(X;M)

=
N

∑
n′=0

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)),

otherwise we do not have equality. Following Chao and Miyazawa [12] we introduce
biased local balance,and say thatΠ(X;M) satisfies biased local balance with bias
γc
n(X;M) if

(Mc
n(Xn)Nn(X)+Γ c

n (X;M))Π(X;M)

=
N

∑
n′=0

∑
c′∈Dn′

Π(Tcc′
nn′ (X);M)Mc′

n′ (A
c′
n′(Xn′))N

c′
n′ (T

cc′
nn′ (X))Rc′c

n′n(T
cc′
nn′ (X)), (7.34)

Our definition of biased local balance is closely related to the concept of biased
local balance, introduced by Chao and Miyazawa [12]. However, in [12] the bias is
required to be constant, and thus the existence of the bias imposes conditions on the
global process. By allowing the bias to be state-dependent,the bias can be defined
for every global process.

Note that global balance implies that

N

∑
n=0

∑
c∈An∪Dn

Γ c
n (X;M) = 0, X ∈ Sg. (7.35)

Further note that Assumption 7.2.2 implies that

Γ c
n (X;M) = (Λc

n(Xn;M)−Mc
n(Xn))Nn(X), (7.36)

i.e., we have a strict condition on the state dependence of the bias.
We now define the bias of the local process as the difference inarrival and de-

parture rates to a node. For the local processesLn(λn), we callγc
n(xn;λn) thebias of

node n with respect to the outside and c, if for all xn ∈ Sn

πn(xn;λn)(λ c
n(Gn(xn))+ γc

n(xn;λn)) = ∑
x′n

πn(x
′
n;λn)d

c
n(x
′
n,xn). (7.37)

Similar to the bias of the global process, the bias indicatesthe unbalance in local
balance equations: ifγc

n(xn;λn) = 0, equation (7.37) corresponds to noden being
locally balanced with respect to its outside and typeu, and thus, if in additionλ c

n
is a constant function, (7.37) corresponds to noden being quasi-reversible in the
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definition of [18]. Whenγc
n(xn;λn) is constant, but not necessarily zero, andλ c

n is
a constant function, (7.37) states that noden is quasi-reversible according to the
generalised definition of [11]. Again, allowing the bias to be state-dependent, it can
be defined for every noden, without requiring conditions on this node. Assumption
7.2.1 implies that

γc
n(xn;λn) = µc

n(Gn(xn);λn)−λ c
n(Gn(xn)) (7.38)

From our assumptions, invoking (7.10), (7.15), (7.11), and(7.16) we have obtained
(7.17), that may be rewritten as

Nn(X)γc
n(Xn;λn) =−Γ c

n (X;M)

i.e., the bias of the local process equals the bias of the global process. Our results
of Section 7.3 thus show that if the bias of the nodes is suitably compensated by
the bias of the global process, the network allows a decomposition of the stationary
distribution.

Chao and Miyazawa [12] introduced the concept of biased local balance to extend
the definition of quasi-reversibility allowing the input and output rate of customers
at the nodes to differ from each other. The model of [12] has noglobal state for the
nodes, sayGn = 0. Routing then is necessarily state-independent, and the multipli-
cation factorsNn(X) may be omitted, i.e., we may setNn(X) = 1. Removing the
global state also implies removing the state-dependence ofthe arrival and departure
rates. The following theorem summarizes the product form result of [12].

Theorem 7.5.4 Assume that Xn = 0 for all n. Then the conditions of Theorems 7.3.1,
7.3.2 and Corollary 7.3.3 are satisified if and only if each node is generalised quasi-
reversible, say witĥλ c

n and µ̂c
n, and the following traffic equations hold:

λ c
n =

N

∑
n′=0

∑
c′∈D′n

µc
nRc′c

n′n (7.39)

7.5.3 A pull network

In a Jackson network a transition is initiated by the serviceof a customer at a node,
and subsequently this customer is routed to its destination. This behaviour is some-
times referred to as push network: a customer is pushed from one queue to the next
queue. We now consider a pull network in which a transition isinitiated by the
destination node that pulls a customer from another node.

Consider a network ofN interacting nodes containing customers of a single class,
sayAn = Dn = {1} for all n = 0, . . . ,N. Let the global stateXn of noden = 1, . . . ,N
represent the total number of customers in noden. Let A1

n(Xn) = Xn−1, D1
n(Xn) =

Xn+1. A departure from noden increases the number of customers in noden by one,
and with probabilityR11

nn′(X) decreases the number of customers in noden′ by one:
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noden thus pulls a customer with probabilityR11
nn′(X) from noden′. For simplicity,

we also assume thatGn(Sn) = {0, . . . ,M}, whereM may represent infinity. The
following results are easily proved in the same way as in Section 7.5.1.

First, we may show thatµ1
n(Xn;λn)= λ 1

n (Xn) for all n= 1, . . . ,N, andµ1
n(Xn;λn)=

λ 1
n (Xn) if and only if noden is quasi-reversible when the arrival rate equals one.

Furthermore, we have thatM1
n(Xn) = Λ1

n (Xn;M) if and only if the global process
satisfies local balance whenMn(Xn) = 1. Summarizing, we have the following re-
sult.

Theorem 7.5.5 Assume thatAn = Dn = {1} for all n = 0, . . . ,N. Let the global
state Xn of node n= 1, . . . ,N represent the total number of customers in node n. Let
A1

n(Xn) = Xn− 1, D1
n(Xn) = Xn + 1. The conditions of Theorem 7.3.1 are satisfied

if and only if the nodes are quasi-reversible with arrival rate one, and the global
process satisfies local balance with departure rates one.

Thus, the seemingly distinct formulations of the local balance equations for push
and pull networks that are described in [4] are a consequenceof the same notion of
local balance.

7.5.4 An assembly network

Consider a simple assembly network consisting of three nodes. Node 1 and node 2
each represent a subnetwork, on which we make no other assumption than that they
produce units at nominal rate one. The units produced by node1 are referred to as
class 1 units; the units that are produced by node 2 as class 2 units. Both nodes send
their units to node 3, where a class one and a class two unit areassembled into a
class 3 unit. Assembly takes an exponentially distributed time with meanβ−1 < 1,
and clearly requires that both a class 1 and a class 2 unit are present at node 3.

We assume the following control mechanism in the network. Ifthere are no class
1 units in node 3, node 2 is slowed down by a factorφ < 1. Similarly, if no class
2 units are present in node 3, node 1 is slowed down by the same factorφ . This
control mechanism thus tries to save production costs by producing less units when
these units do not directly lead to output. We will show that for a specific choice of
φ the network has a product from solution, and the time-reversed class 3 arrival rate
is constant.

Let us first consider the local processes. For node 1 and node 2we need no
arrival transitions. We will omit theλn, n = 1,2, from the notation. The stationary
distributionsπ1 andπ2 of the local processes for noden = 1,2 thus are the unique
distributions satisfying

πn(xn) ∑
x′n∈Sn

(
in(xn,x

′
n)+dn

n(xn,x
′
n)
)

= ∑
x′n∈Sn

πn(x
′
n)
(
in(x

′
n,xn)+dn

n(x
′
n,xn)

)
.

By the assumption that nodes 1 and 2 produce units at nominal rate one, we have
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∑
x′n∈Sn

πn(x′n)
πn(xn)

dn
n(x′n,xn) = 1.

Therefore, no global state for node 1 and 2 is required (note that the routing is
fixed, and the control mechanism is only influenced by node 3).As the global state
for nodes 1, 2 is not required, we may setX1 = X2 = 0, and, hence,p1(0) = 1,
p2(0) = 1.

The state of node 3 is described byx3 = (u1,u2), with un denoting the number
of classn units in node 3. Since upon arrival of a classn = 1,2 unit, the number of
classn units is increased by one, arrival transitions are given by

an
3(xn,xn +en) = 1,

with en denoting then-th unit vector of dimension 2. Departure transitions take
place at rateβ , as long as there are both type 1 and a type 2 units present in node 3.
As a class 3 departure reduces the number of class 1 and class 2units by one, the
departure transitions are thus given by

d3
3((u1,u2),(u1−1,u2−1)) = β , u1,u2 > 0.

Internal transitions do not occur, as the service times of node 3 are exponential. To
model the desired control mechanism, we define the global state of node 3 equal to
the detailed state. Note that this is allowed by the exponential service times, and the
unique changes of the state at arrival and service transitions. Thenp3 = π3 and the
functionsAc

3(X3) andDc
3(X3) for c = 1,2,3 are given by

Ac
3(X3) =

{
X3 +ec for c = 1,2,
X3 +e1+e2 for c = 3,

Dc
3(X3) =

{
X3−ec for c = 1,2,
X3−e1−e2 for c = 3.

To define a local process for node 3, we need an initial guess for the arrival rates of
class 1 and class 2 units. An obvious choice is the following.

λ 1
3 ((u1,u2)) =

{
φ for u2 = 0
1 otherwise

(7.40)

λ 2
3 ((u1,u2)) =

{
φ for u1 = 0
1 otherwise

(7.41)

The stationary distribution of the resulting local processL3(λ3) is provided in the
following lemma for a specific choice ofφ .

Lemma 7.5.6 Letλ3 = (λ 1
3 ,λ 2

3 ) be given by (7.40) and (7.41). Forφ = 1
2β α2, with

α =−1
2

+
1

2β
√

β 2 +8β , (7.42)
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the stationary distributionπ3 of the local processL3(λ3) is given by

π3((u1,u2);λ3) = (1−α)2αu1+u2. (7.43)

Under these conditions, the time-reversed class3 arrival rate µ3
3((u1,u2);λ3) is

constant and equal toβ α2.

Proof. As (7.43) sums to one, it is sufficient to prove that (7.43) satisfies the balance
equations. Foru1,u2 > 0, these equations are given by

π((u1,u2);λ3)(2+ β )

= π((u1−1,u2);λ3)+ π((u1,u2−1);λ3)+ β π((u1+1,u2+1);λ3).

Substitution of (7.43) and dividing by(1−α2)αu1+u2−1 results in

α(2+ β ) = 2+ β α3.

This implies that eitherα = 1, or

β α2 + β α−2 = 0. (7.44)

As α, as given by (7.42) solves this equation, the proposed form for π3 satisfies the
balance equations foru1,u2 > 0. Foru1 = u2 = 0, the balance equations are easily
seen to be satisfied forφ = 1

2β α2. Foru2 = 0 andu1 > 0, the balance equations are
given by

π3((u1,0);λ3)(φ +1) = π((u1 +1,1);λ3)β + π((u1−1,0);λ3)φ .

Substituting (7.43) and dividing by(1−α)2αu1−1, we have

α(φ +1) = α3β + φ .

As φ = 1
2β α2, this equation is equivalent to (7.44) and thus satisfied by the form of

α. As the model is symmetric inu1 andu2, the first statement is proved.
By definition, the time-reversed arrival rate is given by

µn((u1,u2);λ3) =
π3((u1 +1,u2+1);λ3)

π3((u1,u2);λ3)
β .

The second statement of the Theorem now follows from (7.43). 2

Let us now consider the network and the global process. The routing functions
are obviously given byR11

13 = 1, R22
23 = 1 andR33

30 = 1. Furthermore, the control
mechanism is incorporated in the model by

N1((u1,u2)) =

{
φ for u2 = 0
1 otherwise
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N2((u1,u2)) =

{
φ for u1 = 0
1 otherwise,

andN3((u1,u2)) = 1. Note that we have defined no global state for node 1 and 2, and
thus the global state of the network is given by the global state of node 3. According
to Theorem 7.3.1, the departure rate function are given byM1

1(0) = 1, M2
2(0) = 1,

and using Lemma 7.5.6 we find

M3
3((u1,u2)) =

π3((u1−1,u2−1);λ3)

π3((u1,u2);λ3)
α2 =

{
β for u1,u2 > 0
0 otherwise

Constructing the rates of the global process by Definition 7.3, and using the defini-
tion of the time-reversed departure rates of the global process, we obtain the follow-
ing lemma.

Lemma 7.5.7 The global process equals the local process for node3 and satisfies
Assumption 7.2.2 with

Λ1
3 ((u1,u2);M) =

{
φα−1 for u2 = 0,
α−1 otherwise,

Λ2
3 ((u1,u2);M) =

{
φα−1 for u1 = 0,
α−1 otherwise.

According to Theorem 7.3.1, the class 1 arrival rate of the local process for node
3 corresponding withΛ1

3 ((u1,u2);M) should be equal to

p3((u1 +1,u2);λ3)

p3((u1,u2);λ3)
Λ1

3 ((u1,u2);M) =

{
φ for u2 = 0,
1 otherwise.

Similarly, the local class 2 arrival rate should be equal toφ for u1 = 0 and equal to
1 otherwise. Hence, our initial guess for these local arrival rates was correct, and by
Theorem 7.3.1 and Lemma 7.5.6, we have the following result.

Theorem 7.5.8 The stationary distribution of the assembly network is of product-
form: π1(x1)π2(x2)π3(x3). The time-reversed class3 arrival rate of the network is
constant and equalsβ α2. 2
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22. Towsley, D. (1980) Product form and local balance in queueing networks.Journal of the ACM,

27, 323–337.
23. H. Vantilborgh, Exact aggregation in exponential queueing networks, J. A. C. M. 25 (1978)

620-629.
24. J. Walrand, A note on Norton’s theorem for queueing networks, J. Appl. Prob. 20 (1983) 442-

444.
25. J. Walrand and P. Varaiya, Interconnections of Markov chains and quasi-reversible queueing

networks, Stoch. Proc. Appl. 10 (1980) 209-219.
26. Whittle, P. (1967) Nonlinear migration processes.Bull. Inst. Int. Statist.42, 642-647.
27. Whittle, P. (1968) Equilibrium distributions for an open migration process.J. Appl. Prob.5,

557-571.
28. P. Whittle, Systems in stochastic equilibrium, Wiley (1986).



Chapter 8
Stochastic Comparison of Queueing Networks

Ryszard Szekli

Abstract We recall classical queueing networks and their stochasticmonotonicity
properties as a special case of a general stochastic ordering theory for Markov pro-
cesses. As a consequence of stochastic monotonicity we present stochastic bounds
in transient and stationary conditions for the queue lengthprocesses, and some de-
pendence and ordering properties for sojourn times in networks. We overview prop-
erties of throughputs in networks in connection with stochastic orderings. Finally
we concentrate on dependence orderings for queueing networks with a special at-
tention on the role of routing as a parameter influencing correlation structures in
networks. Some connections to the problem of speed of convergence to stationarity
via spectral gaps are pointed out.

8.1 Introduction

Classical network theory. A. K. Erlang developed the basic foundations of teletraf-
fic theory long before probability theory was popularized oreven well developed.
He established many of principal results which we still use today. The 1920’s were
basically devoted to the application of Erlang’s results (Molina [64], Thornton Fry
[29]). Felix Pollaczek [70] did further pioneering work, followed by Khintchine [42]
and Palm [67]. It was until the mid 1930’s, when Feller introduced the birth-death
process, that queueing was recognized by the world of mathematics as an object
of serious interest. During and following World War II this theory played an impor-
tant role in the development of the new field of operations research, which seemed to
hold so much promise in the post war years. The frontiers of this research proceeded
into far reaches of deep and complex mathematics. Not all of these developments
proved to be useful. The fact that one of the few tools available for analyzing the

Ryszard Szekli
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performance of computer network systems is queueing theorylargely stimulated de-
velopment of it. Important contributions in 1950’s and 60’sare among others due to
V. E. Benes , D. G. Kendall , D. R. Lindley , S. Karlin and J. L. McGregor, R. M.
Loynes , J. F. C. Kingman, L. Takacs, R. Syski, N. U. Prabhu andJ. W. Cohen. The
literature grew from ”solutions looking for a problem” rather than from ”problems
looking for a solution”, which remains true in some sense nowadays. The practical
world of queues abounds with problems that cannot be solved elegantly but which
must be analyzed. The literature on queues abounds with ”exact solutions”, ”exact
bounds”, simulation models, etc., with almost everything but little common sense
methods of ”engineering judgment”. It is very often that engineers resort to using
formulas which they know they are using incorrectly, or run to the computer even
if they need only to know something to within a factor of two. There is a need for
approximations, bounds, heuristic reasoning and crude estimates in modelling. The
present chapter is an overview of methods based on stochastic ordering which are
useful in obtaining comparisons and bounds. Early other efforts following the line of
finding estimates are formulated in Newell [66], and Gross, Harris [32] where fluid
and diffusion approximations were introduced. The theory of weak convergence has
been a strong impetus for a systematic development of limit theorems for queue-
ing processes (Whitt [99]). Point processes have played an important role in the
description of input and output processes. Palm measures and Palm-martingale cal-
culus (see e.g. Baccelli and Bremaud [4]) still play active role in stochastic network
modelling not only because they are indispensable as a tool for solving stability
questions but also because the Palm theory proved to be an appropriate tool to for-
malize arguments while proving dependence properties of queueing characteristics
and showing bounds on them, as it will be presented in this chapter. In more recent
literature, martingale calculus influences modelling of fluid flow queues but this is
another topic not touched in this chapter.

Traffic processes. Traffic is a key ingredient of queueing systems. While tra-
ditional analytical models of traffic were often devised andselected for the ana-
lytical tractability they induced in the corresponding queueing systems, this selec-
tion criterion is largely absent from recent (internet) traffic models. In particular,
queueing systems with offered traffic consisting of autoregressive type processes
or self-similar processes are difficult to solve analytically. Consequently, these are
only used to derive simulation models. On the other hand somefluid models are
analytically tractable, but only subject to considerable restrictions. Thus the most
significant traffic research problem is to solve analytically induced systems, or in
the absence of a satisfactory solution, to devise approximate traffic models which
lead to analytically tractable systems. Comparison of complex systems with simpler
ones or finding simple bounds on sojourn times or throughput seems to be important.
We shall stress this point in the present chapter.

Traditional traffic models (renewal, Markov, autoregressive, fluid) have served
well in advancing traffic engineering and understanding performance issues, pri-
marily in traditional telephony. The advent of modern high speed communications
networks results in a highly heterogeneous traffic mix. The inherent burstiness of
several important services makes more noticeable some serious modelling inade-
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quacies of traditional models, particularly in regard to temporal dependence. This
situation has brought about renewed interest in traffic modelling and has driven the
development of new models. Statisticians are now aware thatignoring long range
dependence can have drastic consequences for many statistical methods. However
traffic engineers and network managers will only be convinced of the practical rele-
vance of fractal traffic models by direct arguments, concerning the impact of fractal
properties on network performance. Thus fractal traffic (stochastic modelling, sta-
tistical inference) has been a new task for researchers. While non-fractal models
have inherently short-range dependence, it is known that adding parameters can
lead to models with approximate fractal features. A judicious choice of a traffic
model could lead to tractable models capable of approximating their intractable
counterparts (and may work for some performance aspects). Therefore there is still a
need to study traditional classical queueing network models. It is worth mentioning
that long range dependence properties of traffic processes can be basically different
when viewed under the continuous time stationary regime versus the Palm station-
ary regime therefore it is once again important to use the Palm theory.

Classical Networks. The networks described by Kelly [40], by Jackson [36] and
by Gordon-Newell [66] are classical. These networks still remain in the range of
interest of many researchers as basic tractable models, because of many interest-
ing features such as product form, insensitivity, Poisson flows: Burke’s [9], product
form for sojourn times (see Serfozo [76] where Palm measures, stochastic inten-
sities and time reversal are utilized). Large scale networks are interesting from a
topological point of view. Internet seen as a random graph has its vertex distribution
following a power law. This is a surprising fact stimulatingresearches to use random
graph theory, spectral graph theory and other methods to build new models, how-
ever researching classical models with ”large” parametersremains to be important.
One of the most important features of classical networks is awidespread property of
being in some sense stochastically monotone. Various monotonicity and stochastic
ordering results for queues are scattered in many books and very numerous papers
in the existing literature, see for example parts of books byBaccelli and Bremaud
[4], Chen and Yao [14], Glasserman and Yao [30], Last and Brandt [49], Müller and
Stoyan [65], Ridder [73], Shaked and Shanthikumar [77], Szekli [88], Van Doorn
[91] among others.

The number of articles on various aspects of stochastic ordering for queueing sys-
tems is so large that a task of over-viewing them does not seemto be a reasonable
one. Therefore, this chapter concentrates only on results which are essentially for
multi-node networks, excluding pure single systems results. Even with this restric-
tion this text is certainly not complete in any sense. Formaldefinitions of classical
networks models are recalled in order to unify notation. Networks with breakdowns
are less known and the product formula for them is rather new.

We shall use notation marked with tilde for open networks in order to avoid
misunderstanding in formulations where both open and closed networks appear. It
is useful especially for routeing matrices, since there aresome subtle differences
between them for open and closed systems.
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It is very often that for simple models even elementary questions are not easy to
answer. In order to illustrate this point consider a simple example of an open queue-
ing network which is the Simon–Foley [87] network of single server queues, see Fig.
8.1. A customer traversing path(1,2,3) can be overtaken by customers proceeding
directly to node 3 when departing from node 1. This is one of the reasons why the
traffic structure in a network can be very complicated and noteasy to analyze. Simon
and Foley [87] proved that the vector(ξ1,ξ2,ξ3) of the successive sojourn times for
a customer traversing path(1,2,3) has positively correlated componentsξ1 andξ3.
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Fig. 8.1: The Simon–Foley network with overtaking due to thenetwork topology

While the Simon–Foley network provides us with an example where overtaking
is due to the topological structure of the network, an early example of Burke [11]
(see Fig. 8.2) shows that overtaking due to the internal nodestructure prevents so-
journ times on a linear path from independence as well: a three–station path(1,2,3)
with a multiserver node 2 (m2 > 1) has dependent componentsξ1 andξ3.
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Fig. 8.2: The tandem network with overtaking due to the internal node structure

The question whether on the three–station path of the Simon–Foley network the
complete sojourn time vector(ξ1,ξ2,ξ3) is associated remains unanswered. We shall
give some related results on sojourn times later in this chapter, also for closed net-
works. Before doing this we shall recall a general description of classical queueing
networks, and shall discuss in a detail the topic of stochastic monotonicity of net-
works which is a basic property connected with stochastic comparison of networks.
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8.1.1 Jackson networks

Consider aJackson network which consists ofJ numbered nodes, denoted by
J = {1, . . . ,J}. Station j ∈ J, is a single server queue with infinite waiting room
under FCFS (First Come First Served) regime. Customers in the network are indis-
tinguishable. There is an external Poisson arrival stream with intensityλ > 0 and
arriving customers are sent to nodej with probability r̃0 j , ∑J

j=1 r̃0 j = r ≤ 1. The
quantity ˜r00 := 1− r is then the rejection probability with that customers immedi-
ately leave the network again. Customers arriving at nodej from the outside or from
other nodes request a service time which is exponentially distributed with mean 1.
Service at nodej is provided with intensityµ j(n j) > 0 (µ j(0) := 0), wheren j is
the number of customers at nodej including the one being served. All service times
and arrival processes are assumed to be independent.

A customer departing from nodei immediately proceeds to nodei with probabil-
ity r̃ i j ≥ 0 or departs from the network with probability ˜r i0. The routing is indepen-
dent of the past of the system given the momentary node where the customer is. Let
J0 := J∪{0}. We assume that̃R := (r̃ i j , i, j ∈ J0) is irreducible.

Let X̃j(t) be the number of customers present at nodej at timet ≥ 0. ThenX̃(t) =
(X̃1(t), . . . , X̃J(t)) is the joint queue length vector at time instantt ≥ 0 andX̃ :=
(X̃(t), t ≥ 0) is the joint queue length process with state space(E,≺) := (NJ,≤J)
(where≤J denotes the standard coordinate-wise ordering,N = {0,1,2, . . .}).

The following theorem is classical (Jackson [36]).

Theorem 8.1.1 Under the above assumptions the queueing processX̃ is a Markov
process with the infinitesimal operator QX̃ = (qX̃(x,y) : x,y∈ E) given by

qX̃(n1, . . . ,ni , . . . ,nJ;n1, . . . ,ni +1, . . . ,nJ) = λ r̃0i

and for ni > 0

qX̃(n1, . . . ,ni , . . . ,nJ;n1, . . . ,ni−1, . . . ,nJ) = µi(ni)r̃ i0,

qX̃(n1, . . . ,ni , . . . ,n j , . . . ,nJ;n1, . . . ,ni−1, . . . ,n j +1, . . . ,nJ) = µi(ni)r̃ i j .

Furthermore

qX̃(x,x) =− ∑
y∈E\{x}

qX̃(x,y) and qX̃(x,y) = 0 otherwise.

The parameters of a Jackson network are: the arrival intensity λ , the routing ma-
trix R̃ (with its routing vectorη̃), the vector of service ratesµ = (µ1(·), . . . ,µJ(·)),
and the number of nodesJ. We shall use(λ ,R̃/µ/J) to denote such a Jackson net-
work.
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8.1.2 Gordon-Newell networks

By a Gordon-Newell network we mean a closed network withN ≥ 1 customers
cycling. The routing of the customers in this network is Markovian, governed by an
irreducible stochastic matrixR= (r i j ,1≤ i, j ≤ J). The Gordon-Newell network
processX, denoting the numbers of customers at nodes, with state space EN =
{n = (n1, . . . ,nJ) : n j ∈ {0,1, . . .}, j = 1, . . . ,J,n1 + . . .+ nJ = N} is a generalized
migration process with the following transition rates:

qX(n,n−ei +ej) = r i j µi(ni), ni ≥ 1,

andqX(n,n′) = 0 for all other states, whereej is the j-th base vector inRJ.
We assume that every node can be reached from any other node ina finite num-

ber of steps with positive probability. This ensures that the set of routing (traffic)
equations

η j =
J

∑
i=1

ηir i j , j = 1, . . . ,J, (8.1)

has a unique probability solution which we denote byη = (η j : j = 1, . . . ,J).
If at nodej ∈ {1, . . . ,J}, n j customers are present (including the one in service, if

any) the service rate isµ j(n j)≥ 0; we setµ j(0) = 0. Service and routing processes
are independent.

Let X = (X(t) : t ≥ 0) denote the vector process recording the joint queue lengths
in the network at timet. Fort ∈ R+, X(t) = (X1(t), . . . ,XJ(t)) reads: at timet there
areXj(t) customers present at nodej, either in service or waiting. The assump-
tions put on the system imply thatX is a strong Markov process with infinitesimal
operatorQX = (qX(x,y) : x,y∈ EN).

The parameters of a Gordon-Newell network are: the routing matrix R, the vector
of service ratesµ = (µ1(·), . . . ,µJ(·)), the number of nodesJ, and the number of
customersN. We shall use(R/µ/J+N) to denote such a network.

8.1.3 Ergodicity of classical networks

For Jackson networks, by theproduct formulafor stationary distribution we mean
the next formula appearing in the following theorem.

Theorem 8.1.2 The unique invariant and limiting distributioñπJ of the Jackson
network state process̃X is given by

π̃J(n1, . . . ,nJ) = K(J)−1
J

∏
j=1

n j

∏
k=1

η̃ j

µ j(k)
, (n1, . . . ,nJ) ∈ NJ (8.2)
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with the normalization constant K(J) = ∏J
j=1

(
1+ ∑∞

n=1∏n
k=1

η̃ j
µ j (k)

)
, and withη̃ =

(η̃0, . . . , η̃J), the unique solution of the routing (or traffic) equation of the network
(with η̃0 = λ ):

η̃ j = r̃0 jλ +
J

∑
i=1

η̃i r̃ i j , j ∈ J. (8.3)

We have therefore that̃πJ(n1, . . . ,nJ) = ∏J
j=1 π̃J

j (n j), for the marginal distributions

π̃J
j (n) = π̃J

j (0)
n

∏
k=1

η̃ j

µ j(k)
,

for n≥ 1, andπ̃J
j (0) =

(
1+ ∑∞

n=1 ∏n
k=1

η̃ j
µ j (k)

)−1
, j = 1, . . . ,J.

η̃ is usually not a stochastic vector and we define the unique stochastic solution
of (8.3) for j ∈ J0, by

ξ = (ξ j : j = 0,1, . . . ,J). (8.4)

Regarding ergodicity of closed networks the following theorem is classical (Gor-
don, Newell [31]).

Theorem 8.1.3 The processX is ergodic and its unique steady–state and limiting
distribution is given by

π (N,J)(n) = G(N,J)−1
J

∏
j=1

n j

∏
k=1

η j

µ j(k)
, (8.5)

for n∈ EN, (for products with upper limit nj = 0 we set value 1) where

G(N,J) = ∑
n1+...+nJ=N

J

∏
j=1

n j

∏
k=1

η j

µ j(k)

is the norming constant.

Let us define independent random variablesYj , j = 1, . . . ,J such that

Pr(Yj = 0) =

(
1+

∞

∑
n=1

n

∏
k=1

η j

µ j(k)

)−1

, Pr(Yj = n) = Pr(Yj = 0)
n

∏
k=1

η j

µ j(k)
.

Note that we have then

π (N,J)(n) =
J

∏
j=1

Pr(Yj = n j)/Pr(Y1 + . . .+YJ = N)

= Pr(Y1 = n1, . . . ,YJ = nJ |Y1 + . . .+YJ = N).
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Therefore the stationary distribution in a closed network can be interpreted as a
conditional distribution of an open network, given the number of customers present.

A natural measure of performance for a network in stationaryconditions is, for
eachj, E(µ j(Xj(t))). It is well known that

E(µ j(Xj(t))) = η j Pr(Y1 + . . .+YJ = N−1)/Pr(Y1 + . . .+YJ = N)

= η jG(N−1,J)/G(N,J).

ThereforeE(µ j(Xj(t)))/η j does not depend onj and is called thethroughput of
this network. We denote the throughputG(N− 1,J)/G(N,J) of a Gordon-Newell
network by

TH(R/µ/J+N).

It is interesting to compare throughput for two structured networks with different
routing and/or service properties. We shall present such results later in this chapter.

8.2 Stochastic monotonicity and related properties for classical
networks

It is remarkable that many stochastic processes possess in anatural way some
stochastic monotonicity properties. Among them, for example birth and death pro-
cesses, attractive particle systems, and many classical queueing networks, which are
in a sense similar to birth and death processes but more general because of migra-
tions (movements to non-comparable states). It is not clearhow the celebrated prod-
uct form stationary distribution for networks is related tothe property of stochastic
monotonicity. There are product form networks which are notstochastically mono-
tone, and there are stochastically monotone networks whichare not in the class of
product form networks. However it is not surprising that stochastically monotone
networks which are at the same time product form networks possess many interest-
ing properties. These both properties allow for many interesting comparison results
and consequently also for many dependency results (for example dependency order-
ings). Stochastic monotonicity can have different forms depending on the ordering
we select in the state space, and the shape of a network (for example for tandems
we have so called partial sum monotonicity). Such properties will be the main topic
of this section. For more general networks the area of monotonicity still remains to
a large extend an open area.

8.2.1 Stochastic orders and monotonicity

From a general point of view, we shall consider probability measures on a par-
tially ordered Polish spaceE endowed with a closed partial order≺, and the Borel
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σ−algebraE denoted byE along with random elementsX : Ω → E. We denote
by I∗(E) (I∗+(E)) the set of all real valued increasing measurable bounded (non-
negative) functions onE ( f increasing means: for allx,y, x≺ y implies f (x)≤ f (y)),
andI(E) the set of all increasing sets (i.e. sets for which indicatorfunctions are in-
creasing). Thedecreasinganalogues are denoted byD∗(E), (D∗+(E)) and D(E)
, respectively. ForA⊆ E we denoteA↑ := {y ∈ E : y≻ x f or some x∈ A}, and
A↓ := {y∈ E : y≺ x f or some x∈ A}. Further, we defineIp(E) = {{x}↑ : x∈ E}
and Dp(E) = {{x}↓ : x∈ E}, the classes ofone-point generated increasing, resp.
decreasing, sets.

For product spaces we shall use the following notation,E(n) = E1× ...×En,
for Ei partially ordered Polish spaces (i = 1, . . . ,n). If Ei = E for all i then we
write En instead ofE(n). Analogously we writeE(∞) andE∞ for infinite products.
Product spaces will be considered with the product topology. Elements ofE(n) will
be denoted byx(n) = (x1, . . . ,xn), of E(∞) by x(∞). For random elements we use
capital letters in this notation. We denote the coordinatewise ordering onE(n) by
≺(n).

The theory of dependence order via integral orders for finitedimensional vectors
is well established, surveys can be found in Mueller and Stoyan [65], Joe [37],
and Szekli [88]. In recent years this theory and its applications were extended to
dependence order of stochastic processes, see for exampleswith state spacesRn or
subsets thereof, the work of Hu and Pan [34] and Li and Xu [55],and for a more
general approach to Markov processes in discrete and continuous time with general
partially ordered state space, Daduna and Szekli [24].

Definition 8.2.1 We say that two random elementsX,Y of E are stochastically or-
dered (and writeX ≺st Y or Y ≻st X) if E f (X)≤E f(Y) for all f ∈ I∗(E), for which
the expectations exist.

In the theory of stochastic orders and especially in specificapplications a well
established procedure is to tailor suitable classes of functions, which via integrals
over these functions extract the required properties of themodels under considera-
tion. The most well known example is the class of integrals over convex functions
which describes the volatility of processes and therefore the risks connected with
their evolution.

Similar ideas will guide our investigations of network processesX = (Xt : t ≥ 0)
andY = (Yt : t ≥ 0). These are comparable in the concordance ordering,X ≺cc Y,
if for each pair(Xt1, . . . ,Xtn) and(Yt1, . . . ,Ytn) it holds

E

[
n

∏
i=1

fi(Xti )

]
≤ E

[
n

∏
i=1

fi(Yti )

]
, (8.6)

for all increasing functionsfi , and for all decreasing functions as well (i.e. for all
comonotone functions). It is our task to identify subclasses F of functions such
that (8.6) holds for all comonotone functions which are additionally in F and that
additionallyX andY fulfill the corresponding stochastic monotonicity properties
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with respect to the integral order defined via intersecting the class of monotone
functions withF.

The set (8.6) of inequalities implies thatX andY have the same marginals and
that standard covariancescov( f (Xs),g(Xt)) ≤ cov( f (Ys),g(Yt)) are ordered for all
comonotonef ,g. If F is sufficiently rich, these properties will be maintained.

The introduced above dependence ordering can be generalized for more general
spaces. ForE which is a lattice (i.e. for anyx,y∈E there exist a largest lower bound
x∧y∈ E and a smallest upper boundx∨y∈ E uniquely determined) we denote by
Lsm(E) the set of all real valued bounded measurable supermodular functions onE,
i.e., functions which fulfill for allx,y∈ E

f (x∧y)+ f (x∨y)≥ f (x)+ f (y).

Definition 8.2.2 We say that two random elementsX,Y of E are supermodular
stochastically ordered (and writeX ≺smY or Y ≻smX) if E f (X) ≤ E f(Y) for all
f ∈ Lsm(E), for which the expectations exist.

A weaker than≺sm can be defined on product spaces. A functionf : E(2)→ R has
isotone differencesif for x1≺1 x′1, x2 ≺2 x′2 we have

f (x′1,x
′
2)− f (x1,x

′
2)≥ f (x′1,x2)− f (x1,x2). (8.7)

A function f : E(n)→R hasisotone differencesif (8.7) is satisfied for any pairi, j of
coordinates, whereas the remaining variables are fixed. IfEi , i = 1, . . . ,n are totally
ordered then both definitions are equivalent. The class of functions with isotone
differences, defined by (8.7), we denote byLidif (E

(n)). Note that the definition of a
function with isotone differences does not require thatEi are lattices. If, additionally,
f is taken to be increasing we shall writef ∈Li−idif (E(n)). The following lemma is
due to Heyman and Sobel [44].

Lemma 8.2.3 (i) LetE1,E2, . . . ,En be lattices. If f is supermodular on(E(n),≺(n))
then it has also isotone differences.

(ii)LetE1, . . . ,En be totally ordered. If f has isotone differences on(E(n),≺(n)) then
it is also supermodular.

The above lemma implies that for totally ordered spaces bothnotions are equivalent.
This is not the case whenEi , i = 1. . . ,n, are partially (but not linearly) ordered.

Definition 8.2.4 LetX = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) be random vectors with val-
ues inE(n).

(i) X is smaller thanY in the isotone differences ordering (X ≺idi f Y) if

E [ f (X1 . . . ,Xn))]≤ E [ f (Y1, . . . ,Yn)]

for all f ∈ Lidif (E(n)).

Let us summarize some definitions which we will need later.



8 Stochastic Comparison of Queueing Networks 355

8.2.1.1 Discrete time

Let X = (Xt : t ∈ ZZ) andY = (Yt : t ∈ ZZ), Xt ,Yt : Ω→E, be discrete time, stationary,
homogeneous Markov processes. Assume thatπ is an invariant (stationary) one–
dimensional marginal distribution the same for bothX andY, and denote the 1–
step transition kernels forX and Y, by KX : E× E → [0,1], and KY : E× E →
[0,1], respectively. Denote the respective transition kernels for the time reversed

processes
←
X,

←
Y by

←
KX ,

←
KY. We say that a stochastic kernelK : E×E→ [0,1] is

stochastically monotoneif
´

f (x)K(s,dx) is increasing ins, for each f ∈ I∗(E).
It is known (see e.g. Müller and Stoyan [65], section 5.2) that a stochastic kernel
K is stochastically monotone iffK(x, ·) ≺st K(y, ·) for all x≺ y. Another equivalent
condition for this property is thatµK ≺st νK, for all µ ≺st ν, whereµK denotes the
measure defined byµK(A) =

´

K(s,A)µ(ds), A∈ E. It is worth mentioning that for
E = N, using traditional notationPX = [pX(i, j)]i, j∈N for the transition matrix ofX
(that is pX(i, j) := KX(i,{ j})), stochastic monotonicity can be expressed in a very
simple form, namely (see Keilson and Kester [39]), we say that PX is stochastically
monotone iff

T−1PXT(i, j) ≥ 0, i, j ∈ N, (8.8)

whereT is the lower triangular matrix with zeros above the main diagonal and ones
elsewhere.

8.2.1.2 Continuous time

Let X = (Xt : t ∈R) andY = (Yt : t ∈R), Xt ,Yt : Ω →E, be stationary homogeneous
Markov processes. Denote the corresponding families of transition kernels ofX, and
Y, by IKX = (KX

t : E×E→ [0,1] : t ≥ 0), andIKY = (KY
t : E×E→ [0,1] : t ≥ 0),

respectively, and the respective transition kernels for the stationary time reversed
processes

←
X ,

←
Y by

←
IKX = (

←
KX

t : E×E→ [0,1] : t ≥ 0), and
←
IKY = (

←
KY

t : E×E→
[0,1] : t ≥ 0), respectively. Assume thatπ is an invariant distribution common for
both IKX and IKY, that is

´

KX
t (x,dy)π(dx) =

´

KY
t (x,dy)π(dx) = π(dy), for all

t > 0. We say thatIKX (IKY) is stochastically monotoneif for each t > 0, KX
t

(KY
t ) is stochastically monotone as defined previously. IfE is countable andQX =

[qX(x,y)] andQY = [qY(x,y)] denote intensity matrices ( infinitesimal generators)
of the corresponding chainsX andY then the following condition due to Massey
[60] is useful: ifQX is bounded, conservative thenIKX is stochastically monotone
iff

∑
y∈F

qX(x1,y)≤ ∑
y∈F

qX(x2,y),

for all F ∈ I(E), andx1≺ x2 such thatx1 ∈ F or x2 /∈ F. An analogous condition for
arbitrary time continuous Markov jump processes (also for unbounded generators)
is given by Mu-Fa Chen [15], Theorem 5.47. It is worth mentioning that if E = N

then similarly to (8.8), we say thatQX = [qX(i, j)]i, j∈N is stochastically monotone
iff T−1QXT(i, j)≥ 0 for all i 6= j.
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8.2.2 Stochastic monotonicity and networks

The fundamental property of stochastic monotonicity of classical networks is pres-
ently very well known. Massey [60], Proposition 8.1, provedthis property using
analytical methods for Jackson networks with constant service rates, Daduna and
Szekli [18], Corollary 4.1, utilized a coupling argument combined with a point pro-
cesses description, admitting variable service rates and closed networks. Lindvall
[51], p. 7, used a coupling proof for Jackson networks.

Property 8.2.5 ConsiderX̃ := (X̃(t),t ≥ 0) the joint queue length process in a
Jackson network(λ ,R̃/µ/J) as a Markov process with the partially ordered state
space(E,≺) := (NJ,≤J), and X = (X(t) : t ≥ 0) the process recording the joint
queue lengths in the Gordon-Newell network(R/µ/J + N) as a Markov process
with state spaceEN, also ordered with≤J (the standard coordinate-wise ordering).
If µ is increasing as a function of the number of customers then for both processes
the corresponding families of transition kernels are stochastically monotone with
respect to≤J.

Remark 8.1.For a formulation of the above result in terms of marked pointpro-
cesses see Last and Brandt [49], Theorem 9.3.18. For a version of the stochastic
monotonicity property for Jackson networks with infinite denumerable number of
nodes see Kelbert et al. [52]. For a refined stochastic monotonicity property, for par-
tition separated orderings, see Proposition 8.1 in Massey [60]. For generalizations
to Jackson type networks with batch movements see Economou [26] and [27].

Apart from the traditional, coordinatewise ordering on thestate space it is possi-
ble and reasonable to consider other orderings and monotonicities which for exam-
ple turned out to be useful to describe special properties oftandems.

For two vectorsx,y ∈Rn, x = (x1, . . . ,xn), y = (y1, . . . ,yn), we definepartial sum
order by

x≤∗y if
j

∑
i=1

xi ≤
j

∑
i=1

y j , j = 1, . . . ,n.

The next property was first stated by Whitt [97], and restatedusing other methods
in Massey [60], Theorem 8.3, and Daduna and Szekli [18], Proposition 4.4.

Property 8.2.6 ConsiderX̃ := (X̃(t),t ≥ 0) the joint queue length process in Jack-
son network(λ ,R̃/µ/J) as a Markov process with the partially ordered state space
(E,≺) := (NJ,≤∗). Assume thatµ is increasing as a function of the number of
customers. Then the corresponding family of transition kernels ofX̃ is stochasti-
cally monotone with respect to≤∗ if and only if i, j ∈ J andr̃(i, j) > 0 implies that
j = i +1 or j = i−1, andr̃(i,0) > 0 iff i=J.

An interesting monotonicity property for increments of cumulative number of
customers in Jackson networks starting empty was proved by Lindvall [51] using
coupling methods.
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Property 8.2.7 Consider X̃ the joint queue length process in Jackson network
(λ ,R̃/µ/J) such that at time 0 the system is empty. Assume thatµ is increasing
as a function of the number of customers. Then for eachε > 0, ∑J

j=1 X̃j(t + ε)−
∑J

j=1 X̃j(t) is stochastically (≤st) decreasing as a function of t.

8.2.3 Bounds in transient state

The analytical approach of Massey [58], [59] resulted in a transient bound for Jack-
son networks which was generalized then by Tsoucas and Walrand [93]. The joint
distribution of the number of customers on an upper orthant can be bounded from
above by the product of the corresponding state distributions of single systems at
any time provided they start from the same state. This is a useful upper bound on
the probability of overload in transient Jackson networks.

Property 8.2.8 Consider X̃ the joint queue length process in Jackson network
(λ ,R̃/µ/J) such thatµ = (µ1, . . . ,µJ) is constant as a function of the number of
customers. Independently, for each j∈ J, denote by X∗j (t) the number of customers
in the M/M/1-FCFS classical system with the arrival rate

λ ∗j = r̃0 jλ +
J

∑
i=1

µi r̃ i j ,

and the service rateµ j . If for the initial conditionsX̃(0) = (X∗1 (0), . . . ,X∗J (0) then

P(X̃(t)≥ a)≤ P(X∗1 (t)≥ a1) · · ·P(X∗j (t)≥ a j),

for each t> 0 and a= (a1, . . . ,a j) ∈ RJ.

8.2.4 Bounds in stationary state

Bounds for time stationary evolution of networks have a different nature than tran-
sient bounds. The next property can be found in Daduna and Szekli [18], Corollary
5.1.

Property 8.2.9 Consider X̃ the joint queue length process in Jackson network
(λ ,R̃/µ/J) such thatµ = (µ1(·), . . . ,µJ(·)) is increasing as a function of the num-
ber of customers. Then in stationary conditions

E( f [X̃(t1), . . . , X̃(ti)]g[X̃(ti+1), . . . , X̃(tk)])

≥ E( f [X̃(t1), . . . , X̃(ti)])E(g[X̃(ti+1), . . . , X̃(tk)])
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for all non-decreasing real f,g, and0≤ t1 < .. . < tk, i < k, i,k∈ N.

This inequality can be written as

Cov( f (X̃(ti), i = 1, . . . ,k),g(X̃(ti), i = k+1, . . . ,n))≥ 0, (8.9)

for all f ∈ I∗(Rk),g ∈ I∗(Rn−k),k = 1, . . . ,n−1,t1 < .. . < tn. Note that the prop-
erty (8.9) is a rather strong positive dependence property in the time evolution of
X̃. We shall recall now some definitions from the theory of positive dependence.
A natural way to define positive dependence for a random vector (or alternatively
for a distribution on a state space)X = (X1, . . . ,Xn) is to use a dependency order-
ing in order to compare it with its iid version, i.e. withX⊥ = (X⊥1 , . . . ,X⊥n ), where
Xi =d X⊥i , and(X⊥1 , . . . ,X⊥n ) being independent. For example, ifE = R, X⊥ ≤cc X
is equivalent to the fact thatX is positively orthant dependent (POD) (for definitions
of this and other related concepts see e.g. Szekli [88]). PODis weaker than associ-
ation ofX defined by the condition that Cov( f (X),g(X)) ≥ 0 for all f ,g∈ I∗(Rn).
However, it is not possible to characterize association in terms of some ordering,
that is by stating thatX is greater thanX⊥ for some ordering. But Christofides and
Veggelatou [17] show that association implies thatX⊥ ≤sm X (positive supermod-
ular dependence - PSMD). In fact they show that the weak association (defined by
Cov( f (Xi , i ∈A),g(Xi , i ∈ Ac))≥ 0 for all real, increasingf ,g of appropriate dimen-
sion, and allA ⊂ {1, . . . ,n}) implies PSMD. Rüschendorf [74] defined a weaker
than weak association positive dependence by Cov(I(Xi>t),g(Xi+1, . . . ,Xn)) ≥ 0 for
all increasingg, all t ∈ R, and alli = 1, . . . ,n−1, which he called weak association
in sequence (WAS). He showed that WAS implies PSMD. Hu et al. [35] gave coun-
terexamples showing that the mentioned positive dependence concepts are really
different.

Note that property (8.9) implies that( f1(X̃(t1)), . . . , fn(X̃(tn))) is weakly associ-
ated in sequence for allfi ∈ I∗+(RJ), and therefore is also PSMD, which implies pos-
sibility to compare maxima, minima and other supermodular functionals of the time
evolution ofX̃, ( f1(X̃(t1)), . . . , fn(X̃(tn))) with the corresponding independent ver-
sions (separated single queue systems). This is in accordance with intuitions since
the joint time evolution of a network should generate more correlations than inde-
pendent single queue systems.

It is worth mentioning that in order to obtain a joint space and time positive de-
pendence for a Markov processX one requires additional assumptions. For example
it is known (see e.g. Liggett [50], Szekli [88], Theorem A, section 3.7.) that ifIKX

is stochastically monotone,π associated onE, and (so called up-down property)
QX( f g) ≥ f QXg+ gQX f , for all f ,g increasing thenX is space-time associated
(i.e. Cov(φ(Xti , i = 1, . . . ,n),ψ(Xti , i = 1, . . . ,n)) ≥ 0, for all φ ,ψ increasing). Un-
fortunately networks in general do not fulfill this up-down requirement therefore the
last property needed another argument strongly based on stochastic monotonicity.

The next property is a corollary from the previous one but it is interesting to know
that it is possible to extend this property to networks of infinite channel queues
with arbitrary service time distribution, see Kanter [38],Daduna and Szekli [18],
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Corollary 5.2. In contrast to the transient case these bounds are lower bounds and
are formulated with respect to the time evolution in stationary conditions.

Property 8.2.10 ConsiderX̃ the joint queue length process in Jackson network
(λ ,R̃/µ/J) such thatµ = (µ1(·), . . . ,µJ(·)) is increasing as a function of the num-
ber of customers. Independently, for each j∈ J, denote by X∗j (t) the number of
customers in the M/M(n)/1-FIFO classical system with the arrival rateλ ∗j = η̃ j

and the service rateµ j(·). Then for both processes in stationary conditions

P(X̃(t1)≥ (≤)a1, . . . , X̃(tk)≥ (≤)ak)≥ ∏
1≤i≤k,1≤ j≤J

P(X∗j (ti)≥ (≤)ai
j),

for each t1 < · · ·< tk, and ak = (ak
1, . . . ,a

k
j) ∈ RJ, k∈ N.

For open networks in stationary state positive correlations are prevailing. For
closed networks however it is natural to expect negative correlations for the state
in closed networks, but negative association is perhaps a bit surprising at the first
glance. The next property can be found in Daduna and Szekli [18], Proposition 5.3.

Property 8.2.11 ConsiderX = (X(t) : t ≥ 0) the process recording the joint queue
lengths in the Gordon-Newell network(R/µ/J+N) as a Markov process with state
spaceEN ordered with≤J. If µ is increasing as a function of the number of cus-
tomers then for every t> 0, X(t) is negatively associated with respect to≤J, i.e.

E( f (Xi(t), i ∈ I)g(Xj(t), j ∈ Ic))≤ E( f (Xi(t), i ∈ I))E(g(Xj(t), j ∈ Ic)),

for all increasing f,g, and allI ⊂ J.

For analogous result for discrete time queueing networks see Pestien and Ramakr-
ishnan [69]. Negative association can be used to obtain upper bounds on the joint
distribution of the state vector.

8.2.5 Sojourn times in networks

8.2.5.1 Dependence properties for sojourn times

A path of lengthM in the network(λ ,R̃/µ/J) is a finite sequence of nodes
P = ( j1, j2, . . . , jM), not necessarily distinct, which a customer can visit consecu-
tively, i.e., r̃ jk, jk+1)

> 0,k = 1, . . . ,M−1. For a customer traversing pathP we de-
note by(ξ1,ξ2, . . . ,ξM) the vector of his successive sojourn times at the nodes of
the path. Strong interest is focused on determining the joint distribution of the vec-
tor ξ = (ξ1, . . . ,ξN) in equilibrium. In general this is an unsolved problem, explicit
expressions are rare.

The first results were obtained by Reich [71], [72], and Burke[9], [10]. For closed
cycles the parallel results were developed by Chow [16], Schassberger and Daduna
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[85], and Boxma, Kelly, and Konheim [8]. Clearly in this caseindependence was
not found due to the negative correlation of the queue lengths in the network, but
a product form structure emerged there as well. The researchwhich followed the
mentioned early results was also concentrated on proving that similar results hold
for overtake–freepaths as well. Extensions to single server overtake–free paths for
networks with general topology were obtained for the open network case by Walrand
and Varaiya [95] and Melamed [63], and for closed networks byKelly and Pollett
[41]. The result for overtake–free paths with multiserver stations at the beginning
and the end of the path was proved by Schassberger and Daduna [86]. (For a review
see Boxma and Daduna [7].)

The most prominent example where overtaking appears is the Simon–Foley [87]
network of single server queues, see Fig. 8.1. As we have already mentioned be-
fore, the question whether on the three–station path of the Simon–Foley network
the complete sojourn time vector(ξ1,ξ2,ξ3) is associated remains unanswered. The
methods provided by the proof of Foley and Kiessler [28] seemingly do not apply to
that problem. However it is possible to prove a little bit weaker dependence results.
Probability measure used in this statement is the Palm probability with respect to
the point process of arrivals to the first station.

Property 8.2.12 Consider Jackson network(λ ,R̃/µ/J) with constantµ , and a path
P consisting of three nodes which we assume to be numberedP = (1,2,3). In equi-
librium, the successive sojourn times(ξ1,ξ2,ξ3) of a customer on a three node path
of distinct nodes are positive upper orthant dependent, i.e.

P(ξ1≥ a1,ξ2 ≥ a2,ξ3 ≥ a3)≥ P(ξ1≥ a1)P(ξ2 ≥ a2)P(ξ3≥ a3)

.

More generally the above result holds true in open product form networks with
multi-server nodes having general service disciplines andexponentially distributed
service times or having symmetric service disciplines withgenerally distributed ser-
vice times. Moreover this is true also for networks with customers of different types
entering the network and possibly changing their types during their passage through
the network. Here one may allow additionally that the service time distributions at
symmetric nodes are type dependent, see Daduna and Szekli [19]. For generaliza-
tions to four step walk in Jackson networks see Daduna and Szekli [20].

8.2.5.2 Sojourn times in closed networks

Intuitively, sojourn times in closed networks should be negatively correlated, but
again negative association is a bit surprising as a propertyexplaining this intuition.
The next property for closed cycles of queues is taken from Daduna and Szekli [21].
The expectations in this statement are taken with respect tothe Palm measure de-
fined with respect to the point process of transitions between two fixed consecutive
stations.
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Property 8.2.13 Consider Gordon-Newell network(R/µ/J+ N) with constantµ ,
and cyclic structure of transitions, i.e. ri(i+1) = 1 for i≤ J−1and rJ1 = 1. In equilib-
rium, for the successive sojourn times(ξ1, . . . ,ξJ) of a customer at stations1, . . . ,J,

E( f (ξi , i ∈ I)g(ξ j , j ∈ Ic))≤ E( f (ξi , i ∈ I))E(g(ξ j , j ∈ Ic)),

for all increasing f,g, and allI ⊂ J, i.e.ξ is negatively associated.

In a closed tandem system with fixed population size the conditional cycle time
distribution of a customer increases in the strong stochastic ordering when the ini-
tial disposition of the other customers increases in the partial sum ordering. As a
consequence of this property one obtains

Property 8.2.14 Consider Gordon-Newell network(R/µ/J+ N) with constantµ ,
and cyclic structure of transitions, i.e. ri(i+1) = 1 for i ≤ J−1 and rJ1 = 1. In equi-
librium, the cycling timeξ1 + · · ·+ ξJ of a customer going through stations1, . . . ,J
is stochastically increasing in N, the number of customers cycling.

For negative association (NA) of sojourn times in the consecutive cycles made by a
customer, see Daduna and Szekli [21].

8.3 Properties of throughput in classical networks

8.3.1 Uniform conditional variability ordering, a relation between
closed and open networks

The next property is taken from Whitt [98]. Before formulating it we need some
definitions.

Definition 8.3.1 Suppose thatµ , ν are probability measures which are not re-
lated by the stochastic ordering≤st, and are absolutely continuous with respect
to Lebesque (counting) measure onR (N) with densities (mass functions) f , g re-
spectively, with supp(µ)⊂ supp(ν). We say that

1. µ is uniformly conditionally less variable thanν, and writeµ ≺uv ν if f (t)/g(t)
is unimodal on t∈ supp(ν), with the mode being the supremum.

2. µ is log-concave relative toν, and writeµ ≺lcv ν if supp(µ)⊂ supp(ν) are in-
tervals (connected sets of integers) and f(t)/g(t) is log-concave on t∈ supp(µ).

3. µ ≺mlr ν if f (t)/g(t) is nonincreasing on t∈ supp(µ).

We use also≺lcv and≺uv to relate random variables using the above definition for
their distributions.

If the number of sign changesS( f −g) = 2, andµ ≺lcv ν thenµ ≺uv ν. Moreover
if µ(A),ν(B) > 0, A⊂ B, S( f −g) = 2, andµ ≺lcv ν then
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(i) if E(µA)≤ E(νB) thenµA≤icx νB

(ii)if E(µA)≥ E(νB) thenµA≤dcx νB

(iii)E(µA) = E(νB) thenµA ≤cx νB,

whereE(µ) denotes the expected value ofµ , andµA denotes the conditional distri-
bution ofµ conditioned onA.

It is known (see Whitt [98]) that for each Gordon-Newell network (R/µ/J+N)
there exist a Jackson network(λ ,R̃/µ/J), such that the stationary distribution of
the network content in Gordon-Newell model is equal to the conditional stationary
distribution in this Jackson model, conditioned on the fixednumber of customers,
that isπ (N,J)(n) = π̃J(n | {n : ∑J

i=1ni = N}). For each such pair of stationary net-
work processesX, X̃ it is possible to compare variability of the corresponding one
dimensional marginal distributions if for eachi, µi(n) are nondecreasing functions
of n.

Property 8.3.2 In stationary conditions it holds that for all t

Xi(t)≺lcv X̃i(t), i = 1, . . . ,J.

From the above relation it follows that if E(∑J
i=1 X̃i(t)) ≤ N then for respective uti-

lizations at each node i

E(X̃i(t)∧si)≤ E(Xi(t)∧si),

providedµi(n) = (n∧si)µ for some si ∈N, andµ > 0 or equivalently forthrough-
puts

E(µi(X̃i(t)))≤ E(µi(Xi(t))).

8.3.2 Effect of enlarging service rates in closed networks

Chen and Yao [14] showed that if in a closed network, locally in some set of nodes
the service rates will be increased then the number of customers in these nodes
will decrease, but the number of customers elsewhere will increase (in≺mlr sense).
Moreover the overall throughput for the network will be larger.

Property 8.3.3 Suppose that we consider two Gordon-Newell networks(R/µ/J+
N) and (R/µ ′/J + N), and the corresponding stationary queue length processes
X, X′, such that for a subset A⊂ {1, . . . ,J}, µ j ≤ µ ′j (pointwise) for j∈ A, and
µ j = µ ′j , for j ∈ Ac. Then

X′j(t)≺mlr Xj(t)

for j ∈ A and
Xj(t)≺mlr X′j(t)

for j ∈ Ac. Moreover ifµ j(n) are nondecreasing functions of n then
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TH(R/µ/J+N)≤ TH(R/µ ′/J+N).

From Shanthikumar and Yao [81] we have

Remark 8.2.If we change the condition thatµ j ≤ µ ′j (pointwise) for j ∈ A, by a
stronger one:µ j(m)≤ µ ′j(n) for j ∈ A, and allm≤ n, m,n∈ N thenTH(R/µ/J+
N) ≤ TH(R/µ ′/J+ N) holds without assuming monotonicity of service rates. We
have for exampleTH(R/µmin/J+ N) ≤ TH(R/µ/J + N) ≤ TH(R/µmax/J+ N),
wheneverµmin = (minn≥1 µ1(n), . . . ,minn≥1 µJ(n))
andµmax= (maxn≥1 µ1(n), . . . ,maxn≥1 µJ(n)) are finite, positive.

8.3.3 Majorization, arrangement and proportional servicerates

For two vectorsx,y ∈Rn we define the relationx≺m y by

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k < n,
n

∑
i=1

x[i] =
n

∑
i=1

y[i] ,

wherex[1] ≥ . . . ≥ x[n] denotes non-increasing rearrangement ofx. This relation is
themajorization .

For two vectorsx,y ∈Rn such thatx is a permutation ofy we define the relation
x≺a y by requiring thaty can be obtained fromx by a sequence of transpositions
such that after transposition the two transposed elements are in decreasing order.

For the next properties in this subsection see Shanthikumar[78], and Chen and
Yao [14]. The first one exploits interplay between some special regularities of the
service rates (fulfilled for example for linear service rates) and a perturbation of
the routing in such a way that after perturbation more probable are visits to the
stations with lower numbers, which leads to a larger throughput. The second one
again assumes some special properties for the service rates(proportional to increas-
ing concave function), and non-increasing routing vector (more probable visits to
the stations with lower numbers), then a perturbation leading to more decreasingly
arranged service rates (more service for the stations with lower numbers) implies
larger throughput.

Property 8.3.4 Consider two Gordon-Newell networks(R/µ/J + N), and
(R′/µ/J+N) such that allµ j(n) are nondecreasing and concave in n, andµ j(n)−
µ j+1(n) is nondecreasing in n, for j≤ J−1. If for the corresponding routing prob-
abilitiesη ≺a η ′ then

TH(R/µ/J+N)≤ TH(R′/µ/J+N).

Property 8.3.5 Consider two Gordon-Newell networks(R/µ/J + N), and
(R/µ ′/J+N) such that for all j,µ j(n) andµ ′j(n) are proportionalµ j(n) = µ jc(n),
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µ ′j(n) = µ ′jc(n) to some c(n) which is nondecreasing and concave in n, andη is
non-increasing. If for the corresponding service intensitiesµ ≺a µ ′ then

TH(R/µ/J+N)≤ TH(R/µ ′/J+N).

Similar assumptions as above in the class of Jackson networks lead to the Schur-
convex ordering of the state vectors, which here, intuitively speaking, describes a
better performance of the network after the assumed perturbation (adjusting service
capacities to the routing structure gives a better performance).

Property 8.3.6 Consider two Jackson networks(λ ,R̃/µ/J), and(λ ,R̃/µ ′/J) such
that for all j, µ j(n) andµ ′j(n) are proportionalµ j(n) = µ jc(n), µ ′j(n) = µ ′jc(n) to
some c(n) which is nondecreasing and concave in n, andη̃ is non-increasing. If for
the corresponding service intensitiesµ ≺a µ ′ then

E(ψ(X̃(t))≥ E(ψ(X̃′(t))

for all nondecreasing and Schur-convex functionsψ .

The next property shows that if the vector of ratios: the probability of being in
a station divided by its service intensity, has the propertyof being more equally
distributed over the set of stations (in the sense of majorization) then it will lead to
a larger throughput provided the service function is increasing and concave, and to
smaller one if this function is increasing and convex.

Property 8.3.7 Consider two Gordon-Newell networks(R/µ/J + N), and
(R′/µ ′/J+N) such that for all j,µ j(n) andµ ′j(n) are proportionalµ j(n) = µ jc(n),
µ ′j(n) = µ ′jc(n) to some c(n) which is nondecreasing and concave (convex) in n. If

(η1/µ1, . . . ,ηJ/µJ)≺m(η ′1/µ ′1, . . . ,η
′
J/µ ′J)

then
TH(R/µ/J+N)≥ (≤)TH(R′/µ ′/J+N).

An analog of the above property can be formulated for Jacksonnetworks.

Property 8.3.8 Consider two Jackson networks(λ ,R/µ/J), and(λ ′,R′/µ ′/J) such
that for all j, µ j(n) andµ ′j(n) are proportionalµ j(n) = µ jc(n), µ ′j(n) = µ ′jc(n) to
some c(n) which is nondecreasing and concave in n. If

(η̃1/µ1, . . . , η̃J/µJ)≺m(η̃ ′1/µ ′1, . . . , η̃
′
J/µ ′J)

then, in stationary conditions,

E(ψ(X̃(t))≤ E(ψ(X̃′(t)),

for all nondecreasing and Schur-convex functionsψ .
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A special case where for two networks the service rates are equal shows that the
uniformly distributed routing gives the best throughput, if the service function is
increasing and concave.

Property 8.3.9 Consider two Gordon-Newell networks(R/µ/J + N), and
(R′/µ/J+ N) such that for all j,µ j(n) are equal and nondecreasing and concave
in n. If η ≺m η ′ then

TH(R/µ/J+N)≥ TH(R′/µ/J+N).

8.3.4 Throughput and number of jobs

Van der Wal [92] [1] obtained the following intuitively clear property

Property 8.3.10 Suppose that for a Gordon-Newell network(R/µ/J+N) the ser-
vice ratesµi(n) are positive and nondecreasing functions of n, then in the stationary
conditions E(µ1(X1(t))) is nondecreasing in N.

From Chen and Yao [14], Shanthikumar and Yao [82], we have a more involved
property.

Property 8.3.11 Suppose that for a Gordon-Newell network(R/µ/J+N) the ser-
vice ratesµi(n) are positive and nondecreasing concave ( convex, starshaped, anti-
starshaped, subadditive, superadditive) functions of n, then, in stationary condi-
tions, TH(R/µ/J+N) has the same property treated as a function of N.

The above property has an application to so called open - finite networks and
blocking probabilities. Moreover Shanthikumar and Yao [83] studied monotonicity
of throughput in cyclic/finite buffer networks with respectto the convex ordering of
the service times, and of the buffer capacities.

8.4 Routing and correlations

General considerations on comparisons of Markov processeswith respect to their
internal dependence structure reveal that sometimes thereis a complicated inter-
play of monotonicity properties with some generalized correlation structure of ob-
served processes. Such monotonicity requirement is not unexpected if we recall that
the theory of association in time for Markovian processes ismainly developed for
monotone Markov processes, for a review see Chapter II of Liggett [50]. Associa-
tion is a powerful tool in obtaining probability bounds e.g.in the realm of interacting
processes of attractive particle systems. (A system is called attractive if it exhibits
(strong) stochastic monotonicity.)
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In the context of stochastic networks it turns out that similar connections between
monotonicity and correlation are fundamental, but - due to amore complex structure
of the processes we usually cannot hope to utilize the strongstochastic order, as
required for association, or in the development by Hu and Pan[34], and Daduna
and Szekli [24].

In this section we shall consider pairs of network processesrelated by some struc-
tural similarities. One can usually think of one network being obtained from the
other by some structural perturbation. The perturbations we are mainly interested
in are due to perturbing the routing of individual customers. We will always give a
precise meaning of what the perturbations are and of the resulting structural proper-
ties. Proofs of all results presented in this section can be found in Daduna and Szekli
[25].

We shall exhibit that the conditions that determine comparability of dependence,
i.e., second order properties of processes having the same first order behavior (i.e.
the same steady state), are closely connected with some further properties of the
asymptotic behavior of the processes, like the asymptotic variance of certain func-
tionals (performance measures and cost functions) of the network processes, or the
speed of convergence to stationarity via comparison of the spectral gap.

Given a prescribed network in equilibrium, our expectationis, that if we perturb
the routing process (which governs the movements of the customers after being
served at any node) in a way that makes it more dependent in a specified way, than
the joint queue length process after such a perturbation will be more dependent in
some (possibly differently) specified way.

We concentrate especially on two ways in which the routing process is perturbed.
The first way is by making routing more chaotic, which is borrowed from statistical
mechanics. There exists a well-established method to express more or lesschaotic
behavior of a random walker, if his itinerary is governed by doubly stochastic rout-
ing matrices, see Alberti and Uhlmann [2]. We shall prove that if the routing is
becoming more chaotic in this sense then the joint queue length process will show
less internal dependency.

While the perturbation of the routing in this case is not connected with any order
(numbering) of the nodes of a network, the second way of perturbing the routing is
connected to some preassigned order of the nodes, which is expressed by a graph
structure. Assuming that routing of customers is compatible with this graph struc-
ture, we perturb it by shifting probability mass in the routing kernel along paths that
are determined by the graph. We shall prove that if we shift some masses in a way
that routing becomes more positive dependent then internaldependence of the joint
queue length process will increase.

We denote the Kronecker-Delta byδi, j =

{
1 if i = j

0 if i 6= j
, and for any real valued

vectorξ = (ξi : 0≤ i ≤ J) we define the diagonal matrix with entries fromξ by

diag(ξ ) = (δi, j ·ξi : 0≤ i, j ≤ J).

Fork = 1, . . . ,J, thekth J-dimensional unit (row) vector isek := (δ jk : j = 1, . . . ,J).
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For α = (α1, . . . ,αJ) ∈ RJ the rank statisticR(α) = (R1(α), . . . ,RJ(α)) ∈ NJ

is defined by the enumeration of the indices ofα in the decreasing order of their
associatedα(·)−values, i.e.

αRi(α) ≥ αRi+1(α) i = 1, . . . ,J−1,

and ties are resolved according to the natural order of the indices.
The vectorAR(α) = (AR1(α), . . . ,ARJ(α)) ∈ NJ of antiranks ofα is defined by
AR j(α) = RJ+1− j(α), and so yields an enumeration of the indices ofα in the in-
creasing order of their associatedα(·)−values.

8.4.1 Correlation inequalities via generators

For a queue length network processX̃ with generatorQX̃ and stationary distribution
π̃J we are interested inone stepcorrelation expressions.

〈 f ,QX̃g〉π̃J (8.10)

If f = g, then (8.10) is (the negative of) a quadratic form, because−QX̃ is positive
definite. (8.10) occurs in the definition of Cheeger’s constant which is helpful to
bound the second largest eigenvalue ofQX̃ (because division of (8.10) by〈 f , f 〉π̃J

yields Rayleigh quotients), which essentially governs the(L2) speed of convergence
of X̃ to its equilibrium.

(8.10) can be utilized to determine the asymptotic varianceof some selected cost
or performance measures associated with Markovian processes (network processes)
and to compare the asymptotic variances of both such relatedprocesses.

In a natural way, the one step correlations occur when comparing the dependence
structure ofX̃ with that of a related process̃X′, which has the same stationary dis-
tribution π̃J, where we evaluate

〈 f ,QX̃g〉π̃J−〈 f ,QX̃′g〉π̃J , (8.11)

see e.g. (iv) and (v) in Theorem 8.4.15 below.
Because we are dealing with processes having bounded generators, properties

connected with (8.10) can be turned into properties of

〈 f , I + εQX̃g〉π̃J = Eπ̃J( f (X̃(0))g(X̃(τ))), (8.12)

whereI is the identity operator, andε > 0 is sufficiently small such thatI + εQX̃ is
a stochastic matrix, andτ ∼ exp(ε) (exponentially distributed). This enables us to
apply some known discrete time methods to characterize properties of continuous
time processes in the range of problems sketched above.
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We begin with expressions which connect the differences (8.11) of covariances
for related network processes with some covariances for thecorresponding routing
matrices.

Property 8.4.1 SupposẽX is an ergodic Jackson network process with a routing
matrix R̃ andX̃′ is a Jackson network process having the same arrival and service
intensities but having a routing matrix̃R′ = [r̃ ′i j ], such that theextended traffic solu-
tions η̃ of the traffic equation for̃R and forR̃′ coincide. Then for all real functions
f ,g

〈 f ,QX̃g〉π̃J−〈 f ,QX̃′g〉π̃J =
λ
ξ0

Eπ̃J

(
tr
(
Wg, f (X̃(t)) ·diag(ξ) · (R̃− R̃′)

))
,

where ξ is the probability solution of the extended traffic equation(8.3), e0 =
(0, . . . ,0), and

Wg, f (n) = [g(n+ei) f (n+ej)]i, j=0,1,...,J.

Property 8.4.2 SupposeX is an ergodic Gordon-Newell network process with a
routing matrix R andX′ is a Gordon-Newell network process having the same ser-
vice intensities but having a routing matrix R′ = [r ′i j ] such that thestochastic traffic
solutionsη of the traffic equation for R and for R′ coincide. Then for all real func-
tions f,g

〈 f ,QXg〉π(N,J) −〈 f ,QX′g〉π(N,J)

=
G(N−1,J)

G(N,J)
Eπ(N−1,J)

(
tr
(
Wg, f (X(t)) ·diag(η) · (R−R′)

))
,

whereη is the probability solution of the traffic equation(8.1), e0 = (0, . . . ,0), and

Wg, f (n) = [g(n+ei) f (n+ej)]i, j=1,...,J.

We shall reformulate the results of these properties in a form which is of
independent interest, because it immediately relates our results to methods uti-
lized in optimizing MCMC simulation. Introducing for convenience the notation
H f (n, i) := f (n+ei) which in our framework occurs asH f (X(t), i) := f (X(t)+ei)
(and similarly forg), we obtain

Corollary 8.4.3 (a)For Jackson network processesX̃, X̃′ as in Property 8.4.1, with
ξ the probability solution of the extended traffic equation(8.3), we have

〈 f ,QX̃g〉π̃J−〈 f ,QX̃′g〉π̃J =
λ
ξ0

Eπ̃J〈H f (X̃(t), ·),
(
R̃− R̃′

)
Hg(X̃(t), ·)〉ξ (8.13)

(b) For Gordon-Newell network processesX,X′ as in Proposition 8.4.2, withη the
probability solution of the traffic equation, we have
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〈 f ,QXg〉π(N,J)−〈 f ,QX′g〉π(N,J) (8.14)

=
G(N−1,J)

G(N,J)
Eπ(N−1,J)〈H f (X(t), ·),

(
R−R′

)
Hg(X(t), ·)〉η

There are several appealing interpretations of the formulas (8.13) and (8.14) which
will guide some of our forthcoming arguments. We discuss theclosed network case
(8.14).

The inner product

〈H f (X(t), ·),
(
R−R′

)
Hg(X(t), ·)〉η

can be evaluated path-wise for anyω , and whenever, e.g., the differenceR−R′ is
positive definite, the integralEπ I−1,J(·) (acrossΩ ) is over non negative functions.
Recalling thatη is invariant forR andR′, we obtain

〈H f (X(t), ·),
(
R−R′

)
Hg(X(t), ·)〉η =

Eη
(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eη

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

)
,

whereV = (Vn : n∈N), andV ′ = (V ′n : n∈N) are Markov (routing) chains with the
common stationary distributionη , and with two different transition matricesR,R′.
If we consider formally a network processX, and Markov chainsV, resp.V ′ that
are independent ofX, we get

〈 f ,QXg)π(N,J) − ( f ,QX′g〉π(N,J) =

G(N−1,J)
G(N,J)

·

·
(
Eπ(N−1,J) Eη

(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eπ(N−1,J) Eη

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

))
=

=
G(N−1,J)

G(N,J)
·

·
(
Eη Eπ(N−1,J)

(
H f (X(t),V0) ·Hg(X(t),V1)

)
−Eη Eπ(N−1,J)

(
H f (X(t),V ′0) ·Hg(X(t),V ′1)

))
,

the latter equality by the Fubini theorem.
Corollary 8.4.3 points out the relevance of the following orderings for transition

matrices which are well known in the theory of optimal selection of transition ker-
nels for MCMC simulation. In our investigations these orders will be utilized to
compare routing processes via their transition matrices.

Definition 8.4.4 Let R= [r i j ] and R′ = [r ′i j ] be transition matrices on a finite setE

such thatηR= ηR′ = η .
We say that R′ is smaller than R in the positive definite order , R′ ≺pd R, if R−R′

is positive definite on L2(E,η).
We say that R′ is smaller than R in the Peskun order, R′ ≺P R, if for all j, i ∈ E

with i 6= j, it holds r′ji ≤ r ji , see Peskun [68].

Peskun used the latter order to compare reversible transition matrices having the
same stationary distribution, and to compare their asymptotic variance. Tierney [89]
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proved that the main property used in the proof of Peskun, namely thatR≺P R′

impliesR′ ≺pd R, holds without reversibility assumptions.

Comparison of asymptotic variance

Peskun and Tierney derived comparison theorems for the asymptotic variance of
Markov chains for application to optimal selection of MCMC transition kernels in
discrete time. These asymptotic variances occur as the variance parameters in the
limiting distribution in the central limit theorem for MCMCestimators.

In the setting of queueing networks, performance measures of interest usually
are of the formπ( f ) = Eπ̃J( f (X̃(t))). The value of them can be estimated as a time
average, justified by the ergodic theorem for Markov processes, i.e. in the discrete
time we have for largen

Eπ̃J( f (X̃(t)))∼ 1
n

n

∑
k=1

f (Xk).

Under some regularity conditions on a homogeneous Markov chain with a transition

kernelK, there exists CLT of the form (weak convergence≡ D→)

√
n(

1
n

n

∑
k=1

f (Xk)−Eπ̃J( f (X̃(t))))
D→N(0,v( f ,K)),

where the asymptotic variance is

v( f ,K) = 〈 f , f 〉π̃J −π( f )+2
∞

∑
k=1

〈 f ,Kk f 〉π̃J . (8.15)

To arrange a discrete time framework for our network processes X̃ we consider
Markov chains with transition matrices of the form

K = I + εQX̃

(with ε > 0 sufficiently small) that occur in the compound Poisson representation of
the transition probabilities of the network processes.

The next properties show that perturbing the routing in network can result in a
larger asymptotic variance for the imbedded chain.

Property 8.4.5 (a)Consider two ergodic Jackson networks with the same arrival
and service intensities, and with the stationary queue length processes̃X and X̃′.
Assume that the correspondingextendedrouting matricesR̃ andR̃′ are reversible
with respect toξ .

If R̃′ ≺P R̃ then for any real function f we have

v( f , I + εQX̃′)≥ v( f , I + εQX̃). (8.16)
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(b) Consider two ergodic Gordon-Newell networks with the same service intensi-
ties, and with the stationary queue length processesX and X′. Assume that the
corresponding routing matrices R and R′ are reversible with respect toη .

If R′ ≺P R, then for any real function f we have

v( f , I + εQX′)≥ v( f , I + εQX). (8.17)

Comparison of spectral gaps

Let X be a continuous time homogeneous ergodic Markov process with stationary
probabilityπ , and generatorQX . The spectral gap ofX, resp.QX is

Gap(QX) = inf{〈 f ,−QX f 〉π : f ∈ L2(E,π),π( f ) = 0, 〈 f , f 〉π = 1}. (8.18)

The spectral gap ofX determines forX(t) the distance to equilibriumπ in L2(E,π)-
norm‖·‖π : Gap(QX) is the largest number∆ such that for the transition semigroup
P = (Pt : t ≥ 0) of X it holds

‖Pt f −π( f )‖π ≤ e−∆ t‖ f −π( f )‖π ∀ f ∈ L2(E,π).

For Gordon-Newell networks their spectral gap is always greater than zero, while
for Jackson networks the situation is more delicate: zero gap and non zero gap can
occur. Iscoe and McDonald [45], [46], and Lorek [56] proved,under some natural
assumptions, necessary and sufficient conditions for the existence of the non-zero
spectral gap of Jackson networks. The case of positive gap isproved by using an
auxiliary vector of independent birth-death processes, used to bound the gap away
from zero.

It is interesting that for some classes of Jackson networks it is possible to strictly
bound the gap of the queue length network processX̃ from below by the gap of
some multidimensional birth-death process, which will play in the next statement
the role of the network process̃X′. Because we focus on the intuitive, but rather
strong Peskun ordering of the routing matrices, we need someadditional assump-
tions on the routing. The assumption constitutes a detailedbalance which determines
an additional internal structure of a Markov chain and its global balance equation (=
equilibrium equation). Such detailed balance equations are prevalent in many net-
works with (nearly) product form steady states, and often open a way to solve the
global balance equation for the steady state. (8.19) equalizes the routing flow from
any node into the (inner) network to the flow out of the (inner)network to that node.

Property 8.4.6 Consider an ergodic Jackson network processX̃ with λi > 0, for i =
1, . . . ,J. Assume that the corresponding extended routing matrixR̃= [r̃ i j ]i, j=0,1,...,J

has strict positive departure probabilitiesr̃ i0 > 0 from every node i= 1, . . . ,J.
Assume further that the routing ofX̃ fulfills the following overall balance for all

network nodes with respect to the solutionη̃i , i = 1, . . . ,J, of the traffic equation
(8.3):
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η̃ j

J

∑
i=1

r̃ j ,i =
J

∑
i=1

η̃i r̃ i, j , ∀ j = 1, . . . ,J. (8.19)

Then for the vector valued processX∗ consisting of the independent birth-death
processes, for which the nodes have the same service intensities as the Jackson
nodes and the external arrival ratesλ ∗i = λi it holds

Gap(QX̃)≥Gap(QX∗).

So, we can immediately conclude for some networks thatGap(QX̃)≥Gap(QX∗)
holds. A consequence which elaborates on the implicationPeskun yields positive
definitenessis, that if we perturb routing of customers in the networks byshifting
mass from non diagonal entries to the diagonal (leaving the routing equilibrium
fixed) and obtaining that way the Peskun order of routing, then the speed of conver-
gence of the perturbed process can only decrease. This is just what in optimization
of MCMC was intended, and Peskun gave conditions for this. Similarly we see

Property 8.4.7 (a)Consider two ergodic Jackson networks with the same arrival
and service intensities, and with the state processesX̃ and X̃′. Assume that for the
extendedrouting matricesR̃ andR̃′, the stochastic solutions of the traffic equations
coincide (beingξ ). If R̃≺pd R̃′ then for any real function f we have

〈 f ,QX̃′ f 〉π̃J ≥ 〈 f ,QX̃ f 〉π̃J , and Gap(QX̃′) ≤Gap(QX̃). (8.20)

(b) Consider ergodic Gordon-Newell networks with the same service intensities,
and with the state processesX andX′. Assume that for the corresponding routing
matrices R and R′ the stochastic solutions of the traffic equations coincide.If R≺pd

R′ then for any real function f we have

〈 f ,QX′ f 〉π(N,J) ≥ 〈 f ,QX f 〉π(N,J) , and Gap(QX′) ≤Gap(QX). (8.21)

Comparison of dependencies

The expression (8.10) for continuous time Markov processesis transformed via the
embedded uniformization chain (8.12) to a covariance valueand via (8.11) to a
comparison statement for covariance functionals for two Markov processes (and
their Poissonian embedded chains), i.e., withτ ∼ exp(η), we obtain

Eπ̃J( f (X̃0)g(X̃τ)) = 〈 f ,(I + ηQX̃)g〉π̃J ≤ 〈 f ,(I + ηQX̃′〉g〉π̃J = Eπ̃J( f (X̃′0)g(X̃′τ)).

A procedure of transforming this property into analogous statements for the contin-
uous time evolution (over many time points) will need in general some additional
monotonicity properties of the processes under consideration. It turns out that some
form of stochastic monotonicity is in some cases a direct substitute for the strong
reversibility assumption which is needed to prove Peskun’stheorem.
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8.4.2 Doubly stochastic routing

In this section the perturbation of a network process will bedue to the fact that
the routing of the customers will become more chaotic. In statistical physics there
is a well-established method to express being more or lesschaotic for a random
walker, if his itinerary is governed by a doubly stochastic routing matrix. Alberti
and Uhlmann provide an in-depth study ofStochasticity and Partial Orderthat
elaborates on such methods [2]. Following their ideas, we shall consider (mainly)
Gordon-Newell networks with doubly stochastic routing matrix.

Consider an arbitrary rowr(i) := (r i j : j = 1,2, . . . ,J) of the Gordon-Newell net-
work’s routing matrixR and a doubly stochastic matrixT = [ti j ]i, j=1,...,J. Then the
i-th row vector of the product(R·T) is smaller thanr(i) in the sense of the ma-
jorization ordering, see Marshall and Olkin [57], p.18. This means that the proba-
bility mass is more equally distributed in each row after multiplication. The routing
scheme is then more equally distributed too. Nevertheless,the solution of the traffic
equation forR·T and therefore the steady state of the network under theR·T regime
is the same as underR, namely, the normalized solution of the traffic equation (8.1)
is in both cases the uniform distribution on{1,2, . . . ,J}.

A more chaotic routing leads to less internal dependencies over time of the in-
dividual routing chains of the customers and will thereforelead to less internal de-
pendence over time of the joint queue length process. Let

L = { f : EN→R+ : f (n1, . . . ,nJ) = a+
J

∑
i=1

αi ·ni,αi ∈R, i = 1, . . . ,J,a∈ R+},

be the convex cone of nonnegative affine-linear functions onEN.

Theorem 8.4.8 (Linear service rates)Consider two ergodic Gordon-Newell net-
work processes with common stationary distributionπ (N,J): X with a doubly stochas-
tic routing matrix R andX′ with the routing matrix R′ = [r ′i j ] = R·T, for a doubly
stochastic matrix T . All other parameters of the networks are assumed to be the
same.

Consider pairs of nonnegative affine-linear functions

f : EN→ R+ : f (n1, . . . ,nJ) = a+
J

∑
i=1

αi ·ni ∈ L, and

g : EN→ R+ : g(n1, . . . ,nJ) = b+
J

∑
i=1

βi ·ni ∈ L, with

R(α1, . . . ,αJ) = R(β1, . . . ,βJ).

Then for all such pairs of functions with f,g∈ I∗+(NJ)∩L, and f,g∈D∗+(NJ)∩L,
holds

〈 f ,QX′g〉π(N,J) ≤ 〈 f ,QXg〉π(N,J) .
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In Theorem 8.4.8, forf = g, the rank condition is trivially fulfilled. This yields

Corollary 8.4.9 Under the assumptions of Theorem 8.4.8, for all f∈ I∗+(NJ)∩L,
and f ∈D∗+(NJ)∩L, it holds

〈 f ,QX′ f 〉π(N,J) ≤ 〈 f ,QX f 〉π(N,J) .

Note, that forf = g, R(I −T) is nonnegative definite.

8.4.3 Robin-Hood transforms

If the node set J is equipped with a partial order, which is relevant for the customers’
migration, then it is tempting to consider perturbations ofthe routing processes that
are in line with this order. To be more precise: We have an up-down relation between
the nodes and the question is how the steady state performance reacts on routing
being more up, resp. down.

The construction of Corollary 2.1 and Example 3.1 in Daduna and Szekli [24],
which is sometimes called ROBIN-HOOD TRANSFORM - since in a certain sense
it equalizes the frequencies of the random walker to visit different nodes, yields a
change of the routing pattern in networks. The constructionis as follows:

Consider a homogeneous Markov chain(Xi) on a finite partially ordered state
space(E,≺) with a transition matrix[p(i, j)]i, j∈E, and the corresponding stationary
distributionπ .

Assume that fora,b,c,d ∈ E, we havea≺ c andb≺ d such that(a,d) ∈ E2

and (c,b) ∈ E2 are not comparable with respect to the product order, and that
P(X0,X1)(a,d)≥ α,P(X0,X1)(c,b)≥ α.

Construct the distributionP(Y0,Y1) of a random vector(Y0,Y1) from P(X0,X1) by

P(Y0,Y1)(a,b) = P(X0,X1)(a,b)+ α, P(Y0,Y1)(c,d) = P(X0,X1)(c,d)+ α, and
P(Y0,Y1)(a,d) = P(X0,X1)(a,d)−α, P(Y0,Y1)(c,b) = P(X0,X1)(c,b)−α, and

P(Y0,Y1)(u,v) = P(X0,X1)(u,v) for all other(u,v) ∈ E2.

(This is the Robin-Hood transform.)
The one-dimensional marginals of both(X0,X1) and (Y0,Y1) areπ and condi-

tional distributionP(Y1 = w | Y0 = v) =: q(v,w), for v,w ∈ E, is obtained from
[p(i, j)] as follows:

q(a,d) = p(a,d)− α
π(a)

, q(c,b) = p(c,b)− α
π(c) , (8.22)

q(a,b) = p(a,b)+
α

π(a)
, q(c,d) = p(c,d)+ α

π(c) , q(u,v) = p(u,v) otherwise.

Consider now a homogeneous Markov chain(Yi) with the so defined transition
matrix q, and consider(Xi) and(Yi) as routing chains of a network process, where
(Yi) is obtained from(Xi) by a perturbation through the Robin-Hood transformation.
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Then according to Corollary 2.1 and Theorem 3.1 in Daduna andSzekli [24] the
routing governed by(Yi) is more concordant than the routing governed by(Xi).

Definition 8.4.10 Let (E,≺) be a finite partially ordered set. The generalized par-
tial sum order≺∗ onNE is defined for x= (xi : i ∈ E),y = (yi : i ∈ E) ∈ NE by

x≺∗ y :⇐⇒∀ decreasing K⊆ E holds ∑
k∈K

xk ≤ ∑
k∈K

yk. (8.23)

Consider now a Jackson networkX̃ where the node set J= {1, . . . ,J} is a partially
ordered set(J,≺) and the customers flow in line with the directions prescribedby
this partial order, i.e. for the routing matrix̃R it holds (see Harris [33]):

r̃ i j > 0 =⇒ (i ≺ j ∨ j ≺ i) . (8.24)

Then the Jackson network processX̃ has the up-down property with respect to≺∗,
which means that for the generatorQX̃

qX̃(x,y) > 0 =⇒ (x≺∗ y∨y≺∗ x) . (8.25)

Lemma 8.4.11Consider an ergodic Jackson network with an extended routing ma-
trix R̃, and the corresponding queue length processX̃. We assume that the node set
J= {1, . . . ,J} is a partially ordered set. For some nodes a,b,c,d∈ J(not necessarily
distinct) let a≺ c and b≺ d, and for someα > 0 let

r̃ad ≥ α/ξa and r̃cb≥ α/ξc. (8.26)

Define a new Jackson network with its queue length processX̃′ as follows: the
nodes’ structure, and the external arrival processes are the same as in the origi-
nal network. The routing matrix̃R′ is computed by the Robin-Hood transformation
(8.22)with the fixed a,b,c,d.
Consider a pair of comonotone functions f,g (either both increasing or both de-
creasing) such that for all n∈ NJ it holds ( f (n + ec)− f (n + ea)) · (g(n + ed)−
g(n+eb))≥ 0. Then

〈 f ,QX̃g〉π̃J ≤ 〈 f ,QX̃′g〉π̃J . (8.27)

Immediately from this lemma we get

Theorem 8.4.12Consider an ergodic Jackson network with an extended routing
matrix R̃, and with the corresponding queue length processX̃. We assume that the
node set is partially ordered(J,≺).

Define a new Jackson network with its queue length processX̃′ as follows: the
nodes’ structure, and the external arrival processes are the same as in the original
network. The routing matrix̃R′ is computed by a sequence of n≥ 1 feasible Robin-
Hood transformations according to(8.22)for a sequence of nodes.

Then for any pair of comonotone functions f,g : NJ → R+ with respect to the
generalized partial sum order≺∗ (either both increasing or both decreasing) it



376 Ryszard Szekli

holds
〈 f ,QX̃g〉π̃J ≤ 〈 f ,QX̃′g〉π̃J .

8.4.4 Dependence orderings and monotonicity

We shall now generalize the concordance ordering.

Definition 8.4.13 (a)Random elementsX,Y of En are called concordant stochasti-
cally ordered with respect toF (written asX ≺n

F−cc Y or Y ≻n
F−cc X, often shortly:

X ≺F−cc Y, resp.,Y ≻F−cc X,) if

E

[
n

∏
i=1

fi(Xi)

]
≤ E

[
n

∏
i=1

fi(Yi)

]
, (8.28)

for all f i ∈ I∗+(E)∩F and for all fi ∈D∗+(E)∩F, i = 1, . . . ,n.
(b) Let T⊆ R be an index set for stochastic processesX = (Xt : t ∈ T) andY =

(Yt : t ∈ T), Xt ,Yt : Ω→E, t ∈T. We say thatX andY are concordant stochastically
ordered with respect to a classF of functions onE (and writeX ≺F−cc Y) if for all
n≥ 2 and all t1 < t2 < .. . tn, we have onEn

(Xt1, . . . ,Xtn)≺F−cc (Yt1, . . . ,Ytn).

The setting of(b) will be applied to Markovian processes.
Taking in (a) for F the space of all measurable functionsM on E we obtain

the usual concordance ordering as in Daduna and Szekli [24].It is easy to see that
the two-dimensional marginals of the Markov chains relatedby the Robin-Hood
construction in (8.22) fulfill

(X0,X1)≤M−cc (Y0,Y1).

For example, ifF contains the indicator functions of point-generated increasing
and decreasing sets,{i}↑= { j ∈E : i ≺ j} and{i}↓= { j ∈E : j ≺ i}, for concordant
stochastically ordered processesX andY (with respect toF) we can compare the
probability of extreme events like

P(inf (Xt1, . . . ,Xtn)≻ t)≤ P(inf (Yt1, . . . ,Ytn)≻ t),

and
P(sup(Xt1, . . . ,Xtn)≺ s)≤ P(sup(Yt1, . . . ,Ytn)≺ s),

for fixedt ands. We mention, that in most casesF will be a convex cone of functions
which is often additionally closed under the point-wise convergence.
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Discrete time.

Let X = (Xt : t ∈ ZZ) andY = (Yt : t ∈ ZZ), Xt ,Yt : Ω → E, be discrete time, station-
ary, homogeneous Markov processes. Assume thatπ is the corresponding unique
invariant (stationary) one–dimensional marginal distribution, the same for bothX
andY, and denote the 1–step transition kernels forX andY, by KX : E×E→ [0,1],
andKY : E×E→ [0,1], respectively. Denote the respective transition kernels for

the time reversed processes
←
X,

←
Y by

←
KX ,

←
KY. We say that a stochastic kernelK :

E×E→ [0,1] is F-monotone if
´

f (x)K(s,dx) ∈ I∗+(E)∩F for eachf ∈ I∗+(E)∩F.
The following property proved to be useful in comparing somesecond order

properties of Markov processes, see Hu and Pan [34], Daduna and Szekli [23],
Baeuerle and Rolski [5], Daduna and Szekli [24]. It will be convenient to impose
this condition here as well. A pairX andY of discrete time Markov processes hav-
ing the same invariant probability measure fulfils
F-symmetric monotonicityif : EitherKY and

←
KX areF-monotone, orKX and

←
KY

areF- monotone.

The following theorem is an analog of Theorem 3.1 in Daduna and Szekli [24].

Theorem 8.4.14 (concordance ordering underF- symmetric monotonicity) For
two stationary Markov processesX,Y defined above, having the common unique
invariant distributionπ , and fulfillingF-symmetric monotonicity, the following re-
lations are equivalent

(i) X ≺F−cc Y
(ii) (X0,X1)≺2

F−cc (Y0,Y1)

(iii) 〈 f ,KXg〉π ≤ 〈 f ,KYg〉π for all f ,g∈ I∗+(E)∩F, and for all f,g∈D∗+(E)∩F

(iv) 〈 f ,
←
KXg〉π ≤ 〈 f ,

←
KYg〉π for all f ,g∈ I∗+(E)∩F, and for all f,g∈D∗+(E)∩F

Continuous time.

Let X = (Xt : t ∈R) andY = (Yt : t ∈R), Xt ,Yt : Ω →E, be stationary homogeneous
Markov processes with countable state spaces. Denote the corresponding families
of transition kernels ofX, andY, by IKX = (KX

t : E×E→ [0,1] : t ≥ 0), andIKY =
(KY

t : E×E→ [0,1] : t ≥ 0), respectively, and the respective transition kernels for the

stationary time reversed processes
←
X,

←
Y by

←
IKX = (

←
KX

t : E×E→ [0,1] : t ≥ 0), and
←
IKY = (

←
KY

t : E×E→ [0,1] : t ≥ 0), respectively. Assume thatπ is the corresponding
invariant distribution, common for bothIKX and IKY, that is

´

KX
t (x,dy)π(dx) =

´

KY
t (x,dy)π(dx) = π(dy), for all t > 0.

For the time reversed processes we use the corresponding notation
←
QX and

←
QY.

We say thatIKX = (KX
t : E×E→ [0,1] : t ≥ 0) is F-time monotone if for eacht ≥ 0,

KX
t is F- monotone.
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Analogously to the discrete case, we define: A pairX andY of continuous time
Markov processes having the same invariant probability measure fulfills

F-time symmetric monotonicityif : Either IKY and
←
IKX areF-time monotone,

or IKX and
←
IKY areF- time monotone.

Using similar arguments as in Theorem 3.3 in Daduna and Szekli [24] we have

Theorem 8.4.15Suppose thatE is countable and the above defined stationary
chainsX and Y have bounded intensity matrices QX and QY, respectively. Then
underF-time symmetric monotonicity the following properties areequivalent

(i) X ≺F−cc Y
(ii) (X0,Xt)≺2

F−cc (Y0,Yt) ∀t > 0,
(iii) 〈 f ,TX

t g〉π ≤ 〈 f ,TY
t g〉π for all f ,g ∈ I∗+(E)∩F, and for all f,g ∈D∗+(E)∩

F,∀t > 0
(iv) 〈 f ,QXg〉π ≤ 〈 f ,QYg〉π for all f ,g∈ I∗+(E)∩F, and for all f,g∈D∗+(E)∩F

(v) 〈 f ,
←
QXg〉π ≤ 〈 f ,

←
QYg〉π for all f ,g∈ I∗+(E)∩F, and for all f,g∈D∗+(E)∩F

Reducing the class of functions fromM to some smaller classF makes this theorem
much more versatile for applications, as we shall demonstrate below.

From Theorem 8.4.15, we conclude that problem of comparing correlations for
stochastic network processes in continuous time is an interplay of two tasks:
• proving monotonicity, the form of which we identified asF- time symmetric
monotonicity, and
• additionally proving generator inequalities.

Generator inequalities have been presented in the previousparagraphs. We shall
continue with presenting the concept oftime symmetric monotonicityfor network
processes.

From a recent literature on dependence structure of Markovian processes with
one dimensional (linearly ordered) discrete state spaces it is visible thatF-time sym-
metric monotonicity(in continuous time) andF symmetric monotonicity(in discrete
time) play an important role, see e.g., Hu and Pan [34]. This property occurred inde-
pendently in the literature several times, see e.g., Baeuerle and Rolski [5], Daduna
and Szekli [23][Lemma 3.2].

So - in general, we cannot hope to dispense from these assumptions when prov-
ing dependence properties in a more complex network setting. Nevertheless, the
necessity of these assumptions is still an unsolved problem. Some counterexam-
ples, where dependence structures of Markovian processes over a finite time horizon
are proved withoutF symmetric monotonicity, are provided in Daduna and Szekli
[24][Section 3.3].

On the other hand, a need for some monotonicity is emphasizedfurther by the re-
lated theory of association in time for Markov processes, which relies on the strong
stochastic monotonicity of these processes, see for a review Liggett [50][chapter II],
and Daduna and Szekli [23].
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For stochastic networks, which are in general not reversible, the property oftime
symmetric monotonicityseems to ba a natural property: Every Jackson network pro-
cessX with service rates that are at all nodes nondecreasing functions of the local
queue length [Daduna and Szekli [23],Corollary 4.1] is stochastically monotone
with respect to stochastic ordering on the set of all probability measures on(NJ,≤).
Because the time reversed process of a Jackson network process is equal in distri-
bution to a process of a suitably defined Jackson network withthe same properties
for the service rates, any pair of Jackson network processeswith the same stationary
distribution fulfillsF-time symmetric monotonicity, whereF = I∗(NJ,≤).

We only mention that by a similar observationF-time symmetric monotonicity
holds for Gordon-Newell networks.

In many papersF is the class of all (bounded) increasing functions with respect
to the natural linear order. The weaker concept ofF-(time) symmetric monotonicity
for smaller classes of functions seems to be natural in the context of the theory of in-
tegral orders, see Mueller and Stoyan [65] or Li and Shaked [54]. However we shall
need aclosure property, which will guarantee thatF-functions are transformed into
F-functions, or at least into the maximal generator of the respective order, Mueller
and Stoyan [65][Definition 2.3.3] or Li and Shaked [54] (Definition 3.2).

The balance between having a small class ofF-functions and the necessity of
obtaining such a closure property is demonstrated next. Thefirst example is in the
spirit of the classical Gordon-Newell networks but with a smaller setF. Recall that
L is the set of nonnegative affine-linear functions onEN.

Property 8.4.16 (Linear service rates)Consider two Gordon-Newell network pro-
cessesX,X′ onEN ⊆ NJ, equipped with the coordinate-wise order≤, both with the
corresponding stationary distributionπN,J. Assume that the service rates in both
networks at all nodes are linear functions of the local queuelengths.

Then the pairX,X′ of Gordon-Newell network processes isL-time symmetric
monotone.

Property 8.4.17 (Generalized tandem network)Consider an open tandem net-
work process̃X on the state spaceNJ equipped with the partial sum order≤∗ with
stationary distributionπ̃J. The routing forX̃ is linearas follows:

• customers enter the network only through node1: λ1 > 0,λ j = 0, j = 2, . . . ,J,
• customers depart from the network only from node J:r̃J0 > 0, r j0 = 0, j =

1, . . . ,J−1,
• customers move only stepwise:r̃ j( j+1) > 0, j = 1, . . . ,J−1, andr̃ j( j−1)≥ 0, j =

2, . . . ,J,
andr̃ j j ≥ 0, j = 1, . . . ,J, andr̃ ji = 0 in any other case.

Let X̃′ be another generalized tandem network process with the samestationary
distributionπ̃J, and with its routing subject to the same restriction as described for
X̃.

Assume that the arrival rates and the (nondecreasing) service rates in both net-
works are equal and bounded.

Then the pairX̃, X̃′ is I∗(RJ,≤∗)∪D∗(RJ,≤∗)-time symmetric monotone.
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Property 8.4.18 (Functions of the total population size)Consider two Jackson
networks with equal linear service rates, which have the same stationary distri-
bution. Assume further that inside both networks the effective departure rates from
all nodes are the same, i.e.,µ j · r j0 is constant for all j= 1, . . . ,J, (and therefore
> 0). Let

F = { f : NJ→R+ : f (n1, . . . ,nJ) = f ∗(n1 + · · ·+nJ) for some f∗ : R→ R+}

be the set of real valued functions onNJ, which depend on the sum of the arguments
only.
Then the state processes in these networks constitute aF−time symmetric monotone
pair.

Let ρ = (ρ1, . . . ,ρJ) be a permutation of{1,2, . . . ,J} which will serve as a rank
vector for the linear factors of functions in

L(ρ) = { f : S(I ,J)→ R+ : f (n1, . . . ,nJ) (8.29)

= a+
J

∑
i=1

αi ·ni ,αi ∈ R, i = 1, . . . ,J,a∈R+,R(α1, . . . ,αJ) = ρ} ⊆ L.

Theorem 8.4.19Consider two ergodic Gordon-Newell network processes withcom-
mon stationary distributionπ (N,J): X with a doubly stochastic routing matrix
R = [r i j ] and X′ with the routing matrix R′ = R·T, for a doubly stochastic ma-
trix T = [ti j : i, j = 1, . . . ,J]. The service ratesµ j(n j) = µ j ·n j are in both networks
the same.

Let AR(µ) = ρ = (ρ1, . . . ,ρJ) denote the antirank vector of the service rate vec-
tor µ = (µ1, . . . ,µJ). Then

X ≥ L(ρ)−cc X′. (8.30)

Example 8.4.20 In many applications the functions inF serve as cost or reward
functions connected with the network’s performance. A typical cost function is as
follows:

Per customer at node j and per time unit a cost of amountα j occurs, so
f j (Xj(t)) = α j ·Xj(t) is the cost at node j. Incorporating a fixed constant cost a
then in state(n1, . . . ,nJ) the total cost per time unit is f(n1, . . . ,nJ) = a+∑J

i=1 αi ·ni .
When we put the natural assumption that the costs increase when the service speed
decreases, this situation is covered by the preceding theorem.

Our next theorem is in the class of generalized tandem networks as described
in Proposition 8.4.17. Robin-Hood transforms under this graph structure are of the
following form: Shift (probability) massα > 0 from arcsr j , j+1 andr j+1, j to arcs
r j , j andr j+1, j+1. This has the following consequences.

Theorem 8.4.21 (General tandem)Consider Jackson network processesX̃, X̃′ on
state spaceNJ equipped with the partial sum order≤∗, having the same stationary
distributionπ̃J.
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Assume further that for some fixed j∈ {1, . . . ,J−1} andα > 0 it holdsr̃ j( j+1) >

α andr̃( j+1) j ≥ α, and that the routing for̃X′ is obtained by the Robin-Hood trans-
formation according to(8.22), where a= b = j and c= d = j +1.

Then withPS := I∗(RJ,≤∗)∪D∗(RJ,≤∗) we have

X̃ ≤PS−cc X̃′. (8.31)

It is worth mentioning that a Robin-Hood transformation applied to the tandem
routing yields the Peskun ordering between the routing matrices (see Definition
8.4.4) but we do not need reversibility in the above theorem,it is substituted by
the time symmetric monotonicity.

8.5 Jackson networks with breakdowns

The class of Jackson networks can be reasonably extended. Assume the servers at
the nodes in a Jackson network to be unreliable, i.e., the nodes may break down.
The breakdown event may occur in different ways. Nodes may break down as an
isolated event or in groups simultaneously, and the repair of the nodes may end
for each node individually or in groups as well. It is not required that those nodes
which stopped service simultaneously return to service at the same time instant. To
describe the system’s evolution we have to enlarge the statespace for the network
process as will be described below. For a more detailed description see Sauer and
Daduna [75].

8.5.1 Product formula

Control of breakdowns and repairs is as follows:
Let I⊂ J be the set of nodes in down status and H⊂ J\I,H 6= /0, be some subset

of nodes in up status. Then the nodes of H break down with intensity α(I, I ∪H).
Nodes in down status neither accept new customers nor continue serving the old

customers which will wait for the server’s return. (At nodesi under repair the service
intensitiesµi(ni) are set to 0). Therefore, the routing matrix has to be changedso
that customers attending to join a node in down status are rerouted to nodes in up
status or to the outside. We describe three possible rerouting schemes below.

Assume the nodes in I are under repair, I⊂ J, I 6= /0. Then if H⊂ I,H 6= /0, the
nodes of H return from repair as a batch group with intensityβ (I, I \H) and im-
mediately resume their services. Routing then has to be updated again as will be
described below.

The intensities for occurrence of breakdowns and repairs have to be set under
constraints. A rather general versatile class is defined as follows.
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Definition 8.5.1 Let I be the set of nodes in down status. The intensities for break-
downs, resp. repairs forH 6= /0 are defined by

α(I, I ∪H) :=
a(I ∪H)

a(I)
, resp. β (I, I \H) :=

b(I)
b(I\H)

, (8.32)

where a and b are any functions, a,b : P(J)→ [0,∞) whereas0
0 := 0.

The above intensities are assumed henceforth to be finite.

The rerouting matrices of interest are as follows.

Definition 8.5.2 (BLOCKING) Assume that the routing matrix of the original pro-
cess is reversible. Assume the nodes inI are the nodes of the Jackson network
presently under repair. Then the routing probabilities areredefined onJ0\I accord-
ing to

r̃ I
i j =

{
r̃ i j , i, j ∈ J0\I, i 6= j,
r̃ ii + ∑k∈I r̃ ik, i ∈ J0\I, i = j.

(8.33)

Note that even in case ofr̃00 = 0, external arrivals may be now rejected with positive
probability to an immediate departure, because arrivals tonodes under repair are
rerouted:

r̃ I
00 = r̃00+ ∑

k∈I

r̃0k ≥ 0.

Definition 8.5.3 (STALLING) If there is any breakdown of either a single node or a
group of nodes, then all arrival streams to the network and all service processes at
the nodes in up status are completely interrupted and resumed only when all nodes
are repaired again.

Definition 8.5.4 (SKIPPING) Assume that the nodes inI are the nodes presently
under repair. Then the routing matrix is redefined onJ0 \ I according to:

r̃ I
jk = r̃ jk + ∑i∈I r̃ ji r̃ I

ik, k, j ∈ J0\I,

r̃ I
ik = r̃ ik + ∑l∈I r̃ il r̃ I

lk, i ∈ I,k∈ J0\I.

For describing the breakdown of nodes in Jackson networks wehave to attach to the
state spacesE = NJ of the corresponding network processes an additional compo-
nent which carries information of the reliability behaviorof the system described by
a processY. We introduce states of the form

(I; n1,n2, . . . ,nJ) ∈ P(J)×NJ .

The meaning of such a prototype state is:
I is the set of nodes under repair. Forj ∈ J\I, the numbersn j ∈N indicate that at

nodesj which work in a normal up status, there aren j customers present; fori ∈ I
the numbersni ∈ N indicate that at each nodei which is in down status there areni
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customers that wait at nodei for the return of the repaired server. Collecting these
states we define for the networks new Markov processesZ̃ = (Y, X̃) on

Ẽ = P(J)×NJ . (8.34)

For such general models with breakdowns and repairs and withthe above rerouting
principles it was shown in Sauer and Daduna [75] that on the state spacẽE the steady
state distribution for̃Z is of a product form. Note that the breakdown/repair process
Y is Markovian on the state spaceP(J) of all subsets of J, but that the network
process componentX̃ is in this settingnot a Markov process.

Theorem 8.5.5 The process̃Z with breakdown and repair intensities given by Eq.
(8.32) and rerouting according to eitherBLOCKING or STALLING, or SKIPPINGhas
a stationary distribution of product form given by:

π̃Y,J(I; n1,n2, . . . ,nJ) = πY(I) π̃J(n1,n2, . . . ,nJ)

with

πY(I) =


1+ ∑

K⊂J
K 6= /0

a(K)

b(K)



−1

a(I)
b(I)

for I ⊂ J

andπ̃J(n1,n2, . . . ,nJ) the equilibrium distribution in the standard Jackson network.

Note that time evolution of the queueing processX̃ is different in all cases (stan-
dard Jackson,BLOCKING, STALLING, SKIPPING). At the same time, it is possible to
change the breakdown/repair intensities in such a way that the stationary distribution
for the joint process̃Z remains unchanged.

8.5.2 Bounds via dependence ordering for networks with
breakdowns

8.5.2.1 Dependence ordering of Jackson networks with breakdowns

Consider Markov processesZ̃ = (Y, X̃) on Ẽ = P(J)×NJ describing the state of the
Jackson network with breakdowns. For a given set K denote by{K}↑, {K}↓, {K}≺
the sets of its ancestors, descendants and relatives, respectively, i.e.

{K}↑ := {I ⊆ J : K⊂ I,K 6= I} ,
{K}↓ := {I ⊆ J : I⊂ K,K 6= I} ,
{K}≺ := {K}↓∪{K}↑ .

Recall thatY = (Y(t), t ≥ 0) is a cadlag Markov process on the state spaceP(J)
which describes availability of the network’s components over time, i.e.Y(t) = K,
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K ∈P(J), means that at timet the set K consists of the nodes which are under repair.
We have

qY(K,H) =





α(K,H) =
a(H)
a(K) , if H ∈ {K}↑+ ,

β (K,H) = b(K)
b(H)

, if H ∈ {K}↓ ,
−∑I∈{K}↑

a(I)
a(K)
−∑I∈{K}↓

b(K)
b(I) , if H = K,

0, otherwise.

