
Dynamic Programming on
Nominal Graphs!

Matteo Sammartino!
Radboud University!

!
(joint work with Nicklas Hoch, Ugo Montanari)!

Optimization problems as hypergraphs!

N. Hoch & U. Montanari & M. Sammartino 13

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3)) c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:
• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees

Atomic subproblems!

Problems variables!

•  Lack of algebraic structure for resolution via
structural recursion

•  No indication of variable elimination order
(secondary optimization problem)!

N. Hoch & U. Montanari & M. Sammartino 13

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3)) c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:
• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees

Optimization problems as hypergraphs!

Process calculus-like representation!

A(x1, x2)
atomic problem A with
two variables!

(x1)A(x1, x2)
•  Solved w.r.t. (elimination)!
•  Solution is parametric in !

x1

x2

A(x1, x2) k B(x2, x3) composite problem!

x1, x2

Permutation algebras!

Infinite set of variable names !

N. Hoch & U. Montanari & M. Sammartino 3

that may be parked inside the zone. Their term representation is interpreted as functions telling the cost
of parking cars inside or outside certain parking zones. Thus cost functions only have binary arguments.
While more efficient, this domain choice yields operators remarkably neater than those of the classical
point-wise interpretation and our framework is flexible enough to accommodate them.

2 An algebraic specification for optimization problems

We introduce an algebraic specification for describing the structure of optimization problems. Variables
are represented as names, belonging to an enumerable setN . We write Perm(N) for the set of permuta-
tions over N , i.e., bijective functions p ∶N →N .
Definition 1 (Optimization signature). Let C be a set of constants denoting atomic problems, equipped
with an arity function ar ∶C→N telling how many variables each problem involves. We assume the empty
problem nil, with ar(nil) = 0. The optimization signature is given by the following grammar

p,q ∶= p ∥ q � (x)p � pp � A(x̃) � nil

where A ∈C, p ∈ Perm(N), {x}∪ x̃ ⊆N and �x̃� = ar(A) (we overload the notation x̃ to indicate both a
vector and a set of names).

Here:
• the parallel composition p ∥ q represents the problem consisting of two subproblems p and q,

possibly sharing some variables;
• the restriction (x)p is p where the assignment for x has already been determined;
• the permutation pp is p where variable names have been exchanged according to p;
• the atomic problem A(x̃) represents a problem that only involves the problem A over variables x̃;
• nil represents the empty problem.

We assume restriction has precedence over parallel composition.
Free names of p are recursively defined as follows

f n(p ∥ q) = f n(p)∪ f n(q) f n((x)p) = f n(p)�{x} f n(pp) = p(f n(p))
f n(A(x̃)) = x̃ f n(nil) =�

We consider syntax up to structural congruence axioms shown in fig. 1. The operator ∥ forms a com-
mutative monoid, meaning that problems in parallel can be solved in any order (AX∥). Restrictions can
be a-converted (AXa), i.e. names of assigned variables are irrelevant. Restrictions can also be swapped,
i.e., assignments can happen in any order, and removed, whenever their scope is nil (AX(x)). The scope
of restricted variables can be narrowed to terms where they occur free (AXSE). Axioms regarding per-
mutations say that identity and composition behave as expected (AXp) and that permutations distribute
over syntactic operators (AXp

p). Permutations are assumed to behave in a capture avoiding way when
applied to (x)p. We call optimization algebraic specification the specification made of the optimization
signature and the congruence axioms, and optimization terms the terms for the specification.

We include permutations in the specification because they provide a general mechanism to compute
the set of “free” names in any algebra, called (minimal) support.
Definition 2 (Support). Let A be an algebra for the optimization specification, and let pA be the inter-
pretation of p in A. We say that X ⊂N supports a ∈ A whenever, for all permutations p acting as the
identity on X, we have apA = a. The minimal support supp(a) is the intersection of all sets supporting a.

For instance, let p t be the interpretation of p on optimization terms: given a term p, pp t applies p to
all free names of p in a capture avoiding way. It is easy to verify that supp(p) = f n(p).

Permutations (bijections)!

N. Hoch & U. Montanari & M. Sammartino 3

that may be parked inside the zone. Their term representation is interpreted as functions telling the cost
of parking cars inside or outside certain parking zones. Thus cost functions only have binary arguments.
While more efficient, this domain choice yields operators remarkably neater than those of the classical
point-wise interpretation and our framework is flexible enough to accommodate them.

2 An algebraic specification for optimization problems

We introduce an algebraic specification for describing the structure of optimization problems. Variables
are represented as names, belonging to an enumerable setN . We write Perm(N) for the set of permuta-
tions over N , i.e., bijective functions p ∶N →N .
Definition 1 (Optimization signature). Let C be a set of constants denoting atomic problems, equipped
with an arity function ar ∶C→N telling how many variables each problem involves. We assume the empty
problem nil, with ar(nil) = 0. The optimization signature is given by the following grammar

p,q ∶= p ∥ q � (x)p � pp � A(x̃) � nil

where A ∈C, p ∈ Perm(N), {x}∪ x̃ ⊆N and �x̃� = ar(A) (we overload the notation x̃ to indicate both a
vector and a set of names).

Here:
• the parallel composition p ∥ q represents the problem consisting of two subproblems p and q,

possibly sharing some variables;
• the restriction (x)p is p where the assignment for x has already been determined;
• the permutation pp is p where variable names have been exchanged according to p;
• the atomic problem A(x̃) represents a problem that only involves the problem A over variables x̃;
• nil represents the empty problem.

