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Multi-class Queues and Stochastic Networks

Detailed content: 
1. reversibility, stationarity, basic queues, output theorem, feedforward

networks 
2. partial balance, Jackson network, Kelly-Whittle netwerk, arrival 

theorem 
3. quasi-reversibility, customer types, BCMP networks, bandwidth 

sharing networks 
4. blocking, aggregation, decomposition
5. loss networks, insensitivity via supplementary variables
6. sojourn time distribution in networks 
7. MVA, AMVA, QNA 
8. fluid queues, basic models 
9. feedback fluid queues, networks of fluid queues
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Multi-class Queues and Stochastic Networks
Today (lecture 6): MVA, AMVA, QNA

Handbook, chapter 13 – published handbook on website MQSN

• MVA for single queues
• MVA for closed networks



Preliminaries

• Product form equilibirum distribution not enough for
performance analysis: 
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closed network : equilibrium distribution 

• Theorem: The equilibrium distribution for the closed Jackson network 
containing N jobs is

and satisfies partial balance

traffic equations
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Open and closed networks

€ 

λi = γ i + λ j ⋅ rji
j=1

N

∑ i =1,...,N

P(k1,...,kN ) =C ρi
ki

i=1

N

∏

• Theorem 
– steady state distribution (if open: provided ri = li /µi < 1):
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Intermezzo: Normalising constant for open networks

• Determining the normalising constant easy for open networks
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Determining the normalising constant: Buzen’s algorithm

• Recursion for summation

Define

with initial values

recursion

then )(
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Correctness of Buzen’s algorithm
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Preliminaries

• Product form equilibirum distribution not enough for performance analysis
• But what about the normalising constant?

• Use algorithms that focus on the mean performance measures

• Little’s formula

• PASTA, MUSTA (ASTA)

13 Mean Values Techniques 563

equal to the equilibrium queue length distribution. Alternatively, if the state indi-
cates the status of the server (1 whenever busy and 0 otherwise), then by applying
this property to A= {1}, we obtain that the probability the server is busy on arrival
is equal to the long-run fraction of time the server is busy.
The other key property is Little’s law [16, 13] stating that

L= λS,

where L is the mean number of jobs in the system, λ the arrival rate and S the mean
sojourn time. Again, one can exploit the freedom in the definition of the system to
obtain various relations. For example, in a station with a single queue and a single
server, the system can be defined as the queue (so without the server), yielding the
following relation between the mean queue length Q and the mean waiting timeW ,

Q= λW. (13.1)

But, when the system is defined as the server, we obtain a relation between the
utilization ρ (i.e., fraction of time the server is busy) and the mean service time b,

ρ = λb. (13.2)

In the sequel, when writing down expressions on an arrival instant, we could
write, for example, ρ (a) or Q(a) with a indicating the arrival, but because of the
PASTA property these quantities are equal to the equilibrium quantities. Therefore
we will not do this.

13.3 MVA for single-station systems

Belowwe present a couple of examples of single-station systems for which theMVA
approach works; that is, for which performance characteristics, though their mean
values only, can be obtained using PASTA and Little’s law.

13.3.1 M|M|1

The simplest example of this principle is seen in the MVA approach for the M|M|1
queue with arrival rate λ and service rate µ , and in which jobs are served FCFS. For
stability we assume that λ < µ . Let Q denote the mean number of jobs in the queue
and ρ the probability that the server is busy (in equilibrium as well as on arrival).
The mean waiting time isW . Then we get

W = ρ
1
µ

+Q
1
µ

. (13.1)
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• PASTA: 
The distribution of the number of customers in the system seen by a a 
customer arriving to a system according to a Poisson process (i.e., at an arrival 
epoch) equals the distribution of the number of customers at an arbitrary 
epoch. 

• Arrival theorem (open Jackson network):
In an open network in equilibrium, a customer arriving to queue j observes the 
equilibrium distribution.

• Arrival theorem (closed Jackson network):
In a closed networkin equilibrium, a customer arriving to queue j observes the 
equilibrium distribution of the network containing one customer less.

Arrival theorem
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Note that, by the memoryless property of exponentials, the mean residual service
time of the job in service upon arrival is also 1/µ . Relation (13.1) is usually referred
to as the arrival relation. Together with Little’s law (13.1), this results in

W =
ρ

1−ρ
1
µ

,

where ρ = λ/µ by virtue of (13.2).

13.3.2 M|G|1

This approach can be easily extended to jobs requiring general service times with
mean b and second moment b(2). For stability we require λb< 1. Then, for the mean
waiting time, we get

W = ρR+Qb, (13.2)

where R is the mean residual service time on arrival. Now we cannot conclude that
R is equal to the mean service time b, as in the exponential case. According to the
PASTA property R is equal to the (time) average residual service time R given by
(see, e.g., Ross [17], pp. 424-425)

R=
b(2)

2b
=
b
2
(1+ c2), (13.3)

where c2 = (b(2)− b2)/b2 denotes the squared coefficient of variation of the ser-
vice time. Together with Little’s law (13.1) this immediately yields the Pollackzek-
Khinchin formula,

W =
ρR
1−ρ

. (13.4)

Note thatW can also be interpreted as the mean amount of work in the system.