(8.35)

We define for fixed I1⊂ I2, J1 ⊂ J2 new intensities by

qYε
(K,H) =






qY(K,H)+ ε
πY(K)

, if (K = I1,H = J1) or (K = I2,H = J2) ,

qY(K,H)− ε
πY(K)

, if (K = I1,H = J2) or (K = I2,H = J1) ,

qY(K,H), otherwise.

(8.36)

Consider the processesY, Yε on state space(P(J),⊆) and two processes̃Z =
(Y, X̃), Z̃ε = (Yε , X̃ε ) which have the same routing matrices and service intensi-
ties but different breakdown/repair processesY andYε .

The following property is taken from Daduna et al [22]. Note that both processes,
before and after modification, have the same product form invariant distribution, but
they are different in their time evolution. The modificationresults in a higher rate
to change sets under repair to ”similar” ones. Of course sucha transformation can
be iterated, which leads to eliminate transitions between not ordered sets. Note that
processes under comparison are not Markovian (the ”big” processZ is Markovian,
but X̃ usually not).

Property 8.5.6 (Enlarging dependence in time via structure of breakdowns)
Assume that two Jackson networks have the same arrival intensities, the same
rerouting matrices according to eitherBLOCKING or STALLING or SKIPPING and
breakdown/repair intensity matrices are given by(8.35)and (8.36). Assume also
that breakdown/repair intensity matrices and its time-reversal counterparts are
stochastically monotone. Then in equilibrium, for all n≥ 2 and t1≤ ·· · ≤ tn,

E
[
f
(
X̃(t1), . . . , X̃(tn)

)]
≤ E

[
f
(
X̃ε(t1), . . . , X̃

ε(tn)
)]

,

for all functions f with isotone differences on(Ẽn,(≤J)n).

8.6 General networks

Consider an open network ofJ, k j -server, FCFS nodes,j ∈ J= {1, . . . ,J}. We set
k = (k1, . . . ,kJ). Denote byN0 = (N1, . . . ,NJ) the vector of counting processes of
arrivals from outside to the nodes, byS= (S1, . . . ,SJ) the vector of service time
sequencesSj = (Sj

1, . . .), whereSj
n denotes the service time received by then-th

initiated job at stationj. Denote byV = (V1, . . . ,VJ) the vector of destination se-
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quencesV j = (V j
1 , . . .), whereV j

n denotes the number of the node visited by the

job that is then-th departing from the nodej or V j
n = 0 if the job leaves the net-

work. Let X̃ = (X̃(t) : t ≥ 0) denote the vector process recording the joint queue
lengths in the network for timet. For t ∈ R+, X̃(t) = (X̃1(t), . . . , X̃J(t)) means that
at timet there areX̃j(t) customers present at nodej, either in service or waiting.
Given an initial content̃X(0) = (X̃1(0), . . . , X̃J(0)), such a general network is deter-
mined by the arrival, service and routing variables and willbe denoted therefore by
(N0,V)/S,k/J. The corresponding closed network, which starts withN customers
and does not admit arrivals from outside will be denoted byV/S,k/J+ N. Denote
by Nd = (N1,·, . . . ,NJ,·) the vector of point processes of departures from the nodes,
and byNa = (N·,1, . . . ,N·,J) the vector of all arrivals to the nodes. The limits (if they
exist) limt→∞ N j ,·(t)/t, which are the throughputs of the consecutive nodes will be
denoted byTHj(V/S,k/J+N), j ∈ J.

For an open network ofJ, k j -server, FCFS nodes, with finite waiting rooms of
sizesB1, . . . ,BJ we introduce additional parameterB= (B1, . . . ,B j) and use notation
(N0,V)/S,k,B/J for open networks, andV/S,k,B/J+ N for closed networks. An
arriving job from outside that finds the selected node full islost. A job that completes
service in nodej proceeds to the next node according toV j unless the latter is full.
In this case we considermanufacturing blocking: the job has to wait until there is
an empty space in the selected node, i.e. the server at nodej is idle (blocked); or we
considercommunication blocking: if a job completes service atj and finds the next
node full, it has to repeat service atj.

An alternative description of aJ-variate arrival process is the one given by a
sequence

Φ ≡ {(T1
n , . . . ,TJ

n )}∞
n=−∞

of random variables defined on a probability space(Ω ,F,P), such thatT i
0 ≤ 0 < T i

1,
T i

n < T i
n+1, i = 1, . . . ,J, n∈ ZZ and limn→±∞ T i

n = ±∞ (Φ is nonexplosive). Denote
by {Xi

n}∞
n=−∞ a sequence of inter-point distances, i.e.Xi

n = T i
n−T i

n−1 (the interval
Xi

1 contains 0). Then aJ-variate point processΦ can be seen as a random element
assuming its values in(R∞

+)J.
Let N be a set of locally finite integer valued measures onR. Equivalently,

we view Φ as a random measureΦ : Ω → Nk with the coordinate functions
Φ = (Φ1, . . . ,Φk), Φ i : Ω → N. Then for all Borel setsB, Ni

Φ(B) := Φ i(B) is the
corresponding counting variable. However, if it is clear which point process do we
mean we shall write shortlyNi instead ofNi

Φ . The corresponding counting processes
(Ni(t), t ≥ 0), i = 1, . . . ,J are given byNi(t) := Ni((0,t]).

It will be convenient to have notation for another point processΨ with the corre-
sponding points{(T1

n, . . . ,T
k
n)}n≥1, k≤∞ and inter-point distancesU i

n = Ti
n−Ti

n−1,
i = 1, . . . ,k.

In the casek = 1 we shall writeTn (Xn, N, λ ) andTn (Un) instead of writing these
quantities with the superscript 1.

We denote byLst (Lcx, Licx) the class of increasing (convex, increasing and
convex) functionsf : R→ R.
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Define for 1≤ l ≤ m, ε > 0 and arbitrary functionϕ : Rm→ R the difference
operator∆ ε

l by

∆ ε
l ϕ(u1, . . . ,um) = ϕ(u1, . . . ,ul−1,ul + ε,ul+1, . . . ,um)−ϕ (u1, . . . ,um)

for givenu1, . . . ,um.
We denote arbitrarym-dimensional intervals byJ ⊆ Rm, i.e. J = I1× ·· · × Im,

whereI j is a (possibly infinite ended) interval onR for j = 1, . . . ,m. Recall that a
functionϕ : Rm→ R is supermodularon J if for all 1 ≤ l < j ≤m, εl ,ε j > 0 and
u = (u1, . . . ,um) ∈ J such that(u1, . . . ,ul−1,ul + εl ,ul+1, . . . ,um) ∈ J we have

∆ εl
l ∆ ε j

j ϕ(u)≥ 0.

A function ϕ : Rm→ R is directionally convexon J if it is supermodular onJ and
convex w.r.t. each coordinate onI j , j = 1, . . . ,m or, equivalently

∆ εl
l ∆ ε j

j ϕ(u)≥ 0

for all 1≤ l ≤ j ≤m. We denote byLsm(J) (Ldcx(J)) the class of all supermodular
(directionally convex) functions onJ. Moreover, we denote the class of increasing
directionally convex functions onJ by Lidcx(J) and symmetric supermodular func-
tions onJ by Lssm(J). We skipJ in this notation ifJ = Rm.

For arbitrary random vectors(Y1, . . . ,Yn), (Ỹ1, . . . ,Ỹn) defined on probability
spaces(Ω ,F,P) and(Ω̃ , F̃, P̃) respectively, we write

(Y1, . . . ,Yn) <a (Ỹ1, . . . ,Ỹn)

if
E[ϕ(Y1, . . . ,Yn)]≤ E[ϕ(Ỹ1, . . . ,Ỹn)],

for all ϕ : Rn→R such thatϕ ∈La, whereLa denotes one of the classesLsm, Ldcx,
Lidcx. Similarly, for random sequences{Yn}n≥1 and{Ỹn}n≥1 we write{Yn}<a {Ỹn}
if for all n≥ 1, (Y1, . . . ,Yn) <a (Ỹ1, . . . ,Ỹn).

Let Ψ (Ψ̃ ) be aJ-variate stationary point process with the corresponding inter-
point distances{U i

n} ({Ũ i
n}), i = 1, . . . ,k. We write

• Ψ <m−a−∞ Ψ̃ if ({U1
n}, . . . ,{UJ

n}) <a ({Ũ1
n}, . . . ,{ŨJ

n}), i.e. if for all n≥ 1, ,

(
(U1

1 , . . . ,U1
n ), . . . ,(UJ

1 , . . . ,UJ
n )
)

<a
((

Ũ1
1 , . . . ,Ũ1

n

)
, . . . ,

(
ŨJ

1 , . . . ,ŨJ
n

))
.

Let Φ (Φ̃) be aJ-variate point process with the corresponding counting measures
Ni (Ñi ), i = 1, . . . ,J. We write

• Φ <m−a−D Φ̃ if for all 0 ≤ t1 < t2 < · · ·< tr , r ≥ 1,

(Ni(t1), . . . ,N
i(tr), i = 1, . . . ,J) <a (Ñi(t1), . . . ,Ñ

i(tr), i = 1, . . . ,J) .

Let I = {In}n≥1 be a partition ofR+ such thatIr , r ≥ 1 have the same length. We
write
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• Φ <m−a−N Φ̃ if for all (I1, . . . , Ir), r ≥ 1,

(Ni(I1), . . . ,N
i(Ir), i = 1, . . . ,J) <a (Ñi(I1), . . . ,Ñ

i(Ir), i = 1, . . . ,J) .

Here<··∞ (<··N, <··D) stands for the comparison of point processes considered
as random elements of(R∞

+)J, (Nk, (D([0,∞)))kJ), where D([0,∞)) is the space of
right-hand-side continuous functions with left-hand-side limits.
For 1-variate point processes (J = 1) we shall omit subscript 1, and write<a−D,
<a−N, <a−∞ coincides with orderings defined in Kwieciński and Szekli [48].

8.6.1 Dependence and variability in input

The next property proved by Meester and Shanthikumar [62] isa general result
connected with so called Ross’s conjecture, which still receives some attention in
the context of single queues.

Property 8.6.1 Consider two open networks with finite waiting rooms
(N0,V)/S,1,B/J, and(N′0,V)/S,1,B/J which operate according to the manufac-
turing blocking (1 denotes the vector with 1 on each coordinate). Assume that in
N0, and N′0 only the first coordinates are non-trivial, and Vj = ( j + 1, j + 1, . . .),
i.e. these networks are open tandems. If S is a vector of independent sequences of
independent exponential random variables with ratesµ j(k) when there are k jobs at
station j which are increasing and concave functions in k then N0,1 <idcx−N N′0,1

implies that

(Nl (t),Nl (t)+ X̃1(t), . . . ,N
l (t)+ X̃1(t)+ · · ·+ X̃J(t)) <idcx

(N′l (t),N′l (t)+ X̃′1(t), . . . ,N
′l (t)+ X̃′1(t)+ · · ·+ X̃′J(t),

where Nl denotes the point process of lost jobs.

Chang et al. [13] considered a special case where the authorsassumed infinite
buffers, and doubly stochastic Poisson input point processN1, obtaining this result
only for the number of jobs. Moreover for finite buffers they obtained the result for
the number of lost jobs. For a more recent research of this type, where the arrival
stream consists of multiple on-off sources, see Koole and Liu [43].

8.6.2 Comparison of workloads

Assume that for the routing vectorV = (V1, . . . ,VJ), we haveV j
n = 0 for all j ∈ J,

andn∈N. That is the arrivals are routed to one of theJ queues with infinite waiting
room and after receiving service depart from the system. Arrivals are characterized
by N0 = (N1, . . . ,NJ) which can be seen as a marked point process(τn,Zn), where
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τn denotes the epoch of thenth arrival andZn denotes the number of the station this
arrival is routed to. Consider a parallel system withresequencing synchronization,
which means that thenth customer departs from the system provided that all the cus-
tomers that arrived earlier have been served. Denote byW(t) = (W1(t), . . . ,WJ(t))
the amount of work in the queues at timet. The next property comes from Chang
Cheng-Shang [12].

Property 8.6.2 Suppose that in a parallel system described above,(Zn) is a sta-
tionary Markov chain independent of(τn) and S, with the transition probabilities
P(Zn+1 = j | Zn = i) = (1−σ)/J, i 6= j, and P(Zn+1 = i | Zn = i) = σ +(1−σ)/J,
for some parameterσ ∈ [0,1]. Then for each t, E( f (W(t))) is increasing as a func-
tion of σ , provided f is coordinate-wise increasing, symmetric, submodular, and
convex in each variable.

8.6.2.1 Workload in parallel queues

Consider a queueing system ofJ parallelG/G/1 FIFO queues. The input is gen-
erated bykJ-variate point processesΦ (interarrival times) andΨ (service times),
independent ofΦ. Fort ≥ 0 andI = (a,b] define

Mi(t) =
Ni (t)

∑
n=1

U i
n, i = 1, . . . ,J

and

Mi(I) =
Ni(b)

∑
n=Ni(a)+1

U i
n, i = 1, . . . ,J .

Call Mi , i = 1, . . . ,k cumulative processes. Denote by

W(t)≡ (W1(t), . . . ,WJ(t))

the vector of transient workloads, which is known to fulfill

Wi(t) = max
0≤u≤t

(0,Mi(t)−Mi(u)− (t−u))

(Borovkov [6, p. 23]). Similarly, forJ-variate point processesΦ ′, Ψ ′ define

M′i(t) =
N′i(t)

∑
n=1

U ′in, i = 1, . . . ,J

and as aboveM′i(I) and W′(t). The following property is taken from Kulik and
Szekli [47].
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Property 8.6.3 (i) Assume thatΦ <m−idcx−N Φ ′, Ψ = Ψ ′ andΨ consists of mu-
tually independent iid sequences. Then for all0 < t1 < · · ·< tr ,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W
′(tr)) .

(ii) Assume thatΨ <m−idcx−∞ Ψ ′, Φ = Φ ′. Then for all0 < t1 < · · ·< tr ,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W′(tr)) .

8.6.2.2 Workload in batch queues

Consider a queueing system ofJ parallelG/GI/1 FIFO queues. The input is gener-
ated byJ-variate point processesΦ (arrival times) andΨ (batch sizes), independent
of Φ. Fort ≥ 0 andI = (a,b] define

K i(t) =
Ni (t)

∑
n=1

U i
n, i = 1, . . . ,J ,

and

K i(I) =
Ni (b)

∑
n=Ni(a)+1

U i
n, i = 1, . . . ,kJ.

Here,K i(t) represents the number of jobs brought to a queuei up to timet. For
{Si

n}n≥1, i = 1, . . . ,J, iid mutually independent service times, independent ofΦ and
Ψ define cumulative processes

Mi(t) =
Ki(t)

∑
n=1

Si
n, i = 1, . . . ,J ,

and

Mi(I) =
Ki(b)

∑
n=Ki(a)+1

Si
n, i = 1, . . . ,J .

Then the transient workload is given by

Wi(t) = max
0≤u≤t

(0,Mi(t)−Mi(u)− (t−u)) .

Denote by
W(t)≡ (W1(t), . . . ,WJ(t))

the vector of transient workload. Similarly, having arrival processΦ ′ = Φ, batch
size processΨ ′ and the same service times, we defineK′ i(t), K′ i(I), M′ i(t), M′ i(I),
W′ i(t) andW′(t).

From Kulik and Szekli [47] we have
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Property 8.6.4 Assume that{(U1
n , . . . ,UJ

n )}n≥1, {(U ′1n, . . . ,U ′Jn)}n≥1 are sequences
of independent random variables such that for all n≥ 1,
(U1

n , . . . ,UJ
n ) <sm (U ′1n, . . . ,U

′J
n). Then for all0 < t1 < · · ·< tr ,

(W(t1), . . . ,W(tr)) <idcx (W′(t1), . . . ,W′(tr)) .

The assumptions in the above properties can be described in amore detailed way.
Let Φ, Φ ′ beJ-variate arrival processes with interarrival timesXi

n, X′ in, i = 1, . . . ,J.
If {X1

n , . . . ,XJ
n}n≥1 and{X′1n, . . . ,X′Jn}n≥1 are sequences of independent random vec-

tors and for alln≥ 1,

(X1
n , . . . ,XJ

n ) <sm (X′1n, . . . ,X
′J
n),

thenΦ <m−sm−N Φ ′ (Li and Xu [53]). Assume thatXn =d Xi
n =d X j

n, i, j = 1, . . . ,J,
n ≥ 1. From Lorentz inequality one obtains that(X1

n , . . . ,XJ
n ) <sm (Xn, . . . ,Xn).

Therefore, synchronization give the upper bound (in<sm and hence in<idcx-order)
for arrival processes and hence, using previous results, for workload in parallel
queues.

8.6.3 Throughput in general networks

For general networks results about throughput were obtained by Shanthikumar and
Yao [84], and by Tsoucas and Walrand [94]. Since the formulations of the following
properties are self-explaining we shall skip comments on them.

Property 8.6.5 Consider two general closed networks V/S,k/J+ N with an inde-
pendent initial content X(0) and V/S,k/J+N′ with an independent initial content
X′(0) such that X(0)≤st X′(0). Then Na <st-D N′a, Nd <st-D N′d, and

THj(V/S,k/J+N)≤ THj(V/S,k/J+N′), j ∈ J.

Property 8.6.6 Consider two general closed networks V/S,k/J + N with an ini-
tial content X(0) and V/S′,k/J + N with equal initial content such that service
time sequences are independent of the initial content and ofV , and S≥st S′. Then
Na <st-D N′a, Nd <st-D N′d, and

THj(V/S,k/J+N)≤ THj(V/S′,k/J+N), j ∈ J.

Property 8.6.7 Consider two general closed networks V/S,k/J+N with an initial
content X(0) and V/S,k′/J + N with equal initial content such that k≥ k′. Then
Na <st-D N′a, Nd <st-D N′d, and

THj(V/S,k/J+N)≤ THj(V/S,k′/J+N), j ∈ J.

From Tsoucas and Walrand [94] we have
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Property 8.6.8 Consider two open networks with finite waiting rooms
(N0,V)/S,k,B/J, and (N0,V)/S,k′,B′/J which operate according to the manu-
facturing blocking. Assume that in N0 only the first coordinate is non-trivial, and
V j = ( j +1, j +1, . . .), i.e. these networks are open tandems. If N0 and S are inde-
pendent and k≤ k′ and B≤ B′ then

Nacc <st-D N′acc,

where Nacc denotes the point process of accepted jobs to the tandem.

From Meester and Shanthikumar [61], also Anantharam, Tsoucas [3] we have

Property 8.6.9 Consider open network with finite waiting rooms(N0,V)/S,1,B/J,
which operates according to the manufacturing blocking (1 denotes the vector with
1 on each coordinate). Assume that in N0 only the first coordinate is non-trivial,
and Vj = ( j +1, j +1, . . .), i.e. these network is an open tandem. If S is a vector of
independent sequences of iid exponential random variables, and B1 = ∞ then the
throughput of this tandem is increasing and concave as a function of B.
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Chapter 9

Error Bounds and Comparison Results:
The Markov Reward Approach
For Queueing Networks

Nico M. Van Dijk

Abstract This chapter presents an approach to compare two Queueing Networks.
Here one may typically think of one network to be a solvable modification of an-
other únsolvable one of practical interest.

The approach is essentially based upon evaluating steady state performance mea-
sures by a cumulative reward structure and strongly relies upon the analytical es-
timation of so-called bias-terms. This approach, referredto as Markov Reward ap-
proach:

•may lead to (analytic) error bounds for the discrepancy
•may still apply while stochastic comparison fails

The chapter will be divided in two parts:

A General results: which contains motivation and general results.
B Applications: which illustrates the results and the technical verification

by an instructive example and two motivational applications.

In A also the various advantages (as well as disadvantages) of the approach over
standard stochastic comparison will be reviewed. InB the combination of both will
be made fruitful for the truncation of Finite Jackson Networks. Some possible ex-
tensions and open questions will be addressed briefly.

Nico M. Van Dijk
University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam,
e-mail:n.m.vandijk@uva.nl
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A: General results

9.1 Motivation

9.1.1 A first example

9.1.1.1 Applications and solvability

As extension of standard one-dimensional multi-server queues Queueing Networks
are widely known as a most powerful modeling tool for a variety of application such
as in:

• Telephony (circuit switch networks)
• Computer networking (package switch networks)
• Manufacturing (for assembly lines or material handling systems)

but also present-day applications of rapidly growing interest as:

• Service networks (such as supply chains, call centers and hospitals)
• Mobile and ad-hoc communication networks
• and last but not least: internet

Exponential structure and solvability. Standard multi-server queueing systems,
such asM|G|c|N type systems, have intensively been studied under a varietyof
both exponential and non-exponential situations. Networks of queues, in contrast,
are usually described under exponential arrival and service assumptions, as analytic
results or approximations for the non-exponential case arehardly available. (Except
for product form networks under special so-called insensitive service disciplines,
such as pure multiserver or processor sharing disciplines.)

A queueing network (QN) model thus usually relies upon an underlying exponential
structure and as such can be regarded as a continuous-time Markov chain (CTMC).
The typical measures of practical interest are steady stateperformance measures as

• a throughput

• a mean delay

• a mean queue length

• a mean workload or efficiency

• a blocking, loss or congestion probability

Unfortunately, even for the exponential case and with the rather exclusive exception
of product form type networks, closed form solutions for thesteady state distribution
and corresponding associated performance measures of interest as mentioned, are
generally not available. These closed form, most notably product form, solutions are
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usually destroyed by practical features such as finite capacities, overflow, dynamic
routing, breakdowns, prioritizations, synchronizationsor resource contentions.

As a consequence, numerical or approximate computations will have to take place.
As these are computationally expensive if not prohibitive,a number of different
questions may arise. To illustrate this in more concrete form, let us first consider a
simple, but yet unsolvable and instructive example.

9.1.1.2 Instructive breakdown example

Consider a simpleM|M|1|N-system with Poisson arrival rateλ , exponential service
parameterµ and a finite capacity for at mostN jobs. Letn be the total number of
jobs present (the job in service included). When the system is congested (i.e.,n= N)
an arrival is rejected and lost. In addition, the system is subject to breakdowns. More
precisely, when the system is operative (θ = 1) the system (server) can break down
at an exponential rateγ1, regardless of the number of jobs present. When the system
is down (θ = 0) it can become operative again, that is be repaired, at an exponential
repair rateγ0. The system status of either up (θ = 1) or down (θ = 0) thus follows
an alternating renewal process. Letτ be the fraction of time that the system is down,
i.e. τ = γ1/(γ0 + γ1). When the system is down arrivals still take place.

λ µ

θ

γ0γ1

Server

Fig. 9.1: Breakdown system.

As a first glance, this system might be seen as a most simple standard type one-
dimensional queueing system. However, as both the number ofjobs and the up or
down status of the system is to be kept track of, it can, if not is to, be regarded as a
simple network with the up-down status governed by a separate station as in figure
9.1. In fact, as simple as the system may seem, it has no simpleclosed form steady
state distributionπ(n) for the number of jobsn present at an arbitrary instant. (Its
generating function can be obtained as in Jaiswal 1968 for priority queues and recur-
rent relations forπ(n) can be derived). As primary measure of interest let us focus on
the loss probabilityB = π(n = N) or directly relate the throughputF = λ (1−B).
As the system has no simple analytic expression in terms of(λ ,µ ,τ), numerical



400 Nico M. Van Dijk

computation is required to compute the value ofB. The following questions might
therefore come up:

(i)(Sensitivity error) What is the effect of an imprecision, such as due to a data
estimation error, or perturbation in one of the parameters(λ ,µ ,τ). Can we quan-
tify this effect analytically rather than by numerical computation.

(ii)(Approximation-Error bound) As τ must typically be thought of as being
small, say in the order of a few %, wouldn’t the simpleM|M|1|N-loss proba-
bility, that is by assuming that breakdowns do not take place, lead to a reason-
able approximation. Again, without numerical computationor simulation can we
quantify its accuracy by an analytic error bound?

(iii)(Truncation-Error bound) As N might be quite large whileB can be thought
of as being of orderρN, for numerical reduction purposes, one might suggest to
reduce the numberN to a numberL << N. Can we provide an a priori analytic
quantification of the effect of this state space truncation,so as to determine a
reasonable numberL?

(iv)(Monotonicity-comparison result) For each of the parametersλ ,µ ,N,γ1

and γ0 separately its increasing or decreasing effect onB seems obvious. But
as a finite system is involved one has to be careful. At sample path basis coun-
terintuitive examples can be constructed (e.g. see the counterintuitive example in
section 9.4). Formal monotonicity proofs might thus be required. How can this
be established?

(v)(Lower an upper bound-comparison result) The approximation under (ii),
that is by assuming thatτ = 0, can intuitively be expected to give a lower bound
BL. However, to guarantee a sufficiently small loss probability B (or sufficiently
large throughputF), such as by adjustingN, an upper bound would be of more
interest. To this end, modify the system by also rejecting arrivals when the sys-
tem is down. With(n,θ ) representing thatn jobs are present and that the system
is up (θ = 1) or down (θ = 0), and with 1(A) the indicator function of an eventA,
under this modification the global balance equation in state(n,θ ) becomes:





π(n,θ )λ1(n<N)1(θ=1)

π(n,θ )µ1(n>0)1(θ=1)

π(n,θ )γ11(θ=1)

π(n,θ )γ01(θ=0)





(9.1.1.1)
(9.1.1.2)
(9.1.1.3)
(9.1.1.4)

=



π(n+1,θ )µ1(n<N)1(θ=1)

π(n−1,θ )λ1(n>0)1(θ=1)

π(n,0)γ01(θ=1)

π(n,1)γ11(θ=0)





(9.1.1.1)′

(9.1.1.2)′

(9.1.1.3)′

(9.1.1.4)′

(9.1.1)

This equation is directly verified by equating each of its four detailed equations
(1.1.i)=(1.1.i)′ for i = 1,2,3,4 separately, by substituting the product form, with
c a normalizing constant,
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π(n,θ ) = c[γθ ]−1
[

λ
µ

]n

(n≤ N) (9.1.2)

Intuitively, we can now expect to obtain an upper bound
BU = π(n = N,θ = 1)+ π(θ = 0). Hence, it seems appealing to conclude that

BL ≤ B≤ BU (9.1.3)

HereBL would be obtained by the standardM|M|1|N-loss probability by assum-
ing that the system never breaks down (i.e.:τ = 0). The inequalities (9.1.3) as
well as their practical usefulness are also supported numerically in table 9.1 be-
low.

Table 9.1: Lower and upper bounds for the loss fractionB

N ρ τ BL BU

20 20 0.1 0.16 0.24
0.05 0.16 0.20
0.02 0.16 0.18

30 25 0.05 0.052 0.098
0.01 0.052 0.062

Nevertheless, as shown in section 9.4, at sample path basis one can provide
counterintuitive examples by which an ordering as in (9.1.3) seems violated. It
thus seems of both practical an theoretical interest to formally prove the bounds
(9.1.3).

9.1.1.3 Two questions

In essence, each of the questions for the instructive example comes down to the
comparison of two systems. One which can be regarded as an original system and
one as a modified one, say as due to:

• a perturbation of an input parameter,
• a system modification,
• or a state space truncation

Particulary the situation of a system modification can be of considerable practical
interest so as to justify a computational simplification, byeither:

• an analytic error bound for its accuracy, or
• a secure bound for the performance measure of interest.
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Here one may typically (but not necessarily) think of systemmodifications that will
lead to a product form computation. Accordingly, the two major questions of interest
when comparing two related systems, say an original and a modified one, become:

Q1: How to obtain comparison or ordering results, that is with≥ or≤ sign, so
as to guarantee bounds.

Q2: How to obtain analytic error bounds on the discrepancy of thetwo systems,
for some specific performance measure.

Here the order of the two questions is interchanged from its practical motivation as
the first seems more standard and easier to handle first (as will also appear later on).

Before stepping into more detail of the objective and the approach of how to address
these two questions, let us give two more motivating networkexamples for each of
these two questions, which are of practical interest by itself. Also these examples
will be dealt with later on.

9.1.2 Two more examples

9.1.2.1 Finite Tandem Queues

N1 N2

Loss Blocked

Fig. 9.2: Tandem system.

Consider a two-station tandem system with capacity constraints for at mostN1 jobs
at station 1 andN2 jobs at station 2. When station 1 is saturated, arrivals are re-
jected and lost. When station 2 is saturated, the servicing at station 1 is stopped. This
system can be regarded as representative for a variety of applications in manufactur-
ing (assembly lines) and computer performance evaluation (multi-stage processing).
Due to the finite constraints, however, it hasno product-form expression. Various
numerical and approximation techniques have therefore been developed (e.g. [36],
[7], [10], [30]). These, however, still require restrictive service specifications (such
as exponential), are computationally expensive, ánd lastbut not least, do nót provide
any guarantee or error bound.

In order to enforce a product form expression, the followingtwo modifications can
now be suggested.
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Modification 1:

Never stop station 1. Reject arrivals only whenn1 +n2 = N1 +N2.

Modification 2:

•When the second station is saturated also reject arrivals atstation 1.
•When the first station is saturated also stop (the servicing at) station 2.

Let λ be the arrival rate andµi the exponential service parameter, assuming a single
server, at stationi = 1,2. Then indeed, withni the number of jobs at stationi, i = 1,2,
for modification 2 one easily verifies the global balance equation (9.1.4) by equating
each of the detailed equation (1.4.i)=(1.4.i)′ for i = 1,2,3.






π(n1,n2)λ1(n1<N1)1(n2<N2)

π(n1,n2)µ11(n1>0)1(n2<N2)

π(n1,n2)µ21(n2>0)1(n1<N1)






(9.1.4.1)
(9.1.4.2)
(9.1.4.3)

=



π(n1,n2 +1)µ21(n1<N1)1(n2<N2)

π(n1−1,n2)λ1(n1>0)1(n2<N2)

π(n1 +1,n2−1)µ11(n2>0)1(n1<N1)





(9.1.4.1)′

(9.1.4.2)′

(9.1.4.3)′

(9.1.4)

by substituting the product form:

π(n1,n2) = c

(
λ
µ1

)n1
(

λ
µ2

)n2

, 0≤ n1≤ N1 ; 0≤ n2≤ N2 ;

n1 +n2 6= N1 +N2 .

In a similar fashion the same product form is also verified under modification 1 but
for all states withn1 + n2≤ N1 + N2. Now suppose again, that we are interested in
the blocking probabilityB for the original tandem queue.

Intuitively, modification 1 will lead to a lower boundBL and modification 2 to an
upper boundBU . That is, inequality (9.1.3) can again be expected intuitively. This
is also supported by some numerical results in table 9.2. These results also indicate
a practical usefulness. Nevertheless, again one can construct counterintuitive exam-
ples at sample path basis that seem to conflict with (9.1.3). Given the generic nature
of this example, particularly in this case a formal proof forthe bounds in (9.1.3)
would thus be of both theoretical and considerable practical interest.

9.1.2.2 Finite Jackson Networks

The famous class of so-called Jackson networks, named afterthe pioneering paper
by Jackson in 1957, refers to networks which allow a random routing of jobs from
one service station to another with fixed probabilities. This subclass forms a rich
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Table 9.2: Comparison of Bounds and Numerical Results

N1 N2 λ µ1 µ2 BL B BU

10 10 1 1 1 0.090 0.124 0.167
20 20 1 1 1 0.047 0.064 0.091
40 20 1 1 1 0.003 0.003 0.070

class for practical applications. The steady state distribution of the standard Jack-
son network, that is with infinite capacities, is well known to exhibit an appealing
product form. By this product form expression performance measures of interest,
such as mean delays, mean queue lengths or throughputs of service stations can be
computed directly.

In practice, however, also finite capacity constraints on the numbers of jobs at these
service stations are most natural, say for at mostNi jobs at stationi = 1, . . . ,J with J
the number of stations. Unfortunately, these finite constraints generally violate the
product form (or any closed form) expression. Next to approximate methods and
simulation, a numerical computation of system performancemeasures thus becomes
of practical interest.

However, due to the multi-dimensional structure of the queueing network, the size
of the corresponding state space can be large if not astronomic. The computational
effort therefore will rapidly become expensive if not prohibitive. A reduction of the
state space by reducing the numbersNi to Li ≤Ni might thus become appealing. In-
tuitively, as networks are developed such that congestion probabilities are small, the
effect of these truncations can still be small. Clearly, such state space reductions will
have been applied frequently in practice. Nevertheless, formal theoretical support in
terms of error bounds, either at computational basis itselfor in analytic form, seems
to be lacking. Alternatively, one might wish to expand the numbersNi to Ni = ∞ so
as to regain a product form. For either case, a truncation or an expansion, an analytic
error bound for the effect of the modification will thus be of interest.

Fig. 9.3: Jackson network.
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9.1.3 Objectives

As motivated by sections 9.1.1 and 9.1.2, the objectives of this chapter are:

(i) To show that the two questions of interest:Q1 andQ2 from
section 9.1.1.3, can be addressed in a unified manner.

(ii) To provide a separate comparison, error bound and truncation result.

(iii) To illustrate the conditions required, the verification of these
conditions and the different type of comparison and error
bounds results that can be obtained.

9.1.4 Approach

To this end, in contrast with the standard stochastic comparison approach, a Markov
reward approach will be presented. This approach is based upon a discrete-time
transformation and one-step Markov reward or dynamic programming steps.

In essence, in its discrete-time formulation, this approach is strongly related to the
policy improvement step in classical stochastic dynamic programming (e.g. [52],
[50]) and as such could be regarded as well-known. Nevertheless, for the two ques-
tionsQ1 andQ2 mentioned, to the best of knowledge, the approach has been pro-
posed and been applied first in [19] for questionQ1 and [23] for questionQ2.

More detailed, the essential ingredients of this approach are:

• To analyze steady state performance measures as by expectedaverage rewards.

• To use a discrete-time Markov transition structure and to compare the difference
of the two systems in its one-step transition structure.

• To use inductive arguments to estimate or bound so-called bias (or relative gain)
terms for one of the two systems.

For comparison results (that is, questionQ1) the ingredients of the MRA will lead to
both some disadvantages and some advantages as opposed to the standard stochastic
comparison approach, as developed most elegantly in the book by [61] and related
references thereafter (e.g. [43], [47], [57], [63]). (Advantages and disadvantages of
the MRA will be listed in more detail in section 9.3.5). As a major disadvantage the
MRA requires a Markovian and thus exponential Queueing Network structure (al-
though possible extensions to non-exponential situationswill be mentioned briefly
later on). As an advantage, however, the MRA might work for some specific per-
formance measure while stochastic comparison might not. (As will be illustrated in
sections 9.2.2 and 9.5).



406 Nico M. Van Dijk

9.1.5 Outline

First, in section 9.2, some notation and preliminary results will be presented to trans-
form an exponential queueing in a discrete time Markov Chain. Next, a basic result
for stochastic comparison of two systems is presented but also shown to be limited
for specific applications such as the comparison for the finite tandem queue from
section 9.1.2.1.

Next, in section 9.3 therefore, the Markov reward approach (MRA) is introduced to
overcome this limitation as well as to provide analytic error bounds for the dis-
crepancy of two systems. The entire section is set up in the general context of
continuous-time Markov chains, with queueing networks as aspecial but primary
motivational application in mind.

In section 9.3.1 the necessary framework of a one-step reward structure will be set
up. Next, in section 9.3.2 the application of the Markov reward approach for the
comparison of two systems is presented (result 9.3.2). In section 9.3.3, as a main
result of the approach, an error bound result is developed (result 9.3.10). In section
9.3.4 the error bound result is also made more explicit for a state space truncation of
a Markov chain, such as a queueing network. Though the results in sections 9.3.2,
9.3.3 and 9.3.4 are strongly related in form, proofs and technical verification of
its conditions, the results are given separately to contrast more explicitly with the
stochastic comparison approach as well as to highlight the specific aspects for the
different type of applications. Finally, in section 9.3.5,the major advantages as well
as disadvantages of the Markov reward approach as opposed tostochastic compari-
son approach are briefly mentioned.

The application of these general results to queueing networks the verification of the
conditions and the possible concrete results will then be illustrated in sections 9.4,
9.5 and 9.6.

• In section 9.4 for the instructive breakdown example of section 9.1.1.2.

• In section 9.5 for the finite tandem queue bounds from section9.1.2.1.

• In section 9.6 for the finite Jackson network of section 9.1.2.2.

First, in section 9.4 the instructive breakdown example from section 9.1.1.2 will
be dealt with to illustrate the verification of the conditions and the results from
section 9.3. Particularly, it will be shown how the crucial step (the bounding of so-
called bias-terms) can be achieved in an analytic and unifying manner for different
performance measures. This step will be worked out in detailso that the equations
that come along can also be understood more easily in more complex situations, as
in sections 9.5 and 9.6. Next, in section 9.5, the motivational example of a finite
tandem queue will be considered to prove a simple lower and upper performance
bound.

Finally, in section 9.6, the truncation is investigated of Finite Jackson Networks
for computational simplification. Both a computational andanalytic error bound
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are derived. For the example of a cellular mobile network an analytic relative error
bound is established as based upon standard infinite server queues.

A brief discussion and evaluation in section 9.7 concludes the chapter. This includes
possible extensions to non-exponential queueing networks, to the case of transient
measures, to discrete-time queueing networks or more general continuous-time sys-
tems governed by nonnegative matrices, as well as open questions for further re-
search and some other recent applications of the approach.

9.2 Stochastic Comparison.

9.2.1 Preliminaries

As we will restrict to exponential queueing networks, throughout section 9.2 and
9.3 we will consider continuous-time Markov chains (CTMC) with countable state
spaceS and transition rate matrixQ = q(i, j), with q(i, j) the transition rate for a
change from statei into statej 6= i andq(i, i) =−∑ j 6=i q(i, j). For convenience, this
chain is assumed to beuniformizable. That is, for some finite constantH < ∞ and
all i ∈ S,

∑
j 6=i

q(i, j) ≤ H (9.2.1)

Let Pt(i, j) denote the transition probability for a transition from state i into statej
over timet and define expectation operators{Tt | t ≥ 0} on the setB of real-valued
functions f defined onS by

(Tt f )(i) = ∑
j

Pt(i, j) f ( j). (9.2.2)

In words that is,(Tt f )(i) represents the expected value of functionf at timet of
the CTMC when starting in statei at time 0. By virtue of the boundedness (uni-
formization) assumption (9.2.1), it is then well known (e.g. [24], [31], [33]) that
the continuous-time Markov chain can also be evaluated as a discrete-time Markov
chain (DTMC) with one-step transition matrixP with h = H−1:

P = I +hQ,

hence, with one-step transition probabilities:

P(i, j) =

{
hq(i, j) ( j 6= i),

1−h∑ j 6=i q(i, j) ( j = i).
(9.2.3)

Intuitively speaking, one may regard this matrix as a transition matrix over a time
interval of lengthh = H−1. In contrast with the CTMC, however, it ignores pos-
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sible multiple changes in this time interval. Neverthelessit can be shown that the
stochastic behavior of the CTMC, more precisely, the transition mechanisms and
corresponding expectation over any timet, can stochastically be obtained as if at
exponential times with parameterH, thus on average per time interval of length
h = H−1, a change may take place as according to the one-step transition matrixP.
Let Tk for the DTMC represent (similar toTt for the CTMC) the expectation oper-
ator overk steps (herePk denotes thek-th matrix power ofP andI is the identity
operator), i.e.:






T0 f (i) := f (i)

T f (i) := ∑ j
P(i, j) f ( j)

Tk f (i) := ∑ j
Pk(i, j) f ( j) = T(Tk−1 f )(i) (k > 0, for all f ∈ B).

(9.2.4)

Then, under natural ergodicity and irreducibility conditions we may conclude that
for the steady-state performance measure of interestG and independent ofi ∈ S:

G = lim
t→∞

Tt r(i) and G C
= lim

k→∞
Tkr(i) = lim

N→∞

1
N

N−1

∑
k=0

Tkr(i) (9.2.5)

(where for the discrete-time case the Cesaro limit is used tocover aperiodicity), for
some appropriate reward rater. G is thus be regarded as a scalar which represents
the expected average reward per unit time in steady state situation. For example,
with the CTMC representing anM|M|1|N queue: andn the number of jobs present

G =





Mean queue length forr(n) = n
Loss probability forr(n) = 1(n=N)

Throughput forr(n) = µ1(n>0)

(9.2.6)

9.2.2 Stochastic comparison

Now suppose that we like to compare a performance measure
{

G for an original CTMC with transition ratesq(i, j) with
Ḡ for a modified CTMC with transition rates ¯q(i, j)

say at one and the same state spaceS = S̄, for both of which the uniformization
condition (9.2.1) holds with same constantH, and whereG andḠ are the average
expected rewards for one the same reward rater.

Let Tt andT̄t , T andT̄ as well asTk andT̄k be the corresponding uniformized one-
step transition operators as defined by (9.2.2), (9.2.3) and(9.2.4). Then by virtue of
the uniformization, that is (9.2.5), we can use
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G C
= limk→∞ Tkr(i) , for anyi ∈ S

Ḡ C
= limk→∞ T̄kr(i) , for anyi ∈ S

(9.2.7)

The following (strong) stochastic monotonicity or comparison result can now be
concluded directly for comparingG andḠ. Herein, for two functionsf andg we
write f ≥ g iff f (i) ≥ g(i) for all i ∈ S. Furthermore, the function 0 represents the
null function, i.e. 0(i) = 0 for anyi ∈ S.

Result 9.2.1 (Stochastic monotonicity)LetM represent a set of real-valued (mono-
tonicity) functions which is closed underT, i.e.

T f ∈M for any f ∈M (9.2.8)

If

T̄ f ≥ T f ( f ∈M) (9.2.9)

and

r ∈M (9.2.10)

then
Ḡ≥G (9.2.11)

Proof. By (9.2.4) for arbitraryf , any statei andk > 0, we can write:

(T̄k f −Tk f )(i) =

(T̄T̄k−1 f −TTk−1 f )(i) =

(T̄−T)Tk−1 f (i)+ T̄(T̄k−1−Tk−1) f (i) =
k−1

∑
t=0

T̄t
[
(T̄−T)Tk−t−1 f

]
(i)+ T̄k

[
(T̄0−T0) f

]
(i)

(9.2.12)

First note that(T̄0−T0) f ( j) = f ( j)− f ( j) = 0 for any j. The last term in (9.2.12)
can thus be deleted. Next, note that by repetition of condition (9.2.8):

Ts f ∈M for any f ∈M ands= k− t−1≥ 0 (9.2.13)

Hence, by condition (9.2.9), for anyt ≤ k−1 and anyf ∈M:

(T̄−T)Tk−t−1 f ≥ 0 (9.2.14)

By also noting that̄Tt is a (probability) transition (and thus a non-negative) operator
so that for any functiong≥ 0 (in componentwise sense)̄Ttg≥ 0, the right hand
side of (9.2.12) can be estimated from below by 0. Condition (9.2.10) and relation
(9.2.7) complete the proof. ⊓⊔
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Remark 9.2.2 Clearly, result 9.2.1 remains identical with reversed signs≤. Result
9.2.1 is strong as it secures an ordering (a comparison) of the performance measure
for all possible reward rate functions r∈M. In addition, as shown in various refer-
ences as [9], [10], [43], [38], [39], [51], [47], [61], [63], [68], [69], relaxations
and extensions of this form of monotonicity results can be provided, most notably
among which to non-exponential situations. In this respectit also mentioned that
these stochastic comparison results also relate to the approach of stochastic (or
weak) coupling and sample path comparison, by which exponentiality assumptions
can be disregarded directly. But in essence, also under these relaxations and exten-
sions, and despite its elegancy and non-exponential advantage, stochastic compari-
son, as reflected by result 9.2.1, can be insufficient in two ways:

(i) The ordering (9.2.11) holds for any r∈ M. But as a price to pay also the
conditions (9.2.8) and (9.2.9) should be satisfied for any f∈ M. At this point
the monotonicity classM is not specified. In fact, no such class may exist that
also covers condition (9.2.10) for the performance measureand thus reward rate
of interest: r. Differently said, the specific performance measure of interest and
transition structure may require monotonicity that is nót preserved underT. This
will be illustrated below in section 9.2.3 for the tandem example from section
9.1.2.1. Nevertheless, for (some or) a specific reward rate(s) r one might still
expect an ordering result as in (9.2.11) but not for a complete closed class of
functionsM. This is thus to be proved by a different type of approach. Forthe
same tandem example, this will be shown in section 9.5.

(ii) The comparison result nor its proof seem to lead to a quantification of the
discrepancy (i.e.: an error bound) between the two systems,say as due to a per-
turbation or modification. For example, as a natural perturbation, assume that

‖(T̄−T) f‖ ≤ ε‖ f‖ ,( f ∈M)

in usual supremum norms for some smallε > 0. SinceT̄ is a probability oper-
ator: ‖T̄kg‖ ≤ ‖g‖ for any function g. As a consequence, by expansion (9.2.12)
(or alternatively its one step recursion relation (9.2.4) and induction) we easily
prove:

‖T̄k f −Tk f‖ ≤ εk‖ f‖
However, due to the limits in (9.2.7) there isnó such result for:

|Ḡ−G|

.
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9.2.3 Stochastic comparison failure

The stochastic comparison approach has shown to be most appealing and useful for
M|G|c-type systems and variations thereupon ([27], [59], [60], [61]); roughly speak-
ing that is, for one-dimensional systems with a single service station or, as in [43]
multi-component reliability systems, which in essence canbe regarded as a machine
repair or Engset type queueing system. With multiple service stations, however, as
in queueing networks, its application seems less common. Some exceptions here are
found in [1], [2], [53], [66], [70]. These, however, generally concern Jackson type
networks without capacity constraints or other conflictingfeatures by which service
stations become directly dependent. To get more insight in the complications that
arise for stochastic comparison, let us reconsider the finite tandem example from
section 9.1.2.

Finite tandem example (section 9.1.2) revisited.Consider the original finite tan-
dem queue as well as the modified model under modification 2, asdescribed in
section 9.1.2. LetP andP̄ be the corresponding one-step transition matrices for the
uniformized DTMC, where condition (9.2.1) is guaranteed byH = [λ + µ1 + µ2],
as by (9.2.3) and (9.2.4) with a statei identified as a state(n1,n2) for the number
of jobsni at stationi = 1,2. More precisely, for the original finite tandem queue the
uniformized transition matrixP becomes:

P
(
(n1,n2),(n1,n2)

′)=






(n1,n2)
′

1−hλ1(n1<N1)−hµ11(n2<N2) (n1,n2)
hλ1(n1<N1) (n1 +1,n2)
hµ11(n2<N2)1(n1>0) (n1−1,n2+1)
hµ21(n2>0) (n1,n2−1)

(9.2.15)

and similarly for the modified system. In order to prove that the modified (product
form) system leads to an upper bound for the loss probabilityB, we would like to
apply result 9.2.1. However, the loss probability will alsorequire a different reward
rater and ¯r for the two systems, which is not allowed by result 9.2.1. To avoid this
minor complication we can also analyze the throughput by:

F = λ (1−B) and r(n1,n2) = µ21(n2>0).

Note thatr is nondecreasing inn2 (as well as inn1). By comparing the transition
structures for the original and modified (under modification2) tandem queue, for
arbitrary functionf we conclude

(T̄−T) f (n1,n2) =

hλ1(n1 < N1,n2 = N2)[ f (n1,N2)− f (n1 +1,N2)]+

hµ21(n2 > 0,n1 = N1)[ f (N1,n2)− f (N1,n2−1)]

(9.2.16)
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In order to estimate this expression from above by 0 (note that the throughput of the
original should be proven to be larger than for the modified system, i.e.F̄ ≤ F), the
monotonicity classM should thus be of the form:

M = { f : S→R | f (n1 +1,n2)− f (n1,n2)≥ 0;

f (n1,n2 +1)− f (n1,n2)≤ 0, all (n1,n2)} (9.2.17)

But then we directly observe that condition (9.2.10) fails as r /∈ M. In fact, also
condition (9.2.8) is violated.

More precisely, to satisfy (9.2.8), these monotonicities should also apply for the
function(T f ) for any suchf . However, by (9.2.15) for any state(n1,n2) and(n1 +
1,n2) with n1 +1≤ N1:

(T f )(n1 +1,n2)− (T f )(n1,n2)

= hλ1(n1+1<N1)[ f (n1 +2,n2)− f (n1 +1,n2)]

+ hλ1(n1+1=N1)[ f (n1 +1,n2)− f (n1 +1,n2)]

+ hµ11(n1>0)1(n2<N2)[ f (n1,n2 +1)− f (n1−1,n2+1)]

+ hµ11(n1=0)1(n2<N2)[ f (n1,n2 +1)− f (n1,n2)]

+ hµ21(n2>0)[ f (n1 +1,n2−1)− f (n1,n2−1)]

+ [1−hλ1(n1+1<N1)−hλ1(n1+1=N1)−hµ11(n2<N2)−hµ21(n2>0)]

[ f (n1 +1,n2)− f (n1,n2)]

(9.2.18)

To conclude that this expression is larger than or equal to 0 we can use the mono-
tonicity of f in n1 in the first, (the second is equal to 0 itself), third, fifth andsixth
term in the right hand side. However, in a state withn1 = 0 andn2 < N2, there is a
serious conflict in the fourth term asf (n1,n2+1)− f (n1,n2)≤ 0, as by (9.2.17). In
other words, withM as by (9.2.17) condition (9.2.8) fails.

Would we have definedM with functions that are nondecreasing in both compo-
nents, i.e.

M = { f : S→R | f (n1 +1,n2)≥ f (n1,n2);

f (n1,n2 +1)≥ f (n1,n2), all (n1,n2)} (9.2.19)

(9.2.18) could indeed be estimated from below by 0. And also for the second com-
ponent, as by
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(T f )(n1,n2 +1)− (T f )(n1,n2)

= hλ1(n1<N1)[ f (n1 +1,n2+1)− f (n1+1,n2)]

+ hµ11(n1>0)1(n2+1<N2)[ f (n1−1,n2+2)− f (n1−1,n2+1)]

+ hµ11(n1>0)1(n2+1=N2)[ f (n1,n2 +1)− f (n1−1,n2+1)]

+ hµ21(n2>0)[ f (n1,n2)− f (n1,n2−1)]

+ hµ21(n2=0)[ f (n1,n2)− f (n1,n2)]

+ [1−hλ1(n1<N1)−hµ11(n1>0)−hµ2][ f (n1,n2 +1)− f (n1,n2)]

(9.2.20)

we can conclude that the monotonicity is preserved. In otherwords, withM as by

(9.2.20) condition (9.2.8) is satisfied. In addition, we also have:

r ∈M

However, while (9.2.8) and (9.2.10) are now satisfied, to apply result 9.2.1, the or-
dering condition (9.2.9) will necessarily fail, as due to (9.2.16).

Conclusion. In other words, there seems no way to apply the stochastic compar-
ison result 9.2.1 to prove the upper boundBU in section 9.1.2.1 (or, by similar
counter arguments, the lower boundBL).

This is nót to say that stochastic comparison results cannot be obtained for the finite
tandem queue (as argued above, it will apply for monotone functions of the form
(9.2.17), but nót for the specific performance measure and system to be compared
with, as of interest by its motivation in section 9.1.2.1.

9.3 Markov reward approach

9.3.1 Preliminaries

As argued in remark 9.2.2(ii), despite the fact that an average performance measure
can be regarded as an expectation at an arbitrary instant, itseems impossible to con-
clude an error bound by just analyzing the effect on expectations at finite instants.
We will therefore use a cumulative reward structure.

Consider some given reward rate functionr(i) that incurs a rewardr(i) per unit of
time whenever the system is in statei. The expected cumulative reward over a period
of lengtht and given the initial statei at time 0 is then given by

Vt(i) =

ˆ t

0
Tsr(i)ds. (9.3.1)
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Then, as in (9.2.5), under natural ergodicity conditions this expected cumulative
reward averaged over time will converge to the expected average reward, or in the
current setting, the performance measureG, independently of the initial statei, as:

G = lim
t→∞

1
t

Vt(i) (for any i ∈ S) (9.3.2)

By virtue of the uniformization technique again, we can alsoevaluateG by means
of the expected cumulative reward for the uniformized discrete time Markov chain
as:

G = lim
k→∞

H
k

Vk(i) (for anyi ∈ S) (9.3.3)

HereVk(i) represents the expected cumulative reward for the uniformized DTMC
overk steps, each of lengthh= H−1, with one-step rewardshr( j) per step whenever
the system is in statej and when starting in statei at time 0. More precisely, for any
i ∈ S

Vk(i) =
k−1

∑
s=0

hTsr(i), (k = 1,2, . . .), V0(i) = 0 (i ∈ S) (9.3.4)

The factorH in (9.3.3) is required as the time average ofVk/k ensures an average
reward per step of mean lengthh = H−1 instead of per unit of time.

The major advantage of this discrete setup is that it enablesone to useinductive
arguments by exploiting the reward (or dynamic programming) relation:

Vk+1(i) = hr(i)+∑
j

P(i, j)Vk( j) (k = 0,1,2, . . .),(i ∈ S) (9.3.5)

Remark 9.3.1 (Scaling factors)Clearly, the time scaling factors h and H in (9.3.3),
(9.3.4) and (9.3.5) could be deleted. However, they are leftin for their natural in-
terpretation accordingly to the uniformization, as will also appear to be convenient
for the probabilistic interpretation of the so-called bias-terms equations as will be
derived later on (in sections 9.4, 9.5, 9.6).

9.3.2 Comparison Result

Consider a CTMC, which will be referred to as original model,as described in sec-
tion 9.2.1, with transition ratesq(i, j), reward rater(i) and state spaceS. We briefly
denote this parametrization by(S,q, r). Now consider a second CTMC, described
similarly, which will be thought of and be referred to as a modified model of the
first, (S̄, q̄, r̄). In short, we aim to compare these two systems:
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{
(S,q, r)

(S̄, q̄, r̄)
under the condition̄S⊆ S. (9.3.6)

Here both models are assumed to be unifomizable with same constantH as by
(9.2.1). Throughout, we use the overbar symbol for an expression concerning the
modified model. We aim to compare the performance measures, that is the expected
reward per unit time in steady state,G andḠ.

Result 9.3.2 Suppose that forVk defined by (9.3.5), all i∈ S̄ and k≥ 0:

[r̄− r](i)+∑
j
[q̄(i, j)−q(i, j)][Vk( j)−Vk(i)]≥ 0 (9.3.7)

Then,
Ḡ≥G. (9.3.8)

Proof. By virtue of (9.3.5), we have

Vk+1(i) = hr(i)+TVk(i),

V̄k+1
(i) = hr̄(i)+ T̄V̄k

(i),
(9.3.9)

As the transition probabilities̄P(·, ·) remain restricted tōS⊆ S, for arbitraryl ∈ S
we may thus write

(V̄k−Vk)(l)

= h(r̄− r)(l)+ (T̄V̄k−1−TVk−1)(l)

= h(r̄− r)(l)+ (T̄−T)Vk−1(l)+ T̄(V̄k−1−Vk−1)(l)

= ∑k−1
s=0

{
T̄sh[r̄− r](l)+ T̄s

[
(T̄−T)Vk−s−1)

]
(l)
}

+ T̄k
(V̄0−V0)(l),

(9.3.10)
where the last step followed by iteration. First note that the last term in the right
hand side of (9.3.10) is equal to 0 asV̄0

(·) = V0(·) = 0. Furthermore, by (9.2.3) and
(9.2.4), we can also write

(T̄−T)Vs(i)

= ∑
j 6=i

h[q̄(i, j)−q(i, j)]Vs( j)−∑
j 6=i

h[q̄(i, j)−q(i, j)]Vs(i)

= ∑
j 6=i

h[q̄(i, j)−q(i, j)][Vs( j)−Vs(i)].

(9.3.11)

By substituting (9.3.11) in (9.3.10) and noting thatT̄s is a monotone operator for all
s (i.e. T̄s f ≤ T̄s f if f ≤ g componentwise), from (9.3.10) and by using (9.3.7) we
obtain:
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(V̄k−Vk)(l) =
k−1

∑
s=0

T̄s
{
[r̄− r]+ (T̄−T)Vk−s−1

}
(l)≥ 0. (9.3.12)

The proof is completed by applying (9.3.3). ⊓⊔

Remark 9.3.3 (Essential difference to the stochastic comparison method) As shown
in section 9.2.2, with the stochastic comparison method or related sample path ap-
proach, as intensively studied in the literature, one requires that the one-change
transition structure or rather the transition rate matricesQ andQ̄ are stochastically
ordered asQ̄≥ (≤)Q in some appropriate ordering sense. This would essentially
imply condition (9.3.7) without the reward term[r̄− r].

Such a strict ordering does seem quite natural in ’standard’type one-dimensional
systems. However, for multi-dimensional queueing structures a strict ordering of
purely the transition structure will be less natural and maynot be satisfied. More
precisely, the necessary ordering for the specific performance measure of interest
might not be covered by the transition itself, as shown in section 9.2.3. By result
9.3.2, however, an ordering for that measure might still be provable by using the
extra reward term[r̄ − r] in condition (9.3.7). For the tandem example of section
9.2.3 this will be shown in section 9.5.

Remark 9.3.4 (Bias-terms)The essential step to apply result 9.3.2 is to verify con-
dition (9.3.7). This in turn will generally require to boundthe so-called bias terms
Vk( j)−Vk(i) from below (or above) by 0. This bounding can be quite technical.
But in general it can be performed in an inductive manner by exploiting the recur-
sive relation (9.3.5). As these bias-terms will also play a crucial role to obtain error
bounds, a more detailed discussion on these bias terms can befound in the next
section.

9.3.3 Error bound Result

Reconsider the setting of section 9.3.2 with
{

an original Markov reward chain(S,q, r),
an approximate Markov reward chain(S̄, q̄, r̄),

where both are assumed to be uniformizable with some constant H and whereS⊆S.
Let π and π̄ denote their steady-state distributions. The following theorem can be
given in various versions. The present form, however, is most practical in the natural
situation that the steady-state distribution of one of the two models, typically the
modified one, is known as easily computable. For convenience, we write

π̄ f = ∑
i

π̄(i) f (i)
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Result 9.3.5 (Error bound) Suppose that for some nonnegative functionγ(·) at S̄,
all i ∈ S̄ and k≥ 0:

∣∣∣[r̄− r](i)+∑
j
[q̄(i, j)−q(i, j)][Vk( j)−Vk(i)]

∣∣∣≤ γ(i). (9.3.13)

Then ∣∣Ḡ−G
∣∣≤∑

i
π̄(i)γ(i) = π̄γ. (9.3.14)

Proof. Recall the derivation (9.3.10) for fixedl ∈ S̄ with the last term in the right
hand side vanished as it is equal to 0. (as in the left hand sideof (9.3.12)). Then by
multiplication byπ(l) and summing over alll , we obtain

(π̄V̄k− π̄Vk) = ∑
l

π̄(l)[(V̄k−Vk)(l)]

= ∑
l

π̄(l)
k−1

∑
s=0

{
h[r̄− r](l)+ [(T̄−T)Vk−s−1(l)]

} (9.3.15)

Now note that sincēπ (as steady state distribution) is invariable underT̄. For any
functiong:

π̄(Tg) = ∑
l

π̄(l)∑
j

P̄(l . j)g( j)

= ∑
j

[

∑
l

π̄(l)P̄(l , j)

]
g( j) = ∑

j
π̄( j)g( j) = π̄g

so that for anys:

π̄T̄sg = π̄T̄(T̄s−1g) = π̄(T̄s−1g) = . . . = π̄g (s> 0) (9.3.16)

As a consequence, by also taking absolute values
∣∣∣π̄V̄k− π̄Vk

∣∣∣ =
∣∣∣∑k−1

s=0 π̄
{

h[r̄− r]+ [T̄−T]Vk−s−1
}∣∣∣

≤ k∑i
π̄(i)

∣∣∣h[r̄− r](i)+ [T̄−T]Vk−s−1(i)
∣∣∣

(9.3.17)

Substitution of (9.3.17) into (9.3.15) and using condition(9.3.13) thus gives
∣∣∣π̄V̄k− π̄Vk

∣∣∣≤ kh∑
i

π̄(i)γ(i) = kh[π̄γ] (9.3.18)

By recaling the steady-state convergence (9.3.3) to be independent of the initial
state, the proof is thus completed by
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H
k ∑

i

π̄(i)V̄k
(i)→ Ḡ (k→ ∞)

H
k ∑

i
π̄(i)Vk(i)→G (k→ ∞)

⊓⊔

Remark 9.3.6 (Application of result 9.3.5)Note that result 9.3.5 may lead to small
error bounds in either of two ways:

• When either the difference between the transition ratesqandq̄ is small, uniformly
in all states, say‖Q̄−Q‖ ≤ ε for some smallε. Here one may typically think of
smallperturbations or inaccuraciesin system parameters such as an arrival rate
λ . (Examples of this form for M|M|c-systems can be found in [23]).

• When the transition ratesq andq̄ may differ quite strongly in specific states i, but
where the likelihood̄π(i) of being in such states is rather small. Here, one could
typically think of a systemmodification or truncation. In section 9.4 a situation
(an error bound for a modification) is illustrated for the instructive example from
section 9.1.1.2. Below (in section 9.3.4) the specific case of a truncation will be
made more explicit. In section 9.6 a truncation error bound will be obtained for
finite Jackson networks.

Remark 9.3.7 (Bounded bias-terms)A crucial step to apply results 9.3.5 (as well
as result 9.3.2) is to bound the difference terms (in stochastic dynamic programming
also known as relative gain or bias-terms) of the form:

[Vk( j)−Vk(i)] (9.3.19)

Clearly, Vt will generally grow linearly in t and thus be unbounded. However, the
difference term (9.3.19) for fixed i, j will generally be bounded regardless of t.

More precisely, when r is bounded, say‖r‖ < M, by simple Markov reward argu-
ments (cf. [23]) one proves

|Vk( j)−Vk(i)| ≤ 2M min[Ri j ,Rji ] (9.3.20)

where Ri j is the expected number of steps (mean first passage time; see [42] to reach
state j out of i. A similar though more technical result in terms of these times can
be given also for unbounded rewards (cf. [12]). Most essentially, however, closed-
form expressions or simple bounds for mean first passage times seem to be limited
to simple one-dimensional random walks (cf. [42]). In the next sections, however,
we will demonstrate how bounds for bias terms can be established in an analytic
manner by inductive Markov reward arguments or more precisely by employing the
dynamic reward relation (9.3.5).

Remark 9.3.8 (Bounds for bias-terms)For result 9.3.2 only lower (≥ 0) or upper
estimates (≤ 0) by zero for the bias-terms are needed. However, as might turn out
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in more complicated situations, also absolute bounds mightbe required to prove
these 0-estimates. This will appear and be illustrated for the finite tandem example
in section 9.5.

For result 9.3.5 these bounds will be used in the absolute errors γ(i) (conversely
also the 0-lower or upper estimates might still be required in the inductive proofs to
compensate for the extra reward terms).

Conveniently, by condition (9.3.7) in result 9.3.2 and (9.3.13) in result 9.3.5, bounds
for (9.3.19) are only required for ’neighboring’ states forwhich

|q̄(i, j)−q(i, j)| > 0. (9.3.21)

For example in a birth-death queueing system, only for states j = i−1 or j = i +1.

For standard type queueing networks (that is, without batchmovements) only for
states of the form:

{
i = n
j = n+ep−eq with n = (n1, . . . ,nJ)

(9.3.22)

representing the population numbers ns at each stations to indicate that only one job
has moved form one station p to another station q. This natural queueing network
’property’ of one job-shift at a time can often be exploited to provide analytic bounds
for (9.3.19), as will be illustrated in sections 9.4, 9.5 and9.6.

Remark 9.3.9 (̄S= S) Note that the role of the original and modified system can
nót be interchanged when the state spaces are not equal, i.e.S̄ ( S. However, for
S̄= S and by using that

∑
i

π(i)(T̄s f )(i)
C→∑

j

π̄( j) f ( j)

in combination with limiting arguments, in the proof of the theorem we can also
replace the steady state distribution̄π by the steady state distributionπ . Hence, in
that case (9.3.14) can be read either with̄π or with π̄ replaced byπ . Alternatively,
by reversing the roles, when̄S = S, we may also read result 9.3.5 with (9.3.13)
replaced by

∣∣∣[r̄− r](i)+∑[q̄(i, j)−q(i, j)][V̄k
( j)− V̄k

(i)]
∣∣∣≤ γ(i) (9.3.23)

while keeping (9.3.14) as it stands. This alternative condition provides more flexibil-
ity to use the more appropriate system, either the original or modified one, in order
to establish bounds for the bias-terms. (This will appear tobe convenient later on
for an application in section 9.4.3)
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9.3.4 Truncation Error Bound

As a special case, as of interest by itself, in this section consider the situation of a
truncation such as to jusitfy:

• a reduction of numerical effort, or conversely,

• the approximation of a finite model by a solvable infinite model.

To this end, let




S̄⊆ S

r̄ = r and

q̄(i, j) =

{
0 ( j /∈ S̄)
q(i, j)+∑k/∈S̄1{t[i,k]= j}q(i,k) ( j ∈ S̄)

(9.3.24)

In words that is, a transition fromi to k by whichS̄would be left is transformed into
a transition into a special truncation statet[i,k] ∈ S̄. The notation and quantities as
defined before are adopted with an upper bar for the truncatedmodel.

The following truncation result 9.3.10 now follows almost directly from result 9.3.5.
This result roughly states that the effect of a state space truncation can be expressed
by a steady state weight of the one step effect of the truncation on the bias-terms.
If the probability mass for states in which the truncation does have a direct effect is
small, also the error bound can be expected to be small.

Result 9.3.10Suppose that for some functionγ at S̄, all k≥ 0 and any state i∈ S̄:
∣∣∣∑

j /∈S̄

q(i, j)
[
Vk( j)−Vk(t[i, j])

]∣∣∣≤ γ(i) . (9.3.25)

Then ∣∣Ḡ−G
∣∣≤∑

i∈S̄

π̄(i)γ(i) = π̄γ . (9.3.26)

Proof. For i ∈ S̄we have:

[q̄(i, j)−q(i, j)][Vk( j)−Vk(i)] =

{ −q(i, j)[Vk( j)−Vk(i)] ,( j /∈ S̄) .[
∑{k/∈S̄|t[i,k]= j} q(i,k)

]
[Vk( j)−Vk(i)] ,( j ∈ S̄) .

(9.3.27)

with r̄ = r, condition (9.3.13) thus reduces to

∑
j
[q̄(i, j)−q(i, j)][Vk( j)−Vk(i)] = ∑

l∈S/S̄

q(i, l)[Vk(t[i, l ])−Vk(l)]

Result 9.3.5 completes the proof. ⊓⊔
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Remark 9.3.11 (≥ 0 or ≤ 0) Clearly, depending on the reward rate (performance
measure of interest), as in result 9.3.5 also in (9.3.25) an inequality sign≥ 0 (or
≤ 0) can be included, so as to conclude (or similarly withG andḠ interchanged)

0≤G− Ḡ≤∑
i∈S̄

π̄(i)γ(i), (9.3.28)

Remark 9.3.12 (Infinite expansion)As a special case, theq-model might also rep-
resent an infinite model. Particularly, thinking of a queueing network application,
theq-model may correspond to an infinite product form approximation for a finite
non-product form system. This will be used in section 9.6.

Remark 9.3.13 (Computational error bound) Note that the error bound in (9.3.26)
necessarily requires the steady state distributionπ̄ for the system with the smallest
state spaceS⊆ S (as essentially used in the proof of result 9.3.5). This distribution
may typically be thought of as only obtainable by numerical computation.

Remark 9.3.14 (Analytic error bound) The computational error bound in (9.3.26),
in turn, might be estimated form above by an analytic expression of the form

∑
i

π̄(i)γ(i) ≤∑
i

¯̄π(i)γ(i) (9.3.29)

by using an analytic approximation̄̄π and the stochastic comparison result 9.2.1. In
this form, the stochastic comparison and Markov reward approach might become
mutually beneficial.

Particularly, for queueing network applications an analytic error bound of the form
(9.3.29) can be thought of as by a product form modification orinfinite expansion.
In section 9.6.3 this will be established for finite Jackson networks.

9.3.5 Comparison of MRA and SC

Clearly both approaches of the Markov reward approach (MRA), as presented in
this section, and of stochastic comparison (SC), as briefly presented in section 9.2.1
(which in turn is directly related to sample path comparison) and which has been
studied intensively in the literature, have a common starting point and objective of:

Comparing the performance of two related stochastic systems

As such, a comparison of the two approaches is in place on a number of aspects
each of which might lead to an advantage (or preference) or just the opposite: a
disadvantage (or limitation) for either of the two approaches.



422 Nico M. Van Dijk

1. Objective: ordering and error bound. First of all, the MRA might lead to
both an ordering and a quantification by means of an error bound for the dis-
crepancy of the two systems. SC only establishes ordering results (clearly, in
specific applications, as shown and discussed for anM|G|1-application in [20],
ordering results in combination with analytic expressionsfor bounding models
might indirectly also lead to an error bound).

These error bounds in turn might typically be thought of as being small, where
one system is a modification of the other, for either of two reasons:

• when the modification itself is small

• when the likelihood for the modification to take place is small

In principle, the error bounds do not (need to) rely upon ordering results. Never-
theless, in applications usually also ordering results areincluded as side results.

(As an example, in [22], for a non-exponential extension of the MRA, error
bounds are obtained forGI|G|c-systems with different service hazard rates, de-
spite the fact that these hazard rates themselves are not ordered, as illustrated in
figure 9.4.)

Fig. 9.4: Nón-ordered hazard rates for twoM|G|c systems.

In fact, the opposite applied here, by the error bound also anordering result for
the systems could be concluded.)

2. Exponential case: essential technical difference. For the exponential case, in
essence, as shown in section 9.2.1, by SC one shows that the one-step transition
matricesP andP̄ (or rather the generatorsQ andQ̄) are ordered. By the MRA, in
contrast, an ordering (as well as quantification) is required (see relation (9.3.7)
or (9.3.13)) for the combination of the one-step transitionmatrix (or generator)
and the one-step reward functionr as by

[r +PVk] and [r̄ + P̄V̄k
]

This technical difference by itself will imply a number of differences in favour
of one of the two approaches as will be mentioned below.
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3. ’Stronger’ comparison result (1) SC thus leads to ordering results that hold
for all possible reward functions (and related performancemeasures) from a,
generally wide, monotonicity classM (as in section 9.2.2, whereas the MRA
only deals with one specific reward rate (performance measure). In this sense,
SC can be regarded as being stronger.

However, as a price to pay, also the implicit conditions for the system to satisfy
a stochastic comparison ordering will generally be stronger!

Particularly, stochastic comparison results have been reported widely for multi-
server type queues, which can be seen as one-dimensional systems. For more
complicated, say multi-dimensional, queueing systems, however, such as queue-
ing networks, stochastic comparison results are far more limited but can still be
obtained as in [63] and the chapter by Szekli (also see remark9.6.5).

More concrete, as shown in section 9.2.1, to establish an ordering result for a
specific performance measure, SC might fail, while the MRA, as will be shown
in section 9.5, might still work, based upon the specific reward function r of
interest. In this respect, also the MRA might be referred to as ’stronger’.

4. ’Stronger’ comparison result (2). Somewhat relatedly, SC or the related sam-
ple path comparison approach does in fact lead to ordering results that even apply
at sample path basis (with probability 1). The MRA in principle only provides a
comparison at expected steady state basis (see section 9.7 for an extension to the
transient case). Again, as such SC can be regarded as ’stronger’.

However, as can be shown easily by ’counterintuitive’ examples (such as in sec-
tions 9.4.1 and section 9.6.2, ordering results might fail at sample path basis but
still be expected and be proven by the MRA at expected steady state basis. This
will be shown in sections 9.4 and 9.6.

(Another illustration can be found in [64] which shows an ordering result for an
availability measure at expected steady state basis while the underlying systems
are not, neither in strong nor weak sense, stochastically ordered).

In this respect, also the MRA might again be referred to as ’stronger’.

5. ’Proofs’. The proofs for stochastic comparison or ordering results, as often
given by sample path comparison and weak coupling arguments, are generally
most elegant. The technical verifications for the MRA, in contrast, in particular
for the estimation of the bias-terms (9.3.19), are generally more complicated and
technical. On the other hand, these verifications are often also more structured.
As a consequence and in line with 3, in more complex situations the MRA might
be favourable if not necessary.

6. (Non)exponentiality. The exponentiality requirement of the MRA is a strong
limitation for practical applications. SC or rather the approach by sample path
comparison, in contrast, in general works, if it applies, for queueing systems
with arbitrary service and arrival distributions.

Various non-exponential extensions of the MRA for specific applications have
meanwhile been developed in the literature, by using phase-type distributions
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(e.g. see [22]). Nevertheless, the technicalities become far more complicated. In
this respect, SC remains to be highly favourable.

7. Combination of both. In fact, it might also be beneficial to combine the MRA
and SC so as to eventually obtain a simple analytic expression for an error bound.
This will be illustrated in section 9.6.3 for the truncationand expansion of finite
Jackson networks.

Table 9.3: Overview.

A somewhat ’imprecise’ and merely ’global’ overview of these reflections is listed in ta-
ble 9.3. The lettersA andD indicate whether this aspect should generally be seen as an
advantage or a disadvantage.

Markov Reward Approach Stochastic Comparison

Error Bound Results (A) -

Comparison results Comparison results

More complex systems (A) Strong system conditions (D)

Queueing networks (A) ’Simple’ queueing systems (D)

Might still work (A) Might not apply (D)

Only one measure (D) Class of measures (A)

Only at expectation basis (D) Sample path results (A)

Exponential requirements (D) No exponentiality required (A)

Technical analytic proofs (D) Elegant sample path proofs (A)

Comparison as extra (A)

Combination



9 Error Bounds and Comparison Results 425

B: Applications

9.4 Application 1: Instructive Breakdown Example

This section aims to illustrate the Markov reward approach and the results from
section 9.3 in an instructive manner. More precisely, it will illustrate:

1. How the bias-terms (9.3.19) for different performance measures can be
estimated analytically.

2. How the conditions (9.3.7) and (9.3.13) or (9.3.25) can be verified.

3. The type of results that can be obtained.

To this end, reconsider the instructive breakdown example from section 9.1.1.2.
As argued in remarks 9.3.4 and 9.3.7, a crucial step to apply the Markov reward
approach is to estimate the bias-terms (9.3.19) for the measure of interest. In section
9.4.1, therefore, we first show how this can be achieved in an analytic manner using
the reward relation (9.3.5).

Next, in sections 9.4.2 and 9.4.3, a comparison and two errorbound applications are
given to show how the results from section 9.3 can be used, once bounds for these
bias-terms have been established.

9.4.1 Analytic bounds for the bias-terms

Typical performance measures of interest are:

• a throughput
• a mean queue length
• or directly related measures as a loss probability or a delay

In this section it will be shown how comparison and error bound results as in section
9.3 can be investigated for different measures in an analytic and more or less unified
manner . The common first step is the derivation of a recursiverelation for the bias-
terms by using the reward relation (9.3.5) and comparing thepossible transitions in
two neighboring states. More precisely, with(n,θ ) as in section 9.1.1.2, withn≤N
the number of jobs andθ = 1,0 the status of the server being up (θ = 1) or down
(θ = 0), we aim to obtain an analytic expression for

[Vk(n+1,θ )−Vk(n,θ )]

This expression can be obtained in an analytic manner by subtracting the reward
expression (9.3.5) in the state(n,θ ) from the reward expression (9.3.5) in state
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(n+1,θ ). However, the derivation of these bias-term expressions are generally un-
derstood more easily in a stochastic manner by comparing each of the transitions,
which can take place in either of the two states, pairwise. This will be illustrated in
more detail below for the breakdown example from section 9.1.1.2. Letr(·) be the
reward rate for the performance measure of interest (such asby (9.2.6)) and consider
a fixedk. Let

H = [λ + µ + γ0+ γ1]

Expression for [V(n+1,θ )−V(n,θ )].

By substituting the transition ratesq((n,θ ),(n,θ )′) and with h = H−1, the uni-
formized transition matrixP as by (9.2.3) becomes:

P((n,θ ),(n,θ )′) =





(n,θ )′

hλ1(n<N) ,(n+1,θ )

hλ1(n>0)1(θ=1) ,(n−1,1)

hγ11(θ=1) +hγ01(θ=0) ,(n, [θ +1](mod2))
[
1−hλ1(n<N)−hµ1(n>0)1(θ=1)−hγθ

]
,(n,θ )(n≤ N,θ = 0,1)

(9.4.1)

By the reward relation (9.3.5) in statei = (n,θ ), for k+1, we then obtain:

Vk+1(n,θ ) = hr(n,θ )

+ hλ1(n<N)V
k(n+1,θ )

+ hµ1(n>0)1(θ=1)V
k(n−1,1)

+ hγ11(θ=1)V
k(n,0)+hγ01(θ=0)V

k(n,1)

+ [1−hλ1(n<N)−hµ1(n>0)1(θ=1)−hγθ ]Vk(n,θ )

(9.4.2)

Similarly, in state(n+1,θ ) with n+1≤ N and fork+1, we obtain:

Vk+1(n+1,θ ) = hr(n+1,θ )

+ hλ1(n+1<N)V
k(n+2,θ )

+ hµ1(θ=1)V
k(n,1)

+ hγ11(θ=1)V
k(n+1,0)+hγ01(θ=0)V

k(n+1,1)

+ [1−hλ1(n+1<N)−hµ1(n>0)1(θ=1)−hγθ ]

Vk(n+1,θ )

(9.4.3)

Now, in order to subtract (9.4.2) from (9.4.3) in states withn+1≤N, hencen < N,
and to compare the transitions in a pairwise manner, in the right hand side of (9.4.2),
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rewrite:

hλ1(n<N)V
k(n+1,θ )

= hλ1(n+1<N)V
k(n+1,θ )

+hλ1(n+1=N)V
k+1(n+1,θ )

as well as (artificially add and subtract) include the extra term (which is equal to 0):

hµ1(n=0)1(θ=1)V
k(n,1)−hµ1(n=0)1(θ=1)V

k(n,1)

This 0-term is included as if in state(n,θ ) with n = 0 there is also a ’dummy tran-
sition’ with probabilityhµ1(θ=1), by which the state remains unchanged, as there
is a transition with this probability in (9.4.3) for state(n+ 1,θ ). Conversely, for a
similar reason, in state(n+ 1,θ ) with n+ 1 = N, in the right hand side of (9.4.3),
we (artificially add and subtract) include the extra term (which is equal to 0):

hλ1(n+1=N)V
k+1(n+1,θ )−hλ1(n+1=N)V

k+1(n+1,θ )

Then, after these substitutions have been made and by subtracting (9.4.2) from
(9.4.3), for any state(n,θ ) with n+1≤ N andθ = 0,1, we find

[
Vk+1(n+1,θ )−Vk+1(n,θ )

]

= h[r(n+1,θ )− r(n,θ )] (4.4.1)

+hλ1(n+1<N)

[
Vk(n+2,θ )−Vk(n+1,θ )

]
(4.4.2)

+hλ1(n+1=N)

[
Vk(N,θ )−Vk(N,θ )

]
(4.4.3)

+hµ1(n>0)1(θ=1)

[
Vk(n,θ )−Vk(n−1,θ )

]
(4.4.4)

+hµ1(n=0)1(θ=1)

[
Vk(0,1)−Vk(0,1)

]
(4.4.5)

+hγ11(θ=1)

[
Vk(n+1,0)−Vk(n,0)

]
(4.4.6)

+hγ01(θ=0)

[
Vk(n+1,1)−Vk(n,1)

]
(4.4.7)

+
[
1−hλ −hµ1(θ=1)−hγθ

][
Vk(n+1,θ )−Vk(n,θ )

]
(4.4.8)

(9.4.4)

Here indeed, the terms (4.4.3) and (4.4.5) in the right hand side of (9.4.4) are equal
to 0 but left in for clarity of the derivation as well as an argument that will follow
below in the proof of lemma 9.4.1. The relation (9.4.4) can now be used to obtain
an analytic lower and upper bound for this bias-terms.

Lemma 9.4.1 (Throughput) Let r(n) = µ1(n>0)1(θ=1). Then for all k≥ 0, n < N
andθ = 0,1:

0≤ ∆Vk(n,θ ) =
[
Vk(n+1,θ )−Vk(n,θ )

]
≤ 1 (9.4.5)
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Proof. This will follow by induction ink. Clearly, (9.4.5) holds fork = 0. Assume
that (9.4.5) is satisfied for allk≤ l . Then by (9.4.4) (keeping in the fourth term from
the right hand side, which is equal to 0) and substitutingr(n) = µ1(n>0)1(θ=1) for
k = l +1 we obtain:

∆V l+1(n,θ )

= hµ1(n=0)1(θ=1)

+hλ1(n+1<N)∆V l (n+1,θ )

+hµ1(n>0)1(θ=1)∆V l (n−1,1)

+hµ1(n=0)1(θ=1)

[
Vl (0,1)−Vl (0,1)

]

+hγ11(θ=1)∆V l (n,0)hγ01(θ=0)∆V l (n,1)

+
[
1−hλ −hµ1(θ=1)−hγθ

]
∆Vl (n,θ )

(9.4.6)

By substituting the induction hypothesis∆Vl (n,θ ) ≥ 0 for all (n,θ ), we can es-
timate the right hand side of (9.4.6) from below by 0 and directly conclude:
Vl (n,θ )≥ 0. To estimate the right hand side of (9.4.6) from above, now first observe
that the first additional termhµ1(n>0)1(θ=1) is equal to the (probability) coefficient
of the fourth term which is equal to 0. Furthermore, note thatall the coefficients rep-
resent transition probabilities that do not add up to more than 1. As a consequence,
by substituting the induction hypothesis:∆V l (n,θ )≤ 1 for all (n,θ ) and adding up
all these coefficients, we can estimate the right hand side of(9.4.6) from above and
conclude:∆Vl+1(n,θ )≤ 1 for all (n,θ ). We have thus proven (9.4.6) fork = l +1.
The induction completes the proof. ⊓⊔

For the comparison and truncation application in sections 9.4.2 and 9.4.3 the
throughput is the measure of first interest. Lemma 9.4.1 can then be applied. For
the error bound applications in section 9.4.3, it is also of particular interest to con-
sider a mean queue length. In this case, it appears to be more convenient to reverse
the roles of the original and modified system. That is, we investigate the bias-terms
of the modified breakdown system as described under (v) in section 9.1.1.2, that is
with arrivals also rejected when the system is down. This will be used in lemma
9.4.2 below.

Lemma 9.4.2 (Mean queue length)Let r(n,θ ) = n. Then with arrival rejection
when the system is down, for all k≥ 0, n< N andθ = 0,1:

0≤ ∆Vk(n,θ )≤ [n+1]

[µ−λ ]
(9.4.7)

Proof. As for lemma 9.4.1 this will follow by induction ink. Clearly, (9.4.7) holds
for k = 0 Assume that (9.4.7) holds fork≤ l . Then by (9.4.4) (with the addition of
arrivals rejected when the system is down and again with the fifth term, which is
equal to 0, kept in), and by substitutingr(n) = n, we find:
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∆V l+1(n,θ )

= h

+hλ1(n+1<N)λ1(θ=1)∆Vl (n+1,θ )

+hµ1(n>0)1(θ=1)∆Vl (n−1,θ )

+hµ1(n=0)1(θ=1)

[
V l (0,1)−Vl (0,1)

]

+hγ11(θ=1)∆V l (n,0)hγ01(θ=0)∆V l (n,1)

+
[
1−hλ1(n+1<N)1(θ=1)−hµ1(θ=1)−hγ1−hγ0

]
∆V l (n,θ )

(9.4.8)

Again, by substituting the lower estimates 0 by the induction hypothesis (9.4.7) for
k = l , by (9.4.8) one directly verifiesV l+1(n,θ ) ≥ 0. To estimate the right hand
side of (9.4.8) from above, substitute∆Vl (n,θ ) ≤ [n+ 1]C in order to prove that
∆V l+1(n,θ )≤ [n+1]C. We then require that

h
[
1+ λ1(n+1<N)1(θ=1)[n+2]C+hµ1(θ=1)nC+ γθ nC

]

≤
[
1−λ1(n+1<N)1(θ=1)−hµ1(θ=1)−hγθ

]
[n+1]C

≤ [n+1]C

This in turn, is satisfied by
1+ λC− µC≤ 0

Hence, by choosingC = 1/(µ− λ ) we have also proven that∆V l+1(n,θ ) ≤ [n+
1]/[µ−λ ]. The induction completes the proof. ⊓⊔

In fact, lemma 9.4.2 and its proof can directly be reread in the more general form
of:

Lemma 9.4.3 (General bounded case)Let r(n) be such that0 ≤ [r(n + 1,θ )−
r(n,θ )]≤ R for some constantR. Then, for the system as in lemma 9.4.2, all k≥ 0,
n < N andθ = 0,1:

0≤ ∆Vk(n,θ )≤ R
[n+1]

[µ−λ ]

Remark 9.4.4 (Other performance measures)For specific applications bounds
for the corresponding bias-terms have also been established in the literature for
other measures such as for tail probabilities of tandem queues in [21] and for the
availability (number of up components) of performability models in [64].

9.4.2 Comparison Result

Consider the loss probabilityB = π(n,1)+ π(n,0). As there is no analytic solution
for B, as argued in section 9.1.1.2, one might suggest to use
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BL ≤ B≤ BU (9.4.9)

with

BL: the loss probability for the system without breakdowns (orequivalently the
system that continues to work also when the system is down) (called lower
bound system).

BU : the loss probability for the system in which arrivals are rejected when the
system is down (called upper bound system) as by the product form
expression (9.1.2).

As indicated by the numerical results in table 2.1 (Chapter 1) and as can be expected,
these bounds can even be reasonably accurate forτ reasonably small, with

τ : the fraction of time that the system is down

Intuitively, the inequalities (9.4.9) seem trivial. Nevertheless, one has to be careful
as shown by the following example. A formal comparison prooffor (9.4.9) will thus
be of interest. This will be established by result 9.4.6 below.

Example 9.4.5 Let N = 2 and consider a processor sharing service discipline.
Hence, with 2 jobs present each receives a service capacity1

2. (Note that this doesn’t
effect the total service rateµ as the service times are exponential).

Let a realization of inter-arrival times and service requirements be given by:

Job 1 2 3 4 5

Arrival time 3 7 11 11.5 22

Service time 5 3 1 2 6

while the up and down times are:

Up Down Up Down

6 2 7 3

The realizations in the original model (OM) and the upper bound model (UM) under
which arrivals were rejected when the system is down are depicted in figure 9.5 by:

⊚ : arrival
⊗ : rejection
� : completion
Di : departure of ith accepted job

We observe that the second arrival is accepted in the original model but rejected in
the upper-bound model. This, however, leads to rejections later on for the original
model at times 11 and 11.5 while in the upper-bound model the jobs are accepted as
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0 51 62 43 97 8 10 11 12 13 14 15

Up UpDown Down

D1 D2 D3

D1 D2

Fig. 9.5: Network Example

the system has become empty. During the time interval 0-15 the upper-bound model
thus appears to have a better performance (smaller number oflosses and larger
number of completions) in contrast with the intuition that it will perform less.

Result 9.4.6
BL ≤ B≤ BU (9.4.10)

Proof. By virtue of the relationship for the throughputF = λ (1−B), and similarly
for the lower and upper bound system, it suffices to prove thatFL ≥ F ≥ FU . Let us
restrict to the upper bound system. We will apply result 9.3.2 and lemma 9.4.1.

Let q̄ correspond to the upper bound system andq to the original one. To verify
condition (9.3.7), first note thatr = r̄. Furthermore, note that

∑
(n,θ)′

[
q̄
(
(n,θ ),(n,θ )′

)
−q
(
(n,θ ),(n,θ )′

)][
Vk((n,θ )′

)
−Vk ((n,θ ))

]

=−λ1(n<N)1(θ=0)

[
Vk(n+1,0)−Vk(n,0)

] (9.4.11)

By lemma 4.1, the right hand side of (9.4.11) can be estimatedfrom above by 0.
By result 9.3.2 (with the signs reversed), we thus concludeFU ≤ F. (The proof for
the lower boundBL follows similarly if we let q̄ correspond to the system without
breakdowns or equivalently the system that always continues to work, also when the
system is down.) ⊓⊔

9.4.3 Error Bounds

Despite the fact the lower and upper bound systems have explicit product form ex-
pressions, let us also investigate whether we can quantify their inaccuracy by an-
alytic error bounds. Again, we will restrict to the upper bound system in which
arrivals are rejected when the system is down. Let
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F : λ (1−B) the throughput.
Q : the mean queue length (or total number of jobs present).

and similarly with subscriptU for the upper bound system. The first result, for the
throughput (or loss probability), is intuitively obvious and can also be derived ana-
lytically by using the comparison (9.4.10) and the product form expression (9.1.2)
for the upper bound system. However, it is included to illustrate how result 9.3.5
works out.

The second one is of more practical interest as it is not obvious a priori how much the
breakdowns will effect the queue length and how the queue length can be estimated.
(Note here that both the lower and upper bound model can intuitively be expected
to provide a lower bound for the queue length of the original system).

Result 9.4.7 (Throughput) WithFSt = FL = λ (1−BSt), with BSt the standard loss
probability of an M|M|1|N-queue with traffic loadρ = [λ/µ ], andτ the fraction of
time that the system is down:

|F−FU | ≤ τFSt =

τρN[1−ρ ][1−ρN+1]−1

Proof. To apply result 9.3.5, as in the proof of result 9.4.6 let ¯q correspond to the
upper bound model. By ¯r(n,θ ) ≡ r(n,θ ) = µ1(n>0)1(θ=1), equation (9.4.11) and
lemma 9.4.1, condition (9.3.13) is satisfied with

γ(n,θ ) = λ1(n<N)1(θ=0)

By result 9.3.5 and (9.3.14), we thus find

|F−FU | ≤ ∑
(n,θ)

π̄(n,θ )λ1(n<N)1(θ=0)

Filling in the product form expression (9.1.2) for̄π(n,θ ) as according to the upper
bound model, and using its factorizing form inπ(n) andπ(θ ) completes the proof.

⊓⊔

Result 9.4.8 (Queue length)With QSt the mean queue length of a standard
M|M|1|N-queue with traffic loadρ = [λ/µ ]:

∣∣Q− Q̄U

∣∣≤ τQSt

[
µ

µ−λ

]
= τ

[
µ

µ−λ

][
∑N

k=0kρk
][

∑N
k=0 ρk

]−1

Proof. Again, let theq̄-system correspond to the upper bound model andq to the
original. We need to apply result 9.3.5 and lemma 9.4.2. To this end, first observe
that the state spaces of the original and upper bound system are identical. As a
consequence, with reference to remark 9.3.9, in order to apply result 9.3.5, we can
use condition (9.3.23) instead of condition (9.3.13).
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As a consequence, we can reuse (9.4.11) with the bias-terms[
Vk+1(n+1,θ )−Vk(n,θ )

]
substituted by those from lemma 9.4.2, that is for the

upper bound system. Then, by nothing again that ¯r(n,θ ) ≡ r(n,θ ) = n to evaluate
the mean queue length, by equation (9.4.11) and by lemma 9.4.2, we can verify
condition (9.3.23) with

γ(n,θ ) = λ1(n<N)1(θ=0)
[1+n]

[µ−λ ]

By result 9.3.5 (with remark 9.3.9 taken in his account), (9.3.14) and by filling in
the product form expression (9.1.2) forπ̄(n,θ ) in (9.3.14), as according to the upper
bound model, we find:

|Q−QU | ≤∑(n,θ)
λ1(n<N)1(θ=0)[1+n]π(n,θ )

[
1

µ−λ

]

= λ τ
[

1
µ−λ

]
∑N−1

n=0 (1+n)ρn
[
∑N

k=0 ρk
]−1

= λ τ
[

1
µ−λ

]
1
ρ

[
∑N

k=0kρk
][

∑N
k=0 ρk

]−1

= τQSt

[
µ

µ−λ

]

⊓⊔

9.5 Application 2: Finite Tandem Queue

9.5.1 Problem Motivation

Reconsider the unsolvable finite tandem queue with blockingas described in sec-
tion 9.1.2.1, with the single server assumption generalized to service ratesµi(ni) at
stationi whenni jobs are present at that station,i = 1,2. Here the natural assump-
tion is made thatµi(ni) is nondecreasing, for bothi = 1,2. Let µi(0) = 0, i = 1,2.
Recall the modifications 1 and 2 as described in section 9.1.1.2. We refer to the
corresponding systems as:

”lower bound model” (under modification 1) and

”upper bound model” (under modification 2)

as we expect and intend to show:

BL ≤ B≤ BU (9.5.1)

with
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B the loss probability

BL the loss probability under modification 1

BU the loss probability under modification 2

As illustrated already by table 9.2 for the single server case, this ordering result
would be of practical interest as the lower and upper bound model exhibit an ap-
pealing product form. Indeed, also in this more general case, similar to the detailed
(station) balance equations (1.4.1)-(1.4.3) as for the single server case withµi(ni)
substituted whenni jobs are present, for the upper bound model one directly verifies
the product form:

πU(n1,n2) = cU λ n1+n2

[
n1

∏
k=1

µ1(k)

]−1[ n2

∏
k=1

µ2(k)

]−1

(9.5.2)

with cU the normalizing constant at the set of admissible states:

SU = {(n1,n2) | 0≤ n1≤ N1 ; 0≤ n2≤ N2 ; n1 +n2 6= N1 +N2}

And similarly, the right hand side of expression (9.5.2) also applies to the steady
state distributionπL(n1,n2) of the lower bound model, except thatcU has to be
replaced by a normalizing constantcL at

SL = {(n1,n2) | n1≥ 0; n2≤ 0; n1 +n2≤ N1 +N2}

The loss probabilitiesBL andBU are thus easily computed by:

BL = πL(n1 +n2 = N1 +N2) and

BU = πU(n1 = N1 or n2 = N2)

Table 9.4 below gives some more numerical support for the pure multi-server case
with Ni servers at stationi, i = 1,2, andρ1 = ρ2 = λ/µ1 = λ/µ2 with µi the expo-
nential service parameters at stationi. A formal proof for (9.5.1) is thus of interest.

Unfortunately, as shown and concluded in section 9.2.3, thetechnique of ”stochastic
comparison” by ordering properties of the one-step transition operators necessarily
fails for proving the ordering as required for (9.5.1)

In section 9.5.2, therefore, we aim to prove (9.5.1) by the Markov reward approach,
that is by result 9.3.2, as based upon technical lemma’s for bounding the bias-terms,
which are presented in section 9.5.3.

Remark 9.5.1 (Insensitive bounds)For the pure multi-server case with N1 and N2

servers, or for specific disciplines such as a Last-in-First-out preemptive or proces-
sor sharing discipline for the single server case, the product form expression (9.5.2)
is also insensitive, i.e. the exponentiality assumptions are not required. As a con-
sequence, in these cases one may also expect that the valuesBL and BU provide
’insensitive’ bounds, i.e. also apply as bounds for arbitrary service distributions.
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Table 9.4: Loss bounds for pure multi-server-case

ρ1 ρ2 N1 N2 BL BU

1 1 4 4 0.001 0.030
10 10 10 10 0.199 0.353
10 10 13 13 0.051 0.156
10 10 15 15 0.012 0.070
10 10 20 20 0.000 0.004

For the pure multi-server case this is indeed proven in [11] in a more technical
manner than in this section.

9.5.2 Comparison Result (Bounds)

By virtue of the throughput (F) relationF = λ (1−B), and similarly for the lower
and upper bound model, it suffices to show that

FU ≤ F ≤ FL (9.5.3)

Here the valuesF, FL andFU represent the throughputs of the original, lower bound
and upper nound model respectively. Furthermore, note that

SU ⊆ S⊆ SL (9.5.4)

with SU 6= S 6= SL andS the state space of the original model:

S= {(n1,n2) | 0≤ n1≤ N1;0≤ n2≤ N2} (9.5.5)

Let q, qL andqU be the transition rates andVk, Vk
L andVk

U the corresponding cumu-
lative reward functions with reward ratesr, rL andrU as according to the notation
in sections 9.2.1 and 9.3.1 for the original, lower and upperbound tandem model
respectively. To prove (9.5.3) we can choose:

{
r(n1,n2) = rL(n1,n2) = µ2(n2)

rU (n1,n2) = µ2(n2)1n1<N1

(9.5.6)

In order to apply result 9.3.2 for the upper bound model, with(...) and (9.5.5) taken
into account, we need to investigate condition (9.3.7) withr̄ = rU andq̄ = qU , for
any(n1,n2) ∈ SU . Condition (9.3.7) then leads to the expression:
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[rU (n1,n2)− r(n1,n2)]+

∑(n1,n2)′
[
qU

(
(n1,n2),(n1,n2)

′)−q
(
(n1,n2),(n1,n2)

′)] ·
[
Vk ((n1,n2)

′)−Vk ((n1,n2))
]

=

− µ2(n2)1(n2=N2)

+ λ1(n2=N2)1(n1+1≤N1)

[
Vk ((n1,n2))−Vk ((n1 +1,n2))

]

+ µ2(n2)1(n1=N1)1(n2>0)

[
Vk ((n1,n2))−Vk ((n1,n2−1))

]

(9.5.7)

By lemma 9.5.2 below, the bias-terms in the second and third term in the right hand
side of (9.5.7) are nón-positive, so that this right hand side can be estimated from
above by:≤ 0. By result 9.3.2 (with≤ sign),Ḡ= FU andG= F, this provesFU ≤F.

In order to apply result 9.3.2 for the lower bound model, asS⊆ SL, we need to let
q̄ have the role of the (smaller) original model andq of the lower bound model. For
any(n1,n2) ∈ S̄ and withr = rL, condition (9.3.7) then leads to:

[r(n1,n2)− rL(n1,n2)]+

∑(n1,n2)′
[
q
(
(n1,n2),(n1,n2)

′)−qL

(
(n1,n2),(n1,n2)

′)] ·
[
Vk

L ((n1,n2)
′)−Vk

L ((n1,n2))
]

=

λ1(n1=N1)

[
Vk

L ((n1,n2))−Vk
L ((n1 +1,n2))

]
+

µ1(n1)1(n2=N2)1(n1>0)

[
Vk

L ((n1,n2))−Vk
L ((n1−1,n2+1))

]

(9.5.8)

By lemma 9.5.4 below, the bias-terms in the right hand side of(9.5.8) are nón-
positive, so that the right hand side can be estimated from above by:≤ 0. By result
9.3.2 (with≤ sign),Ḡ = F andG = FL this provesF ≤ FL. The proof of (9.5.1) is
hereby completed.

9.5.3 Technical verification of Bias-Terms

Lemma 9.5.2 (Bias-terms for original model) For all k ≥ 0, all (n1,n2) ∈ S and
with (n1 +1,n2) ∈ S in (9.5.9),(n1,n2 +1) ∈ S in (9.5.10) and(n1−1,n2 +1) ∈ S
in (9.5.11):

0≤ ∆1Vk(n1,n2) = Vk(n1 +1,n2)−Vk(n1,n2)≤ 1 (9.5.9)

0≤ ∆2Vk(n1,n2) = Vk(n1,n2 +1)−Vk(n1,n2)≤ 1 (9.5.10)

0≤ ∆3Vk(n1,n2) = Vk(n1−1,n2+1)−Vk(n1,n2)≤ 1 (9.5.11)
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Proof. As in the proof of lemma 9.4.1, the proof will be given by induction in k.
(9.5.9)-(9.5.11) hold fork = 0 asV0(·, ·)≡ 0. Suppose that (9.5.9)-(9.5.11) hold for
k≤m. We will separately prove (9.5.9), (9.5.10) and (9.5.11) for k = m+1.

Before doing so, it is stated that the bias-term equations (9.5.12), (9.5.13) and
(9.5.14) can be derived by similar steps as for the derivation of (9.4.4) in section
9.4, either analytically by writing out the reward relations (9.3.5) and collecting
terms after substraction, or by probabilistic interpretation by comparing each (pos-
sibly after also adding a ’dummy’ transition) transition, that can take place in either
of the two states, in a pairwise manner. In these equations also terms do appear that
are equal to 0 but left in for charity of its (probabilistic) derivation and a possible
compensation argument later on (see proof of (9.5.10) fork = m+1).

Proof of (9.5.9) for k=m+1. By comparing the reward relation (9.3.5) in states
(n1+1,n2) and(n1,n2) with n1 < N1 and noting thatr(n1+1,n2) = r(n1,n2), as in
(9.4.4) we derive:

∆1Vm+1(n1,n2)

= hλ1(n1+1<N1)∆1Vm(n1 +1,n2)

+ hλ1(n1+1=N1) [V
m(N1,n2)−Vm(N1,n2)]

+ hµ1(n1)1(n1>0)1(n2<N2)∆1Vm(n1−1,n2+1)

+ hµ2(n2)1(n2>0)∆1Vm(n1,n2−1)

+ h[µ1(n1 +1)− µ1(n1)]1(n2<N2) [V
m(n1,n2 +1)−Vm(n1,n2)]

+
[
1−hλ−hµ1(n1 +1)1(n2<N2)−hµ2(n2)

]
∆1Vm(n1,n2)

(9.5.12)

where we note that the second term in the right hand side is equal to 0 while the
bias-term in the fifth can be transformed into∆2Vm(n1,n2). By substituting the in-
duction hypotheses∆1Vm(·, ·) ≥ 0 and∆2Vm(·, ·) ≥ 0 and noting thatµ1(·) is non-
decreasing, by (9.5.12) we directly verify
∆1Vm+1(n1,n2)≥ 0.

By substituting the induction hypotheses∆1Vm(·, ·)≤ 1 and∆2Vm(·, ·)≤ 1, leaving
out the 0-term and noting that all coefficients, which all represent probabilities, add
up to 1, we can estimate the right hand side from above by 1, i.e.: ∆m+1

1 (n1,n2)≤ 1.
We have thus shown that (9.5.9) also holds fork = m+1.

Proof of (9.5.10) fork=m+1. Similarly, with n2 < N2 and by noting that
r(n1,n2 +1)− r(n1,n2) = µ2(n2 +1)− µ2(n2), we find:
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∆2Vm+1(n1,n2 +1)

= h[µ2(n2 +1)− µ2(n2)]

+ hλ1(n1<N1)∆2Vm(n1 +1,n2)

+ hµ1(n1)1(n1>0)1(n2+1<N2)∆2Vm(n1−1,n2+1)

+ hµ1(n1)1(n1>0)1(n2+1=N2) [V
m(n1,n2 +1)−Vm(n1−1,n2+1)]

+ hµ2(n2)1(n2>0)∆2Vm(n1,n2−1)

+ h[µ2(n2 +1)− µ2(n2)] [Vm(n1,n2)−Vm(n1,n2)]

+
[
1−hλ1(n1<N1)−hµ1(n1)−hµ2(n2 +1)

]
∆2Vm(n1,n2)

(9.5.13)

where we note that the sixth term in the right hand side of (9.5.13) is equal to 0 while
the bias-term in the fourth can be transformed into∆1Vm(n1−1,n2+1). Clearly, by
using thatµ2(·) is non-decreasing and substituting∆2Vm(·, ·)≥ 0 and∆1Vm(·, ·)≥ 0
as by hypotheses, by (9.5.13) we directly verify∆2Vm+1(n1,n2)≥ 0.

To estimate the right hand side of (9.5.13) from above, now wecan use that its
fifth term is equal to 0, which coefficient equals the additional first reward term
h[µ2(n2 +1)− µ2(n2)]. As a result, by using again that all coefficients sum up to 1
and substituting the induction hypotheses∆2Vm(·, ·)≤ 1 and∆1Vm(·, ·)≤ 1, we can
estimate the right hand side from above by 1, i.e.:∆2Vm+1(n1,n2)≤ 1. This proves
(9.5.10) fork = m+1.

Proof of (9.5.11) fork=m+1. Similarly for n1≤ N1 andn2 < N2 we find:

∆3Vm+1(n1,n2)

= h[µ2(n2 +1)− µ2(n2)]

+ hλ1(n1<N1)∆3Vm(n1 +1,n2)

+ hλ1(n1=N1) [∆2Vm(N1,n2)]

+ hµ1(n1−1)1(n1−1>0)∆3Vm(n1−1,n2)

+ hµ2(n2)1(n2>0)∆3Vm(n1,n2−1)

+ h[µ1(n1)− µ1(n1−1)] [Vm(n1−1,n2+1)−Vm(n1−1,n2+1)]

+ h[µ2(n2 +1)− µ2(n2)] [Vm(n1−1,n2)−Vm(n1,n2)]

+ [1−hλ −hµ1(n1)−hµ2(n2 +1)]∆3Vm(n1,n2)
(9.5.14)

where we first note again that the sixth term in the right hand side is equal to 0. Now
note that the seventh term is equal to:

h[µ2(n2 +1)− µ2(n2)][−∆1Vm(n1−1,n2)]

and thus nón-positive. However, due to the boundedness hypothesis:
∆1Vm(n1− 1,n2) ≤ 1, the first and this seventh term together are still estimated
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from below by 0. By leaving out the 0-term and substituting∆2Vm(·, ·) ≥ 0 and
∆3Vm(·, ·)≥ 0, by (9.5.14) we thus conclude:∆3Vm+1(n1,n2)≥ 0.

Conversely, by substituting∆2Vm(·, ·) ≤ 1 and∆3Vm(·, ·) ≤ 1 and leaving out this
nón-positive seventh term to compensate for the additional first term, we can esti-
mate the right hand side of (9.5.14) from above by 1. (As couldalso be concluded,
alternatively, by combining the upper bound 1 from (9.5.10)with the lower bound
0 from (9.5.9) as proven already for k=m+1). We have thus proven (9.5.11) for
k = m+1.

By induction the proof of lemma 9.5.2 is now completed. ⊓⊔

Remark 9.5.3 We note that (9.5.11) is not required for substitution within (9.5.7)
so as to prove the upper boundBU . The same remark also applies to the≤ 1 in-
equalities in (9.5.9)-(9.5.11). However, for instructiveness and completeness they
are included, as these type of bias-term estimates will become necessary in lemma
9.5.4 below. In addition, the estimates could be used to alsoconclude an error bound
for the accuracy of the bound as by (9.5.7) and result 9.3.5. However, in this section
we aim to restrict to the comparison result (9.5.1), as of sufficient interest by itself.

Lemma 9.5.4 (Bias-term for lower bound model)Let the difference terms
∆iVk

L(n1,n2), for i = 1,2,3, be defined as in lemma 9.5.2, except that the functions
Vk are replaced by the functionsVk

L at SL as by (9.3.7) withqL substituted forq.
Then, for all k≥ 0:

0≤ ∆1Vk
L(n1,n2)≤ 1 (n1 +n2+1≤ N1 +N2) (9.5.15)

0≤ ∆2Vk
L(n1,n2)≤ 1 (n1 +n2+1≤ N1 +N2) (9.5.16)

0≤ ∆3Vk
L(n1,n2)≤ 1 (n1 +n2≤ N1 +N2) (9.5.17)

Proof. This will follow similarly to that of lemma 9.5.2 by induction in k. Never-
theless, as the technicalities will appear to be slightly but also essentially different
(also see remark 9.5.5 below), the relations still have to bewritten out in detail be-
low. (Herein, only one 0-term is left in (the sixth in the right hand side of (9.5.19)
as it is required for a compensation argument to compensate the reward term).

∆1Vm+1
L (n1,n2)

= hλ1(n1+n2+1<N1+N2)∆1Vm
L (n1,n2)

+ hµ1(n1)1(n1>0)∆1Vm
L (n1−1,n2+1)

+ hµ2(n2)1(n2>0)∆1Vm
L (n1,n2−1)

+ h[µ1(n1 +1)− µ1(n1)]∆2Vm
L (n1,n2)

+ [1−hλ −hµ1(n1 +1)]∆1Vm
L (n1,n2)

(9.5.18)
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∆2Vm+1
L (n1,n2)

= h[µ2(n2 +1)− µ2(n2)]

+ hλ1(n1+n2+1<N1+N2)∆2Vm
L (n1 +1,n2)

+ hλ1(n1+n2+1=N1+N2)∆3Vm
L (n1 +1,n2)

+ hµ1(n1)1(n1>0)∆2Vm
L (n1−1,n2)

+ hµ2(n2)1(n2>0)∆2Vm
L (n1,n2−1)

+ h[µ2(n2 +1)− µ2(n2)] [Vm
L (n1,n2)−Vm

L (n1,n2)]

+ [1−hλ −hµ1(n1)−hµ2(n2 +1)]∆2Vm
L (n1,n2)

(9.5.19)

and
∆3Vm+1

L (n1,n2)

= h[µ2(n2 +1)− µ2(n2)]

+ hλ1(n1+n2+1<N1+N2)∆3Vm
L (n1 +1,n2)

+ hµ1(n1−1)1(n1−1>0)∆3Vm
L (n1−1,n2)

+ hµ2(n2)1(n2>0)∆3Vm
L (n1,n2−1)

+ h[µ2(n2 +1)− µ2(n2)] [−∆1Vm
L (n1−1,n2)]

+ [1−hλ −hµ1(n1)−hµ2(n2 +1)]∆3Vm
L (n1,n2)

(9.5.20)

By induction and the detailed arguments similar to those for(9.5.12)-(9.5.14) in the
proof of lemma 9.5.2, the inequalities (9.5.15)-(9.5.17) can now be proven. ⊓⊔

Remark 9.5.5 (Necessity of upper estimates and all bias-terms) In contrast with
lemma 9.5.2 for proving the upper boundBU , now note that the inequality esti-
mate∆3Vm

L ≥ 0 is required for proving the lower boundBL, as by (9.5.18). By
relation (9.5.20) in turn, and the compensation argument for the nón-positive fifth
term in the right hand side of (9.5.20), this necessarily requires an upper estimate
∆1Vm

L (·, ·) ≤ 1. By (9.5.18) in turn this also requires (both a lower and) an upper
estimate for∆2Vm

L (·, ·) and by (9.5.19) for∆3Vm
L (·, ·).