We assume restriction has precedence over parallel composition.
Free names of p are recursively defined as follows

f n(p ∥ q) = f n(p)∪ f n(q) f n((x)p) = f n(p)�{x} f n(pp) = p(f n(p))
f n(A(x̃)) = x̃ f n(nil) =�

We consider syntax up to structural congruence axioms shown in fig. 1. The operator ∥ forms a com-
mutative monoid, meaning that problems in parallel can be solved in any order (AX∥). Restrictions can
be a-converted (AXa), i.e. names of assigned variables are irrelevant. Restrictions can also be swapped,
i.e., assignments can happen in any order, and removed, whenever their scope is nil (AX(x)). The scope
of restricted variables can be narrowed to terms where they occur free (AXSE). Axioms regarding per-
mutations say that identity and composition behave as expected (AXp) and that permutations distribute
over syntactic operators (AXp

p). Permutations are assumed to behave in a capture avoiding way when
applied to (x)p. We call optimization algebraic specification the specification made of the optimization
signature and the congruence axioms, and optimization terms the terms for the specification.

We include permutations in the specification because they provide a general mechanism to compute
the set of “free” names in any algebra, called (minimal) support.
Definition 2 (Support). Let A be an algebra for the optimization specification, and let pA be the inter-
pretation of p in A. We say that X ⊂N supports a ∈ A whenever, for all permutations p acting as the
identity on X, we have apA = a. The minimal support supp(a) is the intersection of all sets supporting a.

For instance, let p t be the interpretation of p on optimization terms: given a term p, pp t applies p to
all free names of p in a capture avoiding way. It is easy to verify that supp(p) = f n(p).

Algebras including permutations and axioms!

4 Dynamic Programming on Nominal Graphs

(AX∥) p ∥ q ≡ q ∥ p (p ∥ q) ∥ r ≡ p ∥ (q ∥ r) p ∥ nil ≡ p

(AX(x)) (x)(y)p ≡ (y)(x)p (x)nil ≡ nil

(AXa) (x)p ≡ (y)p[x� y] (y ∉ f n(p))
(AXSE) (x)(p ∥ q) ≡ (x)p ∥ q (x ∉ f n(q))
(AXp) p id ≡ p (pp ′)p ≡ p(p ○p ′)
(AXp

p)
A(x1, . . . ,xn)p ≡ A(p(x1), . . . ,p(xn)) nil p ≡ nil (p ∥ q)p ≡ pp ∥ qp

((x)p)p ≡ (x)pp ′ (p ′(x) = x,p ′(y) = p(y) for x ≠ y)
Figure 1: Structural congruence axioms of the optimization specification.

2.1 Hierarchical optimization specification

The scope of restrictions determines a solution for the secondary optimization problem, because it spec-
ifies when restricted variables should be eliminated. However, the presence of (AXSE) identifies terms
corresponding to different solutions. We call hierarchical optimization specification the optimization
specification without (AXSE), and hierarchical terms its freely generated terms.

We are interested in two forms of hierarchical terms.

Definition 3 (Normal and canonical forms). A term is said to be in normal form whenever it is of the
form (x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n))
with Ai ∈C (i = 1, . . . ,n) and x̃ ⊆ x̃1∪⋅ ⋅ ⋅∪ x̃n. It is in canonical form whenever it is obtained by the repeated
application to a non-hierarchical term of (AXSE), from left to right, until termination. For both forms, we
assume that subterms of the form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX∥).

Normal and canonical forms are somewhat dual: normal forms have all restrictions at the top level,
whereas in canonical forms every restriction (x) is as close as possible to the atomic terms where x occurs
(if any). A term in normal form is intuitively closer to a typical optimization problem: x̃ specifies which
variables should be assigned, and the term in its scope represents subproblems and their connections.
In a term in canonical form, variables are eliminated as soon as possible. Notice that a term may have
more than one canonical form, whereas normal forms are unique (up to the hierarchical optimization
specification congruence).

Remark 1. Hierarchical terms in normal and canonical form can be regarded as canonical represen-
tatives of ≡-classes (recall that ≡ is the structural congruence of fig. 1), because ≡ is coarser than the
hierarchical optimization specification congruence.

3 Optimization problems as nominal hypergraphs

Recall that a hypergraph G is a triple (VG,EG,aG∶EG→V�G), where VG is the set of vertices, EG is the set
of hyperedges and, for each e ∈EG, aG(e) is the tuple of vertices attached to e (V�G is the set of tuples over
VG). Let E be a set of edge labels, equipped with a function ar∶E →N telling the number of vertices ar(l)

P

Support!

8⇡ : ⇡|A = id =) p ⇡ = p

A ✓ N supports ! whenever!

supp(p)Minimal support! generalizes free variables

p 2 P

An algebraic specification for
optimization problems!

N. Hoch & U. Montanari & M. Sammartino 3

that may be parked inside the zone. Their term representation is interpreted as functions telling the cost
of parking cars inside or outside certain parking zones. Thus cost functions only have binary arguments.
While more efficient, this domain choice yields operators remarkably neater than those of the classical
point-wise interpretation and our framework is flexible enough to accommodate them.

2 An algebraic specification for optimization problems

We introduce an algebraic specification for describing the structure of optimization problems. Variables
are represented as names, belonging to an enumerable setN . We write Perm(N) for the set of permuta-
tions over N , i.e., bijective functions p ∶N →N .
Definition 1 (Optimization signature). Let C be a set of constants denoting atomic problems, equipped
with an arity function ar ∶C→N telling how many variables each problem involves. We assume the empty
problem nil, with ar(nil) = 0. The optimization signature is given by the following grammar

p,q ∶= p ∥ q � (x)p � pp � A(x̃) � nil

where A ∈C, p ∈ Perm(N), {x}∪ x̃ ⊆N and �x̃� = ar(A) (we overload the notation x̃ to indicate both a
vector and a set of names).

