

A visual analytics approach to compare propagation models in social networks

J. Vallet, H. Kirchner, B. Pinaud, G. Melançon

LaBRI, UMR 5800 Inria Bordeaux Univ. Bordeaux

We want to...

- Study propagation models and social networks
- Compare the propagation models
- Use graph rewriting techniques to represent models and run propagation simulations
- Perform visual analysis

Definitions

A social network:

W. W. Zachary, An information flow model for conflict and fission in small groups, Journal of Anthropological Research 33, (1977).

Described as a graph G=(V,E) with

- a set of nodes V
 - called "individuals"
- a set of edges $E \in V \times V$
 - to represent "relations"

Definitions

Propagation in a network - as a social process

- An individual performs an action
- Her/his neighbours are informed and choose to perform the same action
- The process repeats itself
- Decisions can depend on influences, vulnerabilities or resistances between neighbours

Probabilistic cascade model simulation

Linear threshold model simulation

Probabilistic cascade model simulation

Linear threshold model simulation

Definitions

Selected references:

- Threshold models
 Bertuzzo et al. (2010), Dodds et al. (2005), Goyal et al. (2012),
 Granovetter (1978), Watts (2002)...
- Cascade models
 Chen W. et al. (2011), Gomez-Rodriguez et al. (2010), Payne et al. (2011), Richardson et al. (2002), Wonyeol et al. (2012)...

Propagation in a network from a graph theoretic perspective

- Social state (activated, influent) are encoded as node attributes
- The process acts locally, is asynchronous, distributed and follows some conditions
- This is where graph rewriting comes into play

Propagation in a network as a Graph Rewriting System

- Rules as a common paradigm to express the propagation models
- Each propagation paradigm (threshold, cascade) has its own ruleset and a strategy managing their application
- Modelling through Strategic Rewriting [Fernandez et al. (2014)]

<u>Definition</u>: Port graph with properties [Fernandez et al. (2014)]

- G=(N,P,E)
- Ports are used as connection points
- Edges connect nodes through ports
- Each element possess a set of properties

Definition: Port graph rewrite rule

Symbolically written as

$$L \Rightarrow R$$

- LHS/RHS expressed as port graphs
- ⇒ is a special node whose ports encode rewiring conditions to perform in rewriting (through red edges)

Example: Independent cascade model [Kempe et al. (2003)]

- Start with a set of influencers
- Influencers try (according to some probability) to influence their neighbours and recruit them as new influencers
- The process repeats until no more influencer can be recruited

Rule 1: influence from a neighbour

Rule 2: node activation

Definition: Strategy

- Manage the rules' application order
- Express control (repeat, if-then-else, while-do, ...)
- Use a located graph with Position and Banned subgraphs:
 - Position represents the subgraph where rewriting may take place
 - Banned represents the subgraph where rewriting is forbidden

Analytic visualization and model comparison

- Successive applications of rules
- Keep track of the previously computed simulations
- Use the derivation tree during comparative analysis

[Pinaud et al. (2012)]

Analytic visualization and model comparison

Metrics: used to measure the propagation evolution

- Propagation speed: estimated by the number of active nodes at a given step
- Acknowledgment speed: estimated by the number of visited nodes at a given step
- Propagation efficiency: ratio of activated nodes at step t against those visited at t-1

Propagation speed

Propagation speed

Acknowledgment speed

To conclude

- We have used graph rewriting as a common language to express propagation models
- Analyze and compare the models precisely by storing the propagation evolution
- Results can be visually investigated to help enforce influence maximization
- Several metrics available to perform analysis

Future work

- Extend to additional models
- Explore other visual encodings for scalability (Matrix views...)
- Management of time-dependent attributes evolving along the propagation (influence exhaustion, media induced fashion...)
- Joint use of propagation and topological modifications
- Application to different domains (power distribution, network security, epidemiology, financial crisis)

References

- Goyal, A., F. Bonchi, and L. V. Lakshmanan (2010). Learning influence probabilities in social networks. In 3rd ACM Int. Conf. on Web Search and Data Mining, WSDM '10, pp. 241–250
- Kempe, D., J. Kleinberg, and É. Tardos (2003). Maximizing the spread of influence through a social network. In Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD '03, pp. 137–146
- Fernandez, M., H. Kirchner, and B. Pinaud (2014). Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework. In D. Bošnački, S. Edelkamp, A. L. Lafuente, et A. Wijs (Eds.), GRAPHITE 2014, Volume 159 of EPTCS, pp. 15–29
- Pinaud, B., G. Melançon, and J. Dubois (2012). Porgy: A visual graph rewriting environment for complex systems. Computer Graphics Forum 31(3), 1265–1274.