9.6 Application 3: Truncation of Finite Jackson Network

In this section we will apply result 9.3.10 to derive error bound expressions for the
truncation of a Finite Jackson Network. A first crucial step is to find bounds for the
bias-terms[Vk( j)−Vk(i)] for q(i, j) > 0, uniformly in allk.

As before, this will be established by inductively exploiting the dynamic reward re-
lation (9.3.5) and the appealing transition structure of queueing networks of the form
(9.3.19), as shown in section 9.6.2. First, in section 9.6.1a more precise description
of the FJN of interest will be provided.
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9.6.1 Description and motivation.

Consider an open Jackson network withJ service stations, numbered 1, . . . ,J and
Poisson arrival ratesλi at stationi. Let λ = λ1 + . . . + λJ and p0i = λi/λ . Upon
service completion at stationi a job routes to stationj with probabilitypi j or leaves
the system with probabilitypi0 = [1− (pi1+ . . .+ piJ)] The natural assumption is
made that the routing matrix, node 0 included, is irreducible.

Stationi has an exponential service rateµi(ni) whenni jobs are present. The natural
assumption is made thatµi(ni) is non-decreasing. (This will be used in the proof of
lemma 9.6.3). Stationi has a capacity constraint for no more thanNi jobs. When
stationi is saturated(ni = Ni), a job requesting service at stationi (arriving from
outside or from another node) is lost (i.e. it clears the system) (loss protocol). This
loss protocol is motivated by the following application of present day interest.

Special motivation: Mobile Communication Networks

In simplest form, an exponential mobile communication network can be described
as follows:

Calls arrive in a cellj at some arrival rateλ j (fresh calls). A call duration is assumed to be
exponential with parameterµ . A call residing in cellj will move to (another) neighbouring
cell k at a rateλ jk (a so called handover call). Within a cell a call requires a frequency
channel that is not used by another call within that cell (a free channel). Each cell has a
finite number of frequency channels, sayNi in cell i, i = 1, . . . ,J. Neighbouring cells cannot
have the same frequency channels. When a fresh call cannot find a free channel it is lost.
When a handover call cannot find a free new channel in the cell that it is moving to, it is
broken off and also lost.

The exponential mobile communication network can directlybe reformulated as a Finite
Jackson Network by identifying cells with stations and setting:





µi(ni) = ni µi with µi = [µ +∑ j λi j ] (holding or service rate in celli)
pi j = λi j /µi (handover probability fromi to j)
pi0 = µ/µi (call completion probability at calli)

Remark 9.6.1 (Blocking protocol) For this application the loss protocol is the nat-
ural protocol. As another ‘blocking’ protocol, blocked jobs could be recycled to their
originating node.

Under fairly general conditions this recycling (or repeat)protocol as well as the
’production’ protocol can be shown to be equivalent to the ‘loss’ protocol (also
known as communication protocol). (e.g. [48]). Similar results as obtained in sec-
tion 9.6.3 can also be expected for these protocols.

The finite Jackson network under investigation is generallyintractable except in
other special cases such as with a reversible routing (e.g. [40], [37]), or with special
service or special routing protocols ([15], [37]).
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As numerical computations may therefore be executed (either on an exact or ap-
proximate basis) (e.g. [36], [32], [60]), a truncation of the state space becomes of
interest to limit the computational effort.

9.6.2 Truncation

Let us consider the truncation by restricting the queue lengths toLi ≤ Ni for each
stationi and assume that the truncated model also operates under the loss protocol.
We aim to investigate the consequence of this truncation forthe total throughput. In-
tuitively, at least it seems obvious that the throughput will be reduced by truncation.
Nevertheless, as in section 9.4.2, at sample path basis, onecan provide counterintu-
itive examples, as shown by example 9.6.2.

Even a comparison result therefore is still of interest. In fact, in this section we will
focus on an error bound, which provides a comparison result at the same time.

Loss Loss

1

2

Fig. 9.6: Network Example

Example 9.6.2 (Counterintuitive comparison example) Consider the example
of an original system in figure 9.6 with N= 2, N1 = 2, two severs at station 1, N2 = 1 and
one server at station 2, p10 = 1/2 and p12 = 1/2 and its truncated version with N1 reduced
to L1 = 1. One may intuitively expect that the throughput of the truncated system will be
smaller. Consider a sequence of arrivals at station 1 and 2, as shown in figure 9.7, where
the second job at station 1 routes to station 2 after its service completion at station 1.

As shown by figure 9.7, the throughput (accepted number of jobs or successful number of
completions) of the truncated system, in this sample path example, appears to be larger.

To apply the results from section 9.3.3, we identify a statei with the queue
length vectorn = (n1,n2, . . . ,nJ) denoting the number of jobsni at each sta-
tion i = 1,2, . . . ,J. All notation from sections 9.2 and 9.3 is adopted accord-
ingly. By ei we denote the unit vector with theith component equal to 1, i.e.:
ei = (0, . . . ,0,1,0, . . . ,0).

Hence byn−ei +ej we denote the state with one more job at stationj and one less
at stationi. Similarly we use the notationn + ei andn−ei . With this notation, the
truncation is specified by,
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Fig. 9.7: Comparison of original and truncated system

{
S= SN = {n |ni ≤ Ni i = 1, . . . ,J}
S̄= SL = {n |ni ≤ Li ≤ Ni i = 1, . . . ,J}

and for all(i, j = 1, . . . ,J):
{

t[n,n+ej ] = n for n j = L j andn ∈ S̄

t[n,n−ei +ej ] = n−ei for n j = L j andn ∈ S̄
(9.6.1)

To apply result 9.3.2, for the left hand side of inequality (9.3.25) we obtain:

∑n′ /∈SL
q(n,n′)

[
Vk(n′)−Vk(t[n,n′]

)]
=

∑ j=1,...,J
1(n j=L j )λ j

[
Vk(n+ej)−Vk(n)

]
+

∑k=1,...,J
µk(nk)pk j1(n j=L j )

[
Vk(n−ek +ej)−Vk(n−ek)

]
(9.6.2)

In order to estimate this expression from above and below it thus suffices to estimate
bias-terms of the form

[
Vk(n+ei)−Vk(n)

]
. This will be established in lemma 9.6.3

below. Herein, we use the shorthand notation:∆i f (n) = f (n +ei)− f (n). As mea-
sure of interest we consider the system throughputF by:

F = ∑
n∈S

π(n)r(n)
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with
r(n) = ∑

p
λp1(np<Np)

Lemma 9.6.3 For all statesn ∈ S, any station l such thatn+el ∈ S and all k≥ 0:

0≥ ∆l V
k(n) = Vk(n+el )−Vk(n)≥−1 (9.6.3)

Proof. The proof will follow by induction ink. Clearly (9.6.3) holds fork = 0. Let
(9.6.3) hold fork= t and all{n,n+el} ∈SN. We need to verify (9.6.3) fork= t +1.
To this end by writing out (9.3.5) in staten, we find:

Vt+1(n)

= h∑pλp1(np<Np)

+ h∑ j
λ j1(n j<Nj )V

t(n+ej)

+ h∑ j λ j1(n j=Nj )V
t(n)

+ h∑i
µi(ni)1(ni>0)pi0V′(n−ei)

+ h∑i
µi(ni)1(ni>0)∑ j

pi j 1(n j<Nj )V
t(n−ei +ej)

+ h∑i
µi(ni)1(ni>0)∑ j

pi j 1(n j=Nj )V
t(n−ei)

+
[
1−h∑ j λ j −h∑i µi(ni)

]
Vt(n)

(9.6.4)

and similarly in staten+el :
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Vt+1(n+ei)

= h∑p6=l λp1(np<Np) +hλl1(nl+1<N1)

+ ∑ j 6=l
hλ j

{
1(n j<Nj )V

t(n+el +ej)+1(n j=Nj )V
t(n+el )

}

+ hλl1(nl +1<Nl )V
t(n+el +el )+hλl1(nl +1 = Nl Vt(n+el ))

+ h∑i 6=l
µi(ni)pi0V′(n+el −ei)

+ h∑i 6=l µi(ni)∑ j 6=l pi j 1(n j<Nj )V
t(n+el +ej −ei)

+ h∑i 6=l
µi(ni)∑ j 6=l

pi j 1(n j=Nj )V
t(n+el −ei)

+ h∑i 6=l
µi(ni)pil 1(nl +1<Nl )V

t(n+el +el −ei)

+ h∑i 6=l µi(ni)pil 1(nl +1=Nl )V
t(n+el −ei)

+ hµl(nl )pl0Vt(n)+hµl(nl )pll Vt(n+el )

+ hµl(nl )h∑i 6=l

{
1(n j<Nj )V

t(n+ej)+1(n j=Nj )V
t(n)

}

+ h[µl(nl +1)− µl(nl )]pl0Vt(n)

+ h[µl(nl +1)− µl(nl )]pll Vt(n+el )

+ h[µl(nl +1)− µl(nl )]∑i 6=l
pl j

{
1(n j<Nj )V

t(n+ej)+1(n j=Nj )V
t(n)

}

+
{

1−h∑ j
λ j −h∑i 6=l

µi(ni)−hµl(nl +1)
}

Vt(n+el )

(9.6.5)
To subtract (9.6.4) from (9.6.5) and to compare transitionspairwise, make the fol-
lowing modifications in (9.6.4):

• Rewrite the summation for allj in a summation for allj 6= l and its separate
expressionj = l .

• Note that sincenl +1≤ Nl alsonl < Nl and rewrite:
[
hλl +h∑i 6=l

µi(ni)pil

]
Vt(n+el ) =[

hλl +h∑i 6=l µi(ni)pil

][
1(nl +1<Nl )V

t(n+el )+1(nl+1=Nl )V
t(n+el )

]

• Artificially add and subtract a departure from stationl at a rate
[µl (nl +1)− µl(nl )] that leaves the state unchanged, that is; artificially add and
subtract the expression:

h[µl (nl +1)− µl(nl )] pl0Vt(n)+

h[µl (nl +1)− µl(nl )] pll Vt(n)+

∑ j 6=l pl j

[
1(n j<Nj )V

t(n)+1(n j<Nj )V
t(n)

]

Then, subtracting (9.6.4) from (9.6.5) finally leads to the following difference ex-
pression. Again, some terms will in fact be equal to 0 but leftin for clarity of deriva-
tion.
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Vt+1(n+ei)

= h1(nl+1=Nl )[−λl ]

+ h∑ j 6=l λ j1(n j<Nj )∆l V
t(n+ej)

+ h∑ j 6=l
λ j1(n j=Nj )∆l V

t(n)

+ hλ j1(n j+1<Nj )∆l Vt(n+el )

+ hλ j1(n j+1=Nj ) [V
t(n+el )−Vt(n+el )]

+ h∑i 6=l µi(ni)pi0∆l V
t(n−ei)

+ h∑i 6=l
µi(ni)∑ j 6=l

pi j 1(n j<Nj )∆l V
t(n+ej −ei)

+ h∑i 6=l
µi(ni)∑ j 6=l

pi j 1(n j=Nj )∆l V
t(n−ei)

+ h∑i 6=l µi(ni)pil 1(nl+1<Nl )∆l V
t(n+ej −ei)

+ h∑i 6=l
µi(ni)pil 1(nl+1=Nl )

[
Vt(n+el −ei)−Vt(n+el −ei)

]

+ hµl (nl )pl0∆l Vt(n−el )+hµl(nl )pll ∆l Vt(n)

+ h[µl (nl +1)− µl(nl )]pl0 [Vt(n)−Vt(n)]

+ h[µl (nl +1)− µl(nl )]pll ∆l Vt(n)

+ hµl (nl )∑ j 6=l
pl j

[
1(n j<Nj )∆l V

t(n+ej −el )+1(n j=Nj )∆l V
t(n−el )

]

+ h[µl (nl +1)− µl(nl )]∑i 6=l
pl j 1(n j<Nj )∆l V

t(n)

+ h[µl (nl +1)− µl(nl )]∑i 6=l
pl j 1(n j=Nj )

[
Vt(n)−Vt(n)

]

+
{

1−h∑ j λ j −h∑i 6=l µi(ni)−hµl(nl +1)
}

∆l Vt(n)

(9.6.6)
By substituting the induction hypothesis:∆l Vt(n)≤ 0 and∆ jVt(n)≤ 0 for all j, and
deleting the 0 terms in the right hand side of (9.6.6), from (9.6.6) we now directly
conclude:

∆l V
t+1(n)≤ 0

To estimate the right hand side of (9.6.6) from below, now substitute the induction
hypothesis∆l Vt(n) ≥ −1 and∆ jVt(n) ≥ −1 for all j. Furthermore, note that the
term with coefficienthλl 1(nl+1=Nl ) is equal to 0, which compensates for the first
extra negative term

h1(nl+1=Nl ) [−λl ]

By also noting that all coefficients (which in fact representtransition probabilities)
sum up to 1, now conclude

∆l V
t+1(n)≥−1

The induction completes the proof. ⊓⊔

By lemma 9.6.3 we can now apply the general truncation result9.3.10. By com-
bining result 9.3.10, lemma 9.6.3 and expression (9.6.2), this leads to the following
result.
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Result 9.6.4 (Computational Error Bound) Consider a FJN with capacity con-
straints Ni at station i, i= 1, . . . ,J and its truncation with capacity constraints
Li ≤Ni at station i, i= 1, . . . ,J. LetFN andFL be the corresponding system through-
puts and{πL(n) | n ∈ SL} the steady state distribution of the truncated FJN. Then:

0≤ FN−FL ≤∑n πL(n)∑J
j=11(n j=L j )

[
λ j +∑k

µk(nk)pk j
]

(9.6.7)

Remark 9.6.5 (Comparison and monotonicity results: literature) Comparison or
monotonicity results have been reported explicitly for Jackson Networks but but only
under special conditions, as a product form, single serversor infinite capacities, as
in [1], [2], [53], [65]. The results in these references relyupon sample path com-
parison.

However, as has been shown in example 9.6.2, for finite queueing systems a sample
path comparison can be violated (also see [20], [27], [58], [62], [59]). Neverthe-
less, as shown by result 9.6.4, a comparison result at expectation basis can still be
established. This result seems to be new.

Remark 9.6.6 (Computational error bound) Result 9.6.4 enables one to provide
a secure bounding interval:

FL ≤ FN ≤ FL + δL (9.6.8)

whereδL is the upper estimate from (9.6.7), once we have computed thedistribution
{πL(n)} for the truncated system. It could therefore be referred to as a computa-
tional error bound.

9.6.3 Analytic Error bound

As the error bound in (9.6.7), that isδL in (9.6.8), might still be computationally
complicated it is more appealing to replaceδL by an analytic expression. As will
be shown below, this can be established by comparing the truncated system with
an infinite system that exhibits a product form. This will lead to an analytic bound
δL ≤ δ∞.

Consider the infinite Jackson network which allows an infinite queue length at sta-
tion i with service rate:

si(ni) =

{
µi(ni) (ni ≤ Li)

max[µi(Li),niµi ] (ni > Li)

i = 1, . . . ,J. As justified by a natural irreducibility assumption, let
{νi ; i = 1, . . . ,J} be the unique solution of the traffic equations:

νi = λi +∑k
νkpki (i = 1, . . . ,J)
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The corresponding steady state distribution, denoted byπ∞(n) at
S∞ = {n | ni ≥ 0, i = 1, . . . ,J} then exhibits the product form:

π∞(n) =
J

∏
i=1

{
ciνni

i

[
∏ni

k=1si(k)
]−1
}

(n ∈ S∞) (9.6.9)

with ci a normalizing constant for each stationi. Let β (n) represent the infinite
expansion of the boundary (state) as occurring in (9.6.7). More precisely, that is:

β (n) = ∑J
j=11(n j≥L j )

[
λ j +∑k

µk(nk)pk j
]

(9.6.10)

Result 9.6.7 (Analytic Error Bound) WithFN andFL as in result 9.6.4 andπ∞(n)
by (9.6.9):

FL ≤ FN ≤ FL + δ∞

with
δ∞ = ∑n

π∞(n)β (n) (9.6.11)

Proof. The proof follows as immediate consequence of result 9.6.8 once we have
shown that the steady-state probabilitiesπL(n) in (9.6.7) at boundary states can be
bounded from above byπ∞(n) ’tail’ probabilities beyond these boundaries. To this
end we can use the comparison results from section 9.2.2, more precisely result
9.2.1. To apply result 9.2.1, in the setting of section 9.2.1, let the infinite Jackson
network represent the original and the truncated Jackson network the modified sys-
tem.

Let PL andP∞ be the uniformized transition matrices for the truncation and infi-
nite Jackson network as according to their definition (9.2.3). Let TL andT∞ be the
corresponding expectation operators.

Let M represent the class of component-wise monotone functions as defined by

M = { f : S∞→ R | f (n+el )− f (n)≥ 0 ; n ∈ S∞ ; l = 1, . . . ,J} (9.6.12)

Now let us first show that the infinite system preserves this monotonicity. That is,
condition (9.2.8) as:

T∞ f ∈M for any f ∈M (9.6.13)

Let f ∈M. Then similarly to the derivation of (9.6.6) by writing out all transition
probabilities in state(n + el ) and staten where we can make the simplifications
thatNj = ∞ for all j, and by comparing the transitions in these two states pairwise,
along the lines of (9.6.4) and (9.6.5) and after the appropriate substitutions as used
for (9.6.6), we obtain:
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(T∞ f )(n +el )−T∞ f (n)

= h∑ j
λ j [ f (n+ej − f (n)]

+ h∑i µi(ni)∑ j pi j [ f (n+el −ei +ej)− f (n−ei +ej)]

+ h[µl (nl +1)− µl(nl )]∑ j
pl j [ f (n,+ej)− f (n)]

+ h∑i
µi(ni)pi0 [ f (n+el −ei)− f (n)]

+ h[µl (nl +1)− µl(nl )] pl0 [ f (n)− f (n)]

+
[
h−∑ j λ j −h∑i 6=l µi(ni)−hµl(nl +1)

]
[ f (n+el )− f (n)]

(9.6.14)

(Here the one but last term is indeed equal to 0 but kept for itsclarity of derivation).
By using thatf ∈M, so that we can substitute:f (n+ej)− f (n)≥ 0 for all n and j,
the right hand side of (9.6.14) is directly estimated from below by 0, for arbitraryn
andl . This proves (9.6.13), that is, (9.2.8) from section 9.2.2.

Next, as second step, we need to verify condition (9.2.9) forany f ∈M. This how-
ever follows directly as for anyf ∈M andn ∈ SL:

(TL−T∞) f (n) =

∑J
j=11(n j=L j )λ j [ f (n)− f (n+ej)]+

∑J
k=1 µk(nk)∑J

j=1 pk j1(n j=L j ) [ f (n−ek)− f (n+ej −ek)]≤ 0

(9.6.15)

As third step, to verify condition (9.2.11), now note that for β as defined by (9.6.10)
andM as defined by (9.6.12):

β ∈M (9.6.16)

By combining (9.6.13), (9.6.15) and (9.6.16) and applying result 9.2.1, we may now
conclude:

GL = ∑n πL(n)β (n) = δL ≤
G∞ = ∑n π∞(n)β (n) = δ∞

(9.6.17)

The proof of result 9.6.7 is now completed by applying result9.6.4 and estimating
the right hand side of (9.6.17) from above by:

δL ≤ δ∞

⊓⊔
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9.6.4 Application: Cellular Mobile Network Application

For the special application of a cellular mobile network as in figure 9.8, we can set
µi(ni) = niµi .

Fig. 9.8: Cellular mobile network (J = 7)

In this case the infinite extension and its product form become:

π∞(n) =
J

∏
k=1

{
e−ρk

1
nk!

[ρk]
nk

}
(n ∈ S∞) with πk(t) = e−ρk

1
t!

[ρk]
t (t ≥ 0)

(9.6.18)
Based upon the decomposability of this expression in individual stations as if they
are independent and the traffic equations for{νi}, we derive:

δ∞ = ∑n
π∞(n)g(n) = ∑n

π∞(n)∑J
j=11(n j>L j )

{
λ j +∑J

k=1nkµkpk j

}

= ∑J
j=1

[
∞

∑
n j=L j

π j(n j)

]{
λ j +

J

∑
k6= j

[
∞

∑
nk=0

πk(nk)nkµk

]
pk j

}

= ∑J
j=1

{
λ j +∑J

k6= j ∑
∞
t=0e−νk/µk

t
t!

[
νk

µk

]t

µkpk j

}
∑∞

n j =L j
π j(n j)

= ∑J
j=1

{
λ j +∑J

k=1 νkpk j

}
∑∞

n j=L j
π j(n j)

= ∑J
j=1 ν je

−ρ j ∑∞
t=L j

1
t!

[ρ j ]
t

(9.6.19)

Furthermore, in order to provide a relative error bound(FN−FL)/FN rather than
just an absolute error(FN−FL) as based upon (9.6.11), by (9.6.17) withL replaced
by N and with f (n) = 1(n j≥Nj ), we can conclude that:

πN(n j = Nj)≤ π∞(n j ≥ Nj)

so that
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FN = ∑S
j=1 λ jπN(n j < Nj)≥∑J

j=1 λ jπ∞(n j < Nj) =

∑J
j=1 λ j

{
1−e−ρ j ∑∞

t=Nj

1
t!

[ρ j ]
t
}

(9.6.20)

As a consequence, by result 9.6.4, (9.6.19) and (9.6.20), the following relative error
bound can now be concluded directly for a channel reduction to L j channels for cell
j, j = 1, . . . ,J.

Result 9.6.8 Let ρ j = [ν j/µ j ] and

B j(s) = e−ρ j ∑∞
k=s

1
k!

[ρ j ]
k (9.6.21)

Then

∆ =

[
FN−FL

FN

]
≤ ∑ j B j(L j)

∑ j
λ j [1−B j(L j)]

(9.6.22)

Remark 9.6.9 Usually, the number of channels in cell j is determined such that a
service level ofSj · 100% is guaranteed whereSj = 1−B j with B j Erlang’s loss
probability of a multi-server M|M|Nj |Nj loss system with Nj servers and traffic
intensityρ j = [ν j/µ j ], as if in isolation. Such first order approximations have been
used to establish fixed point approximations (e.g. [41], [49]).

Remark 9.6.10 (Markov Reward Approach and stochastic comparison combination)
Note that the analytic error bound results 9.6.7 and 9.6.8 are essentially based on
the error bound result 9.6.4, and thus the general error bound result 9.3.10 and
9.3.5, as well as the stochastic comparison result 9.2.1. Also the combination of
the two approaches, the Markov reward approach and stochastic comparison, thus
appears to be fruitful.

9.7 Evaluation

In this chapter the Markov reward approach has been discussed in order to com-
pare two related queueing networks, where one may typicallybe thought of as a
modification of the other for computational simplification.This approach has both
advantages and disadvantages as opposed to the more standard stochastic compari-
son approach, most notably among which, as advantages:

• It may also lead to (analytic) error bounds for the discrepancy

• It may still apply while stochastic comparison fails,

while as disadvantages:
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• It requires exponentiality assumptions

• It can technically be more complicated.

Also a combination of both approaches might become useful tosecure simpler ana-
lytic bounds for the error bounds. A number of extensions as well as questions are
still open for further research.

9.7.1 Extensions

1. Non-exponentiality. In principle non-exponential queueing networks can be
covered by the MRA by using phase-type distributions, possibly in combination
with weak convergence arguments, to approximate ’arbritary’ non-exponential
service and interarrival distributions. However, the notational extensions and
technical verifications of the necessary conditions, in particular the estimation
of the corresponding bias-terms, will become substantially more complex.

Nevertheless, results in this direction have been established for specific applica-
tions. For example, in [11] and [13], formal proofs have so been esthablished
for ’insensitive’ product form bounds for finite multi-server tandem queues and
queues with overflow respectively. Particulary, in [22] a general framework has
been set up to apply the MRA to stochastic service networks under the assump-
tion of continuous service distributions with bounded hazard rates. This frame-
work was used to obtain analytic error bounds as well as ordering results for
comparing various (also nón-ordered)GI|G|c queueing systems.

2. Transient situations. As the (proof) steps in section 9.3 and following rely
upon the recurrent (or dynamic programming) reward relation (9.3.5), similar
comparison and error bound results are implicity covered for any finite number
of steps, that is finite time horizon of periods each of exponential length with
parameterH = h−1, hence of average durationh.

As shown in VDK, by retransforming the time-uniformization(using the Poisson-
Gamma relation), in principle these results in turn can alsobe transformed into
comparison and error bound results for any fixed time horizon, say of lengthT,
or to stochastic periods up to exiting or leaving some set of statesB (first passage
times). Nevertheless, in the latter more practical case, the verification (bounding)
step for the bias-terms will generally become harder as different starting states
will also have different first passage times.

3. Non-negative dynamic systems. In line with the former transient case, as
shown in [24], the MRA can also be extended to dynamic systemsof the form:

d
dt

Wt = AWt
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whereA is some arbitrary nonnegative generator rather than a stochastic infinites-
imal generatorQ, such as naturally arising for instance in economic input-output
models.

9.7.2 Further Research

1. A more general verification technique for the bias-terms. The verification of
the bias-terms condition, such as in sections 9.4, 9.5 and 9.6, still appears to be
strongly dependent on both the application and its combination with the per-
formance measure (reward function) of interest. A more general ’verification’
technique such as for a class of network configurations or a class of performance
measures is still lacking.

2. Nonexponential queueing networks. Despite the phase-type approach men-
tioned and the specific references given above, a simpler andmore common
extension, such as in line with the sample path comparison approach, to cover
non-exponential networks more easily, is sought for.

3. Discrete-time queueing networks. Due to digitization the interest in discrete-
time rather than continuous-time queueing networks remains growing. Again, in
principle the MRA can be set up just as well. However, the appealing property of
single moments at a time, as for continuous-time networks might disappear. This
will highly complicate the verification of the bias-terms required. In addition,
appropriate modifications to guarantee analytic expressions, say of product form
type, (such as in [4], [8], [35]) for simplified computationsor bounds, will be-
come more difficult to be recognized. In line with practical developments further
research in these directions is of substantial interest.

4. State dependent routing and servicing (call centers/internet).
Practical queueing systems can have more complicated statedependent routing
or servicing mechanisms than just determined by blocking upon congestion by
finite capacity constraints, as used in this chapter.

As one practical example of interest, in present-day highlydeveloped call centers
an incoming call might be routed (so called skill based routing) to the ’best suited
(skilled)’ agent group available (by searching through a skill preference list).
Conversely, an agent that becomes available might search for the most preferable
or suited call waiting.

A second example that receives considerable interest within present-day queue-
ing (performance evaluation) literature is that of the internet. In this case tandem
(packet switch) type structures are used in which service capacity is shared over
multiple stations. As a consequence, the service capacity at one station depends
on the current loads at other stations. As analytic solutions for these systems are
highly limited, the application of the MRA seems of considerable interest. How-
ever, due to the state dependent mechanisms the essential step of analytically
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bounding the corresponding bias-terms will include various complications that
are still open.

5. Mobile server networks (mobile communications, ad-hoc networks, am-
bulance services).Another ’class’ of unsolvable service (queueing) networksfor
which the MRA might be useful are service networks in which the users and/or
servers themselves are stochastically changing position (moving).

One example, as already looked at in its simplest form of fixedchannels in section
9.6.4, is that of cellular mobile networks in which the users(calling persons) can
move during their service (the call) to another service station (a cell) at which
they need another service (frequency channel).

Another present-day example for technical development is that of so-called ad-
hoc networks in which transmitters, in a temporarily set up network configura-
tion, highly interact (transmission contentions and loss). In addition, these trans-
mitters may stochastically vary their location (and consequently, interactions).

As a last example, for modeling ambulance services, with a limited number of
servers (the ambulances), both the service times (trip durations), and the avail-
ability and the locations (different collection points andhospitals) are subject to
stochasticity. A similar remark and appeal for future research of a MRA applica-
tion also applies here.

9.7.3 Other applications.

All three applications (in sections 9.4, 9.5, 9.6) were based upon the combination of

(i) a modification of an original unsolvable system of practical interest
into a solvable (product form) system, and

(ii) the Markov reward approach to show that this modification leads
to secure bounds or to an error bound for the discrepancy.

This combination has proven to be fruitful in a number of situations. To conclude
this chapter below three more applications will be described briefly to illustrate the
practical diversity of this combination.

Overflow queues (e.g. Call Centers). In present-day call centers complex skill
based routing can be applied. Under skill based routing in its simplest form,
incoming calls might be rerouted to a second or higher level agent skill group if
a primary access group is not available.

But even in this most simple situation a closed form queueingexpression doesn’t
seem to be available. To be more concrete, consider a standard Erlang loss sys-
tem withc1 primary servers without waiting facility (M|M|c1|c1-queue) in which
calls are rerouted to a second finite server group withc2 (overflow) servers and
also no waiting facility (M|M|c2|c2-queue) if all primaryc1 servers are occupied.
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c1

c2

Fig. 9.9: Overflow system.

If also thesec2 servers are busy an incoming call is lost. In addition, assume
that a call at one of thesec2 servers remains to be serviced by this server also
if meanwhile one of the primary servers becomes idle. In thiscase, no analytic
expression for the loss probability of incoming calls seemsto be available. Var-
ious approximations have therefore been developed, most notably among them,
as based upon the ERM (Equivalent Random Method). However, other than by
numerical investigation no accuracy for these approximations has been reported
nor can it be secured whether they provide lower or upper bounds.

In [25] (also see chapter 1, section 2.2) a product form modification has therefore
been suggested (as by the well-known call packing principle). By the Markov re-
ward approach it was shown that this modification leads to secure (and in fact,
quite accurate) upper bounds for the loss probability (as ofnatural practical in-
terest for dimensioning purposes).

Cellular Mobile Communication Systems. As already described in section 9.6.1,
even in its simple form of cells with a fixed number ofNi frequency channels in
cell i, due to handover calls from one cell into another, cellular mobile commu-
nication system do not exhibit a product form expression (see [5] for a more
general and non-exponential description).

In [6] therefore, different product form modifications havebeen suggested(such
as by a redial mechanism). Again, by the Markov reward approach it was shown
that these also lead to upper bounds for the various (fresh call and handover)
loss probabilities. In this case, however, an intermediatesystem (other than the
original and modified system) had to be used to establish the proofs.

Intensive Care Modeling in Hospitals. The number of intensive care beds is a
high cost but also high quality factor for hospitals as it mayput lives at risk.
This number thus has to be dimensioned carefully. An intensive care bed can be
required for either external emergency patients or elective patients that have be-
come critical (±60%) or patients for postoperative care after a ’heavy’ operation
(±40%).

A coupling between the operating rooms (operating theater -OT) and the in-
tensive care unit (ICU) is thus intrinsically involved. Dueto this coupling, an
ICU cannot simply be regarded as an Erlang loss system (M|M|c|c-queue) so as



456 Nico M. Van Dijk

to compute the availability (or rejection rate), nor can theOT-ICU be seen as a
finite tandem queue as dealt with in section 9.5.

Nevertheless, as outlined in chapter 1, section 8, by the same steps of product
form modifications and the Markov reward proof technique (with the techni-
cal verification of the bias-terms being quite complicated)in [18] it was shown
that the ICU-rejection probability can be approximated reasonably well by an
M|M|c|c-queue and be bounded from above by anM|M|c−1|c−1-queue as of
practical interest.
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Chapter 10
Stability of Join-the-Shortest-Queue networks:
Analysis by Fluid Limits

J. G. Dai, John J. Hasenbein and Bara Kim

Abstract The standard fluid model tool is employed to investigate stability behav-
ior in a variant of a generalized Jackson queueing network. In the network, some
customers use a join-the-shortest-queue policy when entering the network or mov-
ing to the next station. Furthermore, we allow interarrivaland service times to have
general distributions. For networks with two stations, necessary and sufficient con-
ditions are given for positive Harris recurrence of the network process. These condi-
tions involve only the mean values of the network primitives. Two counterexamples
are provided to show that more information on distributionsand tie-breaking proba-
bilities is needed for networks with more than two stations,in order to characterize
the stability of such systems. However, if the routing probabilities in the network
satisfy a certain homogeneity condition, then it is proved that the stability behavior
can be explicitly determined, again using the mean value parameters of the network.

10.1 Join-the-shortest-queue networks

We consider a variant of the classical Jackson queueing network [9, 10]. The main
added feature is that an arriving customer may have several routes to choose from
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at its arrival time. We assume that the customer always chooses to join the short-
est queue among a set of allowed queues. In addition, we allowthe interarrival and
service times to have general distributions, rather than being restricted to the expo-
nential case.

The queueing network model of this chapter is assumed to haveJ ≥ 1 stations,
with each station consisting of a single server. Each station has a dedicated queue or
buffer that holds customers waiting to be served by the station. LetJ = {1, · · · ,J}
be the set of stations. For each stationi ∈ J, let ηi(n) be the service time of the
nth customer to be served by stationi. We assume that each station is non-idling,
that customers within a buffer are served on a first-in–first-out basis, and that no
service is preempted. To describe the external arrival processes, letP be the class of
nonempty subsets ofJ. For each subsetC∈ P of queues, there is an associated ex-
ogenous arrival process with interarrival times{ξC(n) : n≥ 1}. We call this arrival
process a type-C external arrival process. Upon arriving to the network, each type-C
customer joins the shortest queue among all the queues inC, using a tie-breaking
rule to be specified shortly. After being served by stationi, i ∈ J, a customer leaves
the system with probability 1− p∗i , and becomes a type-C customer with probability
piC, independent of the customer’s entire history, where∑C∈P piC = p∗i . When mul-
tiple queues are tied for the shortest queue, a tie-breakingrule is needed. We assume
that for each subsetB∈P of queues, there is a distributionγB = {γB, j : j ∈B}. When
a customer is to join a shortest queue that is tied by a setB of queues, the customer
joins queuej with probabilityγB, j independently of its history. This type of routing
behavior on the part of arriving customers is called Join-the-Shortest-Queue (JSQ)
in the literature.

We allowξC(n) = ∞ for all n for someC. In this case, the type-C-external arrival
process is null. Let

E = {C∈ P : the type-C-external arrival process is non-null}.

For eachC ∈ E, we assume thatξC = {ξC(n) : n ≥ 1} is an independent and
identically distributed (i.i.d.) sequence with mean 1/λC, and for each stationi,
ηi = {ηi(n) : n≥ 1} is an i.i.d. sequence with mean 1/µi . We further assume that
the interarrival time sequences, service time sequences, feedback decisions, and tie-
breaking decisions are all independent. Additional distributional assumptions on the
interarrival times will be specified in Section 10.2. We callλC the arrival rates,µi

the service rates,piC the feedback probabilities, andγB, j the tie-breaking probabil-
ities of the network. From now on, for purposes of discussion, and stating results,
we will refer to the network described above as aJSQ Network.

The dynamics of the JSQ network can be described by a continuous time
Markov processX = {X(t) : t ≥ 0}, as long as the state space is chosen ap-
propriately. When the interarrival and service time distributions are exponential,
Z = {(Z1(t), . . . ,ZJ(t)) : t ≥ 0} is such a process, whereZi(t) is the total number of
customers that are either waiting in queuei or being served by stationi at timet.
This chapter is primarily concerned with the stability of the queueing network. The
network is said to be stable if the Markov processX is positive Harris recurrent.
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WhenλC = 0 andpi,C = 0 for allC∈ P with more than one element, i.e., customers
are never offered a choice of queues to join, the corresponding network is called a
generalized Jackson network. Under some minor conditions on the interarrival time
distributions, it is known that such a network is stable if and only if the traffic inten-
sity at each station is less than one (see, for example, Dai [2]). The traffic intensity
is defined through the first order data of the network, i.e., arrival rates, service rates
and feedback probabilities. In particular, the stability of a generalized Jackson net-
work does not depend on the distributions of interarrival and service times. One
might hope that for the model of this chapter, the positive Harris recurrence can
again be determined by the arrival rates, service rates and the feedback probabili-
ties. Theorem 10.3.1 in Section 10.3 shows that this assertion is indeed true when
J = 2 by describing explicit recurrence conditions in terms of arrival rates, service
rates and feedback probabilities. In particular, the stability of a 2-station network
does not depend on the distributions of interarrival and service times, nor does it
depend on the tie-breaking probabilities. Unfortunately,whenJ ≥ 3, an analogous
result does not hold. Specifically, two counterexamples in Section 10.4 demonstrate
that Theorem 10.3.1 cannot be generalized to larger networks. In the first example
with J = 3, we show that the positive Harris recurrence of the processdepends on
the tie-breaking probabilitiesγB,i . In the second example, again withJ = 3, we show
that the positive Harris recurrence of the process depends on the distributions of the
service times. However if all the stations have homogeneousfeedback probabili-
ties, i.e., if piC does not depend on queuei, the positive Harris recurrence is again
determined by the arrival rates, services and feedback probabilities, and not on the
distributions of the interarrival and service times or the tie-breaking probabilities.
In this case, Theorem 10.5.2 in Section 10.5 gives explicit recurrence conditions in
terms of arrival rates, service rates and feedback probabilities.

Queueing systems with JSQ type routing have a long history inthe literature.
We only mention the papers in which there is stability analysis of JSQ networks.
Kurkova [11] treated a special system whenJ = 2, the interarrival and service times
distributions are exponential, and a fair coin is flipped to break a tie. She represented
the system as a continuous time Markov chain with a countablestate space and
obtained an explicit recurrence condition for the Markov chain by using Lyapunov
functions. Stability of JSQ networks, when there is no feedback, was studied by
Foss and Chernova [8] and Foley and McDonald [7]. A quite general JSQ network
with feedback was treated by Suhov and Vvedenskaya [14]. However, their stability
analysis was limited to a few special cases.

Queueing networks with alternate routes arise in many telecommunication and
service systems. A customer call center is an example of sucha service system. The
myopic join-the-shortest-queue routing decision is oftenemployed in practice. The
stability of these networks is essential to the capacity planning of these systems.

We employ the standard fluid model tool in our stability analysis. Whenever ap-
propriate, we do not go through every detail of using the tool; readers may consult,
for example, Dai [4] for additional details. Fluid models are commonly used to prove
the positive recurrence of queueing networks and/or the transience of such systems,
but here we are also able to use the fluid model approach to prove non-positive re-
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currence. As such we are able to identify the stability behavior on the boundary of
the stability region. The behavior on the boundary is often left as an open question
in stability analysis via fluid models, and the method employed in this chapter is
quite a new technique to use fluid models to prove the non-positive recurrence of a
queueing network.

The chapter is organized as follows: In Section 10.2, we firstprovide the Markov
process characterization of the network. A fluid model for the system is then defined
and criteria for stability and instability of the system aregiven. Section 10.3 gives
the necessary and sufficient conditions for stability in terms of arrival rates, service
rates and feedback probabilities for systems with two stations (J = 2). In Section
10.4, two examples with three stations (J = 3) are given, the first of which shows
that the stability depends on the tie-breaking probabilities, and the second of which
shows that the stability depends on not only the first order data but also the distribu-
tions of the service times. In Section 10.5, for systems withmore than two stations
(J ≥ 3) that satisfies an additional assumption that all stationshave homogeneous
feedback probability, we give the necessary and sufficient conditions for stability in
terms of arrival rates, service rates and feedback probabilities for systems with two
stations Further study on the stability of JSQ networks is described in Section 10.6.

Now we collect some mathematical notation used in the rest ofthe chapter. For
a setC, |C| indicates the cardinality ofC. However, forx∈RN, we use|x| to denote
thel1-norm. For random variablesX andY, X≥stY indicates thatX is stochastically
larger thanY. When a probability operator appears with a subscriptπ , this indicates
the probability is the one generated by initial distribution π (this may include a
degenerate initial distribution consisting of only one state).

10.2 The network process and the fluid model

We use

X(t) = (Z(t),U(t),V(t)) (10.1)

to denote the state of our queueing network at timet. The first componentZ(t) =
(Z1(t), · · · ,ZJ(t)) is J-dimensional, where, as before,Zi(t) is the total number of
customers that are either waiting in queuei or being served by stationi at time
t. The second componentU(t) = (UC(t) : C ∈ E) is |E|-dimensional, whereUC(t)
is the remaining interarrival time of the type-C external arrival process at timet.
The last componentV(t) = (V1(t), · · · ,VJ(t)) is J-dimensional, whereVi(t) is the
remaining service time of the customer who is in service at station i at timet. (Vi(t)
is set to be zero if there is no customer in service at stationi at timet.) The process
X = {X(t) : t ≥ 0} is taken to be right continuous with left limits. It follows from
Dai [2] thatX is a strong Markov process whose state spaceS is a subset ofR2J+|E|.

The Markov processX is said to be positive Harris recurrent if it possesses a
unique stationary distribution. To apply the fluid limit technique to the stability
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analysis, we make the following additional assumptions on interarrival times. We
assume that, for anyC∈ E, the distribution ofξC(1) is unbounded, i.e.,

P(ξC(1)≥ x) > 0, for anyx > 0. (10.2)

We also assume that, for anyC∈ E, the distribution ofξC(1) is spread out, i.e., there
exists an integernC > 0 and a functionqC(x) ≥ 0 on (0,∞) with

´ ∞
0 qC(x)dx > 0,

such that

P(a≤ ξC(1)+ · · ·+ ξC(nC)≤ b)≥
ˆ b

a
qC(x)dx, for any 0≤ a < b.

We now introduce the queueing and fluid dynamical equations,and provide re-
sults which relate the queueing model and fluid models definedby these equations.
This framework allows us to use fluid model techniques to prove the results on sta-
bility of the JSQ networks in subsequent sections.

We define a number of processes related to the queueing network:

E(t) = {EC(t) : C∈ E}, t ≥ 0, whereEC(t) is the number of customers which arrive
during[0, t] due to the type-C external arrival process.

A(t) = {Ai(t) : i ∈ J}, t ≥ 0, whereAi(t) is the number of arrivals to bufferi during
[0, t] (including exogenous arrivals and feedback arrivals).

D(t) = {Di(t) : i ∈ J}, t ≥ 0, whereDi(t) is the number of customers which complete
service at stationi during[0,t].

S(t) = {Si(t) : i ∈ J}, t ≥ 0, whereSi(t) is the number of customers stationi com-
pletes if it spendst units of time working on such customers.

Φ(n){ΦiC(n) : i ∈ J,C ∈ P},n = 0,1,2, · · · , whereΦiC(n) is the number of cus-
tomers, among the firstn who depart stationi, which become type-C customers.

T(t) = {Ti(t) : i ∈ J}, t ≥ 0, whereTi(t) is the amount of time spent working on
customers at stationi during[0,t].

I(t) = {Ii(t) : i ∈ J}, t ≥ 0, whereIi(t) is the amount of time stationi idles during
[0, t].

Then, the following equations define the dynamics of a JSQ network: For i ∈ J

and 0≤ s≤ t,

Zi(t) = Zi(0)+Ai(t)−Di(t), (10.3)

Zi(t)≥ 0, (10.4)

Ti(·) andIi(·) are nondecreasing, (10.5)

Ti(t)+ Ii(t) = t, (10.6)

If Zi(u) > 0 for u∈ (s,t), thenIi(s) = Ii(t). (10.7)

Di(t) = Si(Ti(t)). (10.8)
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ForC∈ P and 0≤ s≤ t,

∑
i∈C

(Ai(t)−Ai(s))

≥ ∑
B:B⊆C

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
. (10.9)

ForC∈ P and 0≤ s≤ t, if Zi(u) > Z j(u) for all i ∈C, j ∈ J−C andu∈ (s,t), then

∑
i∈C

(Ai(t)−Ai(s))

= ∑
B:B⊆C

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
. (10.10)

Equations (10.3)-(10.8) are standard equations for generalized Jackson networks
operating under an arbitrary non-idling policy. The last two equations however, are
new, and they enforce the JSQ routing behavior of the customers.

Using the dynamical equations (10.3)-(10.10) we derive thecorresponding fluid
model equations. Our methodology closely follows a now standard procedure and
we only outline the general steps. By the strong law of large numbers, for almost all
sample pathsω , we have

lim
n→∞

1
n

n

∑
k=1

ξC(k,ω) = λ−1
C , C∈ E, (10.11)

lim
n→∞

1
n

n

∑
k=1

ηi(k,ω) = µ−1
i , i ∈ J, (10.12)

lim
n→∞

1
n

ΦiC(n,ω) = piC, i ∈ J,C∈ P. (10.13)

Let X≡ {(A(t),T(t), I(t),Z(t)),t ≥ 0} be a network process governed by (10.3)-
(10.10), andXx be such a process with initial statex = (z,u,v). By takingC = J in
(10.10), one has for each stationk and each 0≤ s< t that

Ak(t)−Ak(s)

≤∑
i∈J

(Ai(t)−Ai(s))

= ∑
B:B⊆J

{
(EB(t)−EB(s))+ ∑

i∈J

(ΦiB(Di(t))−ΦiB(Di(s)))

}
.

It follows from the same argument as in Dai [2] that for every sample pathω
satisfying (10.11)-(10.13) and every collection{xr : r > 0} of initial states such
that {|xr |/r : r > 0} is bounded, there exists a subsequencern → ∞ such that
1
rn

Xxrn
(rn·,ω) converges uniformly on any compact subset of[0,∞) to some limit

sayX̄ = (Ā(·), T̄(·), Ī (·), Z̄(·)). Each such limit̄X is called afluid limit. In the special
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case where the sequence of initial states{xr : r > 0} is independent ofr, we call the
limit a fluid limit with fixed initial state. Both types of fluid limits are used in our
subsequent stability analysis of the processX.

As shown in Bramson [1], in the analysis of stability via fluidlimits, it is suffi-
cient to consider the so-called undelayed fluid limit, i.e. when

lim
r→∞

1
r
(|ur |+ |vr |) = 0, (10.14)

whereur andvr are subvectors of the initial statexr = (zr ,ur ,vr). Thus, from now
on we only consider undelayed fluid limits.

Now, letX̄ be a fluid limit obtained from a sequence of initial states{xr} satisfy-
ing (10.14). It is readily seen that all of̄Ai(·), T̄i(·), Īi(·) andZ̄i(·), i ∈ J, are Lipschitz
continuous. Hence they are absolutely continuous and thus differentiable almost ev-
erywhere with respect to the Lebesgue measure. We say thatt is a regular point of
X̄ if all components of̄X are differentiable att. From now on, we implicitly assume
that t is a regular point whenever the derivative of a component ofX̄ is involved.
Applying fluid limits to (10.3)-(10.14), we obtain the equations: Fori ∈ J andt ≥ 0,

Z̄i(t) = Z̄i(0)+ Āi(t)− µiT̄i(t), (10.15)

Z̄i(t)≥ 0, (10.16)

T̄i(·) andĪi(·) are nondecreasing, (10.17)

T̄i(t)+ Īi(t) = t, (10.18)

If Z̄i(t) > 0, then ˙̄Ii(t) = 0. (10.19)

ForC∈ P andt ≥ 0,

∑
i∈C

˙̄Ai(t)≥ΛC + ∑
i∈J

PiCµi
˙̄Ti(t). (10.20)

ForC∈ P andt ≥ 0, if Zi(t) > Z j(t) for all i ∈C and j ∈ J\C, then

∑
i∈C

˙̄Ai(t) = ΛC + ∑
i∈J

PiCµi
˙̄Ti(t). (10.21)

where

ΛC ≡ ∑
B:φ 6=B⊂C

λB and PiC ≡ ∑
B:φ 6=B⊂C

piB.

We call the equations (10.15)-(10.21) thefluid model equationsand call a solu-
tion X̄ = {(Ā(t), T̄(t), Ī (t), Z̄(t)),t ≥ 0}, of the fluid model equations afluid model
solution. Note that any fluid limit with fixed initial state necessarily hasZ̄(0) = 0.
Thus these fluid limits form a subset of fluid solutions withZ̄(0) = 0. The following
definitions and lemmas indicate the usefulness of differenttypes of fluid limits.
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Definition 10.2.1 (i) The fluid model is stable if there exists aδ > 0 such that for
each fluid model solution̄X, with |Z̄(0)| ≤ 1, Z̄(t) = 0 for t ≥ δ .

(ii) The fluid model is weakly unstable if there exists aδ > 0 such that for each
fluid model solution̄X, with Z̄(0) = 0, Z̄(δ ) 6= 0.

The same reasoning used in Dai [2, 3], can be applied to the class of networks we
consider here to give the following criteria.

Lemma 10.2.2 (Dai [2]) If the fluid model is stable, then the Markov processX is
positive Harris recurrent.

Lemma 10.2.3 (Dai [3]) If the fluid model is weakly unstable, then the process X
is unstable in the sense that, for each fixed initial state x,|Z(t)| → ∞ as t→ ∞ with
probability 1.

If we assumea priori that the processX is positive recurrent, then any fluid limit
with fixed initial state must obey an extra dynamical equation, which augments the
fluid model equations presented in (10.15)-(10.21). It turns out that the augmented
set of equations will be quite useful for proving non-positive recurrence using fluid
model analysis.

So, suppose thatX is positive Harris recurrent and letπ be its stationary distri-
bution. Since every station is nonidling, for each fixed initial statex,

lim
t→∞

Ti(t)
t

= lim
t→∞

1
t

ˆ t

0
1{Zi(s)>0}ds

= π ({(z,u,v) ∈ S : zi > 0}) Px-a.s., i ∈ J.

Therefore,

T̄i(t) = t π ({(z,u,v) ∈ S : zi > 0}) , t ≥ 0, i ∈ J, (10.22)

for every fluid limit X̄, which is a limit of scaled sample paths with a fixed initial
state. Choose a compact setK ⊂ S such thatπ(K) > 0. By (10.2), there exists a
t0 > 0 such that for each(z,u,v) ∈K,

P(z,u,v)(|Z(t0)|= 0) > 0.

Therefore

π({(z,u,v) ∈ S : |z|= 0}) = Pπ(|Z(0)|= 0)

= Pπ(|Z(t0)|= 0)

=

ˆ

S

P(z,u,v)(|Z(t0)|= 0)dπ(z,u,v)

≥
ˆ

K

P(z,u,v)(|Z(t0)|= 0)dπ(z,u,v)

> 0.
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Combining this with (10.22) yields

˙̄Ti(t) < 1, i ∈ J, (10.23)

for every fluid limitX̄, which is a limit of scaled sample paths with fixed initial state.
We call the equations (10.15)-(10.21) plus (10.23) theaugmented fluid model

equationsand call a solution̄X, to these equations anaugmented fluid model solu-
tion.

Definition 10.2.4 The augmented fluid model is weakly unstable if there exists a
δ > 0 such that for each augmented fluid model solutionX̄, with Z̄(0) = 0, Z̄(δ ) 6= 0.

Suppose that the augmented fluid model is weakly unstable butthe Markov pro-
cessX is positive Harris recurrent. Since the augmented fluid model equations are
satisfied by every fluid limit which is a limit of scaled samplepaths with fixed ini-
tial state, the argument in Dai [3] implies that the process is unstable in the sense
that,|Z(t)| →∞ ast→∞ with probability 1, which is a contradiction. Therefore we
obtain the following instability criterion.

Lemma 10.2.5 If the augmented fluid model is weakly unstable, then the Markov
process{X(t) : t ≥ 0} is not positive Harris recurrent.

10.3 JSQ networks with two stations

For simplicity of notation we useλ1, λ2 and λ instead ofλ{1}, λ{2} and λ{1,2},
respectively, in the two station case. We also usepi j instead ofpi{ j}, i, j = 1,2. To
avoid trivial cases, we assume thatp11 < 1, p22 < 1 and at least one ofp∗1 andp∗2 is
less than 1. However, we make no assumptions onpi,{1,2}, i = 1,2.

The following theorem provides a necessary and sufficient condition for the
Markov processX to be positive Harris recurrent.

Theorem 10.3.1Consider a JSQ network with J= 2. The Markov process X is
positive Harris recurrent if and only if the following threeconditions hold:

(i) λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2 < 0;
(ii) if p ∗2 < 1, then

p21(λ1 + λ2+ λ + µ1p∗1− µ1)+ (1− p∗2)(λ1 + µ1p11− µ1) < 0;
(iii) if p ∗1 < 1, then

p12(λ1 + λ2+ λ + µ2p∗2− µ2)+ (1− p∗1)(λ2 + µ2p22− µ2) < 0.

Kurkova [11] obtained a necessary and sufficient condition that is equivalent to
ours (see Appendix 2 of Dai, Hasenbein and Kim [6]). Her paperexamines the
special case when the exogenous arrival processes are Poisson, all service times
have an exponential distribution with mean 1, andγ{1,2}, j = 1

2, j = 1,2.
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Before we prove Theorem 10.3.1, we provide an interpretation of the conditions
in Theorem 10.3.1. The first condition is the most straightforward. First, partition the
state space of the number of customers in the system, say(z1,z2) into two regions.
Let region I be{(z1,z2) : z1 < z2} and region II be{(z1,z2) : z1 > z2} (we ignore the
boundary set for now). In region I all type-{1,2} customers join the queue at station
1. Then, if station 1 is busy the net rate at which it eliminates jobs from the system
is

r1 ≡ µ1 + µ1p12− µ1p∗1 + µ2p22− µ2p∗2−λ1−λ .

Similarly, in region I the net rate at which station 2 eliminates customers from the
system is

r2 ≡ µ2− µ1p12− µ2p22−λ2.

Notice that the left-hand side of condition(i) is simply−(r1+ r2), i.e. condition(i)
implies that the total net rate at which customers are eliminated must be positive.
One can check that the left-hand side of(i) also corresponds to the net customer
elimination rate in region II. On the boundary between the two regions, the elimina-
tion rate seemingly should depend on the tie-breaking probability. However, since
the rates are the same in either region, we see that the tie-breaking probability is
immaterial to this rate condition.

Condition(i) is a type of drift condition on the interior of the state space. The
other two conditions are drift rate conditions on the boundaries. To see this suppose
z1 = 0, i.e. station 1 is idle. In this case, the net drift rate of the number of jobs is
given by

(s1,s2)≡ (λ1 + λ + µ2(p∗2− p22),λ2 + µ2p22− µ2).

Then condition(iii ) is equivalent to(−r2, r1) · (s1,s2) < 0, i.e. the normal to the
interior drift and the reflection vector must form an acute angle. This is the usual
stability condition for a process with (constant) oblique reflection at the boundaries.
Condition(ii) has an analogous interpretation for the boundary defined byz2 = 0.

Proof of Theorem 10.3.1.

Sufficiency: Suppose that̄X is a fluid model solution. Letf (t) = |Z̄(t)|. It is readily
seen that the fluid model is stable if there exists anε > 0 such that

ḟ (t)≤−ε if f (t) > 0. (10.1)

Hence, by Lemma 10.2.2,X is positive Harris recurrent if there exists anε > 0
satisfying (10.1). By (10.15),̇f (t) can be written as

ḟ (t) = ˙̄A1(t)+ ˙̄A2(t)− µ1
˙̄T1(t)− µ2

˙̄T2(t).

Employing (10.21) withC = {1,2} we obtain,

ḟ (t) = λ1 + λ2+ λ +(p∗1−1)µ1
˙̄T1(t)+ (p∗2−1)µ2

˙̄T2(t). (10.2)
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Now we show that (10.1) holds for someε > 0 by considering three cases sepa-
rately.

Case 1. SupposeZ̄1(t) > 0 andZ̄2(t) > 0. Then by (10.18) and (10.19),˙̄Ti = 1,
i = 1,2. So (10.2) becomes

ḟ (t) = λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2,

which is negative by (i).

Case 2. Z̄1(t) > 0 andZ̄2(t) = 0.

By (10.18) and (10.19),

˙̄T1(t) = 1. (10.3)

Substituting (10.3) into (10.2) gives,

ḟ (t) = λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2
˙̄T2(t). (10.4)

Next, evaluating (10.21) withC = {1,2} and using (10.3) yields

˙̄A1(t)+ ˙̄A2(t) = λ1 + λ2+ λ + p∗1µ1 + p∗2µ2
˙̄T2(t). (10.5)

Similarly, evaluating (10.21) withC = {1}, along with (10.3) yields

˙̄A1(t) = λ1 + p11µ1 + p21µ2
˙̄T2(t). (10.6)

We subtract (10.6) from (10.5) to obtain

˙̄A2(t) = λ2 + λ +(p∗1− p11)µ1 +(p∗2− p21)µ2
˙̄T2(t). (10.7)

By assumption̄Z2(t) = 0 which implies˙̄Z2(t) = 0. Hence by (10.15),

˙̄A2(t) = µ2
˙̄T2(t). (10.8)

Therefore, substituting (10.8) into (10.7) gives

µ2(1− p∗2+ p21)
˙̄T2(t) = λ2 + λ +(p∗1− p11)µ1. (10.9)

Now, if 1− p∗2+ p21 = 0 thenp∗2 = 1 and so, by (10.4),

ḟ (t) = λ1 + λ2+ λ +(p∗1−1)µ1,

which is negative by (i).
Otherwise, suppose 1− p∗2+ p21 > 0. Then, by (10.9),

˙̄T2(t) =
λ2+ λ +(p∗1− p11)µ1

µ2(1− p∗2+ p21)
. (10.10)
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In this case, (10.10) and (10.4) imply

ḟ (t) =
p21[λ1 + λ2+ λ + µ1(p∗1−1)]+ (1− p∗2)[λ1 + µ1(p11−1)]

1− p∗2+ p21
,

which by (i) is negative whenp∗2 = 1 and by (ii) is negative whenp∗2 < 1.

Case 3. Z̄1(t) = 0 andZ̄2(t) > 0. The argument in this case is analogous to that of
case 2.

Necessity: Lemma 10.2.5 implies that we need only show that the augmented fluid
model is weakly unstable if any of (i)-(iii) of Theorem 10.3.1 does not hold. By
symmetry, it is sufficient to analyze the three cases examined below. LetX̄ be an
augmented fluid model solution with̄Z(0) = 0 and let

f (t) = |Z̄(t)|, t ≥ 0.

Considering three cases separately, we show thatḟ (t) > 0 for all regulart > 0, which
completes the proof.

Case 1. Suppose (i) does not hold. By (10.2) and (10.23),

ḟ (t) > λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2 ≥ 0,

which proves the result for this case.

Case 2. Suppose (i) holds and (ii) does not hold. IfZ̄2(t) > 0, then by (10.18) and
(10.19), ˙̄T2(t) = 1, which contradicts (10.23). HencēZ2(t) = 0 and ˙̄Z2(t) = 0. As
before, by (10.15),

˙̄A2(t) = µ2
˙̄T2(t). (10.11)

By subtracting (10.20) evaluated atC = {1} from (10.21) evaluated atC = {1,2},
we have

˙̄A2(t) ≤ λ2 + λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2

˙̄T2(t).

Hence by (10.23) and (10.11),

˙̄T2(t) <
λ2 + λ +(p∗1− p11)µ1

µ2(1− p∗2+ p21)
. (10.12)

Substituting (10.12) into (10.2) and applying˙̄T1(t) < 1 lead to

ḟ (t) >
p21(λ1 + λ2+ λ + µ1p∗1− µ1)+ (1− p∗2)(λ1 + µ1p11− µ1)

1− p∗2+ p21
.

The numerator above is nonnegative by the negation of (ii), thus ḟ (t) > 0. ⊓⊔
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The following theorem provides a sufficient condition for the Markov processX
to be unstable in the sense that|Z(t)| → ∞ ast→ ∞ with probability 1.

Theorem 10.3.2Consider a JSQ network with J= 2. The process X is unstable in
the sense that|Z(t)| → ∞ as t→ ∞ with probability 1 if

λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2 > 0, (10.13)

or p21(λ1 + λ2+ λ + µ1p∗1− µ1)+ (1− p∗2)(λ1 + µ1p11− µ1) > 0,(10.14)

or p12(λ1 + λ2+ λ + µ2p∗2− µ2)+ (1− p∗1)(λ2 + µ2p22− µ2) > 0.(10.15)

Proof. Suppose that̄X is a fluid model solution with̄Z(0) = 0, t ≥ 0. Let f (t) =
|Z̄(t)|. By Lemma 10.2.3, it suffices to show thatḟ (t) > 0 for all t > 0. We show
this by considering three cases separately.

Case 1. Suppose (10.13) holds.
Since ˙̄T1(t)≤ 1 and ˙̄T2(t)≤ 1, by (10.2),

ḟ (t)≥ λ1 + λ2+ λ +(p∗1−1)µ1+(p∗2−1)µ2 > 0,

for all t > 0.

Case 2. Suppose (10.13) does not hold and (10.14) holds.
If p∗2 = 1, then ḟ (t)≥ λ1 + λ2 + λ +(p∗1−1)µ1 > 0 by (10.2) and (10.14). Now

suppose thatp∗2 < 1. First we show that

Z̄2(t) = 0, t ≥ 0. (10.16)

To prove (10.16), it suffices to show that˙̄Z2(t)≤ 0 if Z̄2(t) > 0. SupposēZ2(t) > 0.
Then by (10.18) and (10.19),˙̄T2(t) = 1. By (10.15),

˙̄A2(t) = ˙̄Z2(t)+ µ2. (10.17)

By subtracting (10.20) evaluated atC = {1} from (10.21) evaluated atC = {1,2},
we have

˙̄A2(t) ≤ λ2 + λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2. (10.18)

Substituting (10.17) into (10.18) and applying˙̄T1(t)≤ 1 lead to

˙̄Z2(t) ≤ λ2 + λ +(p∗1− p11)µ1 +(p∗2− p21−1)µ2. (10.19)

Since by assumption,(10.13) does not hold,

µ2 ≥
λ1 + λ2+ λ + µ1(p∗1−1)

1− p∗2
. (10.20)

Finally, by (10.19) and (10.20),
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˙̄Z2(t) ≤ −
p21(λ1 + λ2+ λ + µ1p∗1− µ1)+ (1− p∗2)(λ1 + µ1p11− µ1)

1− p∗2
.

Hence,˙̄Z2(t) < 0 by (10.14). Thus (10.16) holds.
Next, subtracting (10.20) evaluated atC = {1} from (10.21) evaluated atC =

{1,2}, we obtain

˙̄A2(t) ≤ λ2 + λ +(p∗1− p11)µ1
˙̄T1(t)+ (p∗2− p21)µ2

˙̄T2(t)

≤ λ2 + λ +(p∗1− p11)µ1 +(p∗2− p21)µ2
˙̄T2(t). (10.21)

By (10.16), ˙̄Z2(t) = 0 and so˙̄A2(t) = µ2
˙̄T2(t) by (10.15). Hence, employing (10.21),

we have

˙̄T2(t) ≤
λ2 + λ +(p∗1− p11)µ1

µ2(1− p∗2+ p21)
. (10.22)

Substituting (10.22) into (10.2) and applying˙̄T1(t)≤ 1 lead to

ḟ (t) ≥ p21(λ1 + λ2+ λ + µ1p∗1− µ1)+ (1− p∗2)(λ1 + µ1p11− µ1)

1− p∗2+ p21
.

Thus (10.14) now implieṡf (t) > 0.

Case 3. Suppose (10.13) does not hold and (10.15) holds. By symmetrythis case
is completely analogous to Case 2.⊓⊔

10.4 Two examples with three stations

In this section, we consider the caseJ = 3 and give two examples which show
thatλC, µi andpiC, i ∈ J,C ∈ P, are not sufficient to determine the stability of the
system. The first example shows that the stability of the system may depend on the
tie-breaking ruleγC,i ,C∈P, i ∈ J. The second example shows that the stability of the
system may depend not only on the mean service times but also on the distributions
of the service times.

Both examples fit into a class of networks, whose structure ispictured in Fig-
ure 10.1.

The network has three stations, each represented by a circle. Each station serves
customers in its queue, which is represented by an open rectangle. In each example,
there are potentially four types of exogenous arrival processes, which are assumed
to be four independent Poisson processes. The first three processes correspond to
arrivals which are dedicated to queues 1, 2, and 3 respectively. The fourth Poisson
process corresponds to arrivals which join the shorter of the two queues 1 and 2.
If the queue lengths are equal at the time of an arrival, the customer breaks the tie
using a Bernoulli(r) random variable which is independent of all the other primi-
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Fig. 10.1: A JSQ network

tive processes, with a success indicating that the customerjoins queue 1. The four
Poisson processes have ratesλi , i = 1,2,3,4.

The service times at stations 2 and 3 are assumed to be i.i.d. exponential ran-
dom variables with ratesµ2 and µ3, respectively. The service times at station 1
are assumed to be i.i.d. random variables which are hyperexponential. We assume
that the hyperexponential is generated by mixing independent exponential(a) and
exponential(b) random variables, with the first component being chosen withprob-
ability ν. With these assumptions, the natural definition of the rate of service at
station 1 is then:

µ1 = (νa−1 +(1−ν)b−1)−1.

Now, in such a network let

Y(t) =





0, if no job is in service at station 1 ;

1, if the current job in service at station 1
is assigned anexponential(a) service;

2, if the current job in service at station 1
is assigned anexponential(b) service.

Then, for this class of networks both{(Z1(t),Z2(t),Y(t)) : t ≥ 0} and
{(Z1(t),Z2(t),Z3(t),Y(t)), t ≥ 0} are irreducible continuous time Markov chains
(CTMCs). When

λ1 < µ1, λ2 < µ2 andλ1 + λ2+ λ4 < µ1 + µ2, (10.1)

it follows from Theorem 10.3.1 that the continuous time Markov chain{(Z1(t),
Z2(t),Y(t)) : t ≥ 0} is positive recurrent. We useP{(Z1(∞),Z2(∞)) ∈ ·} to denote
the stationary distribution of{(Z1(t),Z2(t)) : t ≥ 0}. Recall thatA1(t) is the num-
ber of customers that have entered either the queue or service at station 1 in[0,t],
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and thatD1(t) is the number of service completions by station 1 in[0,t]. Note that
A1(t)/t andD1(t)/t are the arrival rate at station 1 the departure rate from station
1, respectively, in[0, t]. For a fixed timet, both of these rates are random. Our next
proposition shows that, when (10.1) is satisfied, these rates converge to constants as
t→ ∞.

Property 10.4.1 Assume that condition (10.1) holds.

(a) Set d1 = µ1P{Z1(∞) > 0}. For each initial state x,

Px

{
lim
t→∞

D1(t)/t = d1

}
= 1. (10.2)

(b) Set a1 = λ1 + λ4

(
P{Z1(∞) < Z2(∞)}+ rP{Z1(∞) = Z2(∞)}

)
. For each initial

state x,

Px

{
lim
t→∞

A1(t)/t = a1

}
= 1. (10.3)

(c) a1 = d1.

Proof. The proofs of both (a) and (b) follow by applying standard sample path ver-
sions of PASTA as in Wolff [15] Chapter 5, Theorem 6 and Example 5-23. We
outline the proof for (a), the proof for (b) uses similar arguments. All arguments
hold for the probability measure generated by a fixed, but arbitrary initial statex.

Let {N(t), t ≥ 0} be a Poisson process with rateµ1. This process generates de-
partures from station 1 whenever there is a job present at thestation, otherwise an
event inN(·) is ignored. Recall thatD1(t) is the number of departures from station
1 in [0, t]. Then sample path PASTA and standard results for ergodic CTMC’s yield:

lim
t→∞

D1(t)
N(t)

= P{Z1(∞) > 0} a.s.

The strong law of large numbers for renewal processes gives:

lim
t→∞

N(t)
t

= µ1 a.s.

Thus

lim
t→∞

D1(t)
t

=
D1(t)
N(t)

N(t)
t

= µ1P{Z1(∞) > 0} a.s.

To prove (c), we note that from the proof of Theorem 10.3.1, the fluid model of
the network consisting of the first two queues is stable. Thus, the network is rate
stable, see for example, Dai [4]. Rate stability implies that d1 = a1, proving part (c).

When condition (10.1) holds, Proposition 10.4.1 asserts that the long-run departure
rate from station 1 exists and is equal tod1, a component of our next proposition.
Note thatZ(t) = (Z1(t),Z2(t),Z3(t)) for the 3-station network of this section.
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Property 10.4.2 For the network in Figure 10.1, the Markov chain{(Z(t),Y(t)) :
t ≥ 0} is positive recurrent iff

λ1 < µ1, λ2 < µ2, λ1 + λ2+ λ4 < µ1 + µ2 and λ3 +d1 < µ3.

To prove Proposition 10.4.2, we first state and prove the following lemma, as
applied to the network in Figure 10.1. Clearly, the lemma canbe extended to a
general setting like multiclass queueing networks with general distributions as in
Dai [2] or stochastic processing networks as in Dai and Lin [5].

Lemma 10.4.3Assume that the continuous time Markov chain{(Z(t),Y(t)) : t ≥ 0}
is positive recurrent with stationary distributionπ = {πi1,i2,i3,i4 : (i1, i2, i3, i4)∈Z4

+}.
Let the initial state(Z(0),Y(0)) = x be fixed. Then,Px-a.s., for each fluid limit
((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)),

T̄j(t) =


1− ∑

(i1,i2,i3,i4)∈B j

π(i1,i2,i3,i4)


 t (10.4)

for each j= 1,2,3 and each t≥ 0, whereB j = {(i1, i2, i3, i4) ∈ Z4
+ : i j = 0}.

Proof. For notational convenience, we prove the case forj = 1. The proofs for other
cases are identical.

Since a nonidling service policy is assumed, we have for eachs≥ 0

T1(s)
s

=
1
s

ˆ s

0
1{Z1(u)>0}du= 1− 1

s

ˆ s

0
1{Z1(u)=0}du.

By the positive recurrence of the Markov chain, we have

Px

{
lim
s→∞

T1(s)
s

= 1− lim
s→∞

1
s

ˆ s

0
1{Z1(u)=0}du

= 1− ∑
(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

}
= 1. (10.5)

For each sample path in the event set of (10.5) and for eacht ≥ 0,

T̄1(t) = lim
n→∞

T1(nt)
n

= t lim
s→∞

T1(s)
s

= t

(
1− ∑

(i1,i2,i3,i4)∈B1

π(i1,i2,i3,i4)

)
,

thus proving the lemma.⊓⊔
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Proof of Proposition 10.4.2 Recall that the 3-dimensional process{(Z1(t),Z2(t),
Y(t)) : t ≥ 0} is an irreducible CTMC. Ifλ1 ≥ µ1 or λ2 ≥ µ2 or λ1 + λ2 + λ4 ≥
µ1+µ2, then by Theorem 10.3.1, the 3-dimensional CTMC is not positive recurrent,
and so neither is the 4-dimensional CTMC{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0}. This
establishes the necessity of the first three conditions in Proposition 10.4.2.

Thus, we assume thatλ1 < µ1, λ2 < µ2 andλ1 + λ2 + λ4 < µ1 + µ2 throughout
the remainder of this proof. Let{κi jk(r) : i, j,k} be the stationary distribution of
the 3-dimensional Markov chain{(Z1(t),Z2(t),Y(t)) : t ≥ 0}. We now show that
{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive recurrent if and only if

λ3 + µ1

(
1−

∞

∑
j=0

2

∑
k=0

κ0 jk(r)

)
< µ3. (10.6)

Fix an initial state (Z(0),Y(0)), say, (Z(0),Y(0)) = (0,0,0,0). Let
((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)) be a fluid limit. It follows that it satisfies the following
fluid model equation (see, e.g., Dai [2])

Z̄3(t) = λ3t + µ1T̄1(t)− µ3T̄3(t). t ≥ 0,

Applying Lemma 10.4.3 to the 3-dimensional Markov chain, wehave

Z̄3(t) =

[
λ3 + µ1

(
1−∑

j ,k

κ0 jk(r)
)]

t− µ3T̄3(t), t ≥ 0. (10.7)

Assume that{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive recurrent with sta-
tionary distributionπ = {π(i1,i2,i3,i4)}, but that condition (10.6) does not hold.
Since∑(i1,i2,i4)∈Z3

+
π(i1,i2,0,i4) > 0, it follows from Lemma 10.4.3 and (10.7) that

Z̄3(t) > 0 for each fluid limit and each timet > 0. Therefore, the fluid limit
model is weakly unstable as defined in [3]. It follows from Theorem 4.2 of [3]
that {(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is transient, and hence not positive recur-
rent, contradicting the assumption that{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive
recurrent. Thus we have proved that{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive
recurrent only if (10.6) holds.

Now suppose that (10.6) holds. For each fluid limit((T̄1, T̄2, T̄3),(Z̄1, Z̄2, Z̄3)), we
haveZ̄3(t)≥ 0 for eacht ≥ 0. Thus, (10.7) implies that

T̄3(t)≤
λ3 + µ1(1−∑ j ,k κ0 jk(r))

µ3
· t = (1− ε)t, (10.8)

where

ε = 1− 1
µ3

(
λ3 + µ1

(
1−∑

j ,k

κ0 jk(r)

))
> 0.

Since (10.8) holds for every fluid limit, we have,Px-a.s.,



10 Stability of Join-the-Shortest-Queue networks: Analysis by Fluid Limits 479

limsup
t→∞

1
t
T3(t) ≤ 1− ε.

Therefore,Px-a.s.,

liminf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du≥ ε. (10.9)

Let B be a finite set such that

∑
(i, j ,k)/∈B

κi jk(r) < ε. (10.10)

Now, defineB̃≡ {(i, j,0,k) : (i, j,k) ∈ B}. By (10.9) and (10.10),Px-a.s.,

liminf
t→∞

1
t

ˆ t

0
1{(Z1(u),Z2(u),Z3(u),Y(u))∈B̃}du

≥ lim inf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du− lim

t→∞

1
t

ˆ t

0
1{(Z1(u),Z2(u),Y(u))/∈B}du

= lim inf
t→∞

1
t

ˆ t

0
1{Z3(u)=0}du− ∑

(i, j ,k)/∈B

κi jk(r)

≥ ε− ∑
(i, j ,k)/∈B

κi jk(r) > 0.

By Fatou’s lemma and Fubini’s theorem,

liminf
t→∞

1
t

ˆ t

0
Px

{
(Z1(u),Z2(u),Z3(u),Y(u)) ∈ B̃

}
du

≥ ε− ∑
(i, j ,k)/∈B

κi jk(r) > 0. (10.11)

SinceB̃ is a finite set, (10.11) implies that the Markov chain{(Z1(t),Z2(t),Z3(t),
Y(t)) : t ≥ 0} is positive recurrent. ⊓⊔

We are now ready to analyze a set of examples which give further insight into the
stability behavior of JSQ networks.

Example 1.We now consider a special case of three station network introduced
above. Letλ1 = λ2 = 0 and letλ3 andλ4 be arbitrary. Furthermore, assumeν = 1

2
and µ1 := a = b = µ2. Thus, there are exponential service times at all stations,
with stations 1 and 2 having the same service rates. The 3-dimensional process
{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is a Markov process. Further it is positive recurrent
if and only the 4-dimensional Markov process{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is
positive recurrent.

We now argue that the positive recurrence of{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} de-
pends on the tie-breaking parameterr. The first three conditions in Proposition
10.4.2 reduces toλ4 < 2µ1. Under this condition, by Theorem 10.3.1, the process
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{(Z1(t),Z2(t)) : t ≥ 0} is positive recurrent. Let{κi j (r) : i, j ≥ 0} be the station-
ary distribution of this process. Then applying Proposition 10.4.2 we immediately
obtain:

Claim. If λ4≥ 2µ1 then the Markov chain{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not pos-
itive recurrent. Ifλ4 < 2µ1, then{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is positive recurrent
if and only if

λ3 + µ1

(
1−

∞

∑
j=0

κ0 j(r)

)
< µ3. (10.12)

By Lemma 7 in Dia, Hasenbein and Kim [6], it is seen that∑∞
j=0 κ0 j(r) decreases

strictly asr increases. Thus it is clear that one can choose fixed parametersλ3,λ4,µ1,
and µ3 for which the stability conditions will hold for somer and not hold for
another choice ofr. In particular, the necessary and sufficient conditions for the
positive recurrence of X depend on the tie-breaking parameter r.

Example 2. Consider now another special case of the network depicted inFig-
ure 10.1. In particular letλ1 = λ2 = 0.8, λ3 = 0.17, λ4 = 0.1, r = 1/2 and
µ1 = µ2 = µ3 = 1, where station 1’s service time distribution remains to becho-
sen. We now argue that the positive recurrence of{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0}
depends on the distribution of the service times for station1 even if the mean is
fixed.

First supposeν = 1
2 and a = b = 1. Thus, all service times for station 1 are

exponentially distributed with mean 1. For this case, we have the following claim:

Claim. If the service times for station 1 are exponentially distributed with mean 1
then the process{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not positive recurrent.

Proof of Claim 10.4 For the set of parameters under consideration, condition (10.1)
holds and we can apply Proposition 10.4.1, which implies that the departure rate
from station 1 (and station 2) exists with probability 1. As argued earlier, from
Theorem 10.3.1, condition (10.1) also implies that the fluidmodel of the network
consisting of the first two queues is stable, and so the network itself is rate stable.
Hence, so the total departure rate from the first two queues must equal the total
arrival rate of 1.7. Furthermore, by symmetry, the departures rates from station 1
and station 2 must be equal. Thus,d1 = 0.85 and applying Proposition 10.4.2, we
infer that{(Z1(t),Z2(t),Z3(t)) : t ≥ 0} is not positive recurrent.⊓⊔

Now suppose we alter the distribution, but not the mean service time, at station
1. In particular, let 0< ν < 1 anda = ν

1−ν+ν2 andb = 1/ν. Then services at station
1 are hyperexponential with the following c.d.f.: For 0≤ x < ∞,

F(x) = ν
(

1−exp

( −νx
1−ν + ν2

))
+(1−ν)

(
1−exp(− x

ν
)
)

. (10.13)

Note that for any 0< ν < 1 the mean service time is 1.
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Claim. If the service times for station 1 are hyperexponential as described above
and if ν is sufficiently small, then the process{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is
positive recurrent.

Proof of Claim 10.4 In this case, Proposition 10.4.1 gives:

d1 = 0.8+0.1[P{Z1(∞) < Z2(∞)}+0.5P{Z1(∞) = Z2(∞)}] . (10.14)

Then, by Proposition 10.4.2,X is positive recurrent iff

0.17+0.8+0.1P{Z1(∞) < Z2(∞)}+0.05P{Z1(∞) = Z2(∞)} < 1,

or equivalently

10P{Z1(∞) < Z2(∞)}+5P{Z1(∞) = Z2(∞)} < 3.

A sufficient condition for the inequality above to hold is

g(ν) ≡ P{Z1(∞)≤ Z2(∞)} < 0.3. (10.15)

We will show that this is true forν sufficiently small. Observe that

Z1(∞) ≥st Zν
M/G/1 and Z2(∞) ≤st ZM/M/1, (10.16)

whereZν
M/G/1 denotes a random variable whose distribution is the stationary distri-

bution of the number of customers in an ordinaryM/G/1 queue with arrival rate
0.8 and service time distribution functionF given by (10.13), andZM/M/1 denotes
a random variable whose distribution is the stationary distribution of the number of
customers in an ordinaryM/M/1 queue with arrival rate 0.9 and service rate 1.

Since the Laplace-Stieltjes transform (LST) of service times in theM/G/1 queue
is

ˆ ∞

0
e−sxdF(x) =

ν2

(1−ν + ν2)s+ ν
+

1−ν
sν +1

, Re(s) > 0,

the Pollaczek-Khintchine (see, e.g., p. 260 in [12]) formula yields

e[z
Zν

M/G/1] =
(4−3ν +8ν2)−4(1−2ν +2ν2)z

5(4−3ν +8ν2)−4(5−ν +6ν2+4ν3)z+16ν(1−ν + ν2)z2 ,

which is the probability generating function for the numberof customers in the
M/G/1 queue, in stationarity. Therefore

lim
ν→0+

e[z
Zν

M/G/1] = 0.2 |z|< 1.

Now applying the continuity theorem for probability generating functions (c.f. The-
orem 1.5.1 in [13]) we have

lim
ν→0+

P(Zν
M/G/1 ≤ x) = 0.2 for all 0< x < ∞. (10.17)
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By (10.16),

g(ν) = 1−P{Z1(∞) > Z2(∞)}
≤ 1−P{Z1(∞) > x > Z2(∞)}
= 1−P({Z2(∞) < x}−{Z1(∞)≤ x})
≤ 1−P{Z2(∞) < x}+P{Z1(∞)≤ x}
≤ 1−P(ZM/M/1 < x)+P(Zν

M/G/1≤ x),

for any 0< x < ∞. Hence, by (10.17),

limsup
ν→0+

g(ν)≤ 1.2−P(ZM/M/1 < x).

Lettingx→ ∞ leads to

limsup
ν→0+

g(ν)≤ 0.2.

Therefore (10.15) holds for sufficiently smallν. Hence, for sufficiently smallν,
{(Z1(t),Z2(t),Z3(t),Y(t)) : t ≥ 0} is positive recurrent when the service times for
station 1 have the hyperexponential distribution function(10.13). ⊓⊔

Claims 2 and 3, taken together, show that the positive Harrisrecurrence ofX
depends on more than just the mean values of the primitive distributions in the net-
work.

10.5 JSQ networks with homogeneous feedback

As we see in Section 10.3 the stability of a 2-station networkdoes not depend on
the distributions of interarrival and service times or the tie-breaking probabilities.
Unfortunately, whenJ≥ 3, the analogous result does not hold as we see in Section
10.4. However, for such networks we can identify stability conditions in terms of
λC, µC andpiC, i ∈ J,C∈ P, under an additional assumption on network structure.

Assumption 10.5.1For any C∈ P, piC does not depend on i∈ J. Namely, all sta-
tions have the same feedback probabilities. For C∈ P, let

ΛC ≡ ∑
B:φ 6=B⊆C

λB, PC ≡ ∑
B:φ 6=B⊆C

piB andµC ≡∑
i∈C

µi .

Let λ ∗ ≡ ΛJ be the total external arrival rate to the network and p∗ ≡ p∗i , which is
independent of station i∈ J. To avoid triviality, further assume that p∗ < 1.

Under this assumption, the stability of larger networks canbe determined directly
from the first-order network parameters, as the following result demonstrates.
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Theorem 10.5.2Consider a JSQ network with J≥ 3 whose parameters are in con-
cordance with Assumption 1. The Markov process{X(t) : t ≥ 0} is positive Harris
recurrent if and only if

ΛC +
λ ∗

1− p∗
PC < µC, for all C ∈ P. (10.1)

To prove the theorem, we first need to prove the following lemma.

Lemma 10.5.3Let X̄ be a fluid model solution. Consider a fixed regular t> 0 and
let C≡C(t) = {i ∈ J : Z̄i(t) > 0}. Then

∑
i∈C

˙̄Zi(t) =
1− p∗

1− p∗+PC

(
ΛC +

λ ∗

1− p∗
PC− µC

)
. (10.2)

Proof. Using (10.21), we have

∑
i∈J

˙̄Ai(t) = λ ∗+ p∗∑
i∈J

µi
˙̄Ti(t) (10.3)

and

∑
i∈C

˙̄Ai(t) = ΛC +PC ∑
i∈J

µi
˙̄Ti(t). (10.4)

Subtracting (10.4) from (10.3), yields

∑
i∈J−C

˙̄Ai(t) = λ ∗−ΛC +(p∗−PC) ∑
i∈J

µi
˙̄Ti(t). (10.5)

SinceZ̄i(t) = 0 for i ∈ J−C, ˙̄Zi(t) = 0 for i ∈ J−C. Hence, by (10.15),

˙̄Ai(t) = µi
˙̄Ti(t), i ∈ J−C. (10.6)

Then (10.5) and (10.6) give

∑
i∈J−C

µi
˙̄Ti(t) =

λ ∗−ΛC +(p∗−PC)∑i∈C µi
˙̄Ti(t)

1− p∗+PC
. (10.7)

SinceZ̄i(t) > 0, (10.18) and (10.19) imply

˙̄Ti(t) = 1, i ∈C. (10.8)

Substituting (10.7) and (10.8) into (10.4) leads to

∑
i∈C

˙̄Ai(t) =
(1− p∗)ΛC + λ ∗PC + µCPC

1− p∗+PC
. (10.9)
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Next, (10.15) and (10.8) give us

∑
i∈C

˙̄Zi(t) = ∑
i∈C

˙̄Ai(t)− µC. (10.10)

Finally, substituting (10.9) into (10.10) yields (10.2).

Proof of Sufficiency of Theorem 10.5.2SupposeX̄ is a fluid model solution. Let
f (t) = |Z̄(t)|. Consider a fixed regulart > 0 with f (t) > 0 and again letC = {i ∈ J :
Z̄i(t) > 0}, t ≥ 0. Since˙̄Zi(t) = 0 for i ∈ J−C, ḟ (t) = ∑i∈C

˙̄Zi(t). Hence, by Lemma
10.5.3,

ḟ (t)≤−ε, (10.11)

for any sucht, where

ε = min
B∈P

1− p∗

1− p∗+PB

(
µB−ΛB−

λ ∗

1− p∗
PB

)
> 0.

From (10.11), it is readily seen that the fluid model is stable. The proof is now
completed by applying Lemma 10.2.2.⊓⊔

Proof of Necessity of Theorem 10.5.2:By Lemma 10.2.5, it suffices to show that the
augmented fluid model is weakly unstable if (10.1) does not hold for someC ∈ P.
Suppose then that (10.1) does not hold for someC∈ P. Let X̄ be an augmented fluid
model solution withZ̄(0) = 0. In light of (10.15) and (10.20) we have

∑
i∈C

˙̄Zi(t) ≥ ΛC +PC ∑
i∈J

µi
˙̄Ti(t)−∑

i∈C

µi
˙̄Ti(t). (10.12)

Next, using (10.15) and (10.21),∑i∈J
˙̄Zi(t) = λ ∗+(p∗−1)∑i∈J µi

˙̄Ti(t), which can
be rewritten as

∑
i∈J

µi
˙̄Ti(t) =

λ ∗

1− p∗
− 1

1− p∗ ∑
i∈J

˙̄Zi(t). (10.13)

Substituting (10.13) into (10.12) yields

∑
i∈C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC−

PC

1− p∗ ∑
i∈J

˙̄Zi(t)−∑
i∈C

µi
˙̄Ti(t).

Equation (10.23) then implies that

1− p∗+PC

1− p∗ ∑
i∈C

˙̄Zi(t)+
PC

1− p∗ ∑
i∈J−C

˙̄Zi(t) > ΛC +
λ ∗

1− p∗
PC− µC. (10.14)

Now, let
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f (t) =
1− p∗+PC

1− p∗ ∑
i∈C

Z̄i(t)+
PC

1− p∗ ∑
i∈J−C

Z̄i(t).

Then by (10.14) and the negation of (10.1),ḟ (t) > 0 for all t > 0, which proves that
the augmented fluid model is weakly unstable.⊓⊔

The following theorem provides a sufficient condition for the Markov processX
to be unstable in the sense that|Z(t)| → ∞ ast→ ∞ with probability 1.

Theorem 10.5.4Consider a JSQ network with J≥ 3 whose parameters are in con-
cordance with Assumption 1. The process X is unstable in the sense that|Z(t)| → ∞
as t→ ∞ with probability 1 if there exists a C∈ P such that

ΛC +
λ ∗

1− p∗
PC > µC. (10.15)

To prove the theorem, we first need the following lemma.

Lemma 10.5.5Let X̄ be a fluid model solution. Then, for any C∈ P,

1− p∗+PC

1− p∗ ∑
i∈C

˙̄Zi(t)+
PC

1− p∗ ∑
i∈J−C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC− µC. (10.16)

Proof. Equations (10.15) and (10.20) imply,

∑
i∈C

˙̄Zi(t) ≥ ΛC +PC ∑
i∈J

µi
˙̄Ti(t)−∑

i∈C

µi
˙̄Ti(t). (10.17)

Now (10.15) and (10.21) give∑i∈J
˙̄Zi(t) = λ ∗+(p∗−1)∑i∈J µi

˙̄Ti(t), which can be
rewritten as

∑
i∈J

µi
˙̄Ti(t) =

λ ∗

1− p∗
− 1

1− p∗ ∑
i∈J

˙̄Zi(t). (10.18)

By substituting (10.18) into (10.17), we get

∑
i∈C

˙̄Zi(t) ≥ ΛC +
λ ∗

1− p∗
PC−

PC

1− p∗ ∑
i∈J

˙̄Zi(t)−∑
i∈C

µi
˙̄Ti(t).

Since ˙̄Ti(t)≤ 1, i ∈C, (10.16) is obtained. ⊓⊔

Proof of Theorem 10.5.4:SupposēX is a fluid model solution with̄Z(0) = 0, and
let C∈ P be such that it satisfies (10.15). Let

f (t) =
1− p∗+PC

1− p∗ ∑
i∈C

Z̄i(t)+
PC

1− p∗ ∑
i∈J−C

Z̄i(t).



486 J. G. Dai, John J. Hasenbein and Bara Kim

By Lemma 10.5.5,̇f (t) > 0 for all t > 0. Thusf (t) > 0 and so|Z̄(t)|> 0 for all t > 0.
Hence the fluid model is weakly unstable and the proof is completed by applying
Lemma 10.2.3. ⊓⊔

10.6 Further study

In this section, we briefly mention some further research topics. A direct extension
of the JSQ network studied in this chapter is a multiserver JSQ network. In such a
network each station has one or more identical servers, eachwith a dedicated buffer
for waiting customers. When customers enter the system, or complete processing at
a station, they choose some subset of stations, and buffers,in the network and join
the shortest queue. The techniques used in this chapter can be readily extended to
multiserver JSQ networks. Stability results for such networks are of particular inter-
est due to intriguing conjectures put forth by Suhov and Vvedenskaya [14]. In fact,
these conjectures can be extended, and resolved (positively) using the techniques in
this chapter.

Another extension to the framework of this chapter is a JSQ network with state
dependent service rates. In this network the service rate ofeach server may depend
on the states (e.g., busy or idle) of the other servers in the network. Such a network
has been of interest due to applications in wireless networks and there has been some
progress in obtaining stability conditions for single station networks of this type. It
is likely that the techniques in this chapter can also be extended to JSQ networks
with state dependent service rates.
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Chapter 11
Methods in Diffusion Approximation for
Multi-Server Systems: Sandwich, Uniform
Attraction and State-Space Collapse

Hong Chen and Heng-Qing Ye

Abstract In this chapter, we demonstrate through simple queueing models some of
the methods that have been developed for the diffusion approximation. Specifically,
we first show how the sandwich method is used to establish the diffusion approx-
imation for a multi-server queue, and next show how the uniform attraction and
the state-space collapse method is used to establish the diffusion approximation for
a multi-class queue under a first-in-first-out (FIFO) service discipline. Finally, we
use all of the above methods to establish the diffusion approximation for a system
with multi-channel queues to which the jobs are routed basedon a join-the-shortest-
queue (JSQ) routing control.

11.1 Introduction

There has been substantial literature on the diffusion approximation for a queue-
ing system ever since the pioneer work of Kingman [13] and Iglehart and Whitt
[10, 11]. The applications can be found to the modeling and analysis of manufactur-
ing system, service system and and telecommunication networks. This chapter can
be considered as a supplement to the book by Chen and Yao [4], from which the
reader can find more references in the fluid and the diffusion approximations. The
fluid and the diffusion approximations considered in Chen and Yao [4] are limited
to thesingle servernetworks including the generalized Jackson networks, the feed-
forward multiclass networks and some general multiclass networks. In this chapter,
we consider the fluid and the diffusion approximations for multi-server queues. In

Hong Chen
Sauder School of Business, University of British Columbia,Vancouver, Canada
e-mail:hong.chen@sauder.ubc.ca

Heng-Qing Ye
Faculty of Business, Hong Kong Polytechnic University
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addition, we use different methodologies such as the sandwich method and the uni-
form attraction in establishing these approximations. In considering the fluid and the
diffusion approximations, we assume that the number of servers remains constant
in taking the limit. In contrast, there has been substantialresearch motivated from
the study of call centers that considers the number of the servers growing to infinity
in the limiting process. Readers are referred to the survey paper by Gans, et al. [9]
and the references in Itay and Whitt [12] for this literature.

To the stochastic processes under consideration, the fluid approximation and the
diffusion approximation resemble the strong law-of-large-numbers (SLLNs) and the
central limit theorem (CLT) to the random sequences. Consider, for example, the
summation,X(n), of n independent and identically distributed random variables.
The strong law-of-large-numbers suggests thatX(n)/n converge almost surely to a
constantm (which is the common mean of the random variables), and the central
limit theorem suggests that

√
n[X(n)−m] converge weakly (or in distribution) to a

normal distribution. Among others, these limiting resultsare fundamental to many
applications; for example, SLLNs is fundamental to the point estimate and CLT is
fundamental to the confidence interval in statistics. In studying the queueing sys-
tems, we are concerned with the dynamic evolution of the related processes (such
as the queue length process and the workload process). With the above summation
example, the fluid approximation is about the convergence ofthe fluid-scaled pro-
cesses,̄Xn(t) := X(⌊nt⌋)/n, asn→ ∞; when exists, its limit, denoted as̄X(t), is
referred to as the fluid limit. The diffusion approximation (also referred to as the
functional central limit theorem) is about the convergenceof the diffusion-scaled
processes,̂Xn(t) :=

√
n[X̄n(t)− X̄(t)] (sometimesn2 is used in place ofn on the

right-hand-side), asn→ ∞; when exists, its limit, denoted aŝX(t), is referred to as
the diffusion limit.1 The Fluid limit is usually a deterministic process (included as
the special cases are a linear process or a piecewise linear process) and the diffusion
limit is usually a diffusion process (included as the special cases are the Brownian
motion and the reflected Brownian motion). Both of these limits are much easier to
characterize and to analyze than the original processes. Hence, they play the same
role in studying the stochastic processes as the role that SLLNs and CLT play in
statistics.

The standard procedure in establishing the diffusion approximation for a single
class single server queueing system is through the use of thereflection mapping.
The reflection mapping is used to uniquely characterize the dynamics of the queue
length or the workload process and the cumulative idle time process. One of the
key conditions in the reflection mapping is the dynamic complementarity condition.
In the single class single server queue, this condition amounts to the non-idling
service discipline; namely, the server never gets idle whenthere is at least one job
in the system. This condition would fail; for example, in a multi-server queue, at
least one of these servers will be idle when the number of jobsin the system is less
than the number of the servers. However, when the number of jobs in the system is

1 The convergence in the fluid approximation is usually the almost sure convergence, and the
convergence in the diffusion approximation is usually the weak convergence for the stochastic
process. More precise definitions of these modes of the convergence will be given in Section 2.
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larger than the number of the servers, none of the servers will be idle. In this sense,
the dynamic complementarity condition holds approximately. In particular, with the
space scaling, the diffusion limit is expected to satisfy the dynamic complementarity
condition and hence to be able to described by the reflected Brownian motion.

The reflection mapping may also fail to describe the dynamicsof a multi-class
queue or a system where one stream of jobs is routed to multiple queues upon ar-
rivals. In this case, neither the queue length process nor the workload process can
be uniquely described by the reflection mapping. However, under the appropriate
condition, the total workload in the diffusion scale can be shown to converge to
a reflected Brownian motion (which is described by the reflection mapping). The
queue length process for each job class (in a multi-class queue) or for each queue
(in a multiple queue system) in the diffusion limit is a constant multiple of the re-
flected Brownian motion. This phenomenon is known as the state-space collapse,
in the sense that the queue length process, which is originally multi-dimensional,
is reduced to a one-dimensional process in the diffusion limit (all proportional to a
single reflected Brownian motion). A general framework for establishing the state-
space collapse property is first to establish a uniform attraction property of the fluid
limit. The uniform attraction means that given any fluid limit with a bounded initial
state the fluid state will converge to a fixed point state as thetime approaches infinity
(very often in finite time). The key step to transform the uniform attraction property
to the state-space collapse property involves a rescaling technique. Suppose now in
the diffusion scaling of the concerned processes (such as the queue length process
or the workload process), time is scaled byn2 and space byn. By this technique, the
orderO(n2)-long time interval of the diffusion-scaled process is broken down into
O(n) pieces ofO(n)-long time intervals, and thereafter the diffusion-scaledprocess
is converted toO(n) pieces of fluid scaled processes. Now the properties developed
for the fluid scaled process, in particular the uniform attraction property, can be ap-
plied to investigate the structure of the diffusion-scaledprocess and establish the
state-space collapse property.

All of the methods mentioned above have appeared in the literature. To avoid the
interruption to the flow of the reading, we usually do not citethe existing literature
unless it is necessary for the understanding of the content.A short literature review
is included in Section 11.6. The purpose of this chapter is toprovide a simple expo-
sition that illustrates the use of these methods. To this end, we choose to start with
simple models and sometimes with more restrictive assumptions. Section 2 includes
some elementary results so that the chapter is as self-contained as possible. Read-
ers unfamiliar with the fluid approximation and the diffusion approximation may
find it helpful to first read Chapters 5 and 6 of Chen and Yao [4].In Section 3, we
introduce the sandwich method through deriving the fluid andthe diffusion approx-
imations for a multi-server queue. In Section 4, we introduce the methods of the
uniform attraction and the state-space collapse through the study of a multi-class
(single-server) queue under the first-in-first-out (FIFO) service discipline. In Sec-
tion 5, we study a multi-channel system, where each channel has a single server and
its own queue. A single stream of arriving jobs are routed to these channels under
the join-the-shortest-queue (JSQ) discipline. In deriving the diffusion approxima-
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tion for this system, we illustrate the use of all of the threemethods: the sandwich,
the uniform attraction and the state-space collapse.

11.2 Preliminaries

Let DK denote the space of theK-dimensional RCLL (Right Continuous with Left
Limits) functions on[0,∞), endowed with the uniform norm. LetDK

0 = {x∈DK :
x(0) ≥ 0}. A sequence of the processesxn in DK converges to a processx under
the uniform norm is the same as thatxn converges tox on any compact set int ≥
0, which we will denote byxn→ x, u.o.c. (“u.o.c.” is short for “uniform on any
compact set”). That the sequence of the stochastic processes Xn converges toX
weakly asn→ ∞ is denoted byXn⇒ X as n→ ∞. Throughout the chapter, we
use the Skorohod Representation Theorem (see, for example,Theorem 5.1 in Chen
and Yao [4]) to convert weak convergence into almost sure convergence. So we
often assume (without explicitly mentioning) that the processes have been defined
on some common probability space that the convergence is almost sure converge.

Let {ξi , i ≥ 1} be a sequence of nonnegative i.i.d. random variables; whenever
exist, we denote the mean and the standard deviation ofξ1 by mandσ ; let µ = 1/m.
Let

X(t) =
⌊t⌋
∑
i=1

ξi and Y(t) = sup{n≥ 0 : X(n)≤ t}, for t ≥ 0.

Define the following scaled processes:

X̄n(t) =
1
n

X(nt),

Ȳn(t) =
1
n

Y(nt),

X̂n(t) =
√

n[X̄n(t)−mt]≡ X(nt)−mnt√
n

, and

Ŷn(t) =
√

n[Ȳn(t)− µt]≡ Y(nt)− µnt√
n

.

We summarize some classical limit results in the following lemma

Lemma 11.2.1 (a) (Functional Strong Law of Large Numbers (FSLLN)) Suppose
thatξ1 has a finite meanm> 0. Then, asn→ ∞,

(X̄n,Ȳn)→ (X̄,Ȳ) u.o.c.

almost surely, wherēX(t) = mt andȲ(t) = µt.
(b) (Functional Central Limit Theorem (FCLT)) Suppose thatξ1 has a finite vari-

anceσ2. Then, asn→ ∞,
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(X̂n,Ŷn)⇒ (X̂,Ŷ)

in distribution, whereX̂(t) = σW(t), Ŷ(t) = −µX̂(µt), andW is a Wiener process
(i.e., a one-dimensional standard Brownian motion).

(c) (Uniform Bound for FSLLN) Suppose in addition that the variableξ1 has a
finite (2+ δ )-moment for someδ > 0. Let t∗ > 0 andu∗ > 0 be any given time
lengths. Then, the following convergence holds with probability one: asn→ ∞,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(X̄n(t +u)− X̄n(t))−mu| → 0,

sup
0≤t≤nt∗

sup
0≤u≤u∗

|(Ȳn(t +u)− Ȳn(t))− µu| → 0.

The functional strong law of large numbers and the functional central limit theo-
rem in the lemma can be found, for example, from Theorem 5.10 and 5.11 in Chen
and Yao [4]; and the uniform bound on FSLLN (with a weaker assumption on the
distribution ofξ1) is from Appendix A.2 in Stolyar [17], which is based on the weak
law estimate in Bramson [1].

The next two lemmas describe the reflection mapping and its least element char-
acterization, which can be found from Chapter 6 in Chen and Yao [4] and section 2
in Chen and Shanthikumar [3], respectively.

Lemma 11.2.2Supposex ∈ D0. Then there is a unique pair ofy ∈ D andz∈ D

such that the following relations hold for allt ≥ 0:

z(t) = x(t)+y(t)≥ 0; (11.1)

y(t) is non-decreasing int, with y(0) = 0; (11.2)
ˆ ∞

0
z(t)dy(t) = 0. (11.3)

In fact, the unique pair can be written as follows,

y(t) = sup
0≤s≤t

[−x(s)]+,

z(t) = x(t)+ sup
0≤s≤t

[−x(s)]+.

Denotey = Ψ(x) andz= Φ(x). Then, the mappingsΦ andΨ are Lipschitz contin-
uous onD0.

In the above lemma, whenx is a Brownian motion,z= Φ(x) is called areflected
Brownian motion (RBM), andy = Ψ (x) is the associatedregulator.

Lemma 11.2.3 (a) (The Least Element Property) Suppose thatx ∈ D0. If a pair
of y andz satisfy the conditions (11.1) and (11.2) for allt ≥ 0, then the following
inequalities hold:

z(t)≥Φ(x)(t) andy(t)≥Ψ (x)(t), for all t ≥ 0.
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(b) (Relaxed Dynamic Complementarity Property) Suppose thatx∈D0. For any
fixed ε > 0, if a pair of y and z satisfy, in addition to the condition (11.1), the
following condition for allt ≥ 0,

y(t) does not increase att if z(t) > ε, or equivalently (11.4)

(z(t)− ε)dy(t)≤ 0.

Then, the following inequalities hold:

y(t)≤Ψ (x− ε)(t) and z(t)− ε ≤Φ(x− ε)(t). (11.5)

11.3 Multi-Server Queue: Sandwich Method

Consider a queueing system withK servers, indexed byk = 1, ...,K. The jobs arrive
at the system following a counting processA= {A(t),t ≥ 0}, whereA(t) counts the
number of jobs arrived (exogenously) during[0,t]. Upon arrival, the job receives the
service immediately if it finds at least one server being idle, otherwise, the job joins
the queue with a first-come-first-served discipline. When more than one servers are
available upon the arrival of a job, we assume that the job is served by the available
server with the smallest index. LetS= (Sk) whosekth componentSk = {Sk(t),t ≥ 0}
denote the service process for serverk, whereSk(t) counts the number of services
completed by serverk during the firstt units ofbusytime.

We assume that both the arrival processA and the service processSare renewal
processes with their interarrival times having finite variances. By Lemma 11.2.1, we
have (by invoking the Skorohod Representation Theorem) thefollowing almost sure
convergence, asn→ ∞,

1
n
(A(n2t)−λn2t)→ Â(t) and

1
n
(S(n2t)− µn2t)→ Ŝ(t), u.o.c. int ≥ 0,(11.1)

whereλ is a nonnegative constant interpreted as the arrival rate,µk, thekth compo-
nent ofµ , is a constant interpreted as the service rate of serverk, andÂ= {Â(t),t ≥
0} andŜ= {Ŝk(t), t ≥ 0} are driftless Brownian motions. The above convergence re-
sults imply (which can also be obtained directly from Lemma 11.2.1): almost surely
asn→ ∞,

1
n2 A(n2t)→ λ t and

1
n2S(n2t)→ µt, u.o.c. int ≥ 0. (11.2)

In addition, we assume that the arrival process and service processes are independent
and that the heavy traffic condition holds, i.e.,

λ =
K

∑
k=1

µk.
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Let Bk(t) denote the total busy time of serverk (i.e., the total amount of time
that serverk has been in service) during[0,t]; hence,Sk(Bk(t)) equals the number
of service completions by serverk during[0,t]. Then, the queue length, the number
of jobs in the system, at timet, is given by the following balance equation:

Q(t) = Q(0)+A(t)−
K

∑
k=1

Sk(Bk(t))≥ 0. (11.3)

In addition, the busy time processB = {B(t),t ≥ 0} with B(t) = (Bk(t)) and the
queue length processQ = {Q(t),t ≥ 0} must satisfy the following dynamic rela-
tions:

0≤ Bk(t)−Bk(s)≤ t−s for t ≥ s≥ 0, k = 1, ...,K, (11.4)

Ḃk(t) = 1 if Q(t)≥ K, k = 1, ...,K. (11.5)

(For any processx = {x(t), t ≥ 0}, ẋ(t) denotes the derivative ofx at t provided the
derivative exists.) The relation (11.4) has a very clear interpretation that during any
time interval[s, t], the total amount of busy time of serverk must neither be negative
nor exceed the length of the duration(t − s). The relation (11.5) specifies that all
of the servers must be busy when the number of jobs in the system is more than
K (the number of the servers). We note that the relations (11.3)-(11.5) do not fully
characterize the queue length processQ and the busy time processB. To provide a
full characterization, we need to consider how an arriving job is assigned to a server
when the job finds more than one servers idle. Such a complete characterization is
not essential for our analysis here and hence is omitted. Interested readers can find
a complete construction in the appendix of Chen and Shanthikumar [3].

As a standard procedure in the diffusion approximation, we rewrite the above
relations by centering: for allt ≥ 0,

Q(t) = X(t)+Y(t)≥ 0, (11.6)

Y(·) is non-decreasing withY(0) = 0, (11.7)

Y(t) does not increase at timet whenQ(t)≥ K. (11.8)

where

X(t) = Q(0)+ (A(t)−λ t)−
K

∑
k=1

(Sk(Bk(t))− µkBk(t)) , (11.9)

Y(t) =
K

∑
k=1

µk [t−Bk(t)] . (11.10)

In rewriting (11.6), we used the heavy traffic condition, andin deriving the relation
(11.8), we used the relation (11.5).

In a single server queue (whereK = 1), the relation (11.8) is equivalent to
´ ∞

t=0 Q(t)dY(t) = 0 and is known as the dynamic complementarity condition. Then,
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the relations (11.6)-(11.8) relate the processesX, Y andQ through the reflection
mapping (Lemma 11.2.2), i.e.,Q = Φ(X) andY = Ψ (X). In this case, since the
mappingsΦ andΨ are continuous, the standard approach to establish a limit result
for (the scaled version of)Q andY is through establishing a limit result for (the
corresponding scaled version of)X; the latter is usually much easier.

In the general case of the multi-server queue, the relations(11.6)-(11.8) do not
uniquely characterizeY andQ for a givenX. This should not be surprising since
these relations are derived from the relations (11.3)-(11.5), which as we commented
before do not fully characterize the queue length processQ and the busy time pro-
cessB. Fortunately, by Lemma 11.2.3, we have the following lower and upper
bounds: for allt ≥ 0,

Ψ (X)(t)≤Y(t)≤Ψ(X−K)(t), (11.11)

Φ(X)(t)≤Q(t)≤Φ(X−K)(t)+K. (11.12)

When the processesX, Y andQ are taken to the fluid scale or the diffusion scale;
these bounds take similar forms. In each of the fluid scale andthe diffusion scale,
we can show that both the upper and the lower bounds in (11.11)of the scaledY
process converge to the same limit; hence, the scaledY process must converge to
this limit. Similarly, by the inequalities in (11.12), thisapproach can be applied to
the scaledQ process as well.2 Therefore, the bounds in (11.11), which sandwiches
the processY, are the key in our approach in establishing the fluid approximation
and the diffusion approximation for the multi-server queue.

As a first step, we establish the fluid approximation result. To this end, we intro-
duce the following fluid scaling of the processes:

(Q̄n(t), X̄n(t),Ȳn(t), B̄n(t)) =

(
1
n2Q(n2t),

1
n2X(n2t),

1
n2Y(n2t),

1
n2B(n2t)

)
,

where the indexn is a sequence of positive integers that increase to infinity.(In
general, we could introduce a sequence of queueing systems,where the initial queue
length, the arrival process and the service processes may vary with n. We choose not
to, in order to avoid distraction from our central purpose ofintroducing the sandwich
method.) Then,

Lemma 11.3.1 (Fluid Approximation): Suppose that the arrival process and the ser-
vice processes satisfy the fluid scale convergence (11.2). Then,

(Q̄n,Ȳn, B̄n)→ (Q̄,Ȳ, B̄) asn→ ∞, u.o.c.,

2 On the other hand, given the convergence of the scaledX process and the scaledY process, we
can establish the convergence of the scaledQ process directly from a scaled version of the equation
(11.6). In a network of multi-server queues, the corresponding inequality (11.12) does not hold,
while the corresponding inequality (11.11) does hold (referring to Chen and Shanthikumar [3]). In
this case, a version of the equation (11.6) is used to obtain the convergence of the scaledQ process.
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whereQ̄(t) = 0, X̄(t) = 0, Ȳ(t) = 0 and thekth component ofB̄(t), B̄k(t) = t, k =
1, ...,K, for all t ≥ 0.