Here:
• the parallel composition p ∥ q represents the problem consisting of two subproblems p and q,

possibly sharing some variables;
• the restriction (x)p is p where the assignment for x has already been determined;
• the permutation pp is p where variable names have been exchanged according to p;
• the atomic problem A(x̃) represents a problem that only involves the problem A over variables x̃;
• nil represents the empty problem.

We assume restriction has precedence over parallel composition.
Free names of p are recursively defined as follows

f n(p ∥ q) = f n(p)∪ f n(q) f n((x)p) = f n(p)�{x} f n(pp) = p(f n(p))
f n(A(x̃)) = x̃ f n(nil) =�

We consider syntax up to structural congruence axioms shown in fig. 1. The operator ∥ forms a com-
mutative monoid, meaning that problems in parallel can be solved in any order (AX∥). Restrictions can
be a-converted (AXa), i.e. names of assigned variables are irrelevant. Restrictions can also be swapped,
i.e., assignments can happen in any order, and removed, whenever their scope is nil (AX(x)). The scope
of restricted variables can be narrowed to terms where they occur free (AXSE). Axioms regarding per-
mutations say that identity and composition behave as expected (AXp) and that permutations distribute
over syntactic operators (AXp

p). Permutations are assumed to behave in a capture avoiding way when
applied to (x)p. We call optimization algebraic specification the specification made of the optimization
signature and the congruence axioms, and optimization terms the terms for the specification.

We include permutations in the specification because they provide a general mechanism to compute
the set of “free” names in any algebra, called (minimal) support.
Definition 2 (Support). Let A be an algebra for the optimization specification, and let pA be the inter-
pretation of p in A. We say that X ⊂N supports a ∈ A whenever, for all permutations p acting as the
identity on X, we have apA = a. The minimal support supp(a) is the intersection of all sets supporting a.

For instance, let p t be the interpretation of p on optimization terms: given a term p, pp t applies p to
all free names of p in a capture avoiding way. It is easy to verify that supp(p) = f n(p).

p⇡

•  usual process calculi ones!
•  permutations distribute over operations!Axioms:!

(non-restricted variables)!
For every term :!p

supp(p) = fn(p)

4 Dynamic Programming on Nominal Graphs

(AX∥) p ∥ q ≡ q ∥ p (p ∥ q) ∥ r ≡ p ∥ (q ∥ r) p ∥ nil ≡ p

(AX(x)) (x)(y)p ≡ (y)(x)p (x)nil ≡ nil

(AXa) (x)p ≡ (y)p[x� y] (y ∉ f n(p))
(AXSE) (x)(p ∥ q) ≡ (x)p ∥ q (x ∉ f n(q))
(AXp) p id ≡ p (pp ′)p ≡ p(p ○p ′)
(AXp

p)
A(x1, . . . ,xn)p ≡ A(p(x1), . . . ,p(xn)) nil p ≡ nil (p ∥ q)p ≡ pp ∥ qp

((x)p)p ≡ (x)pp ′ (p ′(x) = x,p ′(y) = p(y) for x ≠ y)
Figure 1: Structural congruence axioms of the optimization specification.

2.1 Hierarchical optimization specification

The scope of restrictions determines a solution for the secondary optimization problem, because it spec-
ifies when restricted variables should be eliminated. However, the presence of (AXSE) identifies terms
corresponding to different solutions. We call hierarchical optimization specification the optimization
specification without (AXSE), and hierarchical terms its freely generated terms.

We are interested in two forms of hierarchical terms.

Definition 3 (Normal and canonical forms). A term is said to be in normal form whenever it is of the
form (x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n))
with Ai ∈C (i = 1, . . . ,n) and x̃ ⊆ x̃1∪⋅ ⋅ ⋅∪ x̃n. It is in canonical form whenever it is obtained by the repeated
application to a non-hierarchical term of (AXSE), from left to right, until termination. For both forms, we
assume that subterms of the form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX∥).

Normal and canonical forms are somewhat dual: normal forms have all restrictions at the top level,
whereas in canonical forms every restriction (x) is as close as possible to the atomic terms where x occurs
(if any). A term in normal form is intuitively closer to a typical optimization problem: x̃ specifies which
variables should be assigned, and the term in its scope represents subproblems and their connections.
In a term in canonical form, variables are eliminated as soon as possible. Notice that a term may have
more than one canonical form, whereas normal forms are unique (up to the hierarchical optimization
specification congruence).

Remark 1. Hierarchical terms in normal and canonical form can be regarded as canonical represen-
tatives of ≡-classes (recall that ≡ is the structural congruence of fig. 1), because ≡ is coarser than the
hierarchical optimization specification congruence.

3 Optimization problems as nominal hypergraphs

Recall that a hypergraph G is a triple (VG,EG,aG∶EG→V�G), where VG is the set of vertices, EG is the set
of hyperedges and, for each e ∈EG, aG(e) is the tuple of vertices attached to e (V�G is the set of tuples over
VG). Let E be a set of edge labels, equipped with a function ar∶E →N telling the number of vertices ar(l)

y /2 supp(p)

4 Dynamic Programming on Nominal Graphs

(AX∥) p ∥ q ≡ q ∥ p (p ∥ q) ∥ r ≡ p ∥ (q ∥ r) p ∥ nil ≡ p

(AX(x)) (x)(y)p ≡ (y)(x)p (x)nil ≡ nil

(AXa) (x)p ≡ (y)p[x� y] (y ∉ f n(p))
(AXSE) (x)(p ∥ q) ≡ (x)p ∥ q (x ∉ f n(q))
(AXp) p id ≡ p (pp ′)p ≡ p(p ○p ′)
(AXp

p)
A(x1, . . . ,xn)p ≡ A(p(x1), . . . ,p(xn)) nil p ≡ nil (p ∥ q)p ≡ pp ∥ qp

((x)p)p ≡ (x)pp ′ (p ′(x) = x,p ′(y) = p(y) for x ≠ y)
Figure 1: Structural congruence axioms of the optimization specification.

