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We want to...
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●   Study propagation models and social networks

• Compare the propagation models

• Use graph rewriting techniques to represent models and run 
propagation simulations

• Perform visual analysis



Definitions

Described as a graph     with

• a set of nodes 
 called “individuals”

• a set of edges
 to represent “relations”

A social network:
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W. W. Zachary, An information flow model for conflict 
and fission in small groups, Journal of Anthropological 
Research 33, (1977).

G=(V , E)

E∈V×V

V



Definitions

Propagation in a network – as a social process
• An individual performs an action
• Her/his neighbours are informed and 

choose to perform the same action
• The process repeats itself
• Decisions can depend on influences, 

vulnerabilities or resistances between 
neighbours
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Probabilistic cascade model simulation Linear threshold model simulation
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Definitions

Selected references:
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• Threshold models
Bertuzzo et al. (2010), Dodds et al. (2005), Goyal et al. (2012), 

Granovetter (1978), Watts (2002)…

• Cascade models
Chen W. et al. (2011), Gomez-Rodriguez et al. (2010), Payne et al. 

(2011), Richardson et al. (2002), Wonyeol et al. (2012)...



Model translation and rewrite rules
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• Social state (activated, influent) are encoded as node attributes

• The process acts locally, is asynchronous, distributed and follows 
some conditions

• This is where graph rewriting comes into play

Propagation in a network from a graph theoretic perspective



Model translation and rewrite rules
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• Rules as a common paradigm to express the propagation models

• Each propagation paradigm (threshold, cascade) has its own ruleset 
and a strategy managing their application

• Modelling through Strategic Rewriting [Fernandez et al. (2014)]

Propagation in a network as a Graph Rewriting System



●  

●   Ports are used as connection points

●   Edges connect nodes through ports

●   Each element possess a set of properties

Definition: Port graph with properties 
                                                 [Fernandez et al. (2014)]
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Model translation and rewrite rules

G=(N , P , E)



Model translation and rewrite rules
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Definition: Port graph rewrite rule

●   Symbolically written as

●   LHS/RHS expressed as port graphs

●       is a special node whose ports 
  encode rewiring conditions to perform 
  in rewriting (through red edges)

L⇒ R

⇒



• Start with a set of influencers
• Influencers try (according to some 

probability) to influence their 
neighbours and recruit them as 
new influencers

• The process repeats until no more 
influencer can be recruited

Example: Independent cascade model [Kempe et al. (2003)] 
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Model translation and rewrite rules



Model translation and rewrite rules

Rule 1: influence from a 
neighbour
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Model translation and rewrite rules

Rule 1: influence from a 
neighbour
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Active = true

Active = false
Visited = ?     

Marked = false



Model translation and rewrite rules

Rule 1: influence from a 
neighbour
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Active = true

Active = false
Visited = ?     

Active = false
Visited = true

Active = true

Marked = false Marked = true



Model translation and rewrite rules

Rule 1: influence from a 
neighbour
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Active = true

Active = false
Visited = ?
[Sigma = Y]

Active = false
Visited = true

[Sigma = f(X, Y)]

Active = true

Marked = false
[Probability = X]

Marked = true
[Probability = X]



Model translation and rewrite rules
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Active = false
Visited = true

Active = true

Rule 2: node activation



• Manage the rules' application order
• Express control (repeat, if-then-else, while-do, …)

• Use a located graph with Position and Banned subgraphs:
 Position represents the subgraph where rewriting may take place
 Banned represents the subgraph where rewriting is forbidden

Definition: Strategy
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Model translation and rewrite rules
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Model translation and rewrite rules



Model translation and rewrite rules

Step 1 Step 2 Step 3 27
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Model translation and rewrite rules

Step 4 Step 5 Step 6



Analytic visualization and model comparison

• Successive applications of rules

• Keep track of the previously computed 
simulations

• Use the derivation tree during 
comparative analysis
[Pinaud et al. (2012)]
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Analytic visualization and model comparison
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• Propagation speed: estimated by the number of active nodes at a 
given step

• Acknowledgment speed: estimated by the number of visited nodes 
at a given step

• Propagation efficiency: ratio of activated nodes at step t against 
those visited at t-1

Metrics: used to measure the propagation evolution



Independent cascade Linear threshold model 31
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Propagation speed

Propagation step
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Independent cascade Linear threshold model
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Acknowledgment speed
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Independent cascade Linear threshold model
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To conclude

• We have used graph rewriting as a common language to express 
propagation models

• Analyze and compare the models precisely by storing the 
propagation evolution

• Results can be visually investigated to help enforce influence 
maximization

• Several metrics available to perform analysis
35



Future work

• Extend to additional models

• Explore other visual encodings for scalability (Matrix views...)

• Management of time-dependent attributes evolving along the 
propagation (influence exhaustion, media induced fashion...)

• Joint use of propagation and topological modifications

• Application to different domains (power distribution, network 
security, epidemiology, financial crisis) 36
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Thanks for your attention.
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