Proof. First, the process̄Xn can be written as

X̄n(t) =
1
n2Q(0)+

[
1
n2A(n2t)−λ t

]
−

K

∑
k=1

[
1
n2Sk(n

2B̄n
k(t))− µkB̄

n
k(t)

]
;(11.13)

then it follows from the convergence (11.2) and the fact that0≤ B̄n
k(t)≤ t,

X̄n→ 0 asn→ ∞, u.o.c. (11.14)

Next, it follows from (11.11) and (11.12) that

Ψ(X̄)n(t)≤ Ȳn(t)≤Ψ(X̄n−K/n2)(t),

Φ(X̄)n(t)≤ Q̄n(t)≤Φ(X̄n−K/n2)(t)+K/n2.

With the convergence (11.14), the above bounds imply

Ȳn→Ψ (0)≡ 0 and Q̄n→Φ(0)≡ 0 asn→ ∞, u.o.c.

Finally, it follows from (11.10),

Ȳn(t) =
K

∑
k=1

µk [t− B̄n
k(t)] ;

since[t− B̄n
k(t)] is nonnegative for allt ≥ 0 andk = 1, ...,K, the convergence of̄Yn

to zero implies that̄Bn
k(t)→ t asn→ ∞, u.o.c. int ≥ 0, k = 1, ...,K. �

The diffusion approximation is concerned with the following scaled processes:

(Q̂n(t), X̂n(t),Ŷn(t)) =
1
n
(Q(n2t),X(n2t),Y(n2t)).

Theorem 11.3.2(Diffusion Approximation): Suppose that the arrival process and
the service processes satisfy the diffusion scale convergence (11.1). Then for almost
all sample paths,

(Ŷn,Q̂n)⇒ (Ŷ,Q̂), asn→ ∞, (11.15)

where Q̂ = Φ(X̂) and Ŷ = Ψ (X̂) are respectively the one-dimensional reflected
Brownian motion and the associate regulator, where the Brownian motionX̂ =
{X̂(t), t ≥ 0}, given by

X̂(t) = Â(t)−
K

∑
k=1

Ŝk(t), (11.16)

is a driftless Brownian motion.
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Proof. First, for the diffusion scaled processes, the inequalities (11.11) and (11.12)
take the form,

Ψ(X̂)n(t)≤ Ŷn(t)≤Ψ (X̂n−K/n)(t),

Φ(X̂)n(t)≤ Q̂n(t)≤Φ(X̂n−K/n)(t)+K/n,

whereX̂n = {X̂n(t), t ≥ 0} takes the form,

X̂n(t) =
1
n

Q(0)+
1
n

[
A(n2t)−n2λ t

]
− 1

n

K

∑
k=1

[
Sk(n

2B̄n
k(t))− µkn

2B̄n
k(t)
]
.

It follows from the above inequalities and the continuity ofthe mappingsΦ andΨ
(Lemma 11.2.2) that it is sufficient to show that for almost all sample paths,

X̂n→ X̂ asn→ ∞, u.o.c.

The latter convergence, with the limit given by (11.16), follows from the assumption
(11.1), the random time-change theorem (cf. Chen and Yao [4], Chapter 5) and the
convergence,̄Bn

k(t)→ t asn→ ∞, u.o.c. int ≥ 0 (which is from Lemma 11.3.1).�

11.4 A Multi-Class Queue under FIFO Service Discipline:
Uniform Attraction and State-Space Collapse

Consider a single server system servingK classes of jobs. Jobs of all classes arrive
exogenously, wait for service, and after service completion leave the system. Jobs
are served under first-in-first-out (FIFO) discipline. LetA = {A(t),t ≥ 0} denote
the arrival process, whosekth component evaluated att, Ak(t), indicates the number
of arrivals of classk jobs during the time interval[0,t]. We assume thatAk is a
renewal process whose interarrival times have a mean of 1/λk and variancea2

k; the
quantity λk is called the arrival rate of classk jobs. Let{vk,ℓ, ℓ = 1,2, . . .} be a
nonnegative i.i.d. sequence, wherevk,ℓ denotes the service time of theℓth job of
classk, k = 1,2, . . . ,K. Let 1/µk andb2

k denote the mean and the variance ofvk,ℓ

respectively,k = 1, . . . ,K. Let

Vk(ℓ) =
ℓ

∑
ℓ′=1

vk,ℓ′

denote the total service time of the firstℓ jobs of classk, k = 1, . . . ,K. For con-
venience, we assume that the renewal processesAk, k = 1, . . . ,K, and the service
time sequences{Vk(ℓ), ℓ = 1,2, . . .}, k = 1, . . . ,K, are all mutually independent. Let
Qk(0) denote the number of classk jobs initially in the system,k = 1, ...,K, and
let W(0) denote the total work (measured in service time required of the server)
initially in the system.
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We start with a description of some performance measures of this queueing
model. LetW = {W(t), t ≥ 0} be the workload process, whereW(t) is the total
workload (measured in service time) for the server at timet, and letQ = {Q(t),t ≥
0} be the queue length process, whosekth component evaluated att, Qk(t), denotes
the number of classk jobs in the system at timet, k = 1, . . . ,K. LetB= {B(t),t ≥ 0}
be theK-dimensional vector busy time process, whosekth component evaluated at
t, Bk(t), indicates the total service time that the server has servedclassk jobs during
[0, t], k = 1, . . . ,K. Let

Y(t) = t−
K

∑
k=1

Bk(t);

and we callY = {Y(t), t ≥ 0} the idle time process. LetD = {D(t),t ≥ 0} be the
departure process, whosekth component evaluated att, Dk(t), denote the number
of classk jobs that have completed service and hence departed from thesystem by
time t, k = 1, . . . ,K. Then, the queueing system must satisfy the following dynamic
relations: for all timet ≥ 0,

W(t) = W(0)+
K

∑
k=1

Vk(Ak(t))− t +Y(t), (11.1)

Y(t) =

ˆ t

0
1{W(s)=0}ds, (11.2)

Dk(t +W(t)) = Qk(0)+Ak(t), (11.3)

Qk(t) = Qk(0)+Ak(t)−Dk(t). (11.4)

The relation (11.1) is the work balance relation: the workload (measured in time)
at timet equals the workload initially in the system plus the work arrived and sub-
tract the work done (which is given by[t−Y(t)]). The relation (11.2) is the work-
conserving condition: that is, the server can be idle only when there is no work in
the system; hence,

Y(t) is non-decreasing int ≥ 0; andY(0) = 0, and (11.5)
ˆ ∞

0
W(t)dY(t) = 0. (11.6)

The relation (11.3) reflects the FIFO service discipline: for each classk, all the
jobs arrived before timet (including those initially in the system) have departed the
system by the time,t +W(t), when all the work in the system at timet is served.
The last relation (11.4) is the work balance in terms of counting the jobs arriving
and departing the system.

In addition, given the FIFO service discipline, only those jobs that are initially
in the system could have been served and departed from the system during the time
period[0,W(0)]; therefore, the following condition holds:

K

∑
k=1

Vk(Dk(t))≤ t <
K

∑
k=1

Vk(Dk(t)+1) for t ≤W(0). (11.7)
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To see the above, recall thatVk(Dk(t)) is the amount of service time for the first
Dk(t) class-k jobs that have completed service on or before timet. Hence, the above
first inequality means the total service time for all jobs that have attained service
before timet must not exceed the timet, and the second inequality has a similar
interpretation for any timet before all the initial jobs are served.

We close this section by introducing a sequence of systems indexed byn. Each
of the networks is like the one introduced in the above, but may differ in their arrival
rates and service rates (which are also indexed byn). We assume, asn→ ∞,

λ n
k → λk, µn

k → µk, and consequentlyβ n
k → βk, (11.8)

whereβ n
k = λ n

k /µn
k andβk = λk/µk. Denoteρn = ∑K

k=1 β n
k andρ = ∑K

k=1 βk. Specif-
ically, for the nth system, its arrival process of classk jobs is given byAn

k(t) =
Ak(λ n

k t/λk) and its service time ofℓth classk job is given byµkvk,ℓ/µn
k , ℓ = 1,2, . . .,

k = 1, . . . ,K.

11.4.1 Fluid Approximation and Uniform Attraction

We apply the standard fluid scaling to the processes associated with the sequence of
systems described above:

(
Ān(t), B̄n(t),D̄n(t),Q̄n(t),W̄n(t),Ȳn(t)

)

=
1
n

(An(nt),Bn(nt),Dn(nt),Qn(nt),Wn(nt),Yn(nt)) . (11.9)

Lemma 11.4.1Let M be a given positive constant, and suppose|Q̄n(0)|
:= ∑K

k=1 Q̄n
k(0)≤M for sufficiently largen. Then, the following conclusions hold.

(a) (Fluid limit) For any subsequence of fluid scaled processes in (11.9), there exists
a further subsequence, denoted byN, such that, alongN,

(
W̄n,Q̄n,D̄n,Ȳn) →

(
W̄,Q̄,D̄,Ȳ

)
u.o.c. (11.10)

for some Lipschitz continuous process(W̄,Q̄,D̄,Ȳ), which is referred to as the fluid
limit and satisfies the following:

W̄(t) = W̄(0)+ (ρ−1)t + Ȳ(t)≥ 0, for t ≥ 0; (11.11)

Ȳ(t) is non-decreasing int ≥ 0, andȲ(0) = 0; (11.12)

D̄k(t +W̄(t)) = Q̄k(0)+ λkt, for t ≥ 0; (11.13)

Q̄k(t) = Q̄k(0)+ λkt− D̄k(t), for t ≥ 0; (11.14)
K

∑
k=1

µ−1
k D̄k(t) = t, for t ≤ W̄(0). (11.15)

(b) (Uniform attraction) Furthermore, under the heavy traffic assumptionρ = 1, the
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fluid limit satisfies the following properties:

W̄(t) = W̄(0) ≤M
K

∑
k=1

µ−1
k , for all t ≥ 0;

Q̄k(t) = λkW̄(t) = λkW̄(0), for all t ≥ W̄(0). (11.16)

Remark. Let w = W̄(0) denote the initial workload and define theK-dimensional
vector functionQ∗(w) = λw whosekth component,Q∗k(w) = λkw. Then the prop-
erty in (11.16) means that whent ≥ w, the fluid limit of the queue length,̄Q(t) =
Q∗(w)= λw. Recall that the (fluid scaled) queue length processQ̄ is aK-dimensional
process, but for larget (larger thanw), it lives in a one-dimensional line (λw). As we
will see in the diffusion limit (where the time is scaled byn2 instead ofn in the fluid
limit), such a phenomenon happens for all timet ≥ 0, and this property is known as
the state-space collapse.

Proof. Part (a). Introduce the service renewal processSn = {Sn(t),t ≥ 0} whosekth
component evaluated att is given by

Sn
k(t) = sup{ℓ≥ 0 :Vn

k (ℓ)≤ t}.

First, it follows from the functional strong law of large numbers for the i.i.d. sum-
mation and the renewal process (Lemma 11.2.1) that asn→ ∞,

(Ān(t),V̄n(t), S̄n(t))≡ 1
n
(An(nt),Vn(⌊nt⌋),Sn(nt))→ (λ t,(1/µ)t,µt),(11.17)

u.o.c. int ≥ 0, where 1/µ = (1/µk)
K
k=1. By its definition, 0≤ B̄n

k(t)− B̄n
k(s)≤ t−s

for all t ≥ s and alln≥ 1, k = 1, . . . ,K; also note that|Q̄n(0)| is bounded. Hence,
for any subsequence of fluid scaled processes in (11.9), there exists a further subse-
quence, denoted byN, such that, alongN,

Q̄n(0)→ Q̄(0), and B̄n→ B̄ u.o.c., (11.18)

for some constant vector̄Q(0) and Lipschitz continuous process̄B = {B̄(t),t ≥ 0}.
We show that along this same subsequence, the convergence (11.10) holds and its
limit satisfies (11.11)-(11.15).

Also by their definitions,

Ȳn(t) = t−
K

∑
k=1

B̄n(t);

the convergence of̄Bn clearly implies the convergence of̄Yn along the same sub-
sequence, and in addition, it is clear that the limit,Ȳ, of Ȳn satisfies (11.12) and is
Lipschitz continuous.

Letting t = 0 in the equation (11.3) andt = Wn(0) in the inequality (11.7) (for
thenth system), we derive the following inequality,
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K

∑
k=1

Vn
k (Qn

k(0))≤Wn(0) <
K

∑
k=1

Vn
k (Qn

k(0)+1),

which in fluid scale takes the form,

K

∑
k=1

V̄n
k (Q̄n

k(0))≤ W̄n(0) <
K

∑
k=1

V̄n
k (Q̄n

k(0)+1/n),

Then, the convergence of̄Vn in (11.17) and the convergence of̄Qn
k(0) alongN in

(11.18) imply that alongN,

W̄n(0)→ W̄(0)≡
K

∑
k=1

1
µ k

Q̄k(0)).

Rewriting the balance equation (11.1) for the scalednth system, we have

W̄n(t) = W̄n(0)+
K

∑
k=1

V̄n
k (Ān

k(t))− t + Ȳn(t);

then, in view of (11.17) and the convergence ofW̄n(0) andȲn, we have the con-
vergence ofW̄n alongN to the limit W̄ as given by the equality (11.11), and the
Lipschitz continuity ofW̄ follows from the same equality.

Next, by their definitions,

D̄n
k(t) = S̄n

k(B̄
n
k(t)) for all t ≥ 0,

k = 1, . . . ,K. Then in view of (11.17)-(11.18), we have along the sequenceN,

D̄n
k(t)→ D̄k(t)≡ µkB̄k(t) u.o.c. int ≥ 0,

and clearlyD̄k is Lipschitz continuous,k= 1, . . . ,K. Now, rewriting a scaled version
of (11.3) for thenth network, we have

D̄n
k(t +W̄n(t)) = Q̄n

k(0)+ Ān
k(t);

lettingn go to infinity along the subsequenceN obtains the relation (11.13).
Similarly, rewriting a scaled version of (11.4) for thenth network proves the

convergence of̄Qn alongN and establishes (11.14); and rewriting a scaled version
of (11.7) for thenth network and lettingn go to infinity alongN establishes (11.15).
The equation (11.14) also establishes the Lipschitz continuity of Q̄.

Part (b). Under the heavy traffic condition (ρ = 1), the equality (11.11) becomes

W̄(t) = W̄(0)+ Ȳ(t)≥ 0;

this together with the condition (11.12) concludes thatW̄(t) =W̄(0) for t ≥ 0 (which
can also be seen from the reflection mapping theorem). Letting t = W̄(0) in (11.15)
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andt = 0 in (11.13) respectively, we have

W̄(0) =
K

∑
k=1

µ−1
k D̄k(W̄(0)), and

D̄k(W̄(0)) = Q̄k(0).

The above two give the following:

W̄(0) =
K

∑
k=1

µ−1
k Q̄k(0)≤M

K

∑
k=1

µ−1
k .

Replacingt in (11.14) byW̄(0)+t, and then substituting (11.13) into the resulting
equality, we obtain

Q̄k(t +W̄(0)) = λkW̄(0) for all t ≥ 0.

�

11.4.2 Diffusion Approximation

As in Section 11.4.1, we consider the same sequence of the network but replacing
the assumption (11.8) with the stronger assumption that asn→ ∞:

n(ρn−ρ)→ θ (11.19)

In addition, we assume that the heavy traffic conditionρ = 1 holds. For ease of ex-
position, we assume thatQn(0) = 0, i.e., initially there are no jobs in the system. We
note that with the specific construction of thenth network, the limit of the standard
deviations for the interarrival times and service times exist: asn→ ∞,

an
k→ ak and bn

k→ bk, k = 1, . . . ,K. (11.20)

We apply the standard diffusion scaling (along with centering) to the key primi-
tive and derived processes:

Ân
k(t) :=

1
n

[
An

k(n
2t)−λ n

k n2t
]
, V̂n

k (t) =
1
n

[
Vn

k (⌊n2t⌋)− (1/µn
k)n2t

]

Q̂n
k(t) :=

1
n

Qn
k(n

2t), Ŷn(t) :=
1
n

Yn(n2t), Ŵn(t) :=
1
n

Wn(n2t). (11.21)

The main theorem follows:

Theorem 11.4.2 (Diffusion Limit) Suppose that the heavy-traffic conditionρ = 1
holds. Then the following weak convergence holds whenn→ ∞:
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(
Ŵn,Ŷn,Q̂n)⇒

(
Ŵ,Ŷ,Q̂

)
.

The limitsŴ = Φ(X̂) andŶ =Ψ(X̂) are respectively the one-dimensional reflected
Brownian motion and the associated regulator, where the Brownian motionX̂ starts
at the origin with its drift and variance respectively givenby

θ and
K

∑
k=1

(
λ 3a2/µ2

k + λkb
2
k

)
.

The limit Q̂ = Q∗(Ŵ), i.e.,Q̂k(t) = λkŴ(t) for all t ≥ 0, k = 1, . . ..

Remark. The fact that theK-dimensional queue length diffusion limit vectorQ̂ is
linearly related to the one-dimensional workload diffusion limit Ŵ has been known
as the state-space collapse.

Proof. First, we re-express the workload balance relation (11.1) for thenth network
as follows:

Wn(t) =
K

∑
k=1

[Vn(An
k(t))−

1
µn

k
An

k(t)]+
K

∑
k=1

1
µn

k
[An

k(t)−λ n
k t]+ (ρn−1)t +Yn(t),

where we noteWn(0) = 0 is assumed. Applying the diffusion scaling to both sides
of the above equation, we have

Ŵn(t) = X̂n(t)+ Ŷn(t), (11.22)

where

X̂n(t) =
K

∑
k=1

V̂n
k (Ãn

k(t))+
K

∑
k=1

1
µn

k
Ân

k(t)+n(ρn−1)t; (11.23)

and Ãn
k(t) := An

k(n
2t)/n2 is a variation of the fluid-scaled process̄An

k. Following
(11.5) and (11.6), we also have, for eachn,

Ŷn(t) is non-decreasing int ≥ 0, andŶn(0) = 0, (11.24)
ˆ ∞

0
Wn(t)dYn(t) = 0. (11.25)

In the remaining of the proof, we adopt the standard sample path approach based
on the Skorohod Representation Theorem, i.e., we assume that all of the primitive
processes are defined in a probability space such that the weak convergencebecomes
the almost sure u.o.c. convergence. Then it follows from Lemma 11.2.1 and the
random time-change theorem (see, for example, Theorem 5.3 in Chen and Yao [4])
that almost surely, asn→ ∞,

(Ân(t),V̂n(Ãn(t))→ (Â(t),V̂(λ t)), u.o.c. int ≥ 0, (11.26)
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whereÂ = (Ak) andV̂(λ ·) are two independentK-dimensional driftless Brownian
motions, both with independent coordinates; and thekth coordinate ofÂ, Âk, has
varianceλ 3

k a2
k, and thekth coordinate of̂V(λ ·), V̂k(λk·), has varianceλkb2

k respec-
tively. The above convergence clearly implies that almost surely, asn→ ∞,

X̂n(t)→ X̂(t)≡
K

∑
k=1

V̂k(λkt)+
K

∑
k=1

1
µk

Âk(t)+ θ t, u.o.c. int ≥ 0, (11.27)

whereX̂ is clearly a Brownian motion with the drift and the variance as given in the
theorem.

In view of (11.22) and (11.24)-(11.25), we haveŴn = Φ(X̂n) andŶn = Ψ(X̂n).
Then, the convergence (11.27) and the continuity of the reflection mapping imply
that almost surely, asn→ ∞,

(Ŵn,Ŷn) → (Ŵ,Ŷ), u.o.c.,

whereŴ = Φ(X̂) andŶ = Ψ(X̂).
The proof is completed by establishing a bound betweenQn andQ∗(Wn), which

is the key lemma for the state-space collapse, Lemma 11.4.3 below; refer to the
remark immediately following the lemma. �

11.4.2.1 From Uniform Attraction to State-Space Collapse

Consider a fixed time interval[τ,τ +δ ], whereτ ≥ 0 andδ > 0. LetT > 0 be a fixed
time of a certain magnitude to be specified later. Let the index n be a large integer.
Divide the time interval[τ,τ +δ ] into a total of⌈nδ/T⌉ segments with equal length
T/n, where⌈·⌉ denotes the integer ceiling. Thejth segment,j = 0, ...,⌈nδ/T⌉−1,
covers the time interval[τ + jT/n,τ +( j +1)T/n]. Note that the last interval (with
j= ⌈nδ/T⌉−1) covers a negligible piece of time beyond the right end of[τ,τ + δ ]
if nδ/T is not an integer. For notational simplicity, below we shallassumenδ/T
to be an integer (i.e., omit the ceiling notation). Then, foranyt ∈ [τ,τ + δ ], we can
write it ast = τ +( jT + u)/n for some j = 0, · · · ,nδ/T andu∈ [0,T]. Therefore,
we write

Ŵn(t) = Ŵn(τ +
jT +u

n
) = W̄n((nτ + jT )+u) := W̄n, j(u), (11.28)

for some real numberu∈ [0,T] and integerj ∈ [0,nδ/T]. That is, for each time point
t, we will study the behavior of̂Wn(t) through the fluid scaled process,W̄n, j(u), over
the time intervalu∈ [0,T]. Similarly defineQ̄n, j

k (u) andȲn, j(u)[= Ȳn((nτ + jT )+

u)− Ȳn(nτ + jT )] as the fluid “magnifiers” ofQ̂n
k(t) andŶn(t).

The above rescaling of̂Wn(t) is illustrated in Figure 11.1. This rescaling tech-
nique enables us to investigate the structure of diffusion-scaled processes (e.g.,
Ŵn(t)) using the available results concerning the fluid-scaled processes (e.g.,̄Wn(t)).
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t 
τ+δ τ

Diffusion
scaling 

W (t), t∈[τ,τ+δ]
k 

Fluid
scaling 

0 T jT kδ/T    T

W  (u), u∈[0,T]
k,j 

(j+1)T

^

Fig. 11.1: Rescaling of processes (source: [22])

For ease of understanding, the parametersτ, δ andC involved in the lemma are il-
lustrated in Figure 11.2.

X(t) 

t 
τ+δ τ

C

^  

Fig. 11.2: Parametersτ, δ andC (source: [22])

The following lemma is the key step in proving the state-space collapse result in
Theorem 11.4.2.

Lemma 11.4.3Consider the time interval[0,δ ], with δ > 0 (i.e.,τ = 0 in the above
description); pick a constantC > 0 such that

sup
t′,t′′∈[0,δ ]

|X̂(t ′)− X̂(t ′′)| ≤C. (11.29)
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Let ε > 0 be any given (small) number. Then, there exists a sufficiently largeT such
that, for sufficiently largen, the following results hold for all non-negative integers
j < nδ/T:

(a)(State-space collapse)

|Q̄n, j(u)−Q∗(W̄n, j(u))| ≤ ε, for all u∈ [0,T]; (11.30)

(b)(Boundedness)

W̄n, j(u)≤MW := C+2ε and|Q̄n, j(u)| ≤MQ :=
K

∑
k=1

λkMW + ε, for all u∈ [0,T].

i.e.,W̄n, j(u) andQ̄n, j(u) is uniformly bounded.

Remark. Part (a) of the lemma implies the convergence ofQ̂n and the state-space
collapse property,̂Q(t) = Q∗(Ŵ(t)), in Theorem 11.4.2. To see this, we use the defi-
nition of the fluid scaling in (11.28) to rewrite the bound (11.30) as: given arbitrarily
(small) numberε > 0, the following holds for sufficiently large indexn,

|Q̂n(t)−Q∗(Ŵn(t))| ≤ ε for t ∈ [0,δ ].

Part (b) of the lemma is an auxiliary result, which is required in Lemma 11.4.4
below in order to prove part (a).

Before proving Lemma 11.4.3, we present a variation of the results in Lemma
11.4.1 regarding fluid scaled processes, which will be used repeatedly.

Lemma 11.4.4Let M be a given positive constant. Suppose|Q̄n, jn(0)|
= ∑K

k=1 Q̄n, jn
k (0)≤M for sufficiently largen, where jn is some integer in[0,nδ/T].

Then, for any subsequence of integers{n}, there exists a further subsequence, de-
noted byN, such that, alongN, the process(Q̄n, jn,W̄n, jn,D̄n, jn,Ȳn, jn) converge
u.o.c. to the fluid limit(Q̄,W̄,D̄,Ȳ) that satisfies all the properties described in
Lemma 11.4.1.

Note that the u.o.c convergence of the primitive processes,Ān, jn
k andV̄n, jn

k can
be seen from Lemma 11.2.1 (c). Then, the proof of Lemma 11.4.4simply replicates
those of Lemma 11.4.1; hence, it is omitted.

Proof of Lemma 11.4.3. We specify the time lengthT (as stated in the lemma) as
follows:

T ≥ MQ

K

∑
k=1

µ−1
k .

Later, we will see thatT is long enough so that in the fluid limit, the fluid statēQ(t),
starting from any initial state bounded byMQ, will approach the fixed-point state.
Below, we finish the proof in two steps.
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Step 1. Here we prove the lemma forj = 0. Note that by way of the construction,
we have

(W̄n,0(0),Q̄n,0(0)) = (Ŵn(0),Q̂n(0))→ (0,0), asn→ ∞,

where we note our assumptionQ(0) = 0. Then, from Lemma 11.4.1, we have, as
n→ ∞,

(W̄n,0,Q̄n,0)→ (W̄,Q̄) u.o.c.,

with W̄(u) = 0 andQ̄(u) = 0 for all u≥ 0. (Note that the convergence here is along
the whole sequence ofn rather than a subsequence since the limit is unique.) This
immediately implies that both (a) and (b) in the lemma hold when j = 0 for suffi-
ciently largen.

Step 2. We now extend the above toj = 1, . . . ,nδ/T. Suppose, to the contrary,
there exists a subsequenceN1 of {n} such that, for anyn∈ N1, at least one of the
properties in (a) and (b) in the lemma do not hold for some integers j ∈ [1,nδ/T].
Consequently, for anyn∈ N1, there exists a smallest integer, denoted asjn, in the
interval[1,nδ/T] such that at least one of the properties in (a) and (b) do not hold.
To reach a contradiction, it suffices to construct an infinitesubsequenceN2 ⊂ N1,
such that the desired properties in (a) and (b) hold forj = jn for sufficiently large
n∈N2.

From the proof in Step 1, we assume that the properties in (a) and (b) hold for
j = 0, ..., jn−1, n∈N1. Specifically, forj = jn−1, we have

|Q̄n, jn−1(0)| ≤MQ, for all k∈N1.

Then, by Lemma 11.4.4 (cf. Lemma 11.4.1), there exists a further subsequenceN2⊂
N1 such that

(W̄n, jn−1,Q̄n, jn−1)→ (W̄,Q̄) u.o.c. asn→ ∞ alongN2, (11.31)

with |Q̄(0)| ≤MQ. Then, we have

|Q̄n, jn−1(u)−Q∗(W̄n, jn−1(u))|
≤ |Q̄n, jn−1(u)− Q̄(u)|+ |Q̄(u)−Q∗(W̄(u))|+ |Q∗(W̄(u))−Q∗(W̄n, jn−1(u))|
→ |Q̄(u)−Q∗(W̄(u))| u.o.c. in u≥ 0, asn→ ∞ alongN2.

Moreover, taking into account the choice ofT and Lemma 11.4.1(b), we have

Q̄(u) = Q∗(W̄(u)) for all u≥ T.

Therefore, for sufficiently largen∈N2, we have, foru∈ [0,T],

|Q̄n, jn(u)−Q∗(W̄n, jn(u))|= |Q̄n, jn−1(T +u)−Q∗(W̄n, jn−1(T +u))|
≤ |Q̄(T +u)−Q∗(W̄(T +u))|+ ε = ε. (11.32)
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That is, (a) holds withj = jn for sufficiently largen∈N2 (⊂N1).
Next, we estimate the upper bounds forW̄n, jn(u) and Q̄n, jn(u), for u ∈ [0,T].

Denotet1 = jnT/n+ u/n; by definition, we haveW̄n, jn(u) = Ŵn(t1). Let t2 be the
minimal time in [0, t1] such thatŴn(t) > 0 for all t ∈ (t2,t1]. From this definition,
we know that the server will not be idle during the interval(t2,t1], and hence

Ŷn(t1)− Ŷn(t2) = 0. (11.33)

Observe thatŴn(t2) = 0, taking into account the initial condition thatQ̂n(0) = 0.
Then, under the assumption (11.29), we estimate the upper bounds forW̄n, jn(u), for
u∈ [0,T] and sufficiently largen∈N2, as follows,

W̄n, jn(u) = Ŵn(t1) = Ŵn(t2)+
(
X̂n(t1)− X̂n(t2)

)
+
(
Ŷn(t1)− Ŷn(t2)

)

= X̂n(t1)− X̂n(t2)≤C+ ε = MW.

Furthermore, for the queue length process, we have

|Q̄n, jn(u)| ≤ |Q∗(W̄n, jn(u))|+ ε =
K

∑
k=1

λkW̄
n, jn(u)+ ε ≤

K

∑
k=1

λkMW + ε = MQ.

The above two bounds imply that (b) holds withj = jn for sufficiently largen∈N2.
�

11.5 Multi-Channel Queues under JSQ Routing Control

The system consists ofK (K ≥ 2) servers, indexed byk ∈ K := {1, . . . ,K}. Each
server has a queue with infinite waiting room. Jobs arrive at the system following
a renewal process with arrival rateλ . Upon arrival, each job is routed to one of the
queues to attain service.

Let A = {A(t), t ≥ 0} denote the interarrival process, whereA(t) indicates the
number of arrivals during the time interval[0,t]. We assume thatA is a renewal
process whose interarrival times have a mean of 1/λ and variancea2. Let {vk,ℓ, ℓ =
1,2, . . .} be a nonnegative i.i.d. sequence, wherevk,ℓ denotes the time for serverk to
process itsℓth job,k∈K. Let 1/µ andb2

k denote the mean and the variance ofvk,ℓ

respectively. The service rate of each server and the whole system are thereforeµ
andKµ , respectively. Let

Vk(ℓ) =
ℓ

∑
ℓ′=1

vk,ℓ′

denote the total service time of the firstℓ jobs of serverk, k = 1, . . . ,K. Assume that
the renewal processesAk and the service time sequences{Vk(ℓ), ℓ = 1,2, . . .}, k∈K,
are all mutually independent. LetSk = {Sk(t),t ≥ 0} denote the service process for
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serverk, whereSk(t) indicates the number of service completions by serverk after
serving for a total oft units of time. Clearly, the processSk is a renewal process
satisfying

Sk(t) = sup{ℓ : Vk(ℓ)≤ t};
and its interarrival times have a mean of 1/µ and varianceb2

k. The processesA and
Sk are all mutually independent too.

We study thejoin-the-shortest-queue(JSQ) routing control. By JSQ, each job is
routed to the shortest queue upon arrival. If there are more than one shortest queues,
the tie can be broken arbitrarily; for concreteness, we assume that the job is routed to
any one of the shortest queues with equal probability. LetAk(t) indicate the number
of arrivals routed to serverk during[0,t]; clearly we have,

∑
k∈K

Ak(t) = A(t). (11.1)

Let Qk(t) be the number of jobs in queuek at timet. LetBk(t) be the total amount of
time that serverk has served jobs by timet. We call the processes,Qk = {Qk(t),t ≥
0} and Bk = {Bk(t), t ≥ 0}, k ∈ K, the queue length process and the busy time
process respectively. Then, the following dynamic relations hold,

Qk(t) = Qk(0)+Ak(t)−Sk(Bk(t))≥ 0, (11.2)

Bk(t) =

ˆ t

0
1{Qk(s)>0}ds. (11.3)

The first equation is a balance equation, whereQk(0) is the initial queue length,
k ∈ K. The second equation specifies a work-conserving condition, i.e., the server
must work at its full capacity unless there are no jobs in its queue.

For convenience, we introduce the average workload processW = {W(t),t ≥
0}, the server idling processIk = {Ik(t),t ≥ 0} and the average idling processY =
{Y(t), t ≥ 0} as follows,

W(t) =
1
K ∑

k∈K

(Vk(Qk(0)+Ak(t))−Bk(t)), (11.4)

Ik(t) = t−Bk(t) =

ˆ t

0
1{Qk(s)=0}ds, (11.5)

Y(t) =
1
K ∑

k∈K

Ik(t) = t− 1
K ∑

k∈K

Bk(t). (11.6)

It is easy to observe from the above expressions that

Ik(t), Y(t) are non-decreasing int ≥ 0; andIk(0), Y(0) = 0. (11.7)

Note that each item in the summation of (11.4) measures the workload for each
individual server, and dividing it byK gives the average workload for the system
(consistingK servers).
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We close this section by introducing a sequence of networks indexed byn. Each
of the networks is like the one introduced in the last section, but may differ in their
arrival rates and mean service times (which are also indexedby n). We assume, as
n→ ∞,

λ n→ λ , µn→ µ , and consequentlyρn→ ρ , (11.8)

whereρn = λ n/Kµn andρ = λ/Kµ . Specifically, for thenth network, its arrival
process is given byA(λ nt/λ ) and its service process of serverk by Sk(µnt/µ).

11.5.1 Fluid Approximation and Uniform Attraction

We apply the fluid scaling to the processes associated with the sequence of networks:
(
Q̄n

k(t), Ā
n(t), Ān

k(t),V̄
n
k (t), S̄n

k(t), B̄
n
k(t),W̄

n(t), Īn
k (t),Ȳn(t)

)

=
1
n

(Qn
k(nt),An(nt),An

k(nt),V(⌊nt⌋),Sn
k(nt),Bn

k(nt),Wn(nt), In
k (nt),Yn(nt)) .(11.9)

We first establish the fluid approximation under the following assumptions: as
n→ ∞,

Q̄n
k(0)→ Q̄k(0), k∈K, (11.10)(
Ān(t),V̄n

k (t), S̄n
k(t)
)
→ (λ t,µ−1t,µt), u.o.c. int ≥ 0, (11.11)

where Q̄1(0) = Q̄2(0) = · · · = Q̄K(0). Let |Q̄(0)| = ∑k∈K Q̄k(0). The equality,
Q̄k(0) = |Q̄(0)|/K, is to assume that the initial queue lengths at different servers
are asymptotically the same (at the fluid scale). Intuitively, if the routing follows
the join-the-shortest-queue, then even if the initial queue lengths are not asymptot-
ically the same, they should become the same after some finitetime; this will be
established as the uniform attraction. The fluid approximation theorem follows.

Theorem 11.5.1 (FSLLN) Suppose that the sequence of the networks satisfies
(11.10) and (11.11) with̄Qk(0) = |Q̄(0)|/K, k∈K. Then, asn→ ∞,

(
Q̄n

k, Ā
n
k, B̄

n
k

)
→
(
Q̄k, Āk, B̄k

)
, u.o.c., (11.12)

where, fork = 1, . . . ,K,
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Q̄k(t) = |Q̄(t)|/K,

|Q̄(t)|=
[
|Q̄(0)|+(λ −Kµ)t

]+
;

Āk(t) = (λ/K)t;

B̄k(t) =

{
t t ≤ t0 := |Q̄(0)|

Kµ−λ
t0 + ρ(t− t0) t > t0

, if λ < Kµ ;

B̄k(t) = ρt, if λ ≥ Kµ .

Remark: The convergence in (11.12) still holds without assuming that the initial
queue lengths are asymptotically the same at all servers, i.e.,Q̄k(0) = |Q̄(0)|/K for
all k∈K. The only added complication is in describing the limit processes.

The proof of this theorem is in the following steps. First, weshow that any sub-
sequence of the scaled processes has a further subsequence that converges u.o.c. to
some Lipschitz continuous process (Lemma 11.5.2). Then we characterize the limit
process in Proposition 11.5.3, which implies the characteristics of the limit in the
above theorem. The fluid approximation theorem is established by showing that the
limit process characterized in Proposition 11.5.3 is unique under the assumption that
Q̄1(0) = Q̄2(0) = · · ·= Q̄K(0).

In the theorems and lemmas in the rest of this section, we willcharacterize the so-
called fluid limit of the derived processes under fluid scaling. These results will be
used to establish the heavy traffic theorem later, and are of independent theoretical
interest as well.

Lemma 11.5.2 (Fluid limit) Let M be a given positive constant, and suppose
|Q̄n(0)| = ∑k∈K Q̄n

k(0) ≤ M for sufficiently largen. Then, for any subsequence of
fluid scaled processes in (11.9), there exists a further subsequence, denoted byN,
such that, asn→ ∞ alongN,

(
Q̄n

k, Ā
n
k, B̄

n
k,W̄

n, Īn
k ,Ȳn) →

(
Q̄k, Āk, B̄k,W̄, Īk,Ȳ

)
u.o.c. (11.13)

for some Lipschitz continuous process(Q̄k, Āk, B̄k,W̄, Īk,Ȳ) (which will be referred
to as the fluid limit). Furthermore, the fluid limit satisfies the following properties:
for all t ≥ 0,
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Q̄k(t) = Q̄k(0)+ Āk(t)− µB̄k(t)≥ 0, for k = 1, . . . ,K, (11.14)

∑
k∈K

Āk(t) = λ t, (11.15)

Īk(t) = t− B̄k(t) is increasing with̄Ik(0) = 0, for k = 1, . . . ,K, (11.16)
ˆ ∞

0
Q̄k(t)dĪk(t) = 0, for k = 1, . . . ,K, (11.17)

Ȳ(t) =
1
K ∑

k∈K

Īk(t) = t− 1
K ∑

k∈K

B̄k(t), (11.18)

W̄(t) = ∑
k∈K

(Kµ)−1Q̄k(t) = W̄(0)+ (ρ−1)t + Ȳ(t). (11.19)

Since the limit processes in the above theorem are all Lipschitz continuous, they
are differentiable at almost all timet ≥ 0. Below, when we write the derivative of
such processes with respect to timet, we assume by default that such a time is
regular, i.e, all the related processes are differentiable at this time t.

Proposition 11.5.3The fluid limit in Lemma 11.5.2 satisfies, in addition to (11.14)-
(11.19), the following properties:

(a)Lett > 0 be a regular time. If mink∈K Q̄k(t) > 0, then,

˙̄Qk(t) =

{
λ

Kt
min
− µ k∈Kt

min,

−µ k∈K\Kt
min.

If mink∈K Q̄k(t) = 0, then,

˙̄Qk(t) =

{
0 k∈Kt

min,
−µ k∈K\Kt

min.

Here,Kt
min = argmink∈KQ̄k(t) is the set of servers with the lowest fluid level at

time t, andKt
min the number of queues in the setKt

min.
Consequently,̄Q1(t) = · · ·= Q̄K(t) for all t ≥ Q̄(0)/min(λ/K,µ).

If, in addition, the heavy traffic condition (ρ = 1) holds, then, the following proper-
ties also hold:

(b)If W̄(0) > 0, thenQ̄k(t) > 0 for t > 0 andk∈K.
(c)For allt > 0, the followings hold:

W̄(t) = W̄(0), and B̄k(t) = t for k∈K. (11.20)

Theorem 11.5.4 (Uniform attraction) Consider the fluid limit derived in Lemma
11.5.2, with the initial state also bounded byM. Assume that the heavy traffic con-
dition ρ = 1 holds. Then, there exists a timeTM > 0 such that all the queues have
the same length after the timeTM and the queue lengths are fixed afterward:

Q̄k(t) = µW̄(t)(= µW̄(0)) for t ≥ TM, k∈K. (11.21)
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The above theorem follows simply from Property 11.5.3(a,c)and the timeTM

can be specified asTM = M/µ . The uniform attraction of the fluid limit is a key
property used to establish the heavy traffic limit later. Theattraction state (in this
section, the state with all queue lengths equal) is called a fixed point in literature
(e.g., Mandelbaum and Stolyar [14], Stolyar [17] and Ye and Yao [22]). For ease
of presentation, we denote the fixed point state with a corresponding workloadw as
Q∗(w) = {Q∗k(w)}k∈K, whereQ∗k(w) = µw for k∈K.

Remark: It is interesting to note that the above result can be generalized to the case
ρ 6= 1. From Property 4(a), it can be seen that all queue lengths become equal within
a finite time, and remain equal afterward. Ifρ < 1, the common queue length will
fall to 0, also within a finite time, and then stay unchanged at0. If ρ > 1, the common
queue length will then increase linearly. We leave the technical details to interested
readers. Nevertheless, the above theorem, with the assumption ρ = 1, is sufficient
for the purpose of carrying out the heavy traffic analysis in the next section.

11.5.2 Diffusion Approximation

As in Section 11.5.1, we consider the same sequence of the network but replacing
the assumption (11.8) with the following stronger assumption: asn→ ∞:

n(ρn−ρ)→ θ . (11.22)

In addition, we assume that the heavy traffic conditionρ = 1 holds. Moreover, we
also assume the existence of the limits of the standard deviations of the inter-arrival
times and service times: asn→ ∞,

an→ a and bn
k→ bk, k∈K. (11.23)

Assume, for ease of exposition,

Qn
k(0) = 0, for all k∈K and alln≥ 1. (11.24)

We apply the diffusion scaling (along with centering) to theassociated processes:

Ân(t) :=
1
n

[
An(n2t)−λ nn2t

]
, V̂n

k (t) :=
1
n

[
Vn

k (⌊n2t⌋)− 1
µn n2t

]
,

(Q̂n
k(t),Ŵ

n(t),Ŷn(t), În
k (t)) :=

1
n
(Qn

k(n
2t),Wn(n2t),Yn(n2t), In

k (n2t)).

Theorem 11.5.5 (Diffusion Limit) Suppose the heavy-traffic conditionρ = 1 hold.
The following weak convergence holds asn→ ∞:

(
Ŵn(t),Ŷn(t),Q̂n(t))

)
⇒
(
Ŵ(t),Ŷ(t),Q̂(t)

)
.
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The limitsŴ = Φ(X̂) andŶ = Ψ(X̂) are the one-dimensional reflected Brownian
motion and the regulator of the Brownian motion, where the Brownian motionX̂
starts at the origin with its drift and variance respectively given by

θ and λ (a2 + ∑
k∈K

b2
k/K3).

The limit Q̂ = Q∗(Ŵ), i.e.,Q̂k(t) = µŴ(t) for all t ≥ 0, k∈K.

Remark: If the variances of service time,b2
k, are uniformly bounded and the number

of servers,K, is large, the variance of the limiting reflected Brownian motion in the
above theorem becomes approximatelyλa2. Hence, in such a situation, the system
operates like aG/D/1 system in the limit, where the performance mainly driven by
the job arrival rate, service rate and the variance of job interarrival time while the
variance of service time does not matter.

Proof. First, we re-express the unscaled workload process for thenth network as
follows:

Wn(t) =
1
K ∑

k∈K

(
Vn

k (An
k(t))−

1
µnAn

k(t)

)
+

1
Kµn (An(t)−λ nt)

+(ρn−1)t + t− 1
K ∑

k∈K

Bn
k(t),

where we note that we assumeQn
k(0) = 0. Applying the diffusion scaling to both

sides of the above equation, we have

Ŵn(t) = X̂n(t)+ Ŷn(t), (11.25)

where

X̂n(t) :=
1
K ∑

k∈K

V̂n
k (Ãn

k(t))+
1

Kµn Ân(t)+n(ρn−1)t, (11.26)

Ŷn(t) := n

(
t− 1

K ∑
k∈K

B̃n
k(t)

)
; (11.27)

and(Ãn
k(t), B̃

n
k(t)) := (An

k(n
2t)/n2,Bn

k(n
2t)/n2) is a variation of the fluid-scaled pro-

cess(Ān
k, B̄

n
k). Similar to (11.7), we also have, for eachn,

Ŷn(t) is non-decreasing int ≥ 0, andŶn(0) = 0. (11.28)

As in the proof of Theorem 11.4.2, we adopt the standard sample-path approach,
and assume the following u.o.c. convergence: with probability one,

(Ân,V̂n
k )→ (Â,V̂k) u.o.c.,
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whereÂ is a Brownian motion with zero mean and varianceλ 3a2; V̂k is a Brownian
motion with zero mean and varianceb2

k. Below, we focus on any sample-path that
satisfies the above u.o.c. convergence. Note that the results developed for the fluid
limit in the last section apply to the variations like(Ãn

k(t), B̃
n
k(t)) too. Then, under

the JSQ routing control, we have, according to Property 11.5.3(c),

Ãn
k(t)→ Āk(t), and B̃n

k(t)→ B̄k(t) = t, u.o.c. int ≥ 0. (11.29)

Given the assumptionQn
k(0) = 0 and thusQ̄k(0) = 0, it can be observed from Prop-

erty 11.5.3(c) and the relation (11.14) thatĀk(t) = λ t/K(= µt). Hence, under the
JSQ,

V̂n
k (Ãn

k(t))→ V̂k(λ t/K) and X̂n→ X̂ u.o.c. (int ≥ 0), (11.30)

where

X̂(t) :=
1
K ∑

k∈K

V̂k(λ t/K)+
1

Kµ
Â(t)+ θ t (11.31)

is a Brownian motion with drift and variance as given in the theorem.
Next, we apply the sandwich method to the diffusion scaled processes. From the

least element characterization of the reflection mapping inLemma 11.2.3, we have,

Ŷn(t)≥Ψ(X̂n)(t) and Ŵn(t)≥Φ(X̂n)(t). (11.32)

On the other hand, under JSQ, we would expect that no servers should be idle when
the workload in the system is sufficiently large. Specifically, if we can show that for
anyε > 0,

Ŷn(·) does not increase att if Ŵn(t) > ε, or (11.33)

(Ŵn(t)− ε)dŶn(t)≤ 0,

then by Lemma 11.2.3(b), we have

Ŷn(t)≤Ψ (X̂n− ε)(t) and Ŵn(t)− ε ≤Φ(X̂n− ε)(t). (11.34)

In view of (11.32) and (11.34), lettingn→ ∞ and thenε → 0, we have

(Ŷn,Ŵn)→ (Ŷ,Ŵ) u.o.c. (11.35)

To see that the relaxed complementarity condition (11.33) holds, we note that
the scaled workload̂Wn(t) > ε (which is equivalent toWn(n2t) > nε) implies the
workload is sufficiently large and no servers are idle for sufficiently largen. This is
indeed the case, which is summarized in a key lemma, Lemma 11.5.6 in the next
subsection. In that lemma (part (a)), we also establish a bound between the scaled
workload process and the scaled queue length process, whichallows us to conclude
the convergence of̂Qn(t)→ Q̂(t) := Q∗(Ŵ(t)).
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11.5.2.1 Complementarity and State-Space Collapse

Similar to Section 11.4.2.1, we consider a fixed time interval [τ,τ +δ ], whereτ ≥ 0
andδ > 0; let T > 0 be a fixed time of a certain magnitude to be specified later;
and study the diffusion scaled processQ̂n

k (resp.Ŵn, Ŷn and În
k , etc.) through the

⌈nδ/T⌉-pieces of fluid scaled processes̄Qn, j
k (resp.W̄n, j , Ȳn, j and Īn, j

k , etc.), j =
0, ...,⌈nδ/T⌉−1.

Lemma 11.5.6Consider the time interval[τ,τ + δ ], with τ ≥ 0 andδ > 0; pick a
constantC > 0 such that

sup
t′ ,t′′∈[τ,τ+δ ]

|X̂(t ′)− X̂(t ′′)| ≤C; (11.36)

and suppose

lim
n→∞

Ŵn(τ) = χ , and lim
n→∞

Q̂n(τ) = Q∗(χ), (11.37)

for some constantχ ≥ 0. Letε > 0 be any given (small) number. Then, there exists
a sufficiently largeT such that, for sufficiently largen, the following results hold for
all non-negative integersj < nδ/T:

(a)(State-space collapse)

|Q̄n, j(u)−Q∗(W̄n, j(u))| ≤ ε, for all u∈ [0,T];

(b)(Boundedness)

W̄n, j(u)≤ χ +C+3ε, for all u∈ [0,T],

i.e.,W̄n, j(u) is uniformly bounded; and hence, so is̄Qn, j(u);
(c)(Complementarity) ifW̄n, j(u) > ε for all u∈ [0,T], then

Ȳn, j(u)− Ȳn, j(0) = 0, for all u∈ [0,T].

The proof of this lemma follows the same idea as the proof for Lemma 11.4.3,
though extra effort is required to establish the boundedness and complementarity
properties simultaneously. Here we explain the idea behindthe proof of the lemma.
The detailed proof can be found in Appendix 11.7.3.

We will prove the lemma in two steps. In step 1, we show that when n is suffi-
ciently large, the properties (a)-(c) hold forj = 0. First, from the condition (11.37),
we know that the initial states of the processes(W̄n,0(u),Q̄n,0(u)) converge to a fixed
point state,(χ ,Q∗(χ)), asn→∞. Then, the whole processes(W̄n,0(u),Q̄n,0(u)) will
also converge to the fixed point state within the intervalu∈ [0,T] and stay on that
state afterward, according to a fluid limit theorem (a variation of Lemma 11.5.2)
and the uniform attraction theorem. Moreover, the fixed point processQ∗(W̄n,0(u))
is close to the stateQ∗(χ) for u ∈ [0,T] too, sinceW̄n,0(u) is close toχ . Conse-
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quently, both processesQ∗(W̄n,0(u)) andQ̄n,0(u) are close theQ∗(χ), which justi-
fies the property (a) forj = 0. As the workloadW̄n,0(u) is close to a constantχ , the
boundedness property (b) becomes obvious. Finally, we notethat each queue length
Q̄n,0

k (u) is close toµχ . Thus all queue lengths can not be empty ifχ > ε, which
implies that all servers are busy and hence the property (c).

In step 2, we extend the above toj = 1, · · · ,nδ/T through induction. To this
end, one may be tempted to carry out the induction in a conventional way, which
we describe as follows. Assuming for sufficiently largen, the properties (a)-(c) hold
for j = 0, · · · , jn− 1, show that they also hold forj = jn for sufficiently largen.
Consider the sequence of processes(W̄n, jn−1(u),Q̄n, jn−1(u)). Since the initial states
are bounded (the property (b) forjn−1), the fluid limit theorem can be applied to
show that the sequence of processes converges to a fluid limit(W̄(u),Q̄(u)). (Rig-
orously speaking, the convergence is along some subsequence of the network se-
quence.) Applying the uniform attraction theorem to the limit, we know that the
fluid stateQ̄(u) is close to the fixed pointQ∗(W̄(u)) for u∈ [T,2T], given that the
time lengthT is long enough. Combining the above, we know that for sufficient
largen, the process̄Qn, jn−1(u) is close to the fixed pointQ∗(W̄n, jn−1(u)) in the time
interval [T,2T]. This implies the property (a) immediately, noting that theprocess
(W̄n, jn−1(u),Q̄n, jn−1(u)), u∈ [T,2T], is identical to(W̄n, jn(u),Q̄n, jn(u)), u ∈ [0,T].
Similar to step 1, all the queue lengths,Q̄n, jn

k (u) for k∈K, will be positive in the in-
terval[0,T] if the conditionW̄n, jn(u) > ε, u∈ [0,T], is satisfied, and hence the prop-
erty (c) follows. Lastly, we estimate the bound for̄Wn, jn(u) to prove the property
(b). we trace the workload processesW̄n, j(u), with the index j running backward
from jn till it hits 0 or the workload hits the levelε. Denote asj0n the index at which
the tracing procedure stops. Then, before the tracing stopsat j = j0n, the system
idling process,̄Yn, j(u), does not vary, since the workload̄Wn, j(u) stay aboveε and
thus the property (c) applies. Hence, the range within whichthe workload processes
W̄n, j(u) vary is determined by the free processesX̄n, j(u) for j running from jn back
to j0n. From the condition (11.36), the range is (roughly) boundedbyC. On the other
hand, when the tracing stops, the workload is close to eitherχ or ε. Summarizing
the above, the workload̄Wn, jn(u) is (roughly) bounded by eitherχ +C or ε +C.

Clearly, the above inductive argument does not yield a satisfactory proof, as it
does not guarantee theexistence of a sufficiently large n′ such that, for all networks
with larger indexn (n≥ n′), the properties (a)-(c) hold for allj = 0, · · · ,nδ/T. To
overcome this difficulty, the inductive argument is carriedout by way of contradic-
tion in the detailed proof; readers are referred to the appendix for details.

11.6 Notes

The readers are referred to Chen and Yao [4] and the references in their book for the
fluid and the diffusion approximations to the queueing networks such as the gener-
alized Jackson networks, the feedforward multiclass networks and some multiclass
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queueing networks but all with single servers. Whitt [20] provides a comprehensive
reference on the stochastic-process limits.

The diffusion approximation for the multi-server queue wasfirst obtained by
Iglehart and Whitt [10, 11]. In Chen and Shanthikumar [3], the diffusion approx-
imation is shown for the multi-server queues of generalizedopen and irreducible
closed Jackson networks using the sandwich method. The current presentation in
Section 3 follows Chen and Shanthikumar [3].

The diffusion approximation for a single server queue with multi-class jobs under
a FIFO service discipline was first obtained by Peterson [15], where he established
the diffusion approximation for feedforward networks of multiclass jobs under FIFO
and priority service discipline. His method of the proof is different from what is
presented here. That method has also been used to establish the diffusion approx-
imation for the non-feedforward networks of multiclass queues; see, for example,
Chen and Zhang [7]. The rescaling method presented in Section 4 in establishing
the state-space collapse through the uniform attraction was first explicitly formu-
lated by Bramson [1]; see also Stolyar [17, 18], Mandelbaum and Stolyar [14] and
Ye and Yao [22]. The presentation of this technique here is based on Ye and Yao
[22]. The state-space collapse result was probably first observed by Reiman [16].
This phenomena are exhibited in the studies of the diffusionapproximation for mul-
ticlass queueing networks; e.g., Bramson [1], Bramson and Dai [2], Chen and Zhang
[6, 7, 8], Chen and Ye [5], Mandelbaum and Stolyar [14], Whitt[19] and Williams
[21].

The diffusion approximation for multi-channel queues to which jobs are routed
based on the join-the-shortest-queue routing control was first studied in Reiman
[16] and then generalized by Zhang,et al. [23]. The other related work includes the
diffusion approximation for the flexible servers system in Mandelbaum and Stolyar
[14].

11.7 Appendix

11.7.1 Proof of Lemma 11.5.2

Let N1 be any given subsequence ofn. As the sequence of initial states̄Qn(0) are
bounded by the constantB, we can find a subsequenceN2 of N1, such that,

Q̄n(0)→ Q̄(0) asn→ ∞ alongN2. (11.1)

As the processes̄An
k andB̄n

k are RCLL and non-decreasing, we can find a further
subsequence ofN2, denotedN, such that, asn→ ∞ alongN,

Ān
k(t)→ Āk(t) and B̄n

k(t)→ B̄k(t) (11.2)
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at any timet ≥ 0, where the limit processes̄Ak and B̄k are also RCLL and non-
decreasing.

Now consider any time interval[t1,t2], with t1 < t2. From the equation (11.3)
(with superscriptn appended properly), we have,

B̄n
k(t2)− B̄n

k(t1) =
1
n

ˆ nt2

nt1

1{Qn
k(s)>0}ds≤ t2− t1, (11.3)

which implies

B̄k(t2)− B̄k(t1)≤ t2− t1. (11.4)

Hence, the process̄Bk is Lipschitz continuous. Next, pick any constantc > 1, and
any time interval[t ′1, t

′
2] such that (a)[t ′1,t

′
2] ⊃ [t1,t2], (b) t ′2− t ′1 ≤ c(t2− t1), and

(c) Āk(t) is continuous at timest ′1 andt ′2. The fact thatĀk(t) is non-decreasing and
therefore continuous for almost all timet ensures the existence of the timest ′1 and
t ′2. Then, due to the condition (c), the convergence ofĀn

k(t) holds at timest ′1 andt ′2.
Therefore, we have

Āk(t2)− Āk(t1) ≤ Āk(t
′
2)− Āk(t

′
1) = lim

n→∞
Ān

k(t
′
2)− Ān

k(t
′
1)

= lim
n→∞

Ān(t ′2)− Ān(t ′1) = λ (t ′2− t ′1)≤ λc(t2− t1), (11.5)

where the first inequality is due to the non-decreasing property of the process̄Ak,
and the convergence involved is along the subsequenceN. The above implies that
the process̄Ak is also Lipschitz continuous.

Due to the Lipschitz continuity of the limit processesB̄k andĀk, the convergence
in (11.2) is u.o.c. oft ≥ 0. Finally, the u.o.c. convergence of other processes in
(11.13) and the Lipschitz continuity of their limits can be seen from the equations
(11.2), (11.4)-(11.6) and (11.11) (also with superscriptn appended properly).

The relationships in (11.14)-(11.16) and (11.18), follow simply from the rela-
tionships (11.1), (11.2), (11.5)-(11.7) and (11.11) (withthe superscriptn appended)
by taking the limit asn goes to infinity.

To prove (11.17), it is sufficient to show that, given any interval [t1,t2], if Q̄k(t) >
0 in the interval, then̄Ik(t2)− Īk(t1) = 0. Note thatQ̄n

k(t) > 0 also holds fort ∈ [t1,t2]
(or Qn

k(t) > 0 for t ∈ [nt1,nt2]) whenn is sufficiently large, sincēQn
k converge toQ̄k

u.o.c. Therefore, we have,

Īn
k (t2)− Īn

k(t1) =
1
n

ˆ nt2

nt1

1{Qn
k(s)=0}ds= 0.

Lettingn→ ∞ yields Īk(t2)− Īk(t1) = 0.
Rewriting the balance equation (11.4) for the scalednth system, we have

W̄n(t) =
1
K ∑

k∈K

V̄n
k (Q̄n

k(0)+ Ān
k(t))− t + Ȳn(t);
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then, in view of the convergence in (11.11), the convergenceof Q̄n
k(0) andȲn, and

the relations (11.14)-(11.15), we have the convergence ofW̄n alongN to the limit
W̄ as given by (11.19).

11.7.2 Proof of Proposition 11.5.3

Prove (a). Consider the first case, mink∈K Q̄k(t) > 0. Pick any constant∆ > 0
such that mink∈K\Kt

min
Q̄k(t)−mink∈K Q̄k(t) ≥ ∆ and mink∈K Q̄k(t) ≥ ∆ . Since

Q̄(t) is Lipschitz continuous, we can find any small time interval[t1,t2] satis-
fying 0 ≤ t1 < t < t2, such that mink∈K\Kt

min
Q̄k(s)−mink∈K Q̄k(s) ≥ ∆/2 and

mink∈K Q̄k(s)≥ ∆/2 for all times in the interval. Consider the subsequence of net-
work, also denoted as{n} that yields the fluid limit. Since the scaled queue length
processes̄Qn converge (u.o.c.) to the fluid limit̄Q asn→∞, we have, for sufficiently
largen, the following inequalities hold for alls∈ [t1,t2],

min
k∈K\Kt

min

Q̄n
k(s)−min

k∈K
Q̄n

k(s)≥
∆
4

and min
k∈K

Q̄n
k(s)≥

∆
4

. (11.6)

By “un-scaling”, the first inequality above implies that, during the interval(nt1,nt2],
the shortest queue(s) should fall within the setKt

min and therefore all arrivals are
routed to one of the queues in the setKt

min. Hence,

∑
k∈Kt

min

(An
k(nt2)−An

k(nt1)) = An(nt2)−An(nt1).

Divided both side byn and letn→ ∞, the above yields

∑
k∈Kt

min

(Āk(t2)− Āk(t1)) = λ (t2− t1),

which implies

∑
k∈Kt

min

˙̄Ak(t) = λ . (11.7)

Similarly, since no job is routed to queues that are not in thesetKt
min during the

time interval(nt1,nt2], we can show that

˙̄Ak(t) = 0 (11.8)

for k ∈ K \Kt
min. Moreover, from the second inequality in (11.6), we see thatall

servers are busy during the time interval(nt1,nt2], and therefore

˙̄Bk(t) = 1 (11.9)
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for k∈K. From equalities (11.7) and (11.9), we have

∑
k∈Kt

min

˙̄Qk(t) = ∑
k∈Kt

min

(
˙̄Ak(t)− µ ˙̄Bk(t)

)
= λ −Kt

minµ . (11.10)

Next, we show that, for allk∈Kt
min,

˙̄Qk(t) = ˙̄Qmin(t). (11.11)

Here, we denotēQmin(t) = mink∈K Q̄k(t). Keeping in mind that̄Qk(t) = Q̄min(t) for
k∈Kt

min, we have the followings,

˙̄Qk(t−) = lim
δ→0+

1
δ

(Q̄k(t)− Q̄k(t− δ ))≤ lim
δ→0+

1
δ

(Q̄min(t)− Q̄min(t− δ )) = ˙̄Qmin(t),

and similarly,

˙̄Qk(t+) = lim
δ→0+

1
δ

(Q̄k(t + δ )− Q̄k(t))≥ lim
δ→0+

1
δ

(Q̄min(t + δ )− Q̄min(t)) = ˙̄Qmin(t).

At the given regular timet, we have˙̄Qk(t) = ˙̄Qk(t−) = ˙̄Qk(t+), and hence the above
implies the conclusion (11.11).

Now, the equalities (11.8)-(11.11) implies the first property in (a).
Consider the second case, mink∈K Q̄k(t) = 0. Fork∈Kt

min, the queue attains the

minimum length of zero, hence,̄̇Qk(t) = 0. Fork∈K\Kt
min, the proof follows the

same lines of the first case and hence is omitted.
From the above two cases, we have, ifQ̄k(t) > mink′∈K Q̄k′(t), then,

d
dt

(
Q̄k(t)−min

k′∈K
Q̄k′(t)

)
≤−min(λ/K,µ).

The above implies the last conclusion in property (a).
Prove (b). From the property (a) and taking into account the heavy traffic condi-

tion λ = Kµ , we have

˙̄Qmin(t)≥ 0, (11.12)

and, for some constantσ > 0,

˙̄Qmin(t)≥ σ if Kt
min 6= K. (11.13)

If Q̄min(0)> 0, we have, according to the conclusion (11.12),Q̄min(t)≥ Q̄min(0)>
0 for all t > 0.

Suppose now̄Qmin(0) = 0. This implies thatK0
min 6= K, sinceW̄(0) > 0. Hence,

we haveKt
min 6= K for t ∈ [0,δ ], where the positive numberδ is chosen small

enough. Then, from the conclusion in (11.13), we have
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˙̄Qmin(t)≥ σ > 0 for regular timet ∈ [0,δ ],

and therefore,
Q̄min(t)≥ σ t > 0 for t ∈ [0,δ ].

Using the conclusion (11.12) again, we have

Q̄min(t)≥ Q̄min(δ )≥ σδ > 0 for t ≥ δ .

Sinceδ can be arbitrarily small, the above implies

Q̄min(t) > 0 for t > 0.

To prove thatW̄(t) = W̄(0) in the property (c), we consider two cases. Case 1,
W̄(0) > 0. Then, from the property (b), we havēQk(t) > 0 for t > 0 andk∈K. From
the reflection property (11.17) of the fluid limit, the above impliesB̄k(t) = t. Then,
the property that̄W(t) = W̄(0) follows keeping in mind the heavy traffic condition
ρ = 1.

Case 2,W̄(0) = 0. Suppose the conclusion were not true. Then, there exists atime
t1 > 0 such thatW̄(t1) > 0. SinceW̄(t) is continuous, we can find a timet2 ∈ (0,t1)
such that

0 = W̄(0) < W̄(t2) < W̄(t1).

However, following the argument in case 1, we can show thatW̄(t) = W̄(t2) for all
t ≥ t2, which impliesW̄(t1) = W̄(t2) and contradicts to the above inequality.

The first equality in this property (i.e.,̄W(t) = W̄(0) for all t ≥ 0), along with the
property in (11.19), implies that̄Y(t) = 0 and hencēIk(t) = 0 (k∈K) for all t ≥ 0.
The latter is equivalent to the second equality in the property (c).

11.7.3 Proof of Lemma 11.5.6

Preparations

We first present a variation of the results in Lemma 11.5.2 regarding fluid scaled
processes, which will be used repeatedly.

Lemma 11.7.1Let M be a given positive constant. Suppose|Q̄n, jn(0)|
= ∑k∈K Q̄n, jn

k (0)≤M for sufficiently largen, wherejn is some integer in[0,nδ/T].

Then, for any subsequence of the processes
(

Q̄n, jn
k , Ān, jn

k , B̄n, jn
k ,W̄n, jn, Īn, jn

k ,Ȳn, jn
)

,

there exists a further subsequence, denotedN, such that, alongN, the sequence
converge u.o.c. to the fluid limit

(
Q̄k, Āk, B̄k,W̄, Īk,Ȳ

)
that has all the properties de-

scribed in Lemma 11.5.2, Proposition 11.5.3 and Theorem 11.5.4.

Note that the u.o.c convergence of the primitive processes,Ān, jn andS̄n, jn
k , the coun-

terpart of (11.11), can be seen from Lemma 11.2.1. Then, the proof of Lemma 11.7.1
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simply replicates those of Lemma 11.5.2, Proposition 11.5.3(c) and Theorem 11.5.4;
hence, it is omitted.

Next, define the following constants,

MW,1 = 2ε, MQ,1 = KµMW,1 + ε;

MW,2 = max{MW,1,χ + ε}+(C+ ε), MQ,2 = KµMW,2 + ε.

where the numbers,ε, χ andC, are specified in the statement of the lemma under
proof. The constants defined above will be used to bound processesQ̂n(t) andŴn(t)
for t ∈ [τ,τ +δ ] and sufficiently largen. We specify the time lengthT (stated in the
lemma under proof) as follows:

T ≥ Tmax{MQ,1,MQ,2} , (11.14)

where the term on the right hand side is specified in Theorem 11.5.4. Note thatT
is long enough so that in the fluid limit, the fluid statēQ(t) will approach to the
fixed-point state, from an initial statēQ(0) that is bounded by max{MQ,1,MQ,2}.

With the quantities specified above, we state what we want to prove, in terms
of parts (b) and (c) of the lemma, in the following stronger form (part (a) remains
the same): For sufficiently largen, the following results hold for all non-negative
integersj ≤ nδ/T:

(a)|Q̄n, j(u)−Q∗(W̄n, j(u))| ≤ ε, for all u∈ [0,T];
(b1)if W̄n, j(u)≤ ε(< C) for someu∈ [0,T], then, for allu∈ [0,T],

W̄n, j(u)≤MW,1, |Q̄n, j(u)| ≤MQ,1; (11.15)

(b2)if W̄n, j(u) > ε for all u∈ [0,T], then, for allu∈ [0,T],

W̄n, j(u)≤MW,2(≤ χ +C+3ε), |Q̄n, j(u)| ≤MQ,2, (11.16)

and

Ȳn, j(u)− Ȳn, j(0) = 0. (11.17)

Step 1 of the Proof

Here we prove the three parts of the lemma, (a, b1, b2), forj = 0. Note that by way
of the construction, we have

(W̄n,0(0),Q̄n,0(0)) = (Ŵn(τ),Q̂n(τ)),

and hence,

(W̄n,0(0),Q̄n,0(0))→ (χ ,Q∗(χ)), asn→ ∞,
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following (11.37). Then, from Lemma 11.7.1 and Theorem 11.5.4 (with W̄(0) and
Q̄(0) replaced byχ andQ∗(χ) respectively), we have, asn→ ∞,

(W̄n,0,Q̄n,0)→ (W̄,Q̄) u.o.c.,

with (W̄,Q̄) satisfying(W̄(u),Q̄(u)) = (χ ,Q∗(χ)) for u≥ 0. (Note that the conver-
gence here is along the whole sequence ofn rather than a subsequence since the
limit is unique.) Letn be sufficiently large such that

|W̄n,0(u)− χ | ≤min

{
ε

2Kµ
,

ε
4K

,

}
, and |Q̄n,0(u)−Q∗(χ)| ≤min

{ε
2
,

µε
4

}

for all u∈ [0,T]. Then, we have,

|Q̄n,0(u)−Q∗(W̄n,0(u))| ≤ |Q̄n,0(u)−Q∗(χ)|+ |Q∗(W̄n,0(u))−Q∗(χ)|

≤ min
{ε

2
,

µε
4

}
+Kµ | W̄n,0(u)− χ |≤min

{ε
2
,

µε
4

}
+Kµ min

{
ε

2Kµ
,

ε
4K

}

≤ min
{

ε,
µε
2

}
(11.18)

for all u∈ [0,T]. That is, (a) holds whenj = 0 for sufficiently largen.
We now verify (b1, b2). First, from the established result in(a), we know that

W̄n,0(u) is arbitrarily close toχ for all u∈ [0,T] whenn is sufficiently large. This
fact directly leads to the inequalities in (b1, b2) forj = 0. Next, we show the com-
plementarity in (11.17) of (b2), forj = 0. Note that from the conclusion in (11.18),
we have

|Q̄n,0
k (u)− µW̄n,0(u)| ≤ |Q̄n,0(u)−Q∗(W̄n,0(u))| ≤ µ

2
ε.

and then,

Q̄n,0
k (u)≥ µW̄n,0(u)− µ

2
ε ≥ µ

2
ε > 0, (11.19)

where the second inequality is due to the condition in property (b2). Finally, we
have, for anyu∈ [0,T],

Īn,0
k (u)− Īn,0

k (0) =

ˆ u

0
1{Q̄n,0

k (u)=0}ds= 0,

where the first equality follows from the definitions of the processes̄In, j
k (u) and

În
k (t), along with (11.5); and the second equality from the conclusion in (11.19).

The above equality implies (11.17).
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Step 2 of the Proof

We now extend the above toj = 1, . . . ,nδ/T. Suppose, to the contrary, there ex-
ists a subsequenceN1 of n such that, for anyn∈ N1, at least one of the properties
(a, b1, b2) does not hold for some integersj ∈ [1,nδ/T]. Consequently, for any
n∈ N1, there exists a smallest integer, denoted asjn, in the interval[1,nδ/T] such
that at least one of the properties (a, b1, b2) does not hold. To reach a contradic-
tion, it suffices to construct an infinite subsequenceN′2 ⊂ N1, such that the desired
properties in (a, b1, b2) hold forj = jn for sufficiently largen∈ N′2. To construct
such a sequence, we will first find a subsequenceN2 ⊂ N1 such that the property
(a) holds for j = jn for sufficiently largen ∈ N2. Next, we partitionN2 into two
further subsequences,N2 = N3∪N4; and show that the conclusion of (b1) holds for
sufficiently largen∈N′3⊂N3, and that the conclusion of (b2) holds for sufficiently
largen∈N4. Finally, the subsequenceN′2 = N′3∪N4 is what we need.

From the proof in Step 1, under what is assumed above, properties (a, b1, b2)
hold for j = 0, ..., jn−1, n∈N1. Specifically, forj = jn−1, we have

|Q̄n, jn−1(0)| ≤max{MQ,1,MQ,2}, for all k∈N1.

Therefore, the sequence{Q̄n, jn−1(0),n∈N1} has a convergent subsequence. Then,
by Lemma 11.7.1 and Lemma 11.5.2, there exists a further subsequenceN2 ⊂ N1

such that

(W̄n, jn−1,Q̄n, jn−1)→ (W̄,Q̄) u.o.c. asn→ ∞ alongN2, (11.20)

with |Q̄(0)| ≤max{MQ,1,MQ,2}. Then, we have

|Q̄n, jn−1(u)−Q∗(W̄n, jn−1(u))|
≤ |Q̄n, jn−1(u)− Q̄(u)|+ |Q̄(u)−Q∗(W̄(u))|+ |Q∗(W̄(u))−Q∗(W̄n, jn−1(u))|
→ |Q̄(u)−Q∗(W̄(u))| u.o.c. of u≥ 0, asn→ ∞ alongN2.

Moreover, sinceT ≥ Tmax{MQ,1,MQ,2} and taking into account Theorem 11.5.4, we
have

Q̄(u) = Q∗(W̄(u)) for all u≥ T.

Therefore, for sufficiently largen∈N2, we have, foru∈ [0,T],

|Q̄n, jn(u)−Q∗(W̄n, jn(u))|= |Q̄n, jn−1(T +u)−Q∗(W̄n, jn−1(T +u))|< ε. (11.21)

That is, (a) holds withj = jn for sufficiently largen∈N2 (⊂N1).
Next, we partitionN2 into N3∪N4 according to the conditions given in (b1, b2),

i.e.,

N3 = {n∈N2 : W̄n, jn(u)≤ ε for someu∈ [0,T]},
N4 = {n∈N2 : W̄n, jn(u) > ε for all u∈ [0,T]}.
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Note that at least one of the two sequencesN3 andN4 must be infinite.
SupposeN3 is infinite. Then, for eachn ∈ N3, there exists a fixedun ∈ [0,T]

satisfying

W̄n, jn(un)≤ ε. (11.22)

Furthermore, we can choose a subsequenceN′3⊂N3 such that, for someu′ ∈ [0,T],

un→ u′ asn→ ∞ alongN′3.

Note that the convergence in (11.20) is valid for the subsequenceN′3 (⊂ N2) too.
Then, we have, for allu≥ 0,

W̄(u) = W̄(T +u′) = lim
n→∞

W̄n, jn−1(T +un) = lim
n→∞

W̄n, jn(un)≤ ε,

where the first equality follows from the property (11.20) inProposition 11.5.3;
the second follows from (11.20); and the inequality followsfrom (11.22). Now, for
sufficiently largen∈N′3, we have, for allu∈ [0,T],

W̄n, jn(u) = W̄n, jn−1(T +u)≤ W̄(T +u)+ ε ≤ 2ε = MW,1 (11.23)

|Q̄n, jn(u)| ≤ |Q̄(T +u)|+ ε = KµW̄(T +u)+ ε ≤ KµMW,1 + ε = MQ,1, (11.24)

where the first inequality in (11.23) follows from (11.20), and so is the first inequal-
ity in (11.24). The two inequalities in (11.23) and (11.24) together imply that (b1)
holds for j = jn for sufficiently largen∈N′3.

Next, supposeN4 is infinite. The convergence in (11.20) is valid for the subse-
quenceN4 (⊂ N2) too. Similar to (11.21), we can show that for sufficiently large
n∈N4, the following holds: for allu∈ [0,T],

|Q̄n, jn(u)−Q∗(W̄n, jn(u))| ≤ µε
2

,

and hence,

Q̄n, jn
k (u)≥Q∗k(W̄

n, jn(u))− µε
2
≥ µW̄n, jn(u)− µε

2
≥ µε

2
> 0.

Similar to the argument following (11.19), the above inequality leads to the follow-
ing,

Ȳn, jn(u)− Ȳn, jn(0) = 0 for all u∈ [0,T], (11.25)

for sufficiently largen∈N4.
Using the complementarity property just established, we estimate the upper

bounds forW̄n, jn(u) and Q̄n, jn(u), for u ∈ [0,T]. For a given (sufficiently large)
n∈N4, there are two mutually exclusive cases: (i) the condition (as well as the con-
clusions) in (b2) holds for allj = 0, ..., jn; (ii) the condition in (b1) holds for some
j = 0≤ j ≤ jn−1.
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In the first case, the process̄Yn, j(u) does not increase inu ∈ [0,T], for j =
0, ..., jn−1. Thus, we have, for sufficiently largen∈N4,

W̄n, jn(u) = W̄n,0(0)+
jn−1

∑
j=0

(
W̄n, j(T)−W̄n, j(0)

)
+
(
W̄n, jn(u)−W̄n, jn(0)

)

= W̄n,0(0)+
jn−1

∑
j=0

(
X̄n, j(T)− X̄n, j(0)

)
+
(
X̄n, jn(u)− X̄n, jn(0)

)

+
jn−1

∑
j=0

(
Ȳn, j(T)− Ȳn, j(0)

)
+
(
Ȳn, jn(u)− Ȳn, jn(0)

)

= W̄n,0(0)+
jn−1

∑
j=0

(
X̄n, j(T)− X̄n, j(0)

)
+
(
X̄n, jn(u)− X̄n, jn(0)

)

= Ŵn(τ)+
(
X̂n(τ + jnT/n+u/n)− X̂n(τ)

)

≤ (χ + ε)+
(
X̂(τ + jnT/n+u/n)− X̂(τ)+ ε

)

≤ (χ + ε)+ (C+ ε),

where the first inequality follows from the convergence in (11.37) and (11.30), and
the second from (11.36).

Under the case (ii), letj0n be the largest integer such that the condition in (b1)
holds. Thus, for allj = j0n +1≤ j ≤ jn, the condition and results in (b2) hold, and
henceȲn, j(u) does not increase inu∈ [0,T]. Then, similar to case (i), we have, for
sufficiently largen∈N4,

W̄n, jn(u) = W̄n, j0n(T)+
jn−1

∑
j= j0n+1

(
W̄n, j(T)−W̄n, j(0)

)
+
(
W̄n, jn(u)−W̄n, jn(0)

)

= W̄n, j0n(T)+
(
X̂n(τ + jnT/n+u/n)− X̂n(τ + j0nT/n+T/n)

)

≤ MW,1 +(C+ ε).

where the inequality is due to the bound (11.15) in (b1) withj = j0n and the definition
of the constantC in (11.36). Then, synthesizing the bounds in the two cases, we
have, for sufficiently largen∈N4 and for allu∈ [0,T],

W̄n, jn(u)≤max{(χ + ε)+ (C+ ε),MW,1 +(C+ ε)}= MW,2;

and furthermore

|Q̄n, jn(u)| ≤ |Q∗(W̄n, jn(u))|+ ε
= KµW̄n, jn(u)+ ε ≤ KµMW,2 + ε = MQ,2.

The above two bounds, together with the complementarity property in (11.25), im-
ply that (b2) holds withj = jn for sufficiently largen∈N4.
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Finally, letN′2 = N′3∪N4 (⊂N2 ⊂ N1). Then, the properties in (a, b1, b2) with
j = jn hold for sufficiently largen∈N′2 (⊂N1). �
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Chapter 12
Queueing Networks with Gaussian Inputs

Michel Mandjes

Abstract This chapter analyzes queueing systems fed by Gaussian inputs. The anal-
ysis is of an asymptotic nature, in that the number of sourcesis assumed large, where
link bandwidth and buffer space are scaled accordingly. Relying on powerful large-
deviation techniques (in particular Schilder’s theorem),we identify the exponential
decay rate of the overflow for the single queue. In addition weestablish a number
of appealing results (duality between decay rate and variance function; convexity of
buffer/bandwidth trade-off curve). Then we extend the result to the tandem setting;
a lower bound on the decay rate is found, which is proven to be ‘tight’ under specific
conditions. Also approximations for the overflow probability are presented. The last
part of the chapter is devoted to priority systems.

12.1 Introduction

Over the past two decades, a significant research effort has been devoted to the
large-deviations analysis of queues. It has culminated in awealth of valuable con-
tributions to the understanding of the occurrence of rare events (such as buffer over-
flow) in queues. Exact computation of the overflow probability is usually a demand-
ing task, thus motivating the search for accurate approximations and asymptotics.
Large-deviations analysis usually provides a rough (logarithmic) characterization of
the overflow probability (in terms of an exponential decay rate), but also insight into
the system’s ‘path’ from ‘average behavior’ to the rare event.

In particular, the celebratedmany-sources scaling, introduced in a seminal paper
by Weiss [25], has provided a rich framework for obtaining large-deviations results.
In a many-sources setting, one considers a queueing system fed by the superposition
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Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098
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of n i.i.d. traffic sources, with the service rates and buffer thresholds scaled withn as
well. When considering single queues, it is, under very mildconditions on the source
behavior, possible to calculate the exponential decay of the probabilitypn(b,c) that
the queue (fed byn sources, and emptied at a deterministic ratenc) exceeds level
nb, see, e.g., [4, 5].

Beyond the single FIFO queue.Although single queues serve as a useful base-
line model and provide valuable insight, they clearly have serious limitations. First
of all, traffic streams usually traverse concatenations of hops (rather than just a sin-
gle node). Secondly, networks increasingly support a wide variety of traffic types,
with each of them having its own specific (stochastic) characteristics and Quality-of-
Service requirements in terms of packet delay, loss, and throughput metrics. In order
to deal with the heterogeneity in traffic types, networks will typically rely on dis-
criminatory scheduling mechanisms to distinguish betweenstreams of the various
classes, such as priority scheduling mechanisms. Thus, a fundamental understand-
ing of the large-deviations behavior of stochastic networks with non-FIFO schedul-
ing is expected to play a crucial role in providing end-to-end Quality-of-Service
in multi-class networks. However, only few large-deviations results are known for
these more complex buffer architectures.

Gaussian traffic.As indicated above, each type of traffic has its own stochastic
properties, often summarized in terms of a covariance function. One commonly dis-
tinguishes between short-range dependent input (with justa mild correlation) and
long-range dependent input (in which correlations decay relatively slowly). Tradi-
tionally mainly short-range dependent models were used foranalyzing the perfor-
mance of communication networks. Network measurements, performed over the
past decade, however, suggested thatlong-range dependent models are more appro-
priate [12, 22]. Evidently, ideally, one should build a theory around a class of traffic
models that covers both. This explains why the Gaussian traffic model is considered
to be particularly appropriate: with a specific choice of theparameters, the model
corresponds to a short-range dependent process (for instance an integrated Ornstein-
Uhlenbeck process), while with other choices one obtains a long-range dependent
model (for instance fractional Brownian motion). It is argued in [10] that the use of
Gaussian traffic models is justified as long as the aggregation is sufficiently large
(both in time and number of flows), due to Central-Limit type of arguments; the
limitations, in both dimensions, are further specified in [24].

Literature. A full treatment of large deviations of Gaussian queues andtheir ap-
plications is given in [14]. Background on large deviationscan be found in [6],
whereas [9] is a nice textbook on large deviations for queues. Adler [2] is a standard
reference on Gaussian processes. Parts of this chapter treat material presented in
[11, 13, 18].

Organization.This chapter focuses on the analysis of tandem networks fed by
Gaussian inputs under the many-sources scaling. To analyzetandems, it turns out
necessary to first present a number of powerful results on Gaussian processes, in
particular (the generalized version of) Schilder’s theorem (Section 2). To demon-
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strate how this (rather abstract) machinery works, we first focus in Section 3 on the
single queue, and derive a number of structural results. We then shift in Section 4
our attention to tandem networks. Again, by applying Schilder’s theorem, we ana-
lyze the exponential decay rate of the buffer content exceeding a predefined level;
the results are bound and approximations of the decay rate, and, in a number of
special cases, its exact value. Section 5 focuses on priority systems, which can be
treated analogously to tandem queues. Section 6 contains a number of concluding
remarks.

12.2 Preliminaries on Gaussian processes

In this section we present a number of standard results on Gaussian processes; in
particular, Schilder’s theorem is stated.

In general, an arrival process is an infinitely-dimensionalobject (A(t),t ∈ R),
whereA(t) denotes the amount of traffic generated in time interval[0,t), for t > 0;
(A(t), t ∈ R) is sometimes referred to as the cumulative work process. It is noted
thatA(−t) is to be interpreted as the negative of the amount of traffic generated in
(−t,0]. We also define, fors< t, the work arrived in time window[s,t) asA(s,t) (so
thatA(s, t) = A(t)−A(s)).

12.2.1 Gaussian sources

In this section we first introduce our versatile class of input processes, to which
we will refer asGaussian sources. For a Gaussian source, the entire probabilistic
behavior of the cumulative work process can be expressed in terms of a mean traffic
rate and a variance function. The mean traffic rateµ is such thatEA(s,t) = µ ·(t−s),
i.e., the amount of traffic generated is proportional to the length of the interval. The
variance functionv(·) is such thatVarA(s,t) = v(t − s); in particularVarA(t) =
v(t). Let N(µ ,σ2) denote a Normally distributed random variable with meanµ and
varianceσ2.

Definition 12.2.1 — Gaussian source.A(·) is a Gaussian process with stationary
increments, if for all s< t,

A(s, t) =d N(µ · (t−s),v(t−s)).

We say that A(·) is a Gaussian source.We call a Gaussian sourcecenteredif, in
addition,µ = 0.

The fact that the sources introduced in Definition 12.2.1 have stationary incre-
ments, is an immediate consequence of the fact that the distribution of A(s,t) just
depends on the length of the time window (i.e.,t−s), and not on its position.
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The variance functionv(·) fully determines the correlation structure of the Gaus-
sian source. This can be seen as follows. First notice, assuming for ease 0< s< t,
that Cov(A(s),A(t)) = VarA(s) + Cov(A(0,s),A(s,t)). Then, using the standard
property that

VarA(0, t) = VarA(0,s)+2Cov(A(0,s),A(s,t))+VarA(s,t),

we find the useful relation

Γ (s, t) := Cov(A(s),A(t)) =
1
2
(v(t)+v(s)−v(t−s)).

Indeed, knowing the variance function, we can compute all covariances. In par-
ticular, the vector(A(s1), . . . ,A(sd))T is distributedd-variate Normal, with mean
(µs1, . . . ,µsd)

T and covariance matrixΣ , whose(i, j)-th entry reads

Σi j = Γ (si ,sj), i, j = 1, . . . ,d.

The class of Gaussian sources with stationary increments isextremely rich, and
this intrinsic richness is best illustrated by the multitude of possible choices for the
variance functionv(·). In fact, one could choose any functionv(·) that gives rise to
a positive semi-definite covariance function:

∑
s,t∈S

αsCov(A(s),A(t))αt ≥ 0,

for all S⊆ R, andαs∈ R for all s∈ S.

12.2.2 Classifications

We now highlight two basic classifications of Gaussian sources. These classifica-
tions can be illustrated by means of two generic types of Gaussian sources, that we
also introduce in this section.

Definition 12.2.2 — fractional Brownian motion (or fBm). A fractional Brow-
nian motionsource has variance function v(·) characterized by v(t) = t2H , for an
H ∈ (0,1). We call H theHurst parameter.

The case withH = 1/2 is known as (ordinary)Brownian motion; then the incre-
ments are independent.

Definition 12.2.3 — integrated Ornstein Uhlenbeck (or iOU).An integrated
Ornstein-Uhlenbecksource has variance function v(·) characterized by v(t) =
t−1+e−t.
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Long-range dependence.The first way of classifying Gaussian sources relates to
the correlation structure on long timescales: we are going to distinguish between
short-range dependent sources and long-range dependent sources.

To this end, we first introduce the notion of correlation on timescalet, for inter-
vals of lengthε. With t≫ ε > 0, it is easily seen that

C(t,ε) := Cov(A(0,ε),A(t,t + ε)) =
1
2
(v(t + ε)−2v(t)+v(t− ε)).

For ε small, andv(·) twice differentiable, this looks likeε2v′′(t)/2. This argument
shows that the ‘intensity of the correlation’ is expressed by the second derivative of
v(·): ‘the more convex (concave, respectively)v(·) at time-scalet, the stronger the
positive (negative) dependence between traffic sent ‘around time 0’ and traffic sent
‘around timet ’.

The above observations can be illustrated by using the generic processes fBm
and iOU. Asv′′(t) = (2H)(2H − 1)t2H−2, we see that for fBm the correlation is
positive whenH > 1

2 (the higherH, the stronger this correlation; the largert, the
weaker this correlation), and negative whenH < 1

2 (the lowerH, the stronger this
correlation; the largert, the weaker this correlation). It is readily checked that for
iOU v′′(t) = e−t . In other words: the correlation is positive, and decreasing in t.

Several processes could exhibit positive correlation, butthe intensity of this cor-
relation can vary dramatically; compare the (fast!) exponential decay ofv′′(t) for
iOU traffic with the (slow!) polynomial decay ofv′′(t) for fBm traffic. The follow-
ing definition gives a classification.

Definition 12.2.4 — long-range dependence.We call a traffic sourcelong-range
dependent(lrd), when the covariancesC(k,1) are non-summable:

∞

∑
k=1

C(k,1) = ∞,

andshort-range dependent(srd) when this sum is finite.

Turning back to the case of fBm, with variance function givenby v(t) = t2H , it is
easily checked that

lim
k→∞

C(k,1)

k2H−2 =
1
2
· lim

k→∞

(1+1/k)2H−2+(1−1/k)2H

1/k2 =
1
2
·v′′(1).

This entails that we have to check whetherk2H−2 is summable or not. We conclude
that Gaussian sources with this variance function are lrd iff 2H > 1, i.e., whenever
they belong to the positively correlated case. It is easily verified that, according to
Definition 12.2.4, iOU is short-range dependent.

Smoothness.A second criterion to classify Gaussian processes is based on the
level of smoothness of the sample paths. We coin the following definition.



536 Michel Mandjes

Definition 12.2.5 — smoothness.We call a Gaussian sourcesmoothif, for any
t > 0,

lim
ε↓0

Cov(A(0,ε),A(t,t + ε))√
Var(A(0,ε))Var(A(t,t + ε))

= lim
ε↓0

C(t,ε)

v(ε)
6= 0,

andnon-smoothotherwise.

An fBm source is non-smooth, as is readily verified:

lim
ε↓0

C(t,ε)

v(ε)
= lim

ε↓0
1
2

ε2−2Hv′′(t) = 0,

for any t > 0 andH ∈ (0,1). On the other hand, the iOU source is smooth, as, for
anyt > 0, applying that 2v(ε)/ε2→ 1 asε ↓ 0,

lim
ε↓0

C(t,ε)

v(ε)
= v′′(t) = e−t > 0.

Popularly speaking, one could say that Gaussian sources aresmooth if there is a
notion of atraffic rate.

12.2.3 Schilder’s theorem

This subsection introduces (the generalized version of) Schilder’s theorem. ‘Schilder’
considers the large deviations of the sample mean of Gaussian processes (i.e.,
infinitely-dimensional objects), as follows. LetA1(·),A2(·), . . . be a sequence of
i.i.d. Gaussian processes. Then consider the ‘sample mean path’ n−1 ∑n

i=1Ai(·). For
n large, it is clear thatn−1 ∑n

i=1Ai(t)→ µt, if µ is the mean rate of the Gaussian
processes. ‘Schilder’ describes the probability of deviations from this ‘mean path’:
it characterizes the exponential decay rate of the sample mean pathn−1∑n

i=1Ai(·)
being in a remote set. Informally, a functionalI(·) is identified, such that

P

(
1
n

n

∑
i=1

Ai(t)≈ f (t), t ∈ R

)
≈ e−nI( f ). (12.1)

Here f : R→R is a given function (or ‘path’; it is a function of time); we are won-
dering what the probability is ofn−1∑n

i=1Ai(·) remaining ‘close to’f (·). Evidently,
I(·) should be such thatI( fµ) = 0, wherefµ(t) = µt. Schilder’s theorem says that,
in a logarithmic sense, (12.1) is indeed true.

More formally, ‘Schilder’ gives an expression for the probability of the sample
mean ofn i.i.d. Gaussian processes (recall that this sample mean is now a path)
being in some setS:
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pn[S] := P

(
1
n

n

∑
i=1

Ai(·) ∈ S

)
≈ exp

(
−n inf

f∈S
I( f )

)
.

Here the setS represents a collection of paths; later in this chapter we give a number
of examples of such sets. An intrinsic difficulty of ‘Schilder’ is thatI( f ) can be given
explicitly only if f is a mixture of covariance functions, as we will see below.

From the above it is concluded that, in general, finding the minimum of I( f )
over all f ∈ S is a hard variational problem: the optimization should be done over
all paths inS (which are infinitely-dimensional objects), and the objective function
I( f ) is only explicitly given if f is a mixture of covariance functions. However, if
we succeed in finding such a minimizingf ⋆(·) in S, then this path has an appealing
interpretation. Conditional on the sample-mean path beingin the setS, with over-
whelming probability this happens via a path that is ‘close to’ f ⋆(·). We call f ⋆ the
most likely pathin the setS. Put differently: the decay rate ofpn[S] is fully dom-
inated by the likelihood of the most likely element inS: asn→ ∞, we have that
n−1 logpn[S]→−I( f ⋆). Knowledge of the most likely path gives often insight into
the dynamics of the problem.

After having described Schilder’s theorem in a heuristic manner above, we now
proceed with a formal treatment of the result. It requires the introduction of a num-
ber of concepts: (i) apath spaceΩ , (ii) a reproducing kernel Hilbert space R, (iii) an
inner product〈·, ·〉R, and (iv) finally anorm || · ||R. This norm turns out to be inti-
mately related to the ‘rate functional’I(·). Having defined these notions, we are able
to state Schilder’s theorem, which we do in Theorem 12.2.7.

The framework of Schilder’s theorem is formulated as follows. Consider a se-
quence of i.i.d. processesA1(·),A2(·), . . ., distributed as a Gaussian process with
variance functionv(·). We assume for the moment that the processes are centered,
but it is clear that the results for centered processes can betranslated immediately
into results for noncentered processes; we return to this issue in more detail in Re-
mark 12.3.2. Define the path spaceΩ as

Ω :=

{
ω : R→ R, continuous,ω(0) = 0, lim

t→∞

ω(t)
1+ |t| = lim

t→−∞

ω(t)
1+ |t| = 0

}
,

which is a separable Banach space by imposing the norm

||ω ||Ω := sup
t∈R

|ω(t)|
1+ |t| .

In [1] it is pointed out thatAi(·) can be realized onΩ under the following assump-
tion, which is supposed to be in force throughout the remainder of this chapter.

Assumption 12.2.6There is anα < 2 such that

lim
t→∞

v(t)
tα = 0.
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Next we introduce and define thereproducing kernel Hilbert space R⊆ Ω –
see [2] for a more detailed account – with the property that its elements are roughly
as smooth as the covariance functionΓ (s, ·). We start from a ‘smaller’ spaceR⋆,
defined by linear combinations of covariance functions:

R⋆ :=

{
ω : R→ R, ω(·) =

n

∑
i=1

aiΓ (si , ·), ai ,si ∈ R,n∈ N

}
.

The inner product on this spaceR⋆ is, for ωa,ωb ∈ R⋆, defined as

〈ωa,ωb〉R :=

〈
n

∑
i=1

aiΓ (si , ·),
n

∑
j=1

b jΓ (sj , ·)
〉

R

=
n

∑
i=1

n

∑
j=1

aib jΓ (si ,sj); (12.2)

notice that this implies〈Γ (s, ·),Γ (·,t)〉R = Γ (s,t). This inner product has the fol-
lowing useful property, which we refer to as thereproducing kernelproperty,

ω(t) =
n

∑
i=1

aiΓ (si , t) =

〈
n

∑
i=1

aiΓ (si , ·),Γ (t, ·)
〉

R

= 〈ω(·),Γ (t, ·)〉R. (12.3)

From this we introduce the norm||ω ||R :=
√
〈ω ,ω〉R. The closure ofR⋆ under this

norm is defined as the spaceR.

Having introduced the norm|| · ||R, we can now define the rate function that will
apply in Schilder’s theorem:

I(ω) :=

{
1
2||ω ||2R if ω ∈ R;

∞ otherwise.
(12.4)

Remark that forf that can be written as a linear combination of covariance functions
(i.e., f ∈R⋆), Equations (12.2) and (12.4) yield an explicit expressionfor I( f ).

Theorem 12.2.7 — (Generalized) Schilder.Let Ai(·) ∈Ω be i.i.d. centered Gaus-
sian processes, with variance function v(·). Then A1(·),A2(·), . . . obeys the large
deviations principle with rate functionI(·), i.e.,

(a)For any closed set F⊂Ω ,

limsup
n→∞

1
n

logP

(
1
n

n

∑
i=1

Ai(·) ∈ F

)
≤− inf

f∈F
I( f );

(b)For any open set G⊂Ω ,

lim inf
n→∞

1
n

logP

(
1
n

n

∑
i=1

Ai(·) ∈G

)
≥− inf

f∈G
I( f ).

Recall that this theorem, informally, states that
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pn[S] := P

(
1
n

n

∑
i=1

Ai(·) ∈ S

)

≈ exp

(
−n inf

f∈S
I( f )

)
= exp

(
−n

2
inf
f∈S
|| f ||2R

)
.

In other words, if we can write the probability of our interest aspn[S] for some set
of pathsS, then ‘Schilder’ provides us (at least in principle) with the corresponding
decay rate.

12.3 Single queues

In this section we apply Schilder’s theorem to the single queue. Before doing that,
we first review Reich’s theorem, describing the relation between the input process
and the steady-state queue length. We then derive the logarithmic many-sources
asymptotics, which enable us to establish a number of insightful structural properties
(duality between decay rate and variance function; convexity of buffer/bandwidth
trade-off curve).

12.3.1 Steady-state queue length

We first present a useful relation between the steady-state queue lengthQ and the
arrival processA(·), which plays a central role in the remainder of this chapter.This
fundamental distributional identity is often attributed to Reich [23].

Theorem 12.3.1 — Reich.Consider an infinite-buffer queueing system, fed by an
arrival process A(·, ·) with stationary increments and mean input rateµ , that served
at rate C. Suppose the system is stable, i.e.,µ <C. Then the following distributional
identity holds:

Q=dsup
t≥0

(A(−t,0)−Ct),

where Q is the steady-state buffer content. If the arrival process is time-reversible,
we have in addition

Q=dsup
t≥0

(A(t)−Ct).

Remark 12.3.2 Let A(·) be a Gaussian process with mean rateµ and variance func-
tion v(·). Consider the ‘centered version’Ā(·) of A(·), i.e., the Gaussian process with
mean rate 0 and variance functionv(·). With the stability conditionµ < C in force,
it is trivial that

P

(
sup
t≥0

(A(t)−Ct)≥ B

)
= P

(
sup
t≥0

(Ā(t)− (C− µ)t)≥ B

)
.



540 Michel Mandjes

As a consequence, when we have reduced the service rateC by the mean rateµ of
the input process, we can restrict ourselves, without loss of generality, to considering
just centered sources. ♦

12.3.2 Logarithmic asymptotics

We now study the logarithmic asymptotics of the probabilitythat the buffer content
under the many-sources scaling, defined asQn, exceedsnb: applying ‘Reich’,

pn(b,c) := P(Qn≥ nb) = P

(
sup
t≥0

(
n

∑
i=1

Ai(−t,0)−nct

)
≥ nb

)

= P

(
sup
t≥0

(
1
n

n

∑
i=1

Ai(−t,0)−ct

)
≥ b

)
.

To use ‘Schilder’ we have to define a set of ‘overflow paths’:

S(f) := { f ∈Ω : ∃t ≥ 0 :− f (−t)≥ b+ct}.

Here we use the superscript (f) as a mnemonic for FIFO, since we consider sin-
gle work-conserving queues here, of which the FIFO queue is the most promi-
nent example. Clearly, the observation thatA(−t,0) ≡ −A(−t) shows that indeed
pn(b,c) = pn[S

(f)]. This entails that we can apply Schilder’s theorem to obtain

lim
n→∞

1
n

logpn(b,c) =− inf
f∈S(f)

I( f ).

We obtain the following result [1]; with Remark 12.3.2 in mind, we restrict ourselves
without loss of generality to centered sources.

Theorem 12.3.3 — Logarithmic asymptotics.For any b,c > 0,

I (f)
c (b) :=− lim

n→∞

1
n

logpn(b,c) = inf
t≥0

(b+ct)2

2v(t)
. (12.1)

Proof. DefineS
(f)
t := { f ∈ Ω : − f (−t) ≥ b+ ct}, so thatS(f) is the union over

theS
(f)
t . Observe that

pn[S
(f)
t ] = P

(
1
n

n

∑
i=1

Ai(−t,0)≥ a+ νt

)
.

Cramér’s theorem [6] now entails that
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lim
n→∞

1
n

logpn[S
(f)
t ] =−sup

θ

(
θ (b+ct)− logEeθA(−t,0)

)
=

(b+ct)2

2v(t)
.

Using thatS(f) = ∪t≥0S
(f)
t , application of ‘Schilder’ yields that

lim
n→∞

1
n

logpn[S
(f)] =− inf

f∈S(f)
I( f ) =− inf

t≥0

(
inf

f∈S
(f)
t

I( f )

)
.

This implies the stated. 2

We call the decay rateI (f)
c (b), seen as a function of the buffer sizeb, and with

c held fixed, theloss curve. In this chapter the impact ofb on the optimizingt in
(12.1) plays a crucial rôle; we therefore use the notationt(b). The pathf ⋆ ∈ S(f) that
optimizesI( f ) is

f ⋆(r) := E(A(r) | A(−t(b),0) = b+ct(b))

=
Γ (r,−t(b))

v(t(b))
(b+ct(b)); (12.2)

we call this themost likely path to overflow.Here−t(b) can be interpreted as the
most likely time at which the buffer starts to build up in order to exceed levelnb at
time 0; we therefore callt(b) themost likely timescale of overflow.

Example 12.3.4We consider a Gaussian queue with fBm input, and show that the
loss curve is concave forH > 1

2, and convex forH < 1
2.

Takev(t) = t2H , for someH ∈ (0,1). If we perform the optimization in the right-
hand side of (12.1), we obtain, forb > 0,

t(b) =
b
c

H
1−H

, I (f)
c (b) =

1
2

(
b

1−H

)2−2H ( c
H

)2H
. (12.3)

We see that the loss curveI (f)
c (·) is convex (concave) when the Hurst parameter is

smaller (larger) than12. ♦

12.3.3 The shape of the loss curve

We now study the relationship between the correlation structure of the sources and

the shape of the curveI (f)
c (·). Our main result is that there is a neat connection be-

tween positive (negative) correlations and concavity (convexity) of the loss curve.
First we describe, on an intuitive level, what convexity andconcavity of the loss

curve mean. Evidently,I (f)
c (·) is increasing. It is important to notice that, clearly, the

steeperI (f)
c (·) at some buffer sizeb, the higher the marginal benefits of an additional

unit of buffering (where ‘benefits’ are in terms of reducing the overflow probability).
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If I (f)
c (·) is convex, then adding buffering capacity is getting more and more benefi-

cial; if I (f)
c (·) is concave, then the benefit of buffering becomes smaller andsmaller.

This motivates the examination of the characteristics of the shape of the loss curve

I (f)
c (·).

In more detail, the main result of this subsection is that we show that the curve
I (f)
c (·) is convex (concave) inb, if and only if the Gaussian input exhibits negative

(positive) correlations on the time-scalet(b) (defined earlier in this section). All
proofs are elementary, and add insight into the marginal benefits of buffering, i.e.,

the nature ofI (f)
c (·) (in terms of its derivative and second derivative with respect to

the buffer sizeb). We impose the following (mild) technical assumption onv(·) that
guarantees uniqueness oft⋆(b) for all b. Define the standard deviation function by
ς(t) :=

√
v(t).

Assumption 12.3.5The following two assumptions are imposed on the variance
function:(i) v(·) ∈C2([0,∞)), (ii) ς(·) is strictly increasing and strictly concave.

Lemma 12.3.6Assumption 12.3.5 entails that, for any b, minimization(12.1)has
a uniqueminimizer t(b). In fact, t(b) is the unique solution to

F(b, t) := 2cv(t)− (b+ct)v′(t) = 0, or b = c

(
2

v(t)
v′(t)

− t

)
. (12.4)

Proof. First rewrite the minimization (12.1) as

inf
t≥0

m2(t)
2

, with m(t) :=
b+ct
ς(t)

.

Defineφ(t) := ς(t)/ς ′(t)− t. Since

m′(t) =
cς(t)− (b+ct)ς ′(t)

ς2(t)
,

and because of element (ii) of Assumption 12.3.5, it sufficesto prove that (i) for
eachb > 0 andc > 0

φ(t) =
b
c

(12.5)

has a roott(b), and (ii)φ(·) is strictly increasing.
Due tov(t)/tα → 0 for someα < 2, it follows that limt→∞ m(t) = ∞ for each

b,c> 0. Moreover, sinceς(0) = 0, it follows that limt→0 m(t) = ∞ for eachb,c> 0.
As a consequence, Equation (12.5) has at least one solution.Moreover

φ ′(t) =
(ς ′(t))2− ς(t)ς ′′(t)

(ς ′(t))2 −1 =−ς(t)ς ′′(t)
(ς ′(t))2 > 0,

since ς ′′(t) < 0 due to the strict concavity ofς(·), cf. element (ii) of Assump-
tion 12.3.5. Thusφ(·) is strictly increasing. This completes the proof. 2
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Our main result on the relation between the shape of the decayrate function

I (f)
c (·), and the correlation structure of the Gaussian sources, is stated in Theorem

12.3.9. We first prove two lemmas.

The first lemma says that the most likely epoch of overflowt(b) is an increasing
function of the buffer sizeb.

Lemma 12.3.7 t(·) ∈C1([0,∞)), and is strictly increasing.

Proof. Recall the fact thatt(b) is theuniquesolution to (12.4). In conjunction
with v(·) ∈C2([0,∞)) andv′(·) > 0 (Assumption 12.3.5), we conclude thatt(·) is
continuous. From (12.4), we see that

t ′(b) =−∂F/∂b
∂F/∂ t

=
v′(t(b))

cv′(t(b))− (b+ct(b))v′′(t(b))
(12.6)

=
1
c
·
(

1−2
v(t(b))v′′(t(b))

v′(t(b))2

)−1

,

such that the continuity oft(·), together withv(·) ∈C2([0,∞)), implies thatt ′(·) is
continuous, too.

Assumption 12.3.5 states that, for allt ≥ 0,

d2

dt2

√
v(t) < 0 ⇐⇒ 2

v(t)v′′(t)
v′(t)2 < 1,

thus proving the lemma. 2

As we have seen in the proof of Thm. 12.3.3,I (f)
c (b) can be written as the varia-

tional problem

I (f)
c (b) = inf

t≥0
sup

θ

(
θ (b+ct)− logEeθA(t)

)
. (12.7)

The optimizingθ reads

θt (b) :=
b+ct
v(t)

. (12.8)

The second lemma states a relation between the derivative ofthe loss curve and
the tilting parameter of the Fenchel-Legendre transform in(12.7). Here we use the
shorthand notationθ (b)≡ θt(b)(b).

Lemma 12.3.8For all b > 0, it holds that(I (f)
c )′(b) = θ (b).

Proof. Recalling thatt(b) is the optimizingt, differentiating (12.1) with respect
to b yields

(I (f)
c )′(b) =

(
b+ct(b)

v(t(b))

)
−t ′(b)

(
b+ct(b)

2v2(t(b))

)(
(b+ct(b))v′(t(b))−2cv(t(b))

)
.

Now note that this equalsθ (b), due to (12.4) and (12.8). 2
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The main result of this section can be proven now [13]. It describes the duality

relation between the shape ofI (f)
c (·) and the correlation structure (which is uniquely

determined byv(·)). More specifically, it is shown that the curveI (f)
c (·) is convex at

some buffer sizeb if and only if there are negative correlations on the timescale t(b)
on which the overflow most likely takes place.

Theorem 12.3.9For all b > 0,

(I (f)
c )′′(b)≥ 0 ⇐⇒ v′′(t(b))≤ 0.

Proof. Due to Lemma 12.3.8,(I (f)
c )′′(b) = θ ′(b). Trivial calculus yields

θ ′(b) =
v(t(b))(1+ct′(b))−2ct′(b)v(t(b))

v2(t(b))
=

1−ct′(b)

v(t(b))
,

where the last equality is due to (12.4). Asv(t) is nonnegative for anyt > 0, conclude

that(I (f)
c )′′(b)≥ 0 is equivalent toct′(b)≤ 1. So we are left to prove thatct′(b)≤ 1

is equivalent tov′′(t(b))≤ 0.
To show this equivalence, note that relation (12.6) yields

t ′(b) =
1
c

(
1−
(

t(b)+
b
c

)
v′′(t(b))

v′(t(b))

)−1

.

Now recall thatt(b) ≥ 0, t ′(b) ≥ 0 (due to Lemma 12.3.7) andv′(t(b)) ≥ 0. Con-
clude thatct′(b)≤ 1 is equivalent tov′′(t(b))≤ 0. 2

Obviously, for allb andt, it holds thatI (f)
c (b) ≤ (b+ct)2/(2v(t)). Noticing that

bothv(·) andI (f)
c (·) are nonnegative, this results in the following interestingcorol-

lary.

Corollary 12.3.10 For all t > 0, it holds that

v(t)≤ inf
b>0

(b+ct)2

2I (f)
c (b)

. (12.9)

As described in [17], the inequality in (12.9) is, under mildconditions onv(·),
actually an equality. This means that an interesting duality holds: when knowing the
loss curve, one can retrieve the variance of the input process.

Example 12.3.11 – iOU.First verify thatv(t) = t − 1+ e−t satisfies Assumption
12.3.5. It is easy to see thatv(·) is convex, so we will have ‘decreasing marginal

buffering benefits’, i.e.,I (f)
c (·) is concave due to Theorem 12.3.9. This example

shows the relation between the ‘level of positive correlation’ and the shape ofI (f)
c (·).

The strong convexity for smallt indicates strong positive correlation on short time-
scale, whereas this positive correlation becomes weaker and weaker as the time-
scale increases (reflected by the asymptotically linear shape ofv(·) for t large).
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First we concentrate on smallb. Straightforward calculations reveal thatI (f)
c (b) =

c2 + 2
3

√
6bc3+O(b), wheret(b)≈

√
6b/c. So I (f)

c (·) is highly concave forb small
(i.e., behaving as a square root), expressing the strong positive correlations on a
short timescale.

For largeb, we find thatI (f)
c (b)−2c(b+c)→ 0, with t(b)≈ b/c+2. Apparently,

for largeb, I (f)
c (·) becomes nearly linear, as expected by the weak correlation on

long timescales. ♦

Example 12.3.12 – fBm.For H < 1
2 this function is (uniformly) concave, indicat-

ing negative correlations, whereasH > 1
2 entails thatv(·) is convex corresponding

to positive correlations — forH = 1
2, the increments are independent. Assumption

12.3.5 is fulfilled; notice that
√

v(t) = tH , which is concave. The results of Exam-

ple 12.3.4 show thatI (f)
c (·) is indeed convex (concave) when the Hurst parameter is

smaller (larger) than12, as could be expected on the basis of Theorem 12.3.9.♦

12.3.4 The buffer-bandwidth curve is convex

A network provider has essentially two types of resources that he can deploy to meet
the customers’ performance requirements. When he chooses to increase the amount
of buffer available in the network element, this clearly hasa positive impact on the
loss probability (albeit at the expense of incurring additional delay); the alternative
is to increase the queue’s service capacity (which reduces both the loss probability
and the delay).