2.1 Hierarchical optimization specification

The scope of restrictions determines a solution for the secondary optimization problem, because it spec-
ifies when restricted variables should be eliminated. However, the presence of (AXSE) identifies terms
corresponding to different solutions. We call hierarchical optimization specification the optimization
specification without (AXSE), and hierarchical terms its freely generated terms.

We are interested in two forms of hierarchical terms.

Definition 3 (Normal and canonical forms). A term is said to be in normal form whenever it is of the
form (x̃)(A1(x̃1) ∥ A2(x̃2) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n))
with Ai ∈C (i = 1, . . . ,n) and x̃ ⊆ x̃1∪⋅ ⋅ ⋅∪ x̃n. It is in canonical form whenever it is obtained by the repeated
application to a non-hierarchical term of (AXSE), from left to right, until termination. For both forms, we
assume that subterms of the form (x̃)nil (where x̃ may be empty) are removed using (AX(x)) and (AX∥).

Normal and canonical forms are somewhat dual: normal forms have all restrictions at the top level,
whereas in canonical forms every restriction (x) is as close as possible to the atomic terms where x occurs
(if any). A term in normal form is intuitively closer to a typical optimization problem: x̃ specifies which
variables should be assigned, and the term in its scope represents subproblems and their connections.
In a term in canonical form, variables are eliminated as soon as possible. Notice that a term may have
more than one canonical form, whereas normal forms are unique (up to the hierarchical optimization
specification congruence).

Remark 1. Hierarchical terms in normal and canonical form can be regarded as canonical represen-
tatives of ≡-classes (recall that ≡ is the structural congruence of fig. 1), because ≡ is coarser than the
hierarchical optimization specification congruence.

3 Optimization problems as nominal hypergraphs

Recall that a hypergraph G is a triple (VG,EG,aG∶EG→V�G), where VG is the set of vertices, EG is the set
of hyperedges and, for each e ∈EG, aG(e) is the tuple of vertices attached to e (V�G is the set of tuples over
VG). Let E be a set of edge labels, equipped with a function ar∶E →N telling the number of vertices ar(l)

x /2 supp(q)

Correct handling of restrictions in all algebras

Alfa-conversion

Scope extension

Hierarchical specification!

terms describe solutions of secondary optimization
problem (variable elimination order)!

N. Hoch & U. Montanari & M. Sammartino 13

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3)) c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:
• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees

Normal form: elimination at the end
N. Hoch & U. Montanari & M. Sammartino 13

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3)) c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:
• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees

Canonical form: elimination as soon as possible

no scope extension

Nominal Graphs!

A B

v1 v2 v3

x3

Labeled hypergraph!

Partial function!
V ! N

Interface vertices =
free names!

(x1)(x2)(A(x1, x2) k B(x2, x3))

Non-interface vertices =
restricted names !

(up to alfa-connversion)!

x3x1 x2

Optimization algebra of nominal
graphs!

v1 v2

k B

x

w1 w2

x

A

v1 v2

x

B

v3

A =!

Optimization algebra of nominal
graphs!

v1 v2

A

x1 x2

(x1)

v1 v2

A

x2

=!

Optimization algebra of nominal
graphs!

supp = set of interface vertices!

x

A

v1 v2v1 v2

A [x 7! y, y 7! x]

y

=!

Optimization algebra of nominal
graphs!

Sound and complete axiomatization

We have recursive evaluations of nominal graphs
in any algebra (initial-algebra semantics)

congruent terms! isomorphic nominal graphs !

Optimization algebra of cost
functions!

Assignment of values
to variables!

cost!

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

JpKc = evaluation of as a cost function !p

determined by assignments to !JpKc supp(p)

Representable as a finite table

Computed via structural recursion!
(“almost” dynamic programming)!

By general properties of permutation algebras:!

Typical optimization problems!

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

Goal: minimize total cost

One cost function for each atomic problem!cA A

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

Typical optimization problems!

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

Goal: minimize total cost

One cost function for each atomic problem!cA A

N. Hoch & U. Montanari & M. Sammartino 7

Definition 5 (Tree decomposition). A tree decomposition (TD) of a hypergraph G is a pair (T,X), where
T = (N,A) is a tree (i.e., an undirected, acyclic graph) and X = {Xn}n∈N is a family of subsets Xn ⊆VG,
one for each node of N, such that: (a) �n∈N Xn =VG; (b) for all e ∈EG there is n ∈N such that aG(E) ⊆Xn;
(c) for all v ∈VG, the set of nodes {n ∈N � v ∈ Xn} induces a subtree of T .

In our framework, ordinary hypergraphs (without isolated vertices) can naturally be seen as NH-
graphs with empty interface, and each of their TDs can be represented as an optimization term.
Theorem 1. Every TD for G induces an optimization term t such that JtKg ≅ ↑ �G, where ↑∶VG →N is
the nowhere defined function.

The idea is constructing t via a visit of T from a chosen root r. We first associate the induced subgraph
Gn of G to Xn, for each node n ∈ N. Each time a new node n is expanded in the visit, we generate
the following subterms of t, all in parallel: one term representing edges and nodes of Gn not already
in t; the subterms corresponding to n’s children. Correctness of the translation is guaranteed by (a)-
(c) of definition 5. Notice that, since all variables are restricted, choosing a different root amounts to
rearranging restrictions. By soundness, this operation results in terms with isomorphic images via J−Kg,
all isomorphic to G.

