
Quantomatic

Quantomatic: a proof assistant for diagrammatic
reasoning

Aleks Kissinger

April 11, 2015

QUANTUM

GROUP

Quantomatic

• Quantomatic is a diagrammatic proof assistant

• Instead of terms or formulas, its primitive objects are string diagrams:
• String diagrams are basically directed (or undirected) graphs, but

wires, unlike edges, are allowed to be open, allowing composition
(i.e. plugging)

• Proofs are done by substituting sub-diagrams according to string
diagram equations

Quantomatic

• Quantomatic is a diagrammatic proof assistant
• Instead of terms or formulas, its primitive objects are string diagrams:

g

f h

• String diagrams are basically directed (or undirected) graphs, but
wires, unlike edges, are allowed to be open, allowing composition
(i.e. plugging)

• Proofs are done by substituting sub-diagrams according to string
diagram equations

Quantomatic

• Quantomatic is a diagrammatic proof assistant
• Instead of terms or formulas, its primitive objects are string diagrams:

g

f h

boxes

wires

• String diagrams are basically directed (or undirected) graphs, but
wires, unlike edges, are allowed to be open, allowing composition
(i.e. plugging)

• Proofs are done by substituting sub-diagrams according to string
diagram equations

Quantomatic

• Quantomatic is a diagrammatic proof assistant
• Instead of terms or formulas, its primitive objects are string diagrams:

g

f h

inputs

outputs

• String diagrams are basically directed (or undirected) graphs, but
wires, unlike edges, are allowed to be open, allowing composition
(i.e. plugging)

• Proofs are done by substituting sub-diagrams according to string
diagram equations

Quantomatic

• Quantomatic is a diagrammatic proof assistant
• Instead of terms or formulas, its primitive objects are string diagrams:

g

f h

inputs

outputs

• String diagrams are basically directed (or undirected) graphs, but
wires, unlike edges, are allowed to be open, allowing composition
(i.e. plugging)

• Proofs are done by substituting sub-diagrams according to string
diagram equations

Quantomatic

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• We could also write these equations using trees:

=

a b c b ca

= =

a aa

Quantomatic

Algebra and rewriting

• Consider a monoid (A, ·, e):

(a · b) · c = a · (b · c) and a · e = a = e · a

• We could also write these equations using trees:

=

a b c b ca

= =

a aa

Quantomatic

Algebra and rewriting

• Note we can drop the free variables:

=

a b c b ca

⇒ =

• The role of variables is replaced by the fact that the LHS and RHS
have a shared boundary:

Quantomatic

Diagram substitution

• We can apply this rule: ‘(a · b) · c = a · (b · c)’ to rewrite a term like
this:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Quantomatic

Diagram substitution

• We can apply this rule: ‘(a · b) · c = a · (b · c)’ to rewrite a term like
this:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Quantomatic

Diagram substitution

• We can apply this rule: ‘(a · b) · c = a · (b · c)’ to rewrite a term like
this:

w · ((x · (y · e)) · z) w · (x · ((y · e) · z))

• ...or by cutting the LHS directly out of the tree and gluing in the RHS:

w
x

y
z x z

w

y

⇒

z
w

x
y

⇒

• This treats inputs and outputs symmetrically

Quantomatic

Algebra and coalgebra

• We can consider structures with many outputs as well as inputs.
• Coalgebraic structures: algebraic structures “upside-down”

=
= =

• The most interesting structures consist of algebras interacting with
coalgebras:

= = =

Quantomatic

Equational reasoning with diagram substitution

• As before, we can use graphical identities to perform substitutions,
but on graphs, rather than trees

=

• For example:

Quantomatic

DPO rewriting

• Mechanised by introducing some dummy nodes and doing DPO:

Quantomatic

Diagrams with repetition

• If we consider nodes with variable arity, e.g. trees of
(co)multiplications:

...
...

:= ...
...

:=

• We can write more general/powerful rules, like:

...

=
...

...

=
...

...

Quantomatic

!-boxes

• We can formalise these equations using !-boxes:

...

=

...
...

...

...

...

⇒ =

=
...

... ⇒ =

• ...where the box means ‘any number of copies’

Quantomatic

!-box rewriting

• For rewriting, first instantiate:

= ⇒ =

• Then apply:

⇒ ⇒

Quantomatic

Quantomatic demo

• Okay, enough of that...

⇐

Quantomatic

Thanks!

• Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir
Zamdzhiev, and David Quick

• See: quantomatic.github.io

	Quantomatic
	Quantomatic