In other words: to achieve a certain predefined loss probability, sayε, the provider
has to choose with which buffer size and link capacity this target is achieved. It is
clear that the two types of resources trade off, and the goal of this section is to
further analyze the corresponding buffer-bandwidth curve.

As before, we rely on the many-sources framework introducedearlier in this
chapter: we haven sources sharing a network element with service ratencand buffer
thresholdnb, with the performance objectivepn(b,c) ≤ ε. Relying on the (very

crude) approximationpn(b,c)≈ exp(−nI(f)c (b)), our objective becomesI (f)
c (b)≥ δ ,

where the identificatione−nδ = ε is used (such thatδ > 0). In other words: all values
b,c such that

inf
t≥0

(b+ct)2

2v(t)
≥ δ

satisfy the performance requirement.
Interestingly, the many-sources framework allows us to findthe minimally re-

quired link capacityc for a given bufferb and loss constraintδ , as follows. By
definition

cb(δ )≡ cb := inf

{
c | inf

t≥0

(b+ct)2

2v(t)
≥ δ

}
.
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It is clear, however, that if the infimum of a functionf (t) over t is larger than (or
equal to)δ , thenfor all t it should hold thatf (t)≥ δ . In other words:

cb = inf

{
c | ∀t ≥ 0 :

(b+ct)2

2v(t)
≥ δ

}
.

Isolating thec, this further reduces to

cb = inf

{
c | ∀t ≥ 0 : c≥

√
2δv(t)−b

t

}

= inf

{
c | c≥ sup

t≥0

√
2δv(t)−b

t

}
= sup

t≥0

√
2δv(t)−b

t
. (12.10)

Similarly, the minimally requiredb (for givenc,δ ) can be computed:

bc = sup
t≥0

(√
2δv(t)−ct

)
.

Interestingly, it now follows that the resources trade off in a convex way, in the sense
that, for givenδ , cb is a convex function ofb [11].

Proposition 12.3.13The required link capacity cb(δ ) ≡ cb for given buffer b and
decay rateδ , as given by(12.10), is a convex function.

Proof. Evidently, the objective function in (12.10), i.e.,
√

2δv(t)/t−b/t, is lin-
ear inb. The maximum of linear functions is convex. 2

Example 12.3.14We now computecb andbc for fBm. Applying the results above,
we have thatcb = inft≥0 f (t), with

f (t) :=
√

2δ tH−1− b
t
.

It is clear thatf (t)→−∞ ast ↓ 0; also f (t)→ 0 ast→ ∞. At the same time it can
be verified thatf ′(·) has one zero, andf ′′(·) changes sign just once. In other words:
we find the unique maximum by solvingf ′(t) = 0. This yields

t =

(
b√

2δ (1−H)

)1/H

.

Inserting this in the objective function yields

cb = H(2δ )1/2H
(

b
1−H

)1−1/H

.

We see thatc andb trade off ‘hyperbolically’. Similarly,
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bc = (1−H)(2δ )−1/(2H−2)
( c

H

)H/(H−1)
.

The above calculations reveal that, along the trade-off curve,b1−HcH remains con-
stant (where this constant depends onH andδ ). ♦

Example 12.3.15We again consider fBm traffic, and require that the decay rateof
the loss probability is at leastδ . We impose the following cost structure: the cost
per unit buffer isκb, and the cost per unit capacity isκc. The optimal buffer sizeb⋆

and capacityc⋆ are determined as follows.
We saw that, to obtain a decay rateδ , the resourcesb andc are such thatb1−HcH

is constant; this constant, sayϕ , depends onH andδ . Consequently, the problem
we have to solve is:

min
b≥0,c≥0

κbb+ κcc subject tob1−HcH = ϕ .

Due to the convex form of the constraint, this can be solved immediately through
Lagrangian optimization. It is easily verified that

c⋆ =

(
κb

κc
· H
1−H

)1−H

, b⋆ =

(
κc

κb
· 1−H

H

)H

.

In fact, also for a general functioncb(δ ) the solution can be characterized. Ele-
mentary convex analysis yields that we have to find theb for which the derivative of
cb(δ ) is κb/κc, i.e.,b⋆ is solved from

κb

κc
=−

(
∂

∂b
cb(δ )

)
;

c⋆ then equalscb⋆(δ ). ♦

12.4 Tandem networks

Having focused on the single queue in the previous section, we now consider a two-
queue tandem model, with (deterministic) service ratenc1 for the first queue andnc2

for the second queue. We assume thatc1 > c2, in order to exclude the trivial case
where the buffer of the second queue cannot build up.

12.4.1 Alternative formulation

In line with the previous section, we considern i.i.d. Gaussian sources that feed
into the first queue. Traffic of these sources that has been served at the first queue



548 Michel Mandjes

immediately flows into the second queue — we assume no additional sources to
feed the second queue. We are interested in the steady-stateprobability of the buffer
content of the second queueQ2,n exceeding a certain thresholdnb, b > 0, when the
number of sources gets large, or, more specifically, its logarithmic asymptotics:

I (t)
c (b) := − lim

n→∞

1
n

logP(Q2,n > nb), (12.1)

wherec denotes the vector(c1,c2)
T. Note that we assume the buffer sizes of both

queues to be infinite.

We first show that the probability of our interest can be written in terms of the
‘empirical mean process’n−1 ∑n

i=1Ai(·). The following lemma exploits the fact that
we know both a representation of the first queueQ1,n (in steady-state) and a repre-
sentation of thetotal queueQ1,n +Q2,n (in steady-state). Lett0 := b/(c1−c2).

Lemma 12.4.1P(Q2,n > nb) equals

P

(
∃t > t0 : ∀s∈ (0,t) :

1
n

n

∑
i=1

Ai(−t,−s) > b+c2t−c1s

)
.

Proof. Notice that a ‘reduction principle’ applies: the total queue length is un-
changed when the tandem network is replaced by its slowest queue, see e.g. [3, 8].
More formally:Q1,n + Q2,n = supt>0(∑n

i=1Ai(−t,0)−nc2t). Consequently we can
rewrite the buffer content of the downstream queue as

Q2,n = (Q1,n +Q2,n) − Q1,n

=d sup
t>0

(
n

∑
i=1

Ai(−t,0)−nc2t

)
−sup

s>0

(
n

∑
i=1

Ai(−s,0)−nc1s

)
. (12.2)

It was shown, see [23, Lemma 5.1], that the negative of the optimizing t in (12.2)
corresponds to the start of the last busy period of the total queue in which time 0
is contained; similarly, the optimizings is the start of the last busy period of the
first queue in which time 0 is contained. Notice that a positive first queue induces
a positive total queue, which immediately implies that we can restrict ourselves to
s∈ (0, t). HenceP(Q2,n > nb) equals

P

(
∃t > 0 : ∀s∈ (0,t) :

1
n

n

∑
i=1

Ai(−t,−s) > b+c2t−c1s

)
.

Because fors↑ t the requirement

1
n

n

∑
i=1

Ai(−t,−s) > b+c2t−c1s
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6

-
s

0

b+c2t0

b+c2τ1

b+c2τ2

t0 τ1 τ2b+(c2−c1)τ1

b+(c2−c1)τ2

Fig. 12.1: Graphical representation of the overflow set. Fordifferent values oft, the
curveb+ c2t− c1(t− s) has been drawn. Overflow occurs if there is at > t0 such
that the empirical mean process lies, fors∈ (0,t), above the corresponding curve.

reads 0> b+(c2− c1)t, we can restrict ourselves tot > t0. We can interprett0 as
the minimum time it takes to cause overflow in the second queue(notice that the
maximum net input rate of the second queue in a tandem system isc1−c2). 2

The crucial implication of the above lemma is that for analyzing P(Q2,n ≥ nb),
we only have to focus on the behavior of the empirical mean process. More con-
cretely,

P(Q2,n > nb) = pn[S
(t)] = P

(
1
n

n

∑
i=1

Ai(·) ∈ S(t)

)
, (12.3)

where the set of ‘overflow paths’S(t) is given by

S(t) := { f ∈Ω : ∃t > t0,∀s∈ (0,t) : f (−s)− f (−t) > b+c2t−c1s}.

Remark 12.4.2 A straightforward time-shift shows that the probability that the em-
pirical mean process is inS(t) coincides with the probability that it is inT, with

T := { f ∈Ω : ∃t > t0,∀s∈ (0,t) : f (s) > b+c2t−c1(t−s)}. (12.4)

However, the setT is somewhat easier to interpret, see Figure 12.1. For different
values oft (i.e., τ2 > τ1 > t0 = b/(c1− c2)), the lineb+ c2t − c1(t − s) has been
drawn. The empirical mean processn−1 ∑n

i=1Ai(·) is inT if there is at > t0 such that
for all s∈ (0, t) it stays above the lineb+ c2t− c1(t− s). Notice thatT resembles
the set corresponding to the probability of long busy periods in a single queue, as
studied in [21]. ♦

Remark 12.4.3 As indicated above, our results are for centered sources, but, as
before, they can be translated easily into results for non-centered sources, cf. Re-
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mark 12.3.2. Then the traffic generated by Gaussian sourcei in the interval[s,t)
is A(s, t)+ µ(t− s), whereA(s,t) corresponds to a centered source; here 0< µ <
min{c1,c2} ands< t. Let q(µ ,c1,c2) be the probability that the second queue ex-
ceedsnb, given that input rateµ and service ratesc1 andc2 are in force. From (12.2)
it follows immediately that

q(µ ,c1,c2) = q(0,c1− µ ,c2− µ),

and hence we can restrict ourselves to centered sources. ♦

12.4.2 Lower bound

In this section we start analyzing the logarithmic asymptotics ofP(Q2,n > nb). More
specifically, we use ‘Schilder’ (Theorem 12.2.7) to formulate the decay rate as a
variational problem, and then we find a lower bound on this decay rate.

Decay rate as a variational problem.We now consider the decay rate (12.1) of
P(Q2,n > nb). We already saw in Equation (12.3) thatP(Q2,n > nb) can be rewritten
as the probability that the empirical mean process is inS(t) (which is an open subset
of Ω ). The existence of the decay rate is now a consequence of Schilder’s theorem,
by showing (the plausible fact) thatS(t) is anI-continuity set, i.e., that the infima of
I(·) overS(t) and its closure, sayS(t), match. This proof ofS(t) being anI-continuity
set is beyond the scope of this chapter, and can be found in Appendix A of [18].

Theorem 12.4.4
I (t)
c (b) = inf

f∈S(t)
I( f ) = inf

f∈S(t)
I( f ).

Lower bound on the decay rate.Our next goal is to derive a tractable lower bound

on I (t)
c (b). This is presented in Theorem 12.4.5.

Observe that

S(t) =
⋃

t>t0

⋂

s∈(0,t)

S
(t)
s,t with S

(t)
s,t := { f ∈Ω : f (−s)− f (−t) > b+c2t−c1s}.

Hence we are interested in the decay rate of the union of intersections. The decay
rate of a union of events is simply the minimum of the decay rates of the individual
events, as we have seen several times before. The decay rate of an intersection,
however, is not standard. In the next theorem we find a straightforward lower bound
on this decay rate. Define

Us,t := { f ∈Ω :− f (−t)≥ b+c2t; f (−s)− f (−t)≥ b+c2t−c1s}.

Theorem 12.4.5The following lower bound applies:
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I (t)
c (b)≥ inf

t>t0
sup

s∈(0,t)
inf

f∈Us,t
I( f ). (12.5)

Proof. Clearly,

I (t)
c (b) = inf

t>t0
inf

f∈ ⋂

s∈(0,t)
S

(t)
s,t

I( f ).

Now fix t and consider the inner infimum. Iff (−s)− f (−t) > b+c2t−c1s for all
s∈ (0, t), then also (f is continuous)f (−s)− f (−t)≥ b+c2t−c1s for all s∈ [0,t].
Hence, ⋂

s∈(0,t)

S
(t)
s,t ⊆

⋂

s∈[0,t]

Us,t ⊆ Ur,t

for all r ∈ (0, t), and consequently

inf
f∈ ⋂

s∈(0,t)
S

(t)
s,t

I( f ) ≥ inf
f∈Ur,t

I( f ).

Now take the supremum overr in the right-hand side. 2

Theorem 12.4.5 contains an infimum overf ∈ Us,t . In the next lemma we show
how this infimum can be computed.

Before stating this lemma, we first introduce some additional notation. Recalling
‘bivariate Cramér’ [6], the bivariate large-deviations rate function of

(
n

∑
i=1

Ai(−t,0)

n
,

n

∑
i=1

Ai(−t,−s)
n

)

is, for y,z∈ R andt > 0, s∈ (0,t), given byΛ(y,z) := 1
2 (y,z) Σ(t − s,t)−1(y,z)T,

with

Σ(s,t) :=

(
v(t) Γ (s,t)

Γ (s,t) v(s)

)
.

We also define the following quantity, which plays a key rôlein our analysis:

k(s, t) := E(A(−s,0) | A(−t,0) = b+c2t)

= E(A(s) | A(t) = b+c2t) =
Γ (s,t)

v(t)
(b+c2t). (12.6)

Recall Assumption 12.3.5: the standard deviation functionwas supposed to be
C2([0,∞)) and strictly increasing and strictly concave.

Lemma 12.4.6Under Assumption 12.3.5, for t> t0 and s∈ (0,t),

inf
f∈Us,t

I( f ) = ϒ (s, t) :=

{
Λ(b+c2t,b+c2t−c1s), if k(s,t) > c1s;
(b+c2t)2/2v(t), if k(s,t)≤ c1s.
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Proof. Observe that

pn[Us,t ] ≡ P

(
n

∑
i=1

Ai(·)
n
∈ Us,t

)

= P

(
n

∑
i=1

Ai(−t,0)

n
≥ b+c2t;

n

∑
i=1

Ai(−t,−s)
n

≥ b+c2t−c1s

)
. (12.7)

We conclude that we can use ‘bivariate Cramér’ [6] to find thedecay rate ofpn[Us,t ].
We obtain

inf
f∈Us,t

I( f ) = infΛ(y,z),

where the last infimum is overy≥ b+c2t andz≥ b+c2t−c1s. Using thatΛ(·, ·) is
convex, this problem can be solved in the standard manner. Itis easily verified that
the contour ofΛ that touches the liney = b+c2t does so atz-value

z⋆ :=
Γ (t−s,t)

v(t)
(b+c2t);

also, the contour that touchesz= b+c2t−c1sdoes so aty-value

y⋆ :=
Γ (t−s,t)
v(t−s)

(b+c2t−c1s).

We first show that it cannot be thaty⋆ > b+ c2t, as follows. Ify⋆ > b+ c2t, then
the optimum would be attained at(y⋆,b+c2t−c1s). Straightforward computations,
however, show thaty⋆ > b+c2t would imply that (useΓ (t,t−s)≤

√
v(t)v(t−s) )

(√
v(t)−

√
v(t−s)

)
(b+c2t) >

√
v(t)c1s. (12.8)

This inequality is not fulfilled fors= 0 (0 6> 0) nor fors= t (b+c2t 6> c1t for t > t0).
As the left hand side of (12.8) is convex (ins) due to Assumption 12.3.5, whereas
the right hand is linear (ins), there is nos∈ (0,t) for which the inequality holds.
Conclude thaty⋆ > b+c2t can be ruled out.

Two cases are left:

A) Supposez⋆ > b+ c2t − c1s, or, equivalently,k(s,t) ≤ c1s. Then(b+ c2t,z⋆) is
optimal, with rate function(b+c2t)2/2v(t), independent ofs.

B) In the remaining case (wherey⋆ ≤ b+ c2t andz⋆ ≤ b+ c2t− c1s) the optimum
is attained at the(b+ c2t,b+ c2t− c1s), i.e., the ‘corner point’. This happens if
k(s, t) > c1s, and gives the desired decay rate.

This proves the stated. As an aside we mention that ifk(s,t) = c1s, then both regimes
coincide:Λ(b+c2t,b+c2t−c1s) = (b+c2t)2/2v(t). 2

Summarizing, we have shown that, under Assumption 12.3.5, the following
lower bound applies:
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I (t)
c (b)≥ inf

t>t0
sup

s∈(0,t)
ϒ (s,t). (12.9)

12.4.3 Tightness; two regimes

For large values ofc1 one would expect that the traffic characteristics are hardly
changed by traversing the first queue. Define

Lc(t) :=
(b+ct)2

2v(t)
,

and lettc denote at for which Lc(t) is minimized. Then [18] shows that there is a
critical link rate

c⋆
1 := sup

s∈(0,tc2)

k(s,tc2)

s
,

above which the tandem system essentially behaves as a single queue, as formalized
in the following result.

Theorem 12.4.7Under Assumption 12.3.5, if c1≥ c⋆
1, then

I (t)
c (b) = inf

t>t0
sup

s∈(0,t)
ϒ (s,t) = Lc2(tc2).

Remark 12.4.8 The approach we follow in this section to analyze the two-node
tandem network, can be easily adapted to the setting of anm-node tandem network,
with strictly decreasing service rates, i.e.,c1 > .. . > cm — nodesi for which ci ≤
ci+1 can be ignored, cf. [3]. Note that∑k

i=1Qi,n is equivalent to the single queue in
which the sources feed into a buffer that is emptied at rateck. This means that we
have the characteristics of both∑m−1

i=1 Qi,n and∑m
i=1Qi,n, which enables the analysis

of Qm,n, just as in the two-node tandem case. ♦
As shown in [15, 18], for iOU input the lower bound (12.9) is actually tight (and

c1 ≤ c⋆
1), but this is not the case for fBm. The difficulty when lookingfor the most

likely path is that, for fixedt, we have to deal with an infinite intersection of events,
indexed bys∈ (0, t). We found a lower bound on the decay rate of the intersection,
which corresponded to the least likely event in the intersection. As remarked earlier,
the lower bound is tight if this least likely event essentially implies the other events
in the intersection. Apparently, for iOU this is the case (and is the most likely path
equivalent to the weighted sum of two covariance functions), but for fBm it is not.

The question remained what the most likely path should be forfBm. To investi-
gate this issue, [16] studied first at a more elementary case.Consider the decay rate
of pn[V], with
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V :=
⋂

t∈(0,1)

Vt with Vt := { f ∈Ω : f (t)≥ t},

which could be interpreted as the event of having a busy period of length at least 1,
in a queue drained at unit rate. Norros [21] already providedseveral bounds on this
decay rate:

- asVt ⊆ V, we have

− lim
n→∞

1
n

logpn[V]≥ sup
t∈(0,1)

t2

2t2H =
1
2

;

- as the norm of any feasible path is an upper bound, we have

− lim
n→∞

1
n

logpn[V]≤ I(χ) =: ϑ(H),

whereχ(t) = t, for t ∈ (0,1).

The functionϑ(·) could be evaluated explicitly, and numerical investigations indi-
cated that there was still a modest gap between the lower bound (i.e., 1

2) and the
upper bound. In [16] the exact value for the decay rate was found. Notably, the
most likely pathf ⋆ is for H ∈ (1

2,1) such thatf ⋆(t) = t for t ∈ [0,τ]∪{1} (where
τ < 1

2), and thatf ⋆(t) > t for t ∈ (τ,1); similarly, in the regimeH ∈ (0, 1
2), we have

that f ⋆(t) = t for t ∈ {0}∪ [τ,1]. Interestingly, the most likely path is now a linear
combination of uncountably many covariance functions. Theanalysis is substan-
tially more involved than that of this chapter, but a number of concepts could be
still used; more specifically, the concept of least likely events turned out to be very
useful. The results of [16] also show that the ‘smoothness’ of the Gaussian process
under consideration plays an important rôle here, which also explains why for iOU
the lower bound (12.9) was tight, but for fBm not.

The above analysis for busy periods can be extended to tandemnetworks fed by
fBm, as is done in [15]. Forc1 < c⋆

1, a part of the most likely path is linear (just as
for the busy-period problem described above).

12.4.4 Approximation

Interestingly, along the lines of Mannersalo and Norros [19, 20] also the following
approximation can be proposed:

I (t)
c (b)≈ inf

t≥t0

(b+c2t)2

2v(t)
; (12.10)

in [19, 20] this is called a(rough) full link approximation. The idea behind this
approximation is the following. Iftc2 ≥ t0, and traffic has been generated at a more
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or less constant rate in[−tc2,0], then no (or hardly) traffic is left in the first queue
at time 0, and the approximation seems reasonably accurate.If on the other hand
tc2 < t0, then there will be traffic left in the first queue at time 0, so the input rate
needs to be pushed down; thereforet = t0 has to be chosen, such that the sources
are forced to transmit at about ratec1, and the first queue remains (nearly) empty.
Numerical experiments have indicated that this approximation is quite accurate, see
[15].

Example 12.4.9 – fBm.Choosingv(t) = t2H gives

tc2 =
b
c2

H
1−H

.

By Theorem 12.4.7,

I (t)
c (b) =

1
2

(
b

1−H

)2−2H (c2

H

)2H

for all c1 ≥ c⋆
1. Unfortunately, for generalH there does not exist a closed-form

expression forc⋆
1. Straightforward calculus yields that

c⋆
1 =

c2

2H

(
sup

α∈(0,1)

1+ α2H− (1−α)2H

α

)
;

observe that in this casec⋆
1 doesnot depend onb. It can be verified thatc⋆

1 is close
to (i.e., slightly larger than)c2/H.

Now turn to the casec1 < c⋆
1. It is readily verified thattc < t0 corresponds to

c1 < c2/H. We obtain

I (t)
c (b)≈ 1

2

(
b

c1−c2

)2−2H

c2
1,

based on the rough fill link approximation. ♦

12.5 Priority queues

In the previous section we analyzed overflow in the second queue of a tandem sys-
tem. This analysis was enabled by the fact that we had explicit knowledge of both
thefirst queue and thetotal queue. In the present section we use the same type of
arguments to solve the (two-queue) priority system.
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12.5.1 Lower bound

We consider a priority system with a link of capacitync, fed by traffic of two classes,
each with its own queue. Traffic of class 1 does not ‘see’ class2 at all, and conse-
quently we know how thehigh-priority queueQh,n behaves. Also, due to the work-
conserving property of the system, thetotal queue lengthQh,n+Qℓ,n can be charac-
terized. Now we are able, applying the same arguments as for the tandem queue, to
analyze the decay rate of the probability of exceeding some buffer threshold in the
low-priority queue. This similarity between tandem and priority systems has been
observed before, see for instance [7].

We let the system be fed byn i.i.d. high-priority (hp) sources, and an equal num-
ber of i.i.d. low-priority (lp) sources; both classes are independent. We assume that
both hp and lp sources are Gaussian. Define the means byµh andµℓ, and the vari-
ance functions byvh(·) andvℓ(·), respectively; alsoµ := µh+ µℓ (whereµ < c) and
v(·) := vh(·)+vℓ(·). We note that in this priority setting we cannot restrict ourselves
to centered processes. We denote the amount of traffic from the i-th hp source in
(s, t], with s< t, by Ah,i(s, t); we defineAℓ,i(s,t) analogously. AlsoΓh(s,t),Γℓ(s,t)
andRh,Rℓ are defined as before.

Remark 12.5.1 Notice that this setting also covers the case that the numberof
sources of both classes arenot equal. Assume for instance that there arenα lp
sources. Multiplyingµℓ andvℓ(·) by α and applying the fact that the Normal distri-
bution is infinitely divisible, we arrive atn i.i.d. sources. ♦

In the tandem situation we could, without loss of generality, center the Gaussian
sources. It can be checked easily that such a reduction property does not hold in the
priority setting, since there is no counterpart of Remark 12.4.3. Hence we cannot
assume without loss of generality thatµh = µℓ = 0.

Analogously to Lemma 12.4.1, we obtain thatP(Qℓ,n > nb) equals

P

(
∃t > 0 :∀s> 0 :

1
n

n

∑
i=1

Ah,i(−t,−s)+
1
n

n

∑
i=1

Aℓ,i(−t,0) > b+c(t−s)

)
.

Let I (p)
c (b) be the exponential decay rate ofP(Qℓ,n > nb); analogously to Theo-

rem 12.4.4 it can be shown that this decay rate exists. Similarly to the tandem case,
with f (·) ≡ ( fh(·), fℓ(·)),

S
(p)
s,t := { f ∈Ω ×Ω : fh(−s)− fh(−t)− fℓ(−t) > b+c(t−s)};

U
(p)
s,t :=

{
f ∈Ω ×Ω :

− fh(−t)− fℓ(−t)≥ b+ct;
fh(−s)− fh(−t)− fℓ(−t)≥ b+c(t−s)

}
; (12.1)

P(Qℓ,n > nb) = P

((
1
n

n

∑
i=1

Ah,i(·);
1
n

n

∑
i=1

Aℓ,i(·)
)
∈
⋃

t>0

⋂

s>0

S
(p)
s,t

)
.
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Theorem 12.5.2The following lower bound applies:

I (p)
c (b)≥ inf

t>0
sup
s>0

inf
f∈U

(p)
s,t

I( f ), (12.2)

with f̄h(t) := fh(t)− µht, f̄ℓ(t) := fℓ(t)− µℓt, and

I( f ) :=
1
2
|| f̄h||2Rh

+
1
2
|| f̄ℓ||2Rℓ

.

12.5.2 Tightness; two regimes

The infimum overf ∈U
(p)
s,t can be computed explicitly, as in Lemma 12.4.6. As the

analysis is analogous to the tandem case, but the expressions are more complicated,
we only sketch the procedure. Again there is a regime in whichone of the two
constraints is redundant. Define

kp(s, t) := E(Ah(s) | Ah(t)+Aℓ(t) = b+ct).

Using the convexity of the large-deviations rate function,it can be shown that, if

E(Ah(t−s)+Aℓ(t) | Ah(t)+Aℓ(t) = b+ct) > b+c(t−s),

only the first constraint in (12.1) is tightly met; it is equivalent to require that
kp(s, t) < cs. (If kp(s, t) ≥ cs either both constraints in (12.1) are met with equal-
ity, or only the second constraint is met with equality; exact conditions for these
two cases are easy to derive, but these are not relevant in this discussion.) As before,
underkp(s, t) < cs, we obtain the decay rate

inf
f∈U

(p)
s,t

I( f ) =
(b+(c− µ)t)2

2v(t)
, (12.3)

cf. the single queue with link ratenc; in the other cases the expressions are somewhat
more involved. Denote (in this section) bytc the value oft > 0 that minimizes the
right hand side of (12.3).

Similarly to the tandem case, there is a regime (i.e., a set ofvalues of the link rate

c) in which I (p)
c (b) coincides with the decay rate of a single queue. In this regime,

which we call regime (A), conditional on a large value of the total queue length, it
is likely that the hp queue is empty, such that all traffic thatis still in the system is
in the lp queue. Hence, for allc in

{c | ∀s> 0 : kp(s,tc) < cs} (12.4)

we conclude
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I (p)
c (b) =

(b+(c− µ)tc)2

2v(tc)
.

If c is not in the set (12.4), a condition can be found [18] under which the lower
bound of Theorem 12.5.2 is tight; we call this regime (B).

In the tandem case, we found that the single-queue result holds for c1 ≥ c⋆
1,

whereas it does not hold forc1 < c⋆
1; the threshold valuec⋆

1 was found explicitly in
Section 12.4.2. In the priority setting there is not such a clear dichotomy. Consider
for instance the situation in which both types of sources correspond to Brownian
motions;vh(t)≡ λht, vℓ(t)≡ λℓt, andλ := λh + λℓ. Define

Ξ :=

√

µ2
ℓ +

λℓ

λh
(c− µh)2.

Then straightforward calculus yields that for(λh− λℓ)c ≤ λh(µh + 2µℓ)− λℓµh,
regime (A) applies (i.e., the single-queue result holds):

I (p)
c (b) =

2b(c− µ)

λ
,

whereas otherwise we are in regime (B):

I (p)
c (b) =

b(Ξ − µℓ)

λℓ
;

this is shown by verifying that the lower bound of Theorem 12.5.2 is tight for the
specific case of Brownian motion input. Usingµh + µℓ < c, it can be verified easily
that this implies that forλh ≤ λℓ the single-queue solution applies, whereas for
λh > λℓ only for

c≤ λh(µh +2µℓ)−λℓµh

λh−λℓ
,

the single-queue solution applies.

12.5.3 Approximation

Our lower bound reads

I (p)
c,I (b) := inf

t>0
sup
s>0

ϒp(s,t), with ϒp(s,t) := inf
f∈U

(p)
s,t

I( f ).

Just as we did above, Mannersalo and Norros [19] identify twocases. The same
solution is obtained for our regime (A), i.e., the situationin which, given a long
total queue length, the hp queue is relatively short. In regime (B) the hp queue
tends to be large, given that the total queue is long. To prevent this from happening,
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[19] proposes a heuristic (in line with the rough full link approximation that we
introduced for the tandem case) that minimizesI( f ) over

{ f ∈Ω ×Ω : ∃t > 0 :− fh(−t)− fℓ(−t)≥ b+ct;− fh(−t)≤ ct}. (12.5)

Because regime (B) applies, the optimum paths in the set (12.5) are such that the

constraints onf are tightly met; consequently (12.5) is a subset ofU
(p)
t,t . Hence the

resulting decay rate, which we denote byI (p)
c,II (b), yields a lower bound, but our lower

bound will be closer to the real decay rate:

I (p)
c,II (b) := inf

t>0
ϒp(t,t)≤ inf

t>0
sup
s>0

ϒp(s,t) = I (p)
c,I (b).

Remark 12.5.3 In the simulation experiments performed in [19], it was found that

the lower boundI (p)
c,II (b) is usually close to the exact value. Our numerical experi-

ments show that the hp buffer usually starts to fill shortly after the total queue starts
its busy period. This means that in many cases the error made by taking s = t is
relatively small. It explains why the heuristic based on set(12.5) performs well.♦

12.6 Concluding remarks

In this chapter we have described a family of results on queueing networks with
Gaussian inputs. Under the many-sources scaling we have characterized the decay
rate of exceeding a predefined threshold. The type of networks is still rather limited;
future work may focus on a broad classes of networks (tree networks, tandem net-
works with exogenous input in the downstream queue, etc.); the structural results of
[26, 27] could be useful here.
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Chapter 13
Mean Values Techniques

Ivo Adan, Jan van der Wal

13.1 Introduction

This chapter presents the technique to determine mean performance characteris-
tics of queueing models, generally known asmean value analysis(MVA). The term
MVA is usually associated with queueing networks (QNs). However, the MVA tech-
nique is also very powerful when studying single-station queueing models. The
merits of MVA are in its intrinsic simplicity and its intuitively appealing derivation
based on probabilistic arguments. The intuition of MVA can also be used to develop
approximations for problems where an exact analysis appears to be intractable.

We would like to emphasize that this chapter is not intended as an exhaustive
survey of MVA. The main goal is to demonstrate the elegance and power of MVA for
a collection of queueing problems and, so as to speak, to whetthe reader’s appetite
to apply MVA to new problems.

MVA ideas for single stations must have been around for a longtime, although
it is hard to locate the exact origin. One of the reasons mightbe that the analysis
of single-server stations is usually based on transform techniques, yielding mean
values as a byproduct. MVA for QNs originated in the late seventies. The first MVA
ideas were independently invented by Schweitzer [11] and Bard [2] and were ap-
proximate in nature. Shortly after the first approximate MVAtechniques (AMVA)
were developed, Lavenberg and Reiser [8, 9] discovered exact MVA. The advan-
tages of exact and approximate MVA were recognized soon thereafter and the MVA
literature for QNs grew rapidly.

The principle of MVA for single stations with Poisson arrivals is essentially based
on two key properties: Little’s law and the property that an arriving Poisson job finds
the system in equilibrium. The latter property is commonly referred to as the PASTA

Ivo Adan, Jan van der Wal
Department of Mathematics and Computer Science, EindhovenUniversity of Technology, Eind-
hoven, The Netherlands, and Department of Quantitative Economics, University of Amsterdam,
Amsterdam, The Netherlands.
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property: Poisson Arrivals See Time Averages. In product-form (PF) networks the
situation is similar. In open PF networks one again has theseproperties, although
the PASTA property formally does not hold, as there need not be Poisson processes
inside the network, but it is replaced by the equally powerful ASTA (Arrivals See
Time Averages) property or so-called Arrival Theorem. In closed PF networks the
arrival theorem is different: a job moving from one station to another does not find
the system in equilibrium, but finds it in the equilibrium as if this job has never been
in the system.

In the following sections we prefer to start with MVA ideas for single station sys-
tems. We will illustrate these ideas with a number of different applications demon-
strating the ease and power of this way of thinking. It shouldbe pointed out that a
disadvantage of MVA for single stations (and in general) is that it providesmean
values only, so no second or higher moments, let be distributions.

13.2 PASTA property and Little’s law

The first key property that allows for a mean value approach isthe fact that there is a
close relation between the distribution of the state of the system at an arrival moment
and the time average distribution of the system state. For Poisson arrivals this rela-
tion is the so-called PASTA property which is the acronym for: Poisson Arrivals See
the state of the system as the Time Average. It can be intuitively explained by the
memoryless property of the exponential inter-arrival times, as will be demonstrated
below (see, e.g., Kleinrock [15], pp. 118-119; for a rigorous proof see Wolff [14]).

Let X(t) denote the state of the system at timet; for example,X(t) may indicate
the number of jobs in the queue at timet. Further, letA be a subset of states. Then
the probability that an arriving Poisson job in(t,t + ∆) finds the system in subsetA
is equal to

Pr[X(t) ∈ A|Arrival in(t, t + ∆ t)] =
Pr[X(t) ∈ A,Arrival in(t,t + ∆ t)]

Pr[Arrival in(t,t + ∆ t)]

=
Pr[X(t) ∈ A]Pr[Arrival in(t,t + ∆ t)|X(t) ∈ A]

Pr[Arrival in(t,t + ∆ t)]
.

Since Poisson arrivals are memoryless, we have

Pr[Arrival in(t, t + ∆ t)|X(t) ∈ A] = Pr[Arrival in(t,t + ∆ t)] ,

so that
Pr[X(t) ∈ A|Arrival in(t,t + ∆ t)] = Pr[X(t) ∈ A].

In the sequel this property will be used when the system is in equilibrium, thus as
t → ∞. There is considerable freedom in the definition ofthe state of the system.
For example, if it is defined as the number of jobs in the queue,then this property,
applied toA = {0,1, . . . ,n}, yields that the queue length distribution on arrival is
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equal to the equilibrium queue length distribution. Alternatively, if the state indi-
cates the status of the server (1 whenever busy and 0 otherwise), then by applying
this property toA = {1}, we obtain that the probability the server is busy on arrival
is equal to the long-run fraction of time the server is busy.

The other key property is Little’s law [16, 13] stating that

L = λS,

whereL is the mean number of jobs in the system,λ the arrival rate andSthe mean
sojourn time. Again, one can exploit the freedom in the definition of the systemto
obtain various relations. For example, in a station with a single queue and a single
server, the system can be defined as the queue (so without the server), yielding the
following relation between the mean queue lengthQ and the mean waiting timeW,

Q = λW. (13.1)

But, when the system is defined as the server, we obtain a relation between the
utilization ρ (i.e., fraction of time the server is busy) and the mean service timeb,

ρ = λb. (13.2)

In the sequel, when writing down expressions on an arrival instant, we could
write, for example,ρ (a) or Q(a) with a indicating the arrival, but because of the
PASTA property these quantities are equal to the equilibrium quantities. Therefore
we will not do this.

13.3 MVA for single-station systems

Below we present a couple of examples of single-station systems for which the MVA
approach works; that is, for which performance characteristics, though their mean
values only, can be obtained using PASTA and Little’s law.

13.3.1M |M |1

The simplest example of this principle is seen in the MVA approach for theM|M|1
queue with arrival rateλ and service rateµ , and in which jobs are served FCFS. For
stability we assume thatλ < µ . Let Q denote the mean number of jobs in the queue
andρ the probability that the server is busy (in equilibrium as well as on arrival).
The mean waiting time isW. Then we get

W = ρ
1
µ

+Q
1
µ

. (13.1)
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Note that, by the memoryless property of exponentials, the mean residual service
time of the job in service upon arrival is also 1/µ . Relation (13.1) is usually referred
to as thearrival relation. Together with Little’s law (13.1), this results in

W =
ρ

1−ρ
1
µ

,

whereρ = λ/µ by virtue of (13.2).

13.3.2M |G|1

This approach can be easily extended to jobs requiring general service times with
meanb and second momentb(2). For stability we requireλb< 1. Then, for the mean
waiting time, we get

W = ρR+Qb, (13.2)

whereR is the mean residual service time on arrival. Now we cannot conclude that
R is equal to the mean service timeb, as in the exponential case. According to the
PASTA propertyR is equal to the (time) average residual service timeR given by
(see, e.g., Ross [17], pp. 424-425)

R=
b(2)

2b
=

b
2
(1+c2), (13.3)

wherec2 = (b(2)− b2)/b2 denotes the squared coefficient of variation of the ser-
vice time. Together with Little’s law (13.1) this immediately yields the Pollackzek-
Khinchin formula,

W =
ρR

1−ρ
. (13.4)

Note thatW can also be interpreted as the mean amount of work in the system.

13.3.3M |G|1 with priorities

Let us now consider a single server treatingC classes of jobs, labeled 1, . . . ,C. Class
i jobs arrive according to a Poisson process at rateλi and require service times with

meanbi and second momentb(2)
i . The classi utilization isρi = λibi . Jobs are served

according tonon-preemptivepriorities, i.e., classi has priority over all classesj
with j > i, but service interruptions are not allowed. Per class the service discipline
is assumed to be FCFS. For stability we requireρ1 + · · ·+ ρC < 1.

Let Wi denote the mean waiting time of classi jobs andQi the mean number of
classi jobs waiting in the queue. Then the arrival relation for class i is
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Wi = ∑
j≤i

Q jb j +∑
j

ρ jRj +Wi ∑
j<i

λ jb j , (13.5)

whereRj is the mean residual service time of classj, soRj = b(2)
j /2b j .

On the right-hand side of (13.5), the first term is the mean waiting time due to the
higher or same priority jobs in the queue upon arrival. The second term is the mean
amount of residual work in service and the third term captures the higher priority
jobs that are expected to arrive and overtake the class-i job during its waiting time.

Using Little’s law,
Q j = λ jWj

andρ j = λ jb j , equation (13.5) can be rewritten as

Wi = ∑
j≤i

ρ jWj +∑
j

ρ jRj +Wi ∑
j<i

ρ j ,

or
Wi(1−∑

j≤i
ρ j) = ∑

j<i
ρ jWj +∑

j
ρ jRj . (13.6)

For class 1 (for which there is no overtaking) this immediately results in

W1 =
∑ j ρ jRj

1−ρ1
. (13.7)

Note that fori > 1 the right hand side of (13.6) can be written as

ρi−1Wi−1 + ∑
j<i−1

ρ jWj +∑
j

ρ jRj = ρi−1Wi−1 +Wi−1(1− ∑
j≤i−1

ρ j), (13.8)

where, for the second and third term on the left, equation (13.6) is used withi re-
placed byi−1. This leads to the recursion

Wi(1−∑
j≤i

ρi) = Wi−1(1− ∑
j<i−1

ρ j), i = 2, . . . ,C,

from which one easily gets

Wi =
∑ j ρ jRj

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)
, i = 1,2, . . . ,C. (13.9)

Note that (13.9) is indeed valid fori = 1, by virtue of (13.7).

13.3.4M |G|1 with least attained service

In this section we consider adynamicpriority rule, the so-called Least Attained
Service (LAS) policy: the server gives priority to the job that has received the least
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amount of service. Now we obviously allow service interruptions; e.g., an arriving
job will immediately enter service, interrupting the one currently in service and
whose service will resume at the point where it was interrupted as soon as it is
the one again that has received the least amount of service. If the service time has
a decreasing hazard rate, the LAS policy is known to minimizethe mean waiting
time among all policies which do not use information about the job sizes (see, e.g.,
Yashkov [19]).

For a job of sizex, only jobs that have an attained service less or equal tox are
visible. Hence, it experiences a single server treating jobs according to LAS with a
truncatedservice time distribution

Fx(y) =

{
F(y) if y < x,
1 if y≥ x,

whereF(·) is the (original) service time distribution. Letbx andb(2)
x denote the first

two moments of the truncated service time distribution,

bx =

ˆ x

0
(1−F(y))dy, b(2)

x =

ˆ x

0
2y(1−F(y))dy,

andρx = λbx. The amount of work in this system does not depend on the order
in which jobs are served, and thus it is the same as in the FCFS version. Thus, by
(13.4), the mean amount of work is equal to

Wx =
ρxRx

1−ρx
,

whereRx = b(2)
x /2bx. Note that, by the PASTA property,Wx is also the mean amount

of work which an arriving job of sizexfinds in the system and which has to be served
before that job leaves the system. Hence, for the mean sojourn timeSx of a job of
sizex we obtain, similar to (13.5),

Sx = x+Wx + λSxbx,

where the last term is the mean amount of work that arrives during the sojourn time
of the job of sizex and which has to be served before that job leaves the system.
Thus,

Sx =
x+Wx

1−ρx
,

and by unconditioning on the job sizex, we get that the mean sojourn timeSof an
arbitrary job satisfies

S=

ˆ ∞

0
SxdF(x).
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13.3.5 Server vacations

There are many models for server vacations. A simple one is the following. When
the queue is empty after a service completion, the server takes a vacation. If upon
return of the server the queue is still empty, the server immediately takes another
vacation and otherwise the server starts servicing the queue.

Upon arrival the server is on vacation (i.e., not at work) with probability 1−ρ , in
which case the job has to wait for a residual vacation time. Let Rv denote the mean
residual vacation time. Then the arrival relation is

W = (1−ρ)Rv+Qb+ ρR.

So, with Little’s law,Q = λW, one gets

W =
ρR

1−ρ
+Rv. (13.10)

Another simple vacation model is the following. When the server finishes the
service of the last customer in a busy period he takes a vacation until theK-th new
customer arrives. For example, the server could be an oven that is switched off partly
if there is no work left. Note that in this case the duration ofthe vacation depends
on the arrival times.

Clearly 1−ρ is the probability that a customer arrives during a server vacation. If
so, the customer is with equal probability the first, second or K-th customer in that
vacation period, so the residual duration of the vacation expressed in inter-arrival
times, is with equal probabilityK− 1, K− 2, or 0, so an average(K− 1)/2. This
results in

W = (1−ρ)
K−1

2
1
λ

+Qb+ ρR.

With Little’s law one obtains

W =
ρR

1−ρ
+

K−1
2

1
λ

. (13.11)

Note that the first term in both (13.10) and (13.11) is equal tothe mean waiting time
in the “ordinary”M|G|1 queue; see (13.4).

13.3.6M |M |c

So far we considered single-server stations. Let us now consider an exponential
multi-server queue, theM|M|c with arrival rateλ and service rateµ . For stability
we assumeλ < cµ .

If not all servers are busy on arrival, the waiting time is zero. If all servers are
busy, the job has to wait until the first departure and then continues to wait for as
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many departures as there were jobs waiting upon arrival. An inter-departure time is
the minimum ofc exponentials with rateµ , and thus it is exponential with ratecµ .
The probability that all servers are busy (on arrival) is denoted byB (for busy say)
and it is easily computed as

B =
(cρ)c

c!

(
(1−ρ)

c−1

∑
n=0

(cρ)n

n!
+

(cρ)c

c!

)−1

, (13.12)

whereρ = λ/cµ denotes the server utilization. Hence, for the mean waitingtime
W, we obtain

W = B
1

cµ
+Q

1
cµ

. (13.13)

Together with Little’s law (13.1) this leads to

W =
B

1−ρ
1

cµ
.

13.3.7M |M |c with priorities

An extension of the previous model is theM|M|c priority system, say without pre-
emption, treatingC classes of jobs. The classes are labeled 1, . . . ,C. All jobs are
statistically equal, i.e., all of them are exponential withthe same mean 1/µ .

The waiting time of a classi job is determined by the number of jobs of the
various classes found waiting upon arrival and also dependson whether upon arrival
all servers are busy or not. The latter probability does not depend on the order in
which the jobs are served, so it is equal to the probabilityB in case of the FCFS
service discipline; see (13.12). This results in

Wi = B
1

cµ
+ ∑

j≤i
Q j

1
cµ

+ ∑
j<i

λ jWi
1

cµ
.

This expression is the same as (13.5) for theM|G|1 priority model, withb j replaced
by 1/(cµ) and the term∑ j ρ jRj replaced byB/cµ . Thus also result (13.9) is the
same:

Wi =
B

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)

1
cµ

, i = 1, . . . ,C.

In the models discussed sofar the MVA approach was rather straightforward, as
only the arrival relation and Little’s formula were used. Inthe next two sections we
consider models for which a somewhat different reasoning isneeded.
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13.3.8 Retrials

There are many models where jobs finding a busy server on arrival leave imme-
diately and retry later, see Artalejo [1]; think of, e.g., call centers. A basicretrial
model is the following. Jobs arrive according to a Poisson process with rateλ at a
single server. If the server is busy on arrival, the job immediately leaves and goes
“in orbit” to return after an exponential time with mean 1/γ, and if the server is still
or again busy it goes back into orbit and so on.

The total time that a job is spending in orbit can be divided into two parts: time
during which the server is working and time during which the server is idle and
waiting for a new arrival, either one in orbit or one from the outside. During the orbit
time the server completes on average 1+ D services, where the first “1” is the job
found in service upon arrival, which requires a residual service timeR, andD is the
(unknown) number of jobs that enter the server while the job under consideration is
in orbit. During the server’s idle time the job competes for the server; there are also
attempts to find the server idle while the server is busy, but these can be ignored. So
the retrial time is only counted when the server is idle and thus, by the memoryless
property of exponentials, the retrial time during idle timeis again exponential with
mean 1/γ. Hence, the mean sojourn timeS(retrial time plus service time) satisfies

S= (1−ρ) ·0+ ρ · (R+Db+1/γ)+b. (13.14)

Further, in any queueing system with jobs arriving one by oneand are leaving
one by one, the number of jobs in the system just before an arrival and just after a
departure is equally distributed. Hence, in equilibrium, the mean number of arrivals
during the sojourn time is equal to the mean number of servicecompletions during
the sojourn time, so

λS= (1−ρ) ·0+ ρ · (1+D). (13.15)

Solving the equations (13.14) and (13.15) yields

S=
ρR

1−ρ
+b+

ρ
1−ρ

1
γ

Again note that the first two terms are the mean sojourn time intheM|G|1 queue.

13.3.9 Polling

Another more complex model is the followingpolling model with a single server
for N queues, labeled 1, . . . ,N. Classi jobs arrive in queuei according to a Poisson
process at rateλi and require service times with meanbi and mean residualRi .
The queues are served exhaustively in the order 1,2, . . . ,N,1, . . . and so on. When
switching to queuei there is a switch-over time with meansi and mean residualRsi ;
the total switch-over times= ∑sj is assumed to be positive. The fraction of time
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the server is busy with queuei is ρi = λibi, where, for stability, it is assumed that
the total utilizationρ = ∑i ρi < 1. The cycle length of queuei is the time between
successive arrivals of the server to this queue. Its meanC is independent ofi and
satisfiesC = ρC+s, whenceC = s/(1−ρ). The visit time to queuei is defined as
the switch-over time to queuei plus the time spent at queuei. Hence, the mean visit
timeVi is equal tosi + ρiC for i = 1, . . . ,N. We will present the MVA approach for
the case of two queues. The generalization toN queues is straightforward, but the
notations become involved. Let us consider a job of class 1. Upon its arrival the job
has to wait for allQ1 jobs. Further we distinguish three arrival situations. Thejob
arrives (1) during the switch-over time to queue 1, (2) during the service time of a
class 1 job or (3) during a visit to queue 2. The probability for case (1) issi/C, for
case (2)ρ1 and for case (3)V2/C. This results in

W1 = Q1b1 + ρ1R1 +
s1

C
Rs1 +

V2

C
(RV2 +si) , (13.16)

whereRV2 denotes the mean residual visit time to queue 2. Substituting Little’s law,
Q1 = λ1W1, we get

Q1 =
λ1

1−ρ1

(
ρ1R1 +

s1

C
Rs1 +

V2

C
(RV2 +si)

)
. (13.17)

In here there are still two unknowns, namelyQ1 andRV2. In order to obtain more
equations we first conditionQ1 on the visit time. WithQi, j the mean number of class
i jobs during a visit to queuej, we have

Q1 =
V1

C
Q1,1 +

V2

C
Q1,2 . (13.18)

Note that, because of the exhaustive discipline, there are no class 1 jobs left at the
start of the visit to queue 2. SoQ1,2 is just the mean number of class 1 jobs that
arrived during the visit to queue 2. Since the mean age of the visit to queue 2 is
equal to the mean residual visit time to queue 2, it follows

Q1,2 = λ1RV2 . (13.19)

Finally, we observe that, because of the exhaustive discipline,

RV2 = Q2,2
b2

1−ρ2
+

s2

V2

Rs2

1−ρ2
+

ρ2C
V2

R2

1−ρ2
. (13.20)

Similarly, starting from a class 2 arrival, one gets anotherset of equations. From
the equations (13.17)-(13.20) and the corresponding ones for a class 2 arrival, the
unknownsQi, j , the twoQi and the twoRVi can be readily solved. So we see that,
although the reasoning has been a little bit less standard, still only MVA arguments
are needed to obtain the mean waiting times for this polling model.
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13.4 AMVA for single-station systems

When an exact analysis is intractable, the ideas of MVA may also be applied heuris-
tically to obtain approximations; this is demonstrated below for some single-station
systems.

13.4.1M |G|c

In theM|G|c system, no exact results are available for the mean waiting timeW, but
the MVA approach can be used heuristically to derive an excellent approximation.
Let λ be the arrival rate,b the mean service time andR the mean residual service
time, such thatρ = λb/c < 1 (to guarantee stability). If all servers are busy on
arrival, the job first has to wait until the first departure andthen continues to wait
for as many departures as there were jobs waiting upon arrival. By assuming, as an
approximation, that departures occurc times faster withc servers than with a single
server, we get (cf. (13.13))

W = B
R
c

+Q
b
c
, (13.1)

whereB is the probability that all servers are busy. Although this probability is not
known exactly, it appears to be fairly insensitive to the service time distribution.
Hence, it can be well approximated by (13.12), the probability that all servers are
busy in theM|M|c with the same arrival rate and same mean service times. Another
heuristic derivation of (13.1) is the following. Conditioning on the event that all
servers are busy on arrival, and assuming thatR is the mean residual service time
of each server, the mean total amount of work just before the arrival is cR+ Q+b,
whereQ+ is the mean conditional queue length. By assuming that the mean residual
service times are alsoR when the job goes into service, the mean total amount of
work just before the arrival is also equal to(c−1)R+cW+, whereW+ is the mean
conditional waiting time. Hence,

cR+Q+b = (c−1)R+cW+.

Multiplying with B, and usingBQ+ = Q andBW+ = W, this equation reduces to
(13.1). From (13.1), together with Little’s law (13.1), we obtain the approximation

W =
B

1−ρ
R
c
,

whereB is given by (13.12).
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13.4.2M |G|c with priorities

The approximation for the mean waiting of the previous modelcan be readily ex-
tended to theM|G|c non-preemptive priority system treatingC classes of jobs, all
with statistically equal service times. Again by assuming,as an approximation, that
departures occurc times faster withc servers than with a single server, we get, sim-
ilar to (13.5) in the single-server case,

Wi = B
R
c

+ ∑
j≤i

Q j
b
c

+ ∑
j<i

λ jWi
b
c

(13.2)

and thus also, similar to (13.9),

Wi =
B

(1−∑ j≤i ρ j)(1−∑ j<i ρ j)

R
c
, i = 1, . . . ,C.

13.5 ASTA property in PF networks

We now move our attention from single station systems to networks of stations. For
ease of presentation we will restrict our attention to multi-server stations servicing
jobs according to the FCFS discipline. The basic tools of MVAfor single station
systems are the PASTA property and Little’s law. Clearly, the latter is also applicable
to networks of stations, but the PASTA property does not holdany longer, as there
need not be Poisson processes inside the network. Hence, in this section, we will
establish an extension of PASTA to PF networks, i.e., the so-called ASTA property
or Arrival Theorem.

13.5.1 Open single-class PF networks

We first consider an open single-class network consisting ofM multi-server stations,
numberedm = 1,2, . . . ,M, and each withcm exponential servers with service rate
µm. Jobs arrive at the network according to a Poisson process atrateλ and enter the
network in stationm with probabilityqm. The routing of jobs through the network
is Markovian: after visiting stationm, a job moves to stationn with probabilitypmn

or leaves the system (with probabilitypm0 (so∑M
n=0 pmn= 1). LetP be the matrix of

routing probabilitiespmn, m,n= 1, . . . ,M. We assume thatPn tends to 0 asn tends to
infinity, which means that each job will eventually leave thenetwork. LetΛm denote
the total (external and internal) arrival rate at stationm. These rates are the unique
solution of the so-called traffic equations,
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Λm = λqm+
M

∑
n=1

Λnpnm, m= 1, . . . ,M. (13.1)

For stability it is now assumed thatΛm < cmµm for m = 1, . . . ,M. Due to the as-
sumptions of exponential interarrival and service times and Markovian routing, the
state of the network is fully described by the vectork= (k1, . . . ,kM), wherekm(≥ 0)
denotes the number of jobs in stationm. It is well-known (cf. Jackson [7]) that the
equilibrium probabilityp(k) has a product form, i.e.,

p(k) =
1
G

p1(k1)p2(k2) · · · pM(kM) , (13.2)

whereG is the normalization constant andpm(km) are (up to a constant) identical to
the queue length probabilities of theM|M|cm with arrival rateΛm and service rate
µm. So, writingvm(l) = min(cm, l),

pm(km) =
km

∏
l=1

1
vm(l)

(
Λm

µm

)km

, km≥ 0 . (13.3)

For this network the arrival theorem is more or less a copy of the PASTA prop-
erty: If a job enters the network in station m, jumps from station m to n or leaves
the network in station m, it always sees the rest of the systemin equilibrium. The
proof heavily relies on the PF equations (13.2)-(13.3). We demonstrate this for a
job jumping from stationm to n. The probability that this job sees the rest of the
network in statek is equal to the number of times per time unit that a job jumps
from m to n and seesk divided by the total number of jumps per time unit fromm
to n. By (13.2), the numerator is equal to

p(k+em)vm(km+1)µmpmn = p(k)Λmpmn,

whereem denotes the unit vector with a one at positionm. Since the denominator is
equal toΛmpmn, it follows that the probability that the network is seen in statek is
p(k), which proves the arrival theorem.

13.5.2 Open multi-class PF networks

Let us consider a network servicingC different job classes. Classi jobs arrive ac-
cording to a Poisson process at rateλi , i = 1, . . . ,C. Per class the routing is again
Markovian: classi jobs enter the network in stationmwith probabilityqim, and after
visiting stationm, they move to stationn with probability pimn or leave the sys-
tem with probabilitypim0. The service rate of each of thecm servers in stationm is
the sameµm for all job classes. For stability it is needed that∑C

i=1Λim < cmµm for
m= 1, . . . ,M, whereΛim is the total arrival rate of classi at stationm. These rates
can be determined from traffic equations analogous to (13.1). Theglobal state of
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the network can be described by the vectork = (k1, . . . ,kM), wherekm is again a
vector, i.e.,km = (k1m, . . . ,kCm) wherekim denotes the number of classi jobs in sta-
tion m. The total number of jobs in stationm is denoted bykm. Note that this global
description does not lead to a Markov process. To obtain a Markov process, though,
a detailed state description is required by including the order in which the jobs are
waiting in the queue. In terms of the global states, the equilibrium probabilityp(k)
assumes the form

p(k) =
1
G

p1(k1)p2(k2) · · · pM(kM) , (13.4)

where

pm(km) = pm(k1m,k2m, . . . ,kCm) =

(
km

k1m, . . . ,kCm

) km

∏
l=1

1
vm(l)

C

∏
i=1

(
Λim

µm

)kim

.

(13.5)
The multinomial coefficient reflects the (remarkable!) property that, in terms of the
detailed state description, all queue orders are equally likely. Based on the above PF,
it can be shown, along the same lines as in the previous section, that a job arriving
at a station sees the network in equilibrium.

13.5.3 Closed multi-class PF networks

In this section we consider a closed multi-class network. The number of classi jobs
circulating in the network isKi , i = 1, . . . ,C, whereKi is referred to as the population
of classi andK = (K1, . . . ,KC) is the population vector. After visiting stationm,
classi jobs move to stationn with probability pimn, where∑M

n=1 pimn = 1, so jobs
cannot escape from the network. Letfim denote therelativearrival rate orvisiting
frequencyof classi at stationm. These rates satisfy the following traffic equations
(cf. (13.1)),

fim =
M

∑
n=1

fin pinm, m= 1, . . . ,M.

Note that the ‘real’ arrival ratesΛim(K), which now depend on the populationK, are
more difficult to obtain (see section 13.7), but they clearlysatisfy

Λim(K)

Λin(K)
=

fim
fin

. (13.6)

The equilibrium probabilityp(k) satisfies the same PF equations (13.4)-(13.5) as
the open system, the only difference being thatΛim is now replaced byfim and the
normalization constantG is computed as

G = G(K) = ∑
k∈S(K)

p1(k1)p2(k2) · · · pM(kM) ,
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whereS(K) is the set of all global states in a network with populationK. The ar-
rival theorem for a closed network with populationK states thatif, after completing
service, a class i job jumps from station m to n, it sees the rest of the network in
the equilibrium that corresponds to a population K−ei , i.e., with one job of its own
class less. This is a remarkable result: although the job we are lookingat has al-
ways been in the system and thus has influenced the process in the past, when we
look at the system at a jump moment, the rest of the system looks as if the job has
never been there. The proof is based on the PF (13.4)-(13.5).The probability that
a classi job jumping from stationm to n sees the rest of the network in statek (in
S(K−ei)) is equal to the number of classi jumps per time unit fromm to n seeing
statek divided by the total number of classi jumps per time unit fromm to n. By
(13.4)-(13.5), the numerator is equal to

p(k1, . . . ,km+ei , . . . ,kM)
kim +1
km+1

vm(km+1)µmpimn

=
1

G(K)
p1(k1) · · · pm(km) · · · pM(kM) fimpimn ,

where we use that any order of jobs in stationm is equally likely, and thus the proba-
bility that a departure fromm is of classi is equal to(kim+1)/(km+1). Accordingly,
the denominator can be rewritten as

∑
l∈S(K−ei)

p(l1, . . . , lm+ei , . . . , lM)
l im +1
lm+1

vm(lm+1)µmpimn

=
1

G(K) ∑
l∈S(K−ei)

p1(l1) · · · pM(lM) fimpimn =
G(K−ei)

G(K)
fimpimn .

Hence, the probability that the network is seen in statek is equal to

1
G(K−ei)

p1(k1) · · · pM(kM) ,

which is the equilibrium probability for the network with populationK−ei of being
in statek, and thus proves the arrival theorem. Finally, it is worthwhile to mention
that the product-form solution, and thus also the arrival theorem for open and closed
networks remain valid forfixed routing. Thus, for example, a closed network in
which class 1 jobs cyclically visit stations 1, 2, 1, 3, 1, 2, ... (so f11 = 2, f12 = f13 =
1), also is of product form. Now we are equipped with the righttools, ASTA and
Little’s law, to apply MVA to networks of queues.
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13.6 MVA for open PF networks

In this section we consider the open multi-class PF network introduced in Section
13.5.2. LetWim denote the mean waiting time of classi jobs in stationmandQim the
mean number of classi jobs waiting in the queue. Further,Bm is the probability that
all servers in stationm are occupied, or by ASTA, the probability that an arriving
job has to wait. Then, by ASTA, we get for the waiting time of anarriving classi
job (cf. (13.13))

Wim = Bm
1

cmµm
+

C

∑
j=1

Q jm
1

cmµm
.

Clearly, the waiting time in stationm does not depend on the class. Hence, together
with Little’s law, Q jm = Λ jmWjm = Λ jmWim, this immediately yields

Wim =
Bm

1−ρm

1
cmµm

, (13.1)

whereρm denotes the server utilization, given by

ρm =
∑C

j=1Λ jm

cmµm
.

To determineBm, note that from (13.4)-(13.5)one may easily show that the marginal
distribution of the total number of jobs in stationm is identical to the distribution of
the number of jobs in theM|M|cm with arrival rate∑C

j=1Λ jm and service rateµm.
Hence,Bm is equal to (cf. (13.12))

Bm =
(cmρm)cm

cm!

(
(1−ρm)

cm−1

∑
n=0

(cmρm)n

n!
+

(cmρm)c

c!

)−1

. (13.2)

13.7 MVA for closed single-class PF networks

The analysis of closed PF networks appears to be slightly more complicated than
for open networks. It will be first demonstrated for the simplest case, namely:

Single class, single servers

Let us consider a closed single-class PF network with singleserver stations (cm = 1
for all m) and populationK. By ASTA, the mean waiting timeWm(K) of an arriving
job in stationm satisfies
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Wm(K) = ρm(K−1)
1

µm
+Qm(K−1)

1
µ

. (13.1)

Further we have Little’s law,

Qm(K) = Λm(K)Wm(K) , (13.2)

and

ρm(K) = Λm(K)
1

µm
, (13.3)

The first difference with open networks is that equation (13.1) is recursive in the
population size, and the second difference is that the arrival rate (or throughput)
Λm(K) is not known. Fortunately the ratesΛm(K) can be computed once the waiting
timesWm(K) are known. To see this, we add the equations (13.2)-(13.3) over all
stations and use (13.6) to obtain

K =
M

∑
n=1

(Qn(K)+ ρn(K)) =
M

∑
n=1

Λn(K)

(
Wn(K)+

1
µn

)

=
Λm(K)

fm

M

∑
n=1

fn

(
Wn(K)+

1
µn

)
.

Hence,

Λm(K) = K
fm

C(K)
, (13.4)

where

C(K) =
M

∑
n=1

fn

(
Wn(K)+

1
µn

)
.

Note thatC(K) is the mean duration of a (generalized) cycle in which station n is
visited fn times,n= 1, . . . ,N. An appealing interpretation of (13.4) is the following.
In each cycle, stationm is visited fm times, and thusfm/C(K) is the mean number
of times per time unit that a (tagged) job is visiting stationm. So, multiplication of
fm/C(K) by the total number of circulating jobs obviously yields thethroughput of
stationm. The relations (13.1)-(13.4) can be used to recursively calculateWm(k),
Λm(k), Qm(k) andρm(k) for populations starting fromk = 0 up tok = K, where
initially Qm(0) = ρm(0) = 0 for all m.

Single class, multi servers

Let us now consider a network with multi-server stations. Then we only need to
adapt the relation forWm(K), while (13.2) and (13.4) remain valid. In the multi-
server case we have
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Wm(K) = Bm(K−1)
1

cmµm
+Qm(K−1)

1
cmµm

, (13.5)

whereBm(K) denotes the probability that all servers in stationm are occupied. Let
pm(k;K) denote the probability ofk jobs in stationm, then

Bm(K) =
K

∑
k=cm

pm(k;K) .

Thus, to computeBm(K), we need the marginal queue length probabilities of station
m. These probabilities can be found by balancing the number oftransitions per time
unit between statesk−1 andk: the rate fromk to k−1 is pm(k;K)vm(k)µm and, by
ASTA, the rate fromk−1 to k is Λm(K)pm(k−1;K−1). Hence,

pm(k;K) =
Λm(K)

vm(k)µm
pm(k−1;K−1) , k = 1, . . . ,K, (13.6)

wherepm(0;K) follows from the normalization,

pm(0;K) = 1−
K

∑
k=1

pm(k;K) . (13.7)

The relations (13.2) and (13.4)-(13.7) form an algorithm torecursively calculate
Wm(k), Λm(k), Qm(k) andpm(·;k) for populations starting fromk = 0 up tok = K,
where initiallyQm(0) = 0 andpm(0;0) = 1 for all m. We remark that the “1−” in
(13.7) may cause numerical problems in bottleneck stations(i.e., stations with an
extremely high load). A numerically stable (but more involved) solution, though, is
presented in Casale [4].

Single class, queue-dependent servers

This algorithm can be readily extended to networks with queue-dependent servers;
see Reiser [10]. The amount of work of each job in stationm is assumed to be
exponentially distributed with mean 1/µm and the (single!) server works at rate
vm(k) whenk jobs are present in stationm. Note that in the special casevm(k) =
min(cm,k), stationm reduces to an ‘ordinary’ multi-server station withcm servers.
For this network, relation (13.5) needs to be adapted, sincethe waiting time and
actually, the whole sojourn time of an arriving job is not only determined by the
situation encountered on arrival, but also by arrivals after the one of the tagged job.
To obtain a relation for the mean sojourn time, we apply Little’s law to stationm,
yielding

Λm(K)Sm(K) = Lm(K) =
K

∑
k=1

kpm(k;K) .
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Dividing both sides of the above equation byΛm(K) and using (13.6), we obtain

Sm(K) =
K

∑
k=1

k
vm(k)µm

pm(k−1;K−1) .

Together with Little’s law,Lm(K) = Λm(K)Sm(K), the equation for the throughput

Λm(K) = K
fm

∑M
n=1 fnSn(K)

,

and the equations (13.6)-(13.7), we can again recursively calculateSm(k), Λm(k),
Lm(k) andpm(·;k) for all populationsk = 0 up toK.

13.8 MVA for closed multi-class PF networks

The extension to closed multi-class networks with multi-server stations is straight-
forward. The mean waiting timeWim(K) of an arriving classi job in stationm satis-
fies

Wim(K) = Bm(K−ei)
1

cmµm
+

C

∑
j=1

Q jm(K−ei)
1

cmµm
. (13.1)

Note that, as opposed to open multi-class networks, the meanwaiting time does
depend on the class. Further, we have

Λim(K) = Ki
fim

∑M
n=1 fin

(
Win(K)+ 1

µn

) . (13.2)

and by Little’s law,
Qim(K) = Λim(K)Wm(K) . (13.3)

The probabilityBm(K) of cm busy servers in stationm is equal to

Bm(K) =
K1+···+KC

∑
k=cm

pm(k;K) ,

where the queue length probabilitiespm(k;K) satisfy

pm(k;K) =
C

∑
j=1

Λ jm(K)

vm(k)µm
pm(k−1;K−ej) , k = 1, . . . ,K1 + · · ·+KC, (13.4)

and pm(0;K) follows again from the normalization equation. Together, relations
(13.1)-(13.4) form a recursive algorithm for the calculation of the mean waiting
times in a closed network. Note that this algorithm suffers from the curse of di-
mensionality: the complexity of the algorithm is determined by the number of steps
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needed to go through all∏C
i=1(Ki + 1) sub-populations ofK, and thus, already for

a moderate number of classes and number of jobs per class, thenumber of steps
becomes so large that it is no longer feasible to execute thisalgorithm. Fortunately,
as we will see in section 13.12, there exist good approximations.

13.9 AMVA for open networks

Exact analysis of open networks with generally distributedservice times is ex-
tremely difficult and in most cases intractable. For large randomly routed networks,
however, it is reasonable to expect that heuristic application of MVA might pro-
duce fairly accurate predictions for mean waiting times (see also chapters 5 and 6 in
Buzacott and Shanthikumar [3]). To illustrate this, we consider an open multi-class
network with multi-server stations, and denote bybim and Rim the mean service
time and mean residual service time, respectively, of classi jobs in stationm. Then
the mean service timebm and mean residual service timeRm of anarbitrary job in
stationm are

bm =
C

∑
i=1

Λim

Λm
bim , Rm =

C

∑
i=1

ρim

ρm
Rim ,

whereΛm = ∑C
i=1Λim, ρim = Λimbim/cm andρm = ∑C

i=1 ρim. Then for all classes the
mean waiting time in stationm approximately satisfies (cf. (13.1))

Wm = Bm
Rm

cm
+Qm

bm

cm
,

whereBm is approximated by (13.2). Together with Little’s law,Qm = ΛmWm, this
immediately yields the approximation

Wm =
Bm

1−ρm

Rm

cm
.

The mean sojourn time in stationm does depend on the class; for a classi job we
haveSim = Wm+bim. The above approximation may work well for large randomly
routed networks, but in other cases it might be better to resort to decomposition
approaches that approximate each station by aG|G|c queue with an appropriate
arrival process, see e.g. Whitt [18].

13.10 AMVA for closed single-server networks

In this section we consider closed single-server networks.The case of multi-server
networks is briefly discussed in the next section. So far we only considered PF
networks. Now we want to relax some of the conditions required for the existence
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of a PF. The first one concerns the requirement of the same exponential service times
for all job classes. The second one is the FCFS service discipline. Relaxing these
conditions leads to non-PF networks, and thus we have to lookfor approximations.

13.10.1 Class-dependent general service times

Let us assume that the service time requirement of a classi job in stationm follows
a general distribution with meanbim and letRim denote the mean residual service
time. Heuristic application of ASTA leads to

Wim(K) =
C

∑
j=1

(ρ jm(K−ei)Rjm +Q jm(K−ei)b jm) , (13.1)

whereρ jm(K) is the utilization of stationmby classj jobs, i.e.,ρ jm(K)= Λ jm(K)b jm.
The relation for the throughputΛim(K) is given by (cf. (13.2))

Λim(K) = Ki
fim

∑M
n=1 fin (Win(K)+bin)

.

and by Little’s law, the mean number in the queue satisfiesQim(K)= Λim(K)Wim(K).

The above relations provide an MVA algorithm for the calculation of mean wait-
ing times. However, the errors can be significant when the variability of the service
times is large. To easily see this, consider the single-class case and write (see (13.3)),

Rm =
bm

2
(1+c2

m),

wherec2
m is the squared coefficient of variation of the service time. Then (13.1)

simplifies to

Wm(K) = ρm(K−1)
bm

2
(1+c2

m)+Qm(K−1)bm .

Multiplication of both sides byΛm(K), yields

Qm(K) = ρm(K−1)
ρm(K)

2
(1+c2

m)+Qm(K−1)ρm(K) .

Clearly, the left-hand side is bounded byK, while the right-hand side can get arbi-
trarily large asc2

m tends to infinity. Hence, in using AMVA relations such as (13.1),
one should be careful when the variability of the service times is very large.
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13.10.2 Priorities

Now consider the case jobs in stationm are no longer treated FCFS, but according
to non-preemptive priorities, where class 1 has the highestand classC the lowest
priority. Then, by heuristic application of ASTA, relation(13.1) should be adapted
as

Wim(K) =
C

∑
j=1

ρ jm(K−ei)Rjm + ∑
j≤i

Q jm(K−ei)b jm +Wim(K)∑
j<i

Λ jm(K−ei)b jm

=
C

∑
j=1

ρ jm(K−ei)Rjm + ∑
j≤i

Q jm(K−ei)b jm +Wim(K)∑
j<i

ρ jm(K−ei). (13.2)

The relations forΛim(K) andQim(K) remain the same.

13.10.3 Multiple visits to a station

Consider a network where each class of jobs can make several visits to a station
during a cycle, each visit involving a different exponential service requirement. This
is again not a PF, but it may be modeled by AMVA as follows. Letnim denote the
number of distinct types of service that a classi job receives at stationm and let
1/µimk denote the mean service requirement for a typek service. Further, letfimk

denote the mean number visits to stationmduring a cycle requiring a typek service.
Then the mean sojourn time of a classi job in stationm receiving a typek service is
(approximately) equal to

Simk(K) =
C

∑
j=1

n jm

∑
l=1

L jml(K−ei)
1

µ jml
+

1
µimk

,

whereL jml(K) is the mean number of classj jobs in stationm for a typel service.
By Little’s law,

Limk(K) = Λimk(K)Simk(K),

and the throughputΛimk(K) satisfies

Λimk(K) = Ki
fimk

∑M
n=1∑nin

l=1 finl Sinl (K)
.

The above set of equations leads again to a recursive algorithm to compute mean
sojourn times and mean cycle times.
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13.11 AMVA for closed multi-server networks

In this section we briefly discuss AMVA for multi-server networks. For ease of
presentation we assume that the distribution of the servicerequirement in stationm
is the same for each class, with meanbm. Let Rm denote the mean residual service
requirement. AMVA yields (cf. (13.1))

Wim(K) = Bm(K−ei)
Rm

cm
+

C

∑
j=1

Q jm(K−ei)
bm

cm
.

Further,

Λim(K) = Ki
fim

∑M
n=1 fin (Win(K)+bn)

.

and by Little’s law,Qim(K) = Λim(K)Wim(K).
To estimateBm(K) we may avoid the calculation of queue length probabilities

by approximatingBm(K) by the probability ofcm busy severs in the corresponding
M|M|cm queue with arrival rate∑C

j=1Λ jm(K) and mean service timebm,

Bm(K) =
(cmρm(K))cm

cm!

(
(1−ρm(K))

cm−1

∑
n=0

(cmρm(K))n

n!
+

(cmρm(K))c

c!

)−1

,

whereρm(K) = ∑C
j=1Λ jm(K)bm/cm. This completes again the set of equations that

can be used to recursively calculate the mean waiting times.The extension from
FCFS to priorities is straightforward. If jobs in stationm are served according to
non-preemptive priorities, with class 1 given the highest priority, then the relation
for the mean waiting time becomes (cf. (13.2) and (13.2))

Wim(K) = Bm(K−ei)
Rm

cm
+ ∑

j≤i
Q jm(K−ei)

bm

cm
+Wim(K)∑

j<i
Λ jm(K−ei)

bm

cm

= Bm(K−ei)
Rm

cm
+ ∑

j≤i
Q jm(K−ei)

bm

cm
+Wim(K)∑

j<i
ρ jm(K−ei) ,

whereρ jm(K) = Λ jm(K)bm/cm.

13.12 The Schweitzer-Bard approximation

The MVA algorithm for closed multi-class networks suffers from the curse of di-
mensionality. To illustrate the problem and one of its solutions, we consider a multi-
class PF network with single-server FCFS stations and class-independent exponen-
tial service times. The mean sojourn timeSim(K) of a classi job in stationmsatisfies
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Sim(K) =
C

∑
j=1

L jm(K−ei)
1

µm
+

1
µm

, (13.1)

where by Little’s law, the mean number of jobsLim(K) in stationm is given by

Lim(K) = Λim(K)Sim(K) , (13.2)

and the classi throughput of stationm follows from

Λim(K) = Ki
fim

∑M
n=1 finSin(K)

. (13.3)

The set of equations (13.1)-(13.3) forms a recursive algorithm to compute the 3CM
mean valuesSim(K), Lim(K) andΛim(K). However, the number of sub-populations
of K one needs to go through is∏C

i=1(Ki +1). Hence, already for a moderate number
of classes and number of jobs per class, the number of sub-populations becomes
too large. Then we need an approximation. One such an approximation is due to
Schweitzer [11] and Bard [2]. The idea is to break the recursion in (13.1) by adopting
the following approximation assumption:an arriving type i job sees the system in
equilibrium with a population Kinstead of K−ei . Thus the mean number of jobs
seen on arrival is the mean number in a networkincluding himself. But, of course,
the arriving classi job does not have to wait for himself. Therefore, to avoid self
queueing, the mean numberLim(K) is multiplied by the factor(Ki −1)/Ki (which
vanishes whenKi = 1; see also [12]). Hence, it is assumed that, approximately,

L jm(K−ei) = L jm(K), j 6= i, (13.4)

and

Lim(K−ei) =
Ki−1

Ki
Lim(K). (13.5)

Substitution of (13.4)-(13.5) in (13.1) results in

Sim(K) = ∑
j 6=i

L jm(K)
1

µm
+

Ki−1
Ki

Lim(K)+
1

µm
. (13.6)

Hence, the recursive set of equations (13.1)-(13.3) is turned into a set of fixed point
equations (13.2), (13.3) and (13.6) for 3CM unknowns, namelySim(K), Lim(K) and
Λim(K). Its solution can be found by successive substitutions. In practice, successive
substitutions converges quickly. In theory, however, convergence and uniqueness of
the solution of the set of equations (13.2), (13.3) and (13.6) is still an open problem.
Typically, the result of the Schweitzer-Bard approximation is within 5−10% of the
exact values for the throughputsΛim(K) and within 15−30% of the exact values for
the mean valuesSim(K) andLim(K).
There are quite a few ways in which one can approximately solve the MVA equa-
tions. In [5] several of these approaches are formulated in aunifying framework.
A simple improvement on this fixed point scheme is to combine MVA and the
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Schweitzer-Bard approximation as follows; see, e.g., Chapter 4 in Van Doremalen
[6]. First use the Schweitzer-Bard fixed point scheme to approximate the per-
formance characteristics for all possible population vectors with one job less, so
K− e1, . . . ,K− eC. Then compute the performance characteristics for the popula-
tion K in one MVA step. This approach is known asfirst order depth improvement.
It reduces the errors to 1% with an occasional error of 5%. A further improvement
is that the Schweitzer-Bard fixed point scheme is used for allpopulations with two
jobs less and MVA thereafter. Then the errors become negligible.
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Chapter 14
Response Time Distributions in Networks of
Queues

Michael Grottke, Varsha Apte, Kishor S. Trivedi, and Steve Woolet

Abstract This chapter addresses the issue of determining the response time distri-
bution in networks of queues. Four different techniques aredescribed and demon-
strated. A two-step numerical approach to compute the response time distribution
for closed Markovian networks with general connectivity, atechnique for determin-
ing the approximate (exact under certain conditions) response time distribution of a
defined subset of openM/M/c/bMarkovian networks using predefined continuous-
time Markov chain (CTMC) “response time blocks,” an expansion of “response time
blocks” to open Markovian networks with general phase-type(PH) service time dis-
tributions, and an approach for handling non-Markovian networks havingM/G/1
priority andPH/G/1 queues. These techniques are shown to give accurate results
with much smaller CTMCs or semi-Markov processes than exactanalysis.

14.1 Introduction

The problem of computing the response (sojourn) time distribution in queuing net-
works has been researched extensively during the past few decades. (For a some-
what dated survey see [6].) In case of open queuing networks,a considerable
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amount of work has been done in computing the response time distribution in
the domain of Jackson networks. Closed form solutions have been derived for the
(Laplace-Stieltjes transform of) response time distributions through a particular path
in product-form queuing networks [38].

Furthermore, many results exist for response time distributions in networks with
a specific topological structure such as tandem, central server, single queue with
feedback and so on. The communications literature also shows a focus on end-to-
end packet delay in tandem-type queuing networks, with characteristics specific to
communication systems. However, it is very difficult to derive exact closed form
solutions for networks with even slightly non-restrictivetopology as well as service
and arrival characteristics. In the face of such difficulties, the two approaches taken
are: (1) numerical solution and (2) approximate solution.

In case of closed Markovian queuing networks, thetagged customer approach
[30] may be used to numerically compute the response time distribution of a network
with a general topology. However, this technique consists of generating the state
space of the queuing network and may result in a very large state space. Section 14.2
will describe this numerical approach. Methods for efficiently analyzing response
time densities in very large Markov and semi-Markov models have recently been
shown in [7] and [12].

In case of open queuing networks with unlimited capacity queues, the tagged
customer approach is not feasible at all. Thus, a lot of research has been devoted to
finding approximations to response time distribution whichare space and time effi-
cient. Abate et al. [1] consider approximations forG/GI/1 queue sojourn time tail
probabilities. Au-Yeng et al. [2] present a technique usinggeneralized lambda dis-
tributions for approximating response time densities in Markov and semi-Markov
models. Van Houdt and Blondia [44] approximate waiting timedistributions by
steady-state analysis ofresetMarkov chains. Van Velthoven et al. [45] present meth-
ods for calculating the response time distribution of impatient customers in discrete-
time queues.

One class of approximations which address the response timedistribution prob-
lem have been termed “independent flow time approximation” (IFTA) by Boxma
and Daduna [6]. This approximation states that “arrival state distributions seen by a
test customer on the arrival at successive network stationsare independent of each
other and equal the stationary arrival state distributionsat these stations as seen by
an arbitrary customer” [6]. It has been applied by Harrison [14], as well as Shan-
thikumar and Buzacott [40].

In the approach suggested by Harrison [14], decomposition of queues is used
to compute the response time distribution. The basic idea isto find arrival rates to
each queue and then analyze each queue in isolation. If we know the response time
distribution of a job at each of the queues in the network, then the response time
of a job through a particular path in the queuing network can be computed as the
convolution of the response time distributions at each queue in the path.

A response time computation technique that builds on Harrison’s method was
presented in its nascent form by Woolet [48]. The key idea there was as follows:
Assume that the response time distribution at each queue in the queuing network is
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phase-type, i.e., it corresponds to the absorption time distribution of a continuous-
time Markov chain (CTMC). Then if we construct the CTMCs corresponding to
all queues, “glue” them together according to the topology of the network, and
add an absorbing state representing departure from the network, we have another
CTMC. The absorption time distribution of this CTMC approximates the response
time distribution in the same way as Harrison’s method does.The advantage of this
method is that it (1) provides a clear representation, in theform of a CTMC, for
the approximate computation technique, (2) maps the problem to a well-explored
problem of transient solution of CTMCs and (3) allows us to extend the original
technique to more general topologies and service time distributions, by taking ad-
vantage of this CTMC representation. This method also maintains the advantage of
space and time efficiency that Harrison’s method has. It mustbe noted that though
we do use CTMCs in this method, they do not represent the statespace of the queu-
ing network. In fact, the size of the CTMC is linear in the number of queues in the
network. In [48], this method was presented with some examples for a network of
M/M/c/b≤ ∞ queues with no loss of customers. Section 14.3 will describethis
application to open queuing networks. We extend this methodin Sect. 14.4 to cover
queues in which the service time follows a phase-type distribution.

Two approaches that can be adopted if the response time distribution at each
queue is not phase-type are described in Sect. 14.5. First, we can fit a phase-type
distribution to the response time distribution and again map the problem to a CTMC
transient solution problem. Most of the results in the literature provide the response
time distribution at a queue only in the form of its Laplace-Stieltjes transform (LST).
This poses the additional problem of matching two distributions, given only their
LSTs. We explore this problem and present our observations and suggestions.

Another approach is to leave the CTMC domain altogether and map the queuing
network to a semi-Markov process as was done by Mainkar [28].Since the response
time distribution at each queue and the routing probabilities are available, the same
idea of “gluing” together states which represent response time distributions will re-
sult in a semi-Markov process whose kernel, holding times instates, and embedded
discrete-time Markov chain (DTMC) are known. Again, we approximate the re-
sponse time distribution of the queuing network by the absorption time distribution
of the semi-Markov process. The number of states of this semi-Markov process is
linear in the number of queues in the queuing network.

In this chapter, these basic ideas are used to develop approximations of response
time distributions for a variety of queuing networks.

14.2 Closed Markovian networks

As stated previously, closed form solutions for the response time distributions of
queuing networks are obtainable only for simple queuing system models. Methods
for computing the Laplace transforms of the response time distribution in queuing
networks satisfying the non-overtaking condition are proposed by Lemoine [24]
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as well as Walrand and Varaiya [46]. Melamed and Yadin [31] have shown that
numerical computation of the response time distribution ispossible, although this
requires the construction and solution of large Markov models.

14.2.1 Tagged customer approach

The tagged customer approach is one method of numerical computation of the
response time distribution for queuing networks with general interconnectivity.
Melamed and Yadin [31] present this approach for evaluatingthe response time
distribution in a discrete state Markovian queuing network. An arbitrary customer
is picked as the tagged customer and its passage is tracked through the network.
The response time distribution, conditioned on the state ofthe queuing network at
the time of arrival of the tagged customer, is computed. Deriving this conditional
response time distribution of the tagged customer is transformed into a problem of
solving for the distribution of the time to absorption of a finite-state CTMC. For
closed product form queuing networks, an arriving customerwill see the network
in equilibrium with one less customer and we can establish the distribution of the
other customers in the network at the instant of arrival of the tagged customer; see
the arrival theorem of Sevcik and Mitrani [39] or Lavenberg and Reiser [23]. All
the states in which the tagged customer may find the queuing network upon arrival
(i.e., how the remaining jobs are distributed among the queues in the network) must
be determined to make possible the computation of the unconditional response time
distribution. Computing the response time distribution using the tagged customer
approach is therefore a two-step process.

14.2.2 Example: Central server model

Figure 14.1 shows a closed queuing network model of a computer system, a central
server model (CSM), that will be used to describe the tagged customer approach.
Customers first join the CPU queue. The CPU, Disk 1 and Disk 2 are assumed
to have exponentially distributed service times with parametersµC, µD1 andµD2,
respectively. The service discipline at all the queuing centers is assumed to be first
come, first served (FCFS). This closed system containsn customers. A customer
will request access to Disk 1 with probabilityp1 and Disk 2 with probabilityp2

after receiving a burst of service at the CPU; the customer rejoins the CPU queue
for another burst of service after completing access to the disks. With probability
p0 = 1− (p1 + p2) the customer may complete execution, after which it is replaced
by a statistically identical customer newly arriving to thesystem.
As mentioned earlier, finding the response time distribution of a queuing network
is transformed into solving for the absorption time distribution of a CTMC. Fig-
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Fig. 14.1: Central server model of a computer system

ure 14.2 shows the CTMC whose absorption time distribution needs to be computed
for the case of the CSM with onlyn = 2 customers.
It is interesting to note that a rather complex CTMC is obtained even for a system
with only two customers. In Fig. 14.2, the number of customers at the CPU, Disk1,
and Disk2, respectively, are indicated by the first three components of the state label.
The position of the tagged customer is indicated by the next two components; the
index of the queue in which the tagged customer resides corresponds to the first
component, the position of the tagged customer in the queue corresponds to the
second. The queues are numbered as follows: 1 (CPU), 2 (Disk1), and 3 (Disk2).
The state 00 is used to indicate that the tagged customer has departed from the
system, i.e., has reached the absorbing state of the CTMC. States(10000),(01000),
and(00100) are the three absorbing states in the Markov chain, and are explicitly
identified in the figure by the squares enclosed within the circles.

The three states explicitly identified in this figure by double circles are those
states in which the tagged customer may arrive into the queuing system. These are
states(20012),(11011), and(10111), which correspond to the other job being at
the CPU, Disk1, and Disk2, respectively. We can compute the absorption time dis-
tribution of the CTMC assuming that we start with any of thesearrival states as the
initial state. Each absorption time distribution represents the conditional response
time distribution of the tagged customer, conditioned on a specific position of the
other customer at the instant of arrival of the tagged customer into the queuing sys-
tem.

Let I be the set of all states in the CTMC whose solution yields the response time
distribution. The set of absorbing states in the CTMC is represented byA (⊆ I), and
the set of states in which the tagged customer will find the network at the instant of
arrival is represented byS(⊆ I). Sis the set of all possible states of the network with
one less customer for a closed queuing network. The random variable representing
the response time for an arbitrary customer arriving when the queuing network is in
statei, wherei ∈ S, is Ri . Definepi j (t) as the transient probability of being in state
j at timet given that the initial state of the CTMC in Fig. 14.2 isi. Then
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State label :(i j k l m)
i: No. of jobs in CPU
j : No. of jobs in Disk1
k: No. of jobs in Disk2
l : Queue in which tagged customer is present

(1=CPU, 2=Disk1, 3=Disk2)
m: Position of tagged customer in queue

l = 0, m= 0: Job has exited from the system

Fig. 14.2: CTMC model of the CSM for computing the response time distribution

P(Ri ≤ t) = ∑
j∈A

pi j (t).

To compute the unconditional response time distribution, we require the (steady-
state) probabilitiesπi(n−1) that the tagged customer will see the network with the
othern−1 customers in statei (i ∈ S) at the instant of arrival. These probabilities
are computed based on a further CTMC.
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In Fig. 14.3, this CTMC is shown for the case ofn = 2 customers. It has three
states corresponding to the non-tagged customer being present at the CPU, Disk1,
and Disk2, respectively.

p1

µ
010001

µ
D µC2

100

C
p

2
µD1

State label :(i j k)
i: No. of jobs in CPU
j : No. of jobs in Disk1
k: No. of jobs in Disk2

Fig. 14.3: CTMC model for computing the steady-state probabilities of the non-
tagged customer

Let the random variable representing the unconditional response time beR. Then a
general expression for the unconditional response time distribution is

P(R≤ t) = ∑
i∈S

πi(n−1)P(Ri ≤ t) = ∑
i∈S

πi(n−1) ∑
j∈A

pi j (t)

= ∑
j∈A

∑
i∈S

πi(n−1)pi j (t) = ∑
j∈A

p j(t),

wherep j(t) represents the unconditional transient probability of being in statej. For
n = 2 customers, these probabilities are obtained by solving the CTMC in Fig. 14.2
for its transient probability vector at timet, given the initial probability of the state
i (∀i ∈S) of the CTMC isπi(n−1) and the initial probabilities of all the other states
(i ∈ I −S) are zero. The unconditional response time distribution is thus directly
computed by assigning the initial probabilities for the CTMC and carrying out the
transient analysis only once.

For this example, we setµC = 50.0,µD1 = 30.0,µD2 = 20.0, p1 = 0.45, andp2 =
0.3. Figure 14.4 shows the response time distributions of the CSM for different
numbers of customersn (5,10 and 15). Note that when there are fewer customers
competing for resources (i.e., the number of customers is smaller), a customer has a
higher probability of completing by a given timet.

For a general method of constructing the two CTMCs for computing the response
time distribution see [33], and for automated constructionand solution of such mod-
els using stochastic Petri nets see [32]. See [7] and [12] formethods for efficiently
analyzing response time densities in very large Markov and semi-Markov models.
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Fig. 14.4: Response time distribution of the CSM for different number of customers

14.3 Open Markovian networks ofM/M/c/b≤ ∞ queues

As we have seen in the previous section, even for a rather simple closed system in
which only few jobs are present, the total number of states that the system can take
may be high. For open Markovian networks, in which the numberof jobs in the
system is not fixed, computing the response time distribution via the tagged cus-
tomer approach basically involves an infinite number of states. However, there are
methods of approximating the distribution that can give good results with much less
effort. One such method uses the original network and knowledge of the response
time distribution of its nodes to construct a CTMC for which the distribution of the
time to reach the absorbing state can be solved to find the approximate response
time distribution of the queuing network. In its simplest form, this method requires
that the response times at the individual queues can be represented by the time until
absorption in a CTMC. Fortunately, this is the case for many types of queues.

For five fairly simple types of queues, we present the CTMCs corresponding
to their response time distributions in Sect. 14.3.1. These“response time blocks”
can then be used to build the CTMC for the entire queuing network via the pro-
cedure laid out in Sect. 14.3.2. The approach is illustratedwith three examples in
Sect. 14.3.3.



14 Response Time Distributions in Networks of Queues 595

14.3.1 Response time blocks

Throughout this section, we assume that all nodes use FCFS scheduling. Letλ and
µ denote the arrival rate to the node and the service rate of each server of the node,
respectively. To maintain stability, we assume thatλ < cµ , wherec is the number
of servers in the node. This is equivalent to the condition that the traffic intensity at
the node,ρ = λ

cµ , is smaller than one.

14.3.1.1M/M/1

For anM/M/1, FCFS server with arrival rateλ and service rateµ , the response
time distribution is given by Gross et al. [13] as

F(t) = 1−exp(−(µ−λ )t),

assuming thatλ < µ . The response time block is shown in Fig. 14.5. State “In”
indicates the starting state of the piece of the CTMC model representing theM/M/1
queue in the corresponding network model. The “Out” state will be either an “In”
state for another network model node or the absorbing state representing the job
leaving the network model. If the output of the queuing node can proceed on more
than one path, then the “Out” state shown would actually be multiple states and the
incoming arcs to these states would be weighted with the appropriate probabilities.

In Out

µ − λ

Fig. 14.5: TheM/M/1 response time block

14.3.1.2M/M/∞

TheM/M/∞ server is the simplest node for which to find the response timedistri-
bution. Since there are always enough servers for any customer, the response time
distribution is the same as the service time distribution,

F(t) = 1−exp(−µt).

Figure 14.6 shows the response time block for this distribution. It is very similar
to Fig. 14.5, except that for theM/M/∞ case the rate of leaving the “In” node is
simply µ .
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µ

In Out

Fig. 14.6: TheM/M/∞ response time block

14.3.1.3M/M/c

If there are assumed to be some finite number,c, of servers each having the same ser-
vice rate,µ , and an infinite queue, we have anM/M/c, FCFS queue. TheM/M/c,
FCFS response time distribution given by Gross et al. [13] as

F(t) = Wc(1−exp(−µt)) (14.1)

+(1−Wc)

[
cµ−λ

(c−1)µ−λ
[1−exp(−µt)]− µ

(c−1)µ−λ
[1−exp(−(cµ−λ )t)]

]
,

where

Wc = 1−
[
(cρ)c

c!
· 1
1−ρ

]
·
[

c−1

∑
k=0

(cρ)k

k!
+

(cρ)c

c!
· 1
1−ρ

]−1

is the steady-state probability that a newly arriving job finds less thanc jobs present
in the node and therefore does not have to queue for service.

The distribution in Eq. (14.1) is a mixture ofWc fraction following an expo-
nential distribution with parameterµ and(1−Wc) fraction following a two-stage
hypoexponential distribution with parametersµ andcµ−λ . It can be described by
the building block shown in Fig. 14.7. The upper path represents the exponentially
distributed portion and the lower path is the hypoexponentially distributed portion.
StateT is strictly a transient state that is required to obtain the hypoexponential
distribution.

(1 − W )

µWc

ccµ µ − λ

In

T

Out

Fig. 14.7: TheM/M/c, FCFS response time block
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14.3.1.4M/M/c/b

If we limit the previous case to a finite queue length (or buffer size) ofb (where the
queue includes the customer being serviced), we have theM/M/c/b, FCFS queue.
The distribution given here is for an open network, assumingthe job is accepted for
service. In [43], the distribution for this case has been given as

F(t) =
c−1

∑
n=0

qn(1−exp(−µt))

+
b−1

∑
n=c

qn

{(
c

c−1

)n−c+1

(1−exp(−µt))

−
n−c

∑
i=0

(
c

c−1

)n−c−i+1 1
c

[
1−

i

∑
j=0

(µct) j

j!
exp(−µct)

]}
,

where

qn =





(cρ)n

n!
·
[

c−1

∑
k=0

(cρ)k

k!
+

cc

c!

b−1

∑
k=c

ρk

]−1

if n = 0,1, ...,c−1,

ccρn

c!
·
[

c−1

∑
k=0

(cρ)k

k!
+

cc

c!

b−1

∑
k=c

ρk

]−1

if n = c,c+1, ...,b−1

(14.2)

represents the conditional steady-state probability thata newly arriving job which is
notblocked by the node due to a full buffer findsn other jobs present at the node.

This distribution is a mixture of an exponential distribution with parameterµ
andb− c hypoexponential distributions. Each hypoexponential distribution has a
different number of phases. More specifically, theith hypoexponential distribution
(i = 1, . . . ,b−c) consists ofi+1 phases; one phase has parameterµ , and the remain-
ing i phases have parametercµ . Figure 14.8 shows the response time block repre-
sentation of the distribution. Similar to theM/M/c block, the statesT2, · · · ,Tb−c+1

are strictly transient states required to obtain the hypoexponential distributions. The
probabilitiesVj that appear in the transition rates are given by

Vj =





c−1

∑
n=0

qn if j = 1,

qc+ j−2

∑b−1
n=c+ j−2qn

if j = 2, ...,b−c+1.
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Fig. 14.8: TheM/M/c/b response time block

14.3.1.5M/M/1/b

By limiting the M/M/c/b case to a single server, we have anM/M/1/b, FCFS
queue. The distribution given in this section has the same assumptions and qual-
ifications as that in theM/M/c/b section. The response time distribution for the
M/M/1/b, FCFS case is given by Gross et al. [13] as

F(t) =
1−ρ
1−ρb

b−1

∑
n=0

ρn

(
1−

n

∑
k=0

(µt)k exp(−µt)
k!

)
.

Note that this distribution is a mixture of Erlang distributions where each has pa-
rameterµ and the number of phases varies from 1 tob. Settingc = 1 and

Vj =
1−ρ

1−ρb− j+1 if 1 ≤ j ≤ b,

we can again use Fig. 14.8 to represent theM/M/1/b response time block; see [48].

14.3.2 Building the Markov chain from a queuing network

With the building blocks for five types of queues described inSect. 14.3.1, we can
now outline a procedure for automatically mapping a queuingnetwork to a response
time CTMC.

Consider a network consisting ofm queues 1,2, . . . ,m, where each queue is of
one of the types described in Sect. 14.3.1. Letλ0i be the external arrival rate to node
i in the queuing network. Supposer i0 is the probability that a customer exits the
network after receiving service at nodei. Let r ii ′ be the probability that a customer
proceeds to nodei′ after receiving service at nodei. If queuei′ is a finite capacity
queue and it is full to its capacity, then we consider the following possibilities [36]:
(1) The customer waits at queuei and is retried. (We call this policy WAIT.) (2) The



14 Response Time Distributions in Networks of Queues 599

customer is lost. (This policy is termed LOSS.) Suppose the probability of loss at
queuei′ is pbi′ . (Thuspbi′ = 0 for infinite capacity queues.) Then the procedure for
building the overall CTMC is described as follows:

Step 1: Calculate effective arrival rates to each node of the queuing network. The
effective arrival rateλi′ to nodei′ is given by [15]

λi′ = λ0i′+
m

∑
i=1

λi(1− pbi)r ii ′ for i′ = 1,2, ...,m. (14.3)

If all queues in the network are either infinite capacity queues or finite capacity
queues with WAIT policy, i.e., ifpbi = 0 ∀i, then (14.3) is a simple linear system
of equations. However, things are more complicated if customers can get lost in
the system. Let queuei of the network be anM/M/c/b queue with LOSS policy
and the same service rateµi for each of thec servers. Assuming that the arrivals
to this queue are Poisson, the expression forpbi is

pbi =
ccρb

i

c!
·
[

c−1

∑
k=0

(cρi)
k

k!
+

cc

c!

b

∑
k=c

ρk
i

]−1

.

Sinceρi = λi
cµi

, substituting this expression into Eq. (14.3) results in a system
of equations that may need to be solved using fixed-point iteration to yield the
effective arrival rates. The buffer-full probabilities can then be calculated based
on these values of the arrival rates. The effective arrival rates as well as the buffer-
full probabilities may be approximate because we assume that the arrivals to all
queues are Poisson, which is not necessarily the case.

Step 2: Create a CTMC with a stateSf . Sf is the state which denotes exit out of
the queuing network. If the full buffer policy at any queue isLOSS then a state
Sl is also created which denotes loss due to encountering full buffers.
For each queuei, create a set of statesSi = {Si1,Si2, . . . ,Sini}, consisting of all
the states but the “Out” state contained in the response timeblock representation
of this queue (see Sect. 14.3.1). Therefore,

ni =





1 if queuei is M/M/∞ or M/M/1,
2 if queuei is M/M/c,
b if queuei is M/M/1/b,

b−c+1 if queuei is M/M/c/b.

Then the state space of the CTMC is given byS= (
⋃m

i=1Si)
⋃{Sf ,Sl}. Let d =

max{ni | i = 1,2, . . . ,m}. Since

m< |S| ≤ dm+2,

the total number of states|S| is linear inm.
Step 3: The response time distribution of the types of queues considered above

are phase-type [42] and hence, in general, can be represented as follows: Let the
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sojourn time in the response time block statej of queuei follow an exponential
distribution with rateµi j and let the probability of exiting the queue from that
state beVi j . Assume we define probabilitypbi for all queues, i.e., it is zero for
infinite capacity queues. Then the generator matrixQ of the CTMC defined in
Step 2 is constructed based on the following principles.
The progress within the response time block of queuei, from statej to j +1, is
preserved as in the block:

QSi j ,Si( j+1)
= µi j (1−Vi j ).

To represent routing from nodei to i′,

QSi j ,Si′1 = µi jVi j r ii ′(1− pbi′).

For denoting exit from the network,

QSi j ,Sf = µi jVi j r i0.

If there is any queue with LOSS policy in the queuing network,then we also
have, in addition to the above,

QSi j ,Sl = µi jVi j ∑
i′ 6=i

r ii ′ pbi′ .

Note that in case of WAIT, we assume that the time until retry is the same as the
time to exit queuei starting from the state from which exit was attempted. We
also assume that on retry the queue to which the job is routed is sampled again.
The rest of the entries ofQ are zeros except for the diagonal entries, which are

QSi ,Si =− ∑
Si′∈S,Si′ 6=Si

QSi ,Si′ .

Step 4: If we defineλ = ∑m
i=1 λ0i , thenλ0i/λ is the probability that an external

customer arrives at queuei. Then the initial state probability is set toλ0i/λ for
stateSi1 and to 0 for all other states.
The cumulative distribution function of the response timeR of the network can
now be found by computingPSf (t), the probability of being in stateSf at timet.
SinceSf is an absorbing state, this probability is equal to the probability of exit-
ing the network before timet, given that the customer entered it at time 0. Note
that if we have LOSS, this distribution will bedefective, i.e., limt→∞ P(R≤ t)
= limt→∞ PSf (t) < 1. This is because there is a non-zero probability that the cus-
tomer will never reach the stateSf .

Let us assume

• that successive service times are independent (Kleinrock’s independence as-
sumption),

• that the independent flow time approximation as described inSect. 14.1 holds,
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• that external arrivals are Poisson,
• that all queues are single server with exponentially distributed service time and

FCFS queuing discipline,
• that all queues are infinite capacity queues,
• that the network is feed-forward, and
• that all the paths in the network are overtake-free [6].

If the above conditions are met, arrivals at all queues are Poisson, and further, suc-
cessive sojourn times in a path are independent. In that case, PSf (t) as computed by
the above algorithm gives the exact distribution of sojourntime. When any of the
above conditions are violated, the absorption time distribution is an approximation.
The successive sojourn times in queues in a path with overtaking or feedback are
correlated [6], thus violating the implicit independence assumption in our method.

14.3.3 Examples

We will now illustrate the approach developed above using a computer system ex-
ample and a distributed system example. We also show how thismethodology can
be used to find the distribution of the sample average of response times.

14.3.3.1 Computer system

Consider the simple model of a computer system (Fig. 14.9), which is comprised of
two M/M/1 queues.

p

p
1

0

1CPU I/O

µ2

λ

µ

01

Fig. 14.9: Model I, an open network with feedback

Defining the effective arrival rates to the CPU queue and the I/O queue to beλ1 and
λ2, respectively, we follow Step 1 and formulate the equation system

λ1 = λ01+ λ2,

λ2 = λ1p1.

This system of equations can easily be solved for the effective arrival rates,
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λ1 =
λ01

1− p1
=

λ01

p0
and

λ2 =
p1λ01

p0
.

We now build the CTMC from the queuing network according to Steps 2 and 3. The
state spaceS consists of the “In” nodes of the twoM/M/1 response time blocks,
denoted byS11 andS21, respectively, as well as the exit nodeSf . Since both queues
have infinite capacity,pb1 = pb2 = 0. The rate of leaving the “In” state of anM/M/1
response time block is calculated as the service rate minus the arrival rate; conse-
quently, we haveµi1 = (µi−λi) for i = 1,2. Moreover, the probabilities of leaving
the current node is equal to one for the statesS11 andS21, i.e.,V11=V21 = 1. Accord-
ing to the model, a job leaving the CPU can either exit the network with probability
r10 = p0 or progress to the I/O queue with probabilityr12 = p1; all jobs finished at
the I/O queue return to the CPU queue; i.e.,r21 = 1 andr20 = 0. Therefore, the only
off-diagonal entries ofQ that are not equal to zero are

QS11,S21 = (µ1−λ1)p1,
QS11,Sf = (µ1−λ1)p0,

QS21,S11 = µ2−λ2.

The corresponding CTMC is depicted in Fig. 14.10.

S

S11 S21

µ − λ )(

µ )( 1

− λ  2

− λ1

1 1 0p

1p

f

µ2         

Fig. 14.10: CTMC corresponding to the response time distribution of model I

It can be shown that the expected response time in this queuing model is given by
[42, p. 561]

E(R) =
1

p0µ1−λ01
+

1
p0µ2
p1
−λ01

.

Obviously, the same expected response time is obtained in the simple network with-
out feedback shown in Fig. 14.11. However, as we will see, thecumulative distribu-
tion function of the response time in this “equivalent” model II is different from the
one in the original model I.
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Fig. 14.11: Model II, an “equivalent” network without feedback

The response time CTMC for queuing network model II is built from twoM/M/1
response time blocks withµ11 = p0µ1−λ01 andµ21 = p0µ2

p1
−λ01. As before,pbi = 0

andVi1 = 1 for i = 1,2. Since all jobs proceed from queue 1 to queue 2 and then
leave the network,r12 = r20 = 1. The non-zero off-diagonal elements ofQ are thus

QS11,S21 = p0µ1−λ01,

QS21,Sf =
p0µ2

p1
−λ01.

The CTMC is shown in Fig. 14.12.
For a specific example, we assume that the arrival rate from outside the system is

λ01 = 1 job per second and that a job leaves the system with a probability of p0 = 0.2
after being processed at the CPU. We further assume that the CPU can process jobs
at a rate ofµ1 = 10 jobs per second and the I/O can process jobs at a rate ofµ2 = 5
jobs per second.

S11 S

µ1

S21

01λ− − λ01
2µ0p

1
p0p

f

Fig. 14.12: CTMC corresponding to the response time distribution of model II

The CTMCs of model I and model II were solved using the SHARPE [37] tool
to obtain the distributions of time to absorption in stateSf . For comparison, the
queuing network models were also implemented and the response time distribution
found using the simulation tool HyPerformix Workbench1.

The CTMC solutions as well as the simulations found the expected response time
to be 5 seconds for both network models. All response time distributions obtained
are plotted in Fig. 14.13. Note that for the model I (Fig. 14.9) the CTMC approxima-
tion shows the distribution to be slightly lower than the resultant distribution of the
simulation for values oft < 12, and slightly higher for the remaining values oft. For
model II (Fig. 14.11), the results from the CTMC approximation and the simulation
model are in agreement for allt. This can be explained by the fact that the CTMC

1 Registered trademark of HyPerformix, Inc.
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approach gives exact results when the queuing network is an open Jacksonian feed-
forward network with overtake-free conditions [29]. However, comparing the results
from the “equivalent” network to the original, we see quite abit of difference in the
response time distributions.
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Fig. 14.13: Response time distribution for the networks of Figs. 14.9 and 14.11

14.3.3.2 Distributed system

Consider a distributed system (Fig. 14.14) in which users send requests from termi-
nals (T) at the rateλ . A job first obtains service from a front-end server (F) and may
exit the system with probabilityp0 after completion of service. With probabilityp1,
it proceeds to the communications server (C). After completion of service it may go
back to the front-end server with probabilityp2, or proceed to a database server (D)
with probabilityp3 or to a general-purpose server (P) with probabilityp4.
The terminals (T) are assumed to beM/M/∞ servers having service rateµT . F
is anM/M/cF server with each of thecF servers having service rateµF . C is as-
sumed to be a single server (M/M/1) having service rateµC. D is assumed to be
a single server device having a finite capacity (M/M/1/bD). The service rate for
the database server isµD. P is assumed to be a multi-server having a finite capacity
(M/M/cP/bP). The service rate of each server is assumed to beµP. We shall eval-
uate this system first assuming the WAIT policy at both finite capacity queues and
then assuming the LOSS policy at both finite capacity queues.
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Fig. 14.14: Distributed system queuing network

WAIT

We first describe the results under the WAIT policy. For this network, WAIT policy
means that jobs that cannot go to theD or P queues due to lack of buffer availability
will remain at the communications server to be retried. Withthis assumption, on
solving Eq. (14.3), we obtain the following values for effective arrival ratesλi to
each of the queuesi = F,C,D,P [48]:

λF =
λ
p0

, λC =
p1

p0p2
·λ ,

λD =
p1p3

p0p2
·λ , λP =

p1p4

p0p2
·λ .

Figure 14.15 shows the CTMC corresponding to the response time distribution of
this queuing network when the capacity at each of the queuesD andP is 4, and
cP = 2.
StateT, matching the “In” state of theM/M/∞ response time block (Fig. 14.6),
is the starting state of this CTMC. Likewise, statesF1 andF2 correspond to the
“In” and T states, respectively, of the building block shown in Fig. 14.7, while
statesD1, D2, D3 andD4 are related to the “In” andTj states forj = 2,3,4 of
the M/M/c/b response time block of Fig. 14.8. The other states can be similarly
identified. State “Done” corresponds to the stateSf described in Sect. 14.3.2. The
probabilitiespbD and pbP are the buffer full probabilities of queuesD andP, re-
spectively. Finally,ρD denotes the utilization in the database server node, while the
variablesqn (n = 0,1,2,3) denote the conditional probabilities that a job arriving
and not being blocked at the general-purpose server findsn other jobs at this node,
as defined in Eq. (14.2).

ForµT = 0.2, µF = 1.5/4,µC = 1, µD = 0.2,µP = 0.05,cF = 4,cP = 2, p0 = 0.5,
p1 = 0.5, p2 = 0.46, p3 = 0.33 andp4 = 0.21, the distribution of the response time
in this network is shown in Fig. 14.16(a). The figure comparesthese results with
the simulation using RESQ, the queuing network modeling environment developed
at IBM [27]. The simulation was done using the regenerative method and provided
99% confidence intervals with maximum width 0.008.
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Fig. 14.15: CTMC corresponding to response time distribution for WAIT

(Since the confidence intervals obtained are very small, we have used the midpoint
of the intervals to plot the response time distribution.)