4 Representing and solving optimization problems

We now show how typical optimization problems can be represented and solved in our algebraic frame-
work.1 Suppose we have n atomic problems A1, . . . ,An whose variables can be assigned values in D, and
we want to minimize a function of the form

�
1≤i≤n

cAi(x̃i)
where each cAi(x̃i)∶D�x̃i� →R∞, for i = 1, . . . ,n, gives a cost to each variable assignment for the problem
Ai; an infinite cost represents a forbidden assignment.

The problem can be represented as the following term in normal form

p = (x̃)(A1(x̃1) ∥ ⋅ ⋅ ⋅ ∥ An(x̃n)) where x̃ = x̃1∪⋅ ⋅ ⋅∪ x̃n

and the computation of the optimal cost as a function

JpKc ∶(N →D)→R∞
giving a cost to each assignment of variables. More precisely, its computation is performed by assigning
values to the free variables of p (discarding assignments to other variables), and minimizing w.r.t. bound
ones. Typically we have f n(p) =�, so minimization is performed w.r.t. all variables.

Formally, we take an algebra for the optimization specification formed by cost functions f ∶(N →
D)→R∞, where we interpret optimization terms. For any assignment of variables r ∶N →D, the inter-
pretation of constants is

JAi(x1, . . . ,xn)Kc r = cAi(r(x1), . . . ,r(xn)) JnilKc r = 0

and complex terms are recursively interpreted as follows

Jp1 ∥ p2Kc r = Jp1Kc r + Jp2Kc r J(x)pKc r =min
v∈D JpKc (r[x� v]) JppKc r = JpKc (r ○p−1)

We have the following property, which comes from the theory of permutation algebras.
1A different, more efficient, setting will be described in section 5.1.

!
When all variables are restricted!

!
Cost function = minimal cost!

!
!

We can compute the cost function for a graph but…

How can we pick a variable elimination
strategy?

Hierarchical nominal graphs!
Graphical counterpart of hierarchical terms!

10 Dynamic Programming on Nominal Graphs

(x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

Figure 2: A hierarchical term and the corresponding hierarchical NH-graph.

However, the information about the variable elimination strategy cannot be recovered from the NH-
graph itself. In order to do this, we need to introduce the graphical counterpart of hierarchical terms,
which we call hierarchical NH-graphs. They are trees that describe the structure of a NH-graph h �G in
terms of nested components. These trees are such that:

• the root is the discrete hypergraph formed by the interface vertices of G;

• each internal node n is a discrete subgraph of G;

• leaves are hypergraphs with a single hyperedge of G;

• there is an arc from G to G′ whenever G ⊂G′.
The intuition is that each internal node n of the tree is a component of h �G that exposes some additional
vertices and includes all the components in the subtree rooted in n. Leaves are basic components, i.e.,
hyperedges.

The correspondence between hierarchical terms and hierarchical NH-graph graphs is exemplified in
fig. 2. The scope of each restriction determines a component in the tree, where a vertex for the restricted
name is added. For convenience, we used the same name for restricted variables and corresponding non-
interface vertices, but the latter, as in ordinary NH-graphs, are actually up to a-conversion. A top-down
visit of the tree amounts to “opening” scopes and revealing their names.

As hierarchical terms, hierarchical NH-graphs describe a solution for the secondary optimization
problem. It is possible to show that hierarchical NH-graphs form an algebra for the hierarchical op-
timization specification. As seen in the example, each hierarchical term corresponds to a hierarchical
NH-graph. We also have the opposite correspondence.

Proposition 3. Each hierarchical NH-graph can be represented as a hierarchical term.

Exploiting this correspondence, we can interpret hierarchical NH-graphs as evaluations of cost func-
tions with a specific variable elimination strategy, which can be implemented via dynamic programming.

Remark 3. In remark 2 we have characterized NH-graphs as spans of hypergraph homomorphisms.
Interestingly, exploiting this characterization we can recover the NH-graph of which a given hierarchical
NH-graph is the decomposition. In fact, a hierarchical NH-graph can be regarded as a span where the
right part is a diagram T made of a “tree” of graph embeddings.

[N] [img(h)]? _
hl
oo

� � hr
// T

10 Dynamic Programming on Nominal Graphs

(x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

Figure 2: A hierarchical term and the corresponding hierarchical NH-graph.

However, the information about the variable elimination strategy cannot be recovered from the NH-
graph itself. In order to do this, we need to introduce the graphical counterpart of hierarchical terms,
which we call hierarchical NH-graphs. They are trees that describe the structure of a NH-graph h �G in
terms of nested components. These trees are such that:

• the root is the discrete hypergraph formed by the interface vertices of G;

• each internal node n is a discrete subgraph of G;

• leaves are hypergraphs with a single hyperedge of G;

• there is an arc from G to G′ whenever G ⊂G′.
The intuition is that each internal node n of the tree is a component of h �G that exposes some additional
vertices and includes all the components in the subtree rooted in n. Leaves are basic components, i.e.,
hyperedges.

The correspondence between hierarchical terms and hierarchical NH-graph graphs is exemplified in
fig. 2. The scope of each restriction determines a component in the tree, where a vertex for the restricted
name is added. For convenience, we used the same name for restricted variables and corresponding non-
interface vertices, but the latter, as in ordinary NH-graphs, are actually up to a-conversion. A top-down
visit of the tree amounts to “opening” scopes and revealing their names.

As hierarchical terms, hierarchical NH-graphs describe a solution for the secondary optimization
problem. It is possible to show that hierarchical NH-graphs form an algebra for the hierarchical op-
timization specification. As seen in the example, each hierarchical term corresponds to a hierarchical
NH-graph. We also have the opposite correspondence.

