UNIVERSITYW

A Reference Interpreter for the
Graph Programming Language
GP 2

Christopher Bak!, Glyn Faulkner!, Colin Runciman
and Detlef Plump

Department of Computer Science, The University of York

Graphs as Models, April 2015

ISupported by EPRSC Doctoral Training Grants.

Outline

@ The GP 2 Language

@ The GP 2 Reference Interpreter

@ Motivation & Requirements
@ Implementation
@ Performance

@ Conclusions and Future Work

GP 2

Graph Programs

@ Domain-specific language for graph-based structures

@ User supplies the input graph and the graph
transformation rules

@ Small set of imperative control constructs to
organise rule applications

@ Non-deterministic execution

@ Simple syntax and semantics to facilitate formal
reasoning

GP 2

Semantics?
G=rH G #r
Calh e =7 (Call) o= fait
P,G) -t H P,G) =T fail
[Alap] AP, G) [A13P2]< i

(P!, G) — (P!, H) (Pl,G) —» G

Graphs G and H are states. fail is the failure state. R is a rule. P is a program.

1 The Design of GP2, Detlef Plump, EPTCS 82 (2012)

GP 2

Transitive Closure

Main = link!

link(a,b,x,y,z: I|st)
oB ot oR¥cdoDo

1

where not edge(l 3)

@ Rule 1ink applied as long as possible on the input
graph.
@ List labels used for generality.

GP 2

Vertex Colouring

Main = init!; inc!
init(x: list) inc(a,x,y:list; i:int)

O-0 60 0@

@ Always outputs a valid colouring.

@ Minimal colouring not guaranteed because of
non-determinism.

GP 2

Vertex Colouring

Main = init!; inc!
|n|t x Ilst

ORa

GP 2

Vertex Colouring

Main = init!; inc!
init(x: list)

OR

GP 2

Vertex Colouring

Main = init!; inc!
inc(a,x,y:list; i:int)

ORORIOST,
1 2 1

2

7
’
@
N
S
N

GP 2

Vertex Colouring

Main = init!; inc!
inc(a,x,y:list; i:int)

ORORIOST
1 2 1 2

GP 2

Vertex Colouring

Main = init!; inc!
inc(a,x,y:list; i:int)

ORORIOST
1 2 1 2

GP 2

Vertex Colouring

Main = init!; inc!
inc(a,x,y:list; i:int)

ORORIOST,
1 2 1

2

GP 2

Vertex Colouring

Main = init!; inc!
inc(a,x,y:list; i:int)

G- = @
1 2 1 2

GP 2

Motivation

@ Test correctness of later compiled implementations
e Fully implement non-determinacy

@ Familiarise language implementers with the
semantics of GP 2

@ ldentify any gaps or ambiguities in the semantics

GP 2

Motivation

@ Test correctness of later compiled implementations
e Fully implement non-determinacy

@ Familiarise language implementers with the
semantics of GP 2

@ ldentify any gaps or ambiguities in the semantics
Simplicity is an over-riding aim

@ Speed and memory use are secondary concerns
@ Sophistication is to be actively avoided if it
complicates the implementation!

GP 2

Requirements

General requirements:

@ Quick to develop
@ Easy to maintain and reason about
@ Must be fast enough to do “useful work”

GP 2

Requirements

General requirements:

@ Quick to develop
@ Easy to maintain and reason about
@ Must be fast enough to do “useful work”

For a given program/host-graph pair. . .

@ Generate all possible output graphs

@ Produce all distinct output graphs up to
isomorphism

@ Output a single result

Requirements

Also, stand-alone tools:

@ Isomorphism checker
@ Host-graph generator
o Graph viewer

GP 2

GP 2

Implementation

@ Based on the GP 2 semantics
@ Written in Haskell?

Initial Max # j
Graph File Graph Rule Apps Output
AS Data
Parser Transformer Evaluator
Program Program:
File Graphs

Graph Rule

Rule Applier

’https://www.haskell.org/

https://www.haskell.org/

GP 2

Implementation

Parser |-------"""77TTTTome-l -
(230 lines Tt

. Rule Graph Checker
’ Evaluator . P & AST
] . ---> Applier - -+ Matcher Transformer | .
99 lines . . 126 lines
53 lines 118 lines

43 lines]

Main
Interpreter S
53 lines [Graph Printer | _ v e N
. 34 lines ‘"‘*__‘__* Graph Label Lists &
N - | Library Matcher |~ Finite Maps
*, | Isomorphism - . . .
- 76 lines 89 lines 60 lines
Checker |- . e
21 lines | TTTmoC -

@ Approx. 1000 SLOC
@ Exploits distinctive features of Haskell to achieve
conciseness:

@ list-comprehensions
o lazy evaluation

GP 2

Performance

@ Produce a fourth-generation Sierpinski triangle in
6.5 seconds
@ A cyclic graph of 1000 nodes fails an acyclicity test
in 1.8 seconds
@ Transitive closure of a linear graph of 50 nodes
takes 66 seconds
@ Vertex colouring a 9x9 grid in one-result mode takes
less than a second. ..
@ ...but in all-result mode exceeds 5 minutes with
only a 3x3 grid
A more detailed discussion of performance can be found
in the paper

GP 2

Conclusions

@ We have developed a useful reference tool for our
ongoing research
@ Also useful ancillary tools:
o GraphViz-based graph visualiser

e Stand-alone isomorphism checker
@ Host-graph generator, based on hypergraph grammars

@ Gained a clear understanding of the GP 2 semantics
@ Become aware of some ‘edge-cases’ that might trip
us up in our compiler work

GP 2

Further work

o Better error reporting

@ A performant compiler

@ GUI program editor

@ Formal verification against GP 2 semantics.

fuo

(X
0
.- .‘

i
10}
' : 5
9 O
3o o;
“‘-.gu o8 'n»c
~