Figure 14.16(b) compares the response time distribution ofthis system for vari-
ous arrival rates.

LOSS

Under the LOSS policy we have to take into account the buffer-full probabilities
pbD andpbP when setting up equation system (14.3). Therefore, the effective arrival
rates are different from the ones in the WAIT policy case:

λF =
p0p2 + p1p2 + pbDp3 + p4pbP

p0p2 + p3pbD + p4pbP
·λ , λC =

p1

p0p2 + p3pbD + p4pbP
·λ ,

λD =
p1p3

p0p2 + p3pbD + p4pbP
·λ , λP =

p1p4

p0p2 + p3pbD + p4pbP
·λ .
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Fig. 14.16: (a) Response time distribution of distributed system: comparison with
simulation (b) Response time distribution for various values ofλ

Since jobs leaving nodeC can get lost at nodeD or nodeP, the CTMC constructed
for the WAIT policy has to be extended by a state “Lost”, corresponding to the state
Sl described in Sect. 14.3.2, and a transition from stateC1 to this “Lost” state. The
resulting CTMC corresponding to the response time distribution under the LOSS
policy is shown in Fig. 14.17.

Figure 14.18(a) shows a comparison of the response time distribution obtained by
solving the Markov model with the one obtained by RESQ simulation. In the LOSS
case deriving confidence intervals using RESQ would have taken prohibitively long
time, hence the plot shows point estimates. Notice that the distribution in this case
is defective, and thus limt→∞ P(R≤ t) < 1.

Figure 14.18(b) shows how the response time distribution improves with increase
in buffer size, since fewer jobs get lost. Note that the conditional response time,
given that the job does not get lost, will degrade with largerbuffer space, since the
length of the queue will increase.

14.3.3.3 Distribution of the response time sample mean

In some applications, we are not only interested in the distribution of the response
times, but in the distribution of the sample mean calculatedfrom n observed re-
sponse times. For example, in [3] we examined a multi-tier e-commerce applica-
tion consisting of 16 CPUs; the normal system behavior couldbe represented by
anM/M/c queue withc = 16. However, due to garbage collection events and ker-
nel overhead, the system sometimes showed severe performance degradation. The
only remedy in such a situation was to “rejuvenate” the system by terminating all
threads in execution, which freed the resources held by these threads. In [3], we
developed several algorithms triggering rejuvenation based on recent observations
of response times. Since the rejuvenation of the system incurs costs (e.g., lost trans-
actions), the challenge was to distinguish the sustained performance deterioration
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Fig. 14.17: CTMC corresponding to response time distribution for LOSS

from short-term increases in the observed response times. One of the algorithms
studied employed the sample means ofn subsequently observed response times in
order to smooth out sporadically occurring large values of the response time.

Assuming that the observable response timesRi are independently and identically
distributed (e.g., because the time lag between the collection of two response times
via probing is sufficiently large), then the sample meanR̄n = 1

n ∑n
i=1Ri = ∑n

i=1
Ri
n

follows a phase-type distribution. Obviously, each individual summandRi
n is the

response time of a job in anM/M/c, FCFS queue with arrival ratenλ and ser-
vice ratenµ . Its distribution can then be represented by an adapted version of the
M/M/c building block (see Fig. 14.7), in which all transition rates are multiplied by
n. Therefore,R̄n corresponds to the time until reaching the absorbing stateSf in a
simple network ofn suchM/M/c, FCFS queues, in which a job upon leaving queue
i < n proceeds to queuei +1. Note that, unlike in the previous examples, there is no
physical queuing network corresponding to this network of queues.



14 Response Time Distributions in Networks of Queues 609

0.0 80.0 160.0 240.0 320.0

t

0.0

0.2

0.4

0.6

0.8

1.0

P
(R

 <
=

 t)

(a)

Building Block Method
Simulation (Point Estimates)

0.0 80.0 160.0 240.0 320.0

t

0.0

0.2

0.4

0.6

0.8

1.0

P
(R

 <
=

 t)

(b)

bD = bP = 4
bD = bP = 10
bD = bP = 20

Fig. 14.18: (a) Response time distribution of distributed system: comparison with
simulation (b) Response time distribution for various values ofbD,bP

Due to the linear structure (r i,i+1 = 1 for i = 1, ...,n−1) and the fact that no jobs
are lost (pbi = 0 for i = 1, ...,n), the effective arrival rates are identical for all queues:
λi = nλ . The sojourn time in statesSi1 (corresponding to the “In” state in the re-
sponse time block of queuei) andSi2 (corresponding toT state in the response time
block of queuei) are exponential with parametersµi1 = nµ andµi2 = n(cµ−λ ),
respectively. The probability of leaving the queue from state Si1 is Vi1 = Wc, while
all jobs leave the queue from stateSi2, i.e.,Vi2 = 1. Upon leaving queuen, a job
is routed to the absorbing stateSf , i.e., rn0 = 1. The CTMC corresponding to the
distribution of the average response time thus consists of 2n+ 1 states and has a
generator matrixQ with non-zero off-diagonal elements

QSi1,Si+1,1 = nµWc for i = 1, ...,n−1,
QSi1,Si2 = nµ(1−Wc) for i = 1, ...,n,
QSi2,Si+1,1 = n(cµ−λ ) for i = 1, ...,n−1,
QSn1,Sf = nµWc,

QSn2,Sf = n(cµ−λ ).

It is shown in Fig. 14.19.

Fig. 14.19: CTMC corresponding to the distribution of the average response time
R̄n = 1

n ∑n
i=1Ri
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Solving this CTMC with the SHARPE [37] tool, we can obtain thecumulative dis-
tribution function of the sample mean,FR̄n

(t) = P(R̄n≤ t). Due to the relationship

fR̄n
(t) = pn1(t) ·nµWc+ pn2(t) ·n(cµ−λ ),

with pi j (t) denoting the probability that the process is in stateSi j at timet, we can
derive the probability density functionfR̄n

(t) by assigning the reward ratesnµWc

andn(cµ−λ ) to the statesSn1 andSn2, respectively.
For different values ofn, Fig. 14.20 shows this probability density function, based

on a server withc= 16 CPUs, an arrival rate ofλ = 1.6 jobs per second and a service
rate ofµ = 0.2 jobs per second.
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Fig. 14.20: Probability density function of average response time R̄n for n =
1,5,15,30 and corresponding approximating normal densitiesfN(t;µR̄n

,σ2
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); λ =
1.6,µ = 0.2

As a dashed line, each plot includes the probability densityfunction of the cor-
responding normal distribution, with the same expected value and variance as the
respective sample mean. The figures show how the sample mean converges against
the normal distribution, as stated by the central limit theorem.
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14.4 Open Markovian networks of queues with general PH
service time distributions

The approach for deriving a CTMC for the response time distribution described
in Sect. 14.3.2 can be employed if each of the nodes is of one ofthe five types
presented in Sect. 14.3.1. However, there are additional types of queues for which
the response time distribution can be represented by a CTMC.Important examples
areM/PH/1 andM/PH/∞ queues, in which the service time follows a phase-type
(PH) distribution. This kind of distribution as well as the two types of queues will
be discussed in the following section.

14.4.1 Building blocks with general PH service time distributions

We begin be reviewing the definition of the phase-type distribution [34]. Consider a
CTMC on the states{1, . . . ,n+1} with infinitesimal generator

Q =

[
T τ ′
0 0

]
,

where then×n matrixT satisfiesTii < 0, for 1≤ i ≤ n andTi j ≥ 0 for i 6= j. Further,
Te′+ τ ′ = 0′. Here and in the following, all vectors are by default row vectors, and
column vectors are expressed as transposed vectors. For example, τ ′ is a column
vector of lengthn, while e represents a row vector ofn ones. The initial probability
vector of the CTMC with infinitesimal generator matrixQ is given by(α,1−αe′),
whereα is a row vector of lengthn and 1−αe′ represents the probability for the
CTMC to start out in the absorbing staten+1. It is assumed that the states 1, . . . ,n
are all transient so that the process will always eventuallyreach the absorbing state.
A necessary and sufficient condition for this is that the matrix T be non-singular.
As defined by Neuts [34, p. 45], a probability distributionF(.) on [0,∞) is a PH
distribution if and only if it is the distribution of time until absorption in a finite
CTMC of the type defined above. The pair(α,T) is called a representation ofF(.).

In the context of queuing networks, PH distributions are of relevance, because
the queuesM/PH/∞ andM/PH/1, in which the arrival process is Poisson and the
service time follows a phase-type distribution, have a phase-type response time dis-
tribution. This means that (like for the five types of queues discussed in Sect. 14.3.1)
the response time distributions ofM/PH/∞ and M/PH/1 queues can be repre-
sented by CTMCs. We thus add these queues to our list of building blocks.

The case of anM/PH/∞ queue is very simple: The Markov submodel for its
response time is simply that one corresponding to the phase-type service time dis-
tribution.

The derivation of the Markov submodel is more complicated for an M/PH/1
queue. Suppose that the service time distribution of the queue has representation
(α ,T). According to Neuts [34, p. 57], the stationary waiting timedistribution is
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then phase-type with representation

β = ρθ , L = T + ρτ ′θ ,

whereθ = (θ1, . . . ,θn) is the stationary probability vector of the CTMC with in-
finitesimal generator matrixT + τ ′α. This means that the stationary waiting time
distribution is the time until absorption in the CTMC with infinitesimal generator
matrix

Q∗ =

[
L δ ′
0 0

]

and initial probability vector(β ,1−βe′), whereLe′+ δ ′ = 0′. From this represen-
tation a Markov submodel can be built.

14.4.2 Building the Markov chain

If nodes of the open queuing network areM/PH/1 or M/PH/∞ type queues, we
must slightly change the mapping procedure described in Sect. 14.3.2.

If queuei in the network isM/PH/∞ with (α (i),T(i)) denoting the phase-type
representation of its service time, then create a set of states{Si1, . . . ,Sini}, whereni

is the number of rows (or columns) of the matrixT(i).
If queue i is an M/PH/1 queue, then create the states{Wi1, . . . ,Wini} related

to the PH waiting time distribution with representation(β (i),L (i)), and the states
{Si1, . . . ,Sini} related to the PH service time distribution with representation
(α (i),T(i)). These states must be added to the total state spaceS in Step 2 of the
mapping procedure (Sect. 14.3.2). In the following, we assume thatα (i)e′ = 1; i.e.,
the service time of a queue cannot be zero.

When deriving the generator matrixQ in Step 3 of the procedure, rates for tran-
sitions involvingM/PH/1 orM/PH/∞ type queues are calculated as follows:

• Let queuei be anM/PH/1 queue. The transitions within the Markov submodel
remain unchanged; i.e., each transition rate is given by therespective off-diagonal
element in the matrixL (i) or T(i):

QWi j ,Wi j ′ = L(i)
j , j ′ j 6= j ′,

QSi j ,Si j ′ = T(i)
j , j ′ j 6= j ′. (14.1)

To denote service after waiting,

QWi j ,Si j ′ = δ (i)
j (α(i)

j ′ )′.

Now we consider the following cases for representing progress to the next queue
i′:

– If queuei′ is M/M/c/b≤ ∞,
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QSi j ,Si′1 = τ(i)
j r ii ′(1− pbi′). (14.2)

– If queuei′ is M/PH/∞,

QSi j ,Si′ j′ = τ(i)
j r ii ′α

(i′)
j ′ . (14.3)

– If queuei′ is alsoM/PH/1, then the job may either have to wait at this queue,

QSi j ,Wi′ j′ = τ(i)
j r ii ′β

(i′)
j ′ , (14.4)

or it may directly proceed to one of the states related to the service time dis-
tribution,

QSi j ,Si′ j′ = τ(i)
j r ii ′(1−β (i′)e′)α(i′)

j ′ . (14.5)

– If there are finite capacity queues with LOSS policy in the queuing network,

QSi j ,Sl = τ(i)
j ∑

i′ 6=i

r ii ′ pbi′ . (14.6)

• If queuei is M/PH/∞, Eq. (14.1) remains valid. For representing progress to the
next queue, Eqs. (14.2)–(14.6) remain valid.

• If queuei isM/M/c/b, then there are two cases involving queues with PH service
time distributions:

– If queuei′ is M/PH/∞,

QSi j ,Si′ j′ = µi jVi j r ii ′α
(i′)
j ′ .

– If queuei′ is M/PH/1, then the job may proceed either to one of the states
related to the waiting time distribution,

QSi j ,Wi′ j′ = µi jVi j r ii ′β
(i′)
j ′ ,

or to one of the states related to the service time distribution,

QSi j ,Si′ j′ = µi jVi j r ii ′(1−β (i′)e′)α(i′)
j ′ .

• The initial distribution of the CTMC also needs modification: If queue i is

M/PH/∞, then the probability of starting in stateSi j is λ0iα
(i)
j /λ . If queuei

is M/PH/1, then the probability of starting in stateWi j is λ0iβ
(i)
j /λ and the

probability of starting in stateSi j is λ0i(1−β (i)e′)α(i)
j .
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14.4.3 Example: CPU and disk queuing system

Consider a CPU and disk system as depicted in Fig. 14.21(a). Suppose the service
time distribution at the CPU is hyperexponential with two stages (Fig. 14.21(b)).
Suppose the service time at the disk is branching Erlang (Fig. 14.21(c)). Let the
arrival process to the system be Poisson with rateλ . The response time distribution
for this queuing network can be computed approximately withthe CTMC approach.

First, the effective arrival rates to the CPU and disk are given byλC = λ/(1− pd)
andλD = pdλ/(1− pd). The phase-type representation(αC,TC) for the hyperex-
ponential distribution isαC = (αC1,αC2) and

TC =

[
−µ1 0

0 −µ2

]
.

Using Neuts’ theorem, we can derive the phase-type representation of the waiting
time distribution of a customer at the CPU as

βC =

(
λCαC1

µ1
,

λCαC2

µ2

)
, LC =



−µ1 + λCαC1

λCµ1αC2

µ2
λCµ2αC1

µ1
−µ2 + λCαC2


 .

The phase-type representation of the service time at the disk is αD = (1,0) and

TD =

[
−µ3 µ3(1− p)

0 −µ4

]
.

The phase-type waiting time at the disk is given by

β D =

(
λD

µ3
,

λD(1− p)

µ4

)
, TD =



−µ3 + λDp µ3(1− p)

(
1+

λDp
µ4

)

λDµ4

µ3
−µ4+ λD(1− p)


 .

The CTMC corresponding to the response time distribution ofthe CPU and disk
queuing system is depicted in Fig. 14.21(d). The response time distribution in this
queuing network is approximated by computing the distribution of time to absorp-
tion, i.e., of reaching stateSF .
For the parametersλ = 1, pd = 0.7,αC1 = 0.3,αC2 = 0.7, µC1 = 6.67,µC2 = 10 and
for different disk service rates, Fig. 14.22 compares the response time distributions
derived via the CTMC method with simulations. The vertical bars next to the solid
lines denote 95% confidence intervals.
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Fig. 14.21: (a) CPU-disk queuing system (b) Service time distribution at the CPU
(c) Service time distribution at the disk (d) CTMC corresponding to the response
time distribution

14.5 Non-Markovian networks

Approximating response time distributions for Markovian networks using the tech-
niques previously described has been shown to give accurateresults with much less
computational effort than required for exact analysis. In this section, we apply sim-
ilar paradigms in computing approximations to the responsetime distribution of
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Fig. 14.22: Response time distribution in the CPU and disk queuing system

open queuing networks in which the service times and arrivalprocesses are non-
Markovian [28]. For doing so, we make use of several existingresults on the re-
sponse time distribution at a single queue. Using these, a queuing network is trans-
lated into a Markov or semi-Markov chain, whose absorption time distribution ap-
proximates the response time distribution of the queuing network.

In Sect. 14.5.1, we consider the approximation of the response time distribution
of a network of queues containingM/G/1 priority queues. The approach is extended
to PH/G/1 queues in Sect. 14.5.2.

14.5.1 Approximating non-PH distributions

In the previous sections we dealt with queues whose responsetime distribution could
be expressed as the absorption time distribution of a CTMC; or in other words, their
response time distribution was phase-type. However, this is true for only few types
of queues. We shall now extend our approach to queues whose waiting (or response)
time distribution is not phase-type. We consider a multipleclass queuing network
of M/M/1 queues with thepriority service discipline. We start with first reviewing
some results on the response time distribution of theM/G/1 priority queue.

14.5.1.1 The response time distribution at anM/G/1 priority queue

The Laplace-Stieltjes transform of the waiting time distribution at anM/G/1 pri-
ority queue has been derived by Takács [41]. It is assumed that the priorities of the



14 Response Time Distributions in Networks of Queues 617

arriving jobs are independent, identically distributed random variables, independent
of the arrival times, and a job having a smaller priority number has preference over
a job with a greater priority number. Some required notationis described in Table
14.1.

Symbol Description Definition
λ Arrival rate of jobs
H Discrete random variable indicating the job

priority
ph Probability that arriving job has priorityh P(H = h)

(h = 1,2, ...)
FH (h) Probability that arriving job has priority≤ h P(H ≤ h) = ∑h

i=1 pi

λ[1,h] Arrival rate of jobs with priority≤ h λFH(h)
B Random variable indicating the job service

time
FB(t) Service time distribution P(B≤ t)
β Mean service time E(B) =

´ ∞
0 t dFB(t)

FB|H(t | H = h) Conditional service time distribution for jobs
with priority h

f ∗B|H(s | H = h) LST of conditional service time distribution
´ ∞

0 exp(−st)dFB|H (t | H = h)

for jobs with priorityh

FB|H(t | H ≤ h) Conditional service time distribution for jobs
∑h

i=1 FB|H (t |H=i)·pi

FH (h)

with priority ≤ h
f ∗B|H(s | H ≤ h) LST of conditional service time distribution

´ ∞
0 exp(−st)dFB|H (t | H ≤ h)

for jobs with priority≤ h
β[1,h] Conditional mean service time for jobs withE(B | H ≤ h)

priority ≤ h =
´ ∞

0 t dFB|H(t | H ≤ h)

q q =

{
∞ if λ[1,h]β[1,h] < 1∀h,
min{h : λ[1,h]β[1,h] ≥ 1} otherwise

λ(h,q) Arrival rate for jobs with priority∈ (h,q) λ (FH (q−1)−FH(h))

FB|H(t|h<H<q) Conditional service time distribution for
∑q−1

i=h+1 FB|H (t |H=i)·pi

FH (q−1)−FH (h)

jobs with priority∈ (h,q)
f ∗B|H(s|h<H<q) LST of conditional service time distribution

´ ∞
0 exp(−st)dFB|H (t|h<H<q)

for jobs with priority∈ (h,q)
W Random variable indicating the job wait time
FW|H(t | H = h) Conditional wait time distribution for jobs

with priority h
f ∗W|H(s | H = h) LST of conditional wait time distribution

´ ∞
0 exp(−st)dFW|H(t | H = h)

for jobs with priorityh

FW|H(t | H ≤ h) Conditional wait time distribution for jobs
∑h

i=1 FW|H (t |H=i)·pi

FH (h)

with priority ≤ h
f ∗W|H(s | H ≤ h) LST of conditional wait time distribution for

´ ∞
0 exp(−st)dFW|H(t | H ≤ h)

jobs with priority≤ h

Table 14.1: Notation for LST of priority queues
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If λ[1,h]β[1,h] < 1, the LST of the waiting time distribution for a priorityh job [41]
is given by

f ∗W|H(s | H = h) = f ∗W|H(s+ λ[1,h−1](1− δh(s)) | H ≤ h), (14.1)

whereδh(s) is the root with the smallest absolute value inzof the equation

z= f ∗B|H(s+ λ[1,h−1](1−z) |H ≤ h−1).

For the case of preemptive-resume priority,

f ∗W|H(s | H ≤ h) =
1−λ[1,h]β[1,h]

1−λ[1,h] ·
1− f ∗B|H(s|H≤h)

s

, (14.2)

and the LST of the conditional response time distribution is

f ∗R|H(s |H = h) = f ∗W|H(s |H = h) · f ∗B|H(s+ λ[1,h−1](1− δh(s)) | H = h).

For the non-preemptive priority case, with the condition thatλ[1,h]β[1,h] < 1 for every
h,

f ∗W|H(s | H ≤ h) =
1−λ β + λ[h,q] ·

1− f ∗B|H (s|h<H<q)

s

1−λ(1,h) ·
1− f ∗B|H(s|H≤h)

s

,

and the LST of the conditional response time distribution is

f ∗R|H(s | H = h) = f ∗W|H(s |H = h) · f ∗B|H(s | H = h).

Let us consider the simplest special case of an exponential service time distri-
bution with rateµh for priority classh. Suppose there are two priority classes with
preemptive-resume priority. Then for priority 1 jobs Eqs. (14.1) and (14.2) simplify
to

f ∗W|H(s | H = 1) =
1−λ[1,1]β[1,1]

1−λ[1,1] ·
1− µ1

µ1+s

s

=
1− p1λ

µ1

1− p1λ
µ1+s

,

which is the LST of theM/M/1, FCFS waiting time distribution, as expected.
According to Eq. (14.1), for jobs with priority 2, the LST of the waiting time

distribution is given by

f ∗W|H(s | H = 2) = f ∗W|H(s+ λ[1,1](1− δ2(s)) | H ≤ 2)

= f ∗W|H(s+ p1λ (1− δ2(s)) | H ≤ 2).

Hereδ2(s) is given by the absolute value of

µ1 +s+ p1λ −
√

s2 + µ2
1 +(p1λ )2 +2µ1s+2sp1λ −2p1λ µ1

2p1λ
.
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Clearly, f ∗W|H(s |H = 2) is not rational insand therefore does not represent a phase-
type distribution. Thus it follows that even for the exponential service time distri-
bution, the response time distribution in a multi-priorityqueue is not phase-type.
The CTMC approach outlined earlier therefore does not directly apply. One alter-
native approach is to fit a phase-type distribution to the response time distribution.
The advantage of this method is that the problem still reduces to computation of the
transient solution of a CTMC, a problem for which many different and numerically
stable solutions exist.

14.5.1.2 The CTMC approach

The main problem in the CTMC approach is to compute a good phase-type fit to
the response time distribution at each queue. A lot of work has been done in the
area of fitting a phase-type distribution when the first few moments of a distribution
are available. The most thorough work has been presented in aseries of papers by
Johnson and Taaffe; see the list of references in [20]. In thecontext of our problem
we make the following remarks.

The response time distribution of theM/M/1 priority queue is available to us
only in the form of its LST. As one alternative, we could invert the LST numerically
and fit a phase-type distribution to the distribution that results from this inversion.
We do not find this alternative very prudent. This is because if we must use LST
inversion, the advantage of using the CTMC approach is lost.We could model the
response time problem simply as a semi-Markov chain (explained in detail later
in Sect. 14.5.2) and use LST inversion for its solution, without going through the
phase-type approximation. Therefore, if a matching must bedone, it should be with-
out carrying out LST inversion. We would also like to point out the key difference in
other works in queuing systems based on phase-type fitting [22]: The phase-type fit
is in most cases computed for theservice timedistribution. The idea in that case is
to make the rest of the computations tractable. In our approach, however, we “skip”
over this step, and compute a direct fit to the waiting time distribution. Such an ap-
proach is possible only when a closed form expression existsfor (the LST of) the
waiting time distribution at the queue under consideration. This approach keeps the
state space of our resulting CTMC model from getting very large.

The availability of the LST implies that not only do we have a unique repre-
sentation of the distribution ins domain but also any number of its moments are
immediately available to us. We therefore have two alternatives: (1) fit the moments
of the distribution; (2) fit the LST of a phase-type distribution to the given LST, by
function fitting procedures. We shall discuss each of these approaches next.

14.5.1.3 Moment matching

The problem of fitting phase-type distributions to a generaldistribution has received
a lot of attention in the past few decades. In the early 1990s,Johnson and Taaffe
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(J&T) [21, 22] and Johnson [20] proposed methods by which thefirst three mo-
ments of a general distribution could be matched with moments of a mixture of two
Erlang distributions. More recently, Osogami and Harchol-Balter [35] presented an
efficient closed form solution for matching the first three moments of a subset of
phase-type distributions, termed “Erlang-Coxian,” whichresults in a nearly mini-
mal number of phases. Horváth and Telek [16] suggested a method by which any
number of moments can be matched by those of an acyclic phase-type distribution.
There has been further work by Horváth et al. [17] in fitting interarrival distributions
with Markovian arrival processes (MAPs), including approximation of then-lag cor-
relation of interarrival times.

The work presented here uses the methods of fitting phase typedistributions pro-
posed by Johnson and Taaffe which involve matching moments.Although in [20]
it is mentioned that their software provides the option of fitting the LST directly,
there is no discussion on this issue. We therefore explore this method in some detail
in Sect. 14.5.1.4. In this section, we first develop the moment matching approach.
Without going into details, we shall mention some features of J&T’s moment match-
ing technique.

In this section, we use CTMC-like graphs describing the distributions, which
consist of nodes and edges. Labels on the edges indicate the probability of that edge
being traversed. If there is no label, the probability is assumed to be one. The node
is labeled with the rate of the exponentially distributed wait time at that node.

Johnson and Taaffe [21] have proven that a mixture of two Erlang distributions
(Fig. 14.23) can match the first three moments of any distribution for which there
exists some phase-type distribution that matches the first three moments. These au-
thors have also derived conditions under which a mixed Erlang matching can be
made.

Using the program MEMOM, supplied by Johnson [20], one can give the first
three moments as an input, and obtain the five parameters(p,λ1,λ2,n1,n2) of a
mixed Erlang distribution. The first three moments of the waiting time in a priority
queue have been derived in [41].

λ 1

λ 2

p

λ

1−p

1

λ 2

λ 1

λ 2

Fig. 14.23: The mixed Erlang distribution
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14.5.1.4 Function fitting of the LST

The phase-type distribution that we choose for fitting is thebranching Erlang distri-
bution shown in Fig. 14.24.

1

λ1
1q

λ2
2q

pn

λ

0

n

p

0q qn−1

n−1p2pp

Fig. 14.24: The branching Erlang distribution

Note that the probabilitiespi andqi add up to one for alli = 0,1, .... Since there is
only one edge leaving the node with valueλn, pn = 1. LetM denote a random vari-
able following ann-stage branching Erlang distribution. The LST of the distribution
of M is

f ∗M(s) = p0 +
n

∑
i=1

pi

i

∏
j=1

q j−1
λ j

λ j +s
. (14.3)

The parameters off ∗M(s) must be chosen such that it best approximatesf ∗W(s). To do
this, we “discretize” the problem; i.e., we appropriately choosek pointss1,s2, . . . ,sk

and minimize the function

k

∑
i=1

( f ∗M(si)− f ∗W(si))
2 (14.4)

with respect to the parameters of the branching Erlang distribution. This will give
the least squares fit of the function. The issues now are (1) torestrict the branching
Erlang, and (2) to appropriately choose the discretizationpoints.

The branching Erlang can be restricted to the conditionλ1 = λ2 = . . . = λn =: λ .
We also restrictn to 3. We have found that we obtain very good fits in most cases
under these restrictions. In case a good fit is not found, we increase the number of
stages in the branching Erlang distribution. Furthermore,one of the parameters,p0,
is already determined to be identical to lims→∞ f ∗W(s), which is the probability that
the waiting time is zero.

We can also make this a more hybrid fitting by determining one more parameter
based on matching the mean of the distribution. Supposeµ is the mean waiting time.
If we chooseλ by matching the means of the two distributions, it is given by

λ =
q0p1

µ
+

2q0q1p2

µ
+

3q0q1q2

µ
.

The only parameters to be chosen now arep1 andp2.
The choice of the pointss1,s2, . . . significantly affects the approximation error.

If we want the value of the sum in Eq. (14.4) to be≤ kε2, then we must choose
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at least onesi such that| f ∗M(si)| > ε/2 or | f ∗W(si)| > ε/2. This is because if both
| f ∗M(si)| < ε/2 and | f ∗W(si)| < ε/2 then | f ∗M(si)− f ∗W(si)| < ε, for any choice of
parameters. The least squares fit over the discretized function will therefore not
result in a good fit for the actual function. In practice, we choose pointss1,s2, . . .
such that they “contribute” largely towards the error. Thuswe choose evenly spaced
real values ofsi ’s in the interval(0,sk] such that| f ∗W(sk)|> ε/2.

14.5.1.5 Example: Transaction processing system

Consider a transaction processing system maintaining information which is regu-
larly read and updated on two databases (on DISK1 and DISK2);see Fig. 14.25(a).
We would like to provide the read tasks with as up-to-date information as possi-
ble. One way to achieve this effect is to give preference to the update tasks, so that
the read tasks are executed after the latest update has been performed. Thus update
tasks are assigned higher priority than the read tasks. To avoid excessive scheduling
overhead, the system adopts non-preemptive priority at thefront-end processor.
Both read and update tasks use the processor for an amount of time that follows
an exponential distribution with rateµC1. The tasks then proceed to diskD1 with
probability p1 and to another diskD2 with probability p2. The service time at disk
D1 is exponentially distribution with rateµD1, and that at diskD2 is exponentially
distributed with rateµD2, for both kinds of tasks. The response time distribution for
each of these tasks can be computed using the approach outlined above.

We fit the waiting time distribution at the CPU with a 2-stage branching Erlang
distribution by matching the LSTs of the two distributions at a finite number of real
values ofs. A CTMC model, depicted in Fig. 14.25(b), is then built whoseabsorp-
tion time distribution approximates the response time distribution of a customer in
this queuing network. Suppose the fraction of update tasks coming to the system is
0.3 and that of read tasks is 0.7. SupposeµD1 = 1.0, µD2 = 0.7, p1 = 0.5, p2 = 0.2
andµC1 = 1.0. We show the relative percentage error between the response time dis-
tribution values computed by the CTMC method and values derived by simulation.
For simulation values, we use the midpoints of 95% confidenceintervals. Figures
14.26(a)–(d) show the relative percentage error for arrival rates 0.04, 0.05, 0.06, and
0.07, for priority 1 customers.
Figures 14.27(a)–(d) show the relative percentage error for arrival rates 0.04, 0.05,
0.06, and 0.07, for priority 2 customers. The CPU utilization level varies from 22%
to 40%.

The same example can be solved by fitting a mixed Erlang distribution to the
waiting time distribution using the J&T method. That is, we fit the first three mo-
ments of a mixed Erlang distribution to the first three moments of the waiting
time distribution. Figure 14.28 shows the response time distribution for a priority
2 customer, when arrival rate is 0.07. The relative percentage error is depicted in
Fig. 14.29. This experiment suggests that the moment matching approach does not
work as well as the hybrid approach, in which the first moment is matched and the
LST is directly fitted.
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�D2 � �D2 �C1 p1�C1p0

(b)
Fig. 14.25: (a) Priority queuing system (b) CTMC corresponding to the response
time distribution

It is well known that the Laplace transform inversion function is unstable; i.e.,
small perturbations in the value of the Laplace transformf ∗(s) may lead to large
changes in the time-domain functionf (t) [4]. However, it has also been noted in
the literature [4] that functions that are essentially smooth are not very sensitive to
perturbations in the LST.
The response time distribution functions that we use are bound to be smooth and
“well-behaved,” in the sense that they cannot have spikes oroscillations. Our method
of approximating the LST of an unknown function with the LST of a known function
thus gives good numerical results in most cases.

However, this method is disadvantageous in case a good fit forthe LST cannot
be found sufficiently fast. Our primary aim of a fast numerical solution is then not
met. In the next section, we therefore propose a new technique, in which we do not
attempt to fit a phase-type distribution. Instead, we use semi-Markov chains. This
approach also extends our technique for response time computation to a network of
PH/G/1 queues.
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Fig. 14.26: Relative percentage error for priority 1 customers, LST fitting

14.5.2 Modeling response time distributions using semi-Markov
processes

In the previous sections, we dealt exclusively with exponential and phase-type ser-
vice time distributions and Poisson arrival processes. Thesimplifying assumption
in our approach was that arrivals to all queues are Poisson, which is not generally
the case. This is because departures from previous queues may not be Poisson (ex-
cept for cases mentioned in Sect. 14.3). In this section, we address this problem
and relax the Poisson arrival assumption. We allow externalarrivals to the queues
to bephase-type renewal processes, i.e., the time between arrivals is identically and
independently distributed and has a PH distribution.

We extend our approach to an open network ofPH/G/1 queues. For dealing
with arrival processes that are renewal processes, we adopttechniques employed
by Whitt’s Queuing Network Analyzer [47], with some differences. Firstly, Whitt’s
approach does not require the arrival renewal processes to be phase-type. Secondly,
Queuing Network Analyzer does not deal with response time distributions in detail.
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Fig. 14.27: Relative percentage error for priority 2 customers, LST fitting

By letting the arrival processes to be restricted to phase-type renewal processes, we
can explore more accurate approximations to the response time distribution in the
queuing network. Thirdly, unlike Whitt we do not take into account multiple server
queues and the possibility of customer creation or combination.

In general, the response time distribution at aPH/G/1 queue is not phase-type,
and hence the CTMC approach developed earlier does not directly apply. The same
paradigm though can be extended to non-phase-type distributions by employing
semi-Markov processes. For the states of such a process, the holding time distribu-
tions do not necessarily follow an exponential distribution. The future may depend
on how much time has been spent in the current state. However,semi-Markov pro-
cesses do maintain the “memoryless” property to the extent that all the past can be
“forgotten” at a state transition epoch. This scenario lends itself very favorably to
modeling response times in queuing networks. Thus for each queue in the network
we create one state representing the sojourn time of a customer at that queue. Be-
cause of our independence assumptions and Markovian routing it is clear that when
a customer begins sojourn at one queue, the customer historymay be “forgotten.”
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Fig. 14.28: Response time distribution for priority 2 customers, moment matching
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Fig. 14.29: Relative percentage error for priority 2 customers, moment matching

The sojourn time at one queue, however, is in general not exponentially distributed
and hence must be “remembered.” The two quantities needed for solution of a semi-
Markov process are thus readily available to us: the holdingtimes vector and the
probability matrix of the embedded DTMC (which is the same asthe network rout-
ing matrix).

The semi-Markov process method avoids the state space explosion that may be
caused by fitting a phase-type distribution to a general distribution. Fitting also in-
troduces an approximation error. In the semi-Markov approach we avoid these prob-
lems at the cost of a less efficient solution method (namely, numerical inversion of
an LST).

There are many issues to be addressed: (1) deriving the parameters of the phase-
type renewal process to each queue, (2) computing the response time distribution at
each queue, (3) computing the response time distribution inthe queuing network.
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In the following subsections we shall explain the techniques that we developed or
chose from literature to address each one of these issues.

14.5.2.1 Deriving parameters of arrival processes

For using our basic approach of decomposition of queues we need to view each
queue as an isolatedPH/G/1 queue. Therefore, we must derive the parameters of
the (approximated) PH renewal arrival process to each queue. For this task, we es-
sentially adopt Whitt’s approach of characterizing the renewal processes by two pa-
rameters, namely, the mean and the squared coefficient of variation of the interarrival
times. We then fit a phase-type renewal process to these two moments, and analyze
each queue as aPH/G/1 queue. A similar approach was used by Haverkort [15] to
solve a network of queues with PH service times using exact analysis. However, the
problem of response time distribution was not addressed in that work.

Consider a network ofm queues, 1,2, . . . ,m. The arrival rate to each queue
is computed in exactly the same way as was done under the Poisson interarrival
assumption, see Eq. (14.3). In the following, the notation that was defined in
Sect. 14.3.2 still holds.

The coefficients of variation are computed according to equations derived by
Whitt. We reproduce them below without explanation. (For details as to how these
are derived, the reader is referred to [47].)

Let the arrival rate to queuej from queuei be

λi j = λir i j ,

and the proportion of arrivals toj that came fromi, i ≥ 0,

fi j = λi j /λ j .

Let c2
a j denote the squared coefficient of variation of the effectivearrival process to

queuej. Let c2
0 j denote the squared coefficient of variation for the externalarrival

process to queuej. Let c2
s j denote the squared coefficient of variation of the service

time distribution at queuej. Then the squared coefficient of the effective arrival
process at queuej is obtained by solving the linear system

c2
a j = a j +

m

∑
i=1

c2
aibi j , 1≤ j ≤m, (14.5)

wherea j andbi j are constants computed as

a j = 1+wj

{
( f0 j c

2
0 j −1)+

m

∑
i=1

fi j [(1− r i j )+ r i j ρ2
i xi ]

}

and
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bi j = wj fi j r i j (1−ρ2
i ),

whereρi is the traffic intensity at queuei. Further,xi andwj are given by

xi = max{c2
si,0.2}

and
wj = [1+4(1−ρ j)

2(ν j −1)]−1,

where

ν j =

(
m

∑
i=0

f 2
i j

)−1

.

Thus,λi andc2
ai give us the average rate and the squared coefficient of variation of

the interarrival time at queuei.
Once we have solved the two systems of linear equations, Eqs.(14.3) and (14.5),

we must fit approximate PH renewal arrival processes to these“derived” parameters.
To this end, we employ an adapted version of Whitt’s approach[47]. (Note that this
approach was used by Whitt for approximating the delay distribution at each of the
queues in the network.)

Case 1: c2a j ≥ 1.01.
Then let the PH distribution be hyperexponential with two stages with ratesγ1

andγ2, respectively, where the stage with rateγ1 is chosen with probability

p =
1+
√

(c2
a j−1)/(c2

a j +1)

2
,

and the rates are given by

γ1 = 2pλ j andγ2 = 2(1− p)λ j.

Case 2: 0.99≤ c2
a j ≤ 1.01.

Let the interarrival distribution be exponential with rateλ j .
Case 3: 0.501≤ c2

a j ≤ 0.99.
The interarrival time distribution is assumed to be hypoexponential; i.e., it is a
convolution of two exponential stages with parametersγ1 andγ2, respectively,
where

γ−1
2 =

λ−1
j +

√
2λ−2

j c2
a j−λ−2

j

2
and

γ−1
1 = λ−1

j − γ−1
2 .

Case 4: c2a j ≤ 0.501.

Let the distribution be Erlang withk = ⌈1/c2
a j⌉ stages. The rate of each stage is

thenkλ j .



14 Response Time Distributions in Networks of Queues 629

14.5.2.2 Response time distribution at aPH/G/1 queue

The expression for the LST of the waiting time distribution of a customer at a
PH/G/1 queue may be found in Cohen’s book [11]. However Cohen’s method re-
quires the computation of then+ 1 roots of a non-linear equation (wheren+ 1 is
the number of states in the CTMC corresponding to the PH interarrival distribution).
More recently, Lucantoni [25] developed computational algorithms for analysis of
the BMAP/G/1 queue, which resulted in simplified algorithms for severalother
queues that are special cases of theBMAP/G/1 queue. Since the PH arrival process
is a special case of the batch Markovian arrival process (BMAP), we use Lucantoni’s
algorithms for our computation. In the following paragraphs we shall briefly outline
the computational algorithm developed by Lucantoni. Note that describing the “se-
mantics” of the various vectors and matrices associated with Lucantoni’s algorithm
is beyond the scope of this chapter. We shall describe the computation in a solely
mathematically complete manner. For a thorough understanding of the algorithm
please refer to [25].

Suppose the PH representation of the interarrival time to aPH/G/1 queue is
(α ,T). Then thematrix generating function[25] associated with this interarrival
time is given byD(z) = T + zτ ′α. As before,Te′+ τ ′ = 0′; i.e., τ ′ = −Te′. Also,
ρ is again the traffic intensity, andf ∗B(s) denotes the LST of the service time dis-
tribution,FB(t). Let the random variableWv be thevirtual waiting time, defined as
the waiting time of a “virtual” customer at any arbitrary instant (or, in other words,
the total “work” remaining to be done in the queue at any time), and the random
variableJ be the phase that the arrival process is in. The LST of the joint den-
sity function ofWv andJ is denoted byf ∗Wv,J(s, j). Then the corresponding vector

f∗Wv
(s) =

(
f ∗Wv,J(s,1), f ∗Wv,J(s,2), ..., f ∗Wv,J(s,n+1)

)
is given by

f∗Wv
(s) = s(1−ρ)g[sI +D( f ∗B(s))]−1,

whereI is an identity matrix (i.e., a matrix with a diagonal of ones and off-diagonal
elements of value zero). The vectorg is the stationary vector corresponding toG (a
square matrix of the same size asT), which for the PH renewal arrival process is
given by

G =

ˆ ∞

0
exp[(T + τ ′αG)t]dFB(t).

HereT + τ ′αG is an infinitesimal generator matrix of a CTMC. Lettingu = αG,
we have

u =

ˆ ∞

0
α exp[(T + τ ′u)t]dFB(t).

This matrix exponential is best computed using the uniformization [19] technique.
Thus if we defineθ = maxi [−(T + τ ′u)]ii andγn =

´ ∞
0 exp(−θ t) (−θt)n

n! dFB(t), for
n≥ 0, we can writeu as
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u =
∞

∑
n=0

γnα(I + θ−1(T + τ ′u))n.

Onceu is computed (to a satisfactory degree of accuracy),g is given by

g =
v

ve′
,

wherev is the solution to the linear systemvT = u.
The LST ofFW(t), the actual waiting time distribution of an arbitrary customer

in the queue, is given by [26]

f ∗W(s) =
1

λ (1− f ∗B(s))
f∗Wv

(s)[D(1)−D( f ∗B(s))]e′,

which in the case of a PH arrival process simplifies to

f ∗W(s) =
1
λ

f∗Wv
(s)τ ′α(1− f ∗B(s))e′.

Since the response time is the sum of waiting time and servicetime, the LST of
the response time distribution is then given by

f ∗R(s) = f ∗W(s) · f ∗B(s). (14.6)

14.5.2.3 Transient solution of a semi-Markov process

Once we have found the response time distribution at each queue, a semi-Markov
process corresponding to the queuing network can be built. The absorption time
distribution of this semi-Markov process will approximatethe response time distri-
bution in the queuing network. For this, we must carry out transient analysis of the
semi-Markov process. In this section, we describe a Laplacetransform method for
transient analysis of a semi-Markov process [10].

We shall first introduce some notation regarding semi-Markov processes based
on the paper by Ciardo et al. [10]. Suppose that{X(t),t ≥ 0} is a right-continuous
semi-Markov process with state spaceS⊂ N = {0,1,2, . . .}. Suppose further that
the the probability thatX(t) will eventually reach an absorbing state is one. We
denote the set of absorbing states byA, and the set of non-absorbing states byN,
respectively. LetTk be the time of thekth transition, thenTk+1−Tk is the time spent
(i.e., the holding time) in thekth visited state. DefineT0 = 0. If we observe this
semi-Markov process at state-transition epochs, we have a discrete-time process, in
fact, a DTMC. Denote this process byYk = X(Tk), the state reached after thekth
transition. Then thekernelof a semi-Markov process is defined as [10]

K(t) = [Ki, j(t)] = [P(Yk+1 = j,Tk+1−Tk≤ t |Yk = i)].

The transition probability matrix of the embedded DTMC is defined as [10]
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E = [Ei, j ] = [P(Yk+1 = j |Yk = i)] = K(∞).

The holding time vector is [10]

h(t) = [hi(t)] = [P(Tk+1−Tk≤ t |Yk = i)] = [∑
j∈S

Ki, j(t)].

Note that each holding time is independent of the next state.
Let Vi, j(t) be the probability of being in statej at timet, given that the initial

state wasi; i.e.,
Vi, j(t) = P(X(t) = j |Y0 = i).

ThenVi, j(t) is given by

Vi, j(t) = I(i= j) · (1−hi(t))+ ∑
l∈S

ˆ t

0
Vl , j(t−u)dKi,l (u),

where the indicator functionI(i= j) is equal to one ifi = j, and zero otherwise. Now
suppose that the semi-Markov process has only one absorbingstatea. (If the set of
absorbing states should consist of more than one state, thena can be obtained by
lumping all the states inA together.) Then the conditional distribution of the time to
absorption is given byVi,a(t). This can be found by either numerically integrating the
above equation or by the LST method. Since in our case holdingtimes are available
in the LST form, we adopt the latter approach.

Let the LST ofKi, j(t) be denoted bỹKi, j (s) =
´ ∞

0 exp(−st)dKi, j(t). Partitioning
K(t) according to the set of non-absorbing statesN and the absorbing statea, we
have

K(t) =

[
K [NN](t) K [Na](t)

0 Ka,a(t)

]
.

The LSTK̃(s) may also be partitioned similarly:

K̃(s) =

[
K̃ [NN](s) K̃ [Na](s)

0 K̃a,a(s)

]
.

Denote bỹva(s), the vector of LSTs ofVi,a(t). The solution for this vector is obtained
by solving the linear system [10]

(I − K̃ [NN](s))ṽa(s) = K̃ [Na](s). (14.7)

Thus to computẽva(s), we must first solve the above equation, and then apply LST
numerical inversion to obtainva(t), the vector of theVi,a(t). For details on numerical
inversion of LSTs, refer to [4, 9, 18].
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14.5.2.4 Building the semi-Markov chain from the queuing network

In this section we shall outline a step-by-step procedure ofthe semi-Markov method
of computation of response time in a network ofmqueues without loss of customers;
i.e., pbi = 0 for all i.

Step 1: Compute the effective arrival rateλi at each queuei by solving Eq. (14.3),
settingpbi = 0 for all i.

Step 2: Compute the squared coefficient of variationc2
ai of the effective arrival

process at queuei, from Eq. (14.5).
Step 3: Follow the procedure in Sect. 14.5.2.1 to compute the parameters of the

fitted PH arrival processes.
Step 4: Given the LST of the service time distribution,f ∗Bi

(s), for each queuei of
the queuing network, use Eq. (14.6) for computing the LST of the response time
distribution, f ∗Ri

(s), for each queuei.
Step 5: Create a semi-Markov process with state spaceSwhich includesm states

S1,S2, . . . ,Sm: one corresponding to each queuei in the network. Add an addi-
tional stateSf which denotes exit out of the queuing network. Thus|S|= m+1.

Step 6: Let r i j be the probability of routing from queuei to queuej in the queuing
network. Then the embedded DTMC transition probability matrix E is given by

ESi ,Sj = r i j ∀i, j ∈ {1,2, . . . ,m},

ESi ,Sf = 1−
m

∑
j=1

r i j ∀i ∈ {1,2, . . . ,m}.

Step 7: The LST of the semi-Markov kernel is defined as

K̃Si ,Sj (s) = f ∗Ri
(s) ·ESi ,Sj ∀i, j ∈ {1,2, . . . ,m},

K̃Si ,Sf (s) = f ∗Ri
(s) ·ESi ,Sf ∀i ∈ {1,2, . . . ,m}.

Step 8: For the semi-Markov process related to the response time in aqueuing
network, the absorbing statea of Sect. 14.5.2.3 corresponds to stateSf , while the
set of statesN contains the statesS1,S2, . . . ,Sm. Now Eq. (14.7) may be solved us-
ing a standard linear system solution method to computeṽSf (s) in thes-domain,
whereṽSf (s) denotes the vector of LSTs ofVSi ,Sf (t). Since eachVSi ,Sf (t) is a
probability conditioned on the initial stateSi , we must compute the LST of the
total unconditional probability. An incoming job joins queuei first with probabil-
ity λ0i/∑m

j=1λ0 j . Then the LST of the (approximate) response time distribution
is given by∑m

i=1 λ0iṼSi ,Sf (s)/∑m
j=1λ0 j . This can be numerically inverted to yield

our approximation to the response time distribution in the queuing network. We
implemented the above algorithm and used an existing Laplace transform inver-
sion routine [8] for our final step.
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14.5.2.5 Example: Distributed system

Consider again the distributed system of Sect. 14.3.3.2. Assume that the arrival pro-
cess to the terminals is a four-stage Erlang renewal process. Let the delay at the
terminals be constant, and the processing time at the rest ofthe queues be uniformly
distributed.

We can map this queuing network to the semi-Markov process depicted in
Fig. 14.30, with starting stateT. The labels on the arcs denote the entries of the
kernel matrix (not transition rates). Let the delay at the terminals (T) be 1. More-
over, we assume that the service time is UNIFORM(1, 2) at the front-end server
(F), UNIFORM(0.5, 0.7) at the communications server (C), UNIFORM(1, 3) at the
database server (D), and UNIFORM(1, 2) at the general-purpose server (P).

T F C DPdonep0 RF (t)RT (t) p1 RF (t)p2 RC(t) p3 RC(t)p4 RC(t)
RD(t)
RP (t)

Fig. 14.30: Semi-Markov process corresponding to the response time distribution of
the distributed system

Figure 14.31 shows the plot for the response time distribution for different arrival
rates. The utilization at the front-end processor varied from 50% to 90%. The points
used for the simulation plot for the first three values of arrival rates are the midpoints
of the 99% confidence intervals, which were too narrow to be represented by vertical
bars. For this example, our method required 15.6 seconds, while simulation required
2 minutes on the same machine. For an arrival rate of 0.18, the same execution time
gave 95% confidence intervals of significant widths; hence the confidence intervals
are shown by vertical bars.
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Fig. 14.31: Response time distribution in the distributed system

14.5.2.6 End-to-end delay in a virtual circuit

The building block method described in the previous sections is not the only ap-
proach in which semi-Markov processes can be employed for deriving response
time distributions. In this section, we show a different wayof applying semi-Markov
processes, in the context of studying the end-to-end delay in a virtual circuit.

With the emergence of high-speed networks, many of the principles that gov-
erned traditional networks have undergone reevaluation. One major difference is
that the propagation delay of the link is now the major contributor to the end-to-
end delay of a message and not the transmission time. This affects various design
choices, one instance of which is whether the error control should be end-to-end
or link-by-link. It has been shown in the communications literature [5] that in the
domain of high-speed networks, end-to-end error control isfar superior to the link-
by-link error control, when end-to-end delays are considered. Bhargava et al. [5] de-
veloped an analytical model to compute mean end-to-end delays in a virtual circuit.
However, just the mean does not provide enough information about the message de-
lay. In this section, we compute the delay distribution of a message through a virtual
circuit of a high-speed network.

In the end-to-end error control scheme, the first node of a virtual circuit (VC)
buffers a message until it has received an ACK from the final destination node. If an
ACK is not received within a timeout period thefirst node retransmits the message.
The intermediate nodes only perform errordetection; i.e., in case the arriving mes-
sage is erroneous the intermediate node simply discards themessage. A message
arrival to an intermediate node whose buffers are full is also lost. In both cases, a
retransmission will be initiated from the first node.

The model for a four-hop virtual circuit is depicted in Fig. 14.32. Traffic from
a Poisson source of rateλVC enters a virtual circuit ofm= 4 nodes. It is assumed
that all nodes except the first one are allocatedb buffers. The message transmission
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Fig. 14.32: Queuing network representing virtual circuit

rate at each node is denoted byµ and represents the effective capacity as seen by
the traffic belonging to the VC under consideration. Supposethe probability of a
message getting corrupted between two nodes isp. Also letqi denote the buffer full
probability at nodei. Let 1/µp denote thefixedpropagation delay along linki. The
branching after linki in Fig. 14.32 represents the retransmission of the message.
Thus the message is retransmitted either if it is corrupted or if it is lost because of
full buffers. The first node starts a timeout period as soon asit finishes transmission;
the message is retransmitted if no ACK is received within thetimeout period. The
first node in this queuing network is modeled as anM/M/1 queue, while the others
are modeled asM/M/1/b queues. Letλi be the message arrival rate (including
erroneous messages which will be discarded) to the nodei. We shall compute the
arrival rates using the method described in [5].

The probabilityqi of havingb messages at nodei (≥ 2) is given by Gross et al.
[13] as

qi =
(1−ρi)ρb

i

1−ρb+1
i

, i = 2,3, . . . ,

whereρi = λi(1− p)/µ . Theλi are computed by noting that the message throughput
rate out of the network must also beλVC, and hence the message throughput at point
Om in the figure must beλVC/(1− p) [5]. However, this should equal the message
arrival rate at pointIm in the figure. Then, the following must be true [5]:

λm(1− p)(1−qm) =
λVC

1− p
.

If we substitute the value ofqm in this equation, we obtain an equation in only one
unknown,λm, which can be solved numerically. Onceλm is computed,λm−1 may
be computed in a similar way, and working backwards,λi andqi may be computed
for all i = 2,3, . . . ,m.

Now, supposeNt denotes the number of times a message must be retransmitted,
before it reaches correctly to the final destination. Also let pf ail denote the proba-
bility that one transmission of the message fails. Letdi denote the probability that
a message is discarded by nodei. Thendi = p+(1− p)qi, i = 2,3, . . . ,m. Further,
pf ail is given by [5]

pf ail =
m

∑
i=2

di

i−1

∏
j=2

(1−d j).
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Givenpf ail , the probability mass function ofNt is given by [5]

P(Nt = k) = pk
f ail (1− pf ail), k = 0,1, . . .

Let Tee denote the timeout period andRi denote the delay of the message at nodei.
Now the total delay timeR required to deliver the message from the source to the
final destination correctly is given by

R= Nt(R1 +Tee)+
m

∑
i=1

(Ri +1/µp) = Rw +Rc,

whereRw := Nt(R1 +Tee) represents the time taken for all the transmissions that go
wrong andRc := ∑m

i=1(Ri +1/µp) is the time taken by the message during its final
correct traversal through the virtual circuit. Then the LSTof the distribution ofR is
given by

f ∗R(s) = f ∗Rw
(s) · f ∗Rc

(s). (14.8)

Let Rw1 = R1 + Tee. Since we assume that node 1 is anM/M/1 queue with arrival
rateλ1, the LST of the delay distribution at this node is given by

f ∗R1
(s) =

µ−λ1

µ−λ1+s
,

and f ∗Tee
(s) = exp(−Tees). Then, f ∗Rw1

(s) = f ∗R1
(s) · f ∗Tee

(s). Now, f ∗Rw
(s) is found by

conditioning onNt and then unconditioning:

f ∗Rw
(s) =

∞

∑
k=0

( f ∗Rw1
(s))kP(Nt = k)

=
∞

∑
k=0

( f ∗Rw1
(s))kpk

f ail (1− pf ail)

= (1− pf ail)
∞

∑
k=0

( f ∗Rw1
(s)pf ail )

k

=
1− pf ail

1− f ∗Rw1
(s)pf ail

.

Rc may be represented by the absorption time distribution of a semi-Markov chain
which essentially represents a tandem network. In this example, however, the LST
of Rc, which we denote here byf ∗Rc

(s), may be derived in closed form simply as

f ∗Rc
(s) =

m

∏
i=1

(
f ∗Ri

(s)exp

(
− s

µp

))
. (14.9)

The distribution ofRi is the conditional distribution of the delay at anM/M/1/b
queue, given that the arriving job is not lost. Its LST is given by
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f ∗Ri
(s) =

b−1

∑
j=0

1−ρi

1−ρb
i

ρ j
i

(
µ

µ +s

) j+1

.

Substituting this expression into Eq. (14.9), we are able tocompute f ∗Rc
(s). The

LST of the delay distribution can then be computed from Eq. (14.8). Numerical
inversion of this LST gives us an approximation to the end-to-end delay distribution
of a message in the virtual circuit.

Figures 14.33–14.35 show the delay distribution for various buffer sizes and ar-
rival rates.
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Fig. 14.33: Delay distribution in the VC,b = 20 buffers

In this example, we fixed the simulation time to be a maximum of5 minutes, to study
the effect on the confidence intervals. For each of the plots shown the simulation ran
up to its limit of 5 minutes. The vertical bars next to the curves represent 95%
confidence intervals obtained by simulation. As can be seen,for an arrival rate of
0.8, the confidence intervals become very wide. The numerical method took 42.6
seconds on the same machine.

14.6 Conclusions

In this chapter, we described three methods for computationof the response time
distribution in open queuing networks. First, when the network is of queues whose
response time distributions are phase-type, we presented amethod to directly map
the “response time building blocks” to a CTMC with absorbingstates. Second, when
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Fig. 14.34: Delay distribution in the VC,b = 40 buffers
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Fig. 14.35: Delay distribution in the VC,b = 60 buffers

the network is of queues whose response times are not phase-type, we discussed two
methods of approximating the response time distributions with phase-type distribu-
tions, and then mapping the response time to the absorption time in a CTMC. Third,
again for networks with queues whose response times are not phase-type, we pre-
sented an approach where the response time was computed as the time to absorption
in a semi-Markov chain.
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After extensive experimentation and comparison with discrete-event simulation
the following general remarks can be made about the three proposed methods:

• In all cases the methods work very well for low utilization, and start degrading
in accuracy at higher levels of utilization.

• The LST fitting method holds least promise because the fittingprocess can take a
prohibitively large amount of time. This time is not justified for an approximate
method.

• The semi-Markov process method works very well when the service time distri-
bution does not have a very low coefficient of variation. Thusit does not work
very well for deterministic service times.

The problem of deriving the response time distribution in queuing networks has
been addressed in many different ways in the queuing networkliterature. For the
most part, research has focused on specific cases or on solving a simpler problem
such as response time through a single path in a queuing network. In this chapter,
we adopted a different approach; we have attempted to solve amore general prob-
lem, at the cost of making some (judicious) approximations.The motivation was to
provide a fast (but approximate) solution for a problem thatotherwise can be solved
only by simulation, which at times can be tiresome. The approach taken for the solu-
tion of the problem was to make use of “building blocks” that have been developed
and putting them together with various “tools” to form one whole approximation
method. The building blocks that our method relies on are theresults on the waiting
time distribution at various different kinds of queues. Thetools that we used were
linear system solution, fixed point iteration, phase-type fitting, transient CTMC so-
lution and transient semi-Markov solution. Empirical studies of our method and
comparison with discrete event simulation demonstrate that our method provides
fast and fairly accurate predictions of response time distribution. The method is thus
an alternative to simulation in providing fast answers to what-if questions regarding
design issues that may affect sojourn time.

Immediate improvements possible to this method are in fitting arrival processes
which also incorporate correlation between arrivals, suchas the batch Markovian
arrival process. As mentioned, the method also does not workwell when service
times are deterministic; this problem needs to be addressed. The solution method
should also be extended to incorporate finite capacity queues with general arrivals
and service times.
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Chapter 15
Decomposition-Based Queueing Network
Analysis with FiFiQueues

Ramin Sadre, Boudewijn R. Haverkort

Abstract In this chapter we present an overview of decomposition-based analysis
techniques for large open queueing networks. We present a general decomposition-
based solution framework, without referring to any particular model class, and pro-
pose a general fixed-point iterative solution method for it.We concretize this frame-
work by describing the well-known QNA method, as proposed byWhitt in the early
1980s, in that context, before describing our FiFiQueues approach. FiFiQueues al-
lows for the efficient analysis of large open queueing networks of which the inter-
arrival and service time distributions are of phase-type; individual queues, all with
single servers, can have bounded or unbounded buffers. Nextto an extensive evalua-
tion with generally very favorable results for FiFiQueues,we also present a theorem
on the existence of a fixed-point solution for FiFiQueues.

15.1 Introduction

In this chapter we present an overview of the FiFiQueues method (and supporting
tool) to evaluate large open queueing networks with non-Poissonian traffic streams

Ramin Sadre
Centre for Telematics and Information Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands,
e-mail:r.sadre@utwente.nl

Boudewijn R. Haverkort
Centre for Telematics and Information Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands,
e-mail:b.r.h.m.haverkort@utwente.nl;
Embedded Systems Institute
P.O. Box 513, 5600 MB Eindhoven, Netherlands,
e-mail:boudewijn.haverkort@esi.nl

643



644 Ramin Sadre, Boudewijn R. Haverkort

and non-exponential services. FiFiQueues is an example of adecomposition-based
queueing network evaluation approach, in which the overallevaluation is broken
into per-queue evaluations, thus making the method highly scalable.

The earliest work on open networks of queues has probably been reported by
Jackson [20]. The so-called Jackson queueing networks (JQNs) allow for the analy-
sis of open networks of M|M|1 queues, in which jobs are routed according to fixed
probabilities. The external arrival process forms a Poisson process; arrivals may be
spread over more than one queue. Departures from the queueing network are also
possible.

In the mid 1970s, Kühn developed an approximate evaluationapproach for an
extended class of models [27], including non-Poissonian arrivals, as well as service
times that followed other than exponential distributions.As an extension of this
approach, Whitt proposed the QNA method in the early 1980s [49, 50]; QNA can be
seen as a full-fledged approach to evaluate networks of G|G|1 queues approximately.
Since our FiFiQueues approach can be regarded as an extension of QNA, and still
relies on some of the assumptions made in QNA, we concisely present QNA in
Section 15.3.

We are not the only researchers who have worked on extensionsof QNA, nor are
the extensions of QNA that we describe here the only possibleextensions. Schuba
et al. [46] reported on work involving the inclusion of multicast communication
using routing trees (instead of the usual routing chains). Heindl et al. proposed
decomposition-based analysis techniques taking into account correlations in the
traffic streams between the queueing nodes, e.g., by using MAPs and MMPPs as
traffic descriptors, cf. [17, 19, 20, 21]. Kim et al. [24] proposed an extension of
QNA to include correlations in the traffic streams. For two small networks that are
studied in detail (with 2 and 3 nodes resp.) better results than with standard QNA
are obtained. The question how well the method scales to larger and more complex
queueing networks remains open. Finally, in 1990 Harrison and Nguyen proposed
the QNET approach [12] which, however, appears impracticalfor large queueing
networks. A simplification of QNET, calledΠNET (described in the same paper)
appears more practical; however, its approach is very similar to that of (standard)
QNA.

The aim of this chapter is to present in detail the complete set of extensions we
have proposed, and that led to the approach now known as FiFiQueues. FiFiQueues
extends QNA in two ways: first, it extends the model class, andsecondly, it removes
a number of approximation steps from it. In particular, we donot address general
G|G|1 queues, but allow instead for both PH|PH|1 as well as PH|PH|1|K queues.
That is, we allow for phase-type distributions as inter-arrival and service-times, but
at the same time also allow for finite- and infinite-buffer queues. This choice has
two implications. The restriction to phase-type distributions allows us to use exact
analysis algorithms for the per-queue evaluations, e.g., based on matrix-geometric
methods. Secondly, the introduction of finite queues allowsus to model queueing
networks with losses, which has a severe impact on the solution of the traffic equa-
tions and forces us to follow a fixed-point iterative algorithm to solve them.
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The chapter is further organized as follows. In Section 15.3we summarize the
QNA method. In Section 15.4 we present the FiFiQueues algorithm and its im-
plementation in an integrated tool. We then present a large number of cases to
validate both basic FiFiQueues and its extensions (againstsimulation results) in
Section 15.5. Finally, Section 15.6 presents some conclusions. To keep the chapter
self-contained, we added appendices on Jackson queueing networks (Section 15.7),
on Markovian arrival processes, phase-type distributionsand quasi-birth-death pro-
cesses (Section 15.8), as well as a proof of the existence of afixed point for the
models we study (Section 15.9).

We finally remark that we already worked on some further extensions on Fi-
FiQueues. We extended our approach to also deal with closed queueing networks,
as published in [44]. Furthermore, we developed extensionsthat deal with correla-
tions in traffic streams, as well as with higher moments [40].

15.2 The decomposition approach

Sketch of the idea

A common approach to evaluate the performance of communication systems is to
construct and analyze a large monolithic model, often via anunderlying state-space-
based representation (typically a Markov chain). However,analysis methods relying
on an analysis of such a large state space usually suffer fromthe state space explo-
sion phenomenon: If two modelsA andB with a resp.b states are composed to a
new “product model”A×B, this model has potentiallya·b states (this assumes that
there are no mutually exclusive states). For large systems models, the number of
states quickly grows beyond what can be practically handled.

The decomposition approach aims to reduce the complexity ofthe analysis by
decomposing the system into smaller components that are analyzed more or less
independently, thus avoiding the analysis of the overall full state space. The basic
idea is the following: If we have two submodelsA andB, with a resp.b possible
states, we avoid to construct and analyze the full “product model” A×B. Instead we
do the following:

1. We assume that the system has the structureB(A) instead ofA×B, i.e., that in
the resulting composition the submodelB depends onA but not vice versa.

2. Based on that assumption, we analyze modelA independently ofB and summa-
rize its behavior in some so-calleddescriptor dA.

3. The descriptordA is used to parameterize modelB and we analyze the new model
B(dA) with b(dA) states instead ofB(A) with a ·b states. Hence, the decomposi-
tion approach reduces the number of states to analyze froma ·b to a+b(dA).

4. Now, we know the behavior ofA combined withB. The global behavior of the
system can then be derived.
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Of course, this approach only makes sense ifB(dA) has fewer states thanB(A). In
general, this requires that the descriptordA is only an approximation toA and, hence,
the decomposition approach only provides an approximationto the original model.

In the context of queueing networks, the submodels are naturally equivalent to
the individual queueing stations and the descriptor represents the inter-station traffic.
For example, in a tandem queueing network with two stationsA andB, the descriptor
dA is obtained by analyzing stationA and actually is a description of the traffic
stream that departs from stationA and arrives at stationB. Hence, we will often call
dA a traffic descriptorin the following.

Open questions

The approach described above leaves several open questions:

1. What do the traffic descriptors look like?
2. How are more complex systems analyzed? Note that in the example above, the

assumed structureB(A) would basically restrict the analysis to tandem queueing
networks.

3. How are the individual stations analyzed?

These questions are addressed by various decomposition-based analysis methods
in different ways, thus leading to different model classes.When we describe the
Queueing Network Analyzer (Section 15.3), FiFiQueues (Section 15.4), and the
analysis of Jackson queueing networks (Section 15.7), we have to address these
three questions for each method separately. However, sincewe focus on the anal-
ysis of open queueing networks with feedback, we can alreadygive some general
answers to question 2 and 3 which are true for all methods.

The analysis of complex networks

In an open queueing network withN queueing stations, the traffic descriptordesci, j
describes the traffic stream from queueing stationi to station j, with 1≤ i, j ≤
N. The outside world is represented by a “virtual” stationext, hence, we denote
the traffic arriving from outside to stationi asdescext,i , and the traffic leaving the
network fromi asdesci,ext. We rely on the fixed-point iteration algorithm presented
in [14, 48] to analyze such networks:
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1 initialize all traffic descriptorsdesc(0)
i, j :

2 setdesc(0)
i j to thenull value if i 6= ext

3 setdesc(0)
i j to the specified value ifi = ext

4 n := 0
5 do
6 n := n+1

7 analyze each queueing stationi with arrival trafficdesc(n)
k,i , 1≤ k≤ N,

8 and compute departing trafficdesc(n)
i, j , 1≤ j ≤N.

9 while dist(desc(n),desc(n−1)) > ε
10 compute network-wide performance results

In each iteration the queueing stations are analyzed using the available descriptions
of the traffic arriving at the stations (line 7). The analysisallows to compute station-
related performance measures, such as the mean queue length, and, more important,
the description of the traffic leaving the stations (line 8).In this way, a new set of

traffic descriptorsdesc(n) = {desc(n)
i, j |i, j} is computed in each iteration.

When the algorithm starts only the descriptions of the traffic arriving from out-
side are known (they are part of the model specification). Hence, all other descriptors
are initially set to thenull value in line 2 and have to be ignored in line 7 until a first
approximation is available.

The algorithm stops when the distancedist(desc(n−1),desc(n)) between two suc-
cessive sets of descriptors is smaller than or equal a given thresholdε (line 9). Once
all traffic descriptors are known, network-wide performance results can be com-
puted in line 10.

The analysis of individual stations

For the analysis of the single stations (in line 7 and 8 of the iteration algorithm), we
define that a station specification consists of two components:

1. a queue with finite or infinite capacity,
2. one or more service entities that serve the jobs (served jobs leave the queue),

and two policies:

1. a policy that handles incoming jobs if the queue is full (only for finite queues),
2. a scheduling policy that describes how the service stations fetch new jobs from

the queue.

Such queueing stations can be analyzed by different approaches. Since most analy-
sis methods for queueing processes require that a queueing station has exactlyone
arrival traffic descriptor andone traffic departure descriptor, atraffic merging(or
traffic superpositioning) and atraffic splittingstep are required. The traffic merging
step merges for a station its arrival descriptors into a single overall arrival descrip-
tor whereas the traffic splitting step splits the overall departure descriptor into the
required number of departure descriptors. Thus, every timewhen the fixed-point
iteration algorithm analyzes a queueing station we have to perform the following
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steps (as part of steps 7 and 8 in the algorithm above, and illustrated in Figure 15.1
below):

1. merge the incoming traffic;
2. analyze the service operation;
3. split the departure traffic.

1 3

2

Fig. 15.1: The three key operations to be performed on a traffic stream: merging,
queueing and splitting

Notice that for Jackson queueing networks (cf. Section 15.7), these three steps are
extremely simple, hence, they are not often distinguished explicitly. Furthermore,
for JQNs there appears to be no need for a fixed-point iteration. However, this is
only partly true. One can argue that an iterative method to solve the traffic equations
in JQNs (like Gauss-Seidel iterations) in fact forms a fixed-point iteration in it-
self. The distinguishing feature is then that for JQNs, no queueing analysis takes
place within the fixed-point computation (only afterwards), whereas, in general,
decomposition-based methods do require the intertwining of fixed-point iteration
steps and queueing analysis steps, as will become clear in the following sections.

15.3 Whitt’s Queueing Network Analyzer

In the early 1980s, Whitt presented the Queueing Network Analyzer (QNA) [49,
50], a software package developed at Bell Laboratories for the approximate analysis
of open queueing networks. Unlike prior approaches which were based on Marko-
vian models, QNA allows for the analysis of open queueing networks where the
external arrival processes need not be Poissonian and the service times need not be
negative exponentially distributed. Additionally, QNA isable to perform the anal-
ysis fast: due to the involved approximations and assumptions, the network traffic
analysis is, in essence, reduced to the solution of a set of linear equations, compara-
ble to those in JQNs (cf. Section 15.7).

In the following, we will give an overview of the functionality of QNA. The struc-
ture of our presentation slightly differs from Whitt’s original paper [49], however, it
follows the presentation of JQNs in Section 15.7.
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15.3.1 Model class

QNA allows for the approximate analysis of open queueing networks fed by ex-
ternal arrival processes, in which the routing takes place according to fixed proba-
bilities (like in JQNs). The nodes are GI|G|m multiserver queues without capacity
constraints and with the FCFS service discipline. The external arrival processes as
well as the service processes of the nodes are described by the first and the second
moment of the inter-arrival, resp. service time distributions. The QNA approach al-
lows for the separate analysis of the nodes, hence, QNA is well scalable to larger
networks.

QNA’s model class includes three features which we will not describe in de-
tail in the following. First, QNA is able to analyze networkswith multiple classes
of customers, and secondly, networks with immediate feedback are allowed. Both
features are “implemented” by adding a pre-processing and post-processing phase
to the core QNA algorithms, that is, QNA treats multiple visits of a single job to
one queue as one longer visit, and multiple classes are treated as one class with
multimodal service times. The third feature, the customer multiplication factor of
a node, only requires small modifications in the service operation equations. Al-
though these features are interesting as such, they have notbeen implemented for
FiFiQueues, however, also in that context they could be added via appropriate pre-
and post-processing phases.

15.3.2 Traffic descriptors

The external arrival processes are specified by the first and second moment of the
inter-arrival times. In fact, this representation is also applied to the traffic streams
between the nodes. More specifically, QNA uses the traffic descriptor

〈
λ ,c2

〉
to

describe a traffic stream whereλ is the arrival rate andc2 is the squared coefficient
of variation of the inter-arrival time.

Clearly, this allows the representation of non-Poissonianprocesses. However,
neither higher moments nor correlations of the arrival stream are considered, which
may influence the quality of the analysis. QNA employs fine-tuned heuristics de-
duced from simulation studies to reduce the errors introduced by this simplification.

15.3.3 Superposition of traffic streams

To mergen traffic streams specified by
〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉
into one traffic stream〈

λ ,c2
〉
, QNA first computes the total arrival rate which is simply given by
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λ =
n

∑
i=1

λi .

QNA’s efficiency is based on the fact that it computes the traffic descriptors from
linear systems of equations. The above expression forλ is clearly linear inλi . For
c2 a linear equation can be found, too, by the asymptotic approximation method
(AS):

c2
AS=

n

∑
i=1

λi

λ
c2

i .

However, the asymptotic method does not work well for a wide range of cases.
It is therefore combined with the stationary-interval method (SI), resulting in the
following hybrid approximation:

c2 = w ·c2
AS+(1−w) ·c2

SI.

The stationary-interval method does not provide a linear expression forc2
SI, but ex-

periments have shown that settingc2
SI to 1 (in the expression above) increases the

average error only by 1 percent, so that we obtain

c2 = w ·c2
AS+(1−w).

Simulations have shown that the above approximations do impact the quality of the
analysis of a node which takes the merged traffic stream as input. To improve the
results, QNA respects the utilizationρ of the node in the computation of the factor
w. With ρ = λ/µ (whereµ is the service rate of the queueing station), QNA sets

w =
[
1+4(1−ρ)2(v−1)

]−1
with v =

(
n

∑
i=1

(
λi

λ

)2
)−1

.

15.3.4 Splitting traffic streams

When splitting, QNA assumes that the involved processes arerenewal processes.
Under this assumption, an exact solution is available. Forn splitting probabilities
p1, . . . , pn and the traffic stream

〈
λ ,c2

〉
, we obtain the splitted streams

〈
λ1,c

2
1

〉
, . . . ,

〈
λn,c

2
n

〉
,

with
λi = pi ·λ , and c2

i = pi ·c2 +(1− pi), i = 1, . . . ,n.
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15.3.5 Servicing jobs

Network nodes are analyzed as GI|G|m queues. Let
〈
λA,c2

A

〉
be the arrival traffic

descriptor of the node andm the number of service entities. The service process is
specified by the service rateµ and by the squared coefficient of variationc2

S of the
service time distribution. We require the stability of all stations, i.e.,λA < µ . How
does QNA compute the departure descriptor

〈
λD,c2

D

〉
?

Since the queues are stable and have infinite capacity, no losses occur and we
clearly haveλD = λA. To computec2

D, Whitt combines Marshall’s formula [33] with
other approximations to obtain

c2
D = 1+(1−ρ2)(c2

A−1)+
ρ2
√

m
(c2

S−1). (15.1)

The involved approximations may lead to large errors whenc2
S is small, thus QNA

uses the following extension of the above formula:

c2
D = 1+(1−ρ2)(c2

A−1)+
ρ2
√

m
(max{c2

S,0.2}−1). (15.2)

Note again the linearity of the expressions forλD and c2
D in the arrival traffic〈

λA,c2
A

〉
.

15.3.6 Node performance

QNA is able to compute results for the first and second moment of the waiting time
W and the queue lengthN. Due to the complexity of the involved approximations,
we limit our presentation only to the simplest one, i.e., thecomputation of E[W]
in the case of single-server GI|G|1 queues. The required derivations for the other
quantities can be found in [49, Eq. (46)–(71)]. For given arrival traffic

〈
λA,c2

A

〉
,

service descriptor
〈
µ ,c2

S

〉
and utilizationρ , E[W] is approximated as

E[W] =
ρ

2(1−ρ)µ
(c2

A +c2
S)g(ρ ,c2

A,c2
S), (15.3)

where the functionρ is defined as

g(ρ ,c2
A,c2

S) =

{
exp
(

2(1−ρ)(1−c2
A)2

3ρ(c2
A+c2

S)

)
, c2

A < 1,

1, c2
A≥ 1.

Note that Equation (15.3) is exact forc2
A = 1, i.e., in the case of an M|G|1 queue.

Whenc2
A < 1, it is equivalent to the Krämer and Langenbach-Belz approximation

[26].
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15.3.7 Network-wide performance

The results presented for network performance measures in Jackson queueing net-
works (see Section 15.7) can also be applied here, providingexpressions for E[Vi ],
E[Ti ], E[Ttotal] and E[Ntotal]. Additionally, Whitt developed approximations for the
variances of the above-stated measures [49, Eq. (80)–(84)].

15.3.8 Complexity

In the above sections, we have repeatedly pointed out the linearity of the employed
equations for the three traffic operations merging, splitting, and service. In fact,
QNA exploits this linearity to efficiently evaluate the queueing network.

First, for the arrival rates of the traffic streams the systemof equations derived

for JQNs is also valid for QNA. Let
〈

λA,i,c2
A,i

〉
be the traffic arriving at nodei,

〈
λD,i ,c2

D,i

〉
the traffic leaving this node, and

〈
λext,i ,c2

ext,i

〉
the external traffic. If

Γ = (r i j ) is the routing matrix, the following traffic equation holds for each node
i = 1, . . . ,n of the network:

λA,i = λext,i +
n

∑
j=1

λD, j · r ji . (15.4)

Again, QNA’s model class impliesλD,i = λA,i and the traffic equations form a system
of linear equations which can be expressed in vector/matrixnotation as

λA = λext(I−Γ)−1.

For the squared coefficients of variation of the traffic streams a system of equations
can be set up, too. The synthesis of the superposition and thesplitting operations
yields

c2
A,i = (1−wi)+wi

(
pext, j c

2
ext,i +

n

∑
j=1

p j ,i(r ji c
2
D, j +1− r ji)

)
,

wherep j ,i = λD, j r j ,i/λA,i is the fraction of traffic arriving from nodej to nodei and
pext, j = λext,i/λA,i is the fraction of external traffic arriving to nodei. Finally, if we
include the result of the service operation we obtain the following system of linear
equations

c2
A,i = (1−wi)+wi{pext, jc

2
ext,i +

n

∑
j=1

p j ,i(r ji (1+(1−ρ2
i )(c

2
A, j −1)

+
ρ2

i√
mi

(max(c2
S,i ,0.2)−1))+1− r ji)}.(15.5)



15 Decomposition-Based Queueing Network Analysis with FiFiQueues 653

Using the equations (15.4–15.5), the traffic descriptors can easily be computed.
Thus, obviously QNA has the same time complexity as the Jackson network method.
Note that, due to the linearity of the involved equations, QNA does not require the
fixed-point iteration described in Section 15.2 (although,if an iterative solver is used
to solve the linear equations, the fixed-point iteration canbe regarded as hidden in
the solver).

15.4 FiFiQueues

In the mid-1990’s Haverkort and Weerstra, cf. [13, 14, 15, 48], extended Whitt’s
QNA approach by means of replacing the core of the analysis: the service opera-
tion. Unlike QNA, their new approach, called QNAUT, does notdirectly use the
descriptor of the arrival traffic to compute the departure traffic descriptor, but as-
sumes that the arrival traffic descriptor can be used to construct a phase-type (PH)
renewal process (see Section 15.8.2) which approximates the “real” underlying ar-
rival process. This allows for the inclusion of finite-buffer queueing stations as well
as for the analysis of the queueing stations by matrix-geometric and general Marko-
vian techniques, instead of the approximations originallyused in QNA.

At the end of the 1990s, an extended version of the original approach was pro-
posed, in which some approximate steps were removed and the model class was
slightly enhanced [41, 42, 43]. In particular, this enhanced class provides:

• exact results for the the departure process based on the results of Bocharov [5]
for PH|PH|1|K queues;

• efficient per-queue analysis;
• for each finite queueing station, a traffic stream is computedwhich consists of

the customers rejected at a completely filled queue. This loss traffic stream can
be used as arrival stream for other queueing stations like any other “regular”
departure traffic stream.

This approach, as well as the analysis tool developed from it, is namedFiFiQueues
(for Fixpoint-based analysis of networks withFiniteQueues).

15.4.1 Model class

The external arrival processes are described, as in QNA, by the first and the second
moment of the inter-arrival times. The main differences to QNA’s model class are:

• the service processes are specified as PH renewal processes;
• the queueing stations can haveinfiniteor finitequeueing capacities. The nodes are

analyzed as PH|PH|1(|K) queues with the FCFS service discipline. The customer
multiplication factor known from QNA is also supported, butnot described in the
following;
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• finite queues have two output streams: the “regular” departure traffic stream and
the loss traffic stream which consists of the customers rejected by a full queue.

Seen from a single queue, customers arriving at a completelyfilled queue are simply
lost. This form of blocking is common in communication networks (communication
blocking) and has an important advantage: unlike other types of blocking (like back-
blocking), it still allows the independent analysis of eachof the queueing stations.

Just like the regular departure traffic of a queueing stationwith finite capacity, the
loss traffic is not known a priori and is computed by the analysis of the station. The
“reuse” of loss traffic streams as arrival streams to other nodes requires an auxiliary
routing matrix. Its handling will not be discussed further in the following sections,
since, once the traffic descriptors of the loss streams are known, they can easily be
processed like the regular departure traffic. However, notethat loss traffic streams
should only be used very carefully in feedback networks: if aloss traffic stream is
fed back directly or indirectly to the node which produced the stream, it can prevent
the iteration algorithm (see Section 15.2) to terminate because the arrival rate to the
node increases in each iteration step.

15.4.2 Traffic descriptor

As in QNA, the external arrival processes as well as the inter-node traffic streams
are described by the first and second moment of the inter-arrival times. The traffic
descriptor

〈
λ ,c2

〉
contains the arrival rateλ and the squared coefficient of variation

c2 of the inter-arrival time.

15.4.3 Superposition of traffic streams

To mergen traffic streams specified by
〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉
into one traffic stream〈

λ ,c2
〉
, we adopt the hybrid approximation of QNA, i.e.,

λ =
n

∑
i=1

λi, (15.1)

c2 = w ·
n

∑
i=1

λi

λ
c2

i +(1−w), (15.2)

with

w =
[
1+4(1−ρ)2(v−1)

]−1
, and v =

(
n

∑
i=1

(
λi

λ

)2
)−1

,

whereρ is the utilization of the node receiving the resulting traffic stream. It should
be emphasized that these formulae were originally designedin the context of QNA’s
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model class, i.e.,not for finite queues. Thus, their usage in FiFiQueues introduces
auxiliary errors to the computation, in addition to the errors inherent to the hybrid
approximation method.

One may wonder if we could obtain better results by not following QNA’s linear
approximation (c2

SI = 1) but in actually computing the correct value forc2
SI. Our

experiments have shown that nearly the same results are obtained by doing so. This
is consistent with Whitt’s observation that fixingc2

SI at 1 increases the average error
by only 1 percent.

15.4.4 Splitting traffic streams

When splitting, we assume that the involved processes are renewal processes. Under
this assumption, an exact solution is available. Forn splitting probabilitiesp1, . . . , pn

and the traffic stream
〈
λ ,c2

〉
, we obtain the splitted streams

〈
λ1,c2

1

〉
, . . . ,

〈
λn,c2

n

〉

with
λi = pi ·λ , and c2

i = pi ·c2 +(1− pi), i = 1, . . . ,n. (15.3)

15.4.5 Servicing jobs

We have already stated that the nodes are analyzed as PH|PH|1(|K) queues. Thus,
before a queueing station can be analyzed we need to find a PH distribution that
fits the two moments given in the arrival traffic descriptor. In the following we will
explain the fitting step and the actual queueing analysis procedure, thereby treating
PH|PH|1 and PH|PH|1|K queues separately. We require that the PH|PH|1 queues
are stable, i.e., the total arrival rate at a PH|PH|1 station should be smaller than its
service rate.

15.4.5.1 Phase-type representation of the arrival processes

Let
〈
λ ,c2

〉
be the arrival traffic descriptor. We write E[X] = 1/λ for the corre-

sponding mean inter-arrival time. Clearly, having only twomoments allows us some
freedom to select an appropriate PH distribution. We require that the chosen PH dis-
tribution, represented by(α ,A)

1. matches the two moments exactly (at least for a certain range; see below), and
2. is as compact as possible, i.e., has the smallest number oftransient statesm.

Additionally, we want that the employed fitting procedure does not consume too
much time since it has to be executed every time when a node is analyzed. In Fi-
FiQueues, we use the following approach, first presented in [14]. Two cases are
distinguished:



656 Ramin Sadre, Boudewijn R. Haverkort

• In casec2≤ 1, we use a hypo-exponential distribution withm=
⌈

1
c2

⌉
phases and

initial probability vectorα = (1,0, · · · ,0). The matrix A is then given as

A =




−λ0 λ0

−λ1 λ1
. . .

. . .
−λm−2 λm−2

−λm−1




, (15.4)

whereλi = m/E[X], for 0≤ i < m−2 and where

λm−1 =

2m

(
1+
√

1
2m(mc2−1)

)

E[X](m+2−m2c2)
and λm−2 =

mλm−1

2λm−1E[X]−m
.

For smallc2, PH distributions with a large number of states will be obtained. To
limit the computational requirements in the analysis process we do not allowc2

to be smaller than1
10. This approximation corresponds to an Erlang-10 distribu-

tion and produces generally good results, also as approximation for deterministic
distributions.

• In casec2 > 1, we take a hyper-exponential distribution withm= 2 phases. Such
a distribution has three free parameters: the choice probability p between the two
possible phases and the ratesµ1 andµ2 of the two phases. Fitting the first two
moments thus leaves one degree of freedom. We resolve this byassuming so-
called “balanced means”, meaning that the ratiosp/µ1 and(1− p)/µ2 should be
equal. This then yieldsα = (p,1− p) and

A =

(
− 2p

E[X]
0

0 − 2(1−p)
E[X]

)
with p =

1
2

+
1
2

√
c2−1
c2 +1

.

15.4.5.2 Analysis of PH|PH|1|K queues

The underlying CTMC Let (α ,A) be the arrival PH renewal process withl states
as obtained by the fitting step and(β ,B) the service PH renewal process withm
states. Then we can describe the behavior of a node with queueing capacityK by a
QBD process [37] (see Section 15.8.4) withK +1 levels, where level 0 consists ofl
states and where levels 1 throughK consist ofl ·mstates each.

The i-th level represents the state of the system when it containsi customers. A
step from leveli to level i + 1 (i < K) stands for an arrival and a step from leveli
to level i−1 (i > 0) stands for a departure. Thel ·m states of a leveli > 0 describe
the current state of the arrival and of the service processes(level 0 contains onlyl
states because the queue is empty and the service process hasnot yet started; it only
records the state of the arrival process). This leads to the following generator matrix
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of the Markov chain:

Q =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I 0

0 I⊗B0β A⊕B A0α⊗ I
. ..

. . .
. . .

I⊗B0β (A +A0α)⊕B




,

where A0 = −A ·1, B0 = −B ·1, L⊕M = L⊗ I + I⊗M, and⊗ is the Kronecker
product operator (also known as tensor or matrix direct product operator).

The steady-state solution v of the Markov chain with generator Q can be obtained
by solving the global balance equation (see Section 15.8.4):

v ·Q = 0 and v·1 = 1.

The vector v is of sizel + K · l ·m. In the following we write v0 for the vector
(v1, . . . ,vl ) which contains the steady-state probabilities of level 0 and we write vi
for the vector(vl+1+(i−1)·l ·m, . . . ,vl+i·l ·m) which contains the steady-state probabili-
ties of leveli = 1, . . . ,K.

The departure traffic The steady-state solution vector v now allows us to com-
pute the departure traffic descriptor

〈
λD,c2

D

〉
. To this end, we use the results of

Bocharov presented in [5] which we will briefly describe in the following.
We begin with the computation of the blocking probabilityπ , i.e., the probability

that an arriving customer encounters a full queue and, hence, is lost. The vector vA,K

gives for this situation the state probabilities and it holds that

vA,K =
1

λA
vK(A0⊗ I),

whereλA stands for the arrival rate to the node andK stands for the queueing ca-
pacity of the node. This leads to the blocking probabilityπ :

π = vA,K ·1.

With π , we easily find the departure rate of served customers as

λD = λA(1−π). (15.5)

Higher moments of the inter-departure time can be computed using the following
consideration. If the queue is not empty after a departure took place, the distribution
of the time up to the next departure is equal to the distribution of the service time.
Otherwise, it is equal to the distribution of the sum of the time until the next cus-
tomer arrival and its service time (which are independent).The probability to leave
an empty queue at departure instantt + ε is
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vD,0 =
1

λD
v1(I⊗B0). (15.6)

This leads Bocharov to the expression for thei-th momentdi of the inter-departure
time distribution:

di = bi +vD,0

i

∑
j=1

(−1) j i!
(i− j)!

A− j1bi− j , (15.7)

wherebi is the i-th moment of the service time distribution. Thus, one can easily
verify that the varianceσ2

D of the departure process is

σ2
D = σ2

S + σ2
0 , (15.8)

whereσ2
S is the variance of the service time distribution andσ2

0 equals

σ2
0 = 2vD,0A−21− (vD,0A−11)2. (15.9)

The squared coefficient of variation is then given byc2
D = λ 2

Dσ2
D.

The loss traffic The rate of lossλL is given byλL = λA · π , whereπ is the loss
probability. In oder to obtain higher moments of the inter-loss time we describe the
loss process by the MAP(L0,L1) with

L0 =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I

0 I⊗B0β A⊕B A0α⊗ I
. . .

. . .
. . .

I⊗B0β A⊕B




,L1 =




0
...

A0α⊗ I


 .

The underlying CTMC of this MAP is the CTMC of the QBD where arrivals in the
last levelK have been marked. Naturally, it has the same steady-state probability
vector v. Thei-th moment of the inter-loss time is given by

E[Li ] =
i!

λD
v(−L0)

−(i−1)1, (15.10)

hence, its second moment equals

E[L2] =
2

λL
v(−L0)

−11.

15.4.5.3 Analysis of PH|PH|1 queues

The underlying CTMC Let (α ,A) be the arrival PH renewal process withl states
and(β ,B) the service PH renewal process withm states. Again, the behavior of the
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queue can be described by a QBD process with a generator matrix similar to the one
of the PH|PH|1|K; the only difference is the fact that it has repeating columns ad
infinitum:

Q =




A A0α⊗β
I⊗B0 A⊕B A0α⊗ I

0 I⊗B0β A⊕B A0α⊗ I
. . .

. . .
. . .


 ,

with the infinite steady-state probability vector v fulfilling

v ·Q = 0 and v·1 = 1.

We refer to Section 15.8.3 for an overview of solution techniques.

The departure traffic Since infinite queues produce no loss, we have

λD = λA, (15.11)

whereλA is the arrival rate to the node. The variance of the output stream is calcu-
lated using the same approach as in the case of finite-buffer queues and the equa-
tions (15.6), (15.8), and (15.9) still hold.

15.4.6 Node performance

FiFiQueues computes the first and second moment of the waiting timeW and the
queue lengthN. Again, queues with finite and infinite buffer capacity are treated
separately.

15.4.6.1 Node performance of PH|PH|1|K queues

The j-moment E
[
N j
]

of the queue length distribution (including the job in service)
is given by

E
[
N j]=

K

∑
i=1

i jvi1. (15.12)

Hence, mean and variance of the queue lengthN are:

E[N] =
K

∑
i=1

i ·vi1 and Var[N] =
K

∑
i=1

i2 ·vi1−E[N]2 .

Equation (4.4) in [5] gives the Laplace-Stieltjes transform of the waiting time prob-
ability density function. From this equation, any desired moment of the waiting time
can be derived. For the mean and the variance we obtain [5, Eq.(4.5)–(4.7)]:
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E[W] =
1

λD
(E[N]−1+v01),

Var[W] =
2

λD

(
µ ·q21−

(
q1
(
1⊗B−11

)))
−E[W]2 ,

whereµ is the service rate. The components of the vector q1 resp. q2 give the first,
resp. second binomial moment of the number of jobs in the queue as a function of
the system state. Forj > 0, the j-th binomial moment qj is defined as [5, Eq. (3.1)]:

q j =
K

∑
i= j+1

(
i−1

j

)
vi .

15.4.6.2 Node performance of PH|PH|1 queues

In the case of infinite buffer capacity, the expressions presented for the PH|PH|1|K
queue in the previous section can still be applied, providedthat the steady-state
probability vectors vi are available in a form that allows to calculate the, now infi-
nite, sums. For example, if we assume that a matrix-geometric solution method (see
Section 15.8.3) is employed to compute the steady-state probabilities, the vectors vi
have the so-called matrix geometric form

vi = v1Ri−1, R∈ IRlm×lm, i = 1,2, . . . ,

where R is the entry-wise smallest non-negative solution ofthe matrix-quadratic
equation

A0α⊗β +R(A⊕B)+R2(I⊗B0β ) = 0.

The j-th moment of the queue length distribution is then given by

E[N j ] =
∞

∑
i=1

i jvi1 =
∞

∑
i=1

i jv1Ri−11, (15.13)

which yields in casej = 1:

E[N] = v1(I−R)−21.

Similarly, the other node performance measures can be obtained.

15.4.7 Network-wide performance

Many results for the network performance measures developed by Whitt for QNA
(see Section 15.3.7) can also be applied to FiFiQueues when respecting the fact that,
due to losses at finite queues, the departure rate of a node maydiffer from the total
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arrival rate to that node. Additionally, one has to decide how loss traffic streams
should be treated in the computation of network-wide performance results. For ex-
ample, the following question has to be answered: should theexpected number of
visits E[Vi ] also include rejections due to full buffers? As this is only aproblem of
“interpretation” of the results, we will not discuss it further here.

15.4.8 Complexity

15.4.8.1 Traffic computation

In FiFiQueues the traffic descriptor of the outgoing traffic depends in a complex,
non-linear way on the incoming traffic. Thus, unlike the QNA method, FiFiQueues
clearly requires an iterative computation scheme to compute the descriptors of the
internal traffic streams. A deeper discussion of FiFiQueues’ iteration behavior is
given in Section 15.5. Here, we will analyze the complexity of the operations that
have to be performed for each node during each iteration.

First, we can safely neglect the traffic merging and splitting steps in our discus-
sion. They only consist of a small number of additions and multiplications. The
most time and space consuming operation is the service operation. It can be divided
into three phases:

1. fitting of the PH distribution to the arrival traffic,
2. computation of the steady-state probability vector of the underlying CTMC, and
3. computation of the departure traffic descriptor (and, if needed, of the loss traffic

descriptor).

Again, we can neglect the first phase since its time complexity is O(1). For the
second phase, we distinguish between finite and infinite queueing stations.

If the queueing capacity is finite, so is the CTMC. Letl be the size of the arrival
PH process, i.e., the number of states of its CTMC representation, m the size of
the service PH process andK the queueing capacity. Then, the generator matrix
is of size(l + lmK)× (l + lmK). This corresponds to a finite QBD withN0 = l
andN = lm (see Section 15.8.4). The latest implementation of FiFiQueues uses for
finite capacities the Cyclic Reduction method [3] which has time complexityO((l +
m)3 logK + (l + m)2K). If the descriptor of the loss traffic is required, additional
operations have to be performed to compute the product v(−L0)

−1. For unbounded
queueing capacity, the LR algorithm [28] is used.

Once the steady-state solution is known, the departure traffic descriptor can be
computed. Both for finite and infinite queueing stations, this only requires a small
number of matrix vector multiplications. Note that the moments bi of the service
process needed by Equation (15.7) are constant for a given network and hence can
be precomputed once.
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15.4.8.2 Node performance and network performance computation

Since the network performance computation is comparable tothat of the QNA
method, we only discuss the complexity of the node performance computation here.

Concerning finite queueing stations, the computation of themean and variance
of the queue length requires the summation over thelm(K−1) entries of the steady-
state probability vector. For the moments of the waiting time distribution, we have
to invert matrix B of sizem×mwhich can be seen as a constant time operation even
for very complex PH representations of the service process (say,m= 50).

In case of infinite queueing capacity, the complexity depends on the employed
solution method. Assuming a matrix-geometric solution method, the expression
E[N] = v1(I−R)−21 we gave for the mean queue length in Section 15.4.6, requires
the vector X= v1(I −R)−2 which can be obtained by solving the linear system
X(I−R)2 = v1 of orderlm.

15.4.9 The FiFiQueues network designer

The FiFiQueues approach has proven to be stable and reliableenough for end users.
In this section we present an integrated tool environment, the FiFiQueues network
designer, that allows an easy access to the underlying algorithms. The tool also
contains a simulator for the steady-state simulation of queueing networks. The Fi-
FiQueues network designer consists of a graphical user interface written in Java,
a numerical analysis module, and a simulation module. The latter two have been
written in C++.

15.4.9.1 The graphical user interface

The graphical user interface allows to construct, edit and study open and closed
queueing networks of arbitrary topology. The networks can be evaluated by numer-
ical analysis or by simulation. Figure 15.2 shows a screenshot of the main window.
The lower part of the window shows the edited network and the properties of the
currently selected node. The upper part displays the results of the numerical analysis
(left section) and the results of the simulation (middle section, including the 95%
confidence intervals) as well as a comparison of both methods(right section).

Every object in the network has properties that can be editedvia the user inter-
face. Figure 15.3(a) shows the properties of a finite queueing station while the user
is selecting a service distribution. The global-properties panel (see Figure 15.3(b))
allows to control the length of the simulation and the parameters specific to closed
networks.

The user interface communicates with the numerical analyzer and the simulator
via text files. As an example, the network shown in the screenshot is translated into
the following textual description in order to evaluate it.
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Fig. 15.2: Main window of the graphical user interface

(a) Properties of a network node (b) Global properties of the network

Fig. 15.3: Property editor

# Queue mapping
# 0 CPU
# 1 NIC
# 2 Disk
network_props
1 3 1 0 100000 20 50000 0 0 0.0
source_props
90.0 1.2 0 6
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queue_props
1200.0 26.8 1 150 6 1 1 1
1401.0 26.8 1 150 6 1 1 1
64.0 26.8 1 150 6 1 1 1
counter_dest
-1
r
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.5 0.5 0.0 0.0
b
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

15.4.9.2 The numerical analysis module

The numerical analysis module is the core of the implementation. It incorporates the
FiFiQueues algorithms as discussed and the extension for closed queueing networks
as described in [44].

15.4.9.3 The simulation module

The simulation module offers the discrete-event simulation of open and closed
queueing networks. It is described in detail in [40].

15.5 Performance of FiFiQueues

In this section we evaluate the performance of the FiFiQueues algorithm with regard
to the quality of the numerical results. This evaluation consists of

• tests with the FiFiQueues algorithm on some representativequeueing networks
(Section 15.5.1),

• a case study of a web server (Section 15.5.2).

The results of the numerical analysis are compared to results determined using
discrete-event simulation. The relative half-width of the95%-confidence intervals
is smaller than 1% for all the simulation results. If not stated otherwise, arrival time
and service time distributions specified by their rate and the squared coefficient of
variation (SCV) are always mapped to PH distributions. Relative errors between
numerical analysis and simulation are always computed relative to the latter. We
conclude with Section 15.5.3.
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15.5.1 Evaluation of FiFiQueues

In this section we evaluate FiFQueues’ performance with some typical networks.
We begin with a single queue in Section 15.5.1.1, then continue with some com-
plex networks in Section 15.5.1.2. The presented tests cover a wide range of input
parameters, including (nearly) deterministic processes,and complex networks with
finite queueing capacities.

15.5.1.1 Single queues

In the case of queueing networks that consist of only one queueing station, FiFi-
Queues always produces exact results, provided that the selected arrival and service
PH renewal processes match the actual arrival and service processes of the real sys-
tem. Hence, results of single-queue systems are not very interesting. At this place,
we will only discuss the special case of deterministic distributions.

As explained, FiFiQueues limits the number of phases in hypo-exponential PH
distributions to 10, which corresponds to a minimum SCV of 0.1. As a consequence,
deterministic distributions can only be approximated. To evaluate the effect of this
restriction we have analyzed a queueing station with negative exponential services
and deterministic arrival process at different loads. Table 15.1 compares the thus
obtained mean queue lengths with results found by simulation. It shows that the
relative error between analysis and simulation increases with the load. Errors of
comparable magnitude can also be observed for other performance measures and
for hypo-exponential and hyper-exponential service distributions.

load analysissimulation rel. error
0.1 0.10 0.10 0.0%
0.2 0.20 0.20 0.0%
0.4 0.47 0.45 4.4%
0.6 0.95 0.89 6.7%
0.8 2.34 2.18 7.3%
0.95 10.60 9.26 14.4%

Table 15.1: Mean queue length for a queueing station with deterministic arrival
traffic

15.5.1.2 Queueing networks with feedback

3-node queueing network We first address three queueing nodes in series, with
a feedback from the last to the first queue, as shown in Figure 15.4. The external
Poisson source has rate 1.3 and the service times are Erlang-5 distributed with rate
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1.5; the node capacity is 10 (not including the service station) at all queues. The
feedback probability is 25%.

2 31

Fig. 15.4: 3-node queueing network with feedback

The results are shown in Table 15.2. The first two rows show thecharacteristics
of the traffic leaving the queueing network from node 3. The middle six rows show
the rate and SCV of the arrival traffic at each node, and the last three rows show the
expected queue length at each node.

analysissimulation rel. error
Output traffic λnetd,3 1.08 1.08 0.0%

c2
netd,3 0.41 0.41 0.0%

Arrival traffic λa,1 1.65 1.66 -0.6%
c2

a,1 0.96 0.96 0.0%
λa,2 1.47 1.47 0.0%
c2

a,2 0.23 0.23 0.0%
λa,3 1.45 1.45 0.0%
c2

a,3 0.21 0.22 -4.5%
Queue length E[N1] 6.47 6.47 0.0%

E[N2] 4.43 4.45 -0.4%
E[N3] 3.96 3.90 1.5%

Table 15.2: Results for the 3-node network with Poisson source

The good results of the analysis can be explained by the fact that the resulting
arrival traffic to node 1 (i.e., where the traffic superposition operation happens) is
near to Poisson as indicated byc2

a,1=0.96. If we replace the external source distribu-

tion by a hyper-exponential distribution withc2 = 4.0 we obtain the results shown
in Table 15.3. As expected, larger errors can be observed this time for the SCV of
the arrival traffic. Interestingly, node 2 does not seem to beaffected. This is be-
cause node 2 is fed by node 1 which is overloaded and hence reduces short-range
correlations in the traffic stream.

Figure 15.5 shows the incoming traffic to node 1 as a function of the number of
iterations in the fixed-point procedure for both kind of external sources. As can be
observed, the fixed-point is reached after a very small number of iterations. This
behavior has been typical for all queueing networks we have analyzed so far.

Kühn’s nine-node network As a larger queueing network we evaluated a modi-
fied version of Kühn’s nine-node network [27], as shown in Figure 15.6 (the num-
bers at the edges specify the routing probabilities). A similar network has been ex-
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analysissimulation rel. error
Output traffic λnetd,3 0.99 0.99 0.0%

c2
netd,3 0.45 0.69 -34.8%

Arrival traffic λa,1 1.63 1.63 0.0%
c2

a,1 3.33 2.35 41.7%
λa,2 1.33 1.33 0.0%
c2

a,2 0.79 0.79 0.0%
λa,3 1.32 1.33 -0.8%
c2

a,3 0.35 0.65 -46.2%
Queue length E[N1] 5.57 5.59 -0.4%

E[N2] 3.30 3.16 4.4%
E[N3] 2.38 2.76 -13.8%

Table 15.3: Results for the 3-node network with hyper-exponential source
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Fig. 15.5: Incoming traffic (arrival rate) at node 1 as a function of the number of
iterations in the fixed-point procedure for the 3-node network

amined in [15, 48]. The external arrival rate to nodes 1–3 equals 0.8 andc2
ext = 4.0.

The service rate at each node is 1.0 (except for node 5 whereµ5 = 0.5), and the
SCV of all service processes isc2

s = 0.5. All nodes have a finite queueing capac-
ity of 25. Hence, without decomposition the underlying CTMCwould comprise
23 · (1+25·2)9≈ 1.86×1016 states. For all nodes, we observe excellent agreement
with the simulation results.



668 Ramin Sadre, Boudewijn R. Haverkort

2 4

5

1

6

7

3

9

8

0.3

0.6

0.1

0.2

0.1

0.7

0.7

0.3

0.2

0.8
0.3

0.7

Fig. 15.6: Kühn’s nine-node network

Table 15.4 shows the results obtained by FiFiQueues and by simulation for the
mean queue length and the offered load at each station. Note that the results for the
(identical) nodes 1–3 are only stated once.

node analysissimulation rel. error
1–3 E[Ni ] 6.39 6.39 0.0%

offered load 0.8 0.8 0.0%
4 E[N4] 16.84 16.74 0.6%

offered load 1.09 1.09 0.0%
5 E[N5] 1.14 1.13 0.9%

offered load 0.59 0.59 0.0%
6 E[N6] 2.31 2.28 1.3%

offered load 0.77 0.76 1.3%
7 E[N7] 14.67 14.86 -1.3%

offered load 1.04 1.04 0.0%
8 E[N8] 6.36 6.63 -4.0%

offered load 0.87 0.87 0.0%
9 E[N9] 22.41 21.88 2.4%

offered load 1.28 1.27 0.8%

Table 15.4: Results for the departure rates in Kühn’s nine-node network

15.5.2 Performance evaluation of a web server

In this section we will use FiFiQueues for the performance evaluation of a web
server. The employed parameters in the models have been derived from measure-
ments made at a test system.

This section is structured as follows. First, we describe the test system in Sec-
tion 15.5.2.1. Then we present a QN model for a web server without disk access



15 Decomposition-Based Queueing Network Analysis with FiFiQueues 669

(cache only) in Section 15.5.2.2, followed of the model of a web server with disk
access in Section 15.5.2.3. These two models are then combined to a model of a
server group in Section 15.5.2.4. We compare the results obtained by analysis with
the results obtained by simulation, and, where available, with the data collected at
the test system.

15.5.2.1 Description of the test system

The test system consists of a computer running the Apache webserver [2]. The
server load is generated by two client systems that send HTTP/1.0 GET requests to
the server in a 100 MBit Ethernet LAN. The request times as well as the sizes of
the requested files have been extracted from traces (access logs) collected at the UC
Berkeley Home IP Service [11] in 1996. For our tests we have used a part of the
original trace file: it consists of 35541 requests for staticfiles (i.e., pictures, HTML
pages, etc.) sent over 4 hours by different users. This corresponds to a request rate of
2.468 requests per second. The SCV of the inter-request timeis 1.2. The requested
files have a mean size of 8510 bytes where the smallest file has asize of 2 bytes and
the largest file a size of about 4.5 MBytes. The size distribution has a SCV as large
as 26.8.

The web server of the test system has been configured to use notmore than 150
server threads. This implies that the number of requests that can be processed con-
currently is limited to 150. Since connection requests are not queued the clients will
experience a connection rejection if they try to exceed thisnumber. In addition, the
request time-out has been set to 8 seconds. More details concerning the test system
can be found in [25]; please note that the QN models presentedin the following
differ from the models discussed there.

15.5.2.2 Web server without disk access

For the first model, we assume that the server holds all requested files in the file
cache and, as a consequence, no disk access is performed. This is a typical situation
in intranets where the number of often requested files is limited. In this scenario the
performance of the web server is only limited by the CPU, the main memory, and
the network interface controller (NIC).

NICCPU

Fig. 15.7: QN model for the web server without disk access

We model the web server by two queueing stations in series as shown in Fig-
ure 15.7. Both stations have a finite queueing capacity; we comment on how the
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buffer capacity is chosen below. The first station is fed by anexternal source that
represents the clients sending the HTTP requests. The SCV of1.2 for the source is
equal to the corresponding value of the trace file.

The first station models the CPU. Measurements at the test system have shown
that the CPU of the test server is able to process up to around 1200 requests per sec-
ond. We adopt this value for the service rate of the first queueing station. Concerning
the SCV of the CPU’s service time distribution, we observe that the CPU service
time is dominated by the time to handle the HTTP protocol and by the management
of the cache data structures. Since the NIC accesses the mainmemory via DMA
(Direct Memory Access), the CPU service time exhibits nearly no dependency on
the size of the requested file. Hence, we choose a (nearly) deterministic service time
distribution with a SCV of 0.1. The second queue represents the NIC. Measurements
have shown a network load between 90% and 95% for a response rate of 1100 re-
sponses per second. This leads to a NIC service rate of approximately 1200. For the
SCV of the NIC’s service time distribution, we assume a direct dependency of the
service time on the file size and we set the SCV to 26.8, i.e., tothe SCV of the file
size distribution.

The most problematic aspect of the test system is the limitation to 150 simulta-
neously connected clients. This cannot be easily modeled bythe FCFS-scheduling
used by FiFiQueues. To approximate the limit, we have first analyzed the network
at a request rate of 1500 requests per second. Using a Newton-iteration, we have
determined the queueing capacity at which the total mean number of jobs in the
network equals 150. The thus found buffer capacity of 106 hasthen been used for
all other request rates (we have chosen the same capacity for both queues; the jobs
are distributed evenly over both stations at high request rates).

Figure 15.8 shows the number of responses per second as a function of the num-
ber of requests sent per second as measured at the test systemand as computed
by FiFiQueues. Simulation results are not shown since they are nearly identical to
the analytical results (relative error< 1%). It shows that the QN model is able to
predict the response rate quite well. The total mean response times are shown in
Figure 15.9. The results are acceptable, but we can see that the model is not able
to reproduce the sharp jump of the response time at 1000 requests/s. A model with
more complex behavior, for example non-FCFS scheduling, would be required in
order to obtain better results.

15.5.2.3 Web server with disk access

The second model assumes that all requested files have to be loaded from the disk
of the server system. Measurements have shown that the test system only achieves
a maximum response rate of 63.5 files/s at a CPU load of 9%. Clearly, the disk
transfer is the bottleneck.

We model the influence of the disk access through an additional queueing station.
Figure 15.10 shows the resulting model. The first station represents the CPU. For the
SCV of the CPU service time, we have kept the value of 0.1 of the previous model.
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Fig. 15.8: Response rate as function of the request rate for the web server without
disk access
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Fig. 15.9: Mean response time as function of the request ratefor the web server
without disk access
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However, the service rate has now been set to a value of 706 (= 63.5
0.09) to reflect the

higher CPU demand of the single disk-based request. The service rate of the disk
station has been set to 63.5. For the SCV, we have assumed a direct dependency
of the service time on the size of the requested filemeasured in blocks of 4 KBytes
since this corresponds to the organization of the data on thedisk. This leads to a
SCV of 16.5 instead of 26.8. The NIC in this model has the same service rate and
SCV as in the previous model.