Proposition 3. Each hierarchical NH-graph can be represented as a hierarchical term.

Exploiting this correspondence, we can interpret hierarchical NH-graphs as evaluations of cost func-
tions with a specific variable elimination strategy, which can be implemented via dynamic programming.

Remark 3. In remark 2 we have characterized NH-graphs as spans of hypergraph homomorphisms.
Interestingly, exploiting this characterization we can recover the NH-graph of which a given hierarchical
NH-graph is the decomposition. In fact, a hierarchical NH-graph can be regarded as a span where the
right part is a diagram T made of a “tree” of graph embeddings.

[N] [img(h)]? _
hl
oo

� � hr
// T

10 Dynamic Programming on Nominal Graphs

(x2)((x1)A(x1,x2) ∥ (x3)B(x2,x3))

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

Figure 2: A hierarchical term and the corresponding hierarchical NH-graph.

However, the information about the variable elimination strategy cannot be recovered from the NH-
graph itself. In order to do this, we need to introduce the graphical counterpart of hierarchical terms,
which we call hierarchical NH-graphs. They are trees that describe the structure of a NH-graph h �G in
terms of nested components. These trees are such that:

• the root is the discrete hypergraph formed by the interface vertices of G;

• each internal node n is a discrete subgraph of G;

• leaves are hypergraphs with a single hyperedge of G;

• there is an arc from G to G′ whenever G ⊂G′.
The intuition is that each internal node n of the tree is a component of h �G that exposes some additional
vertices and includes all the components in the subtree rooted in n. Leaves are basic components, i.e.,
hyperedges.

The correspondence between hierarchical terms and hierarchical NH-graph graphs is exemplified in
fig. 2. The scope of each restriction determines a component in the tree, where a vertex for the restricted
name is added. For convenience, we used the same name for restricted variables and corresponding non-
interface vertices, but the latter, as in ordinary NH-graphs, are actually up to a-conversion. A top-down
visit of the tree amounts to “opening” scopes and revealing their names.

As hierarchical terms, hierarchical NH-graphs describe a solution for the secondary optimization
problem. It is possible to show that hierarchical NH-graphs form an algebra for the hierarchical op-
timization specification. As seen in the example, each hierarchical term corresponds to a hierarchical
NH-graph. We also have the opposite correspondence.

Proposition 3. Each hierarchical NH-graph can be represented as a hierarchical term.

Exploiting this correspondence, we can interpret hierarchical NH-graphs as evaluations of cost func-
tions with a specific variable elimination strategy, which can be implemented via dynamic programming.

Remark 3. In remark 2 we have characterized NH-graphs as spans of hypergraph homomorphisms.
Interestingly, exploiting this characterization we can recover the NH-graph of which a given hierarchical
NH-graph is the decomposition. In fact, a hierarchical NH-graph can be regarded as a span where the
right part is a diagram T made of a “tree” of graph embeddings.

[N] [img(h)]? _
hl
oo

� � hr
// T

Dynamic programming algorithm!

eliminate !x1 eliminate !x3

eliminate !x2

Bottom-up visit of the tree

Compute cost functions (tables) of leaves!

ASCENS parking optimization problem!

Goal: finding the best allocation of cars to parking zones!

N. Hoch & U. Montanari & M. Sammartino 13

Normal Canonical

p = (x1)(x2)(x3)(A(x1,x2) ∥ B(x2,x3) ∥C(x3)) c = (x2)((x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)))

A

x1 x2

B

x3

C

�
x2

x1 x2 x2 x3

A

x1 x2 x2

B

x3

C

x3

x2

(1) (2)

(3)

Figure 3: Graphical and corresponding term representation of a parking problem.

(1) Elimination of x1: Table J(x1)A(x1,x2)Kc (2d), with only one column x2, is computed by forcing x1
to be inside A;

(2) Elimination of x3: the table J(x3)(B(x2,x3) ∥C(x3))Kc is computed: Table 2e shows values for x2,
the partitions considered when computing the output cost, and the final cost. Notice that this and the
previous step could be executed in parallel. This fact comes immediately from terms (x1)A(x1,x2)
and (x3)(B(x2,x3) ∥C(x3)) being composed in parallel in (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3)).

(3) Elimination of x2: finally, the Table JpKc (2f) is computed, by comparing costs of parking x2 inside
either (x1)A(x1,x2) or (x3)(B(x2,x3) ∥C(x3)).

(4) Optimal variable assignment: tracking back through the Tables we find:
• x2 inside (x1)A(x1,x2) ∥ (x3)(B(x2,x3) ∥C(x3));
• x2 inside (x1)A(x1,x2);
• x2 inside A(x1,x2) with cost 4;
• x1 inside A(x1,x2) with cost 3;
• x3 inside B(x2,x3) ∥C(x3);
• x3 inside C(x3) with cost 1.

Notice that, in general, the outcome of the algorithm may be∞, whenever there is no car assignment to
parking zones that respect capacities.

6 Conclusion

In the paper we have introduced two process algebra-like specifications for the description of optimiza-
tion problems. The more abstract version (which includes the scope extension axiom) defines (hyper)
graphs, where vertices are variables, and edges are tasks whose costs depend on the values of the adja-
cent variables. Dropping the above axiom yields a specification corresponding to different parsing trees

Parking zones!

Electric cars!

Algebraic representation!