13.3.3 M|G|1 with priorities

Let us now consider a single server treatingC classes of jobs, labeled 1, . . . ,C. Class
i jobs arrive according to a Poisson process at rate λi and require service times with
mean bi and second moment b

(2)
i . The class i utilization is ρi = λibi. Jobs are served

according to non-preemptive priorities, i.e., class i has priority over all classes j
with j > i, but service interruptions are not allowed. Per class the service discipline
is assumed to be FCFS. For stability we require ρ1+ · · ·+ρC < 1.
LetWi denote the mean waiting time of class i jobs and Qi the mean number of

class i jobs waiting in the queue. Then the arrival relation for class i is

Service upon arrival: PASTA
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class i jobs waiting in the queue. Then the arrival relation for class i is

Residual service time upon arrival: 
PASTA
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Wi =∑
j≤i
Q jb j +∑

j
ρ jR j +Wi∑

j<i
λ jb j , (13.5)

where Rj is the mean residual service time of class j, so Rj = b(2)
j /2b j .

On the right-hand side of (13.5), the first term is the mean waiting time due to the
higher or same priority jobs in the queue upon arrival. The second term is the mean
amount of residual work in service and the third term captures the higher priority
jobs that are expected to arrive and overtake the class-i job during its waiting time.
Using Little’s law,

Qj = λ jWj

and ρ j = λ jb j, equation (13.5) can be rewritten as

Wi =∑
j≤i
ρ jWj +∑

j
ρ jR j +Wi∑

j<i
ρ j ,

or
Wi(1−∑

j≤i
ρ j) =∑

j<i
ρ jWj +∑

j
ρ jR j. (13.6)

For class 1 (for which there is no overtaking) this immediately results in

W1 =
∑ j ρ jR j

1−ρ1
. (13.7)

Note that for i> 1 the right hand side of (13.6) can be written as

ρi−1Wi−1+ ∑
j<i−1

ρ jWj +∑
j
ρ jR j = ρi−1Wi−1+Wi−1(1− ∑

j≤i−1
ρ j), (13.8)

where, for the second and third term on the left, equation (13.6) is used with i re-
placed by i−1. This leads to the recursion

Wi(1−∑
j≤i
ρi) =Wi−1(1− ∑

j<i−1
ρ j), i= 2, . . . ,C,

from which one easily gets

Wi =
∑ j ρ jR j

(1−∑ j≤iρ j)(1−∑ j<iρ j)
, i= 1,2, . . . ,C. (13.9)

Note that (13.9) is indeed valid for i= 1, by virtue of (13.7).

13.3.4 M|G|1 with least attained service

In this section we consider a dynamic priority rule, the so-called Least Attained
Service (LAS) policy: the server gives priority to the job that has received the least



• PASTA: 
If customers arrive according to a Poisson process, then the probability 
distribution of the number of customers at an arrival time is equal to the 
probability distribution of the number of customers at an arbitrary instant. 

• Arrival theorem (open network):
In an open network that is in steady state, a customer arriving at station j 
observes the system as if he observes it at an arbitrary instant.

• Arrival theorem (closed network):
In a closed network with m customers that is in steady state, a customer 
arriving at station j observes the system as if he observes the network with 
(m-1) customers at an arbitrary instant.

Arrival theorem
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Closed networks of M/M/1 queues: 
MVA Mean queue length, mean response time?

lm(i) arrival rate at station i, 
Fm(i) expected response time at station i, 
Lm(i) expected queue length at station i, if m customers in system

Arrival theorem, FCFS

Little’s law

Another relation needed to determine lm(j)
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• lm(i) is the arrival rate at station i, if m customers are 
circulating in the system

• Flow equations
• Such that

• lm # customers that are served in the system per time unit 

Closed networks of M/M/1 queues: 
MVA• Notation
• m : number of customers in the system
• p steady state distribution of Markov chain with transition matrix 

R=(rij ):
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Closed networks of M/M/1 queues: 
MVA lm(i) arrival rate at station i, 

Fm(i) expected response time at station i, 
Lm(i) expected queue length at station i, if m customers in system

1,
11

=×= åå
==

N

i
i

N

j
jiji r ppp

€ 
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• Consequence
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λm (i) = λm ⋅ π i , λm = λm (i)
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• Little’s law
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λm = m ⋅ π i ⋅ Fm (i)
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Closed networks of M/M/1 queues: 
MVA lm(i) arrival rate at station i, 

Fm(i) expected response time at station i, 
Lm(i) expected queue length at station i, if m customers in system

Fm ( j) = 1
µ j

+ Lm−1( j)
1
µ j

,           

Lm ( j) = λm ( j)Fm ( j)

λm (i) = λm ⋅π i =m ⋅ j=1

N
∑ π j ⋅Fm ( j){ }

−1

⋅π i

19



calculates lm(i), Fm(i) and Lm(i) for all m,i through recursion

Algorithm
• Determine solution p of the flow equations

• m:=1

• F1(i)=1/µi for all i

R: recursive step

m:=m+1 and go to R

λm (i) = λm ⋅π i =m ⋅ j=1

N
∑ π j ⋅Fm ( j){ }

−1

⋅π i

€ 

Lm (i) = λm (i) ⋅ Fm (i)

€ 

Fm+1(i) =
1+ Lm (i)

µi

21

Closed networks of M/M/1 queues: MVA 



Generalisations

• Approximate MVA

• QNA:
W. Whitt (1983) The queueing network analyzer. Bell. Syst. Tech J 62, 
pp 2779 - 2815