Again, the problem of the bounded number of simultaneously connected clients
remains. Since the disk station clearly is the bottleneck, we have limited its queueing
capacity to 150 while the CPU and the NIC station now have infinite queueing
capacity. Note that, in spite of the large differences between the service rates, the
CPU and the NIC should not be removed from the model since theyhave a small
but measurable influence on the SCV of the traffic stream.

NICCPU DISK

Fig. 15.10: QN model for the web server with disk access

Figure 15.11 shows the number of responses per second as a function of the num-
ber of requests sent per second as measured at the test systemand as computed by
FiFiQueues. Again, simulation results are not shown since their are nearly identical
to the analytical results (relative error< 1%). Again, it shows that the QN model
is able to predict the response rate quite well. The total mean response times are
shown in Figure 15.12. We observe that the QN model underestimates the response
time, especially at request rates near to the maximum response rate of the disk. Our
experiments with more complex QN models have shown that an improvement of
the results cannot be easily achieved by using the type of queueing stations offered
by FiFiQueues. For example, a more appropriate model would have to consider that
the seek time of the disk becomes a significant part of the disk’s response time at
high file reqest rates since the disk has to reposition its read/write heads more often.
Detailed models like the one presented in [39] simulate axial and rotational head
positions, seek, rotation and transfer times, and provide separate submodels for the
disk mechanism, the cache and the DMA engine.

15.5.2.4 Group of servers

In this section we evaluate a group of servers as shown in Figure 15.13. In our model,
the client requests HTML pages from the main server of a web site. An HTML file
refers to, on average, three other objects (company logo, images,. . . ) that are also
located on the main server. In addition, the HTML file refers to an object located
on one of the five data servers. We assume that the HTML file and the three re-
ferred files located on the main server are frequently requested and, hence, the main
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Fig. 15.11: Response rate as function of the request rate forthe web server with disk
access
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server mainly operates on the cache. Concerning the data servers, we assume that
they store large amounts of infrequently requested files, for example files specific
to the requesting user, media files, et cetera. The client uses the HTTP/1.0 proto-
col [35], i.e., the five files that constitute the requested HTML page are sequentially
requested.

data server 5

data server 4

data server 3

data server 2

data server 1

. . .

client

client

main server

Fig. 15.13: Group of Web servers

The QN model is shown in Figure 15.14. The QN of the server without disk
access (representing the main server) is combined with five copies of the QN of the
server with disk access (representing the data servers). Jobs leaving the main server
are fed back to it with a probability of 0.75, thus resulting in four visits to the main
server in average. The jobs finally leaving the main server are distributed evenly
on the data servers. The service processes and the capacities of the stations remain
unchanged.

We have evaluated the QN model by FiFiQueues and by simulation. The results
for the response rate (for one data server) and the mean response time are shown
in Figure 15.15 and, respectively, Figure 15.16. The vertical bars in the latter show
the 95%-confidence intervals of the simulation results. FiFiQueues provides good
results for request rates smaller than 250. At larger request rates, FiFiQueues over-
estimates the losses in the main server because it ignores the correlations caused
by the feedback. As a consequence, the load of the data servers is underestimated
which leads to a smaller mean response time in comparison with the results ob-
tained by simulation. To make this very clear: the differences we observe here show
shortcomings of our analysis approach, as for both curves, the same model is being
used.

Table 15.5 shows the runtimes (in seconds) of the FiFiQueuesalgorithm and
of the discrete-event simulation for the evaluation of the server group model with
various request rates. For FiFiQueues, we have recorded theruntimes for two dif-
ferent implementations of the finite queue analysis. The original implementation
uses a Gauss-Seidel iteration, whereas the latest version uses the Cyclic Reduction
method [3]. As observed in [40], the runtime of the Gauss-Seidel iteration increases
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DISKCPU

0.05

0.75

. . .

Fig. 15.14: QN model for the server group
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Fig. 15.15: Response rate as function of the request rate forthe server group

FiFiQueues
request rateGauss-SeidelCyclic Red.simulation

100 7 2 11
200 15 3 11
300 19 3 11

Table 15.5: Runtimes (in seconds) for the evaluation of the server group model
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Fig. 15.16: Mean response time as function of the request rate for the server group

with the load of the stations. The Cyclic Reduction method isclearly faster than the
Gauss-Seidel iteration and the simulation.

15.5.3 Summary

In this section, we have evaluated the performance of the FiFiQueues algorithm.
Our experiments have shown that FiFiQueues provides very good results for im-
portant performance measures, like mean queue length, if the involved arrival times
in the queueing network are hypo-exponentially or nearly (negative-)exponentially
distributed. In such situations, we can generally expect relative errors less than 5%,
even if the network has a complex structure. In case of hyper-exponential arrival
processes, especially in queueing networks with feedback,relative errors up to 10%,
rarely up to 20%, have been observed.

15.6 Summary and conclusions

In this chapter we have presented an overview of decomposition-based analysis
techniques for large open queueing networks. We first presented the decomposition-
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based approach in general terms, without referring to any particular model class,
and proposed a general fixed-point iterative solution method for it. We concretized
this framework by describing the well-known QNA method, as proposed by Whitt
in the early 1980s, in that context, before describing our FiFiQueues approach. It
should be noted that the work on FiFiQueues has been performed by a group of
people over the last (almost) 15 years. To keep this chapter self-contained, we have
added appendices on various underlying building blocks. Inaddition to an extensive
evaluation with generally very favorable results for FiFiQueues, we also present a
theorem on the existence of a fixed-point solution for FiFiQueues (which has not
been published before).

In [40], we have also experimented with three-moment trafficdescriptors, as well
as with traffic descriptors taking into account correlations in the traffic streams.
However, in our experiments, the three-moment descriptorshave not significantly
improved the results for queueing networks with feedback incomparison to the
two-moment descriptors used by FiFiQueues. Since three-moment descriptors con-
siderably increase the runtime of the analysis, we currently refrain from using them.
Incorporating correlations in the traffic descriptors doeshold promise, however, this
should be investigated further before it can be made into a daily practice.

15.7 Appendix: Jackson queueing networks

The simplest open queueing networks allowing feedback are the so-called Jackson
queueing networks (JQNs). Their analytical performance evaluation was developed
by J.R. Jackson [20] in the 1950s.

15.7.1 Model class

In JQNs, all nodes are assumed to be infinite-buffer M|M|1 queues with the First-
Come-First-Served (FCFS) service discipline. In many modeling applications, the
restriction to Poisson arrival and service processes cannot be justified.

15.7.2 Traffic descriptor

In JQNs, all traffic processes (including the external arrival processes) are assumed
to be Poisson, hence a sufficient traffic descriptor only contains the arrival rateλ of
the traffic stream, denoted as〈λ 〉.
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15.7.3 Superposition of traffic streams

Merging two (possibly dependent) traffic streams does not necessarily yield a new
Poisson stream. However, it can be shown that the nodes of a JQN still can be
described by M|M|1 queues even when traffic merging occurs. Thus, to mergen
traffic streams specified by〈λ1〉, . . . ,〈λn〉 into one traffic stream〈λ 〉, one simply
adds the rates:

λ =
n

∑
i=1

λi .

15.7.4 Splitting traffic streams

The Markovian splitting of a Poisson stream〈λ 〉 again results inn Poisson streams.
Let p1, . . . , pn be the splitting probabilities, then the resulting streams〈λ1〉, . . . ,〈λn〉
are given by

λi = pi ·λ , i = 1, . . . ,n.

15.7.5 Servicing jobs

Let 〈λA〉 be the arrival traffic descriptor of the node, andµ its service rate. We
require thatλA < µ , otherwise the station is not stable. Burke [7] proved that the
departure process for a stable single server M|M|1 queue is a Poisson process with
rateλA, hence, the departure process can be described as〈λD〉 with λD = λA.

15.7.6 Node performance

Let 〈λA〉 be the arrival traffic descriptor, andµ the service rate of the node. Then,
ρ = λA/µ is the utilization of the node. Since the node is an M|M|1 queue, the
steady-state probabilityp j to find j customers in the queue can be easily derived
from the underlying birth-death Markov chain [16]:

p j = (1−ρ)ρ j , j = 0,1, . . .

Having computed the steady-state probabilities, quantities like the expected number
of jobs in the queueing station E[N] can be calculated as

E[N] =
∞

∑
j=0

j · p j =
ρ

1−ρ
.
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Then, Little’s law can be applied to compute the expected waiting time E[W].
Similarly, higher moments of measures can be computed too, e.g., the variance

of the number of customers in the node:

Var[N] =
∞

∑
j=0

( j−E[N])2 · p j =
ρ

(1−ρ)2 .

15.7.7 Network-wide performance

Since no losses occur and all nodes are required to be stable,the total throughputλthr

of the network, i.e., the average number of customers passing through the network
per time unit, is simply the sum of arrival ratesλext,i of the external arrival processes:

λthr =
n

∑
i=1

λext,i

where〈λext,i〉 is the external traffic arriving at nodei andn is the number of nodes.
Other performance measures may be derived from the node performance measures.
If λA,i is the total amount of traffic arriving at nodei, the expected number of visits
E[Vi] of a customer at nodei is given by [49, Eq. (77)]:

E[Vi ] = λA,i/λthr.

The expected total sojourn time E[Ttotal], i.e., the time a customer spends in the
network, defined as the sum of the expected sojourn times E[Ti ] at each nodei, thus
equals

E[Ttotal] =
n

∑
i=1

E[Ti ] =
n

∑
i=1

E[Vi ]

(
1
µi

+E[Wi ]

)
.

Since the total number of customersNtotal in the network is the sum of customers
present in each queueing station, we have

E[Ntotal] =
n

∑
i=1

E[Ni ],

where E[Ni ] is the expected number of jobs in nodei.

15.7.8 Complexity

If Γ = (r i j ) is the routing matrix, the traffic〈λA,i〉 arriving at nodei is given by the
so-calledfirst-order traffic equation:
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λA,i = λext,i +
n

∑
j=1

λD, j · r ji .

SinceλD,i = λA,i, the traffic equations form a system of linear equations which can
be expressed in vector/matrix notation asλA = λext+λA ·Γ, or, after transformation,
as

λA = λext(I−Γ)−1.

Thus, to findλA we solve the linear system

λA(I−Γ) = λext.

This system of equations can be solved by direct methods likeGaussian elimination,
resulting in a time complexity ofO(n3), or by iterative methods like Gauss-Seidel.
This implies that, due to the linearity of the involved equations, the analysis of JQNs
does not require the fixed-point iteration described in Section 15.2 (although, if an
iterative solver is used to solve the linear system, the fixed-point iteration can be
regarded as hidden in the solver).

For very large networks, we can make use of the fact that the routing matrix
typically is a sparse matrix. In this way, the time complexity of an iterative solver
such as Gauss-Seidel can be reduced to aboutO(c·n) wherec is the average number
of outgoing connections per station.

The expressions given in Section 15.7.6 for the node performance measures can
be computed in constant time for each node. For the network performance, most
results require summation over the number of nodes in the network which yields a
time complexity ofO(n).

15.8 Appendix: MAPs, PH-distributions and QBDs

In this appendix we introduce the fundamental mathematicalstructures and notation
used throughout this chapter. We begin with an important class of stochastic pro-
cesses, the Markovian Arrival Processes (MAP) in Section 15.8.1. Phase-type (PH)
renewal processes, which can be seen as special cases of MAPs, are introduced in
Section 15.8.2. The queueing processes that we have discussed in Section 15.4 have
underlying Markov chains that belong to the well-known class of continuous-time
Quasi-Birth-and-Death (QBD) processes. We give the formaldefinition of QBD
processes as well as methods to compute their steady-state solution. We first discuss
infinite QBDs in Section 15.8.3 and continue with finite QBDs in Section 15.8.4.
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15.8.1 Markovian Arrival Processes (MAPs)

15.8.1.1 Definition and notation

Markovian Arrival Processes (MAPs) [29, 30, 36] belong to the general class of
point processes and can be seen as special cases of Matrix Exponential Point Pro-
cesses (which, in turn, form a subset of the class of Semi-Markov Processes [16]).
MAPs cover many interesting processes including the Markov-Modulated Poisson
Processes (MMPPs) [10] and the phase-type (PH) renewal processes (see below).

A MAP can be described by a finite irreducible continuous-time Markov chain
(CTMC) with generator matrix Q where some transitions are “marked”. Every time
when the process passes through such a marked transition an event is triggered. The
time instants of these events form the point process. We follow the notation of [31]
and split the generator matrix into two matrices Q0 and Q1 as follows:

Q0 =




−q1 q12 . . . q1m

q21 −q2 . . . q2m
...

...
. . .

...
qm1 qm2 . . . −qm


 , Q1 =




a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
. . .

...
am1 am2 . . . amm


 ,

with Q0 +Q1 = Q whereqi = aii + ∑m
j=1, j 6=i(qi j +ai j ). The elements of the matrix

Q1 give the transition rates of the marked transitions.1 In the following, we denote
a MAP by the pair(Q0,Q1) and callm thesizeof the MAP.

15.8.1.2 Characteristics

Some general results of the Markov-modulated Poisson process [10] can be easily
adapted to the MAP. In order to compute the behavior of a MAP(Q0,Q1) we first
need to choose the initial probability vector p of the MAP. Inanalogy to phase-type
renewal processes we start the MAP at an “arbitrary” arrivalepoch by choosing

p =
1

πQ11
πQ1,

whereπ is the steady-state probability vector of the MAP, i.e.,π(Q0 + Q1) = 0.
The thus-obtained process is said to beinterval-stationary. The inter-arrival time
distribution function of the interval-stationary processis given by

F(t) = 1−pexp(Q0t)1, (15.1)

1 This definition allows the following interpretation of the matrices Q0 and Q1: passing through
a transition given as entry of Q1 triggers the generation ofoneevent. Batch Markovian Arrival
Processes (BMAPs) generalize this viewpoint by introducing matrices Qi with i > 1 whose entries
describe transitions with batch arrivals of sizei.
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which leads to the following expression for thekth moment of the inter-arrival time:

E[Tk] = k!p(−Q0)
−(k+1)Q11. (15.2)

Hence, the first moment of the inter-arrival time is given by

E[T] =
1

πQ11
πQ1(−Q0)

−2Q11.

This equation can be further simplified by using the equations πQ1 = −πQ0 and
Q11 = −Q01 which follow from the definition ofπ , respectively, from the fact that
Q0 +Q1 is a stochastic matrix. We find that the arrival rateλ of a MAP (the inverse
of the first moment) is

λ = πQ11

which yields

E[Tk] =
k!
λ

π(−Q0)
−(k−1)1.

Let Ti be the time between theith and the(i + 1)st arrival in a MAP. Then, the
autocovariance functionR(k) for T1 andTk+1 with k≥ 1 is given by

R(k) = E[(T1−E[T1])(Tk+1−E[Tk+1])]

= p(−Q0)
−2Q1

{[
(−Q0)

−1Q1
]k−1−1p

}
(−Q0)

−11.

The limiting index of dispersionI of a MAP is given by [18]

I = lim
t→∞

Var[N(t)]
E[N(t)]

= 1+2

(
λ − 1

λ
πQ1(Q0 +Q1 +1π)−1Q11

)
,

whereN(t) is the counting process of the MAP.

15.8.1.3 Superposition and Markovian splitting

The class of MAPs is closed under superposition and Markovian splitting. The su-
perposition of two MAPs(A0,A1) and(B0,B1) is a new MAP(C0,C1) with

C0 = A0⊕B0, C1 = A1⊕B1,

where L⊕M = L⊗ I + I⊗M, and⊗ is the Kronecker product operator (also known
as tensor or matrix direct product operator).

The Markovian splitting of a MAP(A0,A1) with probabilityr gives two MAPs
(B0,B1) and(C0,C1) with

(B0,B1) = (A0 +(1− r)A1, rA1),

(C0,C1) = (A0 + rA1,(1− r)A1).
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15.8.1.4 Markov-Modulated Poisson Processes (MMPPs)

The MMPP is the doubly stochastic Poisson process whose arrival rate depends on
the state of an irreducible Markov process. Thus, MMPPs can be seen as MAPs
where the matrix Q1 is restricted to the form




a11 0 . . . 0
0 a22 . . . 0
...

...
.. .

...
0 0 . . . amm


 .

15.8.2 Phase-type (PH) renewal processes

15.8.2.1 Definition and notation

A continuous phase-type renewal process can be seen as a special MAP (A,A0α)
where A0 is a n× 1 column vector with entries andα is a 1× n row probability
vector. Consequently, it holds A0 =−A1.

We adopt the notation of [37] and denote PH renewal processesby the pair(α,A)
which can be interpreted as follows: then× n matrix A describes the transitions
from the n transient states of a CTMC withn+ 1 states. The last staten+ 1 is
an absorbing state and any transition (given by A0) from the transient state to the
absorbing state will trigger an arrival. After the arrival,the process will restart in the
transient statei with probabilityαi . Furthermore, PH inter-event time distributions
form a dense subset of all distributions with support on[0;∞), i.e., any distribution
can be approximated arbitrarily closely by a PH distribution [23].

15.8.2.2 Inter-event time characteristics

Obviously, the vectorα of the PH renewal process(α,A) is identical to the interval-
stationary probability vector p of the corresponding MAP. Hence, expressions for
the distribution function of the inter-event time and thek-th moment directly follow
from Equations (15.1) and (15.2) and we have

F(t) = 1−α exp(At)1,

respectively
E[Tk] = k!α(−A)−k1.

Note that the matrix A is nonsingular, so that all moments arefinite. From this
follows that the MAP(Q0,Q1) and the PH renewal process(p,Q0) have the same
inter-event time distribution.
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15.8.2.3 Superposition and Markovian splitting

The superposition of two PH renewal processes(α,A) and(β ,B) is a MAP(C0,C1)
with

C0 = A⊕B, C1 = A0α⊕B0β .

Note that the class of PH renewal processes is not closed under superposition.
The Markovian splitting of a PH renewal processes(α,A) with probability r

gives two PH renewal processes(α,A +(1− r)A0α) and(α ,A + rA0α).

15.8.3 Infinite QBDs

This section is based on Chapter 4 of [38]. Note that we use a simplified notation.

15.8.3.1 Definition

QBD processes [37] can be described as a generalization of the queueing process
of M|M|1 queueing stations. In the underlying Markov chain of such aqueue we
can identify an infinite number of states where statei describes thati jobs are in the
system. The transition from statei to i + 1 resp. fromi + 1 to i is marked by the
arrival rate resp. the service rate of the queueing station.

In QBDs, these states are replaced by so-calledlevels: level i still stands fori
jobs in system but in QBDs each level may consist of more than one state. Usually,
a two-dimensional addressing scheme is used for the states where(i, j) addresses
state j of level i. Note that in the QBD the number of levels is unbounded whereas
the number of states per level is required to be finite. Moreover, the levels 1,2, . . .
(therepeating levels) have to contain the same number of statesN. Level 0 is called
boundary leveland may contain a different number of statesN0.

In QBDs, two adjacent levelsi and i + 1 are not connected by one single tran-
sition. Instead, arbitrary transitions between the statesof two adjacent levels and
between states of the same level are allowed. Consequently,the transition rates are
specified by matrices:

• the entry(i, j) of theN0×N matrix B0,1 gives the transition rate from state(0, i)
to state(1, j). The opposite direction (from level 1 to level 0) is given similarly
by theN×N0 matrix B1,0.

• the entry(i, j) of matrix A0 gives the transition rate from state(l , i) to state
(l +1, j) wherel = 1,2, . . .. The opposite direction (from levell +1 to l ) is given
by matrix A2. Both matrices are of sizeN×N.

• transitions inside level 0 are specified by theN0×N0 matrix B0,0. Entry (i, j)
gives the transition rate from state(0, i) to state(0, j). Correspondingly, transi-
tions inside repeating levell (with l = 1,2, . . .) are specified by theN×N matrix
A1.
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As can be seen, all repeating levels have a similar transition structure. The above
described matrices directly lead to the generator matrix ofthe QBD Markov chain.
If we sort the states lexicographically, i.e., in the sequence

(0,1), . . . ,(0,N0),(1,1), . . . ,(1,N),(2,1), . . .

we obtain the tri-diagonal block generator matrix Q of infinite size:

Q =




B0,0 B0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0
. . .

. . .
. . .




. (15.3)

15.8.3.2 Steady-state solution

The infinite steady-state probability vector v of the QBD Markov chain with gener-
ator matrix Q fulfills the global balance equation

v ·Q = 0, (15.4)

and the normalization condition
v ·1 = 1. (15.5)

In the following we write v0 for the vector(v1, . . . ,vN0) which contains the steady-
state probabilities for the states of level 0 and we write vi for the vector
(vN0+1+(i−1)·N, . . . ,vN0+i·N) which contains the steady-state probabilities of leveli =
1,2, . . .. With this notation we can rewrite Equations (15.4) and (15.5) as

v0B0,0 +v1B1,0 = 0, (15.6)

v0B0,1 +v1B1,1 +v2A2 = 0, (15.7)

viA0 +vi+1A1 +vi+2A2 = 0, for i = 1,2, . . . , (15.8)
∞

∑
i=0

vi1 = 1. (15.9)

The regular structure of Equation (15.8) is the key to the efficient solution of the
QBD. Two different classes of solution techniques can be distinguished: matrix-
geometric solution methods and transform methods. We will describe them briefly
in the following.
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15.8.3.3 Matrix-geometric solution methods

The main idea in this class of solution methods is that the solution vector v has a
matrix-geometric form, i.e., there exists a matrix R of sizeN×N with

vi = v1Ri−1, i = 1,2, . . . (15.10)

In [37], it is shown that R is the entry-wise smallest non-negative solution of the
quadratic matrix equation

A0 +RA1 +R2A2 = 0. (15.11)

The methods belonging to this class of solution methods try to solve this equation as
efficiently as possible. Once R has been determined, the complete stationary vector
v can be computed using Equations (15.6)–(15.10). Examplesfor such methods are
the Successive Substitution method [37], the Logarithmic Reduction method [28]
and its improvement [34].

15.8.3.4 Transform methods

Unlike the matrix-geometric solution methods the transform methods do not aim to
directly solve Equation (15.11). Instead, they first transform the problem into some
other domain in order to derive the solution of Equation (15.8). Three well known
methods belonging to this class are the Cyclic Reduction method [4], the Invariant
Subspace method [1], and the Spectral Expansion method [37,8].

15.8.4 Finite QBDs

15.8.4.1 Definition

Similar to infinite QBDs, finite QBDs can be seen as the generalization of the queue-
ing process of a bounded M|M|1|K queue. Finite QBD processes result in QBD
Markov chains with a finite numberK +1 of levels, hence two boundary levels can
be identified: thelower boundary level0 and theupper boundary level K.

In the following we will only treat a quite restricted class of finite QBDs that is
sufficient for the queueing process discussed in this chapter: The upper boundary
level has the same number of statesN as the repeating levels 1 throughK−1. Addi-
tionally, the transition rates between levelsK−1 andK are the same as between the
repeating levels — only one new matrix C is introduced that specifies the transition
rates inside levelK. The finite generator matrix of the QBD Markov chain then has
the following form:
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Q =




B0,0 B0,1

B1,0 A1 A0

A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

A2 A1 A0

A2 C




. (15.12)

15.8.4.2 Steady-state solution

We search the finite steady-state probability vector v of theQBD Markov chain with
generator matrix Q that fulfills the global balance equation

v ·Q = 0 (15.13)

and the normalization condition
v ·1 = 1. (15.14)

As in the infinite case, we partition the vector v into subvectors vi where v0 =
(v1, . . . ,vN0) and vi = (vN0+1+(i−1)·N, . . . ,vN0+i·N), for i = 1, . . . ,K. It is important
to note that the solution of Equation (15.13) is uncritical with respect to space com-
plexity. Due to the special structure of the Markov chain it is not necessary to hold
the whole matrix Q in memory but only the matrices B0,0, B1,0, B0,1, B1,1, A0, A1,
A2 and C. In terms of these matrices, Equation (15.13) becomes:

v0B0,0 +v1B1,0 = 0 (15.15)

v0B0,1 +v1B1,1 +v2A2 = 0 (15.16)

viA0 +vi+1A1 +vi+2A2 = 0, for i = 1, . . . ,K−2, (15.17)

vK−1A0 +vKC = 0 (15.18)

Since Q is of finite size, Equation (15.13) can be solved by an ordinary Gauss-
Seidel-iteration which performs very efficiently due to theband-structure of Q.
More sophisticated algorithms have been developed on the basis of the solution
methods for infinite QBDs; most of the algorithms presented in Section 15.8.3 have
been extended to the treatment of finite QBDs.

In addition to these methods some authors have developed solution methods
especially adapted to QBDs arising from PH|PH|1|K queues (see Section 15.4).
Such methods are the Bocharov-Naoumov method [6], two methods proposed by
Chakravarthy and Neuts in [9], and the Cyclic-Reduction method [3].
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15.9 Appendix: Existence of the fixed point

In general, it is not known for the fixed-point iteration algorithm described in Sec-
tion 15.2 whether the searched fixed point exists, is unique or will be reached. How-
ever, some intermediate results are available for FiFiQueues which we will present
here. In the following we give a proof that the fixed point exists for a modified
version of the original FiFiQueues algorithm.

15.9.1 Notation and Brouwer’s theorem

Given a queueing network withn stations, we defineD⊂ R2n where the tuple
(〈

λa,1,c
2
a,1

〉
, . . . ,

〈
λa,n,c

2
a,n

〉)
∈ D

gives for each nodei ∈ {1, . . . ,n} the traffic descriptor
〈

λa,i ,c2
a,i

〉
of its arrival traf-

fic. Then the operations performed by FiFiQueues during stepk+ 1 of the fixed-
point iteration can be expressed as a functionH : D→D [47] which computes from
the traffic descriptor dk obtained from stepk the new traffic descriptor dk+1, that is,

dk+1 = H(dk),

where d0 is the initial traffic descriptor used in the iteration. We use theBrouwer
fixed-point theorem[45] to prove the existence of the fixed point for the functionH.
It states:

Let D⊂ Rm be a non-empty, closed, convex, and bounded set, and H: D→ D con-
tinuous. Then H has a fixed point.

A first proof of the existence of the fixed point has been discussed in [47] for spe-
cial service processes. The proof presented in the following applies to arbitrary PH
renewal service processes. We first show in Section 15.9.2 that the requirements to
the setD are met. The continuity ofH is shown in Sections 15.9.3–15.9.5.

15.9.2 Properties ofD

Lower and upper bounds for the arrival rateλa,i of a nodei exist. It holds that

0≤ λa,i ≤ λmax,i

where the upper boundλmax,i is the maximum arrival rate that will only be reached
if all queueing stations operate with a load of 100%. It is given by

λmax = λext(I−Γ)−1,
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whereΓ is the routing matrix andλext,i is the rate of the external traffic arriving
at nodei. As previously explained, FiFiQueues limits the squared coefficient of
variation to 1

10 to prevent the generation of PH distributions with more than10 states.
Originally, no upper bound is provided for the coefficients but we can safely define

c2
a,i := min(c2

max,c
2
a,i), i = 1, . . . ,n,

with c2
max= 1000 without affecting the analysis. We thus obtain thatD is the non-

empty, closed and convex interval

[(〈
0, 1

10

〉
, . . . ,

〈
0, 1

10

〉)
,
(〈

λmax,1,c
2
max

〉
, . . . ,

〈
λmax,1,c

2
max

〉)]
⊂ R2n,

as required.

15.9.3 Continuity ofH

The functionH performs for each node the following operations to compute the
traffic descriptors for the next iteration in the algorithm:

1. the service operation;
2. the traffic splitting;
3. the traffic merging.

The traffic merging step is a function of the traffic descriptors generated during
the splitting operation. The traffic splitting, in turn, is afunction of the departure-
traffic descriptor as computed by the service operation. An inspection of the in-
volved terms for the traffic merging (Equation (15.1) and (15.2)), the traffic splitting
(Equation (15.3)), and the service operation (Equations (15.5), (15.8), and (15.11))
shows that the proof of continuity reduces to the question whether, for a given node,
the loss probabilityπ (in case of a finite queue) and the varianceσ2

0 are continuous
functions of the arrival traffic

〈
λa,c2

a

〉
. Sinceπ andσ2

0 depend on the stationary
distribution v of the underlying CTMC we can make use of the following theorem
[32] to prove this continuity:

The stationary distribution of a CTMC as function of the transition ratesλ1, . . . ,λn

of the generator matrix is continuous for allλi > 0, i = 1, . . . ,n if the CTMC has
exactly one irreducible set of states.

The underlying CTMC of a queueing station has exactly one irreducible set of states
since it is a QBD. Then, the question is, how do the transitionrates of the generator
matrix depend on

〈
λa,c2

a

〉
? FiFiQueues uses the traffic descriptor to determine a PH

renewal process that represents the arrival traffic. This arrival PH process is then
combined with the service PH process of the node to constructthe generator matrix.
For fixedc2

a the transition rates of the generator matrix are a continuous function
of the arrival rateλa. The theorem then yields the continuity of v as function ofλa.
However, varyingc2

a may cause FiFiQueues to change the size and structure of the
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PH representation. Such a change also influences the size andstructure of the QBD.
As a consequence, the theorem can only be applied for values of c2

a that do not cause
such a change. We obtain:

1. v is continuous forc2
a > 1, since then the PH distribution always takes the same,

hyper-exponential, form.
2. v is continuous forc2

a ∈
(

1
m+1, 1

m

)
, for all m∈ {1, . . . ,9}.

The other cases, i.e.,c2
a = 1

m,m∈ {1, . . . ,10}, have to be separately discussed. In the
following we only show the continuity ofπ . The proof forσ2

0 is done in a similar
way.

15.9.4 Continuity forc2
a = 1

We show that
lim

c2
aր1

π(c2
a) = π(c2

a = 1) = lim
c2
aց1

π(c2
a)

which yields the continuity ofπ aroundc2
a = 1.

15.9.4.1 Case c2a = 1

If c2
a = 1, the arrival PH distribution is a negative-exponential distribution with rate

λa. Following the notation used in Section 15.4.5, we obtain the steady-state proba-
bility distribution v= by solving the global balance equations

v=
0 (−λa)+v=

1 B0 = 0
v=

0 λaβ +v=
1 (−λaI +B)+v=

2 B0β = 0
v=

1 λaI +v=
2 (−λaI +B)+v=

3 B0β = 0
. . .

v=
K−1λaI +v=

KB = 0






(15.1)

and
v= ·1 = 1,

where(β ,B) is the service PH process andK is the queueing capacity. The loss
probabilityπ= is then given as

π= = π(c2
a = 1) =

1
λa

v=
K (λa⊗ I) ·1 = v=

K ·1.
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15.9.4.2 Case c2aց 1

If c2
a > 1, FiFiQueues selects the PH renewal process(α,A) as representation of the

arrival traffic with

A =

(
−λ0 0

0 −λ1

)
and α = (p,1− p),

wherep = 1
2 + 1

2

√
c2
a−1

c2
a+1

, λ0 = 2pλa andλ1 = 2(1− p)λa.

Let v> be the steady-state probability distribution of the resulting QBD. To ease
the following calculations we split the components v>

i , i= 0, . . . ,K, of the probabil-
ity distribution vector into two parts v>i = (v>

i1,v
>
i2) where v>i1 and v>i2 are associated

with the first resp. the second state of the arrival PH process. The vector v> is then
determined by the following equations:

v>
01(−λ0)+v>

11B
0 = 0, (15.2)

v>
02(−λ1)+v>

12B
0 = 0, (15.3)

v>
01pλ0β +v>

02pλ1β +v>
11(−λ0I +B)+v>

21B
0β = 0, (15.4)

v>
01(1− p)λ0β +v>

02(1− p)λ1β +v>
12(−λ1I +B)+v>

22B
0β = 0, (15.5)

v>
11pλ0I +v>

12pλ1I +v>
21(−λ0I +B)+v>

31B
0β = 0, (15.6)

v>
11(1− p)λ0I +v>

12(1− p)λ1I +v>
22(−λ1I +B)+v>

32B
0β = 0, (15.7)

. . .

v>
K−1,1pλ0I +v>

K−1,2pλ1I +v>
K1((p−1)λ0I +B)+v>

K2pλ1I = 0, (15.8)

v>
K−1,1(1− p)λ0I +v>

K−1,2(1− p)λ1I+

v>
K1(1− p)λ0I +v>

K2(−pλ1I +B) = 0, (15.9)

and
v> ·1 = 1.

The loss probabilityπ> of the station is then given as

π> =
1
λa

v>
K (A0⊗ I) ·1 =

1
λa

(v>
K1λ0 +v>

K2λ1)I ·1. (15.10)

Summing Equations (15.2) and (15.3), (15.4) and (15.5),. . ., gives:

s0 + t1B0 = 0
−s0β +s1I + t1B+ t2B0β = 0
−s1I +s2I + t2B+ t3B0β = 0

. . .
−sK−1I + tKB = 0






(15.11)

wheresi = v>
i1(−λ0)+v>

i2(−λ1) andti = v>
i1 +v>

i2. Forc2
aց 1 we havep→ 1

2. From
this, it follows
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lim
c2
aց1

λ0 = lim
c2
aց1

λ1 = λa,

and
lim

c2
aց1

si =−λa lim
c2
aց1

ti , i = 0, . . . ,k.

By applying these limits to Equation (15.11) we observe their correspondence with
Equation (15.1). Hence, we obtain forc2

aց 1:

lim
c2
aց1

ti = lim
c2
aց1

(v>
i1 +v>

i2) = v=
i ,

which provides, with Equation (15.10), the desired relationship

lim
c2
aց1

π> = π=.

15.9.4.3 Case c2aր 1

If 0.5 < c2
a < 1, the arrival PH distribution is a modified hypo-exponential distribu-

tion (α,A) as defined in Section 15.4.5 where

A =

(
−λ0 λ0

0 −λ1

)
and α = (1,0).

Let v< be the steady-state probability distribution of the resulting QBD. Again,
we split the components v<

i , i= 0, . . . ,K, of the probability distribution vector into
two parts v<i = (v<

i1,v
<
i2), where v<i1 and v<i2 are associated with the first resp. the

second state of the arrival PH distribution. The vector v< is then determined by the
following equations:

v<
01(−λ0)+v<

11B
0 = 0, (15.12)

v<
01λ0 +v<

02(−λ1)+v<
12B

0 = 0, (15.13)

v<
02λ1β +v<

11(−λ0I +B)+v<
21B

0β = 0, (15.14)

v<
11λ0I +v<

12(−λ1I +B)+v<
22B

0β = 0, (15.15)

v<
12λ1I +v<

21(−λ0I +B)+v<
31B

0β = 0, (15.16)

v<
21λ0I +v<

22(−λ1I +B)+v<
32B

0β = 0, (15.17)

. . .

v<
K−1,2λ1I +v<

K1(−λ0I +B)+v<
K2λ1I = 0, (15.18)

v<
K1λ0I +v<

K2(−λ1I +B) = 0, (15.19)

and
v< ·1 = 1.

The loss probabilityπ< of the station is then given as
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π< =
1
λa

v<
K (A0⊗ I) ·1 =

1
λa

v<
K2λ1I ·1. (15.20)

From Equation (15.19) we obtain

v<
K2λ1I = v<

K1λ0I +v<
K2B,

which yields with Equation (15.20):

π< =
1
λa

(v<
K1λ0I +v<

K2B) ·1. (15.21)

Using simple substitutions we derive from Equations (15.12)–(15.19):

v<
01(−λ0)+v<

11B
0 = 0

(v<
01λ0 +v<

12B
0)β +v<

11(−λ0I +B)+v<
21B

0β = 0
(v<

11λ0I +v<
12B+v<

22B
0β )+v<

21(−λ0I +B)+v<
31B

0β = 0
(v<

K−1,1λ0I +v<
K−1,2B+v<

K2B0β )+v<
K1B+v<

K2B = 0





(15.22)

For c2
aր 1 we haveλ0→ λa andλ1→ ∞. Solving Equations (15.13), (15.15), . . . ,

(15.19) for v<i2 then gives

v<
i2→ 0, i = 0, . . . ,K.

By applying these limits to Equation (15.22) we observe their correspondence with
Equation (15.1). Hence we obtain forc2

aր 1:

v<
i1→ v=

i and v<i2→ 0, i = 0, . . . ,K,

which gives, applied to Equation (15.21):

lim
c2
aր1

π< = π=,

as required.

15.9.5 Continuity forc2
a = 1

m,m∈ {2, . . . ,10}

The transition rates of the hypo-exponential PH distributions forc2
a < 1 are defined

as functions of the number of phasesm=
⌈

1
c2
a

⌉
. The inherent discontinuity suggests

that the steady-state distribution of the resulting QBD is discontinuous, too. To im-
prove the behavior of the arrival distribution with regard to the continuity, [47] pro-
poses to modify FiFiQueues’ PH fitting procedure forc2

a < 1 as follows. Given the
mean inter-arrival time E[X] = 1/λa and the squared coefficient of variationc2

a, we

fit the PH distribution(α,A) with m =
⌈

1
c2
a

⌉
phases and initial probability vector
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α = (1,0, . . . ,0). The matrix A is given as

A =




−λ0 λ0

−λ1 λ1
. . .

. . .
−λm−2 λm−2

−λm−1




, (15.23)

where

λi = 1/(c2
aE[X]), for 0≤ i < m−2,

λm−2 =
λm−1

E[X]λm−1(1− (m−2)c2
a)−1

,

λm−1 =
1− (m−2)c2

a+
√

(c2
a)

2(2m−m2)+2c2
a(m−1)−1

E[X]((m−1)(m−2)(c2
a)

2 +c2
a(3−2m)+1)

As can be seen, the transition ratesλi for i < m−2 are now continuous functions
of c2

a. This causes that important statistics of this new PH renewal process, e.g., the
third moment of the inter-arrival time, are now continuous at values ofc2

a where
a size change happens. Note that this is not true for the original PH distribution.
Figure 15.17 illustrates this by comparing the third momentof both PH distributions
for values ofc2

a around 0.5 (i.e., when the sizem changes from 3 to 2).
Forc2

aր 1
m, m∈ {1, . . . ,9}, the new PH distribution (withm+1 phases) yields

λi −→ mλa, for 0≤ i < m, (15.24)

λm −→ ∞. (15.25)

Hence, the proof of lim
c2
aր1

π(c2
a) = π(c2

a = 1) for m = 1, as given in the previous

section, is still valid and we only have to prove that

lim
c2
aր 1

m

π(c2
a) = π(c2

a =
1
m

)

for m∈ {2, . . . ,9}. For c2
a = 1

m the arrival PH distribution(α=,A=) is an Erlang-
m distribution. Again, let v= be the steady-state probability vector of the resulting
QBD with c2

a = 1
m, m∈ {2, . . . ,10}. We split the components v=

i , i= 0, . . . ,K, of the
probability distribution vector intom parts v=i = (v=

i1, . . . ,v
=
im) where v=ij is associ-

ated with thej-th state of the arrival PH distribution. The probabilitiesare deter-
mined by v= ·1 = 1 and by the global balance equations of the QBD. For level 0 of
the QBD, when no customers are in the queueing station, we obtain
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Fig. 15.17: Third moment of the original (Equation (15.4)) and the modified (Equa-
tion (15.23)) PH distribution as function ofc2

a

v=
01(−λ =)+v=

11B
0 = 0,

v=
01λ = +v=

02(−λ =)+v=
12B

0 = 0,

. . .

v=
0,m−1λ = +v=

0m(−λ =)+v=
1mB0 = 0,

whereλ = = mλa. For level 1≤ i < K, we have

v=
i−1,mλ =β +v=

i1(−λ =I +B)+v=
i+1,1B

0β = 0,

v=
i1λ =I +v=

i2(−λ =I +B)+v=
i+1,2B

0β = 0,

. . .

v=
i,m−1λ =I +v=

im(−λ =I +B)+v=
i+1,mB0β = 0,

and, finally, for levelK:

v=
K−1,mλ =I +v=

K1(−λ =I +B)+v=
Kmλm−1I = 0,

v=
K1λ =I +v=

K2(−λ =I +B) = 0,

. . .

v=
K,m−1λ =I +v=

Km(−λ =I +B) = 0.

The loss probabilityπ= of the station is given by
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π= =
1
λa

v=
K (A0

=⊗ I) ·1 =
1
λa

v=
Kmλ =I ·1.

For 1
m+1 ≤ c2

a < 1
m the resulting arrival PH process(α<,A<) has m+ 1 states

and the steady-state probability vector v< of the QBD has additional components
v<

i,m+1, i = 0, . . . ,K. Let λ0,. . . ,λm+1 be the transition rates of the PH process. The
global balance equations for level 0 are

v<
01(−λ0)+v<

11B
0 = 0,

v<
01λ0 +v<

02(−λ1)+v<
12B

0 = 0,

. . .

v<
0mλm−1 +v<

0,m+1(−λm)+v<
1,m+1B

0 = 0.

For level 1≤ i < K, we have

v<
i−1,m+1λmβ +v<

i1(−λ0I +B)+v<
i+1,1B

0β = 0,

v<
i1λ0I +v<

i2(−λ1I +B)+v<
i+1,2B

0β = 0,

. . .

v<
imλm−1I +v<

i,m+1(−λmI +B)+v<
i+1,m+1B

0β = 0,

and for levelK:

v<
K−1,m+1λmI +v<

K1(−λ0I +B)+v<
K,m+1λmI = 0 (15.26)

v<
K1λ0I +v<

K2(−λ1I +B) = 0 (15.27)

. . .

v<
Kmλm−1I +v<

K,m+1(−λmI +B) = 0. (15.28)

The loss probabilityπ< is given by

π< =
1
λa

v<
K (A0

<⊗ I) ·1 =
1
λa

v<
K,m+1λmI ·1. (15.29)

From Equation (15.28) we obtain

v<
K,m+1λmI = v<

Kmλm−1I +v<
K,m+1B,

which yields with Equation (15.29):

π< =
1
λa

(v<
Kmλm−1I +v<

K,m+1B) ·1. (15.30)

Solving the global balance equations for v<
i,m+1 and applying the limits from (15.24)

and (15.25) gives
v<

i,m+1→ 0, i = 0, . . . ,K.
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Similar to the casec2
aր 1 of the original PH distribution (see Equation (15.22)),

transforming the global balance equations finally yields

v<
ij → v=

ij ,

v<
i,m+1→ 0, i = 0, . . . ,K and j = 1, . . . ,m,

which gives, applied to Equation (15.30):

lim
c2
aր 1

m

π< = π=,

as required.

We now have shown that the loss probabilityπ is a continuous function ofc2
a.

Together with the continuity of the varianceσ2
0 (not shown here), this yields the

continuity of the the functionH, and, as consequence, the existence of the fixed
point.

Note that experiments have shown that the original FiFiQueues and the modified
version using the new hypo-exponential PH distributions compute nearly identical
results with relative errors of less than 10−4.
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Chapter 16
Loss Networks

Stan Zachary and Ilze Ziedins

Abstract This chapter reviews the theory of loss networks, in which calls of var-
ious types are accepted for service provided that this can commence immediately;
otherwise they are rejected. An accepted call remains in thenetwork for some hold-
ing time, which is generally independent of the state of the network, and throughout
this time requires capacity simultaneously from various network resources. Both
equilibrium and dynamical behaviour are studied; for the former a new approach is
taken to the theory of uncontrolled loss networks, while thelatter is the key to the
understanding of stability issues in such networks.

16.1 Introduction

In a loss network calls, or customers, of various types are accepted for service pro-
vided that this can commence immediately; otherwise they are rejected. An accepted
call remains in the network for some holding time, which is generally independent
of the state of the network, and throughout this time requires capacity simultane-
ously from various network resources.

The loss model was first introduced by Erlang as a model for thebehaviour of
just a single telephone link (see Brockmeyeret al.[7]). The typical example remains
that of a communications network, in which the resources correspond to the links in
the network, and a call of any type requires, for the durationof its holding time, a
fixed allocation of capacity from each link over which it is routed (Kelly [26]). This
is the case for a traditional circuit-switched telephone network, but the model is also
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appropriate to modern computer communications networks which support stream-
ing applications with minimum bandwidth requirements (Kelly et al. [28]). There
are also other examples: for instance, in a cellular mobile network similar capacity
constraints arise from the need to avoid interference (Abdalla and Boucherie [1]).

The mathematics of such networks has been widely studied, with interest in both
equilibrium and, more recently, dynamical behaviour. Of particular importance are
questions of call acceptance and capacity allocation (for example, routing), with the
aim of ensuring good network performance which is additionally robust with respect
to variations in network parameters. Call arrival rates, inparticular, may fluctuate
greatly. An excellent review of the state-of-the-art at thetime of its publication is
given by Kelly [27]—see also the many papers cited therein, and the later survey by
Ross [39].

We take as our model the following. LetR denote the finite set of possible call,
or customer, types. Calls of each typer ∈ R arrive at the network as a Poisson
process with rateνr , and each such call, if accepted by the network (see below),
remains in it for aholding timewhich is exponentially distributed with meanµ−1

r .
We shall discuss later the extent to which these assumptions, in particular the latter,
are necessary. Calls which are rejected do not retry and are simply considered lost.
All arrival processes and holding times are independent of one another. We denote
the state of the network at timet by n(t) = (nr(t), r ∈R), wherenr(t) is the number
of calls of each typer in progress at that time. The processn(·) is thus Markov. It
takes values in some state spaceN⊂ZR

+, whereR= |R|. We assumeN to be defined
by a number of resource constraints

∑
r∈R

A jr nr ≤Cj , j ∈ J, (16.1)

indexed in a finite setJ, where theA jr and theCj are nonnegative integers. Typically
we think of a call of each typer as having a simultaneous requirement, for the dura-
tion of its holding time, forA jr units of the capacityCj of each resourcej; however,
we show below that the resource constraints (16.1) can also arise in other ways. As
noted above, in applications of this model to communications networks, the network
resources usually correspond to thelinks in the network, and when discussing the
model in that context we shall generally find it convenient touse this terminology.
We shall also find it helpful to define, for eachr ∈ R, the parameterκr = νr/µr ;
many quantities of interest depend onνr andµr only through their ratioκr .

We shall say that a network isuncontrolledwhenever calls are accepted subject
only to the condition that the resulting state of the networkbelongs to the setN.
Uncontrolled networks are particularly amenable to mathematical analysis and are
in certain senses very well-behaved. In addition, such a network has the important
insensitivityproperty: the stationary distribution of the processn(·) is unaffected by
the relaxation of the assumption that the call holding time distributions are expo-
nential, and depends on these holding time distributions only through their means.
This is essentially a consequence of thedetailed balanceproperty considered in
Section 16.2.1.
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However, as we shall also see, the performance of uncontrolled networks may be
far from optimal. A more general control strategy is given byrequiring that a call of
typer, which arrives when the state of the network (immediately prior to its arrival)
is n, is accepted if and only ifn ∈Ar for someacceptance setAr . The setsAr may
be chosen so as to optimise, in some appropriate sense, the network’s performance.
Such networks do not in general possess the insensitivity property described above.

Of interest in a loss network are both the stationary distributionπ and the dynam-
ics of the processn(·). For the former it is usual to compute, for eachr, the stationary
blocking probability Br , that a call of typer is rejected; here we shall find it slightly
easier to work with the stationaryacceptance(or passing) probability Pr = 1−Br.
We note immediately that, by Little’s Theorem, the stationary expected number of
calls of each typer in the network is given by

Eπnr = κrPr , (16.2)

whereκr is as defined above. Thus acceptance probabilities may be regarded as one
of the key performance measures in the stationary regime.

It will be convenient to refer to the above model of a loss network—in which
arriving calls have fixed resource requirements and in whichthe only control in the
network is the ability to reject calls—as thecanonical model. When considering
communications networks, it is natural to extend this modelby allowing also the
possibility of alternative, or state-dependent, routing, in which calls choose their
route according to the current state of the network. Here thestate space should
properly be expanded to record the number of calls of each type on each route (but
see below). We consider such models in Section 16.3.2.

In the case where we allow not only alternative routing, but also repackingof
calls already in the network, the model simplifies again, andit is once more only
necessary for the state space to record the number of calls ofeach type in progress.
Consider the simple example of a communications network consisting of three links
with capacitiesĈ1, Ĉ2, Ĉ3, and three call types, in which calls of each typer = 1,2,3
requireeither one unit of capacity from the corresponding linkr or one unit of
capacity from each of the other two links (in each case the distribution of the call
holding time is assumed to be the same). If repacking is allowed, the state of the
system may be given byn = (n1,n2,n3) as usual, and it is easy to check that a call
of any type may be accepted if and only if the resulting state of the network satisfies
the constraints

nr +nr ′ ≤ Ĉr +Ĉr ′ , r 6= r ′, r, r ′ ∈ R.

This is therefore an instance of the uncontrolled network discussed above, in which
the coefficientsA jr andCj must be appropriately defined.

Exact calculations for large loss networks typically exceed the capabilities of
even large computers, and we are thus led to consider approximations. Mathemati-
cal justification for these approximations is usually basedon asymptotic results for
one of two limiting schemes. In the first, which we shall referto as theKelly limiting
scheme(see Kelly [26]), the setsR, J, the matrixA = (A jr ), and the parametersµr
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are held fixed, while the arrival ratesνr and the capacitiesCj are all allowed to
increase in proportion to ascale parameter Nwhich tends to infinity. In the sec-
ond, which is known as thediverse routing limit(see Whitt [42], and Ziedins and
Kelly [47]), the capacity of each resource is held constant,while the setsR andJ

(and correspondingly the size of the matrixA) are allowed to increase, and the arrival
rates for call types requiring capacity at more than one resource to decrease, in such
a way that the total traffic offered to each resource is also held constant (in particu-
lar, this requires that the arrival rate for any call type that requires capacity at more
than one resource becomes negligible in the limit). Resultsfor the latter scheme in
particular are used to justify assumptions of independencein many approximations.

For each timet, definem(t) = (mj(t), j ∈ J), wheremj(t) denotes the current
occupancy, or usage, of each resourcej in a loss network. Define alsoπ ′ to be the
stationary distribution of the processm(·). In particular, for the canonical model
defined above, for eacht,

mj(t) = ∑
r∈R

A jr nr(t); (16.3)

here the processm(·) takes values in the set

M = {m ∈ ZJ
+ : 0≤mj ≤Cj , j ∈ J}, (16.4)

where we writeJ = |J|, and the distributionπ ′ is given by

π ′(m) = ∑
n : An=m

π(n), m ∈M. (16.5)

In general the processm(·) takes values in a space of significantly lower dimension
than that of the processn(·). This is especially so in models of communications
networks which incorporate alternative routing. It is a recurrent theme in the study of
loss networks that, in general, at least approximately optimal control of a network is
obtained by basing admission decisions and, in communications networks, routing
decisions, solely on the state of the processm(·) at the arrival time of each call.
Further, in this case, a knowledge of the distributionπ ′ is sufficient to determine call
acceptance probabilities. We shall also see that good estimates ofπ ′ are generally
given by assuming its (approximate) factorisation as

π ′(m) = ∏
j∈J

π ′j(mj), (16.6)

where eachπ ′j is normalised to be a probability distribution. This is a further recur-
rent theme in the study of loss networks.

In Section 16.2 we consider the stationary behaviour of uncontrolled networks,
reviewing both exact results and approximations for large networks. Our approach
is based on the use of an elegant recursion due to Kaufman [25]and to Dziong
and Roberts [12] which delivers all the classical results inregard to, for example,
stationary acceptance probabilities, with a certain simplicity.
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More general networks are studied in Section 16.3. In Section 16.3.1 we study
the problem of optimal control in a single-resource network, where a reasonably
tractable analysis of stationary behaviour is again possible, and where we show that
either exactly or approximately optimal control may be obtained with the use of
strategies based onreservationparameters. In Section 16.3.2 we consider multiple-
resource networks, allowing in particular the possibilityof alternative routing. We
again derive approximations which are known to work extremely well in practice.
In Section 16.4 we consider the dynamical behaviour of largeloss networks. This is
important for the study of the long-run, and hence also the equilibrium, behaviour
of networks in the case where a direct equilibrium analysis is impossible. The study
of network dynamics is also the key to understanding their stability. Finally, in Sec-
tion 16.5 we mention some wider models and discuss some open problems.

16.2 Uncontrolled loss networks: stationary behaviour

We study here the stationary behaviour of the uncontrolled network introduced
above, in which calls of any type are accepted subject only tothe condition that the
resulting staten of the network belongs to the state spaceN defined by the capacity
constraints (16.1). In particular we shall see, in Section 16.2.3 and subsequently,
that most quantities of interest, in particular acceptanceprobabilities, may be cal-
culated, exactly or approximately, without the need to calculate the full stationary
distributionπ of the processn(·).

16.2.1 The stationary distribution

For eachr ∈R, let δ r be the vector whoserth component is 1 and whose other com-
ponents are 0. Recall that, under the assumptions introduced above,n(·) is a Markov
process. Forn,n− δ r ∈ N andr ∈ R, its transition rates betweenn andn− δ r are
nr µr andνr . It thus follows that the stationary distributionπ of the processn(·) is
given by the solution of thedetailed balance equations

π(n)nr µr = π(n− δ r)νr , r ∈ R, n ∈N, (16.1)

where, here and elsewhere, we make the obvious convention that π(n− δ r) = 0
whenevernr = 0. That is,

π(n) = G−1 ∏
r∈R

κnr
r

nr !
, n ∈N, (16.2)

where the normalising constantG−1 is determined by the requirement∑n∈N π(n) =
1. The simpleproduct formof the stationary distribution (16.2) is a consequence of
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the fact that the equations (16.1)do have a solution, that is, it is a consequence of
the reversibility of the stationary version of the processn(·). Note also that here
the stationary distributionπ depends on the parametersνr andµr only through their
ratiosκr = νr/µr , r ∈R. This result is not in general true for networks with controls.

In the variation of our model in which calls of each typer have holding times
which are no longer necessarily exponential (but with unchanged meanµ−1

r ), it
is well-known that the stationary distributionπ of the processn(·) continues to
satisfy the detailed balance equations (16.1) and hence also (16.2). For proofs of
this insensitivityproperty, see Burmanet al. [8], Pechinkin [36], or Zachary [44].

The stationary probability that a call of typer is accepted, is given by

Pr = ∑
n∈Nr

π(n), (16.3)

whereNr = {n ∈N : n+δ r ∈N}. In Section 16.2.3 we give a recursion which per-
mits a reasonably efficient calculation of the probabilities Pr in networks of small
to moderate size. However, the exact calculation of acceptance probabilities is usu-
ally difficult or impossible in large networks. We shall therefore also discuss various
approximations.

16.2.2 The single resource case

Consider first the caseR = {1} of a single call type. For convenience we drop un-
necessary subscripts denoting dependence onr ∈R; in particular we writeκ = ν/µ .
We then haveN = {n: n≤C} for some positive integerC. The stationary distribu-
tionπ is a truncated Poisson distribution, and the stationary acceptance probabilityP
is given by Erlang’s well-known formula, that is, byP = 1−π(C) = 1−E(κ , C),
where

E(κ , C) =
κC/C!

∑C
n=0κn/n!

. (16.4)

Note also that, from (16.2), the expected number of calls in progress under the sta-
tionary distributionπ is given byκP.

While exact calculation of blocking probabilities via Erlang’s formula (16.4) is
straightforward, it nevertheless provides insight to giveapproximations for networks
in whichC andκ are both large. Formally, we consider the Kelly limiting scheme
in whichC andκ are allowed to tend to infinity in proportion to a scale parameterN
with p = C/κ held fixed. The casesp > 1, p = 1 and p < 1 correspond to the
network being, in an obvious sense, underloaded, critically loaded, and overloaded
respectively. A relatively straightforward analysis of (16.4) shows that,

P→min(1, p) asN→ ∞. (16.5)
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For p≥ 1 the error in the approximationP≈ 1 may be estimated by replacing the
truncated Poisson distribution ofn by a truncated normal distribution. Forp > 1
the error is thus given asymptotically byκ−1/2ϕ(κ−1/2(C− κ)), whereϕ is the
standard normal density function; this decays at least exponentially fast inN. For the
critically loaded casep = 1 the error is given asymptotically by(2/πκ)1/2 which is
O(N−1/2) asN→∞. For the overloaded casep< 1 the approximationP≈ p may be
refined as follows. Observe that in this case, and sinceκ andC are large, it follows
from either (16.1) or (16.2) that the stationary distribution of free capacityin the
network is approximately geometric and so the stationary expected free capacity is
given by the approximation

C−Eπn≈ p
1− p

. (16.6)

Combining this with (16.2) leads to the very much more refinedapproximation for
the stationary acceptance probability given by

P≈ p− p
κ(1− p)

. (16.7)

It thus follows that the error in the original approximationP ≈ p is O(N−1) as
N→ ∞.

16.2.3 The Kaufman-Dziong-Roberts (KDR) recursion

For the general model of an uncontrolled network, we now takethe setN to be given
by a set of capacity constraints of the form (16.1). We give here an efficient recursion
for the determination of stationary acceptance probabilities, due in the caseJ = {1}
to Kaufman [25] and in the general case to Dziong and Roberts [12].

Recall thatπ ′ is the stationary distribution of the processm(·) defined in the
Introduction. Since a call of typer arriving at timet is accepted if and only if
mj(t−)+ A jr ≤ Cj for all j such thatA jr ≥ 1 (wherem(t−) denotes the state of
the processm(·) immediately prior to the arrival of the call), it follows that a knowl-
edge ofπ ′ is sufficient to determine stationary acceptance probabilities. Typically
the sizeJ of the setJ is smaller than the sizeR of the setR, and so the dimension
of the spaceM defined by (16.4) is smaller than that ofN. Thus a direct calculation
of π ′, avoiding that ofπ , is usually much more efficient for determining acceptance
probabilities.

For eachr ∈ R, define the vectorAr = (A jr , j ∈ J). For eachm ∈M andr ∈ R,
summing the detailed balance equations (16.1) overn such thatAn = m and using
also (16.5) yields

κr π ′(m−Ar) = E(nr |m)π ′(m), r ∈ R, m ∈M, (16.8)

where
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E(nr |m) =
∑n : An=m nrπ(n)

∑n : An=m π(n)

is the stationary expected value ofnr givenAn = m. Since, for eachm and eachj,
we have∑r∈R A jr E(nr |m) = mj , it follows from (16.8) that

∑
r∈R

A jr κrπ ′(m−Ar) = mjπ ′(m), m ∈M, j ∈ J. (16.9)

This is the Kaufman-Dziong-Roberts (KDR) recursion on the set M, enabling
the direct determination of successive values ofπ ′(m) as multiples ofπ ′(0).
The entire distributionπ ′ is then determined uniquely by the requirement that
∑m∈M π ′(m) = 1.

16.2.4 Approximations for large networks

We now suppose thatκr , r ∈ R, andCj , j ∈ J, are sufficiently large that the exact
calculation of the stationary distributionsπ or π ′ is impracticable. Various bounds
for the corresponding stationary acceptance probabilitiesPr are given by Whitt [42],
who shows in particular that, in the case whereA jr ∈ {0,1} for all j and for allr,

Pr ≥∏
j∈J

(
1−E

(
∑

r∈R

A jr κr , Cj

))A jr

, r ∈ R, (16.10)

whereE is the Erlang function (16.4). However, while this bound is intuitively un-
surprising, the right side of (16.10) does not provide a verysatisfactory approxima-
tion for eachPr , as it fails to take account of the fact that the total load at each re-
sourcej is effectively reduced by blocking at the remaining resources. We now seek
good approximations—for generalA jr —for both the stationary distributionsπ or π ′
and the corresponding acceptance probabilitiesPr , where in all cases account is at
least implicitly taken of the “reduced load” phenomenon. Wediscuss the analytical
accuracy of these various approximations. Numerical investigations are performed
in the papers cited below.

A simple approximation

We give first a simple approximation, due to Kelly [26], whichgeneralises the ap-
proximationP≈min(1, p) of Section 16.2.2 for the single-resource case. To provide
asymptotic justification we again consider the Kelly limiting scheme, in which the
parametersκr andCj are allowed to increase in proportion to a scale parameterN,
the setsR, J and the matrixA being held fixed. We assume (this is largely for sim-
plicity) that the matrixA is such that for eachm ∈M there is at least onen ∈ Z such
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thatAn = m. (This implies in particular that the matrixA is of full rank.) We outline
an argument based on the equations (16.8) and the KDR recursion (16.9).

Suppose thatπ ′(m) is maximised atm∗ ∈M. The distribution (16.2) ofπ is a
truncation of a product of independent Poisson distributions each of which has a
standard deviation which isO(N1/2) as the scale parameterN increases. From this
and from the mapping ofπ to π ′, it follows that all but an arbitrarily small fraction
of the distribution ofπ ′ is concentrated within a regionM∗ ⊆M such that the com-
ponents ofm ∈M∗ differ from those ofm∗ by an amount which is againO(N1/2)
asN increases. Further, it is not too difficult to show from the above condition on
the matrixA that, for eachr, E(nr |m) varies smoothly withm, in particular in the
sense that withinM∗ we may make the approximationE(nr |m)≈ E(nr |m∗), the
error yet again beingO(N1/2) asN increases. It now follows from (16.8) that within
M∗ we have

π ′(m)≈ π ′(m∗)∏
j∈J

p
m∗j−mj

j , (16.11)

where necessarily, sincem∗ maximisesπ ′(m),

0≤ p j ≤ 1, j ∈ J, (16.12)

p j = 1, for j such thatm∗j < Cj . (16.13)

Further, from (16.9),

∑
r∈R

A jr κr ∏
k∈J

pAkr
k = m∗j ≤Cj , j ∈ J. (16.14)

Thus, from (16.11), withinM∗ the stationary distributionπ ′ of m(·) does indeed
have the approximate factorisation (16.6), where each of the component distribu-
tionsπ ′j is here geometric (and where in the casep j = 1 the geometric distribution
becomes uniform). Further, for eachr and eachj, we have

π ′j({mj : mj ≤Cj −A jr})≈ p
A jr
j .

Thus the stationary acceptance probabilitiesPr are given by the approximation

Pr ≈∏
j∈J

p
A jr
j , r ∈ R. (16.15)

Kelly [26] considered an optimisation problem from which itfollows that the equa-
tions (16.12)–(16.14) determine the vectorsm∗ andp = (p j , j ∈ J) uniquely. He
further showed, in an approach based on consideration of thestationary distribu-
tion π , that the approximation (16.15) becomes exact as the scale parameterN tends
to infinity.
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A refined approximation

The(multiservice) reduced loadorknapsack approximation(Dziong and Roberts [12],
see also Ross [39]) is a more refined approximation than that defined above. It is
given by retaining the approximate factorisation (16.6) ofthe stationary distribu-
tion π ′ of m(·). However, subject to this assumed factorisation, the estimation of the
component distributionsπ ′j is refined.

For eachj ∈ J andr ∈ R, define

p jr =
Cj−A jr

∑
mj =0

π ′j(mj); (16.16)

note thatp jr = 1 if A jr = 0. For fixed j, substitution of (16.6) into the KDR recur-
sion (16.9) and summation over allmk for all k 6= j yields

∑
r∈R

A jr

(
κr ∏

k6= j

pkr

)
π ′j(mj −A jr ) = mjπ ′j(mj), 1≤mj ≤Cj , j ∈ J (16.17)

(where, as usual, we make the conventionπ ′j(mj ) = 0 for mj < 0). This is the one-
dimensional KDR recursion associated with a single resource constraintj, and is
readily solved to determineπ ′j and hence the probabilitiesp jr , r ∈R, in terms of the
probabilitiespkr, r ∈R, for all k 6= j. We are thus led to a set of fixed point equations
in the probabilitiesp jr , for which the existence—but not always the uniqueness, see
Chung and Ross [10]—of a solution is guaranteed. From (16.6), the probability that
a call of typer is accepted is then given by

Pr = ∏
j∈J

p jr . (16.18)

We remark that the recursion (16.17) corresponds to a modified network in which
there is a single resource constraintj and each arrival rateκr is reduced toκr ∏k6= j pkr.
This reduced load approximationis of course exact in the case of a single-resource
network.

In the case where eachA jr can only take the values 0 or 1 we may setp j = p jr

for r such thatA jr = 1. The fixed point equations (16.16) and (16.17) then reduce to

p j = 1−E

(

∑
r∈R

κr ∏
k6= j

pAkr
k , Cj

)
(16.19)

whereE is again the Erlang function (16.4). This case is the well-known Erlang
fixed point approximation(EFPA) and has a unique solution, see Kelly [26], and
also Ross [39]. It yields acceptance probabilities which are known to be asymp-
totically exact in the Kelly limiting scheme discussed above, and also, under ap-
propriate conditions, in thediverse routinglimit discussed in the Introduction—see
Whitt [42], and Ziedins and Kelly [47]. The EFPA also has an extension to the case
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of generalA jr , which may be regarded as a simplified version of the reduced load
approximation. As with the latter approximation the EFPA may here have multiple
solutions.

16.3 Controlled loss networks: stationary behaviour

We now study the more general version of a loss network, in which calls are subject
to acceptance controls, and the issues are those of achieving optimal performance.

16.3.1 Single resource networks

We consider a simple model which illustrates some ideas of optimal control—in
particular those ofrobustnessof the control strategy with respect to variations in
arrival rates (which may in practice be unknown, or vary overtime).

Suppose thatR = {1,2} and that as usual calls of each typer arrive at rateνr and
have holding times which are exponentially distributed with meanµ−1

r . Suppose
further that there is a single resource of capacityC and that a call of either type
requires one unit of this capacity, so that the constraints (16.1) here reduce ton1 +
n2 ≤C. We assume that calls of type 1 have greater value per unit time than those
of type 2, so that it is desirable to choose the acceptance regionsAr , r = 1,2, so as
to maximise the linear function

φ(P1,P2) := a1κ1P1 +a2κ2P2, (16.1)

for somea1 > a2 > 0 (where, again as usual, for each call typer, κr = νr/µr andPr is
the stationary acceptance probability.) An upper bound forthe expression in (16.1)
is given by the solution of the linear programming problem, in the variablesP1, P2,

maximiseφ(P1,P2), subject toPr ∈ [0,1] for r = 1,2, κ1P1 + κ2P2≤C (16.2)

(where the latter constraint follows from (16.2)). It is easy to see that the solution of
this problem is characterised uniquely by the conditions

P1 = P2 = 1, wheneverκ1P1 + κ2P2 < C, (16.3)

P2 = 0, wheneverP1 < 1. (16.4)

It is clearly not possible to choose the acceptance regionsA1, A2 so that the cor-
responding values ofP1, P2 solve exactly the problem (16.2). However, we show
below that this solution may be achieved asymptotically as the size of the system is
allowed to increase, and further that there is an asymptotically optimal control that
is both simple and robust with respect to variations in the parametersκ1, κ2.
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We consider first the form of the optimal control in the special caseµ1 = µ2.
Here since, at the arrival timet of any call, those calls already within the system
are indistinguishable with respect to type, it is clear thatthe optimal decision on call
admission is a function only of the arriving call type and of the total volumem(t−)=
n1(t−)+n2(t−) of calls already in the system. A formal proof is a straightforward
exercise in Markov decision theory. Further, simple coupling arguments show that,
for an incoming call of either type arriving at timet and any 0< m < C, if it is
advantageous to accept the call whenm(t−) = m, then it is also advantageous to
accept the call whenm(t−) = m−1. It follows that the optimal acceptance regions
are of the form

A1 = {n : n1 +n2 < C} (16.5)

A2 = {n : n1 +n2 < C−k} (16.6)

for somereservation parameter k, whose optimal value depends onC, κ1 andκ2.
Consider now the general case where we do not necessarily have µ1 = µ2, and

suppose thatC, ν1 andν2 are large. More formally we again have in mind the Kelly
limiting scheme in which these parameters are allowed to increase in proportion to
some scale parameterN which tends to infinity (whileµ1, µ2 are held fixed). We
further suppose that the acceptance regions are again as given by (16.5) and (16.6),
where the reservation parameterk increases slowly withN, i.e. in such a way that

k→ ∞, k/C→ 0, asN→ ∞. (16.7)

It is convenient to letP1, P2 denote the limiting acceptance probabilities. In the
caseκ1 + κ2 ≤C, it is not difficult to see that, sincek/C→ 0 asN→ ∞, we have
P1 = P2 = 1, so thatP1, P2 solve the optimisation problem (16.2). Consider now the
caseκ1 +κ2 > C. Here, again sincek/C→ 0 asN→ ∞, it follows that, in the limit,
the capacity of the network is fully utilised. Further, ifκ1 is sufficiently large that
P1 < 1 (informally, even for largeN, calls of type 1 are being rejected in significant
numbers), then the effect of the increasing reservation parameterk is such that, again
in the limit, the network remains sufficiently close to capacity to ensure that no calls
of type 2 are accepted, and henceP2 = 0. It now follows that whenκ1 +κ2 > C, the
limiting acceptance probabilitiesP1, P2 satisfy the conditions (16.3) and (16.4) and
so again solve the optimisation problem (16.2).

The above analysis demonstrates the asymptotic optimalityof any strategy based
on the use of a reservation parameterk, provided only that, in the limiting regime,k
increases in accordance with (16.7). In practice, in a largenetwork (here for largeC),
only a small value ofk is required in order to achieve optimal performance. We also
observe that the performance of a reservation parameter strategy is indeed robust
with respect to variations inκ1, κ2.

This analysis also extends easily to the case where there aremore than two call
types, and also, with a little more difficulty, to that where the capacity constraint is
of the form∑r∈R Arnr ≤C for general positive integersAr (see Beanet al.[4]). Here
a different reservation parameter may be used for each call type, and, in the Kelly
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limiting scheme, a complete prioritisation and optimal control are again achieved
asymptotically by allowing the differences between the reservation parameters to
increase slowly.

16.3.2 Multiple resource models

Consider now the general case of the canonical model in whichthere is a set of
resourcesJ and in which staten of the network is subject to the constraints (16.1).
Suppose that it is again desirable to choose admission controls so as to maximise the
linear functionφ(P) := ∑R

r=1arκrPr of the stationary acceptance probabilitiesPr ,
for given constantsar , r ∈ R. As in Section 16.3.1, we may consider the linear
programming problem

maximiseφ(P), subject toPr ∈ [0,1] for r ∈ R,
R

∑
r=1

A jr κrPr ≤Cj for j ∈ J,

(16.8)
which provides an upper bound on the achievable values of theobjective functionφ .
It is easy to see that this value may be asymptotically achieved within the Kelly lim-
iting regime by reserving capacityA jr κrPr at each resourcej solely for calls of each
typer, where hereP is the solution of the problem (16.8). However this strategyis
neither optimal in networks of finite capacity, nor is it robust with respect to varia-
tions in the parametersκr . At the opposite end of the spectrum from this complete
partitioning policy is that of complete sharing. The lattercan lead to unfairness if
there are asymmetric traffic patterns, with the potential for some call types to re-
ceive better service than others. In practice it is expectedthat good strategies will
be based on the sharing of resources and the use of reservation parameters—as was
shown to be optimal for single resource networks in Section 16.3.1. (One example
of a strategy midway between complete sharing and complete partitioning is virtual
partitioning [35] [45]).

In the case of communications networks it is natural to allowalsoalternative
routing, as described in the Introduction. An upper bound for the achievable per-
formance is given by supposing thatrepackingis possible, i.e. that calls in progress
may be rerouted as necessary. In this case, our model for the network reduces to
an instance of the canonical model (as defined in the Introduction) with appropri-
ately redefined setJ, matrixA = (A jr ) and capacitiesCj . The upper bound onφ(P)
given by the linear programming problem (16.8) is then also an upper bound in
the more usual case in which repacking is not allowed. In the latter case practi-
cal control strategies are again based on the use of appropriate reservation parame-
ters, and there is some hope that performance close to the upper bound above may
be achieved in networks with sufficiently large capacities or sufficient diversity of
routing, even without repacking. In applications reservation parameters are gener-
ally used to prioritise different traffic streams. In networks with alternative routing
they also prevent the occurrence of network instabilities,where, for fixed parameter
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values, the network may have two or more relatively stable operating regimes—one
in which most calls are directly routed, and others in which many calls are alterna-
tively routed, with a resulting severe degradation of performance (see Gibbens [16],
Kelly [27]). By giving priority to directly routed traffic, the use of reservation pa-
rameters prevents the network from slipping into an inefficient operating state.

There have been numerous investigations of control strategies for communica-
tions networks that employ either fixed or, particularly, alternative routing. Such
strategies are often studied in the context of fully connected networks. Two of the
most commonly studied areleast busy alternative(LBA) routing anddynamic al-
ternative routing(DAR). LBA routing seeks to route calls directly if possible, and
otherwise routes them via that path which minimises the maximum occupancy on
any of its links. Directly routed calls are usually “protected” with some form of
reservation parameter (Kelly [27], Marbukh [33]). Hunt andLaws [23] showed that,
for fully connected networks which permit only two-link alternative routes, LBA
routing is asymptotically optimal in the diverse routing limit (see Section 16.4.5).
This policy is robust to changes in traffic patterns, but has the difficulty that it re-
quires information on the current states of all possible alternative paths before an
alternative routing decision is made.

A much simpler routing scheme is DAR (Gibbenset al. [14], Gibbens and
Kelly [15]). In this scheme, for each pair of nodes, a record is maintained of the
current preferred alternative route, and this is the one that is used if a call cannot be
routed directly. If neither the direct route nor the currentpreferred alternative route
are available, then the call is rejected, and a new preferredalternative route is chosen
at random from those available. Directly routed traffic is again usually protected by
a reservation parameter. This policy is easy to implement. It does not require infor-
mation about the current state of the system to be held at any node, just a record
of the current preferred alternative route to other nodes. It is also robust to changes
in traffic patterns—alternative routes on which the load increases will be discarded
and replaced by routes on which the load is lower. Neither LBArouting nor DAR
require traffic rates to be known or estimated (except approximately, in order to set
the appropriate level of the reservation parameters).

Acceptance probabilities for controlled loss networks areusually estimated us-
ing a generalised version of the reduced load or knapsack approximation of Sec-
tion 16.2.4. As there, we make the approximation (16.6) for the stationary distribu-
tionπ ′ of the resource occupancy processm(·). Each of the marginal distributionsπ ′j
is estimated as the stationary distribution of a Markov process on{0, . . . ,Cj} which
approximates the behaviour of the resourcej considered in isolation. Letp jr be the
probability under this distribution that a call of typer is accepted, subject to the
controls of the model, withp jr = 1 if A jr = 0. In the case of the canonical model, in
which no alternative resource usage is allowed, calls of each typer are assumed to
arrive at resourcej at a rateνr ∏k6= j pkr—this is the “reduced load” for calls of typer
at this resource; further, calls of this type arriving at this resource are subject to the
acceptance controls of the model and, if accepted, depart atrateµr as usual. The
estimated stationary distributionπ ′j then determines the acceptance probabilitiesp jr

at the resourcej. Thus we are again led to a set of fixed point equations which
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determine—not always uniquely—the acceptance probabilitiesp jr for all r ∈R and
j ∈ J. Finally the stationary network acceptance probabilityPr for calls of each
typer is again given byPr = ∏ j∈J p jr .

In the case of a communications network where the canonical model is extended
by allowing the possibility of alternative routing, it is necessary to modify the above
approximation. Suppose, for example, that a link (resource) j forms part of the sec-
ond choice route for calls of typer. Then, in the one-dimensional process associated
with link j, the arrival rate for calls of typer is taken to be the product of the arrival
rateνr at the network, the probability that a call of this type is rejected on its first-
choice route, and (as before) the probabilities that the call can be accepted at each of
the remaining resources on the alternative route (see e.g. Gibbens and Kelly [15]).

The basis of the reduced load approximation is the approximate factorisation
of the distributionπ ′ above. In the case of controlled networks, this approximation
fails to become exact under the Kelly limiting regime in which capacities and arrival
rates increase in proportion. It may, however, be expected to hold under sufficiently
diverse routing. It is known to be remarkably accurate in most applications.

16.4 Dynamical behaviour and stability

We now consider the dynamical behaviour of large networks. As well as such be-
haviour being of interest in its own right—for example in networks in which input
rates change suddenly,fixed pointsof network dynamics correspond to equilibrium,
or quasi-equilibrium, states of the network (see below). The identification of such
points is often the key to understanding long-term behaviour, in particular to resolv-
ing stability questions and determining stationary distributions where (as is usual)
the latter may not be directly calculated. However, we note that it is characteristic of
loss networks that, from any initial state, equilibrium is effectively achieved within
a very few call holding times, so that transientperformanceis of less significance
than is the case for networks which permit queueing.

16.4.1 Fluid limits for large capacity networks

We describe a theory first suggested by Kelly [27]. We yet again assume the Kelly
limiting scheme described in the Introduction, in which thenetwork topology is
held fixed and arrival rates and capacities are allowed to increase in proportion.
More explicitly, we consider a sequence of networks satisfying our usual Markov
assumptions (though this is not strictly necessary) and indexed by a scale parame-
ter N. All members of the sequence are identical in respect of the (finite) setsR, J,
the matrixA = (A jr , j ∈ J, r ∈ R), and the departure ratesµr , r ∈ R. For theNth
member of the sequence, calls of each typer arrive at rateNνr for some vector of
parametersν, and the capacity of each resourcej is NCj for some vector of param-
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etersC, where, for simplicity, we take eachCj to be integer-valued. As always, it is
convenient to defineκr = νr/µr for eachr ∈ R.

We now describe the rules whereby calls are accepted. For each N, let nN(t) =
(nN

r (t), r ∈ R), wherenN
r (t) is the number of calls of typer in progress at timet.

Define also thefree capacityprocessm̄N(·) = (m̄N
j (·), j ∈ J) where each ¯mN

j (t) =

NCj −∑r∈R A jr nN
r (t) is the free capacity of resourcej at time t. A call of type r

arriving at timet is accepted if and only if the free capacitȳmN(t−) of the system,
immediately prior to its arrival, belongs to some acceptance regionĀr ⊂ ZJ

+. We
take the acceptance regions̄Ar , r ∈R, to be independent ofN, although, in a refine-
ment of the theory, some dependence may be allowed. Note that, in a change from
our earlier conventions, the acceptance regionsĀr are defined in terms of thefree
capacity of each system.

While the above description defines instances of the canonical model of the Intro-
duction, more sophisticated controls, such as those involving the use of alternative
routing in communications networks, may be modelled by the suitable redefinition
of input streams and acceptance sets (see Hunt and Kurtz [22]).

For eachN, define the normalised processxN(·) = nN(·)/N, which takes values
in the space

X = {x ∈RR
+ : ∑

r∈R

A jr xr ≤Cj for all j ∈ J}. (16.1)

Assume that, asN→ ∞, the initial statexN(0) converges in distribution to some
x(0) ∈ X, which, for simplicity, we take to be deterministic. Then wemight ex-
pect that the processxN(·) should similarly converge in distribution to afluid limit
processx(·) taking values in the spaceX, with dynamics given by

xr(t) = xr(0)+

ˆ t

0
(νr P̃r(u)− µrxr(u))du, r ∈ R, (16.2)

where, for eacht, P̃r(t) corresponds to the limiting rate at which calls of each typer
are being accepted at timet.

A rigorous convergence result is given by Hunt and Kurtz [22]. A somewhat tech-
nical condition (always likely to be satisfied in applications) is required on the ac-
ceptance sets̄Ar . However, the main difficulty is that in some, usually ratherpatho-
logical, cases the limiting acceptance ratesP̃r(t) may fail to be unique.

In many cases, though, it is possible to show that, for eachr, there does exist a
unique functionPr on X such that, for eacht, we haveP̃r(t) = Pr(x(t)). In general,
the trajectories of the limit processx(·) are then deterministic functions of their
initial positionsx(0). The fixed pointŝx of the limit processx(·) are given by the
solutions of

νrPr(x̂) = µr x̂r , r ∈R. (16.3)

In the case of a single fixed pointx̂, to which all trajectories ofx(·) converge, it may
be shown that the stationary distribution of the original normalised processxN(·)
converges to that concentrated on the single pointx̂ (see Beanet al. [5]). Then in
particular, for eachr, Pr(x̂) is the limiting stationary acceptance probability for calls
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of typer. In the case of multiple fixed points, those which are locallystable corre-
spond to “quasi-stationary” distributions of the processxN(·), i.e. regimes which are
maintained over periods of time which are lengthy but finite.

16.4.2 Single resource networks

As the simplest non-trivial application of the above theory, we consider the case
J = 1 of a single resource, for which equilibrium behaviour was described in Sec-
tion 16.3.1. It is again convenient to writeAr for A1r for eachr, and similarlyC
for C1. The technical condition referred to above on the acceptance setsĀr ⊆ Z+,
here reduces to the requirement that, for eachr, either m̄∈ Ār for all sufficiently
largem̄∈ Z+ (we letR∗ denote the set of suchr) or m̄ /∈ Ār for all sufficiently large
m̄∈ Z+.

Here the functionsPr defined above always exist (see Hunt and Kurtz [22]). To
identify them, define, for eachx ∈ X, the Markov process ¯mx(·) on Z+ with transi-
tion rates given by

m̄→
{

m̄−Ar at rateνr I{m̄∈Ār}
m̄+Ar at rateµrxr ,

(16.4)

Let πx be the stationary distribution of this process where it exists. DefineX̄ ⊆X by

X̄ = {x ∈ X : ∑
r∈R

Arxr = C andπx exists}. (16.5)

(The setX̄ may be thought of as consisting of those points inX for which the limiting
dynamics are “blocking”.) Then, forx ∈ X̄, we havePr(x) = πx(Ār) for all r; for
x∈ X \ X̄, we havePr(x) = 1 for r ∈R∗ andPr(x) = 0 for r /∈R∗. The fixed pointŝx
of the limiting dynamics (in general there may be more than one such) are then
given by the solutions of (16.3).

Consider now the case of reservation-type controls, and suppose that the call
types are arranged in order of decreasing priority. The acceptance regions are thus
given by Ār = {m̄: m̄≥ kr + Ar} for some 0= k1 ≤ k2 ≤ ·· · ≤ kR and we have
R∗ = R. It is easy to see that, in thelight traffic case given by∑r∈R Arκr ≤C, the
single fixed point̂x of the limiting dynamics is given by ˆxr = κr for all r, and that
all trajectories of these dynamics converge tox̂. In theheavy trafficcase given by
∑r∈R Arκr > C, defineX̂ ⊆ X by

X̂ = {x ∈ X : ∑
r∈R

Arxr = C andxr < κr for all r ∈ R}.

Then it is straightforward to show thatX̂ ⊆ X̄ and that all fixed points of the limiting
dynamics lie withinX̂ (see Beanet al. [4]). In the case whereAr = 1 for all r, it is
also straightforward to show that there is a unique fixed point. It is unclear whether
it is possible, for more generalAr , to have more than one fixed point.
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Now definer0 ≥ 0 to be the maximum value ofr ∈ R such that∑r≤r0
Arκr ≤C.

Suppose that the reservation parametersk1, . . . ,kr are allowed to increase. Further
consideration of the processesπx shows that, in the limit (formally as these reser-
vation parameters tend to infinity), the fixed pointx̂ is necessarily unique and is
such thatPr(x̂) = 1 for all r ≤ r0, with, in the heavy traffic case, 0≤ Pr0+1(x̂) ≤ 1
andPr(x̂) = 0 for all r ≥ r0 + 2. Since the stationary distributions associated with
our sequence of networks converge to that concentrated on the unique fixed point̂x,
it follows that the reservation strategy does indeed approximate, and in the limit
achieve, the complete prioritisation of call types discussed in Section 16.3.1. As
mentioned there, and as easily verified from the above analysis, quite small values
of the reservation parametersk1, . . . ,kr are sufficient to achieve a very good approx-
imation to this prioritisation.

Even in the present single-resource case it is possible to achieve nonuniqueness
of the fixed points of the limit processx(·) by the use of more general, and suffi-
ciently perverse, controls, in particular with the use of acceptance sets of the form
Ār = {m̄: Ar ≤ m̄≤ kr + Ar} for somekr ≥ 0 (see Beanet al. [5]). Thus we may
construct networks which have several (very different) regimes which are quasi-
stationary in the sense discussed above.

16.4.3 Multi-resource networks: the uncontrolled case

We now consider multi-resource networks, and again study the behaviour of the
fluid limit processx(·) associated with the Kelly limiting scheme. Here in general
a rich variety of behaviour is possible. However, in the caseof the uncontrolled
networks of Section 16.2, in which calls of all types are accepted subject only to the
availability of sufficient capacity, the processx(·) is rather well-behaved. Note that
here, in terms of the available free capacity, the acceptance sets are given by, for
eachr ∈R,

Ār = {m̄ : m̄j ≥ A jr for all j}. (16.6)

Recall also thatX is as given by (16.1). Define the (real-valued) concave function
f onX by

f (x) = ∑
r∈R

(xr logνr −xr logµrxr +xr) (16.7)

and letx̂ be the value ofx which maximisesf (x) in X. Kelly [26] shows that, asN→
∞, the stationary distribution of the processxN(·) converges to that concentrated on
the single point̂x. (Indeed this is the basis of his original derivation of the limiting
acceptance probabilities considered in Section 16.2.4.)

Assume for the moment the unique existence of the functionsPr onX introduced
above. Then, for the fluid limit processx(·), it follows from (16.2) and (16.7) that
d f(x(t))/dt = g(x(t)) where the functiong onX is given by
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g(x) = ∑
r∈R

∂ f (x)

∂xr

(
νrPr(x)− µrxr

)

= ∑
r∈R

(
logνr − logµrxr

)(
νrPr(x)− µrxr

)
.

Analogously to the preceding section, for eachx ∈ X, the limiting acceptance
probabilitiesPr(x) are given by consideration of the stationary distribution of a
“free capacity” Markov process whose transition rates depend onx. Some simple
analysis of the equilibrium equations which define this stationary distribution (see
Zachary [43]) now shows thatg(x) ≥ 0 for all x ∈ X with equality if and only if
x = x̂.

Thus the dynamics of the limit processx(·) are such that, away from the pointx̂,
the functionf (x(·)) is always strictly increasing. It thus acts as a Lyapunov function,
ensuring that all trajectories of the processx(·) converge to the single fixed pointx̂.
Indeed a rigorous application of the fluid limit theory of Hunt and Kurtz [22] (again
see Zachary [43], for details) shows this result continues to hold even if the func-
tionsPr on X are not uniquely defined (whether this can ever happen in the case of
uncontrolled networks remains an open problem). The resulttherefore establishes
an important stability property of uncontrolled networks,and guarantees that the
stationary distribution describes the typical behaviour of the network.

16.4.4 Multi-resource networks: the general case

For general multi-resource networks, the fluid limit processx(·) associated with the
Kelly limiting scheme may fail to be unique, and may in particular exhibit multiple
fixed points. We describe in some detail an elementary example, which is a simpli-
fication of one due to Hunt [21]. Suppose thatR= 3, J = 2, and that the matrixA is
given by

A =

(
1 0 1
0 1 1

)
.

Thus in particular calls of types 1 and 2 each require capacity from a single resource,
while calls of type 3 require capacity from both resources inthe network. Suppose
further that the (free capacity) acceptance sets are given by, for somek1,k2 ≥ 1,

Ā1 = {m̄ : 1≤ m̄1≤ k1}, Ā2 = {m̄ : 1≤ m̄2≤ k2}, Ā3 = {m̄ : m̄1≥ 1, m̄2≥ 1}.

(As Hunt remarks, this is not entirely unrealistic: in more complex networks, op-
erating under some form of alternative routing, certain resources may have calls of
certain types routed over them precisely when the network isin general very busy.)
Finally suppose thatµr = 1 for all r and that the vectorsν andC defined in Sec-
tion 16.4.1 (each to be scaled byN for theNth member of the sequence of networks)
are given byν = (ν1,ν2,ν3) andC = (C,C).
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The processx(·) takes values in the spaceX = {x ∈ R3
+ : x1 +x3≤C, x2 +x3≤

C}. Its dynamics may be determined through the fluid limit theory outlined above.
For x ∈ X0 := {x ∈ X : x1 + x3 < C, x2 + x3 < C} (corresponding to limit points
of the dynamics well away from the capacity constraints) thelimiting acceptance
probabilities are well-defined and given by

P1(x) = P2(x) = 0, P3(x) = 1. (16.8)

Forx∈X1 := {x∈X : x1+x3 =C, x2+x3 <C} and forx∈X2 := {x∈X : x1+x3 <
C, x2 + x3 = C} (corresponding in both cases to limit points of the dynamicssuch
that only one capacity constraint is relevant) the limitingacceptance probabilities
are again well-defined and given by consideration of a Markovprocess onZ+ as in
the single resource case considered in Section 16.4.2. (Forx ∈ X1, for example, it
follows from the definition ofĀ2 that the transition rates of this Markov process are
as if ν2 = 0.) Forx ∈ X12 := {x ∈ X : x1 + x3 = C, x2 + x3 = C} it is necessary to
consider also a “free capacity” Markov process onZ2

+.
In the caseν3 ≤C, these Markov processes all fail to possess stationary distri-

butions and the limiting acceptance probabilities are given by (16.8) for allx ∈ X.
Thus the limit processx(·) is as if ν1 = ν2 = 0 and all trajectories of this process
are deterministic functions of their initial values and tend to the single fixed point
x̂ = (0,0,ν3).

The caseν3 > C is more interesting. Here it is readily verified that the limit pro-
cessx(·) possesses no fixed points inX0. Within X1 consideration of the stationary
distribution of the Markov process defined in Section 16.4.2shows that there is a
single fixed pointx(1) = (a1,0,C−a1) for somea1 which is independent ofν2. Sim-
ilarly within X2 there is a single fixed pointx(2) = (0,a2,C−a2) for somea2 which
is independent ofν1. However, withinX12 the dynamics of the limit processx(·) are
not deterministic. It is further not difficult to show that all trajectories ofx(·) which
avoid the setX12 tend deterministically to one of the two fixed pointsx(1), x(2) above
(depending on whether the setX1 or the setX2 is hit first). Those trajectories ofx(·)
which do hitX12 may, in an appropriate probabilistic sense, tend to eitherx(1) or
x(2).

The interpretation of the above behaviour is the following.Suppose thatN is large
and that, for example, resource 1 fills to capacity first. Thenthis resource remains
full and in general blocks sufficient of the type 3 calls to ensure that resource 2
remains only partially utilised, with few or no calls of type2 being accepted. This
corresponds to a “quasi-stationary” state whose limit, asN→ ∞, is concentrated on
the fixed pointx(1). Alternatively, if resource 2 fills to capacity first, the network
settles, for an extended period of time, to a quasi-stationary state whose limit is
concentrated on the fixed pointx(2). While, for finiteN, transitions between these
two quasi-stationary states will eventually occur, the time taken to do so can be
shown to increase exponentially inN.

We illustrate this with an example. LetC = 500,ν1 = ν2 = 200,ν3 = 600,µ1 =
µ2 = µ3 = 1, with k1 = k2 = 4. The fixed points under the Kelly limiting regime
are given byx(1) = (125,0,375) andx(2) = (0,125,375), providedk1,k2 are scaled
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appropriately. Figure 16.1 plots ¯m2, the free capacity on link 2 against ¯m1, the free
capacity on link 1 for two simulated sample paths of this process, both initially
started atn1 = n2 = n3 = 0. The free capacity on both links decreases rapidly as
initially only 2-link calls are accepted into the network. Once the threshold at which
1-link calls are accepted is reached, the sample paths then typically move rapidly
towards one or other of the quasi-stationary modes. In Figure 16.1 the two sample
paths illustrate both of these behaviours. Note that it is apparent that in this example
the modes do not coincide with the fixed points of the limitingregime – herek1 and
k2 are not sufficiently large to permit that. However, taking largerk1 andk2 (here
k1 = k2 = 10 appears to be sufficient), will ensure that the modes of thetwo quasi-
stationary distributions coincide approximately with thetwo fixed pointsx(1) and
x(2). Figure 16.2 is a similar plot for two sample paths, but for a rescaled version
of the system, withC = 1000,ν1 = ν2 = 400,ν3 = 1200,µ1 = µ2 = µ3 = 1, and
k1 = k2 = 8. The fixed points under the Kelly limiting regime are then given by
x(1) = (250,0,750) andx(2) = (0,250,750), and we see that the quasi-stationary
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Fig. 16.1:m̄2 vs. m̄1 plotted for two simulated sample paths whenC = 500,ν1 =
ν2 = 200,ν3 = 600,µi = 1, i = 1,2,3 andk1 = k2 = 4, ni(0) = 0, i = 1,2,3. The
simulations have been run for 10 time units.
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distributions are now more nearly centred about these. Witha further scaling to
C = 1500 (not shown here) the Kelly limiting regime fixed points give a very good
fit to the modes of the quasi-stationary distributions.

The behaviour in the above example is typical of that which may occur in more
general networks—in particular those using alternative routing strategies—which
are poorly controlled. Fluid limits may be used to study behaviour in networks with
high capacities and correspondingly high arrival rates, and to choose values of, for
example, reservation parameters so as to ensure that the network does not spend
extended periods of time in states in which it is operating inefficiently. A realistic
example here is the fully-connected network with alternative routing considered in
Section 16.3.2. Gibbens and Kelly [15] and Gibbenset al. [16] give examples of
the accuracy of this approximation, both with and without trunk reservation con-
trols, primarily for overloaded networks (where DAR would actually be in use).
In their examples the approximation performs worst when no controls are in place
(Gibbens and Kelly [15] cite an example of a network with 10% overload, where
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Fig. 16.2:m̄2 vs. m̄1 plotted for two simulated sample paths whenC = 1000,ν1 =
ν2 = 400,ν3 = 1200,µi = 1, i = 1,2,3 andk1 = k2 = 8, ni(0) = 0, i = 1,2,3. The
simulations have been run for 10 time units.
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the approximation has an error of less than 10%, based on simulation results), and
correspondingly better as the trunk reservation control isincreased.

As noted above, fluid limits may also be used to study equilibrium behaviour,
especially in the case where all trajectories of the limit processx(·) tend to a unique
fixed pointx̂. In particular we may show that, for the Kelly limiting regime consid-
ered here, the limiting stationary distribution of the freecapacity processes̄mN(·) in
general only has a product form in the case of uncontrolled networks. This product-
form assumption is the basis of the commonly used approximations considered in
Section 16.3.2. Its justification owes more to the results for the diverse routing limit
also considered there and in Section 16.4.5.

16.4.5 The diverse routing limit

In this section we consider the fluid limit obtained under thediverse routing regime
discussed in the Introduction. Although a high degree of symmetry is required in or-
der to obtain formal limits, the results obtained lend support to the commonly made
assumptions of independence of resource blocking which areused, for example, in
the construction of the approximations discussed in Section 3.2.

As outlined earlier, the diverse routing regime holds when the numbers of re-
sources and possible “routes” in the network increase, while the total capacity and
arrival rate at each resource remains constant. For this limit to exist we require a
high degree of symmetry in the network. There are two canonical examples (with
variants) that have been extensively studied. We describe both here using the termi-
nology of communications networks.

The first is the so-calledstar network(see, for instance, Whitt [42], Ziedins and
Kelly [47], Hunt [20]). Here there areK links, each with capacityC. The scale
parameter of the regime is then taken to beK. Assume that calls of anysize r≥ 1
require unit capacity at each ofr resources and have holding times with unit mean.
Then in a symmetric network there are

(K
r

)
possible choices of the set of links for

such a call. Let the arrival rate for each such choice beνK
r = νr/

(K−1
r−1

)
, so that the

total arrival rate at each resource for calls of sizer is exactlyνr . For example, we
may assume that theK links are distributed around a central hub, through which
all communications must pass. Many variants of this model are possible—multiple
call sizes can coexist in the network, as can multiple capacities, provided only that
the proportion of links with any given capacity remains constant asK increases. The
network is assumed to have fixed routing and the only permissible controls are those
on admission.

Let xK(t) = (xK
j (t), j ∈ J) wherexK

j (t) is the proportion of links in whichj
units of capacity are in use at timet. For the network without admission controls,
Whitt [42] showed that, given the weak convergence of the initial pointsxK(0) to
x(0), the processxK(·) converges weakly to a deterministic limit processx(·), which
satisfies a set of first-order differential equations with a unique fixed point̂x, such
that x(t)→ x̂ ast → ∞ for all initial x(0). The limit x̂ coincides exactly with that
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given by the Erlang fixed point approximation. Recall that the latter is obtained from
the assumption that the stationary free capacity distributions on the various links of
the network are independent of each other. For the case whereall calls are of size
two, Hunt [20] obtained a functional central limit theorem for the processxK(·),
with the limit an Ornstein-Uhlenbeck diffusion process (aspreviously conjectured
by Whitt), which was then extended to more general sizes and initial conditions by
Graham and Meleard [18]. In the case of networks with admission controls very
little has been proved. MacPhee and Ziedins [32] studied such networks and gave
a weak convergence result for the processxK(·). However, there remain many open
questions about the behaviour of this process.

The second canonical example of the diverse routing regime is that of the fully
connected network with alternative routing (Hunt and Laws [23]). Here both admis-
sion and routing controls are possible. The network hasN nodes; between each pair
of these there is a link with capacityC, so that the total number of links isK =

(N
2

)
.

Here againK is the scale parameter. Calls arrive at each link at rateν; each call has
a unit capacity requirement and holding time of mean 1. Thereare three possible
actions on the arrival of a call: (i) accept the call at that link, (ii) select a pair of links
that form an alternative route between that pair of nodes androute the call along
this, or (iii) reject the call. Hunt and Laws showed that an asymptotically optimal
policy, in the sense of minimising the average number of lostcalls in equilibrium, is
to route a call directly if possible and otherwise to route itvia an alternative route,
provided that the remaining free capacity on each link of thealternative route is at
least some reservation parameterk, where the optimal choice ofk is determined by
the parametersK andν. The optimal choice of alternative route is given by choosing
that which is least busy, i.e. which maximises the minimum ofthe free capacities
on the two links. The analysis of Hunt and Laws largely dispenses with the graph
structure inherent in the choice of alternative routes, an assumption justified by anal-
ogy with earlier results of Crametz and Hunt [11] in relationto the simpler model
without reservation – see also Graham and Meleard [17], who show a propagation
of chaos result for this system.

As in the example of the star network, of interest here is the processxK(·), defined
as earlier. Hunt and Laws showed weak convergence of this process to a determinis-
tic limit process. They showed that this limit process satisfies differential equations
which yield the constraints for a linear programming problem, the solution to which
gives an upper bound on the acceptance probabilities. (These constraints correspond
to the detailed balance equations that in equilibrium govern the changes in occu-
pancy of a single link.) They further showed that their policy achieves this upper
bound.

16.5 Further developments and open questions

Our discussion has of necessity omitted many topics of interest, some of which we
mention briefly here, as well as discussing some remaining open questions.
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One such topic is the application of large deviations techniques to loss networks
in order to estimate, for example, blocking probabilities in cases where it is impor-
tant to keep these very small. For an excellent introductionto this see, for instance,
Shwartz and Weiss [40]; later papers include those by Simonianet al. [41] and by
Graham and O’Connell [19].

Another important topic is that of diffusion approximations, which appear briefly
in Gibbenset al. [16], were mentioned in Section 16.4.5 and have been studiedby
others, including Puhalskii and Reiman [37] and Knessl and Morrison [29]. Much
work has also been done on refinements of approximations adapted to particular
situations, computational techniques for loss networks (see e.g. Louthet al. [30]
and Choudhuryet al.[9]), and bounds on blocking probabilities (Boucherie and van
Dijk [6] is a recent example of the latter).

In some models of communications networks, particularly those whose graph
structure is tree-like, the network topology may be such as to lend itself to more
accurate calculations of acceptance probabilities, involving recursions that do not
make the link independence assumption (16.6) that is such anessential feature of
the approximations presented above (see Zachary and Ziedins [46]).

We have not directly addressed here the solution of the numerous optimization
problems associated with loss networks, including networkdesign and capacity re-
quirements and the use of pricing mechanisms for control.

Extensions of loss network models include recent work by Antuneset al. [3]
which studies a variant of the model where customers may obtain service sequen-
tially at a number of resources, each of which is a loss system. The aim here is
to model a cellular wireless system where a call in progress may move from base
station to base station. Several authors have also considered explicitly systems with
time-varying arrival rates and/or retries (see, for example, Jennings and Massey [24],
Massey and Whitt [34] and Abdalla and Boucherie [1]).

A large number of interesting and important open problems remain. The ap-
proach to most of these seems to lie in a better understandingof network dynamics.
There has been no systematic investigation of how to achieveasymptotically opti-
mal control in a general network (for example in the sense of Section 16.3.2), using
controls which are simple, decentralised, and robust with respect to variations in net-
work parameters, although, for communications networks, there is a belief that this
will usually combine some form of alternative routing with the use of reservation
parameters to guarantee stability.

A further major problem is that of the identification of instability, where the
state of a network may remain over extended periods of time ineach of a num-
ber of “quasi-equilibrium” distributions, some of which may correspond to highly
inefficient performance. Instability is further closely linked to problems of phase
transition in the probabilistic models of statistical physics, and to the study of how
phenomena such as congestion propagate through a network. At present such results
as exist are mostly for very regular network topologies (see, for instance, Ramanan
et al. [38] and Luenet al. [31])—but see also Antuneset al. [2, 3] for examples of
such behaviour in heterogeneous communications networks.
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Questions related to those above concern the identificationof fluid limits, and in
particular the problem of the uniqueness of their trajectories given initial conditions.
It is notable that the uniqueness question has not yet been resolved even in the case
of a generaluncontrolledloss network, although it is known that here all trajectories
do tend to the same fixed point, thus guaranteeing network stability. Further, while
fixed points of fluid limits identify quasi-equilibrium states of a network, detailed
behaviour within such states, and the estimation of the timetaken to pass between
them, requires a more delicate analysis based on the study ofdiffusion limits. Here
relatively little work has been done (see Frickeret al. [13]).

Finally we mention that loss networks may be seen as a subclass of a more gen-
eral class of stochastic models, with state spaceZR

+ for someR and fairly regular
transition rates between neighbouring states. Notably their analysis has much in
common with that of processor-sharing networks in which calls again have a simul-
taneous resource requirement (see the chapter on processor-sharing networks in the
present volume). A unified treatment is still awaited.
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Chapter 17
A Queueing Analysis of Data Networks

Thomas Bonald and Alexandre Proutière

Abstract In packet-switched networks, resources are typically shared by a dynamic
set of data flows. This dynamic resource sharing can be represented by a queue-
ing network with state-dependent service rates. For a specific resource allocation
we refer to asbalanced fairness, the corresponding queueing network is a Whittle
network and has an explicit stationary distribution. We give some key properties
satisfied by balanced fairness and compare the resulting throughput performance to
those obtained under the max-min fair and proportional fairallocations.

17.1 Introduction

Since Erlang’s work on telephone networks at the beginning of the 20th century,
queueing theory and communication networking have enjoyeda remarkable degree
of cross-stimulation. Communication networks have been the source of interesting
problems for queueing theorists; the developed theory has in turn proved very useful
for the optimization of communication networks.

While the focus has long been oncircuit-switchednetworks, the success of Eth-
ernet technology and the subsequent rapid spread of the Internet have raised new
issues specific topacket-switchednetworks. This is best illustrated by the decentral-
ized nature of the associated control mechanisms. For instance, the throughput of
each data flow is regulated by the congestion control algorithms of the transmission
control protocol, TCP, implemented by the end hosts. Despite considerable research
efforts, it remains unclear how these control mechanisms allocate the resources of
such a large system as the Internet.
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The most fruitful approach in that respect was proposed by Kelly (see references
in Section 17.13). It consists in representing each data flowas a fluid stream whose
rate tends to the solution of a certain optimization problem, under the assumption
that the set of active flows is constant. This assumption is reasonable provided the
convergence rate of congestion control algorithms to equilibrium is much faster than
the frequency of changes in the set of active flows. A questionof interest concerns
the fairness properties of the allocation at equilibrium. While max-min fairnesshas
long been stated as an ideal objective, it turns out that current congestion control
algorithms realize an allocation that is closer toproportional fairnesswhere those
flows that consume more resources tend to receive a lower bit rate.

The network dynamics that result from the evolution of the set of active flows
can be studied for various allocations like max-min fairness and proportional fair-
ness. These provide useful abstractions of the way packet-level control mechanisms
allocate resources. A first issue is that of network stability: given the traffic inten-
sity, does the number of active flows reach a finite steady state? The absence of
admission control indeed leads a packet-switched network to congestion collapse
in case of overload. In circuit-switched networks, on the other hand, the number of
calls is naturally bounded. Another key issue concerns the throughput performance
when the network is stable: what is the mean time required to transfer a document in
steady state? Again, this question is irrelevant for circuit-switched networks where
users experience quality of service through call blocking only. In packet-switched
networks, the answer provides guidelines on how resources should be provisioned
and allocated.

We shall see that queueing theory is instrumental in addressing these issues.
Specifically, throughput performance can be evaluated for an allocation we refer to
asbalanced fairness, defined in such a way that the corresponding queueing network
is a so-called Whittle network. Results provide a very good approximation of those
obtained with proportional fairness. The considered fluid models of packet-switched
networks under balanced fairness may in fact be considered as the analogue of stan-
dard models of circuit-switched networks such as the Erlangmodel. Both share the
property that the stationary distribution of the network state is independent of all
traffic characteristics beyond the traffic intensity. Thisinsensitivityproperty is very
useful in practice since it allows the development of simpleengineering rules that do
not require the knowledge of fine traffic statistics. It basically explains the enduring
success of the Erlang formula, published in 1917 and still used to dimension today’s
telephone networks.

17.2 Capacity region

Consider a network that consists ofL resources. Each resource may represent the
capacity of a wireline link, the frequency band or transmission power of a wireless
link, for instance. We denote byCl the amount of resourcel . A random set of data
flows compete for access to these resources. Specifically, weconsider an arbitrary
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number ofN flow classes such that all flows within the same class require the same
resources. There arexi class-i flows and we refer to the corresponding line vector
x as thenetwork state. Each class-i flow requires an amount of resourcel equal to
Ail units per bit/s. If resourcel represents the frequency band of a wireless link for
instance, then each class-i flow requiresAil Hz per bit/s. Thexi class-i flows share
evenly a total bit rate ofφi bit/s. We denote byφ the corresponding line vector. The
allocation must satisfy the component-wise inequality:

φA≤C. (17.1)

We refer to the set of vectorsφ that satisfy this inequality as thecapacity region.
This is a convex polytope. In the following, we give a number of examples that
illustrate the rich class of wireline and wireless networkscovered by such linear
capacity constraints.

Wireline networks

Consider a network that consists ofL wireline links. The capacity of linkl is Cl

bit/s. LetAil = 1 if class-i flows go through linkl andAil = 0 otherwise. Figures
17.1 and 17.2 show simple examples of such networks with their capacity region,
respectively given by:

{
φ1 + φ3≤ 1,
φ2 + φ3≤ 1,

and

{
φ1 + φ2 + φ3≤ 2,
φ1≤ 1, φ2≤ 1, φ3≤ 1.

3

1 2

3

2

1

Fig. 17.1: A linear network and its capacity region.

Note that we do not specify the direction of the links. In Figure 17.1 for instance,
the directions of both links may be either identical or opposite. In the former case,
all classes represent usual point-to-point flows with a single source and a single
destination. In the latter case, class 3 may represent point-to-multipoint flows with
a single source, located between the two links, and two destinations.
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1

2

3

3

21

Fig. 17.2: A tree network and its capacity region.

Traffic splitting

The above model describes a network where each flow has a predetermined path in
the network, possibly with several destinations. More complex routing schemes may
be represented by linear capacity constraints. Assume for instance that the traffic
generated by each class can be split over a predetermined setof paths. The capacity
region is still a convex polytope, as illustrated by Figure 17.3 for N = 3 classes,
where class-2 traffic is split over two paths. If the link usedby class-3 flows has
capacity 1 and the other two links have capacity 1/2, we get the capacity constraints:

φ1 ≤ 1/2, φ1 + φ2≤ 1, φ2 + φ3≤ 1.

Note that the second capacity constraint may be viewed as a virtual link of capacity
2 used by class-1 and class-2 flows.

2

3

1

3

2

1

Fig. 17.3: A wireline network with traffic splitting and its capacity region.
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Wireless networks

Modeling wireless networks is generally more difficult due to the joint frequency
band and power allocation involved in the transmission. Consider the simple case of
a wireless access point that transmits data to each active mobile one at a time, us-
ing the whole frequency band and the full power. Such a time-division multiplexing
scheme is used for the downlink channel of standard third-generation cellular net-
works. Due to the short time-slot duration (typically less than 2 ms), the throughput
of each mobile in fact depends mainly on the fraction of slotsit receives, and not on
the precise slot scheduling. In this setting, the capacity constraints of the system are
also linear.

For instance, assume that a set ofN modulation and coding schemes can be used
by the mobiles depending on their radio conditions. We here assume that the radio
conditions experienced by each mobile do not change during the data transfer so that
each flow is transferred with a constant modulation and coding scheme. We refer to
class-i flows as those flows that use the modulation and coding schemei. Such flows
have the bit rateci when served, so thatφi/ci is the fraction of time the access point
serves a class-i flow. The capacity constraint is then given by:

φ1

c1
+

φ2

c2
+ . . .+

φN

cN
≤ 1,

as illustrated by Figure 17.4 forN = 3 modulation and coding schemes. The capacity
region is a hyperplane.

1 2 3
21

3

Fig. 17.4: A time-shared wireless access point and its capacity region.

Figure 17.5 shows the impact of the additional constraint ofa wireline link ofc
bit/s, namely:

φ1 + φ2+ . . .+ φN ≤ c.