N. Hoch & U. Montanari & M. Sammartino 11

Here hr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.
Given an assignment r ∶C→ P of cars to zones, let rA = {x � r(x) = A}. We want to find an assignment r
such that �rA� ≤ c(A), for all A ∈ P, minimizing

�
x∈N F(x)(r(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn)means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶P(f n(p))→R∞
The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N)→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X = �������
∑x∈X F(x)(A) �X � ≤ c(A)
∞ otherwise

cars may
be parked inside A!

x1, . . . , xn

N. Hoch & U. Montanari & M. Sammartino 11

Here hr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.
Given an assignment r ∶C→ P of cars to zones, let rA = {x � r(x) = A}. We want to find an assignment r
such that �rA� ≤ c(A), for all A ∈ P, minimizing

�
x∈N F(x)(r(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn)means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶P(f n(p))→R∞
The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N)→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X = �������
∑x∈X F(x)(A) �X � ≤ c(A)
∞ otherwise

 must be parked inside of !
x

p

Boolean variable assignments!
-! “outside”!

X “inside”!

A “more efficient” algebra of cost
functions!

N. Hoch & U. Montanari & M. Sammartino 11

Here hr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.
Given an assignment r ∶C→ P of cars to zones, let rA = {x � r(x) = A}. We want to find an assignment r
such that �rA� ≤ c(A), for all A ∈ P, minimizing

�
x∈N F(x)(r(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn)means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶ (N → {−,✓})→R∞
The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N)→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X = �������
∑x∈X F(x)(A) �X � ≤ c(A)
∞ otherwise

A “more efficient” algebra of cost
functions!

N. Hoch & U. Montanari & M. Sammartino 11

Here hr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.
Given an assignment r ∶C→ P of cars to zones, let rA = {x � r(x) = A}. We want to find an assignment r
such that �rA� ≤ c(A), for all A ∈ P, minimizing

�
x∈N F(x)(r(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn)means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶ (N → {−,✓})→R∞
The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N)→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X = �������
∑x∈X F(x)(A) �X � ≤ c(A)
∞ otherwise

!
!

(other variables do not matter)!

X ✓ fn(p)

A “more efficient” algebra of cost
functions!

N. Hoch & U. Montanari & M. Sammartino 11

Here hr maps interface vertices to themselves in the root of T . Notice that the morphisms of T tell which
are the interface vertices in the nodes of T . In order to “paste” together leaf hypergraphs of T , we can
make a colimit of T in the category of graphs and their morphisms. The result is the disjoint union of
such hypergraphs, where vertices that are images of the same interface one, along the morphisms of T ,
are identified.

5.1 The parking optimization problem

We now introduce the parking optimization problem and we apply our approach to it. The parking op-
timization problem consists in finding the best parking zone for each vehicle of an ensemble, that is a
group of vehicles with similar features. This can be formalized as follows. Assume a set of parking zones
P = {A,B, . . .} and of car variables C = {x,y, . . .}, and two functions:

• c∶P→N, assigning a capacity to every zone;

• F ∶C→ P→R∞, specifying the cost F(x)(A) for x to park in A.
Given an assignment r ∶C→ P of cars to zones, let rA = {x � r(x) = A}. We want to find an assignment r
such that �rA� ≤ c(A), for all A ∈ P, minimizing

�
x∈N F(x)(r(x))

The problem can be specified in the style of section 2. Here a term p represents a parking system:
A(x1, . . . ,xn)means that xi might be parked in A; (x)p means that car x cannot be parked outside of p, so
it must have a parking spot in one of the zones of p. In general, a term p represents a part of the system
made of one or more parking zones.

In section 4 we presented an algebra of cost functions for typical optimization problems. Here we
introduce another, “more efficient” algebra which, nevertheless, fits into our algebraic framework and
can be used to evaluate optimization terms. To each parking system p we associate a function

JpKc ∶ (N → {−,✓})→R∞
The intended meaning of JpKc X is the cost of parking in p cars X ⊆ f n(p) and all cars corresponding to
variables restricted in p. Notice that the evaluation function J−Kc is quite different from that of section 4.
Here assignments do not fix the values of variables, i.e., the parking zones where cars are allocated, but
only their positions with respect to the present p. However, our framework is able to accommodate also
this more efficient setting.

To avoid handling polymorphic functions, we automatically extend functions JpKc to the whole N ,
namely JpKc ∶P(N)→R∞, by letting

JpKc X = JpKc (X ∩ f n(p)). (1)

However, this function is still determined by subsets of f n(p), so it admits a finite representation that
can be efficiently computed and stored. Formally, properties 1 and 2 hold for extensions to N (regarded
as functions (N → {0,1})→R∞).

Cost functions can be defined by recursion on the structure of systems. As mentioned, it is enough to
define their action on a subset X of their support. We have

JA(x̃)Kc X = �������
∑x∈X F(x)(A) �X � ≤ c(A)
∞ otherwise

12 Dynamic Programming on Nominal Graphs

meaning that cars X ⊆ x̃ can be parked in zone A iff their number is at most the capacity of A. For nil we
simply have JnilKc X = 0.

Then we have

Jp ∥ qKc X = min{X1,X2}∈P2(X)�JpKc X1+ JqKc X2 � X1 ⊆ f n(p),
X2 ⊆ f n(q) �

where P2(X) are the partitions in two sets of X ⊆ f n(p ∥ q). Here, to park cars X in component p ∥ q,
one has to park each of them in either component p or component q, but not in both. Thus the best option
must be chosen. Finally, we have

J(x)pKc X = JpKc (X ∪{x}).
Here it is required that car x is parked in component p.

Typically, the whole system s has no free names. Thus JsK� is a real number, the total minimized
cost, or∞ if the problem has no solution.

In order to have a proper theory of cost functions, we have to show that we have indeed defined
a model of the optimization specification. Let Xp be the element-wise application of a permutation
p ∶N →N to X ⊆N . Then we have the following theorem.
Theorem 3. Cost functions f ∶P(N)→R∞ satisfying (1) form a model of the optimization specification,
together with the given interpretation of operators and the permutation action (fp)X = f(Xp−1).
5.2 Dynamic programming algorithm

Consider the scenario with three possible parking zones A,B,C and three cars x1,x2 and x3. We assume
the following values for F and c.

