
A Reference Interpreter for the
Graph Programming Language

GP 2

Christopher Bak1, Glyn Faulkner1, Colin Runciman
and Detlef Plump

Department of Computer Science, The University of York

Graphs as Models, April 2015

1Supported by EPRSC Doctoral Training Grants.



Outline

The GP 2 Language

The GP 2 Reference Interpreter
Motivation & Requirements
Implementation
Performance

Conclusions and Future Work



GP 2

Graph Programs

Domain-specific language for graph-based structures

User supplies the input graph and the graph
transformation rules

Small set of imperative control constructs to
organise rule applications

Non-deterministic execution

Simple syntax and semantics to facilitate formal
reasoning



GP 2

Semantics1

[Call1]
G ⇒R H

〈R ,G 〉 → H
[Call2]

G ;R

〈R ,G 〉 → fail

[Alap1]
〈P ,G 〉 →+ H

〈P!,G 〉 → 〈P!,H〉
[Alap2]

〈P ,G 〉 →+ fail

〈P!,G 〉 → G

Graphs G and H are states. fail is the failure state. R is a rule. P is a program.

1The Design of GP2, Detlef Plump, EPTCS 82 (2012)



GP 2

Transitive Closure

Main = link!

link(a,b,x,y,z:list)

x

1

y

2

a
z

3

b ⇒ x

1

y

2

a
z

3

b

where not edge(1,3)

Rule link applied as long as possible on the input
graph.

List labels used for generality.



GP 2

Vertex Colouring

Main = init!; inc!

init(x: list)

x

1

⇒ x:1

2

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

Always outputs a valid colouring.

Minimal colouring not guaranteed because of
non-determinism.



GP 2

Vertex Colouring

Main = init!; inc!

init(x: list)

x

1

⇒ x:1

2



GP 2

Vertex Colouring

Main = init!; inc!

init(x: list)

x

1

⇒ x:1

2

⇒∗ 1

1

1

1



GP 2

Vertex Colouring

Main = init!; inc!

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

1

1

1

1



GP 2

Vertex Colouring

Main = init!; inc!

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

1

1

1

1 ⇒2 1

2

2

1



GP 2

Vertex Colouring

Main = init!; inc!

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

1

1

1

1



GP 2

Vertex Colouring

Main = init!; inc!

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

1

1

1

1 ⇒2 1

2

1

2



GP 2

Vertex Colouring
Main = init!; inc!

inc(a,x,y:list; i:int)

x:i

1

y:i

2

a ⇒ x:i

1

y:i+1

2

a

1

1

1

1 ⇒2 1

2

1

2 ⇒2 1

2

2

3



GP 2

Motivation

Test correctness of later compiled implementations
Fully implement non-determinacy
Familiarise language implementers with the
semantics of GP 2
Identify any gaps or ambiguities in the semantics

Simplicity is an over-riding aim

Speed and memory use are secondary concerns
Sophistication is to be actively avoided if it
complicates the implementation!



GP 2

Motivation

Test correctness of later compiled implementations
Fully implement non-determinacy
Familiarise language implementers with the
semantics of GP 2
Identify any gaps or ambiguities in the semantics

Simplicity is an over-riding aim

Speed and memory use are secondary concerns
Sophistication is to be actively avoided if it
complicates the implementation!



GP 2

Requirements

General requirements:

Quick to develop
Easy to maintain and reason about
Must be fast enough to do “useful work”

For a given program/host-graph pair. . .

Generate all possible output graphs
Produce all distinct output graphs up to
isomorphism
Output a single result



GP 2

Requirements

General requirements:

Quick to develop
Easy to maintain and reason about
Must be fast enough to do “useful work”

For a given program/host-graph pair. . .

Generate all possible output graphs
Produce all distinct output graphs up to
isomorphism
Output a single result



GP 2

Requirements

Also, stand-alone tools:

Isomorphism checker
Host-graph generator
Graph viewer



GP 2

Implementation

Based on the GP 2 semantics
Written in Haskell2

Parser Transformer Evaluator

Rule Applier

Graph File

Program

File

AST

Initial

Graph

Program

RuleGraph

Max #

Rule Apps

Graphs

Output

Data

2https://www.haskell.org/

https://www.haskell.org/


GP 2

Implementation

Main
Interpreter

53 lines

Isomorphism
Checker
21 lines

Graph Printer
34 lines

Evaluator
99 lines

Parser
230 lines

Rule
Applier
53 lines

Graph
Matcher
43 lines

Graph
Library
76 lines

Label
Matcher
89 lines

Checker &
Transformer

118 lines

Lists &
Finite Maps

60 lines

AST
126 lines

Approx. 1000 SLOC
Exploits distinctive features of Haskell to achieve
conciseness:

list-comprehensions
lazy evaluation



GP 2

Performance
Produce a fourth-generation Sierpinski triangle in
6.5 seconds
A cyclic graph of 1000 nodes fails an acyclicity test
in 1.8 seconds
Transitive closure of a linear graph of 50 nodes
takes 66 seconds
Vertex colouring a 9x9 grid in one-result mode takes
less than a second. . .
. . . but in all-result mode exceeds 5 minutes with
only a 3x3 grid

A more detailed discussion of performance can be found
in the paper



GP 2

Conclusions

We have developed a useful reference tool for our
ongoing research
Also useful ancillary tools:

GraphViz-based graph visualiser
Stand-alone isomorphism checker
Host-graph generator, based on hypergraph grammars

Gained a clear understanding of the GP 2 semantics
Become aware of some ‘edge-cases’ that might trip
us up in our compiler work



GP 2

Further work
Better error reporting
A performant compiler
GUI program editor
Formal verification against GP 2 semantics.

0
0

2

5

0 1

5

1

2

0

0

0

5

2

5

0 1

5

1

2

5

0

0
0

2

5

0 1

5

1

2

5

0

0

5

2

50
1

5

1

2

5

0

0

02

5

0

15

1

2

5

0

0
5

2

5
0

1

5

1

2

5

0

0
02

5

0
1

5

1

2

5

0

0
5

2

5
0

1

5

1

2

5

0

0

0
2

5
0

1

5

1

2

0

0

0

5

2

5
0

1

5

1

2

5

0

0

0
2

5

0

1
5

1

2

5

0

0 52

5

0 1
5

1

2

5

0

0 02

5

0 1

5

1

2

0

0

0 5
2

5

0 1

5

1

2

5

0

0
0

2

5
0

1

5

1

2

0

0

0

5

2

5

0 1

5

1

2

5

0

0
02

5
0

1

5

1

2

0

0

0
5

2

5

0
1

5

1

2

5

0

0
2

5

0
1

5

1

2

0

0

5

2

5
0

1

5

1

20

0
2

5

0

15

1

2

0

0

5

2

5
0

1

5

1

2
0

0
2

5

0

15

1

2
0

0

5

2

5

0 1

5

1

2

0

0
2

5

0

1
5

1

2

0

0

5

2

5
0

1

5

1

20

0
02

5

0
1

5

1

2

02

10

10

2

2

10

1
0

2

2

1

0
10

2

2

10
1

0

2

2

10

1
0

2

2

10

10

2

2

1
0

1
0

2

2

10

1

0
2

2

10
10

2

2

10

1
0

2

2

1
0

1
0

2

2

10

1
0

2

2

1

0

1
0

2

2

5

1
0

4:4