More generally, the whole wireline backhaul network may be represented by ac-
counting for the corresponding capacity constraints.

In the presence of several access points, the capacity region is typically non-
convex due to interference. Consider the example of Figure 17.6 with three wireless
access points. There areN = 3 flow classes, one per access point. For simplicity,
we assume that all mobiles are co-located and thus experience the same radio con-
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1 2 3 1 2

3

Fig. 17.5: A wireless access point with wireline backhaul and its capacity region.

ditions. We denote byPi the power received by all mobiles from access pointi, for
i = 1,2,3. This received power cannot exceed a fixed valueP. Let W be the avail-
able bandwidth andNt be the thermal noise power. We use the Shannon formula as
the bit rate function of the signal-to-interference-plus-noise ratio, which yields the
following capacity region:

φi ≤W log2

(
1+

Pi

Nt + ∑ j 6=i Pj

)
, Pi ≤ P, i = 1,2,3.

1 3
2

3

2

1

Fig. 17.6: A network of three interferring wireless access points and its capacity
region.

As illustrated by Figure 17.6 for a signal-to-noise ratioP/Nt = 1.5, the capacity
region is not convex. This is because the access points transmit simultaneously with
a constant power. If the access points were transmitting at full power one at a time,
which would require some form of coordination, interference would be cancelled
and the capacity region would be the convex hull of that of Figure 17.6. Non-convex
capacity regions raise specific issues, as discussed in Section 17.12.
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Ad-hoc networks

Now consider a wireless network where mobiles cooperate in the sense that each
mobile may relay the packets destined for another mobile. Figure 17.7 gives an
example of such an ad-hoc network with 11 mobiles andN = 3 routes.

1

2

3

3

21

Fig. 17.7: An ad-hoc network and its capacity region.

We assume for simplicity that mobiles are static. Packets have a common fixed
size and transmissions are synchronized. A mobile cannot send and receive at the
same time. The transmission of a packet is successful if and only if the receiver
lies in the transmission region of the sender and not in the transmission region of
another transmitting mobile. We refer to any set of sender-receiver pairs that can
be simultaneously active as atransmission profile, as illustrated by Figure 17.7 for
three such pairs. Again, the transmission profiles are assumed to be scheduled at
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a sufficiently high frequency so that the allocation dependsonly on the fraction of
time each transmission profile is used. The capacity region is then given by the
convex hull of those rates obtained with a particular scheduling of the transmission
profiles. For the network of Figure 17.7 for instance, the capacity constraints reduce
to:

2φ1 +2φ2 +3φ3≤ 1, 3φ1 + φ2+2φ3≤ 1, φ1 +3φ2+2φ3≤ 1.

Note that, in practice, this capacity region is achieved by coordinating the trans-
mission of the 11 mobiles. This may be realized by decentralized control algorithms
provided some signaling information, not considered here,is exchanged by mobiles.

Flow rate limits

In addition to the global capacity constraints (17.1), flowsmay have individual rate
constraints due for instance to the speed of the user’s access line in wireline net-
works or the power constraint of the mobile in wireless networks. We denote by
ai > 0 the rate constraint of class-i flows in bit/s. We letai = ∞ if class-i flows
do not have any individual rate constraint. Thus the total bit rate of class-i flows
cannot exceedxiai in the presence ofxi class-i flows. Using vectorial notation, the
allocationφ must satisfy the additional component-wise inequality:

φ ≤ xa, (17.2)

wherexa denotes theN-dimensional vector whosei-th component is equal toxiai .
Note that these rate constraints depend on the network statex and thus cannot be
written in the form of some additional global capacity constraints (17.1). A single
wireline link shared byN = 2 classes, witha1 < a2, is shown in Figure 17.8.

2

1

Fig. 17.8: A multirate system.
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17.3 Traffic characteristics

We are interested in the steady-state behavior of the network statex(t) that describes
the number of ongoing flows of each class at timet. This depends both on the re-
source allocation and on traffic characteristics like the flow arrival process and the
flow size distribution of each class. We assume that the vector φ of allocated bit rate
depends on the network statex only and satisfies the capacity constraints (17.1) and
(17.2) in all states. Max-min fairness, proportional fairness and balanced fairness
correspond to specific allocation functionsφ(x), described in Section 17.7.

Markovian setting

Consider the simple case where class-i flows arrive as a Poisson process of intensity
λi and have i.i.d. sizes with exponential distribution of meanσi bits. The network
statex(t) then evolves as a Markov process. Specifically, letei be the unit vector
with 1 in componenti and 0 elsewhere. The transition rate from statex to statex+ei

is equal toλi . Since the total bit rate of class-i flows isφi(x) in statex, the transition
rate from statex to statex−ei is equal toφi(x)/σi for all statesx such thatxi > 0.
Providedφi(x) > 0 for all states such thatxi > 0, which we assume in the following,
the Markov processx(t) is irreducible onNN.

Flow size distribution

The flow size distribution is typically not exponential but rather heavy-tailed in data
networks. Informally stated, most flows consist of a few packets but most traffic is
contained in a few large flows. We shall consider Cox distributions in the follow-
ing, also known as phase-type distributions, that form a dense subset of the set of
all distributions with non-negative support. This allows us to retain the Markovian
description of the network state, but on a larger state spacethat includes the phases
of the data transfers.

Session structure

Similarly, flows do not arrive as a Poisson process in practice. They are typically
generated within sessions, each session being composed of asuccession of flows
separated by intervals of inactivity referred to as “think-times”. For instance, the
second flow of a session starts once the first flow of the sessionis completed, after a
think-time of random duration. The number of flows per session, the flow sizes and
the think-time durations within each session have arbitrary distributions and may be
correlated. Sessions, on the other hand, are mutually independent and are typically
generated as a Poisson process. Again, we shall consider Coxdistributions in the
following so that the network state will still be described by a Markov process,
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but on a larger state space that includes all types of sessionand the phases of the
corresponding flows and think-times.

17.4 Stability issues

A question of primary interest concerns the stability of thestochastic processx(t)
describing the evolution of the network state. We here do notmake any specific
assumption on traffic characteristics beyond stationarityand ergodicity.

Necessary condition

Let ρi be the traffic intensity of class-i flows in bit/s. This is the product of the
arrival rateλi and the mean sizeσi of class-i flows. Clearly, a necessary condition
for the network statex(t) to reach a finite stationary regime is that the vectorρ of
traffic intensities lies in the capacity region, that is if the following component-wise
inequality is satisfied:

ρA≤C. (17.1)

Property 17.4.1 The above inequality is a necessary condition for stability.

Proof. Assume that inequality (17.1) is violated. There exists a resourcel such that:

∑
i

ρiAil > Cl . (17.2)

If l were the only resource, the system would correspond to a single server-queue
with service capacityCl , arrival rateλ = ∑i λi and mean service requirement:

κ = ∑
i

λi

λ
σiAil .

The loadλ κ of this queue is larger than 1 in view of (17.2). The queue is unstable
and, since the capacity constraints (17.1) include that of resourcel , so is the original
system.

Sufficient condition

It turns out that for usual allocations like max-min fairness, proportional fairness and
balanced fairness, the necessary condition (17.1) is also sufficient, up to the critical
case where the vectorρ lies on the boundary of the capacity region. Thus in the
rest of the chapter, we assume that the following component-wise strict inequality
is satisfied:

ρA< C. (17.3)
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For max-min fairness and proportional fairness, the proof of stability is quite tech-
nical and requires some restrictive assumptions on the traffic characteristics. For
balanced fairness, it is straightforward (cf. Proposition17.7.1 below) and, in view
of the insensitivity results derived in Section 17.8, validfor all traffic characteristics
described in the previous section.

17.5 Flow throughput

We now assume that the network statex(t) is stationary and ergodic and introduce a
throughput measure, referred to as theflow throughput, that can be derived from its
stationary distributionπ . The flow throughput reflects the quality of data transfers
as experienced by users in steady state in the following two senses.

Mean flow duration

The first definition is related to the mean flow duration. Specifically, the flow
throughput is defined as the ratio of the mean flow size to the mean flow duration.
We refer to the inverse of the flow throughput, namely the ratio of the mean flow
duration to the mean flow size, as theper-bit delay(in s/bit). Letτi be the per-bit
delay of class-i flows. Since the mean size of class-i flows isσi , the mean duration
of class-i flows is equal toσiτi by definition. Denote by ¯xi the average number of
class-i flows in steady state. By Little’s law, we have:

x̄i = λi×σiτi = ρiτi . (17.1)

We deduce the flow throughput of classi:

γi =
1
τi

=
ρi

x̄i
. (17.2)

Mean instantaneous rate

The second definition corresponds to the mean instantaneousrate as experienced
by users. Since the total bit rate allocated to class-i flows is evenly shared by these
flows, the bit rate of a class-i flow is equal toφi(x)/xi in any statex such thatxi >
0. Now the steady state probability that a class-i flow sees the network in state
x is proportional toxiπ(x) and therefore equal toxiπ(x)/x̄i. We deduce the flow
throughput of classi:

γi = ∑
x:xi>0

xiπ(x)
x̄i
× φi(x)

xi
=

1
x̄i

∑
x:xi>0

π(x)φi(x).
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Expression (17.2) then follows from the traffic conservation equation:

ρi = ∑
x:xi>0

π(x)φi(x),

which is a consequence of the ergodicity of the processx(t).

Other throughput metrics

Clearly, a number of other performance metrics could be usedto assess the quality of
the data transfers. In the presence of per-flow rate constraints for instance, a quantity
of interest is the probability that the instantaneous bit rate of some flow is less than
its rate limit. A recursive algorithm to evaluate this probability is given in Section
17.9 in the case of a single wireline link.

17.6 Queueing analysis

Evaluating the flow throughput requires the derivation of the stationary distribution
π . We first consider the Markovian setting described in Section 17.3 where flows
of each class arrive as a Poisson process and have i.i.d. sizes with exponential dis-
tribution. The sensitivity of the results to these traffic assumptions depends on the
allocation and will be discussed in Sections 17.7 and 17.8.

A queueing network

In the considered Markovian setting, the system may be viewed as a network ofN
parallel queues with state-dependent service rates. Specifically, class-i flows may be
represented as customers that arrive at queuei as a Poisson process of intensityλi ,
have i.i.d. service requirements with exponential distribution of meanσi and leave
the network once served. The traffic intensity at queuei is ρi = λiσi (in bit/s). The
number of customers present at queuei is xi . The service rateφi of queuei, which
corresponds to the bit rate allocated to class-i flows, depends on the network statex.
This is illustrated in Figure 17.9 forN = 2 classes. Note that the vector of service
ratesφ is constrained by the capacity region (17.1) in all statesx. Since the total bit
rate allocated to each class is assumed to be evenly shared bythe flows of this class,
the service discipline of each queue is processor sharing.

Balance property

It turns out that the analysis of such a queueing network is intractable unless the
service rates satisfy the following balance property:
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Fig. 17.9: A wireline network, its capacity region and the corresponding queueing
network.

∀i, j, ∀x, φi(x)φ j(x−ei) = φ j(x)φi(x−ej), (17.1)

where we use the convention thatφ(x) = 0 if x 6∈NN. Note that the balance property
is equivalent to the reversibility of the Markov processx(t), whose transition rates
are given in Section 17.3. We refer to the corresponding queueing network as a
Whittle network (cf. the appendix).

Stationary distribution

In view of the balance property (17.1), one can define a positive functionΦ by
Φ(0) = 1 and:

∀x 6= 0, Φ(x) =
1

φi1(x)φi2(x−ei1) . . .φin(ein)
, (17.2)

wherex,x−ei1,x−ei1−ei2, . . . ,ein,0 denotes any direct path from statex to state
0. Conversely, the existence of such a function implies the balance property (17.1).
Now let π be the positive measure onNN defined (up to a multiplicative constant)
by:

∀x, π(x) = π(0)Φ(x)ρx, (17.3)

where we use the notation:
ρx≡∏

i
ρxi

i .

The measureπ satisfies the detailed balance equations associated with the Markov
processx(t):
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∀x, π(x)φi(x)σ−1
i = π(x−ei)λi ,

where we use the convention thatφi(x) = 0 if xi = 0 andπ(x) = 0 if x 6∈ NN. Thus
x(t) is indeed reversible, of invariant measureπ . It is ergodic under the stability
condition:

∑
x

Φ(x)ρx < ∞, (17.4)

in which caseπ is, after normalization, the stationary distribution of the network
state.

17.7 Resource allocation

The balance property (17.1) is key to evaluating the stationary distribution of the
network state and thus the flow throughput: if the resource allocation satisfies that
property, there is a closed-form expression for the stationary distribution, which is
insensitive to all traffic characterics beyond the traffic intensity (this is shown in the
next section using the insensitivity property of Whittle networks); if the resource
allocation does not satisfy the balance property, there is no closed-form expression
for the stationary distribution, which is sensitive to all traffic characteristics (the
corresponding queueing network is not a Whittle network).

Max-min fairness

The principle of max-min fairness is to allocate network resources as equally as
possible without wasting resources. Max-min fairness is uniquely defined by the
following water-fillingprocedure:

1. start from a bit rate equal to zero for all flows;
2. increase the bit rate of all flows at the same speed until thebit rate of some flows

is constrained by the capacity region or by their rate limit;freeze the bit rate of
these flows;

3. apply step 2 repeatedly to non-frozen flows until the bit rate of all flows is con-
strained by the capacity region or by their rate limit.

For the linear network of Figure 17.1 for instance, with equal link capacities and the
same number of flows on each route, all flows have the same bit rate.

Max-min fairness does not satisfy the balance property (17.1) except if the ca-
pacity constraints (17.1) reduce to a single resourcel and if all flows have the same
resource requirement in the sense thatAil = A jl for all i, j. In the presence of addi-
tional per-flow constraints (17.2), all flows must also have the same rate limit.
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Proportional fairness

Proportional fairness is based on the notion ofutility. Specifically, assume the utility
of a user for any data transfer is equal to the logarithm of his/her instantaneous bit
rate. Proportional fairness is then defined as the unique allocation that maximizes
the overall utility under the capacity constraints:

∀x 6= 0, φ(x) = arg max
ϕ:ϕA≤C,ϕ≤xa

∑
i:xi>0

xi log

(
ϕi

xi

)
.

Coming back to the linear network of Figure 17.1 with equal link capacities and
the same number of flows on each route, the bit rate of class-3 flows is half that of
class-1 flows and class-2 flows: these flows that consume more resources receive a
lower bit rate.

Proportional fairness does not satisfy the balance property in general. For linear
networks like that of Figure 17.1, proportional fairness isbalanced if and only if
all links have the same capacity. For tree networks like thatof Figure 17.2, propor-
tional fairness coincides with max-min fairness and is not balanced. Like max-min
fairness, proportional fairness is not balanced in the presence of additional per-flow
constraints (17.2), except if the network reduces to a single resource and all flows
have the same resource requirement and the same rate limit.

Balanced fairness

There is a unique allocation that satisfies the balance property and lies on the
boundary of the capacity region. This allocation, that coincides with max-min
fairness and proportional fairness in the particular caseswhere these alloca-
tions satisfy the balance property, is referred to asbalanced fairness.

In view of (17.2), balanced fairness is uniquely defined by the corresponding bal-
ance functionΦ as follows:

∀x 6= 0, φi(x) =
Φ(x−ei)

Φ(x)
,

with the convention thatΦ(x) = 0 if x 6∈ NN. In view of the capacity constraints
(17.1), the balance function must satisfy the inequalities:

∀l , Φ(x) ≥ 1
Cl

∑
i

Ail Φ(x−ei).

If the vectorφ(x) lies on the boundary of the capacity set in all statesx 6= 0, one
of these inequalities must be an equality. We deduce that thebalance functionΦ is
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recursively defined byΦ(0) = 1 and:

∀x 6= 0, Φ(x) = max
l

1
Cl

∑
i

Ail Φ(x−ei). (17.1)

In the presence of per-flow rate limits (17.2), the balance function must satisfy
the additional inequalities:

∀i : xi > 0, Φ(x)≥ 1
xiai

Φ(x−ei).

The recursion becomes in this case:

Φ(x) = max

{
max

l

1
Cl

∑
i

Ail Φ(x−ei), max
i:xi>0

1
xiai

Φ(x−ei)

}
. (17.2)

In both cases, the stationary distribution of the network state is given by (17.3)
under the stability condition (17.4). As mentionned in Section 17.4, this stability
condition is in fact satisfied under the usual traffic conditions (17.3):

Property 17.7.1 For balanced fairness, the network is stable ifρA < C.

Proof. Using (17.2), it may be easily verified by induction on|x| ≡ ∑i xi thatΦ is
the smallest balance function that satisfies the capacity constraints in the sense that
Φ(x)≤ Φ̃(x) for all statesx for any functionΦ̃ such thatΦ̃(0) = 1 and for allx 6= 0:

∀l , ∑
i

Ail
Φ̃(x−ei)

Φ̃(x)
≤Cl , ∀i : xi > 0,

Φ̃(x−ei)

Φ̃(x)
≤ xiai .

If ρA<C, there is some vector̃ρ which is component-wise strictly larger thanρ
such thatρ̃A < C. In the absence of per-flow rate constraints, letΦ̃ be the positive
function defined by:

Φ̃(x) = ∏
i

1
ρ̃xi

i
.

We haveΦ̃(0) = 1 and it follows from the inequalitỹρA < C that the capacity
constraints are satisfied. We deduce thatΦ(x)≤ Φ̃(x) for all statesx. In particular,

∑
x

Φ(x)ρx ≤∑
x

Φ̃(x)ρx = ∑
x

∏
i

(
ρi

ρ̃i

)xi

< ∞.

The stability condition (17.4) is satisfied.
In the presence of per-flow rate constraints, the proof is similar with the balance

functionΦ̃ defined as:
Φ̃(x) = ∏

i
ϕi(xi),

where for each classi and all positive integersn,
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ϕi(n) =
1

n!an
i

if nai ≤ ρ̃i , ϕi(n) =
ϕi(n−1)

ρ̃i
otherwise.

We haveΦ̃(0) = 1 and it may be easily verified that the capacity constraints are
satisfied. The proof then follows from the fact that:

∑
x

Φ(x)ρx≤∑
x

Φ̃(x)ρx = ∑
x

∏
i

ϕi(xi)ρxi
i < ∞.

17.8 Insensitivity results

In this and the following two sections, we focus on balanced fairness, for which
analytical results can be derived. The throughput performance of max-min fairness
and proportional fairness is compared to that of balanced fairness for various net-
works in Section 17.11. We here show that the stationary distribution of the network
state under balanced fairness is independent of all traffic characteristics described in
Section 17.3 beyond the traffic intensity.

Flow size distribution

We first assume that flows of each class arrive as a Poisson process and show that the
stationary distribution (17.3) is insensitive to the flow size distribution1. We prove
in addition that the flow throughput is independent of the flowsize.

Consider the simple case of a Cox distribution that consistsof a mixture of two
exponential distributions. Specifically, class-i flows start with an exponential phase
of meanσi,1 bits, which is followed by an exponential phase of meanσi,2 bits with
probability pi . The mean size of class-i flows is σi = σi,1 + piσi,2. We denote by
ρi,1 = λiσi,1 the traffic intensity corresponding to the first phase, byρi,2 = λi piσi,2

the traffic intensity corresponding to the second phase. Thetotal traffic intensity of
classi is ρi = ρi,1 + ρi,2.

Let y= (y1,y2) wherey1 andy2 are the vectors whosei-th componentyi,1 andyi,2

gives the number of class-i flows in phases 1 and 2, respectively. Since the total bit
rate allocated to class-i flows is evenly shared by these flows, the bit rate allocated
to class-i flows in phases 1 and 2 is respectively given by:

φi,1(y) = φi(y1 +y2)
yi,1

yi,1 +yi,2
and φi,2(y) = φi(y1 +y2)

yi,2

yi,1 +yi,2

in all statesy such thatyi,1 +yi,2 > 0. The corresponding balance property (17.1) is
satisfied, so that the associated queueing network is a Whittle network (refer to the
appendix). The balance function is:

1 Recall that we restrict the analysis to Cox distributions. We refer the reader to [25] for the exten-
sion of this result to any distribution with finite mean.
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y 7→Φ(y1 +y2)∏
i

(
yi,1 +yi,2

yi,1

)
.

We deduce the stationary distribution of the number of flows of each class:

∀x 6= 0, π(x) = π(0) ∑
y:y1+y2=x

Φ(y1 +y2)∏
i

(
yi,1 +yi,2

yi,1

)
ρyi,1

i,1 ρyi,2
i,2

= π(0)Φ(x)ρx,

which coincides with (17.3). Thus the stationary distribution of the number of flows
of each class is insensitive to the chosen Cox distribution.We have the following
additional insensitivity result.

Property 17.8.1 For any class i, the flow throughput is the same for both phasesof
the flow and equal toγi .

Proof. Let γi,1 andγi,2 be the flow throughput corresponding to phases 1 and 2 of
class-i flows, respectively. Denoting by ¯yi,1 andȳi,2 the mean number of class-i flows
in phases 1 and 2, respectively, we have in view of (17.2):

γi,1 =
ρi,1

ȳi,1
and γi,2 =

ρi,2

ȳi,2
.

The mean number of class-i flows in phase 1 is given by:

ȳi,1 = π(0) ∑
y:yi,1>0

yi,1Φ(y1 +y2)∏
j

(
y j ,1 +y j ,2

y j ,1

)
ρyj,1

j ,1 ρyj,2
j ,2 ,

= π(0) ∑
y:yi,1>0

(yi,1 +yi,2)ρi,1Φ(y1 +y2)

(
yi,1 +yi,2−1

yi,1−1

)
ρyi,1−1

i,1 ρyi,2
i,2

×∏
j 6=i

(
y j ,1 +y j ,2

y j ,1

)
ρyj,1

j ,1 ρyj,2
j ,2 ,

from which we deduce:

ȳi,1

ρi,1
=

ȳi,2

ρi,2
= π(0)∑

y
(yi,1 +yi,2+1)Φ(y1 +y2+ei)∏

j

(
y j ,1 +y j ,2

y j ,1

)
ρyj,1

j ,1 ρyj,2
j ,2 .

The proof then follows from (17.2) and the equalities ¯xi = ȳi,1 + ȳi,2 andρi = ρi,1 +
ρi,2.

Decomposing the flow size distribution into an arbitrary number of phases, we
deduce similarly that the stationary distribution does notdepend on the chosen Cox
distribution and that all phases have the same flow throughput. Considering the lim-
iting case where each phase is infinitely small, we conclude that the flow throughput
of a class-i flow is equal toγi independently of its size. Equivalently, the mean per-
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bit delay of a class-i flow is equal to 1/γi independently of the considered bit in this
data flow.

Sessions

We now assume that flows have i.i.d. sizes with exponential distribution but are
generated within sessions. We first consider the simple caseof two-flow sessions.
Sessions of class-i flows arrive as a Poisson process of intensityλi , start with a flow
of exponential size of meanσi,1 bits, which is followed by a flow of exponential size
of meanσi,2 bits after a think-time of exponential duration. We letσi,1 + σi,2 = σi

so that the total traffic intensity generated by class-i flows is still equal toρi .
It may again be easily verified that the associated queueing network is a Whittle

network, where think-times are represented by infinite-server queues. The stationary
distribution of the number of flows of each class is given by (17.3) under the stability
condition (17.4). It is insensitive to the choice ofσi,1 andσi,2 (providedσi,1+σi,2 =
σi) and to the mean think-time durations. It may also be shown asin Proposition
17.8.1 that the flow throughput is the same for the first flow andthe second flow of
the session.

These results extend to sessions with an arbitrary number offlows and Cox dis-
tributions for the flow sizes and the think-time durations. One may in fact represent
virtually any traffic characteristics by considering as many types of sessions as nec-
essary. The sizes and durations of successive flows and think-times within the same
session may be correlated (e.g., each small flow is followed by a short think-time
and the session ends with a large flow). The stationary distribution of the number of
flows of each class is still given by (17.3) under the stability condition (17.4). More-
over, the flow throughput of a class-i flow is equal toγi independently of its size, the
type of session it belongs to and its position in the session (e.g., first, second or last
flow of the session). Equivalently, the mean per-bit delay ofa class-i flow is equal
to 1/γi independently of the considered bit within the flow and the considered flow
within the session.

17.9 A single link

This section is devoted to the practically interesting caseof a single link of capacity
C bit/s. Flows have different rate limits and share the link capacity according to bal-
anced fairness. In view of the above insensitivity results,we can restrict the analysis
to the Markovian setting described in Section 17.3 where flows of each class arrive
as a Poisson process and have i.i.d. sizes with exponential distribution.
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No flow rate limit

We start with the simple case where flows do not have any individual rate limit.
The model then corresponds to anM/M/1 queue of loadρ/C, whereρ denotes the
traffic intensity in bit/s. The steady state distribution is:

π(x) = π(0)
(ρ

C

)x
.

We have:
x̄ =

ρ
C−ρ

so that, in view of (17.2),
γ = C−ρ . (17.1)

Thus the flow throughput is equal to theresidual capacity, defined as the difference
between link capacity and traffic intensity. This result mayin fact be deduced from
the following simple argument. Each flow gets all capacity not used by other flows.
By ergodicity, the throughput of a flow of infinite size is equal to C−ρ (since the
capacity used by other flows is equal to the traffic intensity). The result (17.1) then
follows from the fact that the mean throughput of a flow is independent of its size
(cf. Section 17.8).

A common flow rate limit

Now assume that flows have a common rate limita=C/m for some positive integer
m. The model then corresponds to anM/M/m queue of loadρ/C. The steady state
distribution is:

π(x) = π(0)
ρx

x!ax if x≤m, π(x) = π(m)
(ρ

C

)x−m
if x > m.

As mentioned in Section 17.2, an interesting throughput performance metric is the
steady state probability that flows do not get their rate limit, a. This is the probability
S that the link is saturated, related to the Erlang C formula, which can be evaluated
by means of the following simple recursive algorithm. Denote by p(·) = π(·)/π(0)
the unnormalized invariant measure. We have:

S=
p̄

1+ p(1)+ . . .+ p(m)+ p̄

with
p̄ = ∑

x>m
p(x).

The recursive algorithm is given by:

p(0) = 1, p(x) =
ρ
xa

p(x−1) for x = 1, . . . ,m,
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and
p̄ =

ρ
C−ρ

p(m).

The flow throughput is related to the probability of saturation through the simple
expression:

γ = a
1−ρ

1−ρ +S
.

Multiple rate limits

Finally, consider the general case where class-i flows have the rate limitai > 0. In
view of (17.2), the balance function is defined by:

Φ(x) = ∏
i

1
xi !a

xi
i

if x.a≤C,

and

Φ(x) =
1
C ∑

i
Φ(x−ei) if x.a > C.

We deduce from (17.3) the stationary distribution of the number of flows of each
class:

π(x) = π(0)∏
i

1
xi !

(
ρi

ai

)xi

if x.a≤C, (17.2)

and

π(x) =
1
C ∑

i

ρiπ(x−ei) if x.a > C. (17.3)

Probability of saturation

Assuming the link capacity and the flow rate limits are integers, the steady state
probabilityS that the link is saturated can again be derived through a simple recur-
sive algorithm. Let:

∀n∈ N, p(n) = ∑
x:x.a=n

π(x)
π(0)

.

Note that:
S=

p̄
1+ p(1)+ . . .+ p(C)+ p̄

.

with
p̄ = ∑

n>C

p(n).

We denote byθ = ∑i ρi the overall traffic intensity.

Property 17.9.1 We have:
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p(0) = 1, p(n) = ∑
i

ρi

n
p(n−ai) for n = 1, . . . ,C,

with the convention that p(n) = 0 if n < 0, and

p̄ = ∑
i

ρi p̄i

C−θ
with p̄i = ∑

n:C−ai<n≤C

p(n).

Proof. The first part of the recursion follows from (17.2). We indeedhave for all
n = 1, . . . ,C:

p(n) = ∑
x:x.a=n

x.a
n

π(x)
π(0)

= ∑
x:x.a=n

∑
i:xi>0

ρi

n
1

(xi−1)!

(
ρi

ai

)xi−1

∏
j 6=i

1
x j !

(
ρ j

a j

)xj

= ∑
i

ρi

n ∑
x:(x+ei ).a=n

π(x)
π(0)

= ∑
i

ρi

n
p(n−ai).

Now using (17.3) we get:

p̄ = ∑
x:x.a>C

π(x)
π(0)

= ∑
x:x.a>C

1
C ∑

i
ρi

π(x−ei)

π(0)

= ∑
i

ρi

C ∑
x:(x+ei).a>C

π(x)
π(0)

= ∑
i

ρi

C
(p̄+ p̄i).

from which the second part of the recursion easily follows.

Flow throughput

The flow throughput can be obtained by means of another recursive algorithm. De-
fine for each classi:

∀n∈N, qi(n) = ∑
x:x.a=n

xi
π(x)
π(0)

.

In view of (17.2), the flow throughput of classi is given by:

γi = ρi
1+ p(1)+ . . .+ p(m)+ p̄
1+qi(1)+ . . .+qi(m)+ q̄i
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with
q̄i = ∑

n>C

qi(n).

Property 17.9.2 We have:

qi(0) = 0, qi(n) =
ρi

n
p(n−ai)+∑

j

ρ j

n
qi(n−a j) for n = 1, . . . ,C,

with the convention that qi(n) = 0 if n < 0, and

q̄i = ρi
p̄i + p̄
C−ρ

+∑
j

ρ j q̄i j

C−ρ
with q̄i j = ∑

n:C−a j<n≤C

qi(n).

Proof. The proof is similar to that of Proposition 17.9.1. We have for all n =
1, . . . ,C:

qi(n) = ∑
x:x.a=n

xi
x.a
n

π(x)
π(0)

= ∑
x:x.a=n

xi ∑
j :xj >0

ρ j

n
1

(x j −1)!

(
ρ j

a j

)xj−1

∏
k6= j

1
xk!

(
ρk

ak

)xk

= ∑
j

ρ j

n ∑
x:(x+ej ).a=n

xi
π(x)
π(0)

=
ρi

n
p(n−ai)+∑

j

ρ j

n
qi(n−a j).

The second part of the recursion follows from (17.3):

q̄i = ∑
x:x.a>C

xi
π(x)
π(0)

= ∑
x:x.a>C

xi

C ∑
j

ρ j
π(x−ej)

π(0)

= ∑
j

ρ j

C ∑
x:(x+ej ).a>C

xi
π(x)
π(0)

=
ρi

C
(p̄i + p̄)+∑

j

ρ j

C
(q̄i + q̄i j ).

17.10 Performance bounds

We now provide explicit bounds on the flow throughput that prove useful for the per-
formance evaluation of networks with several resources. For convenience, we focus
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on the per-bit delayτi of classi, which is defined as the inverse of the flow through-
put γi of classi. We first assume that the capacity constraints reduce to (17.1). The
impact of individual rate limits is described at the end of the section. We shall prove
that, under balanced fairness,

max
l

Ail

Cl −θl
≤ τi ≤max

l

Ail

Cl
+∑

l

θl

Cl

Ail

Cl −θl
, (17.1)

whereθ denotes the line vectorρA.

Flows with a single capacity constraint

Before proving the inequalities (17.1), we consider the case where class-i flows are
constrained by resourcel only, in the sense thatAir = 0 for all r 6= l . The bounds
then coincide and we have:

τi =
Ail

Cl −θl
. (17.2)

We give a direct proof of this result, which will be useful forthe proof of (17.1). We
need the following preliminary result:

Property 17.10.1 Assume class-i flows are constrained by resource l only. Then
resource l is saturated in any state x such that xi > 0, that is

Φ(x) =
1
Cl

∑
j

A jl Φ(x−ej). (17.3)

Proof. The proof is by induction on the total number of flowsn≡ |x|. The property
holds forn = 1 since, in view of (17.1),

Φ(ei) =
Ail

Cl
.

Now assume the property holds forn = m, for somem≥ 1. Letx be any state such
thatxi > 0 andn = m+1. By the induction hypothesis, we have for any resourcer:

∑
j

A jl

Cl
Φ(x−ej)≥∑

j ,k

A jl

Cl

Akr

Cr
Φ(x−ej−ek) = ∑

k

Akr

Cr
Φ(x−ek).

Since the inequality holds for allr, it follows from (17.1) that:

Φ(x) = ∑
j

A jl

Cl
Φ(x−ej).

In view of (17.3), we get for all statesx such thatxi > 0:
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π(x) = ∑
j

A jl

Cl
ρ jπ(x−ej),

with the conventionπ(x) = 0 if x 6∈ NN. Thus,

x̄i = ∑
x

xiπ(x)

= ∑
j

A jl

Cl
ρ j ∑

x
xiπ(x−ej),

= ∑
j 6=i

A jl

Cl
ρ j ∑

x
xiπ(x−ej)+

Ail

Cl
ρi ∑

x
(xi−1)π(x−ei)+

Ail

Cl
ρi ∑

x
π(x−ei),

= ∑
j 6=i

A jl

Cl
ρ j x̄i +

Ail

Cl
ρi x̄i +

Ail

Cl
ρi ,

=
θl

Cl
x̄i +

Ail

Cl
ρi .

Expression (17.2) then follows from (17.1).

Lower bound

The proof of the lower bound (17.1) is similar to the proof of (17.2). Replacing
(17.3) by the following inequality, valid for all resourcesl in view of (17.1):

Φ(x) ≤ 1
Cl

∑
j

A jl Φ(x−ej),

we obtain:

τi ≥
Ail

Cl −θl
.

Upper bound

To prove the upper bound, we addL + 1 “virtual” classes. Virtual class 0 has the
same capacity constraint as classi and for all l = 1, . . . ,L, virtual classl uses re-
sourcel only and has the same requirement for this resource as classi. The origi-
nal allocation vectorφ and the new allocation vector̃φ associated with the virtual
classes must satisfy the component-wise inequality:

φA+ φ̃ Ã≤C,

where by definition of the virtual classes,Ã0l = Ail and Ãkl = 1k=l Ail for all
k, l = 1, . . . ,L. We denote by ˜x the new network state associated with the virtual
classes. The original network state is still denoted byx. The new balance function
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Φ̃ associated with balanced fairness is recursively defined byΦ̃(0) = 1 and:

Φ̃(x, x̃) = max
l

{
Ail

Cl
Φ̃(x, x̃−e0)+

Ail

Cl
Φ̃(x, x̃−el)+∑

j

A jl

Cl
Φ̃(x−ej , x̃)

}
, (17.4)

with the conventionΦ̃(x, x̃) = 0 if x 6∈ NN or x̃ 6∈NL+1.
We have the following key result:

Property 17.10.2 For any state x∈ NN,

Φ̃(x,e0)+ (∑
l

Ail

Cl
)Φ̃(x,0)≤ (max

l

Ail

Cl
)Φ̃(x,0)+∑

l

Φ̃(x,el ).

Proof. In view of Proposition 17.10.1, the inequality is equivalent to:

Φ̃(x,e0)≤ (max
l

Ail

Cl
)Φ̃(x,0)+∑

l
∑

j

A jl

Cl
Φ̃(x−ej ,el ).

The proof is by induction on the total number of flowsn≡ |x|. The property holds
for n = 0. Assume it holds forn = m and letx be any state such thatn = m+1. We
denote byr a resource that is saturated in state(x,e0):

Φ̃(x,e0) =
Air

Cr
Φ̃(x,0)+∑

k

Akr

Cr
Φ̃(x−ek,e0).

By the induction hypothesis, we have:

Φ̃(x,e0)≤
Air

Cr
Φ̃(x,0)+(max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x−ek,0)+∑

l
∑
j ,k

Akr

Cr

A jl

Cl
Φ̃(x−ej−ek,el ).

Now it follows from (17.4) that for any classj:

∀l 6= r, ∑
k

Akr

Cr
Φ̃(x−ej−ek,el )≤ Φ̃(x−ej ,el ),

and
Air

Cr
Φ̃(x−ej ,0)+∑

k

Akr

Cr
Φ̃(x−ej−ek,er)≤ Φ̃(x−ej ,er).

We deduce that:

Φ̃(x,e0) ≤
Air

Cr
Φ̃(x,0)+ (max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x−ek,0)

+ ∑
l

∑
j

A jl

Cl
Φ̃(x−ej ,el )−∑

j

A jr

Cr

Air

Cr
Φ̃(x−ej ,0).

Thus the proof will be completed if we show that:
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Air

Cr
Φ̃(x,0)+(max

l

Ail

Cl
)∑

k

Akr

Cr
Φ̃(x−ek,0)−∑

j

A jr

Cr

Air

Cr
Φ̃(x−ej ,0)≤ (max

l

Ail

Cl
)Φ̃(x,0).

But this inequality may also be written:

(
max

l

Ail

Cl
− Air

Cr

)(
Φ̃(x,0)−∑

j

A jr

Cr
Φ̃(x−ej ,0)

)
≥ 0,

which is satisfied in view of (17.4).

Under the stability condition (17.3), there exists an(L+1)-dimensional vector̃ρ
such that the following component-wise strict inequality is satisfied:

θ̃ ≡ ρA+ ρ̃Ã < C.

Let τ̃l be the corresponding per-bit delay of virtual classl , for all l = 0,1, . . . ,L. To
prove the upper bound, we use the fact that:

lim
ρ̃→0

τ̃0 = τi

and, in view of (17.2),

∀l = 1, . . . ,L, τ̃l =
Ail

Cl − θ̃l
.

In particular,

∀l = 1, . . . ,L, lim
ρ̃→0

τ̃l =
Ail

Cl −θl
.

Now it follows from (17.1) and (17.3) that:

∀l = 0,1, . . . ,L, lim
ρ̃→0

τ̃l =
∑x Φ̃(x,el )ρx

∑x Φ̃(x,0)ρx
.

Using Proposition 17.10.2, we obtain:

τi +∑
l

Ail

Cl
≤max

l

Ail

Cl
+∑

l

Ail

Cl −θl
,

from which the upper bound (17.1) directly follows.

Flow rate limits.

In the presence of per-flow rate constraints (17.2), the bounds become:

max

{
1
ai

,max
l

Ail

Cl −θl

}
≤ τi ≤max

{
1
ai

,max
l

Ail

Cl

}
+∑

l

θl

Cl

Ail

Cl −θl
. (17.5)
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The proof is similar and omitted here.

17.11 Examples

This section presents numerical results for the various networks introduced in Sec-
tion 17.2. The flow throughput under balanced fairness is compared with the conser-
vative bound derived in Section 17.10 and with the flow throughput under max-min
fairness and proportional fairness. The latter is obtainedby simulation in the Marko-
vian setting described in Section 17.3 (except in the specific cases where these allo-
cations coincide with balanced fairness). Each simulationpoint corresponds to ex-
pression (17.2) where the mean number of flows is evaluated over 1,000,000 events
after a warm-up period of 100,000 events. All expressions and bounds concern im-
plicitly balanced fairness.

Wireline networks

Consider the 2-link linear network of Figure 17.1 with capacity constraints:

φ1 + φ3≤ 1, φ2 + φ3≤ 1.

The stability condition isθ1 < 1 andθ2 < 1, whereθ1 = ρ1 + ρ3 andθ2 = ρ2 + ρ3

are the traffic intensities at the first and the second link. Class-1 and class-2 flows
are constrained by a single resource so that, in view of (17.2),

γ1 = 1−θ1, γ2 = 1−θ2.

For class-3 flows, it follows from (17.1) that:

γ3≥
(1−θ1)(1−θ2)

1−θ1θ2
.

The left-hand graph of Figure 17.10 illustrates the tightness of this bound for
equal traffic intensitiesρ1 = ρ2 = ρ3. The bound is compared to the exact expres-
sion when the total traffic intensity at each linkθ1 = θ2 varies from 0 to 1. As
mentioned in Section 17.7, proportional fairness coincides with balanced fairness
in this particular case. The right-hand graph of Figure 17.10 shows that max-min
fairness gives very similar results.

Now consider the tree network of Figure 17.2 with three unit capacity branches
and a common root link of capacity 2. The capacity constraints are:

φ1 + φ2+ φ3≤ 2, φ1≤ 1, φ2≤ 1, φ3≤ 1.

For equal traffic intensities, the stability condition isθ < 2 whereθ = ρ1 + ρ2+ ρ3

denotes the traffic intensity at the common root link. It follows from (17.1) that:
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Fig. 17.10: Flow throughput of class 3 in the linear network of Figure 17.1.

γ1 = γ2 = γ3≥
2(2−θ )(3−θ )

12−3θ−θ 2 .

The results are shown in Figure 17.11 with respect toθ . Again, the throughput
performance of proportional fairness and max-min fairnessis very similar to that of
balanced fairness.
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Fig. 17.11: Flow throughput in the tree network of Figure 17.2.

Traffic splitting

Consider the network of Figure 17.3 with capacity constraints:

φ1 ≤ 1/2, φ1 + φ2≤ 1, φ2 + φ3≤ 1.

The stability condition isθ1 < 1/2, θ2 < 1, θ3 < 1 with θ1 = ρ1, θ2 = ρ1 + ρ2 and
θ3 = ρ2 + ρ3. It follows from (17.1) that:
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γ1 ≥
(1/2−θ1)(1−θ2)

1−θ1θ2−θ2/2
, γ2 ≥

(1−θ2)(1−θ3)

1−θ2θ3
, γ3 = 1−θ3.

For equal traffic intensities, the stability condition reduces toθ < 3/2 whereθ =
ρ1+ρ2+ρ3 denotes the total traffic intensity. The results are shown inFigure 17.12
with respect toθ .
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Fig. 17.12: Flow throughput in the network of Figure 17.3 (classes 1,2,3, from bot-
tom to top).

Wireless networks

Now consider the wireless access point of Figure 17.4, characterized by the unique
capacity constraint:

φ1

c1
+

φ2

c2
+

φ3

c3
≤ 1.

The stability condition isθ < 1, whereθ is the system load:

θ =
ρ1

c1
+

ρ2

c2
+

ρ3

c3
.

Proportional fairness gives for each classi = 1,2,3:

∀x 6= 0, φi(x) =
xi

∑i xi
ci .

The allocation satisfies the balance property (17.1) and coincides with balanced
fairness. Under these allocations, the access point serveseach flow the same fraction
of time, so that the transmission rate of each flow is proportional to its coding rate.
In view of (17.2), the flow throughput of each classi = 1,2,3 is given by:

γi = ci(1−θ ).
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Max-min fairness, on the other hand, gives for each classi = 1,2,3:

∀x 6= 0, φi(x) =
xi

∑i xi/ci
.

Thus the transmission rate is the same for all flows. This results in adiscriminatory
allocation of the radio resource: the access point serves each flow a fraction of time
that is inversely proportional to its coding rate. The resulting flow throughput is
shown in Figure 17.13 forc1 = 5, c2 = 1, c3 = 1/2 and equal traffic intensities
ρ1 = ρ2 = ρ3. The stability conditionθ < 1 imposes that the total traffic intensity
is less than 15/16. We observe that class-1 flows are strongly penalized by max-
min fairness. Since these flows contribute to a small fraction of the overall system
loadθ , the benefit for other classes is marginal. We conclude that the radio resource
should not be allocated according to max-min fairness for this particular system.
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Fig. 17.13: Flow throughput at a wireless access point (classes 1,2,3, from top to
bottom).

Now consider the additional constraint of a wireline backhaul link of c bit/s, as
shown in Figure 17.5. The stability condition becomesθ1 < 1 andθ2 < c, whereθ1

andθ2 correspond to the load of the wireless link and to the traffic intensity on the
wireline link, respectively:

θ1 =
ρ1

c1
+

ρ2

c2
+

ρ3

c3
, θ2 = ρ1 + ρ2+ ρ3.

In view of (17.1), we get for each classi = 1,2,3:

γi ≥
(

max

{
1
ci

,
1
c

}
+

θ1

ci(1−θ1)
+

θ2

c(c−θ2)

)−1

.

The results are shown in Figure 17.14 for the same parametersas above andc = 2.
The inequalityθ1 < 1 is more restrictive thanθ2 < 2 in this case, so that the system
is again stable if and only if the total traffic intensity is less than 15/16. We ob-
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serve that balanced fairness provides a good approximationto proportional fairness,
whose throughput performance is much better than that of max-min fairness.
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Fig. 17.14: Flow throughput at a wireless access point with wireline backhaul
(classes 1,2,3, from top to bottom).

Ad-hoc networks

The ad-hoc network of Figure 17.7 is characterized by the following capacity con-
straints:

2φ1 +2φ2 +3φ3≤ 1, 3φ1 + φ2+2φ3≤ 1, φ1 +3φ2+2φ3≤ 1.

The stability condition is given byθ1 < 1, θ2 < 1, θ3 < 1 with

θ1 = 2ρ1 +2ρ2+3ρ3, θ2 = 3ρ1 + ρ2+2ρ3, θ3 = ρ1 +3ρ2+2ρ3.

It follows from (17.1) that:

γ1 ≥
(

3+
2θ1

1−θ1
+

3θ2

1−θ2
+

θ3

1−θ3

)−1

.

Figure 17.15 shows class-1 flow throughput with respect to class-1 traffic intensity
ρ1 for equal traffic intensities. Note that the stability condition is given byρ1 < 3/7
in this case.

Flow rate limits

Finally, we consider a wireline link ofC bit/s shared by flows withN = 3 different
rate limits,a1,a2,a3 < C. The stability condition is given byθ < C whereθ =
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Fig. 17.15: Class-1 flow throughput in the ad-hoc network of Figure 17.7.

ρ1 + ρ2 + ρ3 denotes the total traffic intensity. It follows from (17.5) that for each
classi = 1,2,3:

γi ≥
(

1
ai

+
θ

C(C−θ )

)−1

.

Figure 17.16 gives the corresponding results with respect to θ for C = 10, a1 = 2,
a2 = 1, a3 = 1/2 and equal traffic intensitiesρ1 = ρ2 = ρ3. Proportional fairness
and max-min fairness coincide in this case.
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17.12 Open issues

While balanced fairness closely approximates proportional fairness in all considered
examples, there is no theoretical result that supports thisevidence except for some
structural properties obtained by Massoulié [15]. It seems even more difficult to
assess the throughput performance of max-min fairness which differs significantly
from that of balanced fairness in some cases. For both proportional fair and max-min
fair allocations, deriving bounds or approximations that only depend on the capacity
region (17.1) and on the vector of traffic intensities is a very challenging task.

There has been very little work on non-convex capacity regions. First, the op-
timization problem that defines proportional fairness doesnot necessarily have a
unique solution. Next, the stability condition is unknown in general. In particular,
the network may be stable even though the vector of traffic intensities does not be-
long to the capacity region but to the convex hull of this capacity region.

While the focus has been on data traffic only, data transfers must often share
network resources with flows of other applications like the telephone or audio and
video streaming. These flows have packet delay constraints that require specific rate
adaptation and scheduling algorithms. The impact of this traffic and its particular
control schemes on the throughput of data flows is not very well understood. Ex-
plicit results can be obtained by the so-called quasi-stationary approach, where the
time-scale of data flows is assumed to be very different from that of other flows.
It remains to determine the conditions under which these results provide bounds or
tight approximations for the exact throughput performance.

17.13 Bibliographical notes

The modeling of data links as processor-sharing queues started with the analysis
of wireless systems by Telatar and Gallager [22] and Stamatelos and Koukoulidis
[21]. Based on the observation that the transmission control protocol, TCP, shares
resources in an approximately fair way, Heyman, Lakshman and Neidhardt [8] and
Massoulié and Roberts [16] applied similar models to wireline networks. Practical
dimensioning rules were developed on this basis by Berger and Kogan [2]. Ben Fredj
et al. observed the insensitivity of the results to detailedtraffic characteristics like the
structure of user sessions [1]. Many papers proposed modified models that account
more precisely for the way bandwidth is shared by TCP, see [12] for instance.

The notion of max-min fairness was introduced for communication networks by
Bertsekas and Gallager [3]. Kelly and his coauthors [10, 17]introduced the notion
of proportional fairness and identified a class of decentralized algorithms that real-
ize this allocation. Various extensions of these results were obtained by Low and
Lapsley [14], Mo and Walrand [18], Massoulié and Roberts [17] and others.

Stability issues were addressed by De Veciana, Lee and Konstantopoulos [23],
Bonald and Massoulié [4], Ye [24] and Lin, Shroff and Srikant [13] for various al-
locations, including max-min fairness and proportional fairness. The first analytical
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performance result for networks with several links was derived by Massoulié and
Roberts [16]. The notion of balanced fairness was introduced for wireline networks
by Bonald and Proutière [6] and generalized to any network with a convex capacity
region by Bonald, Massoulié, Proutière and Virtamo [5]. These papers also char-
acterize the networks for which max-min fairness and proportional fairness satisfy
the balance property. Finally, the recursion derived by Bonald and Virtamo [7] for
multirate systems is the analogue of that derived by Kaufman[9] and Roberts [19]
for circuit-switched networks.

Appendix

We recall the definition and stationary distribution of Whittle networks. For details,
we refer the reader to the book by Serfozo [20].

Consider a network ofN queues. External customer arrivals at queuei form a
Poisson process of intensityνi , with ∑i νi > 0. After service completion at queue
i, a customer is routed to queuej with probability pi j and leave the network with
probability 1−∑ j pi j . All customers eventually leave the network so that the arrival
rateλi at queuei is uniquely defined by the traffic equations:

λi = νi +∑
j

λ j p ji , i = 1, . . . ,N.

The service requirements are independent, exponentially distributed of meanσi at
queuei. We denote byρi = λiσi the traffic intensity at queuei.

We denote byxi the number of customers present at queuei and byx the corre-
sponding line vector. The service rate of queuei is a functionφi of the network state
x, with φi(x) = 0 if and only if xi = 0. We say that the network is a Whittle network
if the following balance property is satisfied:

∀i, j, ∀x, φi(x)φ j(x−ei) = φ j(x)φi(x−ej),

where we use the convention thatφ(x) = 0 if x 6∈ NN. This is equivalent to the
existence of a balance functionΦ such thatΦ(0) = 1 and:

∀x 6= 0, Φ(x) =
1

φi1(x)φi2(x−ei1) . . .φin(ein)
,

wherex,x−ei1,x−ei1−ei2, . . . ,ein,0 denotes any direct path from statex to state 0.
The stationary distribution of the network state is then given by:

∀x, π(x) = π(0)Φ(x)ρx,

under the stability condition:
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∑
x

Φ(x)ρx < ∞,

where we use the notation:
ρx≡∏

i
ρxi

i .
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Chapter 18
Modeling a Hospital Queueing Network

Stefan Creemers and Marc Lambrecht

Abstract Healthcare systems differ intrinsically from manufacturing systems. As
such, they require a distinct modeling approach. In this article, we show how to
construct a queueing network of a general class of healthcare systems. In order to
analyze such networks, we use the parametric decompositionapproach. Using this
approach the network is decomposed into a set of single queueing systems which
can be analyzed separately. Afterwards, results of these single queueing systems
can be aggregated and general performance measures of the queueing network are
obtained. In addition, we develop new expressions to assessthe impact of service
outages and use the queueing network to approximate patientflow times and to
evaluate a number of practical applications.

18.1 Introduction

Whereas the origin of queueing theory dates back from the beginning of the pre-
vious century, networks of queues have only been studied fora few decades. The
pioneering works of Jackson (1957 and 1963) showed that the stationary distribution
of the number of customers in queue at a queueing network, is aproduct form of the
stationary distributions at the individual workstations of the network. As a conse-
quence, a queueing network can be decomposed into separate building blocks (i.e.
the individual workstations) that can be analyzed separately to obtain the solution
to the network as a whole. This approach is referred to as the parametric decompo-
sition approach. The main advantage of the approach is that it enables the study of,
otherwise intractable, complex queueing networks.

Stefan Creemers and Marc Lambrecht
Faculty of Business and Economics, Department of Decision Sciences and Information Man-
agement, Catholic University of Leuven , Naamsestraat 69, 3000 Leuven, Belgium, e-mail:
firstname.lastname@econ.kuleuven.be
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Unfortunately, the results obtained by Jackson (1957 and 1963) are only valid in
so-called “Jackson networks” (i.e. queueing networks which assume Poisson arrival
and service processes). When assuming a generalized queueing network (featuring
general service and arrival processes), the product form solution no longer holds.
As such, one requires another means to “link” the separate building blocks of the
queueing network. This link is established in the form of a “linking equation”. More
specifically, a linking equation approximates the stochastic nature of the outgoing
stream of customers at one of the workstations of the network. Using this informa-
tion, we can assess the stochastic nature of the inflow of customers at the work-
stations further down the queueing network. As such, a linking equation literally
“links” the results obtained at the separate workstations to obtain the solution of the
network as a whole. Marshall (1968) was the first to study the stochastic nature of
the outflow of customers at a queueing workstation. Ever since, a wide variety of
linking equations (applicable to a wide variety of settings) has been developed. We
refer the reader to Shanthikumar and Buzacott (1981), Buzacott and Shanthikumar
(1985), Bitran and Tirupati (1988) and Suri, Sanders and Kamath (1993) for a nice
review.

Among others, these results have been extended and implemented in Whitt’s
Queueing Network Analyzer (1983), a powerfull tool that allows the analysis of
a wide variety of complex queueing networks. Other noteworthy contributions to
the domain of parametric decomposition of queueing networks include the works of
Whitt (1994, 1995 and 1999a), Bitran and Tirupati (1988) andLambrecht, Ivens and
Vandaele (1998). A comprehensive overview of research on queueing networks in
general and the parametric decomposition method in particular may be found with
Askin (1993) and Hopp and Spearman (2000).

Queueing networks however, have mainly been studied in a manufacturing set-
ting. Applications towards services in general and healthcare in particular are rarely
seen. One of the reasons thereof is the difficulty of implementing the peculiarities
of a service system into a methodology that is focussed on manufacturing systems.
In what follows we discuss which problems may arise when modeling complex
hospital queueing networks. Next we demonstrate how to use the parametric de-
composition approach to model such queueing networks. In addition, we develop
new expressions to assess the impact of service outages in a healthcare setting. The
queueing network is used to test a variety of practical problems. More specifically,
we demonstrate the impact on system performance resulting from the reduction of
service outages and illustrate the beneficial effects of pooling. Moreover, we develop
an optimization model that enables us to determine the optimal number of patients
to be treated during a service session (e.g. a consultation time block). Finally we
present some conclusions.
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18.2 Problem Description

An important feature of healthcare processes (or services in general) is that the de-
mand for resources is to a large extent unscheduled. As a consequence, there is a
permanent mismatch between the demand for a treatment and the available capac-
ity. Moreover, timely care is very important so interrupts are common in healthcare
processes (the sense of urgency is almost always present). No wonder that healthcare
is riddled with delays. No need to come up with a convincing example, we have all
experienced that phenomenon. Delays are highly undesirable, not only from a psy-
chological point of view (patient satisfaction) but also from an economic point of
view. Government reimbursement systems are more and more based on a Justified
Length of Stay (JLoS) system. DRG’s (Diagnosis Related Groups) are character-
ized by a minimum and maximum length of stay (depending on parameters such
as severity of the illness, age of the patient, . . . ). If a patient is dismissed before the
JLoS is over, the hospital still collects a full reimbursement. On the other hand, if the
patient remains in care for a period which exceeds the limit of the JLoS, the hospital
has to pay for the extra costs involved. The JLoS of a DRG is determined in function
of a national average length of stay. The system stimulates hospitals to continuously
improve their performance. Moreover, improper schedulingand malfunctioning lo-
gistical systems cause lengths of stay that are too long. Insurance companies may
reject reimbursement of these “denied days” because the delay is not medically nec-
essary Hall, Belson, Muralli and Dessouky (2006). Delays also create a “hidden”
hospital in analogy with the hidden company. In other words,such a hospital cre-
ates wasteful overhead.

Hall (2006) coined the term patient flow. It represents the ability of the healthcare
system to serve patients quickly, reliably and efficiently as they move through stages
of care. Queue and delay analysis can produce dramatic improvements in medical
performance, patient satisfaction and cost efficiency of healthcare. Healthcare sys-
tems can be represented as a complex queueing network. The queueing models are
helpful to determine the capacity levels (and the allocation of capacity) needed to
respond to demands in a timely fashion (minimizing the delay). There is a demand
side (the patient mix and the associated variability in the arrival stream) and a sup-
ply side (the hospital resources such as surgeons, nurses, operating rooms, waiting
rooms, recovery, imaging machines, laboratories) in any healthcare process. More-
over, both demand and supply are inherently stochastic. This stochastic nature cre-
ates disturbances and outages during the process. It is the combination of capacity
analysis and variability that makes queueing theory so attractive. The major objec-
tive is to identify factors influencing the flow time of patients, to identify levers of
improvement and to analyze trade-offs. In this article we try to address some of the
issues mentioned above.

Queueing models have been applied in numerous industrial settings and service
industries. The number of applications in healthcare, however, is relatively small.
This is probably due to a number of unique healthcare relatedfeatures that make
queueing problems particularly difficult to solve. In this section, we will review
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these features and where appropriate we will shortly discuss the methodological
impact.

Before we dig into this issue, let’s first discuss two important modeling issues in
healthcare: the performance measures and the issue of pooled capacity.

The performance measures in healthcare systems focus on internal and external
delays. The internal delay refers to the sojourn time of patients inside the hospital
before treatment. The external delay refers to the phenomenon of waiting lists. Man-
ufacturing systems may buffer with finished goods inventory, service systems rely
more on time buffers and capacity buffers. Another important performance mea-
sure is related to the target occupancy (utilization) levels of resources. Average oc-
cupancy targets are often preferred by government and otherinstitutional agents.
Hereby, higher occupancy levels are preferred, but this results in longer delays. We
are often confronted with conflicting objectives. Instead of determining capacity
needs based on (target) occupancy levels, it is preferable to focus on delays. The
key issue in delay has to do with the tail probability of the waiting time. The tail
probability refers to the probability that a patient has to wait more than a speci-
fied time interval. Capacity needs (e.g. staffing) of an emergency department should
be based on an upper bound on the fraction of patients who experience a delay of
more than a specific time interval before receiving care froma physician (Green and
Soares, 2007). The second modeling issue has to do with pooling. In general, pool-
ing refers to the phenomenon that available inventory or capacity is shared among
various sources of demand (well known examples are locationpooling, commonal-
ity or flexible capacity). Pooling is based on the principle of aggregation and mostly
comes down to the fact that we can handle uncertainty with less inventory or capac-
ity. In healthcare systems, resources are usually dedicated to specific patient types,
hospitals have separate units or departments by diagnostictype and bed flexibility
is almost non-existing. As a result, pooling is absent. Thisexplains the fact that
most queueing models reported in the literature are dealingwith parts of the hos-
pital. Queueing models, however, can be used to model hospital wide systems and
to evaluate the benefits of greater versus less specialization of care units or other
resources (scanners, labs, . . . ).

Let’s now turn to a number of unique healthcare related features making queueing
models in healthcare difficult to model and to solve.

Re-entry of patients and stochastic routings

During consultation, patients may be routed to different facilities. The routing of a
patient through hospital facilities is not deterministic.Instead, during the diagnosis
stage there is a probabilistic routing. Moreover, patientsrequire in many cases sev-
eral consultations before surgery. Even after a patient is discharged from the hospital
after surgery and recovery, the patient is subjected to a number of follow-up consul-
tations. In other words, the queueing model must take care ofre-entry of patients,
creating additional work on top of the new patients. In most cases, the re-entry is
correlated.
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Service sessions for consultation and surgery

In most queueing models time is considered as continuous andevents are spread
out over this continuous time scale. In services in general and in healthcare more
specifically, resources are not continuously available. Instead, time is divided into
“service sessions” for consultation (e.g. twice a week) or surgery (e.g. one day per
week). Consequently we have to focus on service processes inwhich service takes
place during predefined service sessions. Vacation models observe the queueing be-
havior of such systems in which servers are available duringcertain time intervals
and are on “vacation” during the other time intervals.

Capacity related issues

Hospitals operate within strict business restrictions. Resources are usually very
scarce and consequently hospitals operate under high capacity utilization condi-
tions. The so-called heavy traffic conditions are present. Heavy traffic conditions
assume that all stations in the network are critically loaded. In such an environment,
inaccurate results have a large impact on resulting performance measures.

Modeling of absences, disturbances and interruptions

An important determinant of the flow time is variability. We distinguish two types
of variability. Natural variability is variability that isinherent to the system process.
Natural variability is much more substantial in healthcareas compared to manufac-
turing environments. Second, we have variability that can be related or assigned to
a specific external cause. This variability is caused by unplanned absences of medi-
cal staff or interruptions during service operations. It iswell known that variability
induces waiting time. As a result the time available during consultation is often
exceeded. This in turn is remedied by allowing overtime. Unfortunately, overtime
modeling is a non-trivial issue in queueing.

18.3 A hospital queueing system

The features discussed in the previous section considerably complicate the model-
ing exercise. In order to demonstrate how to implement the features in a queueing
model, we use an example hospital queueing system. The example concerns a typi-
cal hospital department involving consultation, surgery and recovery. The example
we use throughout this paper is inspired by a real life case ofthe orthopedic depart-
ment of the Middelheim hospital (Antwerp, Belgium) (Creemers and Lambrecht,
2007). We omit in this paper all practical data collection details of the case. We now
and then provide numerical data to give the reader an idea of the problem dimen-
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sion. In our example, the department employs six surgeons. Each of the surgeons
is assigned a certain number of patients and no patient crossover between surgeons
is assumed to take place. The base case deals in other words with the non-pooled
capacity. Recovery occurs in an internal ward, an external ward or in the day hos-
pital (depending on the disorder the patient is suffering from). In each of the wards
25 beds are reserved for patients of the hospital departmentunder study. The ca-
pacity structure of the department is illustrated in Figure18.1. Notwithstanding the
fact that every patient is unique, we impose some general assumptions regarding the
treatment process of a patient visiting the department. More specifically, we assume
that every patient starts the treatment process with one or more consultations. Next,
surgery is performed and a number of follow-up consultations is initiated. Finally
the treatment process of a patient finishes and the patient leaves the hospital system.
We assume that only elective surgery takes place and that theconsultation process
is appointment-based. Remark that it is possible to specifyother patient routings
(e.g. patients who refuse surgery, patients that do not longer need recovery, . . . ). In
this example, however, we make use of a simple patient routing structure in order to
preserve the transparency of the model.

With respect to the performance measures, we are interestedin the total flow
time of a patient at a workstation (i.e. consultation, surgery or recovery). We define
the flow time as the total waiting time plus the processing time. With respect to the
waiting time of a patient, a distinction is made between the internal waiting time
and the external waiting time (Vissers, Bertrand and De Vries (2001) and Hall et
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al. (2006)). More specifically, the internal waiting time isthe time spent inside the
hospital prior to receiving service (at any of the workstations). The external waiting
time is the time between the making of an appointment and the arrival of a patient
at the hospital. The external waiting time can also be related to the ”waiting list”
phenomenon. As such, the total flow time of a patient consistsof: (1) the external
waiting time; (2) the internal waiting time; (3) the processing time. In the remainder
of this text we will useE [W] to denote the total flow time of a patient.

The data collection may be described in the following way (see also Figure 18.1).
We start with a patient population (in our case we collected data on the consultation,
surgery and recovery process of 3,300 patients) and divide it into groups of similar
DRG’s. We construct 18 DRG groups and use indexk, k∈ {1,2, . . . ,K} for further
identification (refer to Roth and Van Dierdonck (1995) and van Merode, Groothuis
and Hasman (2004) for a detailed treatment on patient classification methodology).
Next, the patients are assigned an individual surgeon (identified using indexg, g∈
{1,2, . . . ,G}). Surgeons as well as recovery wards may be considered as hospital
resources. We use indexi, i ∈ {1,2, . . . , I} to identify these resources. The surgeons
perform both consultation (i ∈ {1,2, . . . ,6}) as well as surgery (i ∈ {7,8, . . . ,12})
tasks. Recovery takes place at the day hospital (i = 13), the internal ward (i = 14)
or the external ward (i = 15).

In what follows we develop the queueing model. First we provide the mathemat-
ical derivations required to obtain the arrival and naturalprocess times. Next, we
adapt the model to include the effects of service outages, the availability of work-
stations and the characteristics of the aggregate arrival process.

18.3.1 Modeling arrival rate and natural service times

The queueing model of the hospital department may be presented as a network of 12
G/G/1 workstations (six surgeons performing both consultationand surgery) and 3
G/G/mworkstations (the recovery wards). The network is an open re-entry network
with stochastic routings and is modeled using the principles of the parametric de-
composition approach. While other approaches are available (e.g. Brownian motion
queueing models), a previous study has shown that the parametric decomposition
approach works best when modeling complex hospital systems(Creemers et al.,
2007).

The queue discipline adhered to at each of the stations is FCFS. Any variation
in the arrival of patients (e.g. the early, late, unannounced or not showing up of pa-
tients) is presumed to be absorbed in the variance of the arrival process. The model
assumes infinite buffers to exist in front of every queue. Realizing that the buffers
in front of the consultation and surgery workstation correspond to their respective
waiting lists, it would be incorrect to restrain them in size. In real life, if patients
contact the hospital to make an appointment for a consultation or a surgery, they
will be issued an appointment date no matter how far ahead in time this date might
be (i.e. we assume patients not to display any balking- or reneging-behavior when
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arriving or abiding at the queue). Hence buffer capacities are virtually unlimited.
With respect to the recovery wards, one might argue that queue capacity is in fact
limited. However, there are several reasons that are able toquestion this assertion.
Next to rendering the model highly intractable, finite buffers do not necessarily cor-
respond to reality since shortages of bed capacity at the wards are solved at the local
level and in general do not prolong the sojourn time of a patient (this of course pre-
sumes the presence of unoccupied beds somewhere in the hospital). Therefore we
will assume infinite buffers at all stages of the treatment process. Considering the
multiclass re-entry environment of the queueing network, aggregation of the arrival
and service process is required in order to perform a decomposition-based queueing
analysis.

More formally, leti (i ∈ {1, . . . , I}) denote the workstation in the network, letk
(k∈ {1, . . . ,K}) denote the DRG group a patient belongs to and letg (g∈ {1, . . . ,G})
denote the surgeon a patient is assigned to. As such, we haveKG classes of patients
visiting a set ofI workstations. Let the pair(k,g) denote the class of a patient (i.e. a
patient of class(k,g) is assigned a surgeong and belongs to DRG groupk). Patients
belonging to different classes are allowed to differ in terms of interarrival times, ser-
vice times and routing. Assume interarrival times and service times of patients to be
i.i.d. if they belong to one and the same class and assume themto be independently
(but not necessarily identically) distributed otherwise.Let ηi(k,g) denote the external
arrival rate of a class(k,g) patient at workstationi (remark that external arrivals are
only assumed to take place at the consultation workstations). The aggregate external
arrival rate at a workstationi equals:

ηi =
K

∑
k=1

G

∑
g=1

ηi(k,g). (18.1)

Note that expression 18.1 is a general expression, most of the time a workstation will
be uniquely assigned to a single surgeon, making the summation overg redundant.

We assume that the interarrival times of the external arrivals are exponentially
distributed. Such an assumption poses only a slight restriction on the accuracy of
the model while it has been shown by Palm (1943) and Khinchin (1960) that the
sum of a large numbers of independent renewal processes (i.e. the arrival processes
of the different classes of patients) will tend to a Poisson process. Considering the
multitude of classes of patients, the approximation of the aggregate external arrival
process by means of a Poisson process should be accurate. In addition, Lariviere and
Van Mieghem (2004) showed that the assumption of exponential interarrival times
is reasonable in many service systems.

Let γi(k,g) denote the expected number of visits a class(k,g) patient will make
to workstationi (remark that only the consultation workstations are assumed to be
visited more than once). The aggregate arrival rate of patients at the consultation
level equals:

λi =
K

∑
k=1

G

∑
g=1

ηi(k,g)γi(k,g), ∀i ∈ {1,2, . . . ,6} . (18.2)
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Note that in contrast to the aggregate external arrival rate, which was assumed to
be Poisson-distributed, the aggregate arrival rate (at each of the workstations) is al-
lowed to follow a general distribution. Further define the routing matrixR in which
the elementsr i j indicate the probability of a patient to travel from stationi to station
j after service completion at stationi. Adhering to standard conventions, we estab-
lish a node (of indexi = 0) from which external arrivals originate and which also
serves as a sink for patients leaving the hospital system. Let r i0 indicate the proba-
bility of leaving the system when departing from stationi. Converselyr0i implies the
probability of an external arrival occurring at stationi. The probabilitiesr i j can be
expressed as the the proportion of the arrivals at stationi that travel towards station
j. When assuming the stability of the queueing network, the law of conservation of
flows (what comes in, must go out) dictates:

r i0 = r0i =
ηi

λi
∀i ∈ {1,2, . . . ,6} . (18.3)

With respect to the surgery workstations, each patient visiting the hospital depart-
ment is subjected to surgery exactly once. As such, one can infer that:

λi = ηi , ∀i ∈ {7,8, . . . ,12} . (18.4)

Hence the probability of transition from the consultation to the surgery level may be
defined as:

r i j =
ηi

λi
, ∀i ∈ {1,2, . . . ,6} , j = i +6. (18.5)

Finally, at the consultation level, the probability of re-entry equals:

r ii = 1− (r i0 + r i j ) = 1− 2ηi

λi
, ∀i ∈ {1,2, . . . ,6} , j = i +6. (18.6)

The routing probabilities of transferring from a surgery workstationi, i ∈{7,8, . . . ,12}
towards a recovery wardj, j ∈ {13,14,15} is obtained as follows:

r i j =
λ (i)

j

λi
, ∀i ∈ {7,8, . . . ,12} , ∀ j ∈ {13,14,15}, (18.7)

whereλ (i)
j is the empirically observed arrival rate of patients at recovery workstation

j, j ∈ {13,14,15} originating from surgery workstationi, i ∈ {7,8, . . . ,12}. As
such, the arrival rates at recovery equal:

λ j =
12

∑
i=7

λ (i)
j , ∀ j ∈ {13,14,15}. (18.8)

From this we obtain:

r i j =
λ ( j+6)

i

λi
, ∀i ∈ {13,14,15}, ∀ j ∈ {1,2, . . . ,6} . (18.9)
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All other routing probabilities stem directly from the structure of the model. A
schematic summary of the routing matrixR is presented in Table 18.1. Note that

Table 18.1: Schematic summary of the routing matrixR

i / j 0 1-6 7-12 13-15

0 0
η j
λ j

0 0

1-6 ηi
λi

δi j

(
1− 2ηi

λi

)
δi j

(
ηi
λi

)
0

7-12 0 0 0
λ (i)

j
λi

13-15 0
λ ( j+6)

i
λi

0 0

(δi j = 1) if at least one of the patient classes travels from stationi to station j and
(δi j = 0) otherwise.

Remark that other routing structures give rise to other routing probabilities. The
routing structure and corresponding equations discussed in this section are only
valid under the previously imposed assumptions concerningpatient flow.

With respect to the service times, letfi(k,g) (x) denote the natural service time
probability density function of a class(k,g) patient visiting workstationi. Have

1
νi(k,g)

andσ2
νi(k,g)

represent the average natural service time for a class(k,g) patient

at workstationi and its variance respectively. The natural process time excludes ran-
dom interruptions, absences and any other external influence. Assume service times
of different classes to be independent but not necessarily identically distributed. The
probability that a randomly picked unit in front of the workstation is of class(k,g)

is given by
λi(k,g)

λi
, whereλi(k,g) is the total arrival rate of class(k,g) patients at work-

stationi. Define the probability function of the aggregate natural service times at
stationi as follows:

fi (x) =
K

∑
k=1

G

∑
g=1

λi(k,g)

λi
fi(k,g) (x) . (18.10)

As a result the average natural service time requirement of aunit in front of the
workstation amounts to:

1
νi

=
K

∑
k=1

G

∑
g=1

λi(k,g)

λi

1
νi(k,g)

. (18.11)

When observing the variance of the aggregate natural service process, one can de-
duce that:

σ2
νi

=
K
∑

k=1

G
∑

g=1

λi(k,g)

λi

´

(
x− 1

νi

)2
fi(k,g) (x)dx,

= − 1
ν2

i
+

K
∑

k=1

G
∑

g=1

λi(k,g)

λi

(
σ2

νi(k,g)
+ 1

ν2
i(k,g)

)
.

(18.12)
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We refer toσ2
νi

as a measure of the natural variability of the aggregate process times
at workstationi. The same result was obtained by Whitt (1983) and has widely
been adopted in literature (Whitt (1999b) and Haskose, Kingsman and Worthington
(2002)).

18.3.2 Variability from preemptive and nonpreemptive outages

With respect to service outages in healthcare, a large body of literature exists. Out-
ages in a hospital setting have been the subject of discussion in Babes and Sarma
(1991), Liu and Liu (1998a), Chisholm, Collison, Nelson andCordell (2000) and
Chisholm, Dornfeld, Nelson and Cordell (2001) among others. There is a consensus
on the harmful effects of outages on patient flow times as wellas on the quality
of service. Outages result in congestion, unstable schedules and most importantly
in overtime for staff members. We refer to Easton and Goodale(2005) for an ex-
cellent treatment of this issue. In this section, we focus onunplanned absences of
medical staff and interruptions during service operations. Unplanned absences and
interruptions during service activities have a major impact on flow times. Doctors
and medical staff face various obligations which they have to attend to (making
morning rounds, answering phones, patient check-ups, daily management, . . . ). In
addition doctors often combine a hospital job and private consultation. These phe-
nomena may cause a variable arrival pattern at the hospital (Liu et al., 1998a) and
may lead to interruptions during the treatment process (Chisholm et al. (2000 and
2001) and Easton et al. (2005)). It is clear that hospital environments are charac-
terized by substantial amounts of variability. As is arguedin the literature (Hopp et
al., 2000), variability induces waiting times. While in service industries variability
cannot be countered by means of inventory in the traditionalsense, patients will
have to wait until capacity becomes available (Vissers et al. (2001), Vandaele and
De Boeck (2003a) and Sethuraman and Tirupati (2005)). Besides the time buffer,
hospitals often have to rely on a capacity buffer to mitigatethe impact of variability
and to maintain required service levels. In order to model service processes liable to
outages, queueing theory proves to be an ideal tool. With respect to service outages
and server unreliability, we face a vast amount of queueing literature. Surveys on
the machine interference problem and server unreliabilitymay be found in Stecke
and Aronson (1985) and Haque and Armstrong (2007). Unreliable servers are of-
ten modeled using vacation models. Over the past decades, queueing systems with
server vacations have received a lot of attention in the queueing literature. Vaca-
tion models observe the queueing behavior of systems in which the server begins a
vacation (i.e. becomes unavailable) when certain conditions are met. For instance,
imagine a doctor’s office that has opening hours on Tuesday afternoons and on Fri-
day evenings. On Tuesday, after service completion of the last patient, the doctor
leaves on a “vacation” until Friday evening at which time service is resumed. At the
end of service on Friday, a vacation is initiated until next Tuesday afternoon. We
illustrate this process in Figure 18.2. Next to the modelingof planned absences (e.g.
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a working schedule), vacation models may also be used to model unplanned server
interruptions (e.g. a doctor who is called away for an emergency). A wide variety
of vacation models exists. For a general overview, we refer to Doshi (1986), Takagi
(1988) and Tian and Zhang (2006). In this work, however, we donot focus on vaca-
tion models. Instead, we consider an alternative, more intuitive approach to model
service outages. This approach was first suggested by Hopp and Spearman (2000).
In their work, Hopp and Spearman propose a transformation ofthe service process
times to account for service outages. The results of Hopp andSpearman are widely
accepted in the literature. In this work, we develop new expressions to model the im-
pact of service outages that are peculiar to healthcare systems. In what follows, we
first discuss the difference between preemptive and nonpreemptive outages. Next,
we provide the means to model them.

18.3.2.1 Outages, classification and impact

As was indicated previously, the service process of a patient may be interrupted or
postponed. These outages will increase the natural servicetimes. We call these in-
creased, adjusted service times, effective processing times. It is the total time “seen”
or “experienced” by a patient at a workstation. The effective process time random
variable is of primary interest to determine flow times.

We distinguish between preemptive and nonpreemptive outages. Preemptive and
nonpreemptive outages will impact the service process and will give rise to in-
creased levels of traffic intensity (resulting in the so-called effective utilization rate
or effective traffic intensity).

Let us first discuss the nonpreemptive outages. Nonpreemptive outages typically
occur between jobs, rather than during jobs. They occur at the beginning of each
service session (i.e. at the start of a consultation work shift) whenever a doctor or
another member of the medical staff is absent (e.g. due to late arrival). We may refer
to such an outage as unplanned absences and define the mean andvariance of the
amount of time absent as1µs

andσ2
s respectively (i.e. absence times are allowed

to follow a general distribution). Furthermore we assume anaverage number of
patients (represented byn) to arrive in between two consecutive absences. This is
an important feature of the model. Indeed,n may be considered as the number of
patients in a service session (e.g. a consultation work shift). Each start of a service

Vacation

Service

Vacation

Monday Tuesday Wednesday Thursday

Vacation

Saturday SundayFriday Monday Tuesday

Fig. 18.2: Illustration of a vacation model
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session may induce a delay due to an absence. In other words, the number of patients
in a service session is a decision variable and is comparableto a lot sizing decision.
Evaluating different service session sizes (i.e. different values ofn) may provide key
managerial insights. We will address this issue in an upcoming section.

Next to nonpreemptive outages, we also allow for preemptiveoutages to take
place. Preemptive outages occur whenever a doctor is interrupted during a consul-
tation activity. These interruptions will be modeled in an approach which builds on
the tradition set by Hopp and Spearman (2000). They are characterized by a Mean
Time To Interrupt (τ f ) and a Mean Time To Resolve (τr ). The model presented in
Hopp and Spearman (2000) presumes interrupts to occur only during actual service
time. However, in a hospital setting it is not inconceivablethat interrupts take place
during the resolve time induced by a previous interrupt as well. For instance, if the
service process of a patient is interrupted by a phone call, it is still possible for a
doctor to be called away for an emergency, to receive anothercall, . . . .

In what follows, we present the main results on nonpreemptive as well as pre-
emptive outages. In a final subsection, we present results onthe joint occurrence
of nonpreemptive and preemptive outages. In order to maintain transparency of the
model and of notation, we impose the following assumptions:(1) service outages
only occur at the consultation level (i.e. only workstations i, i ∈ {1,2, . . . ,6} are af-
fected); (2) for each of the surgeons, the impact of outages is identical (i.e. 1

µs
, σ2

s ,
n, τ f andτr remain the same for each of the workstations at the consultation level).

18.3.2.2 Nonpreemptive outages

We define a nonpreemptive outage to occur whenever the succession of two events
is based on the number of services performed in between (hence, setups, rework,
maintenance, . . . are all extensions that are able to capitalize on the technique dis-
cussed in this section). Applied to our setting, we have thatn patients are treated (on
average) in between two consecutive absence possibilities. Assume that the length
of services and absence times does not depend on the service history (i.e. they are
independent of prior services and absence times). The absence times themselves are
distributed following a probability density functionfs(x). The average absence time
and its variance are represented by1

µs
andσ2

s . The service time of thenth patient

includes part service time, part absent time. We refer to theservice time of thenth

patient as the combined service time. We illustrate these concepts in Figure 18.3.
One can consider the services that are preceded by an absent period as a separate

class of patients that has a probability1
n of randomly being picked in front of the

workstation. The other services as a whole have a probability
(

(n−1)
n

)
of randomly

being picked. Therefore, we can define the mean aggregate service times including
the effect of absence times as follows:



780 Stefan Creemers and Marc Lambrecht

1
υi

=

[
(

n−1
n

) K
∑

k=1

G
∑

g=1

λi(k,g)

λi

´

fi(k,g) (x)xdx

]
+

[
1
n

K
∑

k=1

G
∑

g=1

λi(k,g)

λi

˜

fi(k,g) (x) fs(y)(x+y)dydx

]
,

= 1
νi

+ 1
nµs

.

(18.13)

With respect to the variance of the aggregate service time (including absence times)
at the consultation workstations we develop the following expression:
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∑
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(
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+
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∑
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(
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(
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)
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The above expression is equivalent to that of Hopp and Spearman (2000) and is valid
under the assumption that the combined service times as wellas ordinary service
times are independently distributed.

18.3.2.3 Preemptive outages

We refer to service interruptions as preemptive outages. Doctors being called away
on emergencies, answering phone calls, . . . are typical examples. The average time
between two consecutive interrupts is defined asτ f whereasτr refers to the average
time it takes to resolve an interruption. Preemptive outages prove to be more diffi-
cult to model while they occur after the elapsing of a variable amount of time (i.e.
a mean time to interruptτ f ), rather than after a number of patients being processed.
Under the assumption that the time between two consecutive interrupts is expo-
nentially distributed, expressions for mean and variance have been obtained. With
respect to preemptive outages, we make a distinction between two different scenar-
ios. On the one hand, one might presume preemptive outages tooccur only during

Natural service time patient

Nonpreemptive outage time every nth patient

Combined service time patient

Natural service time

Nonpreemptive outage time

... ... Patient nPatient 2Patient 1 ...

Fig. 18.3: The combined service time
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actual service time. As such preemptive outages do not take place during the resolve
times induced by previous outages. Remark that this does notimply that the service
process of a single patient cannot be interrupted more than once. On the other hand,
one might assume preemptive outages to occur during resolvetimes as well (e.g. as
indicated previously, doctors may be be interrupted when already engaged in resolv-
ing a previous interrupt). While this latter instance can beseen as an extension of
the former, we will first discuss outages occurring exclusively during actual service
time. Defineτr0 j

as the resolve time of thejth preemptive outage that occurred dur-
ing the service process of one and the same patient. The mean and variance of the
resolve times are given byτr andσ2

r . In addition, resolve times of different outages
are assumed to be i.i.d.. The service process of a patient thus faces the probability of
encompassing several interrupts that prolong its service duration. The service time
of a patient (including interrupts) at a workstationi can be expressed as:

1
ωi

=
1
νi

+
J0

∑
j=1

τr0 j
. (18.15)

As such, the random variable1ωi
incorporates both the natural service time1

νi
as well

as the resolve times of interrupts that occurred during service. Moreover,J0 denotes
the number of preemptive outages that occurred during the service process of a unit.
J0 is a random variable that follows a Poisson distribution (i.e. we assume the time
between two consecutive interrupts to be exponentially distributed) and its mean

and variance both equal

(
1

(νiτ f )

)
. We face a sum of random variables (the resolve

timesτr0 j
) in which the number of random variables (the number of interruptsJ0),

is a random variable itself. Assume thatJ0 andτr0 j
(∀ j ∈N) are i.i.d. variables. In

addition assume the mean as well as the variance ofτr0 j
to be equal for allj ∈N.

Therefore, the mean and variance of the sum ofJi0 random variablesτr0 j
can be

expressed as (Dudewicz and Mishra, 1988):

E [S0] = E [J0]E
[
τr0 j

]
, (18.16)

σ2
S0

= E [J0]σ2
r +E

[
τr0 j

]2
σ2

J0
, (18.17)

whereS0 is the random variable representing the sum ofJ0 resolve timesτr0 j
. In

other words we have that:

S0 =
J0

∑
j=1

τr0 j
. (18.18)

The mean and variance of the sum of resolve times can be definedas:

E [S0] =
1
νi

τr

τ f
, (18.19)
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σ2
S0

=
1
νi

σ2
r + τ2

r

τ f
. (18.20)

The mean aggregate service time including the effect of interrupts may be expressed
as:

E

[
1
ωi

]
=

1
νi

τ f + τr

τ f
. (18.21)

This corresponds to the expression presented in Hopp and Spearman (2000) in
which the natural service time is divided by an availabilityfactor in order to in-
corporate the effect of interrupts. Next we have a look at thevariance of the service
times including the effect of preemptive outages during service time. We start with
the approximation of the second moment:

E

[(
1
ωi

)2
]

=

(
σ2

νi
+

1

ν2
i

)(
1+

τr

τ f

)2

+ σ2
S0

. (18.22)

Using the expression for the second moment we obtain the variance of the service
times including the effect of interrupts:

σ2
ωi

= σ2
νi

(
1+

τr

τ f

)2

+ σ2
S0

. (18.23)

This expression once more matches the formula derived in Hopp and Spearman
(2000). The above expressions hold if and only if the Poisson-distributed preemptive
outages take place during service itself. In what follows, we relax this assumption
and allow for interrupts to take place during the resolve times induced by previous
interrupts.

In order to approach this problem, we divide the interrupts into different sets.
Let l (l ∈ N) denote the set index. We defineτr l j

to be the resolve time of thejth

interrupt belonging to the set of indexl (i.e. the interrupt is said to be of orderl ).
Without loss of generality assume that interrupts of order 0occurred during actual
service, interrupts of order 1 occurred during the resolve times of interrupts of order
0, . . . . In general, interrupts of orderl took place during the resolving of interrupts
of order(l −1). Figure 18.4 provides further insight. In addition defineSl as the
sum of resolve times corresponding to interrupts of orderl . We have that:

Sl =
Jl

∑
j=0

τr l j
, (18.24)

whereJl is the number of interrupts belonging to the set of indexl . Jl follows a
Poisson distribution and its mean and variance equal:

E [Jl ] = σ2
Jl

=
1

νiτ f

(
τr

τ f

)l

. (18.25)
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One can infer that:

E [Sl ] =
τr

νiτ f

(
τr

τ f

)l

, (18.26)

σ2
Sl

=
1

νiτ f

(
τr

τ f

)l (
σ2

r + τ2
r

)
. (18.27)

Using the same reasoning applied previously, one can express the mean aggregate
service time including the effect of all order interrupts asfollows:

E

[
1
ωi

]
=

1
νi

τ f

τ f − τr
. (18.28)

Using these parameters, the second moment is expressed as:

E

[(
1
ωi

)2
]

=

(
σ2
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+

1

ν2
i

)[
1+2

τr

τ f − τr
+

(
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τ f − τr
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+
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σ2
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τ f − τr
. (18.29)

As a result, the variance of the service time at a workstationi (including the impact
of all order interrupts) is given by:

σ2
ωi

=
τ2

f σ2
νi

+ 1
νi

(
τ f − τr

)(
σ2

r + τ2
r

)

(
τ f − τr

)2 . (18.30)

18.3.2.4 Combining preemptive and nonpreemptive outages

In many hospital settings, both preemptive and nonpreemptive outages may surface.
While it is impossible to interrupt the service process in the instance of a nonpre-
emptive outage (e.g. a doctor who arrives late), we only consider the case in which
both types of outages cannot occur simultaneously. The average service time incor-
porating this combined effect at a workstationi can be expressed as:

Actual (natural) service (l = 0)

First order interrupt (l = 1)

Second order interrupt (l = 2)

Third order interrupt (l = 3)

Interrupt 5

Service completion

Interrupt 4Interrupt 3

Interrupt 2

Interrupt 1

Start of actual service

Fig. 18.4: Interrupted service process of a single patient
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where fi f (k,g)
(x) is the probability density function of consultation service times of

a class(k,g) patient at a workstationi including the effect of all order interrupts.

Its mean and variance are given byE
[

1
ωi

]
andσ2

ωi
respectively. We refer to1

ψi
as

the effective service time while it equals the service time experienced by the patient
(and as such includes the impact of outages). The variance ofthe effective service
times at a workstationi may be expressed as:
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(18.32)

These results allow us to take service outages into account when assessing hospital
performance measures.

18.3.2.5 Including the time availability of workstations

It is well known that many services do not operate continuously over time. Consul-
tation and surgery typically operate during certain time intervals (service sessions)
which means that only a proportion of the total available time can be used effec-
tively. Vacation models are often applied to solve this problem. Another way to
handle the problem is to rescale all service processing times so that they fit a preset
uniform time scale. In this study we agreed on a 24 hours per day, 7 days per week
time scale (basically because this is the appropriate time scale for recovery pro-
cesses). LetAi denote the availability of workstationi; Ai represents the available
time in proportion to the preset uniform time scale. For instance, if a workstation
operates only 6 hours per day, then the availability equals 25%.

When rescaling the service times established in the previous sections, we obtain
the total effective service times:



18 Modeling a Hospital Queueing Network 785

1
µi

=
1

Aiψi
,∀i ∈ {1,2, . . . ,6} , (18.33)

1
µi

=
1

Aiνi
∀i ∈ {7,8, . . . ,15} , (18.34)

σ2
i =

σ2
ψi

A2
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,∀i ∈ {1,2, . . . ,6} , (18.35)

σ2
i =

σ2
νi

A2
i

∀i ∈ {7,8, . . . ,15} . (18.36)

The above procedure results in the total effective service times including natural
process time, the effect of outages and the impact of availability of workstations.
The mean total effective service time and its variance can now be used to compute
the squared coefficient of variation of the service times:

C2
si

= σ2
i µ2

i . (18.37)

18.3.2.6 Squared coefficient of variation of the aggregate arrival process

In order to approximate the parameters of the aggregate arrival process, some more
challenging arithmetics are needed. It was pointed out by Albin (1984) that if at
least one of the interarrival time distributions, constituting the arrival process, does
not stem from a Poisson process, the resulting aggregate interarrival times do no
longer hold the property of independence. As a result the analytical analysis of the
aggregate arrival process becomes highly intractable. Therefore approximations will
be adopted to assess the variance and, more important, the squared coefficient of
variation of the aggregate arrival process. The squared coefficients of variation of the
aggregate arrivals at the different workstations will be extracted using a technique
which was pioneered by Shanthikumar and Buzacott (1981). This technique implies
the use of a set of linear equations which has to be solved in order to obtain the
squared coefficients of variation of the arrivals. This approach is widely adopted in
literature (Askin, 1993) and was later generalized by Lambrecht et al. (1998). Using
the technique that was outlined in Lambrecht et al. (1998), we are given a set ofI
equations:

−
I

∑
i=1

λir
2
i j (1−ρ2

i )C2
ai

+ λ jC
2
a j

=
I

∑
i=1

λir i j (r i j ρ2
i C2

si
+1− r i j )+ η jC

2
aη j

, (18.38)

whereη j andC2
aη j

denote the rate and squared coefficient of variation of the aggre-

gate external arrival process at stationj respectively. In addition,ρi represents the
effective traffic intensity at workstationi and equalsλi

µi
. While all elements except

the I squared coefficients of variation are known, we are presented with a system
of I equations yieldingI unknowns. Solving this set of linear equations provides us
with the I unknown squared coefficients of variation (i.e.C2

ai
;∀i ∈ {1, . . . , I}).
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With all model parameters firmly defined, we now have a solid base to carry
out the performance evaluation of the hospital department.In the upcoming section
we discuss a numerical example of the model presented above and provide some
practical applications.

18.4 Applications

In this section, we discuss a numerical example using the queueing model described
in the previous section. Next, we illustrate the devastating impact of service inter-
ruptions on patient flow times. Subsequently, we show the potential gains obtained
by pooling hospital resources. Finally, we present an optimization model to deter-
mine the optimal number of patients to be treated during a service session.

18.4.1 Numerical example

The numerical example presented in this section builds on data gathered at the or-
thopedic department of the Middelheim hospital in Antwerpen (Belgium). Using
these empirical data as inputs, the flow time of patients at the hospital department
may be assessed using so-called flow time expressions. A variety of flow time ex-
pressions are available in the queueing literature. A previous study has shown the
Kingman equation to yield accurate results when assessing the flow times of patients
in complex hospital systems (Creemers et al., 2007). As such, in the remainder of
this article, we will use the Kingman equation to determine patient flow times. With
respect to the Kingman equation, one can define the expected flow time of a patient
at workstationi as follows (Hopp et al., 2000):

E [Wi ] =

(
C2

ai
+C2

si

2

)
ρ
√

2(mi+1)−1
i

mi (1−ρi)


 1

µi
+

1
µi

, (18.1)

wheremi denotes the number of parallel servers at workstationi (mi = 25 ∀i ∈
{13,14,15}). If only a single server is present (i.e. at workstationsi, i ∈{1,2, . . . ,12}),
no pooling is assumed to take place and the formula reduces to(Kingman, 1962):

E [Wi ] =

(
C2

ai
+C2

si

2

)(
ρi

1−ρi

)
1
µi

+
1
µi

. (18.2)

Using the empirical data, resulting flow times at each of the workstations are ob-
tained. The results are presented in Table 18.2 and Table 18.3 (all results are ex-
pressed in minutes unless indicated otherwise). While no waiting occurs at the wards
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(i.e. the process of recovery takes place immediately aftersurgery) the performance
measures of workstations 13 to 15 are not included here.

Table 18.2: Summary Table of the model results (workstations 1 to 6)

i 1 2 3 4 5 6

1
ψi

24.85 24.85 24.85 24.85 24.85 24.85
1
µi

310.7 690.4 310.7 167.9 155.3 248.5
C2

si
1.334 1.334 1.334 1.334 1.334 1.334

1
λi

329.8 741.5 317.0 174.5 167.5 268.8
C2

ai
1.026 1.418 1.051 0.759 0.752 0.952

Ai 0.080 0.036 0.080 0.148 0.160 0.100
ρi 0.942 0.931 0.980 0.962 0.927 0.925
E [Wi ] (days) 4.360 9.402 12.90 3.219 1.547 2.593

Table 18.3: Summary Table of the model results (workstations 7 to 12)

i 7 8 9 10 11 12

1
νi

110.0 96.20 89.17 57.50 56.35 93.18
1
µi

1048 2004 1351 845.7 593.2 1035
C2

si
0.266 0.406 0.203 0.171 0.165 0.274

1
λi

1,111 2,111 1,380 883.4 620.5 1,073
C2

ai
1.089 1.121 1.074 1.058 1.068 1.070

Ai 0.105 0.048 0.066 0.068 0.095 0.090
ρi 0.943 0.950 0.979 0.957 0.956 0.965
E [Wi ] (days) 8.907 21.38 29.42 8.674 5.918 14.14

With respect to consultation, no distinction was made between the different sur-
geons. One can observe that the effective service time (including the effect of inter-
rupts and absences) amounts to 24.85 minutes (the natural service time amounting
to 15 minutes). The coefficient of variation equals 1.334 (the natural coefficient
of variation amounting to 0.6386). Arrival rates and their variances depend on the
number of patients visiting each surgeon. The utilization rates of the surgeons are
all very high, which translates into significant patient flowtimes varying from 1.5
days to 12.9 days.

Similar observations may be made with respect to surgery. Here we allow sur-
geons to have different processing times depending on the type of surgery they per-
form. In addition, observe the significantly longer waitingtimes for patients at the
surgery level.
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18.4.2 The impact of interrupts

The impact of interrupts on medical practice has been observed by Harvey, Jarrett
and Peltekian (1994), Lehaney, Clarke and Paul (1999), Chisholm et al. (2001),
France, Levin, Hemphill, Chen, Rickard, Makowski, Jones and Aronsky (2005),
Volpp and Grande (2006), Tucker and Spear (2006) and Gabow, Karkhanis, Knight,
Dixon, Eiser and Albert (2006) among others. All agree on thedetrimental effects
of interrupts on patient flow time. In order to demonstrate these detrimental effects,
we present a number of scenarios in which we gradually reducethe impact of inter-
rupts. We build on the setting of the hospital department discussed previously. To
maintain transparency, we focus on a single consultation workstation (i.e. the only
workstations that are susceptible to interrupts during theservice process). We adjust
the mean time to interrupt (i.e.τ f ) at this workstation to assess the varying impact
of interrupts (all other model parameters remain unchanged). The results are given
in Table 18.4. Note that we used the third workstation to study the impact of var-
ious degrees of interrupts (the results corresponding to the numerical example are
indicated in bold). Figure 18.5 illustrates the phenomenongraphically.

Table 18.4: Impact of interrupts (expressed in minutes) on patient flow time (ex-
pressed in days) at a single workstation

τ f E [W] ρ τ f E [W] ρ τ f E [W] ρ

10.4 183.2 0.998 11.6 16.24 0.984 18 4.433 0.943
10.5 93.58 0.997 11.8 14.35 0.982 20 3.393 0.936
10.6 63.28 0.995 12.0 12.90 0.980 25 3.288 0.924
10.7 48.05 0.994 12.5 10.43 0.975 30 2.968 0.916
10.8 38.88 0.993 13.0 8.880 0.971 40 2.652 0.907
10.9 32.76 0.992 14.0 7.029 0.963 60 2.401 0.897
11.0 28.38 0.990 15.0 5.966 0.957 80 2.294 0.893
11.2 22.54 0.988 16.0 5.276 0.952
11.4 18.82 0.986 17.0 4.791 0.947

It is clear that heavy traffic systems (i.e. systems which operate under high work-
load) benefit greatly from even a small reduction in utilization rate. Unfortunately,
only limited means are available to achieve such a reductionin utilization rate. A
variety of options arise:

• The most obvious way to reduce the effective utilization is process improvement.
Continuous improvement and six sigma programs are very beneficial. Reducing
the frequency of interrupts can be classified in this category.

• Expand capacity; hospital resources such as operating theatres, scanners and
other equipment are often operating at maximum capacity. Expanding capacity
would be an effective means to reduce hospital workload. However, expanding
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capacity is often very expensive or is simply impossible (e.g. due to legal con-
straints).

• Limit patient volumes; a reduction in hospital workload might also be achieved
by limiting the amount of patients receiving treatment. Pursuing this option how-
ever, results in loss of hospital income and a reduced level of service.

In the literature, valuable insights are provided that offer guidance in the quest to
reduce the impact of interrupts. For instance, Harvey et al.(1994) suggest the pool-
ing of paging of doctors (next to telephone calls, paging calls are one of the largest
sources of interrupts) in order to decrease variability in individual paging patterns.
France et al. (2005) propose the use of information systems (e.g. an electronic white-
board) and team training to enhance performance. Tucker et al. (2006) suggest the
redesign of treatment processes (e.g. outsourcing of administrative tasks) in order
to make service more robust against preemptive outages. In addition Tucker et al.
(2006) and Volpp et al. (2006) propose the filtering of non-urgent communication
towards medical staff. These and other practical guidelines enable hospital decision
makers to minimize the impact of interrupts on the service process.

18.4.3 The impact of pooling

Pooling refers to the aggregation (consolidation) of the demand from multiple items
into one, such that the consolidated demand can be satisfied from a single buffer.
More specifically, capacity pooling refers to the idea of sharing available capacity
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Fig. 18.5: Varying impact of interrupts (expressed in minutes) and the effect on
patient waiting times (expressed in days)



790 Stefan Creemers and Marc Lambrecht

among various sources of demand (e.g. patient classes). In ahospital setting this
refers to the sharing of expensive diagnostic equipment, wards or labs. In a non-
pooling environment, each resource fulfills its own demand,relying solely on its
own capacity. In a pooled environment, demand is aggregatedand fulfilled from a
single shared facility. A rich literature on pooling in queueing systems exists. For an
excellent overview, we refer to Benjaafar and Cooper (2005)and Yu and Benjaafar
(2006).

It has long been known that pooling is beneficial to system performance. More
specifically, pooling allows to maintain a specified level ofservice quality (e.g. pa-
tient flow times) with less capacity requirements. The beneficial effect of pooling
stems from the increased ability of the system to cope with variability. For instance,
in pooled systems, it is much less likely for the queue to be empty. As such, the im-
pact of variability in the arrival pattern of patients (patients may arrive early, late or
may even fail to show up at all) or in the service process of surgeons is minimized.

In this section, we demonstrate the impact of server poolingby means of a small
experiment. We build on the setting of the hospital department discussed in the
previous sections. In the experiment the servers at the consultation and surgery level
are pooled. The following assumptions are imposed:

• Patients are treated by the first surgeon available for service, even if the patient
does not belong to the patient population corresponding to that surgeon.

• Surgeon working schedules are identical and no structural constraints are im-
posed (i.e. it should be possible to service 6 patients simultaneously).

Returning to our example setting, the six consultation and the six surgery worksta-
tions are replaced by a single consultation and a single surgery workstation respec-
tively. Each of these workstations has six parallel serversin operation. The resulting
queueing network contains five workstationsi, i ∈ {1,2, . . . ,5}. Let station 1 to 5
represent consultation, surgery, day hospital, internal ward and external ward re-
spectively. When retaining all other characteristics of the setting discussed in the
previous sections, one can use the multiserver Kingman equation to obtain patient
flow times. The resulting performance measures are presented in Table 18.5 (the
non-pooled flow times are the weighted average of the flow times observed at the
consultation and surgery workstations presented in section 18.4.1).

The benefits of pooling are clear. Without increasing capacity or altering any of
the other system characteristics (except of course the pooling of capacity) we are
able to reduce patient flow times at the consultation and surgery level by a factor of
8.73 and 7.74 respectively.

Unfortunately, it is often impossible to achieve such a highdegree of pooling in
a real life hospital system. One quickly runs into a number oflimitations:

• Unique relation between patient and surgeon; patients willoften refuse to consult
another surgeon.

• Limited flexibility of resources; each surgeon has his own specialization. It is
often impossible, even for surgeons at the same department,to pass on jobs. In
other words, the flexibility of surgeons is limited.
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Table 18.5: Summary table of the model results after pooling(consultation and
surgery workstations)

i 1 2

1
µi

246.90 995.87
C2

si
1.334 0.224

1
λi

43.56 173.2
C2

ai
0.996 1.075

Ai 0.101 0.079
ρi 0.944 0.958
E [Wi ] (pooled) 0.518 1.612
E [Wi ] (non-pooled) 4.523 12.47

• Resources often operate at different time instances; for pooling to take place
surgeons need to operate at the same time instance. Due to busy schedules and
other limitations, this is not always possible.

• Structural characteristics may further limit the practical applicability of pooling.
For instance, if only two operating theatres are available,it is impossible to pool
the capacity of the six surgeons at the surgery level. In other words, the bottleneck
has shifted from the surgeons onto the number of available operating theatres.

Notwithstanding these constraints, it should be clear thateven a small amount of
pooling may yield significant reductions in patient flow time. Therefore the pooling
of hospital resources is a worthwhile matter for further investigation.

18.4.4 Finding the optimal number of patients in a service session

The impact of absences at the start of a consultation or surgery session is discussed
in Babes et al. (1991), Liu et al. (1998a), Liu and Liu (1998b)and Easton et al.
(2005). There is a general agreement on the disruptive effect of absences on patient
flow time. Easton et al. (2005) identify robust staffing, scheduling and recovery
practices to minimize the effects of absences. Liu et al. (1998b) acknowledge the
importance of consultation and surgery block size (i.e. thenumber of patients treated
during a consultation session) and propose a what-if simulation approach in order
to determine the best block size.

In fact, the relationship between block size and patient flowtime is akin to the
relationship between batch size and waiting time (in the presence of setups be-
tween batches in a manufacturing setting). As such the convex relationship first
described by Karmarkar (1987) may also be observed here. In this view, Vandaele,
Van Nieuwenhuyse and Cupers (2003b) determine the optimal size of patient groups
queueing in front of a nuclear resonance scanner. We build onthe model of Lam-
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brecht and Vandaele (1996) in order to determine the optimalnumber of patients
that receive treatment during a service session.

Two conflicting effects may be observed:

• The grouping effect; referring to the time required to assemble a batch of sizen.
The larger the batch size, the longer patients will have to wait before receiving
service.

• The saturation effect; the smaller the batch size, the more service sessions are
initiated, the larger the probability of having an absence of medical staff at the
start of a service session.

We illustrate these effects in Figure 18.6. The combinationof both effects results in
a convex relationship, which implies that there is an optimal group size minimizing
average patient lead time. In what follows, we develop the mathematical model to
address the batch size decision problem. The objective is todetermine the batch size
that minimizes the average patient lead time.

In this section we build on the third workstation discussed in the base case (other
workstations at the consultation and surgery level may alsobe analyzed in a similar
fashion). To maintain the transparency of the model, we omitthe indexi referring
to the original workstation used in this experiment. Other than the batching of pa-
tients, the dynamics of the workstation remain unchanged (as compared to previous
sections).

Batch size

Average patient flow time

Grouping effect

Saturation effect

Average patient flow time

Fig. 18.6: Convex relationship between average patient flowtime and batch size
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Once sufficient patients are available, a batch (i.e. the equivalent of a service ses-
sion workload) is created and is introduced into a queue (it is clear that this group-
ing does not imply that patients have to wait physically in the hospital). Whenever
the server is idle, the batch as a whole receives service. After service, the batch is
separated and patients resume their individual routings. Abatch of patients is char-
acterized by:

• a batch sizen,
• a batch arrival rateλb,
• a coefficient of variation of the interarrival times of the batchesC2

ab
.

• a batch service rateµb,
• a coefficient of variation of the service times of the batchesC2

sb
,

where

λb = nλ , (18.3)

C2
ab

=
C2

a

n
, (18.4)

µb = nµ , (18.5)

C2
sb

=
C2

s

n
(18.6)

andλ , C2
a, µ , C2

s are the respective arrival rate, the squared coefficient of variation
of the interarrival times, the service rate and the squared coefficient of variation of
the service times of the individual patients visiting the third workstation.

The flow time of a patient in this system contains the following elements:

• The collection time; the time required until sufficient patients have arrived and a
batch may be processed. The larger the batch size, the longerit takes to gather
sufficient patients in order to perform a batch service.

• The waiting time of the batch itself; other batches (i.e. service sessions) may have
to be serviced first.

• The absence time; prior to the service of a batch of patients,there exists a proba-
bility that the surgeon (or another crucial hospital resource) is absent. The batch
of patients has to wait for the surgeon in order to receive service. This absence
time can be considered as a setup time for the batch.

• The actual processing of individual patients in the batch.

We visualize the flow time of a patient in Figure 18.7. The expected flow time of a
single patient in the system can be expressed as (Lambrecht and Vandaele, 1996):

E [W] =
n−1
2λ

+E [Wq]+
1
µs

+
n+1
2µ

. (18.7)

This flow time clearly consists of four building blocks. The first term corresponds to
the average time a patient will have to wait until a group of sizen has been formed
(i.e. the collection time). The termE [Wq] stands for the average time that a batch
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of patients spends waiting in queue until the server becomesidle. We approximate
E [Wq] by means of the Kingman equation and obtain:

E [Wq] =

(
C2

ab
+C2

sb

2

)(
ρ

1−ρ

)
1
µb

, (18.8)

whereρ is the effective utilization rate at the third workstation and is given by
(Lambrecht et al., 1996):

ρ =
nλ

nµ + µs
. (18.9)

The third term corresponds to the absence time that is incurred at the start of a
service session in which a batch of patients receives treatment. Both the second and
third term are the same for all patients in the batch. The lastterm indicates how
much time a patient spends on processing itself. At this point the model is complete
and we can formally state our optimization problem:

Minimize E [W] , E [W] = n−1
2λ +E [Wq]+

1
µs

+ n+1
2µ ,

s.t. ρ < 1,
n≥ 1.

When using the setting of the hospital department outlined in the previous sec-
tions, we are able to provide a numerical example. To maintain transparency, we
select a single consultation workstation and assess different values ofn in order
to obtain the optimal number of patients to be treated duringa service session. A
summary of the resulting figures is presented in Table 18.6.

An illustration is provided in Figure 18.8. One can deduce that, for this particular
workstation, the optimum is reached when treating 8 patients during each service
session. More precisely, given a set of input parameters (absence probability, service

Collection time
Batch waiting time

Absence
Processing time

Flow time of the first patient

Processing time of the first patient

Waiting time first patient prior to batch is created

Batch created

Fig. 18.7: Visualization of the different phases of the batch flow time
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Table 18.6: Summary table of the model results featuring different batch sizes

n 1
µb

C2
sb

ρ E [W]

3 82.063 0.2276 1.0787 NA
4 99.418 0.1707 0.9802 27.460
5 116.77 0.1365 0.9210 8.2226
6 134.13 0.1138 0.8815 6.3769
7 151.48 0.0975 0.8534 5.8782
8 168.84 0.0853 0.8322 5.7761
9 186.19 0.0758 0.8162 5.8441
10 203.54 0.0683 0.8027 6.0004
11 220.90 0.0621 0.7919 6.2086
12 238.25 0.0569 0.7830 6.4497
13 255.61 0.0525 0.7754 6.7132
14 272.96 0.0488 0.7689 6.9924
15 290.32 0.0455 0.7632 7.2831
16 307.67 0.0427 0.7583 7.5826
17 325.03 0.0402 0.7540 7.8888
18 342.38 0.0379 0.7501 8.2004
19 359.73 0.0359 0.7466 8.5162
20 377.09 0.0341 0.7435 8.8355

and interarrival times, . . . ) we are able to determine the optimal number of patients
to be treated during a service session.

0

5

10

15

20

3 8 13 18

E[W]

n

Fig. 18.8: Finding the optimal number of patients
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18.5 Conclusion

In this article we discuss some of the features that differ when modeling healthcare
queueing models on the one hand and traditional manufacturing models on the other
hand. We show how to implement these features in a hospital queueing network. We
used the parametric decomposition approach to assess performance measures at the
hospital queueing network. In addition, we develop new expressions to model ser-
vice outages that are typical in services in general and in healthcare in particular.
The resulting queueing network is used to construct a numerical example and to
illustrate a number of practical applications. First we demonstrate the detrimental
effect of service interrupts on patient flow times. Next, thebeneficial effect of pool-
ing hospital resources is illustrated. Finally, we developan optimization model that
is able to determine the optimal number of patients treated during a single service
session.

Notwithstanding these accomplishments, there is still room for improvement.
More specifically, improvements may be made with respect to the modeling of
time in queueing systems. Open problems include the modeling of time-dependent
demand rates, increasing workload as waiting times increase (patients need to be
monitored, receive care, . . . ), . . . . Moreover, given the inherent high degree of vari-
ability in service times, hospitals often use flexible working schedules that allow
for overtime, variable server capacity and other deviations from the standard queue-
ing model topology. Such deviations add to the complexity ofthe problem, making
“time” a major modeling issue.
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