F(x1)(A) = 3 F(x1)(B) =∞ F(x1)(C) =∞ c(A) = 2 c(B) = 2 c(C) = 2
F(x2)(A) = 4 F(x2)(B) = 6 F(x2)(C) =∞
F(x3)(A) =∞ F(x3)(B) = 4 F(x3)(C) = 1

In fig. 3, on the left side, we show the term in normal form, and the corresponding NH-graph, mod-
eling the system. We want to compute the cost function JpKc using dynamic programming. The crucial
property is compactness of cost functions: JpKc can be represented as a table of size � f n(p)�2. Although
a problem is typically specified as a term in normal form, we consider its canonical form c, shown on the
right side of fig. 3, because its complexity is equal or lower (theorem 2). We assume that all occurrences
of nil have been eliminated via structural congruence.

We propose a dynamic programming algorithm that is driven by the hierarchical NH-graph that c
describes, shown in the right side of fig. 3. This algorithm operates as the one in section 4.2, but tables
are computed using the different interpretation of operators on cost functions, introduced in section 5.1.

The algorithm starts from the cost functions for the leaves. These are shown in Tables 2a to 2c, where
the leftmost columns indicates whether a car is parked inside (✓) or outside (−) each zone. They are
computed as described in section 5.1: e.g., for JA(x1,x2)Kc, the cost for each row is JA(x1,x2)Kc X , where
X are the variables marked with✓ in that row. Then, the algorithm performs a bottom-up visit of the tree
and eliminates variables accordingly. More precisely, whenever an edge from G to G′ is traversed, with
G and G′ discrete hypergraphs, variables G�G′ are eliminated. In the following we show the elimination
steps, also indicated in fig. 3:

2The actual size is O(2� f n(p)�), but we show the exponent, as 2x ≤ 2y iff x ≤ y.

12 Dynamic Programming on Nominal Graphs

meaning that cars X ⊆ x̃ can be parked in zone A iff their number is at most the capacity of A. For nil we
simply have JnilKc X = 0.

Then we have

Jp ∥ qKc X = min{X1,X2}∈P2(X)�JpKc X1+ JqKc X2 � X1 ⊆ f n(p),
X2 ⊆ f n(q) �

where P2(X) are the partitions in two sets of X ⊆ f n(p ∥ q). Here, to park cars X in component p ∥ q,
one has to park each of them in either component p or component q, but not in both. Thus the best option
must be chosen. Finally, we have

J(x)pKc X = JpKc (X ∪{x}).
Here it is required that car x is parked in component p.

Typically, the whole system s has no free names. Thus JsK� is a real number, the total minimized
cost, or∞ if the problem has no solution.

In order to have a proper theory of cost functions, we have to show that we have indeed defined
a model of the optimization specification. Let Xp be the element-wise application of a permutation
p ∶N →N to X ⊆N . Then we have the following theorem.
Theorem 3. Cost functions f ∶P(N)→R∞ satisfying (1) form a model of the optimization specification,
together with the given interpretation of operators and the permutation action (fp)X = f(Xp−1).
5.2 Dynamic programming algorithm

Consider the scenario with three possible parking zones A,B,C and three cars x1,x2 and x3. We assume
the following values for F and c.

F(x1)(A) = 3 F(x1)(B) =∞ F(x1)(C) =∞ c(A) = 2 c(B) = 2 c(C) = 2
F(x2)(A) = 4 F(x2)(B) = 6 F(x2)(C) =∞
F(x3)(A) =∞ F(x3)(B) = 4 F(x3)(C) = 1

In fig. 3, on the left side, we show the term in normal form, and the corresponding NH-graph, mod-
eling the system. We want to compute the cost function JpKc using dynamic programming. The crucial
property is compactness of cost functions: JpKc can be represented as a table of size � f n(p)�2. Although
a problem is typically specified as a term in normal form, we consider its canonical form c, shown on the
right side of fig. 3, because its complexity is equal or lower (theorem 2). We assume that all occurrences
of nil have been eliminated via structural congruence.

We propose a dynamic programming algorithm that is driven by the hierarchical NH-graph that c
describes, shown in the right side of fig. 3. This algorithm operates as the one in section 4.2, but tables
are computed using the different interpretation of operators on cost functions, introduced in section 5.1.

The algorithm starts from the cost functions for the leaves. These are shown in Tables 2a to 2c, where
the leftmost columns indicates whether a car is parked inside (✓) or outside (−) each zone. They are
computed as described in section 5.1: e.g., for JA(x1,x2)Kc, the cost for each row is JA(x1,x2)Kc X , where
X are the variables marked with✓ in that row. Then, the algorithm performs a bottom-up visit of the tree
and eliminates variables accordingly. More precisely, whenever an edge from G to G′ is traversed, with
G and G′ discrete hypergraphs, variables G�G′ are eliminated. In the following we show the elimination
steps, also indicated in fig. 3:

2The actual size is O(2� f n(p)�), but we show the exponent, as 2x ≤ 2y iff x ≤ y.

Conclusions!

Algebraic specification for optimization problems!

Flat
Hierarchical

(no scope extension)

Hierarchical terms/graphs!Nominal terms/graphs!

Recursive computation
of cost functions!

Dynamic Programming
algorithm!

•  Variable elimination as variable binding!
•  Correctly handled via permutation algebras!

Future work!

•  Heuristics!

•  Dynamic graphs!

•  Precise correspondence between class
of terms and nominal graphs!

•  Formalizing nominal structure!

